
Home » NXP » NXP PN7220 Compliant NFC Controller User Guide  

AN13971
PN7220 – Android porting guide
Rev. 1.0 — 18 September 2023

Application note

Contents
1  PN7220 Compliant NFC Controller
2  Introduction
3  Kernel driver
4  AOSP adaptation
5  i.MX 8M Nano porting
6  Abbreviations
7  References
8  Note about the source code in the
document
9  Legal information
10  Documents / Resources

10.1  References
11  Related Posts

PN7220 Compliant NFC Controller

Document information

NXP PN7220 Compliant NFC Controller User Guide

Manuals+ —  User Manuals Simplified.

https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/nxp
https://manuals.plus/nxp/pn7220-compliant-nfc-controller-manual.pdf


Information Content

Keywords PN7220, NCI, EMVCo, NFC Forum, Android, NFC

Abstract This document describes how to port PN7220 middleware release to Android.

NXP Semiconductors

Revision history
Revision history

Rev Date Description

v.1.0 20230818 Initial version

Introduction

This document provides guidelines for integrating a PN7220 NXP NCI-based NFC controller into an Android
platform from a software perspective.
It first explains how to install the required kernel driver, and then describes step-by-step how to customize the
AOSP sources to add support for the PN7220 NFC controller. Figure 1 shows the architecture of the entire
Android NFC stack.

Figure 1. Android NFC stack



PN7220 is separated into single-host and dual-host scenarios. In general, the stack is the same for dual host, we
add SMCU.

The NXP I2C Driver is the kernel module that provides access to the hardware resources of the PN7220.

The HAL module is the implementation of the specific HW abstraction layer of the controller NXP NFC.

LibNfc-nci is a native library that provides NFC functionality.

NFC JNI is a glue code between Java and Native classes.

The NFC and EMVCo Framework is an application framework module that provides access to NFC and

EMVCo functionality.

Kernel driver

The NFC Android stack uses a nxpnfc kernel driver to communicate with the PN7220. It is available here.

2.1 Driver details
The nxpnfc kernel driver offers communication with the PN7220 over an I2C physical interface.
When loaded into the kernel, this driver exposes the interface to PN7220 through the device node named /dev/
nxpnfc.

2.2 Getting the source code
Clone the PN7220 driver repository into the kernel directory, replacing the existing implementation:
$rm -rf drivers/nfc
$git clone “https://github.com/NXPNFCLinux/nxpnfc.git“-b PN7220-Driver drivers/

This ends up with the folder drivers/nfc containing the following files:

README.md: repository information

Make file: driver heading make file

Kcon fig: driver configuration file

License: driver licensing terms

nfc subfolder containing:

– commoc. c: generic driver implementation

– common. h: generic driver interface definition

– i2c_drv.c: i2c specific driver implementation

– i2c_drv.h: i2c specific driver interface definition

– Makefile: makefile that is included in the makefile of the driver

– Kbuild => build file

– Kconfig => driver configuration file

2.3 Building the driver
Including the driver into the kernel and making it load during the device boot is done thanks to the devicetree.
After updating the device tree definition, the platform-related device tree must be rebuilt. NXP suggests using
kernel version 5.10, since in this version complete validation is done.

1. Download the kernel

2. Get the driver source code.

3. Change the device tree definition (specific to the device that we are using).

https://github.com/NXPNFCLinux/nxpnfc.git


4. Build the driver.

a. Through the menuconfig procedure, include the target driver in the build.

After rebuilding the complete kernel, the driver will be included in the kernel image. We must make sure that all
new kernel images are copied into the AOSP build.

AOSP adaptation

NXP provides patches on top of the AOSP code. That means that the user can first get an AOSP code and apply
patches from NXP. This section describes how to accomplish this. The current AOSP tag that we are using is [1].

3.1 AOSP build

1. We must get the AOSP source code. This we can do with:

$ repo init -u https://android.googlesource.com/platform/manifest-b android-13.0.0_r3

$ repo sync

Note: The repo tool must be installed on the system. Follow the instructions [2].

2. When we have source code, we can enter the directory and build it:

$cd Android_AROOT

$source build/envsetup.sh

$lunch select_target #target is DH we want to use for example: db845c-userdebug $make -j

3. When AOSP is successfully built, we must get NXP patches. This we can do with:

$git clone “https://github.com/NXPNFCLinux/PN7220_Android13.git” vendor/nxp/

4. At this point, we have all needed to apply patches for PN7220 support. We can apply patches by running the

install_NFC.sh script.

$chmod +x /vendor/nxp/nfc/install_NFC.sh #sometimes we need to add executable rights to script

$./vendor/nxp/nfc/install_NFC.sh

Note: Check the output after running install_NFC.sh. If needed, we must make some changes by hand.

5. We can also add FW binaries:

$git clone xxxxxxx

$cp -r nfc-NXPNFCC_FW/InfraFW/pn7220/64-bit/libpn72xx_fw.so

AROOT/vendor/nxp/pn7220/firmware/lib64/libpn72xx_fw.so

$cp -r nfc-NXPNFCC_FW/InfraFW/pn7220/32-bit/libpn72xx_fw.so

AROOT/vendor/nxp/pn7220/firmware/lib/libpn72xx_fw.so

6. Adding NFC to build

In the device.mk makefile (for example, device/brand/platform/device.mk), include specific makefiles:

$(call inherit-product, vendor/nxp/nfc/device-nfc.mk)

In the BoardConfig.mk makefile (for example, device/brand/platform/BoardConfig.mk), include a specific

makefile:

-include vendor/nxp/nfc/BoardConfigNfc.mk

7. Adding DTA application

$git clone https://github.com/NXPNFCProject/NXPAndroidDTA.git $git checkout NFC_DTA_v13.02_OpnSrc

$patch -p1 AROOT_system_nfc-dta.patch

$ cp -r nfc-dta /system/nfc-dta

$<AROOT>/system/nfc-dta/$ mm -j

https://android.googlesource.com/platform/manifest-b
https://github.com/NXPNFCLinux/PN7220_Android13.git


8. Now we can build AOSP again with all the changes we made:

$cd framework/base

$mm

$cd ../..

$cd vendor/nxp/frameworks

$mm #after this one, we should see com.nxp.emvco.jar inside out/target/product/xxxx/system/framwework/

$cd ../../..

$cd hardware/nxp/nfc

$mm

$cd ../../..

$make -j

Now, we are able to flash our device host with the Android image that includes NFC features.

3.2 Android NFC Apps and Lib on targets
In this subsection, we describe where specific compiled files are pushed. If there is any change, we can replace
only that one file. Table 1 shows all locations.
Table 1. Compiled files with device target

Project location Compiled Files Location in target device

“$ANDROID_ROOT”/packag
es/apps/Nfc

lib/NfcNci.apk
oat/libnfc_nci_jni.so

/system/app/NfcNci/
/system/lib64/

“$ANDROID_ROOT”/system
/nfc libnfc_nci.so /system/lib64/

“$ANDROID_ROOT”/hardw
are/nxp/nfc

nfc_nci_nxp_pn72xx.so
android.hardware.nfc_72xx@1.2-
service android.hardware.nfc_72xx@1.
2-service.rc
android.hardware.nfc@1.0.so
android.hardware.nfc@1.1.so
android.hardware.nfc@1.2.so

/vendor/lib64
/vendor/bin/hw/
/vendor/etc/init
system/lib64/
system/lib64/
system/lib64/

“$ANDROID_ROOT”/hardw
are/nxp/nfc vendor.nxp.nxpnfc@2.0.so /system/lib64

“$ANDROID_ROOT”/vendor
/nxp/frameworks com.nxp.emvco.jar /system/framework

/vendor/framework

“$ANDROID_ROOT”/hardw
are/nxp/emvco

emvco_poller.so
android.hardware.emvco-service
android.hardware.emvco-service.rc
android.hardware.emvco-V1-ndk.so
android.hardware.emvco-V2-ndk.so

/vendor/lib64
/vendor/bin/hw/
/vendor/etc/init
system/lib64/
system/lib64/

3.3 Patch mapping

Every patch must be applied to a specific location. Table 2 shows the patch name and the location where we must
apply it and a block name, which shows us where in the NFC stack (Figure 1) is located.
Table 2. Patch location in NFC Stack



Block name Patch name Location to apply

NFC HAL and EMVCo HAL AROOT_hardware_interfaces.patch hardware/interfaces/

NFC Stack AROOT_hardware_nxp_nfc.patch hardware/nxp/nfc/

EMVCo L1 Data Exchange Layer =
EMVCo Stack AROOT_hardware_nxp_emvco.patch hardware/nxp/emvco/

LibNfc-Nci AROOT_system_nfc.patch system/nfc/

NFC JNI AROOT_packages_apps_Nfc.patch packages/apps/nfc/

NFC Service AROOT_packages_apps_Nfc.patch packages/apps/nfc/

NFC Framework AROOT_frameworks_base.patch frameworks/base/

EMVCo Framework AROOT_vendor_nxp_frameworks.patch vendor/nxp/frameworks/

3.4 Flashing images
Images can be found in /out/target/product/{selected_DH}. To flash system images, we must run the following
commands (tested on the Dragonboard 845c).
$ adb reboot bootloader
$ fastboot flash boot boot_uefi.img
$ fastboot flash vendor_boot vendor_boot.img
$ fastboot flash super super.img
$ fastboot flash userdata userdata.img
$ fastboot format:ext4 metadata $fastboot reboot

After the images are flashed, we must perform some MW clean-up by running the following commands (tested on
the Dragonboard 845c).

$ adb wait-for-device
$ adb root
$ adb wait-for-device
$ adb remount
$ adb shell rm -rf vendor/etc/init/android.hardware.nfc@1.1-service.rc
$ adb shell rm -rf vendor/etc/init/android.hardware.nfc@1.2-service.rc
$ adb push Test_APK/EMVCoAidlHalComplianceTest/EMVCoAidlHalComplianceTestsystem/etc
$ adb shell chmod 0777 /system/etc/EMVCoAidlHalComplianceTest
$ adb push Test_APK/EMVCoAidlHalDesfireTest/EMVCoAidlHalDesfireTest system/etc
$ adb shell chmod 0777 /system/etc/EMVCoAidlHalDesfireTest
$ adb push Test_APK/EMVCoModeSwitchApp/EMVCoModeSwitchApp.apk
system/app/EMVCoModeSwitchApp/EMVCoModeSwitchApp.apk
$ adb shell sync
$ adb reboot
$ adb wait-for-device

3.5 Config files
In PN7220, we have four different configuration files.

1. libemvco-nxp.conf

2. libnfc-nci.conf

3. libnfc-nxp.conf

4. libnfc-nxp-eeprom.conf



Note: Pay attention that the configuration files provided in the example relate to the NFC controller demo board.
These files must be adopted according to the targeted integration.
All four files must be pushed to the specific location.

Table 3. Locations of configuration files

Name of configuration file Location in device

libemvco-nxp.conf vendor/etc

libnfc-nci.conf vendor/etc

libnfc-nxp.conf system/etc

libnfc-nxp-eeprom.conf vendor/etc

libnfc-nxp-eeprom.conf

Table 4. libnfc-nxp-eeprom.conf explanation

Name Explanation Default value

NXP_SYS_CLK_
SRC_SEL System clock source selection configuration 0x01

NXP_SYS_CLK_
FREQ_SEL System clock frequency selection configuration 0x08

NXP_ENABLE_
DISABLE_STANBY Option to enable or disable Standby mode 0x00

NXP_ENABLE_
DISABLE_LPCD Option to enable or disable LPCD. 0x00

Note: If there is no clock configured, either PLL or Xtal, then the MW stack retries in a loop to get the clock and
initialize successfully. libnfc-nci.conf

Table 5. libnfc-nci.conf explanation

Name Explanation Default value

APPL_TRACE_LEVEL Log levels for libnfc-nci 0xFF

PROTOCOL_TRACE_LEVEL Log levels for libnfc-nci 0xFFFFFFFF

NFC_DEBUG_ENABLED NFC debug enable setting 0x01

NFA_STORAGE Set the target directory for NFC file storage /data/vendor/nfc

HOST_LISTEN_TECH_MASK Configure host listen feature 0x07

NCI_HAL_MODULE NCI HAL Module name nfc_nci.pn54x

POLLING_TECH_MASK Configuration of the polling technologies 0x0F

Table 5. libnfc-nci.conf explanation…continued



Name Explanation Default value

P2P_LISTEN_TECH_MASK P2P is not supported in PN7220 0xC5

PRESERVE_STORAGE Verify the content of all nonvolatile stores. 0x01

AID_MATCHING_MODE Provides different ways to match the AID 0x03

NFA_MAX_EE_SUPPORTED Maximum EE supported number 0x01

OFFHOST_AID_ROUTE_PWR_STA
TE Set the OffHost AID supported state 0x3B

libnfc-nxp.conf

Table 6. libnfc-nxp.conf explanation

http://libnfc-nxp.conf


Name Explanation Default value

NXPLOG_EXTNS_LOGLEVEL Configuration for extns logging level 0x03

NXPLOG_NCIHAL_LOGLEVEL Configuration for enabling logging of HAL 0x03

NXPLOG_NCIX_LOGLEVEL Configuration for enabling logging of NCI 
TX packets 0x03

NXPLOG_NCIR_LOGLEVEL Configuration for enabling logging of NCI 
RX packets 0x03

NXPLOG_FWDNLD_LOGLEVEL Configuration for enabling logging of FW 
download functionality 0x03

NXPLOG_TML_LOGLEVEL Configuration for enabling logging of TM 0x03

NXP_NFC_DEV_NODE NFC Device Node name idev/rixpnfc”

MIFARE_READER_ENABLE Extension for NFC reader for MIFARE en
able Ox01

NXP_FW_TYPE Firmware file type Ox01

NXP_I2C_FRAGMENTATION_ ENABLED Configure 12C fragmentation 0x00

NFA_PROPRIETARY_CFG Set Vendor proprietary configuration {05, FF, FF, 06, 81, 
80, 70, FF, FF}

NXP_EXT_TVDD_CFG Set TVDD configuration mode 0x02

NXP_EXT TVDD_CFG_1 Configure TVDD settings according to TV
DD mode selected Check config file

NXP_EXT_TVDD_CFG_2 Configure TVDD settings according to TV
DD mode selected Check config file

NXP_CORE_CONF Configure standardized parts of the NFC 
controller

{ 20, 02, 07, 02, 21,
01, 01, 18, 01, 02 }

NXP_CORE_CONF_EXTN Configure proprietary parts of the NFC co
ntroller {00, 00, 00, 00}

NXP_SET_CONFIG_ALWAYS
Always send CORE_CONF and
CORE_CONF_EXTN (not recommended
enabling it.)

Ox00

NXP_RF_CONF_BLK_1 RF settings Check config file

ISO_DEP_MAX_TRANSCEIVE Define maximum ISO-DEP extended AP
DU length OxFEFF

PRESENCE_CHECK_ALGORITHM Set the algorithm used for the T4T presen
ce check  procedure 2

NXP_FLASH_CONFIG Flashing Options Configurations 0x02

libemvco-nxp.conf

Table 7. libemvco-nxp.conf explanation

http://libemvco-nxp.conf


Name Explanation Default value

NXP LOG EXTNS LOGLEVE
L Configuration for extns logging level 0x03

NXP LOG NCIHAL
LOGLEVEL Configuration for enabling logging of HAL 0x03

NXP LOG NCIX LOGLEVEL Configuration for enabling logging of NCI TX p
ackets 0x03

NXP LOG NCIR LOGLEVEL Configuration for enabling logging of NCI RX p
ackets 0x03

NXP LOG TML LOGLEVEL Configuration for enabling logging of TML 0x03

NXP_EMVCO_DEBUG_ENA
BLED Enable debugging 0x03

NXP EMVCO DEV NODE EMVCo Device Node name “/dev/nxpnfc”

NXP PCD SETTINGS Configuration to set polling delay between 2 ph
ases

(20, 02, 07, 01, A0, 64, 03, E
C, 13, 06)

NXP SET CONFIG
Option to set config command for debugging p
urpose Check config file

NXP GET CONFIG Option to get config command for debugging p
urpose Check config file

3.6 DTA APPLICATION
To allow NFC Forum certification testing, a device test application is provided. It is composed of several
components in the different Android layers, which must be built and included in the Android image.
To push the DTA application, we must follow the next steps:

1. Copy all DTA files to one location

$cp -rf “out/target/product/hikey960/system/lib64/libosal.so” /DTA-PN7220

$cp -rf “out/target/product/hikey960/system/lib64/libmwif.so” /DTA-PN7220

$cp -rf “out/target/product/hikey960/system/lib64/libdta.so” /DTA-PN7220

$cp -rf “out/target/product/hikey960/system/lib64/libdta_jni.so” /DTA-PN7220

$cp -rf “out/target/product/hikey960/system/app/NxpDTA/NxpDTA.apk” /DTAPN7220

2. Push the binaries to the device as bellow

adb shell mkdir /system/app/NxpDTA/

adb push libosal.so /system/lib64/

adb push libdta.so /system/lib64/

adb push libdta_jni.so /system/lib64/

adb push libmwif.so /system/lib64/

adb push NxpDTA.apk /system/app/NxpDTA/

After flashing the target, the DTA application should then be present in the list of installed applications. Check UG
for a detailed description of how to use the application.



i.MX 8M Nano porting

As an example, we show what porting to the i.MX 8M platform looks like. To get more information, check [3].

4.1 Hardware
At the moment, NXP does not provide the adapter board. Check Table 8 to see how to connect boards with wires.

Table 8. PN7220 to i.MX 8M Nano connections

PIN PN7220 i.MX 8M NANO

VEN J27 – 7 J003 – 40

IRQ J27 – 6 J003 – 37

SDA J27 – 3 J003 – 3

SCL J27 – 2 J003 – 5

MODE_SWITCH J43 – 32 J003 – 38

GND J27 – 1 J003 – 39

4.2 Software
The steps described in this section explain how we can port PN7200 to the i.MX 8M Nano platform. Same steps
with a bit of modification, it can be used to port to any other DH that is running Android OS.
Note: In this porting example, we are using 13.0.0_1.0.0_Android_Source.
We can reuse patches related to AOSP code. What must be changed is:

1. Device tree (in i.MX 8M Nano, this is AROOT_vendor_nxp-opensource_imx_kernel.patch)

2. Device-specific patch (in i.MX 8M Nano, this is AROOT_device_nxp.patch)

In AROOT_vendor_nxp-opensource_imx_kernel.patch, we can see how the driver is included and how the device
tree is built. This is specific to every device host since we must take care of pin configuration, and this is different
between boards. We also must take care of menu configuration.
In AROOT_device_nxp.patch, we are including nfc into the build. In general, we are making sure, that all the
services are included correctly, etc. When porting to a specific device host, take this patch as a reference and
include all the things inside.
One additional thing we did in porting is located in the device-nfc.mk file:
We need to comment out following lines:
# BOARD_SEPOLICY_DIRS += vendor/$(NXP_VENDOR_DIR)/nfc/sepolicy \
# vendor/$(NXP_VENDOR_DIR)/nfc/sepolicy/nfc
The reason for this is that we are including sepolicy in the device-specific BoardConfig.mk file. Steps to build
images:
> Get AOSP code for i.MX8M Nano
> Build AOSP
> Get NXP patches ([5])
> Apply all patches with install_nfc.sh
> cd framework/base
> mm
> cd ../..
> cd vendor/nxp/frameworks
> mm #after this one, we should see com.nxp.emvco.jar inside out/target/product/ imx8mn/system/framwework/
> cd ../../..
> cd hardware/nxp/nfc
> mm



> cd ../../..
> make
> Download images and use uuu tool to flash i.MX8M Nano

Abbreviations

Table 9. Abbreviations

Acronym Description

APDU application protocol data unit

AOSP Android open source project

DH device host

HAL hardware abstraction layer

FW firmware

I2C inter-integrated circuit

LPCD lower powerd card detection

NCI NFC controller interface

NFC near-field communication

MW middleware

PLL phase-locked loop

P2P peer to peer

RF radio frequency

SDA serial data

SMCU secure microcontroller

SW software

References

[1] AOSP r3 tag: https://android.googlesource.com/platform/manifest-b android-13.0.0_r3
[2] Source control tools: https://source.android.com/docs/setup/download
[3] i.MX: https://www.nxp.com/design/software/embedded-software/i-mx-software/android-os-for-i-
mxapplications-processors:IMXANDROID
[4] PN7220 kernel driver: https://github.com/NXPNFCLinux/nxpnfc/tree/PN7220-Driver
[5] PN7220 MW: https://github.com/NXPNFCLinux/PN7220_Android13

Note about the source code in the document

Example code shown in this document has the following copyright and BSD-3-Clause license:
Copyright 2023 NXP Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following

https://android.googlesource.com/platform/manifest-b
https://source.android.com/docs/setup/download
https://www.nxp.com/design/software/embedded-software/i-mx-software/android-os-for-i-mxapplications-processors:IMXANDROID
https://github.com/NXPNFCLinux/nxpnfc/tree/PN7220-Driver
https://github.com/NXPNFCLinux/PN7220_Android13


disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the

following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote

products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Legal information

8.1 Definitions
Draft — A draft status on a document indicates that the content is still under internal review and subject to formal
approval, which may result in modifications or additions. NXP Semiconductors does not give any representations
or warranties as to the accuracy or completeness of information included in a draft version of a document and
shall have no liability for the consequences of use of such information.

8.2 Disclaimers
Limited warranty and liability — Information in this document is believed to be accurate and reliable. However,
NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy
or completeness of such information and shall have no liability for the consequences of use of such information.
NXP Semiconductors takes no responsibility for the content in this document if provided by an information source
outside of NXP Semiconductors.
In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential
damages (including – without limitation lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such damages are based on tort (including
negligence), warranty, breach of contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’
aggregate and cumulative liability towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP Semiconductors.
Right to make changes — NXP Semiconductors reserves the right to make changes to information published in
this document, including without limitation specifications and product descriptions, at any time and without notice.
This document supersedes and replaces all information supplied prior to the publication hereof.
Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for
use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or
severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion
and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion
and/or use is at the customer’s own risk.
Applications — Applications that are described herein for any of these products are for illustrative purposes only.
NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified
use without further testing or modification. Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for
any assistance with applications or customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned,
as well as for the planned application and use of customer’s third party customer(s). Customers should provide
appropriate design and operating safeguards to minimize the risks associated with their applications and
products.
NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is



based on any weakness or default in the customer’s applications or products, or the application or use by
customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s
applications and products using NXP Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party customer(s). NXP does not accept any liability in
this respect.
Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general
terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and
conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the
customer’s general terms and conditions with regard to the purchase of NXP Semiconductors products by
customer.
Export control — This document as well as the item(s) described herein may be subject to export control
regulations. Export might require a prior authorization from competent authorities.
Suitability for use in non-automotive qualified products  — Unless this document expressly states that this
specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is
neither qualified nor tested in accordance with automotive testing or application requirements. NXP
Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.
In the event that customer uses the product for design-in and use in automotive applications to automotive
specifications and standards, customer (a) shall use the product without NXP Semiconductors’ warranty of the
product for such automotive applications, use and specifications, and (b) whenever customer uses the product for
automotive applications beyond NXP Semiconductors’ specifications such use shall be solely at customer’s own
risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims
resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.
Evaluation products — This product is provided on an “as is” and “with all faults” basis for evaluation purposes
only. NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express,
implied or statutory, including but not limited to the implied warranties of noninfringement, merchantability and
fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this
product remains with customer.
In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special, indirect,
consequential, punitive or incidental damages (including without limitation damages for loss of business, business
interruption, loss of use, loss of data or information, and the like) arising out the use of or inability to use the
product, whether or not
based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even
if advised of the possibility of such damages. Notwithstanding any damages that customer might incur for any
reason whatsoever (including without limitation, all damages referenced above and all direct or general damages),
the entire liability of NXP Semiconductors, its affiliates and their suppliers and customer’s exclusive remedy for all
of the foregoing shall be limited to actual damages incurred by customer based on reasonable reliance up to the
greater of the amount actually paid by customer for the product or five dollars (US$5.00). The foregoing
limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any
remedy fails of its essential purpose.
Translations — A non-English (translated) version of a document, including the legal information in that
document, is for reference only. The English version shall prevail in case of any discrepancy between the
translated and English versions.
Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may
support established security standards or specifications with known limitations. Customer is responsible for the
design and operation of its applications and products throughout their lifecycles to reduce the effect of these
vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other open
and/or proprietary technologies supported by NXP products for use in customer’s applications. NXP accepts no
liability for any vulnerability. Customer should regularly check security updates from NXP and follow up
appropriately. Customer shall select products with security features that best meet rules, regulations, and
standards of the intended application and make the ultimate design decisions regarding its products and is solely
responsible for compliance with all legal, regulatory, and security related requirements concerning its products,
regardless of any information or support that may be provided by NXP.
NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the
investigation, reporting, and solution release to security vulnerabilities of NXP products.
NXP B.V. – NXP B.V. is not an operating company and it does not distribute or sell products.

http://www.nxp.com/profile/terms
mailto:PSIRT@nxp.com


8.3 Licenses
Purchase of NXP ICs with NFC technology — Purchase of an NXP Semiconductors IC that complies with one of
the Near Field Communication (NFC) standards ISO/IEC 18092 and ISO/IEC 21481 does not convey an implied
license under any patent right infringed by implementation of any of those standards. Purchase of NXP
Semiconductors IC does not include a license to any NXP patent (or other IP right) covering combinations of those
products with other products, whether hardware or software.

8.4 Trademarks
Notice: All referenced brands, product names, service names, and trademarks are the property of their respective
owners.
NXP — wordmark and logo are trademarks of NXP B.V.
EdgeVerse — is a trademark of NXP B.V.
i.MX — is a trademark of NXP B.V.
I2C-bus — logo is a trademark of NXP B.V.
Oracle and Java — are registered trademarks of Oracle and/or its affiliates.

Please be aware that important notices concerning this document and the product(s) described herein, have been
included in section ‘Legal information’.

© 2023 NXP B.V.
For more information, please visit: http://www.nxp.com

All rights reserved.
Date of release: 18 September 2023

Document identifier: AN13971

AN13971
Application note

All information provided in this document is subject to legal disclaimers.
Rev. 1.0 — 18 September 2023

© 2023 NXP B.V. All rights reserved.

Documents / Resources

NXP PN7220 Compliant NFC Controller [pdf] User Guide
PN7220 Compliant NFC Controller, PN7220, Compliant NFC Controller, NFC Controller, Contro
ller

References

User Manual

Manuals+, Privacy Policy

http://www.nxp.com
https://manuals.plus/m/af61e99bc12203e459232cb4f1fd0f83fec9e39640f2ebc850aaa5ccd9e253f8
https://manuals.plus/m/af61e99bc12203e459232cb4f1fd0f83fec9e39640f2ebc850aaa5ccd9e253f8.pdf
https://manual.tools/?p=10945497#MTA0LjI4LjIwMi4xNzk7Ozs7
https://manuals.plus/
https://manuals.plus/privacy-policy

	NXP PN7220 Compliant NFC Controller User Guide
	PN7220 Compliant NFC Controller
	Introduction
	Kernel driver
	AOSP adaptation
	i.MX 8M Nano porting
	Abbreviations
	References
	Note about the source code in the document
	Legal information
	Documents / Resources
	References



