

NXP MCSPTE1AK144 Development Kit User Guide

Home » NXP » NXP MCSPTE1AK144 Development Kit User Guide 12

Contents

- 1 NXP MCSPTE1AK144 Development Kit
- 2 S32K144 DEVELOPMENT KIT FOR 3-PHASE PMSM AND BLDC MOTOR CONTROL
- 3 GET TO KNOW THE S32K144EVB
- **4 GET TO KNOW DEVKIT-MOTORGD**
- 5 HEADER/PINOUT FOR PMSM MOTOR CONTROL
- 6 HEADER/PINOUT FOR BLDC MOTOR CONTROL
- **7 MCSPTE1AK144 FEATURES**
 - 7.1 Hardware
 - 7.2 Software
- **8 STEP-BY-STEP INSTALLATION INSTRUCTIONS**
- 9 STEP-BY-STEP INSTALLATION INSTRUCTIONS CONTINUED
- **10 APPLICATION CONTROL**
- 11 S32K144EVB JUMPER OPTIONS
- 12 DEVKIT-MOTORGD JUMPER OPTIONS
- **13 WARRANTY**
- 14 Documents / Resources
- 14.1 References
- 15 Related Posts

NXP MCSPTE1AK144 Development Kit

S32K144 DEVELOPMENT KIT FOR 3-PHASE PMSM AND BLDC MOTOR CONTROL

S32K144 development kit for 3-phase PMSM and BLDC motor control

GET TO KNOW THE S32K144EVB

GET TO KNOW DEVKIT-MOTORGD

HEADER/PINOUT FOR PMSM MOTOR CONTROL

S32K144EVB controls DEVKIT-MOTORGD through inner pins of the I/O headers. Inner pins of the I/O headers are Arduino compatible. Pins in red are configurable, this is the pin configuration for PMSM motor control (see jumper options on page 11).

HEADER/PINOUT FOR BLDC MOTOR CONTROL

S32K144EVB controls DEVKIT-MOTORGD through inner pins of the I/O headers. Inner pins of the I/O headers are Arduino compatible. Pins in red are configurable, this is the pin configuration for BLDC motor control (see jumper options on page 11).

MCSPTE1AK144 FEATURES

Hardware

- S32K144EVB—S32K144 evaluation board with LIN and CAN connectivity support, OpenSDA programming/debugging
- DEVKIT-MOTORGD—up to 12 V/5 A
 - 3- phase power stage board based on SMARTMOS GD3000 pre-driver with condition monitoring and fault detection
- Low-Cost PM Motor—3-phase PM motor equipped with HALL sensor, 24 VDC, 4000 RPM, 40 W, 45ZWN24-40
- · USB cable
- 12 VDC power supply

Software

- Automotive Motor Control Algorithms
 - Field-oriented control (FOC) with field weakening for sinusoidal motor type (PMSM)
 - Six-step commutation control for trapezoidal motor type (BLDC)
- Evaluation version of the Automotive Math and Motor Control Library Set—Control algorithm built on blocks of precompiled software library
- · free master and MCAT

- Application tuning and variables tracking at different levels of the control structure
- · Design Studio and SDK
 - Example software created in the S32 Design Studio for Arm® built on S32 SDK software
- SDK Processor Expert®
- MCU peripherals initialization generated by Processor Expert (PEx)

STEP-BY-STEP INSTALLATION INSTRUCTIONS

Download Software

Download installation software and documentation at nxp.com/AutoMCDevKits.

Install S32 Design Studio IDE for Arm®

Download and install S32 Design Studio IDE for Arm available at nxp.com/S32DS-Arm.

Install FreeMASTER

Download and install FreeMASTER run-time debugging tool available at nxp.com/freeMASTER.

Configure S32K144EVB and DEVKIT-MOTORGD boards

Ensure default S32K144EVB and DEVKITMOTORGD jumper options (page 11). Place DEVKIT-MOTORGD jumpers J9, J10, J11 to position 1-2 for PMSM application or 2-3 for BLDC application (page 11). Ensure that motor phase wires are in order: white, blue, green from phase A to phase C.

Connect the Power Supply

Connect the 12 V power supply to the power supply terminals on the DEVKITMOTORGD board. Keep the DC supply voltage within the range of 8 to 18 V. The DC power supply voltage affects the maximum motor speed.

Connect the USB Cable

Connect S32K144EVB to the PC using the USB cable. Allow the PC to automatically configure the USB drivers if needed.

STEP-BY-STEP INSTALLATION INSTRUCTIONS CONTINUED

Select Application and MCU Programming

Select the appropriate PMSM or BLDC motor control application from the installed directory NXP\MCSPTE1AK144\sw. Select one of the next two steps (8 or 9) for MCU programming.

Re-program the MCU using MSD Flash Programmer

Copy and paste or drag and drop the Motorola S-record *.srec file from the project folder to the S32K144EVB disk drive. The software is directly programmed into the flash memory of the S32K144 MCU and executed automatically.

Reprogram the MCU using S32 Design Studio

Import the installed application software project in the S32 Design Studio for Arm®:

- Start S32 DS for Arm application.
- · Click File-Import.
- Select General–Existing Projects into Workspace.
- Navigate to the installed application directory:

NXP\MC DevKits\MCSPTE1AK144\sw, choose an appropriate project, and click OK.

- · Click Finish.
- Click Run Debug.

FrSetupeeMASTER

- Start the FreeMASTER application
- Open *.pmp FreeMASTER project from the project folder <selected project> FreeMASTER_control by clicking
 File Open Project.
- Click the green GO! button in the FreeMASTER toolbar or press CTRL+G to enable the communication.
- Successful communication is signalized in the status bar at the very bottom as "RS232 UART Communication;
 COMn; speed = 115200".

APPLICATION CONTROL

- 1. Click the App Control tab in the MCAT tool menu to display the application control page. When the power supply is connected to the DEVKIT-MOTOGD board, the application is in a READY state indicated by the green LED on the S32K144EVB board. RGB LED also indicates:
 - · READY, INIT states lighting green LED
 - CALIB, ALIGN states flashing green LED
 - · RUN state lighting blue LED
 - · FAULT state lighting red LED
- 2. In case of pending faults, click the fault button Clear FAULT on the FreeMASTER MCAT Control Page, or alternatively press and hold SW2 and SW3 buttons on S32K144EVB board simultaneously.
- Start the application by pressing the ON/OFF button on the FreeMASTER MCAT control page or by pressing switch SW2/SW3 on S32K144EVB to initiate clockwise/ counter clockwise rotor spinning direction.
- 4. Set required speed by changing the Speed Required variable value manually in the variable watch window, by clicking speed gauge, or by pressing the switch SW2/SW3.
- 5. To stop the application, click the ON/OFF button on the FreeMASTER MCAT control page or press and hold SW2 and SW3 buttons on S32K144EVB board simultaneously.

S32K144EVB JUMPER OPTIONS

JUMPER	OPTION	SETTING	DESCRIPTION
J104	Reset signal	1-2	Reset signal to OpenSDA, use to enter into Open SDA Bo otloader mode
		2-3	Reset signal direct to the MCU, use to reset S32K144 (def ault)
	Board poweri	1-2	S32K144 powered by 12 V power source (default)
J107		2-3	S32K144 powered by USB micro connector
J109/J108	CAN	OPEN	CAN termination resistor is disconnected
		SHORT	CAN terminator resistor is connected (default)

DEVKIT-MOTORGD JUMPER OPTIONS

JUMPER	OPTION	SETTING	DESCRIPTION
J8	HALL/ Encoder inte rface	Short	Voltage level for HALL/Encoder interface is 3.3 V
		Open	Voltage level for HALL/Encoder interface is 5.0 V (default)
J9/J10/J11	Motor type	1-2	Bidirectional 3-phase current sensing for PMSM FOC (sinuso idal) motor control
		2-3	3-phase back-EMF voltage sensing for BLDC six-step (trape zoidal) sensorless motor control

SUPPORT

Visit www.nxp.com/support for a list of phone numbers within your region.

WARRANTY

Visit www.nxp.com/warranty for complete warranty information.

Documents / Resources

NXP MCSPTE1AK144 Development Kit [pdf] User Guide MCSPTE1AK144, Development Kit, MCSPTE1AK144 Development Kit, Kit

References

Automotive Motor Control Development Solutions | NXP Semiconductors

- S32 Design Studio IDE for Arm® based MCUs | NXP Semiconductors
- NXP® Semiconductors Official Site | NXP Semiconductors
- Support | NXP Semiconductors
- Returns and Warranty Information | NXP Semiconductors

Manuals+,