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Abstract This document describes how to build an image for an i.MX board by using a Yocto Project b
uild environment. It describes the i.MX release layer and i.MX-specific usage.

Overview

This document describes how to build an image for an i.MX board by using a Yocto Project build environment. It
describes the i.MX release layer and i.MX-specific usage.
The Yocto Project is an open-source collaboration focused on embedded Linux OS development. For more
information on Yocto Project, see the Yocto Project page: www.yoctoproject.org/. There are several documents
on the Yocto Project home page that describe in detail how to use the system. To use the basic Yocto Project
without the i.MX release layer, follow the instructions in the Yocto Project Quick Start found at
https://docs.yoctoproject.org/brief-yoctoprojectqs/index.html.
The FSL Yocto Project Community BSP (found at FSL Community BSP (freescale.github.io)) is a development
community outside NXP providing support for i.MX boards in the Yocto Project environment. i.MX joined the Yocto
Project community providing a release based on the Yocto Project framework. Information specific to FSL
community BSP use is available on the community web page. This document is an extension of the community
BSP documentation.
Files used to build an image are stored in layers. Layers contain different types of customizations and come from
different sources. Some of the files in a layer are called recipes. Yocto Project recipes contain the mechanism to
retrieve source code, build and package a component. The following lists show the layers used in this release.

i.MX release layer

meta-imx

– meta-bsp: updates for meta-freescale, poky, and meta-openembedded layers

– meta-sdk: updates for meta-freescale-distros

– meta-ml: Machine learning recipes

– meta-v2x: V2X recipes only used for i.MX 8DXL

– meta-cockpit: Cockpit recipes for i.MX 8QuadMax

Yocto Project community layers

meta-freescale: Provides support for the base and for i.MX Arm reference boards.

meta-freescale-3rdparty: Provides support for 3rd party and partner boards.

meta-freescale-distro: Additional items to aid in development and exercise board capabilities.

fsl-community-bsp-base: Often renamed to base. Provides base configuration for FSL Community BSP.

meta-openembedded: Collection of layers for the OE-core universe. See layers.openembedded.org/.

poky: Basic Yocto Project items in Poky. See the Poky README for details.

meta-browser: Provides several browsers.

meta-qt6: Provides Qt 6.

meta-timesys: Provides Vigiles tools for monitoring and notification of BSP vulnerabilities (CVEs).

References to community layers in this document are for all the layers in Yocto Project except meta-imx. i.MX
boards are configured in the meta-imx and meta-freescale layers. This includes U-Boot, the Linux kernel, and
reference board-specific details.
i.MX provides an additional layer called the i.MX BSP Release, named meta-imx, to integrate a new i.MX release

http://www.yoctoproject.org/
https://docs.yoctoproject.org/brief-yoctoprojectqs/index.html
https://freescale.github.io/
http://layers.openembedded.org/


with the FSL Yocto Project Community BSP. The meta-imx layer aims to release the updated and new Yocto
Project recipes and machine configurations for new releases that are not yet available on the existing meta-
freescale and meta-freescale-distro layers in the Yocto Project. The contents of the i.MX BSP
Release layer are recipes and machine configurations. In many test cases, other layers implement recipes or
include files and the i.MX release layer provides updates to the recipes by either appending to a current recipe, or
including a component and updating with patches or source locations. Most i.MX release layer recipes are very
small because they use what the community has provided and update what is needed for each new package
version that is unavailable in the other layers.
The i.MX BSP Release layer also provides image recipes that include all the components needed for a system
image to boot, making it easier for the user. Components can be built individually or through an image recipe,
which pulls in all the components required in an image into one build process.
The i.MX kernel and U-Boot releases are accessed through i.MX public Git servers. However, several components
are released as packages on the i.MX mirror. The package-based recipes pull files from the i.MX mirror instead of
a Git location and generate the package needed.
All packages that are released as binary are built with hardware floating point enabled as specified by the
DEFAULTTUNE defined in each machine configuration file. Software floating point packages are not provided
starting with the jethro releases.
Release LF6.6.3_1.0.0 is released for Yocto Project 4.3 (Nanbield). The same recipes for Yocto Project 4.3 are
going to be upstreamed and made available on the next release of the Yocto Project release. The Yocto Project
release cycle lasts roughly six months.
The recipes and patches in meta-imx are upstreamed to the community layers. After that is done for a particular
component, the files in meta-imx are no longer needed and the FSL Yocto Project Community BSP will provide
support. The community supports i.MX reference boards, community boards, and third-party boards.

1.1 End user licence agreement
During the setup environment process of the NXP Yocto Project BSP, the NXP End User License Agreement
(EULA) is displayed. To continue to use the i.MX Proprietary software, users must agree to the conditions of this
license. The agreement to the terms allows the Yocto Project build to untar packages from the i.MX mirror.
Note:
Read this license agreement carefully during the setup process, because once accepted, all further work in the
i.MX Yocto Project environment is tied to this accepted agreement.

1.2 References
i.MX has multiple families supported in software. The following are the listed families and SoCs per family. The
i.MX Linux Release Notes describes which SoC is supported in the current release. Some previously released
SoCs might be buildable in the current release but not validated if they are at the previous validated level.

i.MX 6 Family: 6QuadPlus, 6Quad, 6DualLite, 6SoloX, 6SLL, 6UltraLite, 6ULL, 6ULZ

i.MX 7 Family: 7Dual, 7ULP

i.MX 8 Family: 8QuadMax, 8QuadPlus, 8ULP

i.MX 8M Family: 8M Plus, 8M Quad, 8M Mini, 8M Nano

i.MX 8X Family: 8QuadXPlus, 8DXL

i.MX 9 Family: i.MX 93, i.MX 95

This release includes the following references and additional information.

i.MX Linux Release Notes (IMXLXRN) – Provides the release information.

i.MX Linux User’s Guide (IMXLUG) – Provides the information on installing U-Boot and Linux OS and using

i.MX-specific features.

i.MX Yocto Project User’s Guide (IMXLXYOCTOUG) – Describes the board support package for NXP

development systems using Yocto Project to set up host, install tool chain, and build source code to create

images.

i.MX Machine Learning User’s Guide (IMXMLUG) – Provides the machine learning information.



i.MX Linux Reference Manual (IMXLXRM) – Provides the information on Linux drivers for i.MX.

i.MX Graphics User’s Guide (IMXGRAPHICUG) – Describes the graphics features.

i.MX Porting Guide (IMXXBSPPG) – Provides the instructions on porting the BSP to a new board.

i.MX VPU Application Programming Interface Linux Reference Manual (IMXVPUAPI) – Provides the reference

information on the VPU API on i.MX 6 VPU.

Harpoon User’s Guide (IMXHPUG) – Presents the Harpoon release for i.MX 8M device family.

i.MX Digital Cockpit Hardware Partitioning Enablement for i.MX 8QuadMax (IMXDCHPE) – Provides the i.MX

Digital Cockpit hardware solution for i.MX 8QuadMax.

i.MX DSP User’s Guide (IMXDSPUG) – Provides the information on the DSP for i.MX 8.

i.MX 8M Plus Camera and Display Guide (IMX8MPCDUG) – Provides the information on the ISP Independent

Sensor Interface API for the i.MX 8M Plus.

EdgeLock Enclave Hardware Security Module API (RM00284) – This document is a software reference

description of the API provided by the i.MX 8ULP, i.MX 93, and i.MX 95 Hardware Security Module (HSM)

solutions for the EdgeLock Enclave (ELE) Platform.

The quick start guides contain basic information on the board and setting it up. They are on the NXP website.

SABRE Platform Quick Start Guide (IMX6QSDPQSG)

i.MX 6UltraLite EVK Quick Start Guide (IMX6ULTRALITEQSG)

i.MX 6ULL EVK Quick Start Guide (IMX6ULLQSG)

i.MX 7Dual SABRE-SD Quick Start Guide (SABRESDBIMX7DUALQSG)

i.MX 8M Quad Evaluation Kit Quick Start Guide (IMX8MQUADEVKQSG)

i.MX 8M Mini Evaluation Kit Quick Start Guide (8MMINIEVKQSG)

i.MX 8M Nano Evaluation Kit Quick Start Guide (8MNANOEVKQSG)

i.MX 8QuadXPlus Multisensory Enablement Kit Quick Start Guide (IMX8QUADXPLUSQSG)

i.MX 8QuadMax Multisensory Enablement Kit Quick Start Guide (IMX8QUADMAXQSG)

i.MX 8M Plus Evaluation Kit Quick Start Guide (IMX8MPLUSQSG)

i.MX 8ULP EVK Quick Start Guide (IMX8ULPQSG)

i.MX 8ULP EVK9 Quick Start Guide (IMX8ULPEVK9QSG)

i.MX 93 EVK Quick Start Guide (IMX93EVKQSG)

i.MX 93 9×9 QSB Quick Start Guide (93QSBQSG)

Documentation is available online at nxp.com.

i.MX 6 information is at nxp.com/iMX6series.

i.MX SABRE information is at nxp.com/imxSABRE.

i.MX 6UltraLite information is at nxp.com/iMX6UL.

i.MX 6ULL information is at nxp.com/iMX6ULL.

i.MX 7Dual information is at nxp.com/iMX7D.

i.MX 7ULP information is at nxp.com/imx7ulp.

i.MX 8 information is at nxp.com/imx8.

i.MX 6ULZ information is at nxp.com/imx6ulz.

i.MX 93 information is at nxp.com/imx93.

i.MX 95 information is at nxp.com/imx95.

https://www.nxp.com/docs/en/user-guide/SABRESDP_IMX6_QSG.pdf
https://www.nxp.com/security/login?TARGET=https%253A%252F%252Fwww.nxp.com%252Fwebapp%252Fsecure%252Flogin.SAMLSecuredController.sp%253Faction%253DforwardToDestination
https://www.nxp.com/security/login?TARGET=https%253A%252F%252Fwww.nxp.com%252Fwebapp%252Fsecure%252Flogin.SAMLSecuredController.sp%253Faction%253DforwardToDestination
https://www.nxp.com/doc/SABRESDBIMX7DUALQSG
https://www.nxp.com/doc/IMX8MQUADEVKQSG
https://www.nxp.com/docs/en/quick-reference-guide/8MMINIEVKQSG.PDF
https://www.nxp.com/document/guide/getting-started-with-the-i-mx-8m-nano-evk-board:GS-8MNANOLPD4-EVK
https://www.nxp.com/security/login?TARGET=https%253A%252F%252Fwww.nxp.com%252Fwebapp%252Fsecure%252Flogin.SAMLSecuredController.sp%253Faction%253DforwardToDestination
https://www.nxp.com/docs/en/quick-reference-guide/IMX8QUADMAXQSG.pdf
https://www.nxp.com/docs/en/quick-reference-guide/8MPLUSEVKQSG.pdf
https://www.nxp.com/docs/en/quick-reference-guide/IMX8ULPQSG.pdf
https://www.nxp.com/docs/en/quick-reference-guide/IMX8ULPEVK9QSG.pdf
https://www.nxp.com/security/login?TARGET=https%253A%252F%252Fwww.nxp.com%252Fwebapp%252Fsecure%252Flogin.SAMLSecuredController.sp%253Faction%253DforwardToDestination
https://www.nxp.com/docs/en/user-guide/IMX93QSBQSG.pdf
http://nxp.com
http://nxp.com/iMX6series
http://nxp.com/imxSABRE
http://nxp.com/iMX6UL
http://nxp.com/iMX6ULL
http://nxp.com/iMX7D
http://nxp.com/imx7ulp
http://nxp.com/imx8
http://nxp.com/imx6ulz
http://nxp.com/imx93
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Features

i.MX Yocto Project Release layers have the following features:

Linux kernel recipe

– The kernel recipe resides in the recipes-kernel folder and integrates an i.MX kernel from the source

downloaded from the i.MX Git server. This is done automatically by the recipes in the project.

– LF6.6.3_1.0.0 is a Linux kernel released for the Yocto Project.

U-Boot recipe

– The U-Boot recipe resides in the recipes-bsp folder and integrates an i.MX uboot-imx.git from the source

downloaded from the i.MX Git server.

– i.MX release LF6.6.3_1.0.0 for the i.MX 6, i.MX 7, i.MX 8, i.MX 93, and i.MX 95 devices uses an updated

v2023.04 i.MX U-Boot version. This version has not been updated for all i.MX hardware.

– The i.MX Yocto Project Community BSP uses u-boot-fslc from the mainline, but this is only supported by the

U-Boot community and is not supported with the L6.6.3 kernel.

– The i.MX Yocto Project Community BSP updates the U-Boot versions frequently, so the information above

might change as new U-Boot versions are integrated to meta-freescale layers and updates from i.MX uboot-imx

releases are integrated into the mainline.

Graphics recipes

– Graphics recipes reside in recipes-graphics folder.

– Graphics recipes integrate the i.MX graphics package release. For the i.MX boards that have a GPU, the imx-

gpu-viv recipes package the graphic components for each DISTRO: frame buffer (FB), XWayland, Wayland

backend, and Weston compositor (Weston). Only i.MX 6 and i.MX 7 support Frame Buffer.

– Xorg-driver integrates the xserver-xorg.

i.MX package recipes firmware-imx, imx-sc-fimrware, and other packages reside in recipes-bsp and pull from

the i.MX mirror to build and package into image recipes.

Multimedia recipes

– Multimedia recipes reside in recipes-multimedia.

– Proprietary packages like imx-codec and imx-parser have recipes pull from the i.MX mirror to build and

package into image recipes.

– Opensource packages have recipes that pull from the public Git Repos on GitHub.

– Some recipes are provided for codecs that are restricted. Packages for these are not on the i.MX mirror.

These packages are available separately. Contact your i.MX Marketing representative to acquire these.

Core recipes

Some recipes for rules, such as udev, provide updated i.MX rules to be deployed in the system. These recipes

are usually updates of policy and are used for customization only. Releases only provide updates if needed.

Demo recipes

Demonstration recipes reside in the meta-sdk directory. This layer contains image recipes and recipes for

customization, such as touch calibration, or recipes for demonstration applications.

Machine learning recipes

Machine learning recipes reside in the meta-ml directory. This layer contains machine learning recipes for

packages like tensorflow-lite, onnx, and so on.

Cockpit recipes



Cockpit recipes reside in meta-cockpit and are supported on the i.MX 8QuadMax using the imx-8qmcockpit-

mek machine configuration.

In the layer meta-nxp-demo-experience, more demonstration and tool recipes are included. This layer is

included in all released full images.

Host Setup

To get the Yocto Project expected behavior in a Linux Host Machine, the packages and utilities described below
must be installed. An important consideration is the hard disk space required in the host machine. For example,
when building on a machine running Ubuntu, the minimum hard disk space required is about 50 GB. It is
recommended that at least 120 GB is provided, which is enough to compile all backends together. For building
machine learning components, at least 250 GB is recommended.

The recommended minimum Ubuntu version is 20.04 or later. The latest release supports Chromium v91, which
requires an increase to the ulimit (number of open files) to 4098.

3.1 Docker
i.MX is now releasing docker setup scripts in GitHub – nxp-imx/imx-docker: i.MX Docker . Follow the instructions
in the readme for setting up a host build machine using docker.
In addition docker on board is enabled with standard manifest by including the meta-virtualization layer on i.MX 8
only. This creates a headless system for installing docker  containers from external docker hubs.

3.2 Host packages
A Yocto Project build requires specific packages to be installed for the build that are documented under the Yocto
Project. Go to Yocto Project Quick Start and check for the packages that must be installed for your build
machine.
Essential Yocto Project host packages are:
$ sudo apt install gawk wget git diffstat unzip texinfo gcc build-essential \chrpath socat cpio python3 python3-pip
python3-pexpect xz-utils debianutils \iputils-ping python3-git python3-jinja2 libegl1-mesa libsdl1.2-dev \python3-
subunit mesa-common-dev zstd liblz4-tool file locales -y
$ sudo locale-gen en_US.UTF-8

The configuration tool uses the default version of grep that is on your build machine. If there is a different version
of grep in your path, it may cause builds to fail. One workaround is to rename the special version to something not
containing “grep”.

3.3 Setting up the Repo utility
Repo is a tool built on top of Git that makes it easier to manage projects that contain multiple repositories, which
do not need to be on the same server. Repo complements very well the layered nature of the Yocto Project,
making it easier for users to add their own layers to the BSP.

To install the “repo” utility, perform these steps:

1. Create a bin folder in the home directory.

$ mkdir ~/bin (this step may not be needed if the bin folder already exists)

$ curl https://storage.googleapis.com/git-repo-downloads/repo>~/bin/repo

$ chmod a+x ~/bin/repo

2. Add the following line to the .bashrc file to ensure that the ~/bin folder is in your PATH variable.

export PATH=~/bin:$PATH

Yocto Project Setup

https://github.com/nxp-imx/imx-docker
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First, make sure that Git is set up properly with the commands below:
$ git config –global user.name “Your Name”
$ git config –global user.email “Your Email”
$ git config –list

The i.MX Yocto Project BSP Release directory contains a sources directory, which contains the recipes used to
build one or more build directories, and a set of scripts used to set up the environment.
The recipes used to build the project come from both the community and i.MX. The Yocto Project layers are
downloaded to the sources directory. This sets up the recipes that are used to build the project.
The following example shows how to download the i.MX Yocto Project Community BSP recipe layers. For this
example, a directory called imx-yocto-bsp is created for the project. Any name can be used instead of this.
$ mkdir imx-yocto-bsp
$ cd imx-yocto-bsp
$ repo init -u https://github.com/nxp-imx/imx-manifest
-b imx-linux-nanbield -m imx-6.6.3-1.0.0.xml
$ repo sync

Note:
https://github.com/nxp-imx/imx-manifest/tree/imx-linux-nanbield has a list of all manifest files supported in
this release.
When this process is completed, the source code is checked out into the directory imx-yocto-bsp/sources.
You can perform Repo synchronization, with the command repo sync, periodically to update to the latest code.
If errors occur during Repo initialization, try deleting the .repo directory and running the Repo initialization
command again.
The repo init is configured for the latest patches in the line. Follow the instructions in index: imx-manifest.git to
retrieve the original GA. Otherwise, GA plus patches are picked up by default. To pick up previous releases from
zeus base, add -m (release manifest name) at the end of Repo initialization line and it will retrieve previous
releases. Examples are provided in the README file in the link provided above.

Image Build

This section provides the detailed information along with the process for building an image.

5.1 Build configurations
i.MX provides a script, imx-setup-release.sh, that simplifies the setup for i.MX machines. To use the script, the
name of the specific machine to be built for needs to be specified as  well as the desired graphical backend.
The script sets up a directory and the configuration files for the specified machine and backend.
In the meta-imx layer, i.MX provides new or updated machine configurations that overlay the metafreescale
machine configurations. These files are copied into the meta-freescale/conf/machine directory by the imx-setup-
release.sh script. The following are i.MX machine configuration files that can be selected. Check either the release
notes or the machine directory for the latest additions.

https://github.com/nxp-imx/imx-manifest
https://github.com/nxp-imx/imx-manifest/tree/imx-linux-nanbield
http://imx-manifest.git


i.MX 6 i.MX 7 i.MX 8 i.MX 9

• imx6qpsabresd
• imx6ulevk
• imx6ulz-14x14evk
• imx6ull14x14evk
• imx6ull9x9evk
• imx6dlsabresd
• imx6qsabresd
• imx6solosabresd
• imx6sxsabresd
• imx6sllevk

• imx7dsabresd
• imx7ulpevk

• imx8qmmek
• imx8qxpc0mek
• imx8mqevk
• imx8mm-lpddr4-evk
• imx8mm-ddr4-evk
• imx8mn-lpddr4-evk
• imx8mn-ddr4-evk
• imx8mp-lpddr4-evk
• imx8mp-ddr4-evk
• imx8dxla1-lpddr4-evk
• imx8dxlb0-lpddr4-evk
• imx8dxlb0-ddr3l-evk
• imx8mnddr3levk
• imx8ulp-lpddr4-evk
• imx8ulp-9×9-lpddr4evk

• imx93evk
• imx93-11x11lpddr4x-evk
• imx93-9×9-lpddr4qsb
• imx93-14x14lpddr4x-evk

Each build folder must be configured in such way that they only use one distro. Each time the variable
DISTRO_FEATURES is changed, a clean build folder is needed. Each graphical backend Frame Buffer, Wayland,
and XWayland each have a distro configuration. If no DISTRO file is specified, the XWayland distro is set up as
default. Distro configurations are saved in the local.conf file in the DISTRO setting and are displayed when the
bitbake is running. In past releases, we used the poky distro and customized versions and providers in our
layer.conf but a custom distro is a better solution. When the default poky distro is used, the default community
configuration is used. As an i.MX release, we prefer to have a set of  configurations that NXP supports and has
been testing.
Here are the list of DISTRO configurations. Note that fsl-imx-fb is not supported on i.MX 8 and fsl-imxx11 is not
supported anymore.

fsl-imx-wayland: Pure Wayland graphics.

fsl-imx-xwayland: Wayland graphics and X11. X11 applications using EGL are not supported.

fsl-imx-fb: Frame Buffer graphics – no X11 or Wayland. Frame Buffer is not supported on i.MX 8 and i.MX 9.

Users are welcome to create their own distro file based on one of these to customize their environment without
updating the local.conf to set preferred versions and providers.
The syntax for the imx-setup-release.sh script is shown below:
$ DISTRO=<distro name> MACHINE=<machine name> source imx-setup-release.sh -b<build dir>

DISTRO=<distro configuration name> is the distro, which configures the build environment and it is stored in
meta-imx/meta-sdk/conf/distro.
MACHINE=<machine configuration name> is the machine name which points to the configuration file in
conf/machine in meta-freescale and meta-imx.
-b <build dir> specifies the name of the build directory created by the imx-setup-release.sh script.
When the script is run, it prompts the user to accept the EULA. Once the EULA is accepted, the acceptance is
stored in local.conf inside each build folder and the EULA acceptance query is no longer displayed for that build
folder.
After the script runs, the working directory is the one just created by the script, specified with the -b option. A conf
folder is created containing the files bblayers.conf and local.conf.
The <build dir>/conf/bblayers.conf file contains all the metalayers used in the i.MX Yocto Project release.
The local.conf file contains the machine and distro specifications:

MACHINE ??= ‘imx7ulpevk’
DISTRO ?= ‘fsl-imx-xwayland’
ACCEPT_FSL_EULA = “1”



The MACHINE configuration can be changed by editing this file, if necessary.
ACCEPT_FSL_EULA in the local.conf file indicates that you have accepted the conditions of the EULA.
In the meta-imx layer, consolidated machine configurations (imx6qpdlsolox.conf and imx6ul7d.conf) are provided
for i.MX 6 and i.MX 7 machines. i.MX uses these to build a  common image with all the device trees in one image
for testing. Do not use these machines for anything other than testing.

5.2 Choosing an i.MX Yocto project image
The Yocto Project provides some images that are available on different layers. Poky provides some images, meta-
freescale and meta-freescale-distro provide others, and additional image recipes are provided in the meta-imx
layer. The following table lists various key images, their contents, and the layers that provide the image recipes.

Table 1. i.MX Yocto project images

Image name Target Provided by layer

core-image-minimal A small image that only allows a device to boot. poky

core-image-base A console-only image that fully supports the target
device hardware. poky

core-image-sato

An image with Sato, a mobile environment and visual st
yle for mobile devices. The image supports a Sato them
e and uses Pimlico applications. It contains a terminal, 
an editor and a file manager.

poky

imx-image-core
An i.MX image with i.MX test applications to be used for
Wayland backends. This image is used by our daily cor
e testing.

meta-imx/meta-sdk

fsl-image-machine- te
st

An FSL Community i.MX core image with console
environment – no GUI interface. meta-freescale-distro

imx-image-
multimedia Builds an i.MX image with a GUI without any Qt content. meta-imx/meta-sdk

imx-image-full

Builds an opensource Qt 6 image with Machine Learnin
g features. These images are only supported for i.MX S
oC with hardware graphics. They are not supported on t
he i.MX 6UltraLite, i.MX 6UltraLiteLite, i.MX 6SLL, [MX 
7Dual, i.MX 8MNanoLite, or i.MX 8DXL

meta-imx/meta-sdk

5.3 Building an image
The Yocto Project build uses the bitbake command. For example, bitbake <component> builds the named
component. Each component build has multiple tasks, such as fetching, configuration, compilation, packaging, and
deploying to the target rootfs. The bitbake image build gathers all the components required by the image and build
in order of the dependency per task. The first build is the toolchain along with the tools required for the
components to build.
The following command is an example on how to build an image:
$ bitbake imx-image-multimedia

5.4 Bitbake options
The bitbake command used to build an image is bitbake <image name>. Additional parameters can be used for
specific activities described below. Bitbake provides various useful options for developing a single component. To
run with a BitBake parameter, the command looks like this: bitbake <parameter> <component> <component> is a
desired build package.
The following table provides some BitBake options.



Table 2. BitBake options

BitBake paramet
er Description

-c fetch Fetches if the downloads state is not marked as done.

-c cleanall
Cleans the entire component build directory. All the changes in the build directory are lost. 
The rootfs and state of the component are also cleared. The component is also removed fr
om the download directory.

-c deploy Deploys an image or component to the rootfs.

-k Continues building components even if a build break occurs.

-c compile -f
It is not recommended that the source code under the temporary directory is changed direct
ly, but if it is, the Yocto Project might not rebuild it unless this option is used. Use this option
to force a recompile after the image is deployed.

-g Lists a dependency tree for an image or component.

-DDD Turns on debug 3 levels deep. Each D adds another level of debug.

-s, –show-version
s Shows the current and preferred versions of all recipes.

5.5 U-Boot configuration
U-Boot configurations are defined in the main machine configuration file. The configuration is specified by using
the UBOOT_CONFIG settings. This requires setting UBOOT_CONFIG in local.conf. Otherwise, the U-Boot build
uses SD boot by default.
These can be built separately by using the following commands (change MACHINE to the correct target).
Multiple U-Boot configurations can be built with one command by putting spaces between U-Boot configurations.
The following are the U-Boot configurations for each boards. i.MX 6 and i.MX 7 boards support SD without OPTEE
and with OP-TEE:

uboot_config_imx93evk=”sd fspi”

uboot_config_imx8mpevk=”sd fspi ecc”

uboot_config_imx8mnevk=”sd fspi”

uboot_config_imx8mmevk=”sd fspi”

uboot_config_imx8mqevk=”sd”

uboot_config_imx8dxlevk=”sd fspi”

uboot_conifg_imx8dxmek=”sd fspi”

uboot_config_imx8qxpc0mek=”sd fspi”

uboot_config_imx8qxpmek=”sd fspi”

uboot_config_imx8qmmek=”sd fspi”

uboot_config_imx8ulpevk=”sd fspi”

uboot_config_imx8ulp-9×9-lpddr4-evk=”sd fspi”

uboot_config_imx6qsabresd=”sd sata sd-optee”

uboot_config_imx6qsabreauto=”sd sata eimnor spinor nand sd-optee”

uboot_config_imx6dlsabresd=”sd epdc sd-optee”

uboot_config_imx6dlsabreauto=”sd eimnor spinor nand sd-optee”

uboot_config_imx6solosabresd=”sd sd-optee”



uboot_config_imx6solosabreauto=”sd eimnor spinor nand sd-optee”

uboot_config_imx6sxsabresd=”sd emmc qspi2 m4fastup sd-optee”

uboot_config_imx6sxsabreauto=”sd qspi1 nand sd-optee”

uboot_config_imx6qpsabreauto=”sd sata eimnor spinor nand sd-optee”

uboot_config_imx6qpsabresd=”sd sata sd-optee”

uboot_config_imx6sllevk=”sd epdc sd-optee”

uboot_config_imx6ulevk=”sd emmc qspi1 sd-optee”

uboot_config_imx6ul9x9evk=”sd qspi1 sd-optee”

uboot_config_imx6ull14x14evk=”sd emmc qspi1 nand sd-optee”

uboot_config_imx6ull9x9evk=”sd qspi1 sd-optee”

uboot_config_imx6ulz14x14evk=”sd emmc qspi1 nand sd-optee”

uboot_config_imx7dsabresd=”sd epdc qspi1 nand sd-optee”

uboot_config_imx7ulpevk=”sd emmc sd-optee”

To build with any U-Boot configuration, perform the following steps.
With just one U-Boot configuration:
$ echo “UBOOT_CONFIG = \”eimnor\”” >> conf/local.conf
With multiple U-Boot configurations:
$ echo “UBOOT_CONFIG = \”sd eimnor\”” >> conf/local.conf
$ MACHINE=<machine name> bitbake -c deploy u-boot-imx
Note: i.MX 8 uses imx-boot that pulls in U-Boot.

5.6 Build scenarios
The following are build setup scenarios for various configurations.
Set up the manifest and populate the Yocto Project layer sources with these commands:
$ mkdir imx-yocto-bsp
$ cd imx-yocto-bsp
$ repo init -u https://github.com/nxp-imx/imx-manifest
-b imx-linux-nanbield -m imx-6.6.3-1.0.0.xml
$ repo sync
The following sections give some specific examples. Replace the machine names and the backends specified to
customize the commands.

5.6.1 Frame Buffer image on i.MX 6QuadPlus SABRE-AI
$ DISTRO=fsl-imx-fb MACHINE=imx6qpsabreauto source imx-setup-release.sh –b build-fb
$ bitbake imx-image-multimedia
This builds a multimedia image with a frame buffer backend.

5.6.2 XWayland image on i.MX 8QuadXPlus MEK
$ DISTRO=fsl-imx-xwayland MACHINE=imx8qxpmek source imx-setup-release.sh -b build-xwayland
$ bitbake imx-image-full
This builds an XWayland image with Qt 6 and machine learning features. To build without Qt 6 and machine
learning, use imx-image-multimedia instead.

5.6.3 Wayland image on i.MX 8M Quad EVK
$ DISTRO=fsl-imx-wayland MACHINE=imx8mqevk source imx-setup-release.sh -b buildwayland
$ bitbake imx-image-multimedia
This builds a Weston Wayland image with multimedia without Qt 6.

5.6.4 Restarting a build environment
If a new terminal window is opened or the machine is rebooted after a build directory is set up, the setup
environment script should be used to set up the environment variables and run a build again. The full imxsetup-

https://github.com/nxp-imx/imx-manifest


release.sh is not needed.
$ source setup-environment <build-dir>

5.6.5 Chromium Browser on XWayland, and Wayland
The Yocto Project community has Chromium recipes for the Wayland version Chromium Browser for i.MX SoC
with GPU hardware. NXP does not support or test the patches from the community. This section describes how to
integrate Chromium into your rootfs and enable hardware accelerated rendering of WebGL. The Chromium
browser requires additional layers such as meta-browser added in the imx-release-setup.sh script automatically.
In local.conf for XWayland or Wayland, add Chromium into your image. X11 is not supported.
CORE_IMAGE_EXTRA_INSTALL += “chromium-ozone-wayland”

5.6.6 Qt 6 and QtWebEngine browsers
Qt 6 has both a commercial and an open source license. When building in Yocto Project, the open source license
is the default. Make sure to understand the differences between these licenses and choose appropriately. After
custom Qt 6 development has started on the open source license, it cannot be used with the commercial license.
Work with a legal representative to understand the differences between these licenses.
Note:
Building QtWebEngine is not compatible with the meta-chromium layer used by the release.
If you are using the NXP build setup, remove meta-chromium from bblayers.conf:
# Commented out due to incompatibility with qtwebengine
#BBLAYERS += “${BSPDIR}/sources/meta-browser/meta-chromium”

There are four Qt 6 browsers available. QtWebEngine browsers can be found in:

/usr/share/qt6/examples/webenginewidgets/StyleSheetbrowser

/usr/share/qt6/examples/webenginewidgets/Simplebrowser

/usr/share/qt6/examples/webenginewidgets/Cookiebrowser

/usr/share/qt6/examples/webengine/quicknanobrowser

All three browsers can be run by going to the directory above and running the executable found there.
Touchscreen can be enabled by adding the parameters -plugin evdevtouch:/dev/input/event0 to the executable.
./quicknanobrowser -plugin evdevtouch:/dev/input/event0
QtWebengine only works on SoC with GPU graphics hardware on i.MX 6, i.MX 7, i.MX 8, and i.MX 9.
To include Qtwebengine in the image, put the following in local.conf or in the image recipe.
IMAGE_INSTALL:append = ” packagegroup-qt6-webengine”

5.6.7 NXP eIQ machine learning
The meta-ml layer is the integration of NXP eIQ machine learning, which was formerly released as a separate
meta-imx-machinelearning layer and is now integrated into the standard BSP image (imx-image-full).
Many of the features require Qt 6. In case of using other configuration than imx-image-full, put the following in
local.conf:
IMAGE_INSTALL:append = ” packagegroup-imx-ml”
To install the NXP eIQ packages to the SDK, put the following in local.conf:
TOOLCHAIN_TARGET_TASK:append = ” tensorflow-lite-dev onnxruntime-dev”

Note:
TOOLCHAIN_TARGET_TASK_append variable installs the packages to the SDK only, not to the image.
To add the model configurations and input data for the OpenCV DNN demos, put the following in local.conf:
PACKAGECONFIG:append:pn-opencv_mx8 = ” tests tests-imx”

5.6.8 Systemd
Systemd is enabled as the default initialization manager. To disable systemd as default, go to the fsl-imxpreferred-
env.inc and comment out the systemd section.



5.6.9 Multilib enablement
For i.MX 8, building 32-bit applications on 64-bit OS can be supported using the multilib configuration. Multilib
offers the ability to build libraries with different target optimizations or architecture formats and combine these
together into one system image. Multilib is enabled by adding the MULTILIB, DEFAULTTUNE, and
IMAGE_INSTALL declaration to your local.conf file. Multilib is not supported with the debian package
management. It requires the RPM system. Comment out the two package management lines in local.conf to go to
the default RPM.
The MULTILIBS declaration is typically lib32 or lib64 and needs to be defined in
MULTILIB_GLOBAL_VARIANTS variable as follows:

MULTILIBS = “multilib:lib32”
DEFAULTTUNE must be one of the AVAILTUNES values for this alternative library type as follows:
DEFAULTTUNE:virtclass-multilib-lib32 = “armv7athf-neon”
IMAGE_INSTALL will be added to the image, the 32-bit libraries required by the specific application as follows:
IMAGE_INSTALL:append = ” lib32-bash”
For the case on i.MX 8, building a 32-bit application support would require the following statements in local.conf.
This configuration specifies a 64-bit machine as the main machine type and adds multilib:lib32, where those
libraries are compiled with the armv7athf-neon tune, and then includes to all images the lib32 packages.
MACHINE = imx8mqevk
# Define multilib target
require conf/multilib.conf
MULTILIBS = “multilib:lib32”
DEFAULTTUNE:virtclass-multilib-lib32 = “armv7athf-neon”
# Add the multilib packages to the image
IMAGE_INSTALL:append = ” lib32-glibc lib32-libgcc lib32-libstdc++”
Disable the deb packaging to avoid any processing errors. Check in local.conf, and comment if there are:
PACKAGE_CLASSES = “package_deb”
EXTRA_IMAGE_FEATURES += “package-management”

5.6.10 OP-TEE enablement
OP-TEE requires three components: OP-TEE OS, OP-TEE client, and OP-TEE test. In addition, the kernel and U-
Boot have configurations. The OP-TEE OS resides in the bootloader while the OP-TEE client and test reside in the
rootfs.
OP-TEE is enabled by default in this release. To disable OP-TEE, go to the meta-imx/meta-bsp/conf/layer.conf file
and comment out the DISTRO_FEATURES_append for OP-TEE and uncomment the removed line.

5.6.11 Building Jailhouse
Jailhouse is a static partitioning Hypervisor based on Linux OS. It is supported on i.MX 8M Plus, i.MX 8M Nano,
i.MX 8M Quad EVK, and i.MX 8M Mini EVK boards.

To enable Jailhouse build, add the following line to local.conf:
DISTRO_FEATURES:append = ” jailhouse”
In U-Boot, run run jh_netboot or jh_mmcboot. It loads the dedicated DTB for Jailhouse usage. Taking i.MX 8M
Quad as an example, after Linux OS boots up:
#insmod jailhouse.ko
#./jailhouse enable imx8mq.cell

For more details about Jailhouse on i.MX 8, see the i.MX Linux User’s Guide (IMXLUG).

5.6.12 Package management
The default package management with Yocto Project is rpm. The i.MX distro now enables debian as the package
management. This can be easily turned off by adding the  ACKAGE_CLASSES set to package_rpm in the
local.conf, or creating a custom distro without the debian package feed PACKAGE_CLASSES = “package_deb” .
With the addition of the debian package feed, a sources.list can be added to /etc/apt that links in Debian’s
package feed. This allows users to install packages not provided in the image without having to add them to a
Yocto image. Because this package feed is not generated by the i.MX Yocto build process, there is no guarantee
each package will work with the right dependencies but it allows simpler tools to be provided.



Software that is complex and has more dependencies on specific versions might have issues with an external
package feed.

Image Deployment

Complete filesystem images are deployed to <build directory>/tmp/deploy/images. An image is, for the most part,
specific to the machine set in the environment setup. Each image build creates a U-Boot, a kernel, and an image
type based on the IMAGE_FSTYPES defined in the machine configuration file. Most machine configurations
provide an SD card image (.wic) and a rootfs image (.tar). The SD card image contains a partitioned image (with
U-Boot, kernel, rootfs, etc.) suitable for booting the corresponding hardware.

6.1 Flashing an SD card image
An SD card image file .wic contains a partitioned image (with U-Boot, kernel, rootfs, etc.) suitable for booting the
corresponding hardware. To flash an SD card image, run the following command:
zstdcat <image_name>.wic.zst | sudo dd of=/dev/sd<partition> bs=1M conv=fsync
For more information on flashing, see Section “Preparing an SD/MMC card to boot” in the i.MX Linux User’s Guide
(IMXLUG). For NXP eIQ machine learning applications, an additional free disk space is required (approximately 1
GB). It is defined by adding IMAGE_ROOTFS_EXTRA_SPACE variable into the local.conf file before the Yocto
building process. See the Yocto Project Mega-Manual.

Customization

There are three scenarios to build and customize on i.MX Linux OS:

Building i.MX Yocto Project BSP and validating on an i.MX reference board. The directions in this document

describe this method in details.

Customizing kernel and creating a custom board and device tree with kernel and U-Boot. For more details on

how to build an SDK and set up a host machine for building the kernel and U-Boot only outside of the Yocto

Project build environment, see Chapter “How to Build U-Boot and Kernel in Standalone Environment” in the

i.MX User’s Guide (IMXLUG).

Customizing a distribution adding or removing packaging from the BSP provided for i.MX Linux releases by

creating a custom Yocto Project layer. i.MX provides multiple demo examples to show a custom layer on top of

an i.MX BSP release . The remaining sections in this document provides instructions for creating a custom

DISTRO and board configuration.

7.1 Creating a custom distro
A custom distro can configure a custom build environment. The distro files released fsl-imx-wayland, fslimx-
xwayland, and fsl-imx-fb all show configurations for specific graphical  backends. Distros can also be used to
configure other parameters such as kernel, U-Boot, and GStreamer. The i.MX distro files are set to create a
custom build environment required  for testing our i.MX Linux OS BSP releases.
It is recommended for each customer to create their own distro file and use that for setting providers, versions, and
custom configurations for their build environment. A distro is created by copying an existing distro file, or including
one like poky.conf and adding additional changes, or including one of the i.MX distros and using that as a starting
point.

7.2 Creating a custom board configuration
Vendors who are developing reference boards may want to add their board to the FSL Community BSP.
Having the new machine supported by the FSL Community BSP makes it easy to share source code with the
community, and allows for feedback from the community.
The Yocto Project makes it easy to create and share a BSP for a new i.MX based board. The upstreaming process
should start when a Linux OS kernel and a bootloader are working and tested for that machine. It is highly
important to have a stable Linux kernel and bootloader (for example, U-Boot) to be pointed to in the machine

https://docs.yoctoproject.org/singleindex.html#term-IMAGE_ROOTFS_EXTRA_SPACE


configuration file, to be the default one used for that machine.
Another important step is to determinate a maintainer for the new machine. The maintainer is the one responsible
for keeping the set of main packages working for that board. The machine maintainer should keep the kernel and
bootloader updated, and the user-space packages tested for that machine.

The steps needed are listed below.

1. Customize the kernel config files as needed. The kernel configuration file is location in arch/arm/configs and

the vendor kernel recipe should customize a version loaded through the kernel recipe.

2. Customize U-Boot as needed. See the i.MX BSP Porting Guide (IMXBSPPG) for details on this.

3. Assign the maintainer of the board. This maintainer makes sure that files are updated as needed, so the build

always works.

4. Set up the Yocto Project build as described in the Yocto Project community instructions as shown below.

Use the community master branch.

a. Download the needed host package, depending on your host Linux OS distribution, from Yocto Project

Quick Start.

b. Download Repo with the command:

$ curl https://storage.googleapis.com/git-repo-downloads/repo>~/bin/repo

c. Create a directory to keep everything in. Any directory name can be used. This document uses

imxcommunity-bsp.

$ mkdir imx-community-bsp

d. Execute the following command:

$ cd imx-community-bsp

e. Initialize the Repo with the master branch of the Repo.

$ repo init -u https://github.com/Freescale/fsl-community-bsp-platform -b master

f. Get the recipes that will be used to build.

$ repo sync

g. Set up the environment with the following command:

$ source setup-environment build

5. Choose a similar machine file in fsl-community-bsp/sources/meta-freescale-3rdparty/conf/machine and copy it,

using a name indicative of your board. Edit the new board file with the information about your board. Change

the name and description at least. Add MACHINE_FEATURE.

6. Test your changes with the latest community master branch, making sure everything works well. Use at least

core-image-minimal.

$ bitbake core-image-minimal

7. Prepare the patches. Follow the Recipe Style Guide and git.yoctoproject.org/cgit/cgit.cgi/meta-freescale/

tree/README in the section entitled Contributing.

8. Upstream into meta-freescale-3rdparty. To upstream, send the patches to metafreescale@yoctoproject.org.

7.3 Monitoring security vulnerabilities in your BSP
The monitoring of Common Vulnerability and Exposures (CVE) can be accomplished with NXP enabled Vigiles
tools from Timesys. Vigiles is a vulnerability monitoring and management tool that provides build-time Yocto CVE
analysis of target images. It does this by collecting metadata about the software used in the Yocto Project BSP
and comparing it against a CVE database that integrates information on CVEs from various sources, including
NIST, Ubuntu, and several others.
A high-level overview of the detected vulnerabilities is returned, and a full detailed analysis with information on
affecting CVEs, their severity and available fixes can be viewed online.

https://docs.yoctoproject.org/brief-yoctoprojectqs/index.html
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To access the report online, register for your NXP Vigiles account by following the link:
https://www.timesys.com/register-nxp-vigiles/
Additional information on the setup and execution of Vigiles can be found here:
https://github.com/TimesysGit/meta-timesys
https://www.nxp.com/vigiles

7.3.1 Configuration
Add meta-timesys to conf/bblayers.conf of your BSP build.
Follow the format of the file and add meta-timesys:
BBLAYERS += “${BSPDIR}/sources/meta-timesys”
Append vigiles to INHERIT variable in conf/local.conf:
INHERIT += “vigiles”

7.3.2 Execution
Once meta-timesys has been added to your build, Vigiles executes a security vulnerabilities scan every time the
Linux BSP is built with Yocto. There are no additional commands needed. After each build is completed, the
vulnerability scan information is stored in the directory imx-yocto-bsp/<build dir>/vigiles.
You can view the details of the security scan through:

Command line (summary)

Online (details)

Simply open the file named <image name>-report.txt, which includes the link to the detailed online report.

Frequently Asked Questions

8.1 Quick Start
This section summarizes how to set up the Yocto Project on a Linux machine and build an image. Detailed
explanations of what this means are in the sections above.

Installing the “repo” utility
To get the BSP you need to have “repo” installed. This only needs to be done once.

$: mkdir ~/bin
$: curl https://storage.googleapis.com/git-repo-downloads/repo>~/bin/repo
$: chmod a+x ~/bin/repo
$: PATH=${PATH}:~/bin

Downloading the BSP Yocto Project Environment.
Use the correct name for the release desired in the -b option for repo init. This needs to be done once for each
release and sets the distribution for the directory created in the first step. repo sync can be run to update the
recipes under sources to the latest.
$: mkdir imx-yocto-bsp
$: cd imx-yocto-bsp
$: repo init -u https://github.com/nxp-imx/imx-manifest -b imx-linux-nanbield m imx-6.6.3-1.0.0.xml
: repo sync
Note:
https://github.com/nxp-imx/imx-manifest/tree/imx-linux-nanbield has a list of all manifest files supported in
this release.

Setup for Specific Backends
i.MX 8 and i.MX 9 Framebuffer is not supported. Only use these for i.MX 6 and i.MX 7 SoC.

Setup for Framebuffer:
$: DISTRO=fsl-imx-fb MACHINE=<machine name> source imx-setup-release.sh -b build-fb

https://www.timesys.com/register-nxp-vigiles/
https://github.com/TimesysGit/meta-timesys
https://www.nxp.com/vigiles
https://storage.googleapis.com/git-repo-downloads/repo%3E~/bin/repo
https://github.com/nxp-imx/imx-manifest
https://github.com/nxp-imx/imx-manifest/tree/imx-linux-nanbield


Setup for Wayland:
$: DISTRO=fsl-imx-wayland MACHINE=<machine name> source imx-setup-release.sh -b build-wayland
Setup for XWayland:
$: DISTRO=fsl-imx-xwayland MACHINE=<machine name> source imx-setup-release.sh -b build-xwayland

Build for All Backends
Build without Qt
$: bitbake imx-image-multimedia
Build with Qt 6 and machine learning features
$: bitbake imx-image-full

8.2 Local configuration tuning
A Yocto Project build can take considerable build resources both in time and disk usage, especially when building
in multiple build directories. There are methods to optimize this, for example, use a shared sstate cache (caches
the state of the build) and downloads directory (holds the downloaded packages). These can be set to be at any
location in the local.conf file by adding statements such as these:
DL_DIR=”/opt/imx/yocto/imx/download”
SSTATE_DIR=”/opt/imx/yocto/imx/sstate-cache”
The directories need to already exist and have appropriate permissions. The shared sstate helps when multiple
build directories are set, each of which uses a shared cache to minimize the build time. A shared download
directory minimizes the fetch time. Without these settings, Yocto Project defaults to the build directory for the
sstate cache and downloads.
Every package downloaded in the DL_DIR directory is marked with a <package name>.done. If your network has
a problem fetching a package, you can manually copy the backup version of package to the DL_DIR directory and
create a <package_name>.done file with the touch command. Then run the bitbake command:
bitbake <component>.
For more information, see the Yocto Project Reference Manual — The Yocto Project ® 5.0.1 documentation .

8.3 Recipes
Each component is built by using a recipe. For new components, a recipe must be created to point to the source
(SRC_URI) and specify patches, if applicable. The Yocto Project environment builds from a makefile in the
location specified by the SRC_URI in the recipe. When a build is established from auto tools, a recipe should
inherit autotools and pkgconfig. Makefiles must allow CC to be overridden by Cross Compile tools to get the
package built with Yocto Project.

Some components have recipes but need additional patches or updates. This can be done by using a bbappend
recipe. This appends to an existing recipe details about the updated source. For example, a bbappend recipe to
include a new patch should have the following contents:
FILESEXTRAPATHS:prepend := “${THISDIR}/${PN}:”
SRC_URI += file://<patch name>.patch
FILESEXTRAPATHS_prepend tells Yocto Project to look in the directory listed to find the patch listed in SRC_URI.

Note:
If a bbappend recipe is not picked up, view the fetch log file (log.do_fetch) under the work folder to check whether
the related patches are included or not. Sometimes a Git version of the recipe is being used instead of the version
in the bbappend files.

8.4 How to select additional packages
Additional packages can be added to images if there is a recipe provided for that package. A searchable list of
recipes provided by the community can be found at layers.openembedded.org/. You can search to see if an
application already has a Yocto Project recipe and find where to download it from.

8.4.1 Updating an image
An image is a set of packages and the environment configuration.
An image file (such as imx-image-multimedia.bb) defines the packages that go inside the file system.
Root file systems, kernels, modules, and the U-Boot binary are available in build/tmp/deploy/images/<machine
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name>.

Note:
You can build packages without including it in an image, but you must rebuild the image if you want the package
installed automatically on a rootfs.

8.4.2 Package group
A package group is a set of packages that can be included on any image.
A package group can contain a set of packages. For example, a multimedia task could determine, according to
the machine, whether the VPU package is built or not, so the selection of multimedia packages may be automated
for every board supported by the BSP, and only the multimedia package is included in the image.
Additional packages can be installed by adding the following line in <build dir>/local.conf.
CORE_IMAGE_EXTRA_INSTALL:append = ” <package_name1 package_name2>”
There are many package groups. They are in subdirectories named packagegroup or packagegroups.

8.4.3 Preferred version
The preferred version is used to specify the preferred version of a recipe to use for a specific component. A
component may have multiple recipes in different layers and a preferred version points to a specific version to
use.

In the meta-imx layer, in layer.conf, preferred versions are set for all the recipes to provide a static system for a
production environment. These preferred version settings are used for formal i.MX releases but are not essential
for future development.
Preferred versions also help when previous versions may cause confusion about which recipe should be used.
For example, previous recipes for imx-test and imx-lib used a year-month versioning, which has changed to
<kernel-version> versioning. Without a preferred version, an older version might be picked up. Recipes that have
_git versions are usually picked over other recipes, unless a preferred version is set. To set a preferred version, put
the following in local.conf.
PREFERRED_VERSION_<component>:<soc family> = “<version>”
See the Yocto Project manuals for more information on using preferred versions.

8.4.4 Preferred provider
The preferred provider is used to specify the preferred provider for a specific component. A component can have
multiple providers. For example, the Linux kernel can be provided by i.MX or by kernel.org and preferred provider
states the provider to use.
For example, U-Boot is provided by both the community through denx.de and i.MX. The community provider is
specified by u-boot-fslc. The i.MX provider is specified by u-boot-imx. To state a preferred provider, put the
following in local.conf:
PREFERRED_PROVIDER_<component>:<soc family> = “<provider>”
PREFERRED_PROVIDER_u-boot_mx6 = “u-boot-imx”

8.4.5 SoC family
The SoC family documents a class of changes that apply to a specific set of system chips. In each machine
configuration file, the machine is listed with a specific SoC family. For example, i.MX 6DualLite Sabre-SD is listed
under the i.MX 6 and i.MX 6DualLite SoC families. i.MX 6Solo Sabre-auto is listed under the i.MX 6 and i.MX
6Solo SoC families. Some changes can be targeted to a specific SoC family in local.conf to override a change in a
machine configuration file. The following is an example of a change to an mx6dlsabresd kernel setting.
KERNEL_DEVICETREE:mx6dl = “imx6dl-sabresd.dts”
SoC families are useful when making a change that is specific only for a class of hardware. For example, i.MX 28
EVK does not have a Video Processing Unit (VPU), so all the settings for VPU should use i.MX 5 or i.MX 6 to be
specific to the correct class of chips.

8.4.6 BitBake logs
BitBake logs the build and package processes in the temp directory in
tmp/work/<architecture>/<component>/temp.
If a component fails to fetch a package, the log showing the errors is in the file log.do_fetch.



If a component fails to compile, the log showing the errors is in the file log.do_compile.
Sometimes a component does not deploy as expected. Check the directories under the build component directory
(tmp/work/<architecture>/<component>). Check the package, packages-split, and sysroot* directories of each
recipe to see if the files are placed there (where they are staged prior to being copied to the deploy directory).

8.4.7 How to add a mechanism for CVE monitoring and notification
The CVE tracking mechanism can be fetched from GitHub. Navigate to the directory imx-yocto-bsp/sources.

Run the following command:
git clone https://github.com/TimesysGit/meta-timesys.git -b kirkstone
This command will download an additional metalayer that provides scripts for image manifest generation used for
security monitoring and notification as part of the Vigiles product offering from NXP and Timesys. Follow Section
7.3 on how to use the solution.
Getting access to full CVE reporting requires a LinuxLink License Key. Without the key in your development
environment, Vigiles continues to execute in Demo Mode, producing summary reports only.
Log into your Vigiles account on LinuxLink (or create one if you do not have:
https://www.timesys.com/registernxp-vigiles/). Access your Preferences and generate a New
Key. Download the key file to your development environment. Specify the location of the key file in your Yocto’s
conf/local.conf file with the following statement:
VIGILES_KEY_FILE = “/tools/timesys/linuxlink_key”
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WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
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