NXP FS23 Fail Safe System Basis Chips User Guide Home » NXP » NXP FS23 Fail Safe System Basis Chips User Guide 🖔 ## **Contents** - 1 NXP FS23 Fail Safe System Basis Chips - 2 Specifications - 3 FAQs - 4 Introduction - 5 FS23 initialization flow chart example - 6 Register mapping of fail-safe logic - 7 Readable registers - 8 Writable registers - 9 FS0B and or LIMP0 release calculation procedure - 10 Watchdog answer procedure - 11 INIT CRC calculation procedure - 12 Legal information - **13 CONTACT INFORMATION** - 14 Documents / Resources - 14.1 References # **NXP FS23 Fail Safe System Basis Chips** - Product Name: FS23 Fail-Safe System Basis Chip (SBC) - Manufacturer: NXP Semiconductors - Compatibility: Suitable for S32K processor-based applications and multivendor processors - Features: CAN and LIN transceivers, system and safety features, pin-to-pin and software compatibility - Variants: LDO version to DC-DC version, QM to ASIL B - Output Voltage Settings: Multiple options are available - Operating Frequency: Configurable Powerup Sequencing: Customizable #### **FAQs** - Q: What are the key features of the FS23 SBC? - A: The FS23 SBC features CAN and LIN transceivers, scalability options, system and safety features, and compatibility with various processors. - Q: Where can I find more detailed information about the FS23 device? - A: Detailed information, including the datasheet, design guidelines, and software drivers, is available on the FS23 device webpage. #### Introduction - This application note is meant to be used as a launching point for software engineers, as a complement, or as a substitute for NXP's software drivers. - This document gives guidance on the implementation of SPI or I²C communication protocol between the MCU and the FS23. - This document explains the initialization procedure of the FS23 device and provides an example of a start-up sequence. ### **General description** - The FS23 SBC offers an expandable family of devices that is pin-to-pin and software-compatible. The devices are scalable from the LDO version to the DC-DC version, as well as from QM to ASIL B. The FS23 SBC includes CAN and LIN transceivers, along with several system and safety features for the latest generation of automotive electronic control units (ECUs). - The flexibility of the FS23 SBC makes it suitable for S32K processor-based applications, as well as multivendor processors. - Several device versions are available, offering a choice of output voltage settings, operating frequency, powerup sequencing, and input/output configuration to address multiple applications. #### **Reference documents** - Reference documents and various materials are available on the <u>FS23 device webpage</u>. The webpage provides more detailed information about specific topics: - <u>FS23 data sheet</u>: Information, such as features, functional description, parametric description, register mapping. - FS23 Design Guidelines application note: Information such as application schematics, bill of materials, placement and layout guidelines, application validation data including ISO/non-ISO pulses, and Electromagnetic Compatibility (EMC). - The low-level software driver components are provided as part of the basic enablement for the device, and do not incur an additional charge: <u>FS23 AUTOSAR software drivers</u>: AUTOSAR and ISO 26262-compliant basic start-up drivers for low-level interfaces. Technical documentation is available as part of the software driver package, detailing supported features such as: - SPI access register function and events handling (SBC_FS23) - CAN/LIN function (CANTRCV_FS23 and LINTRCV_FS23) - Watchdog function (WDG_FS23) # FS23 initialization flow chart example - Figure 1 gives an example of FS23 software initialization. After MCU reset is released (RSTB state is high), the MCU can start FS23 initialization. The initialization must be done within the dedicated 256 ms INIT window. - Running the ABIST is optional, though it is recommended for ASIL B applications. ABIST can be run multiple times in a row. In this example, the MCU checks the cause of the MCU reset (POR, LPOFF, fail-safe) and takes action accordingly. Then the MCU writes INIT safety registers, ending with INIT cyclic redundancy check (CRC). - The next step is watchdog configuration, and unlocking the INIT CRC cyclic check, followed by watchdog refreshes to clear the fault error counter. The first watchdog refresh closes the INIT phase. - Therefore, the subsequent watchdog refreshes must be sent according to watchdog timing configuration. Once the fault error counter is cleared, safety pins FS0B and LIMP0 can be released. # Start-up I²C/SPI sequence example (based on flow chart) Table 1. Start-up I²C/SPI sequence example | | | Register | Read | Write | Comment | |-----|--|--------------------------|--------|--------|--| | 1 | Launch ABIST | FS_ABIST (0x3D) | | 0x4000 | Optional: recommended for ASIL B applications. Full ABIST launch by writing LAUNCH_ABIST bit. Specific ABIST can be launched using appropriate bits. | | 2 | Check ABIST | FS_ABIST (0x3D) | 0x07C0 | | Optional: recommended for ASIL B applications. Check ABIST diagnostic bits. | | 3 | Launch ABIST | FS_ABIST (0x3D) | | 0x4000 | Optional: recommended for ASIL B applications. Full ABIST launch by writing LAUNCH_ABIST bit. Specific ABIST can be launched using appropriate bits. | | 4 | Check ABIST | FS_ABIST (0x3D) | 0x07C0 | | Optional: recommended for ASIL B applications. Check ABIST diagnostic bits. | | 5 | MCU reset from FS? | M_WU1_FLG (0x17) | 0x0200 | | Check FS_EVT bit: 0x0200 if wake-up from fail-safe. | | | Read diagnostic | FS_SAFETY_OUTPUTS (0x3F) | 0x3804 | | Default value: RSTB released, FS0B asserted, LIMP0 released | | 6 | registers and clear | FS_SAFETY_FLG (0x40) | 0x0002 | | Default value: FCCU1 sensed high | | | all bits | M_REG_FLG (0x0A) | 0x0000 | | Default value | | 7 | MCU reset from POR/LPOFF? | M_SYS_CONFIG (0x05) | 0x5000 | | Check BAT_FAIL and POR bits: 0x5000 if wake-up from POR | | 8 | Check WU source | M_WU1_FLG (0x17) | 0x0000 | | Check wake-up sources if wake-up from LPOFF: 0x0000 if wake-up from | | | Check Wo Source | M_IOWU_FLG (0x15) | 0x0000 | | POR | | | | FS_I_OVUV_CFG1 (0x32) | | 0x1F98 | Default value | | | | FS_I_OVUV_CFG2 (0x33) | | 0x0C18 | Default value | | 10 | INIT | FS_I_FCCU_CFG (0x34) | | 0x103F | Default value | | | | FS_I_FSSM_CFG (0x36) | | 0x0AF1 | Default value, FLT_ERR_CNT = 1 and FLT_ERR_LIMIT = 6 | | | | FS_I_WD_CFG (0x37) | | 0x7080 | Default value | | 11 | Send INIT CRC | FS_CRC (0x41) | | 0x06B4 | INIT CRC to be computed to match INIT registers content | | 12 | Configure Watchdog | FS_WDW_CFG (0x38) | | 0x01AB | Default value | | 13 | Request INIT
CRC verification | FS_CRC (0x41) | | 0x46B4 | Optional: INIT CRC to be computed to match INIT registers content | | 14 | Unlock INIT CRC cyclic check | M_SYS_CONFIG (0x05) | | 0x0400 | Clearing LOCK_INIT bit unlocks INIT CRC cyclic check | | 15 | Read watchdog | FS_I_WD_CFG (0x37) | 0x7080 | | Default value, with watchdog error limit = 6 | | 15 | current counter value | FS_I_FSSM_CFG (0x36) | 0x0AF1 | | Default value, with fault error counter = 1 | | | | FS_WD_TOKEN (0x39) | 0x5AB2 | | Read watchdog token | | | | FS_WD_ANSWER (0x3A) | | 0x5AB2 | Watchdog answer is 0x5A2B (default value) | | | | FS_WD_TOKEN (0x39) | 0xD564 | | Read watchdog token | | | | FS_WD_ANSWER (0x3A) | | 0xD564 | Watchdog answer is 0xD564 | | | | FS_WD_TOKEN (0x39) | 0x5AB2 | | Read watchdog token | | | | FS_WD_ANSWER (0x3A) | | 0x5AB2 | Watchdog answer is 0x5A2B | | 16 | Send 7x good WD refresh | FS_WD_TOKEN (0x39) | 0xD564 | | Read watchdog token | | 16 | (if WD_ERR_LIMIT = 6
and FLT_ERR_CNT = 1) | FS_WD_ANSWER (0x3A) | | 0xD564 | Watchdog answer is 0xD564 | | | | FS_WD_TOKEN (0x39) | 0x5AB2 | | Read watchdog token | | | | FS_WD_ANSWER (0x3A) | | 0x5AB2 | Watchdog answer is 0x5A2B | | | | FS_WD_TOKEN (0x39) | 0xD564 | | Read watchdog token | | | | FS_WD_ANSWER (0x3A) | | 0xD564 | Watchdog answer is 0xD564 | | | | FS_WD_TOKEN (0x39) | 0x5AB2 | | Read watchdog token | | | | FS_WD_ANSWER (0x3A) | | 0x5AB2 | Watchdog answer is 0x5A2B | | 4-7 | Delegas FOOD | FS_WD_TOKEN (0x39) | 0xD564 | | Read watchdog token | | 17 | Release FS0B | FS_FS0B_LIMP0_REL | | 0x7B2A | Compute FS0B and LIMP0 release register value | | 4.5 | Configure CAN, | M_CAN (0x2A) | | 0x02A0 | CAN in Normal operation mode | | 18 | LIN, LDT, I/Os | M_LIN (0x2B) | | 0x4400 | LIN in Normal operation mode | | | | | 1 | | | # I²C/SPI register mapping of main logic # Table 2. Main register mapping Refer to Table 70 from the **FS23 data sheet**. | | | Addre | ess | | | | | | | | | |-----------|---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------|----------------------|------------| | Register | # | Adr_
6 | Adr_
5 | Adr_
4 | Adr_
3 | Adr_
2 | Adr_
1 | Adr_
0 | R/W SPI | R/W I ² C | Read/Write | | M_DEV_CFG | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0/1 | 1/0 | Read only | | M_DEV_PROG_ID | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0/1 | 1/0 | Read only | |--------------------|--------|---|---|---|---|---|---|---|-----|-----|------------| | M_GEN_FLAG | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0/1 | 1/0 | Read only | | M_STATUS | 3 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0/1 | 1/0 | Read only | | Reserved | 4 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0/1 | 1/0 | Reserved | | M_SYS_CFG | 5 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0/1 | 1/0 | Read/Write | | M_SYS1_CFG | 6 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0/1 | 1/0 | Read/Write | | M_REG_CTRL | 7 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0/1 | 1/0 | Read/Write | | Reserved | 8 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0/1 | 1/0 | Reserved | | Reserved | 9 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0/1 | 1/0 | Reserved | | M_REG_FLG | 1
0 | 0 | 0 | 0 |
1 | 0 | 1 | 0 | 0/1 | 1/0 | Read/Write | | M_REG_MSK | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0/1 | 1/0 | Read/Write | | M_REG1_FLG | 1 2 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0/1 | 1/0 | Read/Write | | M_REG1_MSK | 1
3 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 0/1 | 1/0 | Read/Write | | M_IO_CTRL | 1 4 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0/1 | 1/0 | Write | | M_IO_TIMER_FLG | 1
5 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0/1 | 1/0 | Read/Write | | M_IO_TIMER_MS
K | 1
6 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0/1 | 1/0 | Read/Write | | M_VSUP_COM_F
LG | 1
7 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0/1 | 1/0 | Read/Write | | M_VSUP_COM_M
SK | 1
8 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0/1 | 1/0 | Read/Write | | M_IOWU_CFG | 1
9 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0/1 | 1/0 | Read/Write | | M_IOWU_EN | 2 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0/1 | 1/0 | Read/Write | | M_IOWU_FLG | 2 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0/1 | 1/0 | Read/Write | | M_WU1_EN | 2 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0/1 | 1/0 | Read/Write | | M_WU1_FLG | 2 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 0/1 | 1/0 | Read/Write | | M_TIMER1_CFG | 2
4 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0/1 | 1/0 | Read/Write | | M_TIMER2_CFG | 2
5 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0/1 | 1/0 | Read/Write | |----------------------|--------|---|---|---|---|---|---|---|-----|-----|------------| | M_TIMER3_CFG | 2 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0/1 | 1/0 | Read/Write | | M_PWM1_CFG | 2
7 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0/1 | 1/0 | Read/Write | | M_PWM2_CFG | 2 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0/1 | 1/0 | Read/Write | | M_PWM3_CFG | 2
9 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 0/1 | 1/0 | Read/Write | | M_TIMER_PWM_
CTRL | 3
0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0/1 | 1/0 | Read/Write | | M_CS_CFG | 3 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0/1 | 1/0 | Read/Write | | M_CS_FLG_MSK | 3
2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0/1 | 1/0 | Read/Write | | M_HSx_SRC_CFG | 3 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0/1 | 1/0 | Read/Write | | M_HSx_CTRL | 3
4 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0/1 | 1/0 | Read/Write | | M_HSx_FLG | 3
5 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0/1 | 1/0 | Read/Write | | M_HSx_MSK | 3
6 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0/1 | 1/0 | Read/Write | | M_AMUX_CTRL | 3
7 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0/1 | 1/0 | Read/Write | | M_LDT_CFG1 | 3
8 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0/1 | 1/0 | Read/Write | | M_LDT_CFG2 | 3
9 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0/1 | 1/0 | Read/Write | | M_LDT_CFG3 | 4
0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0/1 | 1/0 | Read/Write | | M_LDT_CTRL | 4 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0/1 | 1/0 | Read/Write | | M_CAN | 4
2 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0/1 | 1/0 | Read/Write | | M_LIN | 4 3 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0/1 | 1/0 | Read/Write | | M_CAN_LIN_MSK | 4 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0/1 | 1/0 | Read/Write | | M_MEMORY0 | 4
5 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0/1 | 1/0 | Read/Write | | M_MEMORY1 | 6 0 |) 1 | 0 1 | 1 | 1 | 0 | 0/1 | 1/0 | Read/Write | |-----------|-----|-----|-----|---|---|---|-----|-----|------------| |-----------|-----|-----|-----|---|---|---|-----|-----|------------| # Register mapping of fail-safe logic **Table 3.** Safety-related register mapping Refer to Table 71 from the **FS23 data sheet**. | | | Addre | ess | | | | | | | | | |-----------------------|--------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------|----------------------|-------------------------------------| | Register | # | Adr
_6 | Adr
5 | Adr
4 | Adr
3 | Adr
2 | Adr_
1 | Adr_
0 | R/W SPI | R/W I ² C | Read/Write | | FS_I_OVUV_CFG1 | 5 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0/1 | 1/0 | Write during IN IT, then read only | | FS_I_OVUV_CFG2 | 5
1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0/1 | 1/0 | Write during IN IT, then read o nly | | FS_I_FCCU_CFG | 5
2 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0/1 | 1/0 | Write during IN IT, then read only | | Reserved | 5
3 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0/1 | 1/0 | Reserved | | FS_I_FSSM_CFG | 5
4 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0/1 | 1/0 | Write during IN IT, thenr ead only | | FS_I_WD_CFG | 5
5 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0/1 | 1/0 | Write during IN IT, then read only | | FS_WDW_CFG | 5
6 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0/1 | 1/0 | Read/Write | | FS_WD_TOKEN | 5
7 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0/1 | 1/0 | Read only | | FS_WD_ANSWER | 5
8 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0/1 | 1/0 | Write only | | FS_LIMP12_CFG | 5
9 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0/1 | 1/0 | Read/Write | | FS_FS0B_LIMP0_
REL | 6
0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0/1 | 1/0 | Read/Write | | FS_ABIST | 6
1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0/1 | 1/0 | Read/Write | | Reserved | 6
2 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0/1 | 1/0 | Reserved | | FS_SAFETY_OUT
PUTS | 6
3 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0/1 | 1/0 | Read/Write | | FS_SAFETY_FLG | 6
4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0/1 | 1/0 | Read/Write | | FS_CRC | 6
5 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0/1 | 1/0 | Read/Write | # Readable registers | L
o
g
ic | Regi
ster
name | Bit
15 | Bit
14 | Bit
13 | Bit
12 | Bit 1
1
B
it 10 | B
it
9 | Bit
8 | Bit
7 | Bit
6 | Bit
5 | Bit
4 | Bit
3 | Bit
2 | Bit
1 | Bit
0 | |-------------------|---------------------------|-----------------------|------------------|----------------------|--|--|---------------------------------|------------------------------------|-------------------|------------------|-------------------------|-----------------|----------------------|-----------------------|------------------|----------------------| | | M_D
EV_C
FG | 0 | 0 | CAN
EN | LIN
EN | LDTI
M_E
N
H
SD1
3_E
N | H
S
D
2
4
E
N | V2_
EN | V1_
PNP
_EN | ABI
ST_
EN | FCC
U_E
N | FS0
B_E
N | LIM
PO_
EN | V0M
ON_
EN | 0 | 0 | | | M_D
EV_P
ROG
_ID | FULL | _LAYE | R_REV | , | META
L_LA\
ER_R
EV | ′ | | | PROC | G_IDH | | PROC | G_IDL | | | | | M_G
EN_F
LAG | 0 | 0 | 0 | 0 | 0 | 0 | 0 | HSx
G | SAF
ETY
G | PHY
G | WU
G | IOTI
MG | CO
MG | VSU
PG | VxG | | | M_ST
ATUS | V1T
WA
RN_
S | LPO
N_S | NO
RM
AL_
S | INIT
_S | 0
WK2
_S | W
K
1 | HVI
O2_
S | HVI
O1_
S | LVI5
_S | LVI
O4_
S | LVI
O3_
S | V1_
MO
DE | V1_
S | V2_
S | V3_
S | | | M_S
YS_C
FG | 0 | BAT
_FAI
L | 0 | PO
R | 0
L
OCK
_INI
T | 0 | 0 | 0 | 0 | INT
_TO
_W
UEN | 0 | INT
B_D
UR | 0 | MO
D_C
ONF | MO
D_E
N | | | M_S
YS1_
CFG | 0 | 0 | 0 | VBO
S2
V1_
SW
_AL
WA
YS_
EN | O LO AD_ OTP _BY P | S
L
O
T
B
Y
P | TSL
OT_
DO
WN
_CF
G | 0 | 0 | 0 | 0 | DB
G_
MO
DE | 0 | 0 | OTP
_M
OD
E | | | M_R
EG_
CTRL | 0 | 0 | 0 | BUC
K_S
RHS
OFF | BUC
N | L_SF | RHSO | 0 | 0 | V2O
N_L
PO
N | 0 | 0 | V3O
N_L
PO
N | 0 | 0 | | M_R
EG_F
LG | VOU
V_I | V0O
V_I | V1T
WA
RN_
I | V1T
SD_
I | V2T
SD_
I
V3T
SD_
I | V
2
0
L
_I | V1U
V_I | V2U
V_I | V3U
V_I | V10
V_I | V2O
V_I | V3O
V_I | V10
C_I | V2O
C_I | V3 | |-----------------------------|------------|------------|-----------------------|-----------------------------|------------------------------------|----------------------------|-------------------|-------------------|-------------------|-------------------|-----------------|-------------------|-------------------|------------------|-------------| | M_R
EG_
MSK | VOU
V_M | V0O
V_M | V1T
WA
RN_
M | V1T
SD_
M | V2T
SD_
M
V3T
SD_
M | V
2
O
L
-
M | V1U
V_M | V2U
V_M | V3U
V_M | V1O
V_M | V2O
V_M | V3O
V_M | V1O
C_M | V2O
C_M | V3
C_ | | M_R
EG1_
FLG | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | V
O
S | | M_R
EG1_
MSK | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | V
O
S | | M_IO
_TIM
ER_F
LG | 0 | 0 | 0 | 0 | 0 | 0 | LDT
_I | LVI5
_I | LVI
O4_
I | LVI
O3_
I | HVI
O2_
I | HVI
O1_
I | 0 | WK
2_I | W
1_ | | M_IO
_ TIM
ER_
MSK | 0 | 0 | 0 | 0 | 0 | 0 | LDT
_M | LVI5
_M | LVI
O4_
M | LVI
O3_
M | HVI
O2_
M | HVI
O1_
M | 0 | WK
2_M | W
1_ | | M_V
SUP_
COM
_FLG | 0 | 0 | 0 | VBO
S2
V1S
W_
S | VBO
S_U
V | 12
C
C
R
C _ | I2C_
RE
Q_I | SPI
_CR
C_I | SPI
_CL
K_I | SPI
_RE
Q_I | 0 | VSH
S_O
V_I | VSH
S_U
V_I | VSU
POV
_I | V:
Pi | | | M_V
SUP_
COM
_MS
K | 0 | 0 | 0 | 0 | 0 | 12
C
C
R
C | I2C_
RE
Q_
M | SPI
_CR
C_M | SPI
_CL
K_M | SPI
_RE
Q_
M | 0 | VSH
S_O
V_M | VSH
S_U
V_M | VSU
POV
_M | VSU
PUV
_M | |--------------|--------------------------------|------------------------|-------------------------|-------------------------|-----|--|---------------------------------|-----------------------------|------------------------|------------------------|-----------------------------|------------------------------|-----------------------|-----------------------|------------------|------------------| | | M_IO
WU_
CFG | LVI5
_W
UCF
G | LVI
O4_
WU
CFG | LVI
O3_
WU
CFG | 0 | HVI
O2_
DGL
T H
VIO
1_D
GLT | W
K
2
D
G
L
T | WK
1_D
GLT | HVIO
CFG | 2_WU | HVIO
CFG | 1_WU | WK2_
FG | _WUC | WK1_
FG | _WUC | | | M_IO
WU_
EN | 0 | 0 | LVI5_
N | WUE | LVIO4
LV
N | | JEN
WUE | HVIO
EN | 2_WU | HVIO
EN | 1_WU | WK2_
N | _WUE | WK1_
N | _WUE | | | M_IO
WU_
FLG | LVI5
_W
U_I | LVI
O4_
WU
_I | LVI
O3_
WU
_I | 0 |
HVI
O2_
HVI
O1_
CYS
_RD
Y
C
YS_
RDY | H VI O 2 C Y C S | HVI
O1_
CYC
_S | HVI
O2_
WU
_I | HVI
O1_
WU
_I | WK
2_
CYS
_RD
Y | WK
1_
CYS
_RD
Y | WK
2_C
YC_
S | WK
1_C
YC_
S | WK
2_W
U_I | WK
1_W
U_I | | M
ai
n | M_W
U1_E
N | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | LDT_' | WUE | LIN_V | VUEN | CAN_
N | WUE | | | M_W
U1_F
LG | 0 | 0 | 0 | 0 | 0 | F
S
-
E
V
T | EXT
_R
STB
_W
U | WD
_OF
L_W
U | V1_
UVL
P_
WU | INT
_TO
_W
U | GO2
NO
RM
AL_
WU | 0 | LDT
_W
U_I | LIN_
WU
_I | CAN
_W
U_I | | M_TI
MER
1_CF
G | 0 | 0 | 0 | 0 | 0 | 0 | TIME
LY | R1_D | TIME | R1_ON | I | | TIME | R1_PE | R | |-----------------------------------|---|---|---|------------------|----------------|-----------------|------------------------|------------------------|------------------------|------------------------|-----------------|------------------------|------------------------|------------------------|------------------------| | M_TI
MER
2_CF
G | 0 | 0 | 0 | 0 | 0 | 0 | TIME
LY | R2_D | TIME | R2_ON | I | | TIME | R2_PE | R | | M_TI
MER
3_CF
G | 0 | 0 | 0 | 0 | 0 | 0 | TIME
LY | R3_D | TIME | R3_ON | I | | TIME | R3_PE | R | | M_P
WM1
_CFG | 0 | 0 | 0 | PW
M1_
DLY | PW
M1_
F | PW | /M1_D | С | | | | | - | | | | M_P
WM2
_CFG | 0 | 0 | 0 | PW
M2_
DLY | PW
M2_
F | PW | /M2_D | С | | | | | | | | | M_P
WM3
_CFG | 0 | 0 | 0 | PW
M3_
DLY | PW
M3_
F | PW | /M3_D | С | | | | | | | | | M_TI
MER
_ PW
M_C
TRL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | TIM
1_E
N | TIM
2_E
N | TIM
3_E
N | 0 | PW
M1_
EN | PW
M2_
EN | PW
M3_
EN | | M_C
S_CF
G | 0 | 0 | 0 | 0 | 0 | HS FLT WU FORCE | 0 | HVIO
_SEL | | HVIO
_SEL | 1_HS | WK2_
SEL | HS_ | WK1_
SEL | HS_ | | M_C
S_FL
G_M
SK | 0 | 0 | 0 | 0 | 0 | 0 | HVI
O2_
OL_
M | HVI
O1_
OL_
M | WA
KE2
_OL
_M | WA
KE1
_OL
_M | 0 | HVI
O2_
OL_
I | HVI
O1_
OL_
I | WA
KE2
_OL
_I | WA
KE1
_OL
_I | | M_H
Sx_S
RC_
CFG | HS4_ | SRC_S | SEL | | HS3_
RC_S
EL | | | | HS2_
SEL | SRC_ | | HS1_ | SRC_S | SEL | | |---------------------------|------|---------------------------------|-------------------------------|-------------------------------|--------------------|-----------------------|------------------|------------------------|-------------|------------------|------------------|------|------------------|------------------|------------------------| | M_H
Sx_C
TRL | 0 | HS_
VSH
SUV
OV_
REC | HS_
VSH
SUV
_DI
S | HS_
VSH
SOV
_DI
S | 0 | 0 | 0 | 0 | HS4
_EN | 0 | HS3
_EN | 0 | HS2
_EN | 0 | HS1
_EN | | M_H
Sx_F
LG | 0 | 0 | 0 | HS4
_OL
_I | HS4
_OC
_I | H
S
3
O
L | HS3
_OC
_I | HS3
4_T
SD_
I | 0 | HS2
_OL
_I | HS2
_OC
_I | 0 | HS1
_OL
_I | HS1
_OC
_I | HS1
2_T
SD_
I | | L D | Regi
ster
nam
e | Bit
15 | Bit
14 | Bit
13 | Bit
12 | Bit
11 | Bit
10 | Bit
9 | Bit
8 | Bit
7 | Bit
6 | Bit
5 | Bit
4 | Bit
3 | Bit
2 | Bit
1 | Bit
0 | |-----|--------------------------|-----------|-------------|-----------|------------------|----------------------|-----------|------------------|----------------------|----------------------------|----------|----------------------|----------------------|-----------------|----------------------|----------------------|----------------------------| | | M_H
Sx_
MSK | 0 | 0 | 0 | HS4
_OL
_M | HS4
_O
C_
M | 0 | HS3
_OL
_M | HS
3_O
C_
M | HS
34_
TS
D_
M | 0 | HS
2_O
L_
M | HS
2_O
C_
M | 0 | HS
1_O
L_
M | HS
1_O
C_
M | HS
12_
TS
D_
M | | - | M_A
MUX
_CT
RL | 0 | 0 | 0 | 0 | 0 | 0 | AM
UX_
EN | AM
UX
_DI
V | 0 | 0 | 0 | AMU | X | | | ı | | - | M_L
DT_
CFG
1 | LDT_ | Γ_AFTER_RUN | | | | | | | | | | | | | | | | • | M_L
DT_
CFG
2 | LDT_ | _WUP_ | <u>L</u> | | | | | | | | | | | | | | | | M_L
DT_
CFG
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | LDT_ | _WUP_ | _H | | | | | | | | M_L
DT_
CTR
L | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | LDT
2LP | LDT_ | FNCT | | LDT
_SE
L | LDT
_M
OD
E | LDT
_E
N | LDT
_R
UN | | M_C
AN | 0 | 0 | 0 | 0 | 0 | 0 | CAN_
DE | _MO | CA N_ AC TIV E_ MO DE _S | 0 | CA
N_F
S_
DIS | 0 | 0 | 0 | CA
N_
TX
D_T
O_I | CA
N_T
SD
_I | |--------------------------------|-----------------------------|-----------------------------|-----------------------------|--|--|---|--|--|---|------------------------|--|--|---|--|--|---| | M_LI
N | 0 | LIN_I
E | MOD | LIN_S
E | SLOP | LIN
_FS
_DI
S | LIN
_ V
SH
SU
V_D
IS | LIN
_S
C | LIN
_TX
D_T
O | 0 | 0 | 0 | 0 | LIN
_S
C_I | LIN
_TX
D_T
O_I | LIN
_TS
D_I | | M_C
AN_
LIN_
MSK | 0 | 0 | LIN_ | FSM_S | STATE_ | _S | | LIN
_S
C_
M | LIN
_TX
D_
TO
_M | LIN
_TS
D_
M | 0 | CAN_
TE_S | _FSM_ | _STA | CA
N_T
XD
_T
O_
M | CA
N_T
SD
_M | | M_M
EMO
RY0 | ME
MO
RY
0[1
5] | ME
MO
RY
0[1
4] | ME
MO
RY
0[1
3] | ME
MO
RY0
[12] | ME
MO
RY0
[11] | ME
MO
RY0
[10] | ME
MO
RY0
[9] | ME
MO
RY
0[8] | ME
MO
RY
0[7] | ME
MO
RY
0[6] | ME
MO
RY
0[5] | ME
MO
RY
0[4] | ME
MO
RY
0[3] | ME
MO
RY
0[2] | ME
MO
RY
0[1] | ME
MO
RY
0[0] | | M_M
EMO
RY1 | ME
MO
RY
1[1
5] | ME
MO
RY
1[1
4] | ME
MO
RY
1[1
3] | ME
MO
RY1
[12] | ME
MO
RY1
[11] | ME
MO
RY1
[10] | ME
MO
RY1
[9] | ME
MO
RY
1[8] | ME
MO
RY
1[7] | ME
MO
RY
1[6] | ME
MO
RY
1[5] | ME
MO
RY
1[4] | ME
MO
RY
1[3] | ME
MO
RY
1[2] | ME
MO
RY
1[1] | ME
MO
RY
1[0] | | FS_I
_OV
UV_
CFG
1 | 0 | 0 | 0 | V1
MO
N_
OV
_RS
TB_
IMP
ACT | V1
MO
N_
OV
_F
S0B
_I
MP
ACT | V1
MO
N_
OV
_LI
MP
0_I
MP
ACT | V1
MO
N_
UV_
RS
TB_
IMP
ACT | V1
MO
N_
UV
_F
S0B
_I
MP
AC
T | V1
MO
N_
UV
_LI
MP
0_I
MP
AC
T | 0 | V2
MO
N_
OV
_R
ST
B_I
MP
AC
T | V2
MO
N_
OV
_F
S0B
_IM
PA
CT | V2
MO
N_
OV
_LI
MP
0_I
MP
AC
T | V2
MO
N_
UV
_R
ST
B_I
MP
AC
T | V2
MO
N_
UV
_F
S0B
_IM
PA
CT | V2
MO
N_
UV
_LI
MP
0_I
MP
AC
T | | FS_I
_OV
UV_
CFG
2 | 0 | 0 | 0 | V3
MO
N_
OV
_RS
TB_
IMP
ACT | V3
MO
N_
OV
_F
S0B
_IM
PA
CT | V3
MO
N_
OV
_LI
MP
0_I
MP
ACT | V3
MO
N_
UV_
RS
TB_
IMP
ACT | V3
MO
N_
UV
_F
S0B
_I
MP
AC
T | V3
MO
N_
UV
_LI
MP
0_I
MP
AC
T | 0 | V0
MO
N_
OV
_R
ST
B_I
MP
AC
T | V0
MO
N_
OV
_F
S0B
_IM
PA
CT | V0
MO
N_
OV
_LI
MP
0_I
MP
AC
T | V0
MO
N_
UV
_R
ST
B_I
MP
AC
T | V0
MO
N_
UV
_F
S0B
_IM
PA
CT | V0
MO
N_
UV
_LI
MP
0_I
MP
AC
T | | | |--------------------------------|-----|--|-------------------------------------|--|--|---|--|--|---|---|--|--|---|--|--|---|--|--| | FS_I
_FC
CU_
CFG | 0 | FCCI | J_CF0 | à | | FCCI
SSIG | _ | FC
CU
12_
FLT
_P
OL | FC
CU
2_
FLT
_P
OL | FC
CU
1_
FLT
_P
OL | FC
CU
2_
RS
TB_
IMP
AC
T | FC
CU
2_F
S0
B_I
MP
AC
T | FC
CU
2_
LIM
P0_
IMP
AC
T | FC
CU
1_
RS
TB_
IMP
AC
T | FC
CU
1_F
S0
B_I
MP
AC
T | FC
CU
1_
LIM
P0_
IMP
AC
T | | | | FS_I
_FS
SM_
CFG | 0 | EX
T_
RS
TB_
DIS | RS
TB8
S_
DIS | RS
TB_
DU
R | LIM
P0_
SC_
RS
TB_
IMP
ACT | EXT
RS
TB_
FS0
B_I
MP
ACT | FS0
B_S
C_
RS
TB_
IMP
ACT |
FLT_
_LIM | | FLT
_MI
D_
RS
TB_
IMP
AC
T | FLT
_MI
D_F
S0
B_I
MP
AC
T | FLT
_MI
D_
LIM
PO_
IMP
AC
T | FLT_ | ERR_(| CNT | | | | | FS_I
_WD
_CF
G | 0 | WD
_R
ST
B_I
MP
AC
T | WD
_FS
0 B
_IM
PA
CT | WD
_LI
MP
0_ I
MP
ACT | WD
_DI
S_
LP
ON | WD_I | RFR_ | WD_
LIM | | WD | RFR_(| CNT | WD_ | ERR_0 | CNT | | | | | FS_
WD
W_C
FG | 0 | 0 | 0 | 0 | WD
W_
RE
C_E
N | WD
W_
EN | 0 | WDV | V_PER | lIOD | | 0 | WDW_RECOVERY | | | | | | | FS_
WD_
TOK
EN | WD_ | TOKEI | N | | ı | ı | ı | ı | | | | ı | ı | | | | | | F a il - s a | f
e | FS_
LIM
P12_
CFG | 0 | 0 | 0 | 0 | 0 | 0 | 0 | LIMP
C_CF | | LIMP
G | 2_CF | 0 | 0 | LIMP
G | 1_CF | 0 | |--------|---------------------------------------|----------------------------------|---------------------------------|---------------------------------|------------------------------------|------------------------------------|--|---|--|--|--|---------------------|-----------------------------|------------------------------|-----------------------------|-----------------------------|-----------------------------| | | FS_
FS0
B_L
IMP
0_R
EL | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | FS_
ABIS
T | ABI
ST_
RE
AD
Y | 0 | 0 | ABI
ST_
DO
NE | ABI
ST_
ON
GOI
NG | ABI
ST_
V0
MO
N_
DIA
G | ABI
ST_
V1
UVL
P_D
IAG | ABI
ST_
V1
MO
N_
DIA
G | ABI
ST_
V2
MO
N_
DIA
G | ABI
ST_
V3
MO
N_
DIA
G | 0 | ABI
ST_
V0
MO
N | ABI
ST_
V1
UV
LP | ABI
ST_
V1
MO
N | ABI
ST_
V2
MO
N | ABI
ST_
V3
MO
N | | | FS_
SAF
ETY
_O
UTP
UTS | 0 | RS
TB_
EX
T | RS
TB_
EV
T | RS
TB_
DR
V | RS
TB_
SN
S | RS
TB_
DIA
G | 0 | FS0
B_
DR
V | FS0
B_S
NS | FS0
B_
DIA
G | 0 | 0 | LIM
P0_
DR
V | LIM
P0_
SN
S | LIM
PO_
DIA
G | 0 | | | FS_
SAF
ETY
_FL
G | FC
CU
12_
ER
R_
S | FC
CU
1_
ER
R_
S | FC
CU
2_
ER
R_
S | INIT
_C
RC
_N
OK
_M | INIT
_C
RC
_N
OK
_I | WD
_N
OK
_M | WD
_N
OK
_I | 0 | FC
CU
12_
M | FC
CU
1_
M | FC
CU
2_
M | FC
CU
12_
I | FC
CU
1_I | FC
CU
2_I | FC
CU
1_S | FC
CU
2_S | | | FS_
CRC | 0 | 0 | 0 | 0 | 0 | INIT
_C
_RC
_FS
0 B
_I
MP
ACT | INIT
_C
RC
_LI
MP
0_I
MP
ACT | 0 | CRC. | _VALU | ΙE | | | | | | # Writable registers Table 5. Writable registers | | Regi
ster
name | Bit
15 | Bit
14 | Bit
13 | Bit
12 | Bit
11 | Bit
10 | Bit
9 | Bit
8 | Bit
7 | Bit
6 | Bit
5 | Bit
4 | Bit
3 | Bit
2 | Bit
1 | Bit
0 | De
au
t v
alu
e | |---|----------------------------|----------------|----------------|---------------------------|--|---------------------|--------------------------------|----------------------|--|---------------------|---------------------------------|-----------------------------|----------------------|----------------------|---------------------------|----------------------|---------------------------|-----------------------------| | | M_S
YS_C
FG | _ | _ | _ | _ | _ | LO
CK
_IN
IT | GO
2IN
IT | GO
2N
OR
MA
L | GO
2L
PO
N | GO
2L
PO
FF | INT
_T
O_
WU
EN | INT
B_
RE
Q | INT
B_
DU
R | _ | MO
D_
CO
NF | MO
D_
EN | O ^T P | | | M_S
YS1_
CFG | _ | _ | _ | VB
OS
2
V1
_S
W_
AL
WA
YS
_E
N | _ | LO
AD
O
TP
B
YP | SL
OT
_B
YP | TS
LO
T_
DO
WN
_C
FG | _ | SO
FT
PO
R_
RE
Q | _ | DB
G_
EXI
T | _ | _ | OT
P_
EXI
T | _ | O P us | | | M_R
EG_
CTRL | _ | _ | _ | BUC
RHS | | BUC
N | K_SR | HSO | _ | _ | V2
ON
_L
PO
N | V2
EN | V2
DIS | V3
ON
_L
PO
N | V3
EN | V3
DIS | O ^T
P
us | | | M_R
EG_
MSK | V0
UV
_M | V0
OV
_M | V1
TW
AR
N_
M | V1
TS
D_
M | V2
TS
D_
M | V3
TS
D_
M | V2
OL
_M | V1
UV
_M | V2
UV
_M | V3
UV
_M | V1
OV
_M | V2
OV
_M | V3
OV
_M | V1
OC
_M | V2
OC
_M | V3
OC
_M | 0x | | | M_R
EG1_
CTRL | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | V1
_O
CL
S_I | 0x | | | M_R
EG1_
MSK | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | V1
_O
CL
S_
M | 0x
00 | | | M_IO
_CTR
L | _ | _ | _ | _ | _ | _ | HVI
O1
HI | HVI
O1
LO | HV
IO2
HI | HVI
O2
LO | LVI
O3
HI | LVI
O3
LO | LVI
O4
HI | LVI
O4
LO | LV
O6
HI | LV
O6
LO | 0x | | 1 | M_IO
_TIM
ER_
MSK | _ | _ | _ | _ | _ | _ | _ | LD
T_
M | LVI
5_
M | LVI
O4
_M | LVI
O3
_M | HVI
O2
_M | HVI
O1
_M | _ | WK
2_
M | WK
1_
M | 0x | | M_V
SUP_
COM
_MS
K | _ | _ | _ | _ | _ | _ | I2C
_C
RC
_M | I2C
_R
EQ
_M | SPI
_C
RC
_M | SPI
_C
LK
_M | SPI
_R
EQ
_M | _ | VS
HS
_O
V_
M | VS
HS
_U
V_
M | VS
UP
OV
_M | VS
UP
UV
_M | 0x0
000 | |-----------------------------------|----------------------------|---------------------------------|---------------------------------|------------------|----------------------------|----------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|---------------------|---------------------------|---------------------------|----------------------|----------------------|----------------| | M_IO
WU_
CFG | LVI
5_
W
UC
FG | LVI
O4
—
WU
CF
G | LVI
O3
_
WU
CF
G | Re
ser
ved | HV
IO2
_D
GL
T | HVI
O1
_D
GL
T | WK
2_
DG
LT | WK
1_
DG
LT | HVIO | | HVIC | | WK2
CFG | e_WU | WK1
CFG | _WU | 0x0
005 | | M_IO
WU_
EN | _ | _ | LVI5 | _WU | LVIC |)4_W | LVIO | _ | HVIC | | HVIC | _ | WK2
EN | WU | WK1
EN | _WU | 0x0
0F
F | | M_W
U1_E
N | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | LDT_
EN | _WU | LIN_
EN | WU | CAN
EN | _WU | 0x0
00
F | | M_TI
MER
1_CF
G | _ | _ | _ | _ | _ | _ | _ | TIME | ER1_ | TIME | ER1_C | DN | | TIME | ER1_F | PER | 0x0
000 | | M_TI
MER
2_CF
G | _ | _ | _ | _ | _ | _ | _ | TIME | ER2_ | TIME | ER2_C | DN | | TIME | ER2_F | PER | 0x0
000 | | M_TI
MER
3_CF
G | _ | _ | _ | _ | _ | _ | _ | TIME | ER3_ | TIME | ER3_C | DΝ | | TIME | ER3_F | PER | 0x0
000 | | M_P
WM1
_CF
G | _ | _ | _ | PWN
LY | /1_D | PW
M1
_F | PWN | /1_DC | | | | | | | | | 0x0
000 | | M_P
WM2
_CF
G | _ | _ | _ | PWN
LY | /12_D | PW
M2
_F | PWN | /12_DC | | | | | | | | | 0x0
000 | | M_P
WM3
_CF
G | _ | _ | _ | PWN
LY | //3_D | PW
M3
_F | PWN | //3_DC |) | | | | | | | | 0x0
000 | | M_TI
MER
_ PW
M_C
TRL | _ | _ | _ | _ | _ | _ | _ | _ | _ | TI
M1
_E
N | TI
M2
_E
N | TI
M3
_E
N | _ | PW
M1
_E
N | PW
M2
_E
N | PW
M3
_E
N | 0x0
000 | HS FL T_ M_C WK1_HS WU HVIO2_H HVIO1_H WK2_HS 0x0 S CF F S SEL S SEL SEL SEL 000 G OR CE WA WA HVI HV ΚE ΚE M C Ο2 101 S_FL 2_ 0x0 1_ _0 _0 OL 000 G_M OL $L_{_}$ L_{\perp} SK $_{\mathsf{M}}$ $_{\mathsf{M}}$ Μ Μ M ai n M_H Sx_S 0x0 HS4_SRC_SEL HS3_SRC_SEL HS2_SRC_SEL HS1_SRC_SEL RC 000 **CFG** HS _ V HS HS SH ٧ V M_H SU HS HS HS HS SH SH 0x0 Sx_C VO 2_ 4_ 3 1_ SU SO 000 **TRL** ٧_ ΕN ΕN ΕN ΕN ٧ V RE DIS DIS С HS HS HS HS HS HS HS HS HS 12 34 HS M_H TS 2_ TS 0x0 4_ 4_ 3_ 2_ 3_ 1_ 1_ Sx M OL OC OL OC D_{-} OL OC OL OC D_{-} 000 SK $_{\mathsf{M}}$ _M Μ M $_{\mathsf{M}}$ М _M _M _M _M МА AM AM UX MUX UX 0x0 **AMUX** _CTR _E _DI 000 ٧ M_L 0x0 DT C LDT AFTER RUN 000 FG1 M_L 0x0 LDT_WUP_L DT_C 000 FG2 M L 0x0 DT_C LDT_WUP_H 000 FG3 LD LD LD LD MLT_ T_ 0x0 DT_C T2 LDT_FNCT T_{-} SE 000 MO LP ΕN **TRL** DE | M_C
AN | _ | _ | _ | _ | _ | _ | CAN
DE | _MO | _ | _ | CA
N_
FS
_DI
S | _ | _ | _ | CA
N_
TX
D_
TO | CA
N_
TS
D_I | 0x0
000 | |---------------------------|---|------------|------|------------|-------|------------------------|------------------------------------|----------------------|----------------------------------|-----------------------|----------------------------|-------------|----------------------|------------------|----------------------------------|---------------------------|------------| | M_LI
N | _ | LIN_
DE | MO | LIN_
PE | SLO | LIN
_F
S_
DIS | LIN
_V
SH
SU
V_
DIS | LIN
_S
C | LIN
_T
XD
_T
O | _ | _ | _ | _ | LIN
_S
C_I | LIN
_T
XD
_T
O_I | LIN
_T
SD
_I | 0x0
000 | | M_C
AN_L
IN_M
SK | - | _ | LIN_ | FSM_ | STATE | Ξ_S | | LIN
_S
C_
M | LIN
_T
XD
_T
O_
M | LIN
_T
SD
_M | _ | CAN
ATE_ | _FSM _. _S | _ST | CA
N_
TX
D_
TO
_M | CA
N_
TS
D_
M | 0x0
000 | | L
o
gi
c | Regi
ster
name | Bit
15 | Bit
14 | Bit
13 | Bit
12 | Bit
11 | Bit
10 | Bit
9 |
Bit
8 | Bit
7 | Bit
6 | Bit
5 | Bit
4 | Bit
3 | Bit
2 | Bit
1 | Bit
0 | Def
aul
t
val
ue | |-------------------|--------------------------------|-----------|-----------|-----------|--|--|---|--|--|---|----------|--|--|---|--|--|---|------------------------------| | | M_M
EMO
RY0 | MEN | MORY(| 0 | | | | | | | | | | | | | | 0x0
000 | | | M_M
EMO
RY1 | MEN | MORY. | 1 | | | | | | | | | | | | | | 0x0
000 | | | FS_I
_OV
UV_
CFG
1 | _ | _ | _ | V1
MO
N_
OV
_R
ST
B_
IM
PA
CT | V1
MO
N_
OV
_F
S0
B_I
MP
AC
T | V1
MO
N_
OV
_LI
MP
0_I
MP
AC
T | V1
MO
N_
UV
_R
ST
B_
IM
PA
CT | V1
MO
N_
UV
_F
S0
B_I
MP
AC
T | V1
MO
N_
UV
_LI
MP
0_I
MP
AC
T | - | V2
MO
N_
OV
_R
ST
B_
IM
PA
CT | V2
MO
N_
OV
_F
S0
B_I
MP
AC
T | V2
MO
N_
OV
_LI
MP
0_I
MP
AC
T | V2
MO
N_
UV
_R
ST
B_
IM
PA
CT | V2
MO
N_
UV
_F
S0
B_I
MP
AC
T | V2
MO
N_
UV
_LI
MP
0_I
MP
AC
T | OT
P f
use | | | | | | V3
MO | V3
MO | V3
MO | V3
MO | V3
MO | V3
MO | | V0
MO | V0
MO | V0
MO | V0
MO | V0
MO | V0
MO | | |--------------------------------|---|--|--|--|--|---|--|--|---|---|---|--|--|---|---|--|------------------| | FS_I
_OV
UV_
CFG
2 | - | - | _ | N_
OV
_R
ST
B_
IM
PA
CT | N_
OV
_F
S0
B_I
MP
AC
T | N_
OV
_LI
MP
0_I
MP
AC
T | N_
UV
_R
ST
B_
IM
PA
CT | N_
UV
_F
S0
B_I
MP
AC
T | N_
UV
_LI
MP
0_I
MP
AC
T | - | N_
OV
_R
ST
B_
IM
PA | N_
OV
_F
S0
B_I
MP
AC
T | N_
OV
_LI
MP
0_I
MP
AC
T | N_
UV
_R
ST
B_
IM
PA | N_
UV
_F
S0
B_I
MP
AC
T | N_
UV
_LI
MP
0_I
MP
AC
T | OT
P f
use | | FS_I
_FCC
U_CF
G | | FCC | :U_CF | G | FCC
N | U2_A | SSIG | FC
CU
12_
FLT
_P
OL | FC
CU
2_
FLT
_P
OL | FC
CU
1_
FLT
_P
OL | FC CU 2_ RS TB _ I MP AC T | FC
CU
2_F
S0
B_
IM
PA
CT | FC
CU
2_
LIM
P0
_I
MP
AC
T | FC
CU
1_
RS
TB
_I
MP
AC
T | FC
CU
1_F
S0
B_
IM
PA
CT | FC
CU
1_
LIM
P0
_I
MP
AC
T | 0X
103
F | | FS_I
_FSS
M_C
FG | - | EX
T_
RS
TB
_DI
S | RS
TB
8S
_DI
S | RS
TB
_D
UR | LIM
PO
_S
C_
RS
TB
_I
MP
AC
T | EX
TR
ST
B_
FS
0B
_I
MP
AC
T | FS OB _S C_ RS TB _I MP AC T | FLT_
_LIM | _ERR
IIT | FLT
_MI
D_
RS
TB
_I
MP
AC
T | FLT
_MI
D_
FS
0B
_I
MP
AC
T | FLT
_MI
D_
LIM
P0
_I
MP
AC
T | FLT_ | ERR_ | CNT | | OT
P f
use | | FS_I
_WD
_CF
G | _ | WD
_R
ST
B_
IM
PA
CT | WD
_F
S0
B_I
MP
AC
T | WD
_LI
MP
0_I
MP
AC
T | WD
_DI
S_
LP
ON | WD_
_LIM | _RFR
IIT | WD_
_LIM | _ERR
IIT | _ | _ | - | _ | _ | _ | _ | 0x7
080 | | FS_
WD
W_C
FG | _ | _ | _ | _ | WD
W_
RE
C_
EN | WD
W_
EN | _ | WDV | W_PEI | RIOD | | _ | WDW | V_RE | COVE | RY | 0x0
1A
B | | FS_
WD_
ANS
WER | | _ANS | WER | | | | | | | | | | | | | | 0x0
000 | | FS_L
IMP1
2_CF
G | _ | - | - | - | _ | - | _ | LIMF
C_C | P2_D
FG | LIMF
FG | P2_C | LIM
P2
_R
EQ | _ | LIMF
FG | P1_C | LIM
P1
_R
EQ | OT
P f
use | F ai Is af e | ;
 I | FS_F
S0B_
LIMP
0_RE
L | REL | EASE | _FS0E | 3_LIM | P0 | | | | | | | | | | | | 0x0
000 | |----------|-----------------------------------|-----|-----------------------------------|-----------------------------|--|----|-------------------------------|--------------------------------|---|----------------------|---------------------|----------------------|-----------------------------|----------------------------------|-----------------------------|-----------------------------|-----------------------------|------------| | | FS_A
BIST | _ | LA
UN
CH
_ A
BIS
T | CL
EA
R_
ABI
ST | _ | _ | _ | _ | _ | _ | _ | _ | ABI
ST
_V
OM
ON | ABI
ST
_V
1U
VL
P | ABI
ST
_V
1M
ON | ABI
ST
_V
2M
ON | ABI
ST
_V
3M
ON | 0x0
000 | | 1 | FS_S
AFET
Y_O
UTP
UTS | _ | _ | _ | _ | _ | _ | RS
TB
_R
EQ | _ | _ | _ | FS
0B
_R
EQ | _ | _ | _ | _ | LIM
P0
_R
EQ | 0x0
000 | | , | FS_S
AFET
Y_FL
G | _ | _ | _ | INI
T_
CR
C_
NO
K_
M | _ | WD
_N
OK
_M | _ | _ | FC
CU
12_
M | FC
CU
1_
M | FC
CU
2_
M | _ | _ | _ | _ | _ | 0x0
000 | | | FS_C
RC | - | INI
T_
CR
C_
RE
Q | _ | _ | _ | INI T_ CR C_ FS OB _I MP AC T | INI T_ CR C_ LI MP 0_ IM PA CT | _ | CRC | _VAL | UE | , | | | | | 0x0
000 | # FS0B and or LIMP0 release calculation procedure When the fail-safe output FS0B is asserted low by the device because of a fault, or after a power up, some conditions must be validated before allowing the FS0B pin to be released by the device. #### These conditions are: - No fault affecting FS0B reported - Fault error counter equal to zero - · Device in Normal mode - Device not in Debug mode and not in INIT mode - FS_FS0B_LIMP0_REL register filled with the correct value, depending on current WD_TOKEN[15:0] value as per Table 6. Refer to Table 56 from the <u>FS23 data sheet</u>: | FS_FS0B_LIMP0_REL[15:0] | B
15 | B
14 | B
13 | B
12 | B
11 | B
10 | В9 | В8 | В7 | В6 | B 5 | В4 | В3 | B2 | B1 | В0 | |-----------------------------|---------|---------|---------|---------|---------|---------|-----|--------|----|----|------------|------|------|------|------|-----| | Release FS0B | 0 | 1 | 1 | NO. | T(WE |)_TO | KEN | [0:12 |]) | | | | | | | | | Release LIMP0 | 1 | 1 | 0 | NO. | T(WE |)_TO | KEN | [3:15 |]) | | | | | | | | | Release both FS0B and LIMP0 | 1 | 0 | 1 | NO. | T(WE |)_TO | KEN | [0:6]) | | | NO | Γ(WD | _TOI | KEN[| 10:1 | 5]) | # Watchdog answer procedure - [1] Refer to Section 20.2 from the FS23 data sheet. - The watchdog uses two keys, 0x5AB2 (default value after POR) and 0xD564 to validate the answer. The key is stored in the WD_TOKEN register, and is changed alternatively after each good WD refresh. - The MCU reads the WD_TOKEN register and writes the correct answer (WD_TOKEN register value) through the SPI/I2C in WD_ANSWER register, in the right timing. The WD error counter is incremented when the answer is wrong or not given at the right moment, or not given at all at the end of the watchdog period. Refer to - Table 35 from the FS23 data sheet. - The first good watchdog refresh closes the INIT phase. This first good watchdog refresh is sent by the MCU in less than 256 ms (default period duration). Then the watchdog window is running and the MCU must refresh the watchdog every period. Table 7. Watchdog answer and refresh validation | SPI / I ² C | Window watchdog | | Timeout watchdog | |------------------------|-----------------|--------|------------------| | 017710 | CLOSED | OPEN | (always open) | | BAD key | WD_NOK | WD_NOK | WD_NOK | | GOOD key | WD_NOK | WD_OK | WD_OK | | None (timeout) | NA | WD_NOK | WD_NOK | ## SPI/I2C CRC calculation procedure An 8-bit CRC is required for each write and read SPI command. Computation of a CRC is derived from the mathematics of polynomial division, modulo two. ## The CRC parameters are: • Polynomial: x^8+x^4+x^3+x^2+1 (identified by 0x1D) • Seed: 0xFF. #### For SPI communication SPI message construction includes the register address, the read/write bit, data, and CRC. Refer to Tables 65 and 66 from the FS23 data sheet. The bit B32 must be set to 1 to execute a write command, and to 0 to execute a read command. Table 8. SPI write command message construction | | B31 | B30 | B29 | B28 | B27 | B26 | B25 | B24 | B23 | B22 | B21 | B20 | B19 | B18 | B17 | B16 | |----------|-------|-----------|---------|--------|-----------|-----|-----|-----|-------|----------|---------|---------|----------|------|-----|-----| | MOS | Regis | ster add | ress [6 | :0] | | | | R/W | Write | data
[| 15:8] | | | | | | | MIS
O | Gene | ral statı | ıs flag | | | | | | Regis | ster cor | ntent b | efore V | Vrite [1 | 5:8] | | | | | B15 | B14 | B13 | B12 | B11 | B10 | В9 | B8 | В7 | В6 | B5 | B4 | В3 | B2 | B1 | В0 | | MOS | Write | data [7 | :0] | | | | | | CRC | [7:0] | | | | | | | | MIS
O | Regis | ster con | tent be | fore W | /rite [7: | 0] | | | CRC | [7:0] — | respor | ıse | | | | | Table 9. SPI read command message construction | | B31 | B30 | B29 | B28 | B27 | B26 | B25 | B24 | B23 | B22 | B21 | B20 | B19 | B18 | B17 | B16 | |----------|------------------------|-----|-----|-----|-----|-----|-----|---------------------|------------------|-----|-----|-----|-----|-----|-----|-----| | MOS | Register address [6:0] | | | | | | | R/W | 0x00 | | | | | | | | | MIS
O | General status flag | | | | | | | | Read data [15:8] | | | | | | | | | | B15 | B14 | B13 | B12 | B11 | B10 | В9 | B8 | B7 | В6 | B5 | B4 | В3 | B2 | B1 | В0 | | MOS | 0x00 | | | | | | | CRC[7:0] | | | | | | | | | | MIS
O | Read data [7:0] | | | | | | | CRC[7:0] – response | | | | | | | | | When using SPI communication, the input for CRC calculation is a 24-bit word composed of the register address, the read/write bit, and data. #### For I2C communication I²C message construction includes the device address, read/write bit, register address, data, and CRC. Refer to Table 61 from the FS23 data sheet. The bit B32 must be set to 0 to execute a write command, and to 1 to execute a read command. Table 10. I²C message construction | | | | | | | | | B39 | B38 | B37 | B36 | B35 | B34 | B33 | B32 | |-----------|------------------|-----|-----|-----|-----|----------|------------|----------------|-----|-----|-----|-----|-----|-----|-----| | | | | | | | | | ID[6:0] | | | | | | | R/W | | | | | | | | | | Device address | | | | | | | R/W | | B31 | B30 | B29 | B28 | B27 | B26 | B25 | B24 | B23 | B22 | B21 | B20 | B19 | B18 | B17 | B16 | | 0 | ADR[6:0] | | | | | | DATA[15:8] | | | | | | | | | | 0 | Register address | | | | | | Data MSB | | | | | | | | | | B15 | B14 | B13 | B12 | B11 | B10 | В9 | B8 | B7 | B6 | B5 | B4 | В3 | B2 | B1 | В0 | | DATA[7:0] | | | | | | CRC[7:0] | | | | | | | | | | | Data I | Data LSB | | | | | | CRC | | | | | | | | | When using I²C communication, the input for CRC calculation is a 32-bit word composed of device address, read/write bit, register address and data. # **INIT CRC calculation procedure** INIT fail-safe registers are protected by a CRC. The same polynomial and seed used for SPI/I²C CRC are necessary to compute this INIT CRC: The polynomial is $x^8+x^4+x^3+x^2+1$ (identified by 0x1D) with the seed value of 0xFF. # Three steps are required to compute INIT CRC: 1. Read the FS configuration registers and extract the following bits. 2. Create the 58-bit word by concatenating the 58 bits. 3. Compute INIT CRC bitwise using 0x1D polynomial. The figure below gives an example for bitwise CRC computation algorithm. ``` INIT CRC computation algorithm crc_result = 0xFF for each of the 58 bits successively (starting with MSB): msb = crc_results(7) XOR BITVALUE crc_result(7) = crc_result(6) crc_result(6) = crc_result(5) crc_result(5) = crc_result(4) crc_result(4) = crc_result(3) XOR msb crc_result(3) = crc_result(2) XOR msb crc_result(2) = crc_result(1) XOR msb crc_result(1) = crc_result(0) crc_result(0) = msb read result in crc_result ``` aaa-052405 ## **Revision history** | Document ID | Release date | Description | |---------------|----------------------|---| | AN14041 v.2.0 | 23 January 2025 | Global editing for grammar and style. Moved document from secure files to public access on nx p.com. Section 12 was relocated from the front of this document t o the end to conform with NXP's document content hierarch y. Updated Legal information | | AN14041 v.1.0 | 13 September
2023 | Initial version | #### References #### Documentation - [1] FS23 application note product guidelines, nxp.com - [2] FS23 data sheet, nxp.com #### • Software resources - [3] FS23 AUTOSAR software drivers, nxp.com - [4] Real-Time Drivers (RTD) general information, nxp.com ## • Evaluation resources - [5] FS23 graphical user interface (GUI), revision 3.1.382, nxp.com - [6] FS23 user manual for socketed / soldered Buck / soldered LDO EVB, nxp.com ## Legal information #### **Definitions** Draft — A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information. #### **Disclaimers** - Limited warranty and liability Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes noresponsibility for the content in this document if provided by an information source outside of NXP Semiconductors. - In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including without limitation lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. - Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors. - Right to make changes NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. - Applications Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. - Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. - NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect. - Terms and conditions of commercial sale NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at https://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer. - Export control This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities. - HTML publications An HTML version, if available, of this document is provided as a courtesy. Definitive information is contained in the applicable document in PDF format. If there is a discrepancy between the HTML document and the PDF document, the PDF document has priority. - Translations A non-English (translated) version of a document, including the legal information in that document, is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions. - Security Customer understands that all NXP products may be subject to unidentified vulnerabilities or may support established security standards orspecifications with known limitations. Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer
shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products. - Suitability for use in automotive applications (functional safety) This NXP product has been qualified for use in automotive applications. It has been developed in accordance with ISO 26262, and has been ASIL classified accordingly. If this product is used by customer in the development of, or for incorporation into, products or services (a) used in safety critical applications or (b) in which failure could lead to death, personal injury, or severe physical or environmental damage (such products and services hereinafter referred to as "Critical Applications"), then customer makes the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, safety, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. As such, customer assumes all risk related to use of any products in Critical Applications and NXP and its suppliers shall not be liable for any such use by customer. Accordingly, customer will indemnify and hold NXP harmless from any claims, liabilities, damages and associated costs and expenses (including attorneys' fees) that NXP may incur related to customer's incorporation of any product in a Critical Application. - NXP B.V. NXP B.V. is not an operating company and it does not distribute or sell products. #### **Trademarks** - Notice: All referenced brands, product names, service names, and trademarks are the property of their respective owners. - NXP wordmark and logo are trademarks of NXP B.V. Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'. #### **Document information** | Information | Content | |-------------|--| | Keywords | FS2300, FS2320, safety system basis chip, SBC, body and comfort, controller area netw ork (CAN) FD, local interconnect network (LIN) | | Abstract | This application note is intended for the engineers involved in software implementation of FS23 fail-safe system basis chips. | ## **CONTACT INFORMATION** • © 2025 NXP B.V. All rights reserved. • For more information, please visit: https://www.nxp.com. Date of release: 23 January 2025Document identifier: AN14041 #### **Documents / Resources** #### References • User Manual #### Manuals+, Privacy Policy This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of these marks on this website does not imply any affiliation with or endorsement.