

NXP MCXA156 Development Board User Guide


Home » NXP » NXP MCXA156 Development Board User Guide 🖫

Contents

- 1 NXP MCXA156 Development Board
- 2 Specifications
- 3 FAQs
- 4 Introduction
- 5 MCXA14x/15x features
- **6 Package options**
- 7 Debug and programming interface
- 8 Unused pins
- 9 Legal information
- 10 Documents / Resources
 - 10.1 References
- 11 Related Posts

NXP MCXA156 Development Board

Specifications

• Family: MCXA14x/15x

• Operating Voltage Range: 1.71 V to 3.6 V

• Memory Options: 64 KB to 1 MB Flash

• Package Options: HVQFN32, HVQFN48, LQFP48, LQFP64, LFBGA64, LQFP100

FAQs

- Q: What is the operating voltage range of the MCXA14x/15x family?
 - A: The operating voltage range is from 1.71 V to 3.6 V.
- Q: How many memory options are available in the MCXA14x/15x family?
 - A: The family offers memory options ranging from 64 KB to 1 MB of flash memory.
- Q: Are all MCXA14x/15x parts pin-to-pin compatible?
 - **A:** Most of the parts are fully pin-to-pin compatible, providing flexibility in hardware design within the family.

Document Information

Information	Content
Keywords	UG10151, MCX, MCXA14x/15x, MCXA156, MCXA155, MCXA154, MCXA153, MCXA15 2, MCXA146, MCXA145, MCXA144, MCXA143, MCXA142
Abstract	This document provides guidelines and recommendations for creating hardware designs based on the NXP MCXA14x/15x MCU.

Introduction

This document provides guidelines and recommendations for creating hardware designs based on the NXP

MCXA14x/15x MCU.

- It provides guidelines for designing the board schematics and the board layout. It aims to help hardware engineers achieve first-pass success with board design and testing and avoid board bring-up problems.
- For relevant device-specific hardware documentation, visit MCX A Series Microcontrollers.

MCXA14x/15x family overview

- The MCXA14x/15x family is a new NXP general-purpose MCU family that further extends the highly scalable MCU portfolio for industrial and IoT applications.
- It builds on the legacy LPC and Kinetis families while introducing higher memory options along with a richer peripheral set.
- With support for a voltage range from 1.71 V to 3.6 V and a focus on low-power performance, the MCXA14x/15x devices are well-suited for a wide range of industrial and IoT applications.
- The MCXA14x/15x family offers low pin count options and is optimized for cost-sensitive applications.
- To address varying customer needs, 30+ MCXA14x/15x parts are already available, and more parts are planned for the future. It provides scalability in terms of memory set and performance.
- Most of these parts are fully pin-to-pin compatible and all of them are software compatible. You can start your hardware design now with already available parts.
- You get the flexibility to upgrade or downgrade the part in the future within the whole MCXA14x/15x family.

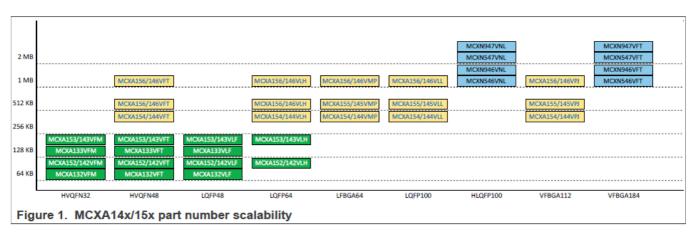


Figure 2 explains how to decode an MCXA14x/15x part number.

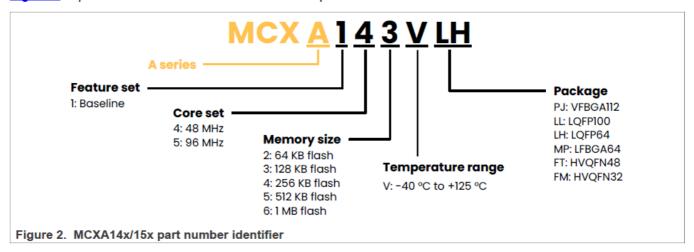


Figure 2 explains how to decode an MCXA14x/15x part number.

In the MCXA14x/15x part number:

- 'A' indicates the device part number series.
- '1' indicates the baseline feature set, which also indicates that the part is relatively cost-effective.
- The next character ('4' or '5') indicates core speed 48 MHz for MCXA14x and 96 MHz for MCXA15x.
- The next character indicates the memory size, for example, '2' represents 64 KB flash memory.
- 'V' represents a temperature range from -40 °C to 125 °C.
- The last two characters indicate the package option, for example, "PJ" indicates the VFBGA112 package.

MCXA14x/15x features

The MCXA14x/15x MCU features are summarized below:

- 32-bit Arm Cortex-M33 core, running at speeds of up to 96 MHz
- Scalable memory footprints up to 1 MB flash memory and up to 128 KB static random-access memory (SRAM)
- High-precision, mixed-signal capability with on-chip analog comparators, 16-bit ADCs, 12-bit DAC, OpAmp, and integrated temperature sensor
- Powerful timers for a broad range of applications, including motor control and lighting control applications
- Serial communication interfaces, such as LPUART, LPSPI, LPI2C, I3C, FlexCAN with CAN FD, and FlexIO
- Operating junction temperature ranges from -40 °C to +125 °C
 - **Note:** For more details on the MCXA14x/15x MCU features, refer to the MCXA14x/15x data sheet corresponding to the device part.
- The subsections below provide comparisons of features across the MCXA14x/15x family devices.

Core platform

All MCXA14x/15x family devices are based on the Arm Cortex-M33 core with 48 MHz or 96 MHz core frequency. Table 1 compares the core features across the MCXA14x/15x family devices.

Table 1. MCXA14x/15x family core feature comparison

Core feature	MCXA 146	MCXA 145	MCXA 144	MCXA 143	MCXA 142	MCXA 156	MCXA 155	MCXA 154	MCXA 153	MCXA 152
Core — Arm Co rtex-M33	48 MHz					96 MHz				
Cache	4 KB									
Direct memory a ccess (DMA)	8 chann	els		4 chann	els	8 channels 4 channels				
Wake-Up Unit (WUU)	Yes									
Peripheral input multiplexing (IN PUTMUX)	Yes	Yes								

Clock

Table 2 compares the clock features across the MCXA14x/15x family devices.

Table 2. MCXA14x/15x family clock feature comparison

Clock feature	MCXA 146	MCXA 145	MCXA 144	MCXA 143	MCXA 142	MCXA 156	MCXA 155	MCXA 154	MCXA 153	MCXA 152
Fast internal ref erence clock (F RO192M)	48 MHz					192 MH	Z			
Slow internal ref erence clock (F RO12M)	12 MHz									
Low-power inter nal reference clo ck (FRO16K)	16.384 k	кНz								
System oscillato r (SOSC)	8–50 Mł	Нz								

Memory

Table 3 compares the memory features across the MCXA14x/15x family devices.

Table 3. MCXA14x/15x family memory comparison

Memory	MCXA 146	MCXA 145	MCXA 144	MCXA 143	MCXA 142	MCXA 156	MCXA 155	MCXA 154	MCXA 153	MCXA 152
Flash	1024 K B	512 K B	256 K B	128 K B	64 KB	1024 K B	512 K B	256 K B	128 K B	64 KB
SRAM	128 K B includi ng 8 K B with ECC	96 KB includi ng 8 K B with ECC	64 KB includi ng 8 K B with ECC	32 KB includi ng 8 K B with ECC	16 KB includi ng 8 K B with ECC	128 K B includi ng 8 K B with ECC	96 KB includi ng 8 K B with ECC	64 KB includi ng 8 K B with ECC	32 KB includi ng 8 K B with ECC	16 KB includin g 8 KB with E CC
Error injection m odule (EIM) Error recording module (ERM)	Yes									

Cache

MCXA14x/15x features 4 KB Low-Power Cache Controller (LPCAC) RAM, which provides low-latency access
to the instructions or data. The LPCAC RAM is placed on the core code bus. It can be configured as code tightly
coupled memory (TCM) SRAM when LPCAC is disabled.

Flash

- MCXA14x/15x features up to 1 MB flash array, which is implemented as a single array. The flash array supports
 ECC on every 128 bits. It also supports the flash-swapping feature. The size of the smallest flash programming
 phrase is 16 bytes.
- The flash subsystem also includes a Memory Block Checker (MBC), Flash Memory Controller (FMC), and Flash Memory Module (FMU).
- FMC implements a 128-bit entry buffer and a 128-bit prefetch buffer. These buffers allow program code execution at a higher clock frequency than the frequency supported by flash memory. It accelerates flash memory transfers.

SRAM

- MCXA14x/15x features up to 128 KB SRAM, which is divided into several SRAM sections, including SRAM X0, X1, A0, A1, A2, A3, B0, B1, and B2.
- Therefore, different SRAM sections can be retained independently in a low-power mode to reduce power consumption.
- On every 32-bit aligned field, the 8 KB SRAM A0 section supports 2-bit error correction code (ECC) detection
 and 1-bit ECC correction. In addition, for functional safety diagnostic (self-test) purposes, MCXA14x/15x offers
 the Error Injection Module (EIM).
- The EIM module can be used to induce artificial errors in the RAM ECC. It can inject single-bit or multi-bit inversions into the data.
- To get 128 KB continuous SRAM addressing, the SRAM remap feature can be enabled, by remapping SRAM X0 right after SRAM B2.

Communication interfaces

Table 4 compares the communication interfaces across the MCXA14x/15x family devices.

Table 4. MCXA14x/15x family communication interface comparison

Communic ation interf	MCXA 146	MCXA 145	MCXA 144	MCXA 143	MCXA 142	MCXA 156	MCXA 155	MCXA1 54	MCXA 153	MCXA1 52	
LPUART	5			3	-	5			3		
LPSPI	2								1		
LPI2C	4			1		4		1			
I3C	1										
USB FS Device	1	1									
FlexCAN ^[1]	1			_		1 (CAN FD)			_		

Communic ation interface	MCXA	MCXA1	MCXA	MCXA1						
	146	145	144	143	142	156	155	54	153	52
Flexible I/O (FlexIO) ^[2]	1	•		_		1			_	

- 1. MCXA156/A155/A154 supports CAN flexible data rate (CAN FD), which is an important feature for industrial applications.
- 2. FlexIO can simulate various communication interfaces, such as UART, I2C, camera, and LCD driver.

Analog modules

Table 5 compares the analog modules across the MCXA14x/15x family devices.

Table 5. MCXA14x/15x family analog module comparison

Analog mo dule	MCXA 146	MCXA 145	MCXA 144	MCXA 143	MCXA 142	MCXA 156	MCXA 155	MCXA1 54	MCXA 153	MCXA1 52
Analog com parator (LP CMP)	2									
ADC	2			1		2			1	
DAC	_					1	1	1	_	
OpAmp	_					1	1	1	_	

For ADC configuration and sample rate calculation, refer to MCXA14x/15x ADC Usage and Calculator Tool (AN14390).

Timers

Table 6 compares the motor control timers across the MCXA14x/15x family devices.

Table 6. MCXA14x/15x family motor control timer comparison

Motor control ti mer	MCXA 146	MCXA 145	MCXA 144	MCXA 143	MCXA 142	MCXA 156	MCXA 155	MCXA 154	MCXA 153	MCXA 152
FlexPWM ^{[1][2]}	1					2			1	
AND/OR/INVER T (AOI)	2			1		2			1	
Quadrature Dec oder (eQDC) ^[3]	1					2			1	

1. FlexPWM0 is available in all MCXA14x/15x devices, whereas FlexPWM1 is only available in MCXA156/A155/A154.

- 2. Each FlexPWM module has three submodules.
- 3. QDC0 is available in all MCXA14x/15x devices, whereas QDC1 is only available in MCXA156/A155/A154.

Table 7 compares the general-purpose timers across the MCXA14x/15x family devices.

Table 7. MCXA14x/15x family general-purpose timer comparison

General- purpose timer	MCXA 146	MCXA 145	MCXA 144	MCXA 143	MCXA 142	MCXA 156	MCXA 155	MCXA 154	MCXA 153	MCXA 152
32-bit timer (CTi mer)	5			3		5			3	
Low-Power Tim er (LPTMR)	1									
Micro-Tick Time r (UTICK)	1									
OS Event Timer (OSTIMER)	1									
Windowed Watc hdog Timer (W WDT)	1									
Frequency Meas urement (FREQ ME)	1									
Wake Timer	1									

GPIOs

Table 8 compares the inputs/outputs (I/Os) across the MCXA14x/15x family devices.

Table 8. MCXA14x/15x family I/O comparison

I/O	MCXA 146	MCXA 145	MCXA 144	MCXA 143	MCXA 142	MCXA 156	MCXA 155	MCXA1 54	MCXA 153	MCXA1 52	
Independent I/O supply ^[1]	VDD_P3	3		_	- VDD_P3 -						
5 V tolerant I/O ^[2]	2										
High-drive I/ O (20 mA)[3]	Up to 8	Up to 8									
50 MHz I/O [[]	Up to 21										

1. MCXA146/MCXA145/MCXA144/MCXA156/MCXA155/MCXA154 supports 1.2 V I/O power supply on P3 port.

- 2. The P3_27 and P3_28 pins are 5 V tolerant I/Os.
- 3. The P0_16, P0_17, P1_8, P1_9, P1_30, P1_31, P3_0, and P3_1 pins are high-drive I/Os.
- 4. 50 MHz I/Os are available on P1, P3, and P4 ports.

Table 9 shows the number of general-purpose inputs/outputs (GPIOs) available in different packages of the MCXA14x/15x family devices.

Table 9. MCXA14x/15x family GPIO comparison

	Number	r of GPIO	s							
Package	MCXA 146			MCXA 143	MCXA 142	MCXA 156	MCXA 155	MCXA1 54	MCXA 153	MCXA1 52
VFBGA112 (PJ)	82	82		-		82			_	
LQFP100 (L L)	81	81		_		81		_		
LQFP64 (L H)	_			52		_			52	
LFBGA64 (MP)	50			_		50			_	
HVQFN48 (FT)	_	_		41		_			41	
HVQFN32 (FM)	_			26		_			26	

Package options

- The MCXA14x/15x devices are available in different package options, including:
 - Traditional leaded packages (QFP) and non-leaded packages (QFN)
 - Advanced ball grid array (BGA) packages
- The variety of package options helps customers achieve reliable mechanical and thermal performance for their hardware designs.

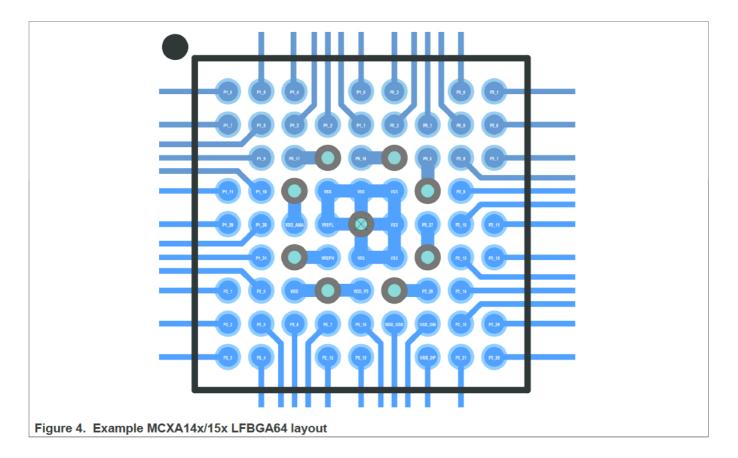
Table 10 shows the package options available for the MCXA14x/15x devices.

Table 10. MCXA14x/15x package options

Package	Pin coun t	Number of GP IOs	Dimensions (length x width x thickness)	Pitch	Package drawing do cument number
VFBGA112 (PJ)	112	82	7 x 7 x 0.86 mm	0.5 mm	98ASA02081D
LQFP100 (LL)	100	81	14 x 14 x 1.4 mm	0.5 mm	98ASS23308W
LQFP64 (LH)	64	52	10 x 10 x 1.4 mm	0.5 mm	98ASS23234W
LFBGA64 (MP)	64	50	5 x 5 x 1.2 mm	0.5 mm	98ASA02085D
HVQFN48 (FT)	48	41	7 x 7 x 0.9 mm	0.5 mm	98ASA01637D
HVQFN32 (FM)	32	26	5 x 5 x 0.9 mm	0.5 mm	98ASA02110D


As shown in Table 10, the MCXA14x/15x devices are available in packages with pin counts as low as 32 (HVQFN32) to as high as 112 (VFBGA112). The low-pin-count packages allow the devices to be used for simple, low-cost PCB designs.

BGA packages


Ball grid array (BGA) is a popular packaging option for devices with high I/O requirements, especially for devices used in small form factor designs. The MCXA14x/15x device is available in the following two BGA packages:

- Very thin, fine pitch, ball grid array (VFBGA112)
- Low-profile, fine pitch, ball grid array (LFBGA64)

Figure 3 shows the MCXA156 device in a 5×5 mm, 0.5 mm pitch LFBGA64 package.

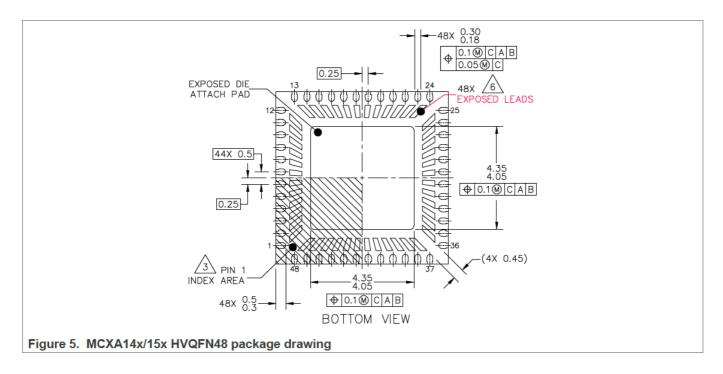
The ball pattern has been designed in such a manner that vias can be placed in the depopulated regions for easier fanout. The VDD and VSS signals are grouped conveniently, providing several options for fanning out the chip without requiring the via-in-pad technology. The MCXA14x/15x device in the LFBGA64 package can be used easily with low-cost 2-layer technology. Figure 4 shows an example layout for the MCXA14x/15x device in the LFBGA64 package.

LQFP packages

A low-profile, quad-flat package (LQFP) is a QFP package with reduced body thickness. The MCXA14x/15x device is available in the following two LQFP packages:

- LQFP100
- LQFP64

An MCXA14x/15x LQFP package does not have an exposed pad underneath the package that could act as an aground connection and/or heat sink.


HVQFN packages

A heat sink, very thin, quad flat package, non-leaded (HVQFN) is equipped with electrode contacts (instead of leads) around all four sides of the chip. It allows an HVQFN package to have a smaller mounting area and lower height, as compared to a QFP package. An exposed thermal pad on the bottom side of a QFN package can be soldered directly to the system PCB to increase heat emission from the die.

The MCXA14x/15x device is available in the following two HVQFN packages:

- HVQFN48
- HVQFN32

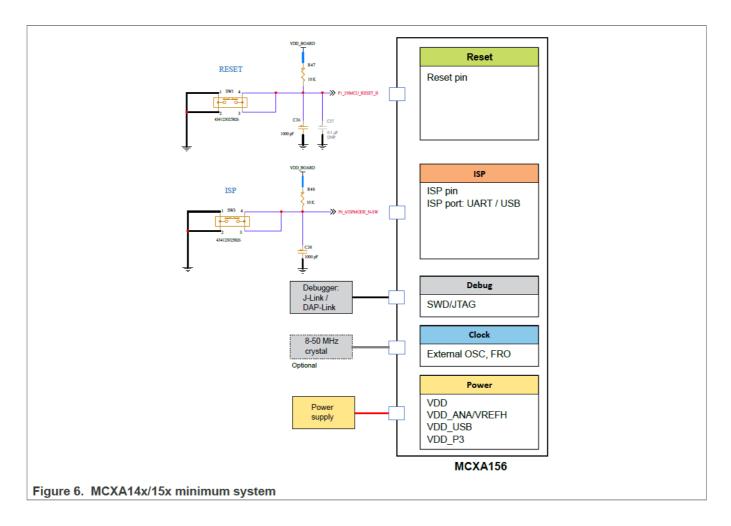
The MCXA14x/15x HVQFN48 package has some inner exposed leads, as shown in Figure 5. While designing the hardware, do not solder these exposed leads to the PCB. Cover this area with a solder mask for easier signal routing.

To find a package drawing, go to <u>nxp.com</u>. and perform a search operation using the package drawing document number as the search keyword. To find the document number of a package drawing, see Table 10.

Pin compatibility

The MCXA14x/15x family devices are mostly pin-to-pin compatible except for a few pins, such as ISP (ISPMODE_N). The ISP pin determines whether to boot from the internal flash memory or to run into ISP mode, after reset.

Table 11 compares the ISP pin assignment across the MCXA14x/15x family devices.


Table 11. MCXA14x/15x family ISP pin assignment comparison

	ISP pin assignment									
Package	MCXA 146	MCXA 145	MCXA 144	MCXA 143	MCXA 142	MCXA 156	MCXA 155	MCXA 154	MCXA 153	MCXA 152
VFBGA112 (PJ)	P0_6			_		P0_6			_	
LQFP100 (LL)	P0_6			_		P0_6			_	
LFBGA64 (MP)	P0_6			_		P0_6			_	
LQFP64 (LH)	P3_29									
HVQFN48 (FT)	P3_29									
HVQFN32 (FM)	_		P3_29		_		P3_29			

Minimum system

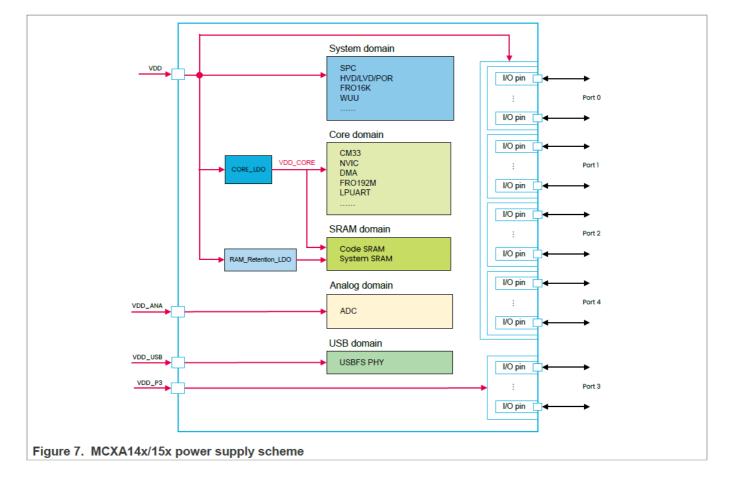
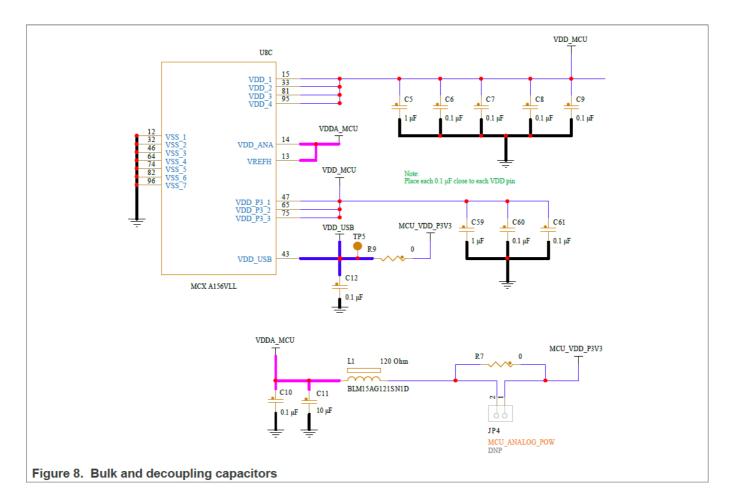

While designing the hardware, one of the initial steps is to determine the minimum system components required to run the MCU. For the MCXA14x/15x family devices, the key system components include reset, ISP, debug, power, and optionally, clock. The state of the ISP pin at reset determines the boot source of the MCXA14x/15x MCU. If the ISP pin is pulled down, the MCU enters ISP boot mode; otherwise, it boots from the internal flash memory.

Figure 6 shows the minimum system for an MCXA14x/15x device.

Power supplies

MCXA14x/15x operates in the power supply range from 1.71 V to 3.6 V. It has multiple power domains that can be put into different power modes independent of each other, for power efficiency. Multiple power supplies are available to supply power to the power domains and I/O ports. Figure 7 shows the MCXA14x/15x power supply scheme.

The input power supplies shown in Figure 7 are explained below:


- Digital power supply (VDD): The VDD supply is used for the following purposes:
 - It supplies power to the system power domain and I/O ports except port 3. The system power domain mainly includes System Power Control (SPC), High-Voltage Detect (HVD) / Low-Voltage Detect (LVD), Wake-Up Unit (WUU), and Low-Power Timer (LPTMR).
 - It supplies power to the core power domain through an internal LDO. The core power domain supports the dynamic voltage and frequency scaling (DVFS) feature. This feature allows you to scale up/down the voltage depending on the desired MCU core frequency. For example, if you want to run the core clock at the maximum frequency (96 MHz), the core voltage must be kept at 1.1 V. However, if your application can tolerate running at a lower frequency (even for a short period), decrease the core voltage. Decreasing the core voltage reduces the power consumption.
- Analog power supply (VDD_ANA): The VDD_ANA supply is used to power up the analog power domain, including the ADC module. Usually in hardware designs, VDD_ANA is connected to VDD. If you want to improve ADC accuracy, you can use an independent power supply to power up VDD_ANA. However, ensure that the voltage difference between VDD_ANA and VDD is within ±0.1 V, as specified in the MCXA14x/15x data sheets.
- USB power supply (VDD_USB): The VDD_USB supply is used to power up the USB domain. For VDD_USB, the voltage must be kept within the range from 3 V to 3.6 V. If the USB domain is not used, VDD_USB can be tied to the ground through a 10 kΩ resistor.
- Optional (independent) port 3 power supply (VDD_P3): On some MCXA14x/15x parts, an independent power supply VDD_P3 is used to power up I/O port 3 for 1.2 V I/Os. VDD_P3 operates in the voltage range from 1.14 V to 3.6 V.

Bulk and decoupling capacitors

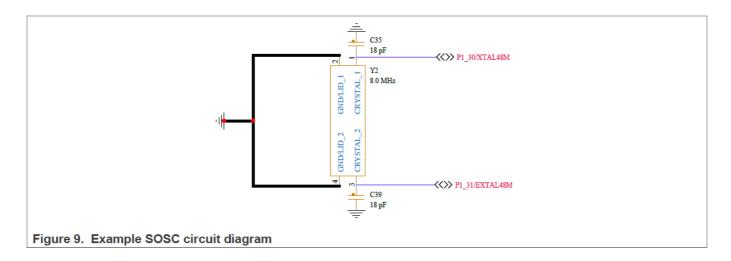
Bulk and decoupling capacitors help the MCU chip operate properly:

- A bulk capacitor is used to provide a local power supply to an MCU pin.
- A decoupling capacitor, if shorted to the ground, helps in preventing noise from entering the MCU chip.

Figure 8 shows an example circuit diagram with bulk and decoupling capacitors.

Follow these recommendations when using bulk and decoupling capacitors in your hardware design:

- Use decoupling capacitors that exhibit low reactance in the desired frequency ranges.
- For each power pin, use a decoupling capacitor with a capacitance value of 0.1 μF.
- For each power domain, use a bulk capacitor with a capacitance value in the range from 2.2 μF to 10 μF.
- Place the decoupling and bulk capacitors as near as possible to their respective MCU pins.


Power supply considerations

While designing the hardware, follow these power supply considerations:

- The VDD_ANA supply must be at the same voltage level as the VDD supply, and both supplies must be ramped up together.
- The VDD_P3 supply (I/O supply of port 3) must be ramp up together with or after VDD. If you want to shut down VDD_P3, assert the isolation in the SPC EVD_CFG register before shutting down VDD_P3 in active mode.

Clock

The MCXA14x/15x MCU includes an external oscillator module — a system oscillator (SOSC) with an external 8–50 MHz crystal. Figure 9 shows an example system oscillator circuit diagram.

Debug and programming interface

Reset system

- Resetting the MCU provides a way to start processing from a known set of initial conditions. When a system reset begins:
 - The on-chip regulator gets full control over the power supplies
 - The system clock gets generated from an internal reference clock

External reset pin (RESET_B)

The RESET_B pin is a bidirectional open-drain pin with an internal pull-up resistor. Asserting RESET_B wakes the MCU from any mode. In MCXA14x/15x, the RESET_B function is multiplexed on the GPIO pin P1_29, and this function is the default function of the pin.

The RESET B pin works in the following two manners:

- During active and low-power modes, the RESET_B pin can be asserted externally to force the chip into pin reset condition.
- During reset, the RESET_B pin drives low until the chip has completed hardware initialization. At this point, the RESET_B pin is released. If the pin is asserted externally, the MCU remains in reset until the RESET_B input is pulled high.
- The RESET_B pin implements a digital filter for filtering out glitches from the pin. You can configure the filter through software to filter out glitches that are less than 1–32 cycles of the Core Mode Controller (CMC) clock. The filter is bypassed in low-power modes if the CMC clock is disabled.

JTAG/SWD interface

The MCXA14x/15x MCU supports a JTAG / serial wire debug (SWD) debug interface using a low-cost, 10-pin, 0.05" connector. Because the connector supports both JTAG and SWD signals; therefore, you can configure an external debugger in either JTAG or SWD mode to debug an MCXA14x/15x MCU. The JTAG/SWD connector

offers Instruction Trace Macrocell (ITM) and Data Watchpoint and Trace (DWT) trace information. In SWD mode, the following two pins are used for debugging:

- · Bidirectional SWDIO pin, which is used for data transfer
- SWDCLK pin, which is used for clocking the data
- A third pin SWO delivers the trace data at a low system cost. The JTAG and SWD pins are shared.

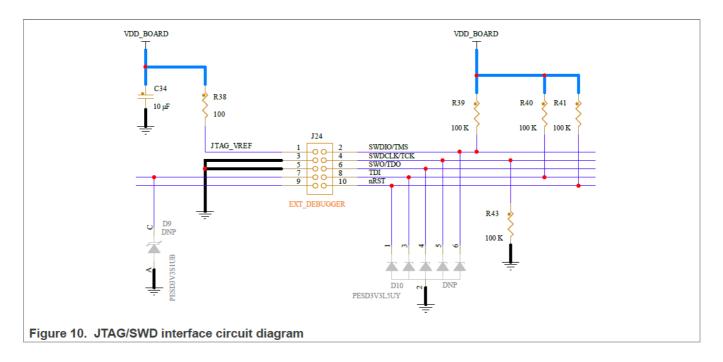

Table 12 shows the MCXA14x/15x debug pin assignments.

Table 12. MCXA14x/15x debug pin assignments

Signal name		Description	MCU port	Internal pull resistor	
JTAG mode	SWD mode	Description	MCO port	internal pull resistor	
TCK	SWDCLK	Clock into the core	P0_1	Pull-down	
TDI	_	JTAG test data input	P0_3	Pull-up	
TDO	swo	JTAG test data output / serial wire deb ug trace data output	P0_2	-	
TMS	STUDIO	JTAG test mode select / serial wire to debug data I/O	P0_0	Pull-up	
RESET	RESET	Reset MCU	P1_29	Pull-up	
GND	GND	Ground	VSS	_	

As shown in Table 12, the MCXA14x/15x debug pins have internal pull-up/down resistors, by default. To make the debugger connection more robust, you can add external pull-up/down resistors for the JTAG/SWD signals. NXP also recommends adding electrostatic discharge (ESD) diodes for critical pin connections.

Figure 10 shows an example debug interface circuit diagram.

MCXA14x/15x also allows using JTAG and boundary scans for performing probe-less device connectivity tests.

For details, refer to How To Perform Boundary Scan On MCXA Series Using µTrace And Trace32 (AN14209).

ISP programming

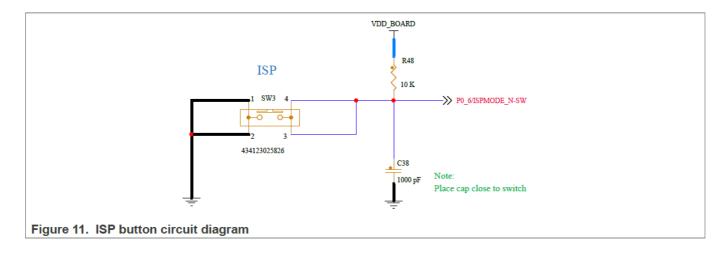

Besides an external JTAG/SWD debugger, you can also use in-system programming (ISP) to program the MCXA14x/15x MCU. During MCU reset, the state of the MCU ISP pin (ISPMODE_N) determines whether to enter normal boot flow or enter ISP mode. In ISP mode, you can program the MCU through the ISP boot peripherals. Depending on the device part, the default ISP pin is P0_6 or P3_29. For more details on ISP pin assignment, see Table 11.

Table 13 shows the default ISP boot peripherals and corresponding pin assignments.

Table 13. MCXA14x/15x ISP boot peripherals

ISP boot peripheral	Signal name	MCU pin
LPUART0	LPUART0_RXD	P0_2
LI OAITIO	LPUART0_TXD	P0_3
USB0	USB0_DM	USB0_DM
0000	USB0_DP	USB0_DP

Figure 11 shows an example circuit diagram for the MCXA156 MCU with an ISP push button SW3 for entering ISP mode. Pressing the ISP button asserts the MCXA156 MCU pin P0_6 (ISPMODE_N), which forces the MCU extended bootloader to run in ISP mode.

Unused pins

Table 14 provides recommendations for terminating the unused pins of the MCXA14x/15x MCU.

Table 14. Recommendations for terminating unused pins

Pins	Default state	Recommended way for terminating unused pins
Digital/analog pins	Disabled	Leave unconnected. Configuring the multiplexing mode of a pin as disabled or analog (PCRn[MUX] = 0) disables the input buffer of the pin. It results in reduced power consumption.
P1_29/RESET_B	Input with default internal pull-u p resistor	If the RESET_B pin is not used, it can be left unconnected and: • Configured as GPIO by setting PCR9[MUX] = 0 • Disabled by setting PCR9[IBE] = 0
P3_29/ISPMODE_N , P0_6/ISPMODE_N	Input with default internal pull-u p resistor	Leave unconnected. Configuring the multiplexing mode of a pin as disabled or analog (PCRn[MUX] = 0) disables the input buffer of the pin. It results in reduced power consumption.
P1_30/XTAL48M, P 1_31/EXTAL48M	Disabled	Leave unconnected
VDD_USB		Tie the unused VDD_USB pin to the ground through a 10 $k\Omega$ resistor.
USB_DP		Leave unconnected
USB_DM		Leave unconnected

EMC recommendations

To find electromagnetic compatibility (EMC) recommendations for the MCXA14x/15x family devices, refer to EMC Guidelines for MCXA14x/15x MCU Designs (AN14395).

References

Following are some additional documents that you can refer to for more information on the MCXA14x/15x family devices:

- MCXA156, A155, A154, A146, A145, A144 Data Sheet (MCXAP100M96FS6)
- MCXA156, A155, A154, A146, A145, A144 Reference Manual (MCXAP100M96FS6RM)
- MCXA153, A152, A143, A142 Data Sheet (MCXAP64M96FS3)
- MCX A153, A152, A143, A142 Reference Manual (MCXAP64M96FS3RM)
- FRDM-MCXA156 Board User Manual (UM12121)
- FRDM-MCXA153 Board User Manual (UM12012)
- EMC Guidelines for MCXA14x/15x MCU Designs (AN14395)
- MCXNx4x Hardware Design Guide (UG10092)
- MCXA14x/15x ADC Usage and Calculator Tool (AN14390)
- Hardware Design Guidelines for LPC55(S)xx Microcontrollers (AN13033)
- How To Perform Boundary Scan On MCXA Series Using μTrace And Trace32 (AN14209)
- MCX A Series: The All-Purpose MCU for Embedded Innovation White Paper

Note: Some of these documents may only be available under a non-disclosure agreement (NDA). To access such

a document, contact a local NXP field applications engineer (FAE) or sales representative.

Acronyms

Table 15 lists the acronyms used in this document.

Table 15. Acronyms

Acronym	Description
ADC	Analog-to-Digital Converter
AOI	AND/OR/INVERT
BGA	Ball grid array
CAN	Controller Area Network
CMC	Core Mode Controller
DAC	Digital-to-Analog Converter
DMA	Direct memory access
DVFS	Dynamic voltage and frequency scaling
DWT	Data Watchpoint and Trace
ECC	Error correction code
TIM	Error Injection Module
EMC	Electromagnetic compatibility
ERM	Error recording module
END	Electrostatic discharge
FD	Flexible data rate
FlexCAN	Flexible Data Rate Controller Area Network
FlexIO	Flexible Input/Output
FlexPWM	Flexible Pulse Width Modulator
FMC	Flash Memory Controller
FMU	Flash Memory Module
FS	Full speed

Acronym	Description
GPIO	General-purpose input/output
HVD	High-Voltage Detect
HVQFN	Heat sink, very thin, quad flat package, non-leaded
I/O	Input/output

I ² C	Inter-Integrated Circuit
13C	Improved Inter-Integrated Circuit
ISP	In-system programming
ITM	Instruction Trace Macrocell
JTAG	Joint Test Action Group
LCD	Liquid-crystal display
LFBGA	Low-profile, fine pitch, ball grid array
LPCAC	Low-Power Cache Controller
LPI2C	Low-Power Inter-Integrated Circuit
LPSPI	Low-Power Serial Peripheral Interface
LPUART	Low-Power Universal Asynchronous Receiver/Transmitter
LQFP	Low-profile, quad flat package
LVD	Low-Voltage Detect
MBC	Memory Block Checker
MCU	Microcontroller unit
OpAmp	Operational amplifier
OS	Operating system
QDC	Quadrature Decoder
QFN	Quad flat package, non-leaded
QFP	Quad flat package
RAM	Random-access memory
SOSC	System oscillator
SPC	System Power Control
SRAM	Static random-access memory
SWD	Serial wire debug
SWO	Serial wire debug trace data output
TCM	Tightly coupled memory
TDI	Test data input
TDO	Test data output
TMS	Test mode select
UART	Universal Asynchronous Receiver/Transmitter
USB	Universal Serial Bus

Acronym	Description	
VFBGA	Very thin, fine pitch, ball grid array	
WUU	Wake-Up Unit	

Revision history

Table 16 summarizes the revisions to this document.

Table 16. Revision history

Document ID	Release date	Description
UG10151 v.1.0	22 August 2024	Initial public release

Legal information

Definitions

Draft — A draft status on a document indicates that the content is still under internal review and subject
to formal approval, which may result in modifications or additions. NXP Semiconductors does not give
any representations or warranties as to the accuracy or completeness of information included in a draft
version of a document and shall have no liability for the consequences of use of such information.

Disclaimers

- Limited warranty and liability Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special, or consequential damages (including without limitation lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that the customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards the customer for the products described herein shall be limited per the Terms and conditions of the commercial sale of NXP Semiconductors.
- Right to make changes NXP Semiconductors reserves the right to make changes to information
 published in this document, including without limitation specifications and product descriptions, at any
 time and without notice. This document supersedes and replaces all information supplied before the
 publication hereof.
- Suitability for use NXP Semiconductors products are not designed, authorized, or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

- Applications Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is the customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of the customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs, or problem that is based on any weakness or default in the customer's applications or products, or the application or use by the customer's third-party customer(s). The customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products to avoid a default of the applications and the products or of the application or use by the customer's third party customer(s). NXP does not accept any liability in this respect.
- Terms and conditions of commercial sale NXP Semiconductors
 products are sold subject to the general terms and conditions of commercial sale, as published at
 https://www.nxp.com/profile/terms unless otherwise agreed in a valid written individual agreement. In
 case an individual agreement is concluded only the terms and conditions of the respective agreement
 shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and
 conditions about the purchase of NXP Semiconductors products by the customer.
- **Export control** This document as well as the item(s) described herein may be subject to export control regulations. Export might require prior authorization from competent authorities.
- Suitability for use in non-automotive qualified products Unless this document expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested under automotive testing or application requirements. NXP Semiconductors accepts no liability for the inclusion and/or use of non-automotive qualified products in automotive equipment or applications. If the customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.
- HTML publications An HTML version, if available, of this document is provided as a courtesy.
 Definitive information is contained in the applicable document in PDF format. If there is a discrepancy between the HTML document and the PDF document, the PDF document has priority.
- **Translations** A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.
- Security Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards or specifications with known limitations. Customers are

responsible for the design and operation of their applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on the customer's applications and products. The customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in the customer's applications. NXP accepts no liability for any vulnerability. Customers should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet the rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security-related requirements concerning its products, regardless of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

• NXP B.V. — NXP B.V. is not an operating company and it does not distribute or sell products.

Trademarks

- **Notice:** All referenced brands, product names, service names, and trademarks are the property of their respective owners.
- NXP wordmark and logo are trademarks of NXP B.V.

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINKPLUS, ULINKpro, µVision, Versatile — are trademarks and/or registered trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or elsewhere. The related technology may be protected by any or all patents, copyrights, designs, and trade secrets. All rights reserved.

• Kinetis — is a trademark of NXP B.V.

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

- © 2024 NXP B.V.
- For more information, please visit: https://www.nxp.com
- · All rights reserved.
- Document feedback

Date of release: 22 August 2024Document identifier: UG10151

Documents / Resources

References

• User Manual

Manuals+, Privacy Policy

This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of these marks on this website does not imply any affiliation with or endorsement.