
Home » NXP » NXP AN14263 Implement LVGL GUI Face Recognition on Framewor User Guide  

Contents
1  NXP AN14263 Implement LVGL GUI Face Recognition on
Framewor
2  Product Information
3  Product Usage Instructions
4  Overview
5  Development environment
6  Vision architecture on framework
7  Implement face recognition on the framework
8  Verifications with the example project
9  Legal information
10  FAQ
11  Documents / Resources

11.1  References

NXP AN14263 Implement LVGL GUI Face Recognition on Framewor

NXP AN14263 Implement LVGL GUI Face Recognition on
Framewor User Guide

Manuals+ —  User Manuals Simplified.

https://manuals.plus/#content
https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/nxp
https://manuals.plus/nxp/an14263-implement-lvgl-gui-face-recognition-on-framewor-manual.pdf
https://manuals.plus/#nxp_an14263_implement_lvgl_gui_face_recognition_on_framewor
https://manuals.plus/#product_information
https://manuals.plus/#product_usage_instructions
https://manuals.plus/#overview
https://manuals.plus/#development_environment
https://manuals.plus/#vision_architecture_on_framework
https://manuals.plus/#implement_face_recognition_on_the_framework
https://manuals.plus/#verifications_with_the_example_project
https://manuals.plus/#legal_information
https://manuals.plus/#faq
https://manuals.plus/#documents_resources
https://manuals.plus/#references


Product Information

Specifications

Product Name: LVGL GUI Face Recognition on Framework

Document Revision: 1 – 19 April 2024

Keywords: Face recognition, LVGL GUI, Framework

Product Usage Instructions

1. Overview

This product enables AI&ML vision algorithm model for face recognition on a framework to implement face

recognition function with a simple LVGL GUI example on the SLN-TLHMI-IOT board.

2. Framework Overview 

The solution software is designed around the framework architecture that includes device managers

responsible for managing devices, HAL devices to abstract underlying details, and events for communication

between different devices.

3. Features 

The product allows for the implementation of face recognition function via camera preview on the GUI screen

with buttons to trigger face registration, recognition, and removal. Registered face data is stored on Flash via a

file system.

4. Application Note Content 

The application note presents an LVGL GUI screen with camera preview and buttons for face-related actions. It

helps developers understand the framework and how to implement face recognition using the provided

example.

Overview

NXP has launched a solution development kit named SLN-TLHMI-IOT that focuses on smart HMI applications. It
enables smart HMI with ML vision, voice, and graphics UI implemented on one NXP i.MX RT117H MCU. Based
on the SDK, the solution software is constructed on a design called framework that supports flexible designs and
customization of vision and voice functions. To help users to use the software platform better, some basic



documents are provided, for example, the software development user guide. The guide introduces the basic
software design and architecture of the applications covering all components of the solution including the
framework to help the developers more easily and efficiently implement their applications using the SLN-TLHMI-
IOT.
For more details about the solution and relevant documents, visit the web page of the NXP EdgeReady Smart HMI
Solution Based on i.MX RT117H with ML Vision, Voice, and Graphical UI. However, it is still not so easy for the
developers to implement their smart HMI applications referring to these basic guides. A series of application notes
are planned to help study the development on the framework step by step. This application note is based on
Implement LVGL GUI Camera Preview on Framework (document AN14147). This application note describes how
to enable the AI&ML vision algorithm model for face recognition on the framework to implement the face
recognition function via camera preview on the GUI screen with a simple LVGL GUI example on the SLN-TLHMI-
IOT board. In the application note, the example presents an LVGL GUI screen with a camera preview and some
buttons to trigger face registration, recognition, and removal. The registered face data is stored on Flash via a little
file system.

At a high level, the application note contains the below contents:

Enable the face recognition feature on the framework.

Add face database support on the framework via file system on Flash.

Implement the LVGL GUI app. Through the above introductions, this document helps the developers to:

Understand the framework and the smart HMI solution software more deeply.

Develop their AI&ML face recognition on framework with the LVGL GUI app.

Framework overview
The solution software is primarily designed around the use of the framework architecture that is composed of
several different parts:

Device managers – the core part

Hardware Abstraction Layer (HAL) Devices

Messages/Events

As shown in Figure 1, the overview of the mechanism of the framework is:

Device managers are responsible for managing devices used by the system. Each device type (input, output, and
so on) has its own type-specific device manager. With a device manager starting after the devices being registered
to it, it waits and checks a message to transfer data to the devices and other managers after initializing and
starting the registered devices. The HAL devices are written on top of the lower-level driver code, helping to
increase code understandability by abstracting many of the underlying details.

Events are a means by which information is communicated between different devices via their managers. When
an event is triggered, the device that first received the event communicates that event to its manager, then in turn
it notifies other managers designated to receive the event.



The architectural design of the framework was centered on three primary goals:

1. Ease-of-use

2. Flexibility/Portability

3. Performance

The framework is designed with the goal of speeding up the time to market for vision and other machine-learning
applications. To ensure a speedy time to market, it is critical that the software itself is easy to understand and
modify. Keeping this goal in mind, the architecture of the framework is easy to modify without being restrictive, and
without coming at the cost of performance.
For more details about the framework, see Smart HMI Software Development User Guide (document MCU-
SMHMI-SDUG).

Light and Versatile Graphics Library (LVGL)
LVGL (Light and Versatile Graphics Library) is a free and open-source graphics library providing everything that
you need to create an embedded GUI with easy-to-use graphical elements, beautiful visual effects and low
memory footprint.

GUI Guider
GUI Guider is a user-friendly graphical user interface development tool from NXP that enables rapid development
of high quality displays with the open-source LVGL graphics library. GUI Guider’s drag-and-drop editor makes it
easy to use many features of LVGL such as widgets, animations, and styles to create a GUI with minimal or no
coding at all.

With the click of a button, you can run your application in a simulated environment or export it to a target project.
Generated code from GUI Guider can easily be added to your project, accelerating the development process and
allowing you to seamlessly add an embedded user interface to your application. GUI Guider is free to use with
NXP’s general purpose and crossover MCUs and includes built-in project templates for several supported
platforms. To learn more about LVGL and GUI development on GUI Guider, check Light and Versatile Graphics
Library and GUI Guider.

Development environment



First, prepare and set up the hardware and software environment for implementing the example on the framework.

Hardware environment
The hardware environment is set up for verifying the example:

The smart HMI development kit based on NXP i.MX RT117H (the SLN_TLHMI_IOT kit)

SEGGER J-Link with a 9-pin Cortex-M adapter and V7.84a or a newer version of the driver

Software environment
The software environment is set up for developing the example:

MCUXpresso IDE V11.7.0

GUI Guider V1.6.1-GA

lvgl_gui_camera_preview_cm7 – example code of the second application note as the basis software of the

development. For details, see https://mcuxpresso.nxp.com/appcodehub.

RT1170 SDK V2.13.0 – as the code resource for the development.

SLN-TLHMI-IOT software V1.1.2 – smart HMI source code released on the NXP GitHub repository as the code

resource for the development. For details, see: GitHub – NXP/mcu-smhmi at v1.1.2

For details about the acquirement and setup of the software environment, see: Getting Started with the SLN-
TLHMI-IOT.

Vision architecture on framework

The vision architecture on the framework is shown in Figure 2. The vision algo HAL (OASIS_HAL) has the below
processes:

Do face registration and recognition through the AI&ML vision algorithm model after receiving the related events

from the output UI HAL. Notify the inference results from the algorithm model to the output UI HAL.

Accesses (add, delete…) the face feature database based on the little file system by calling the APIs of FaceDB

HAL after receiving the related events from the output UI HAL.

Request the camera video frame from the camera HAL when doing face registration and recognition.

https://mcuxpresso.nxp.com/appcodehub


Implement face recognition on the framework

The LVGL GUI face recognition example (the example is provided later) on the framework is implemented based
on the example codes of Implement LVGL GUI Camera Preview on Framework (document AN14147).

For demonstrating the face recognition in the example, the basic function of the GUI app (see the main
screen in Figure 3) is designed as described below:

The GUI app triggers the face registration or recognition event to the output UI HAL when clicking the button

Registration or Recognition. And the output UI HAL notifies the event of adding a user to the vision algo HAL

after the face registration is successful.

The GUI app triggers the event of deleting a user to the output UI HAL when clicking the button Delete User

after the face of the user is recognized.

The GUI app triggers the event of stopping the oasis algo running to the output UI HAL when clicking the

screen outside the buttons and images.

Prepare the software package for the implementation of the example.



Clone the base software lvgl_gui_camera_preview_cm7. Change the project name and the main filename to

lvgl_gui_face_rec_cm7.

The framework is needed to be updated in the software as the source codes for the framework core have

started to be public on GitHub from the version 1.1.2.

Replace the framework folder with the copy of V1.1.2 from GitHub except for the files fwk_log.h and

fwk_common.h under inc\ as they have been modified for the series of application note. The operations are

shown in Figure 4:

Delete the folder framework_cm7 under the libs group and remove the library framework_cm7 and its search

path configured in Project > Properties > C/C++ Build > settings > Tool Settings > MCU C++ Linker > Libraries

since the source code of the core is provided.

Enable face recognition feature on framework
The face recognition feature is built on the ML vision algorithm model provided as a static library – an oasis lite
runtime library by NXP. The library is a tiny, highly efficient, customized, and optimized AI library. The model
includes face detection, face recognition, glass detection, and liveness detection. It mainly provides the API
OASISLT_run_extended() to run the face recognition pipeline while updating results to the caller through event
callbacks, and add/update/delete faces in the database through the face database callbacks after specifying the
source frame information, callbacks, and memory pool used by the library by calling another API OASISLT_init()
on initialization. The calling of the APIs and the callback functions are implemented in the vision algo HAL of the
framework.

Add vision algo model library

1. Copy folder oasis containing the library and the related header file from smart HMI\coffee_machine\cm7\libs\

into the folder libs of the example SW.

2. Add the search path of the header file in Project > Properties > C/C++ Build > settings > Tool Settings > MCU C

compiler > Includes and MCU C++ compiler > Includes: “${workspace_loc:/${ProjName}/libs/oasis/include}”

3. Add the lib and its search path on Project > Properties > C/C++ Build > settings > MCU C+ + Linker > Libraries:

liboasis_lite2D_DEFAULT_117f_ae.a “${workspace_loc:/${ProjName}/libs/oasis}” and the macro definition to

enable the feature on Project > Properties > C/C++ Build > settings > Tool Settings > MCU C compiler >

Preprocessor and MCU C++ compiler > Preprocessor: SMART_TLHMI_2D

Enable vision algo HAL
The vision algo HAL drives the vision algo model to work and responds the results to the UI output HAL after
receiving the events from it.



To enable it, clone the existed similar HAL driver file where the below functions are implemented:

Implement the callbacks of face database operations and events handling.

Drive the vision algo to work by calling the APIs of the oasis library.

Access user face database and app database (it is not needed in the example).

Receive events from and send results to output UI HAL.

The major works to implement the HAL for the example are:

Clone the existed similar HAL driver file and change the related names.

Remove the codes related to the app data operations.

Update the definitions and functions for handling the events from the output UI HAL per the example design.

Add the configurations required in oasis initialization.

The detailed steps are as below:

1. Clone hal_vision_algo_oasis_coffeemachine.c. Change the filename to hal_vision_algo_oasis_guifacerec.c.

And replace all strings CoffeeMachine with GUIFaceRec in the file.

2. Remove the codes containing the string coffeedb (not case sensitive) related to the app database, for example,

#include hal_sln_coffeedb.h.

3. Modify the function HAL_VisionAlgoDev_OasisGUIFaceRec_InputNotify() for handling the events from the

output UI HAL.

Change the event definition kEventFaceRecId_RegisterCoffeeSelection to

kEventFaceRecId_RegisterUserFace and the structure string regCoffeeSelection to regGUIFaceRec for

the event handling to add new face feature data to the database.

To show the standard process of the face recognition actions in the example, modify the handling in the

case of kEventFaceRecID_OasisSetState with the definitions of the states:

kOASISLiteState

Registration kOASISLiteState

Recognition kOASISLiteState

Stopped

4. Add and modify the definitions of the events mentioned in the above step.

Copy the header file smart_tlhmi_event_descriptor.h from smart HMI\coffee_machine

\cm7\source\event_handlers\ into the folder source of the example SW. Update the file as below:

Change the event definition kEventFaceRecId_RegisterCoffeeSelection to

kEventFaceRecId_RegisterUserFace in the enum type _event_smart_tlhmi_id and the structure string

regCoffeeSelection to regGUIFaceRec in the struct _event_smart_tlhmi. So, change the struct

register_coffee_selection_event_t for regCoffeeSelection to register_gui_facerec_event_t.

Delete the else contents used for the coffee machine app, for example, the code line about voice:

#include “hal_event_descriptor_voice.h”.

Add the types kOASISLiteState_Stopped and kOASISLiteState_Running to the enum type

oasis_lite_state_t in hal_vision_algo.h under framework>hal>vision in the project as below:

typedef enum _oasis_lite_state {

kOASISLiteState



Running, kOASISLiteState

Stopped, kOASISLiteState

Recognition,

kOASISLiteState

Registration, kOASISLiteState

DeRegistration, kOASISLiteState

RemoteRegistration, kOASISLiteState

Count

Use the above updated struct oasis_lite_state_t to refine the struct oasis_state_event_t in

hal_event_descriptor_face_rec.h under framework>hal>vision in the project as below: typedef struct

_oasis_state_event_t { oasis_lite_state_t state; } oasis_state_event_t;

5. Change all kEventInfo_Remote to kEventInfo_Local for sending events from the vision algo HAL to other HALs

running on the same core as single core instead of dual-core is used in the example.

6. Add and modify the below configurations for oasis initialization in OASISLT_init():

Add the macro definitions and memory sections for the video frame in board_define.h: #define

OASIS_RGB_FRAME_WIDTH 800

#define OASIS_RGB_FRAME_HEIGHT 600

#define OASIS_RGB_FRAME_SRC_FORMAT kPixelFormat_YUV1P444_RGB

#define OASIS_RGB_FRAME_BYTE_PER_PIXEL 3

#define AT_FB_SHMEM_SECTION_ALIGN(var, alignbytes) \

__attribute__((section(“.bss.$fb_sh_mem,\”aw\”,%nobits @”))) var

__attribute__((aligned(alignbytes)))

Config the memory assignment to the above memory section fb_sh_mem on Project > Properties >

C/C++ Build > MCU Settings shown in Figure 5:

Declare the global variable g_DTCOPBuf in lvgl_gui_face_rec_cm7.cpp:

AT_NONCACHEABLE_SECTION_ALIGN_DTC (uint8_t g_DTCOPBuf[DTC_OPTIMIZE_BUFFER_SIZE],

4);

Continue to add the definitions used in the above variable:

Define the above section in board_define.h:

#define AT_NONCACHEABLE_SECTION_ALIGN_DTC(var, alignbytes) \

attribute__((section(“.bss.$SRAM_DTC_cm7,\”aw\”,%nobits @”))) var

attribute__((aligned(alignbytes)))

Include the header file hal_vision_algo.h containing the macro definition DTC_OPTIMIZE_BUFFER_SIZE

in app_config.h included in lvgl_gui_face_rec_cm7.cpp.



7. Set the variable s_debugOption to true for showing the progress status on face recognition.

8. Add the search path of the header files of the vision HAL on Project > Properties >C/C++ Build > settings > Tool

Settings > MCU C compiler > Includes and MCU C++ compiler > Includes:

“${workspace_loc:/${ProjName}/framework/hal/vision}”

9. Add the below definition to enable vision algo HAL in board_define.h: #define

ENABLE_VISIONALGO_DEV_Oasis_GUIFaceRec

Enable output UI HAL
The output UI HAL notifies the events to the vision algo HAL and responds to the inference results from the vision
algo HAL. With the GUI app, the events are generally triggered by the app and the results are shown on the app.

To enable it, clone the existed similar HAL driver file where generally the below functions are
implemented:

Notify the events for face recognition and database access.

Implement the callbacks for the GUI app to trigger the events.

Handle the inference results from the vision algo module.

Show the process and results of the events handling on the UI by the progress bar controlled with the timers

and face guide rectangle.

The major works to implement the HAL for the example used in this document are:

Clone the existed similar HAL driver file and change the related names.

Remove the codes related to the app.

Update the functions for the events notification and results response per the example design.

Add the callbacks for the GUI app to trigger the events.

The detailed steps are as below:

1. Clone hal_output_ui_coffee_machine.c. Change the filename to hal_ output_ui_guifacerec.c.

2. Replace all strings CoffeeMachine with GUIFaceRec in the file.

3. Remove the codes related to the app – coffee machine.

Remove the functions WakeUp() and _StandBy() and the related codes (may search the string wake_up

and standby for them).

Remove preview mode events handling related codes in HAL_OutputDev_UiGUIFaceRec_Input Notify().

Remove the functions UI_xxx_Callback() and the codes containing the string gui_ and screen related to

the GUI of the coffee machine except for gui_set_virtual_face() for the preview mode feature.

Remove all codes involved with the variables s_IsWaitingAnotherSelection and

s_IsWaitingRegisterSelection related to the coffee machine app.

Remove the codes related to voice, audio, and language. For example:

#include “hal_voice_algo_asr_local.h”,

#include “hal_event_descriptor_voice.h”

4. For the various events notification, implement the new functions _OutputManagerNotify(), _SetFaceRec(),

_RegisterGUIFaceRec(), and DeregisterGUIFaceRec() referring to the functions _StopFaceRec(),

_RegisterCoffeeSelection(), and DeregisterCoffeeSelection() before deleting them.



The _OutputManagerNotify() implements the basic event output function to send an event to the vision

algo HAL. The below functions call it to send their own events.

The _SetFaceRec() sends the event kEventFaceRecID_OasisSetState to trigger the vision algo for face

registration, recognition, and stop the algo.

The _RegisterGUIFaceRec() sends the event kEventFaceRecId_RegisterGUIFaceRec that is defined in

smart_tlhmi_event_descriptor.h to add face feature data to the database when registration OK.

The DeregisterGUIFaceRec() sends the event kEventFaceRecID_DelUser to delete the face feature data

from the database when passing the face recognition.

5. Update the codes to take the corresponding actions including refresh the GUI by calling the APIs from the LVGL

GUI app for the inference results of face registration and recognition in the function _InferComplete_Vision() per

the example’s design. For example, when face registration is successful,

Stop showing the progress by calling _FaceRecProcess_Stop();

Stop the face registration by calling _SetFaceRec(kOASISLiteState_Stopped);

Show the successful result on the GUI: gui_show_face_rec_result(kFaceRecResult_OK, s_UserId);

Register the face data to the database: _RegisterUserFace(s_UserId);

6. Add UI callback functions to handle the events: preview, face registration, recognition, and deleting user

triggered from the GUI. For example, the face registration callback: void UI_Registration_Callback(){

_SetFaceRec(kOASISLiteState_Registration); _FaceRecProcess_Start(); }

And add the functions _FaceRecProcess_Start() and _FaceRecProcess_Stop() to show the progress and

status in the different events and results.

Update the timer ISR callback function _SessionTimer_Callback() to handle the case of time-out by

calling: gui_show_face_rec_result(kFaceRecResult_TimeOut, s_UserId);

7. Add the below definitions to enable UI output HAL in board_define.h: #define

ENABLE_OUTPUT_DEV_UiGUIFaceRec

Notice:
To present the face recognition feature better, keep the function to show the process and results of face
recognition in the output UI HAL. The function is described as below

The face guide rectangle shows blue, and the progress bar shows the progress when starting the face

registration or recognition.

The face guide rectangle shows red when face registration is successful.

The face guide rectangle shows green when face recognition is successful.

The face guide rectangle keeps blue, and the progress bar shows full progress when the action is unsuccessful

after the timer expiration. At that point, stop the face registration or recognition.

The progress bar and face guide rectangle are presented as the icons that are built into the resource binary file to
be programmed into Flash. The pointers to the icons data on SDRAM are set up in the function
LoadIcons(APP_ICONS_BASE) called on the output UI HAL device initialization in the output UI HAL. It must
implement the icons support for the function.

Implement the icons support

1. Build the resource combining the icons with the images used in the LVGL GUI app:

Clone the four icon header files process_bar_240x14.h, virtual_face_blue_420x426.h,



virtual_face_green_420x426.h, and virtual_face_red_420x426.h from smart HMI

\coffee machine\resource\icons\ to the new folder icons under the resource folder of the example SW.

Add the search path for the four icon files in the camera_preview_resource.txt file in the resource folder,

for example: icon ../resource/icons/process_bar_240x14.h

Execute camera_preview_resource_build.bat to build the images and icons resources to generate the bin

file camera_preview_resource.bin and the info file resource_information_table.txt (See Figure 6).

2. Define the start address on SDRAM and the size of the icons in app_config.h. The address starts next to the

images of the GUI app. The size is generated in the info file. #define APP_ICONS_BASE

(APP_RES_SHMEM_BASE + APP_LVGL_IMGS_SIZE) #define APP_ICONS_SIZE 0x107c40

3. Update the assigned size of the memory section named res_sh_mem to 0x200000 by redefining it in

app_config.h: #define RES_SHMEM_TOTAL_SIZE 0x200000 and the corresponding setting in Project >

Properties > C/C++ Build > MCU settings.

4. Add the icon size to the total size of the resource loaded from Flash to SDRAM in the function

APP_LoadResource() in the main file lvgl_gui_face_rec_cm7.cpp: memcpy((void *)APP_LVGL_IMGS_BASE,

pLvglImages, APP_LVGL_IMGS_SIZE + APP_ICONS_SIZE);

Notice: To complete the face recognition feature, the LVGL GUI app support is needed. The UI callback functions
in the output UI HAL are called by the LVGL GUI app for handling the events from the UI screen. On the other
hand, the output UI HAL calls the APIs from the LVGL GUI app to update the UI to show the result and status. The
development of the LVGL GUI app is relatively independent and introduced in Section 4.3.

4.1.5 Start HAL devices and managers for face recognition
The enabled vision algo HAL and UI output HAL and their managers are started in the main file
lvgl_gui_face_rec_cm7.cpp following the conversions of development on the framework as below:

1. Include the header file related to the two HAL managers by adding the code line:

#include ” fwk_output_manager.h “

#include “fwk_vision_algo_manager.h”

2. Declare the HAL devices:

HAL_VALGO_DEV_DECLARE(OasisGUIFaceRec);

HAL_OUTPUT_DEV_DECLARE(UiGUIFaceRec);

3. Register the HAL devices:

HAL_VALGO_DEV_REGISTER(OasisGUIFaceRec, ret);

HAL_OUTPUT_DEV_REGISTER(UiGUIFaceRec, ret);

4. Initialize the managers:

FWK_MANAGER_INIT(VisionAlgoManager, ret);



FWK_MANAGER_INIT(OutputManager, ret);

5. Start the managers:

FWK_MANAGER_START(VisionAlgoManager, VISION_ALGO_MANAGER_TASK_PRIORITY, ret);

FWK_MANAGER_START(OutputManager, OUTPUT_MANAGER_TASK_PRIORITY, ret);

6. Define the priority of the manager tasks:

#define VISION_ALGO_MANAGER_TASK_PRIORITY 3

#define OUTPUT_MANAGER_TASK_PRIORITY 1

Add face database support on framework
The registered face feature data is accessed in the face database stored on Flash via a little file system. The steps
to add the face database support are described below.

Add drivers for Flash storage
Copy the Flash interface FlexSPI driver files fsl_flexspi.c and fsl_flexspi.h, and the data encryption driver files
fsl_caam.c and fsl_caam.h from the path SDK_2_13_0_MIMXRT1170-EVK\devices \MIMRX1176\drivers\ to the
drivers folder of the example SW.

Add board-level support

1. Add the definitions of FlexSPI used for the Flash device on board in board.h:

#define BOARD_FLEXSPI FLEXSPI1

#define BOARD_FLEXSPI_CLOCK kCLOCK_FlexSpi1

#define BOARD_FLEXSPI_AMBA_BASE FlexSPI1_AMBA_BASE

2. Copy the operators and configurations files of the Flash device flexspi_nor_flash_ops.c,

flexspi_nor_flash_ops.h, sln_flash_config.c, sln_flash_config_w25q256jvs.h, andsln_flash_ops.h under the

path smart HMI\coffee_machine\cm7\source\flash_config\ to the folder board of the example SW.

Uncheck “Exclude resource from build” in C/C++ Build > Settings after right-clicking on the files’ name and

opening the Properties for enabling them to be built into the project.

3. Change the included header filename sln_flash_config.h to sln_flash_config_w25q256jvs.h in

sln_flash_config.c and flexspi_nor_flash_ops.h.

4. Set the FlexSPI1 clock source in the file clock_config.c referring to the coffee machine app.

Add adapter and middle level support

1. Copy the files sln_flash.c, sln_flash.h, sln_encrypt.c, and sln_encrypt.h as adapter drivers for the file system

and app from the path of smart HMI\coffee_machine\cm7\source\ to the folder source of the example. Update

the new files:

Uncheck “Exclude resource from build” on them for building.

Change all the included header file name sln_flash_config.h to sln_flash_config_w25q256jvs.h.

2. Copy the folder filesystem containing the APIs for the little filesystem and HAL driver from smart HMI

\coffee_machine\cm7\source\ to the example SW. And update for the new folder:

Uncheck “Exclude resource from build” on it for building.

Add the include path for it in project settings: “${workspace_loc:/${ProjName}/filesystem}”

Change the included header file name sln_flash_config.h to sln_flash_config_w25q256jvs.h and

fica_definition.h to app_config.h in the file sln_flash_littlefs.h.



3. Copy the folder littlefs containing the middle ware – little filesystem from the path SDK_2_13_0_ MIMXRT1170-

EVK\middleware\ to the example SW. And update the new folder:

Uncheck “Exclude resource from build” on it for building.

Add the include path for it in project settings: “${workspace_loc:/${ProjName}/littlefs}”

Add HAL drivers 

There are two HAL devices – file system and face database HAL supported for the database access feature

and they are already implemented in the framework without any change. Enable them by adding the below

definitions in board_define.h:

#define ENABLE_FLASH_DEV_Littlefs

#define ENABLE_FACEDB

And change the face database name for the example: #define OASIS_FACE_DB_DIR “oasis_gui_face_rec”

Add app-level support

1. Update the main file lvgl_gui_face_rec_cm7.cpp:

Include the header file related to the Flash file system HAL manager by adding the code line: #include

“fwk_flash.h”

Declare and register file system HAL device:

HAL_FLASH_DEV_DECLARE(Littlefs);

HAL_FLASH_DEV_REGISTER(Littlefs, ret);

Note: The file system HAL device must be registered before all device managers are initialized in

the function APP_InitFramework().

Call the function BOARD_ConfigMPU() in APP_BoardInit() to config MPU.

2. Set the file system assignment on Flash in the file app_config.h by defining the macro definitions used in the file

sln_flash_littlefs.h:

#define FICA_IMG_FILE_SYS_ADDR (FLASH_IMG_SIZE + RES_SHMEM_TOTAL_SIZE)

#define FICA_FILE_SYS_SIZE (0x280000)

Configurations
Some Flash-related codes are executed in the SRAM ITC area for enough performance. Copy the folder
linkscripts containing the linker configurations from the path smart HMI\coffee_machine\cm7\ to the example SW.

Implement a LVGL GUI app
The development of a LVGL GUI app based on framework calls the APIs from output UI HAL and provides the
APIs to output UI HAL (See Section 4.1.3 for the implementation of output UI HAL).

However, the detailed implementation of a LVGL GUI app depends on the requirements and design of the
application. The GUI app in this example is designed as described at the beginning of the section Section 4.

Below is the implementation introductions:

1. The customized codes are implemented in the custom.c and custom.h given by GUI Guider as the interface

between the GUI Guider project and the embedded system project.



 Add the new functions named gui_xxx() in custom.c to achieve the below functions:

For output UI HAL and GUI app to update UI.

For GUI app to trigger events by calling UI callback functions from output UI HAL.

For example, the new function gui_event_face_rec_action() calls UI callback functions to handle

one of the events of face registration, face recognition and deleting user triggered from the GUI app

when the related button is clicked.

Note: The function gui_set_virtual_face() called in output UI HAL for preview mode needs to be

implemented in custom.c:

 Clone function gui_set_virtual_face() from smart HMI\coffee_machine\cm4\custom \custom.c.

 Change the widget’s name home_img_cameraPreview to screen_img_camera_preview in the function.

 Implement the UI callback functions with the same prototype to all the ones in output UI HAL under the

control of the macro definition #ifndef RT_PLATFORM in custom.c for being compatible with the GUI

Guider project because these functions in output UI HAL are dependent with the embedded platform. In

custom.c, they depend on the simulator on GUI guider and are independent to the embedded platform.

For example, the face registration callback is implemented as below for the GUI Guider simulator running:

#ifndef RT_PLATFORM void UI_Registration_Callback() { gui_hide_del_user_btn(true); s_InAction =

false; return; }

Note: Refer to the same prototype of the function introduced in step 6 of Section 4.1.3

The macro definition RT_PLATFORM is set on the project settings of MCUXpresso as shown in Figure 7:

Declare all the functions named UI_xxx_Callback() and gui_xxx() in custom.h and add custom.h included

in smart_tlhmi_event_descriptor.h to share the GUI APIs to UI output HAL.

2. Develop the GUI on GUI Guider:

Clone the folder camera preview containing the GUI Guider project software in the folder gui_guider in

the base software package lvgl_gui_camera_preview_cm7. Change the related name camera_preview to

face_rec for the new example.

Copy the above updated custom.c and custom. h to the new GUI Guider project software.

 Open the new face_rec project on GUI Guider. Update as below:

Add the new button labeled Delete User. Add the flag Hidden to it so that the button will be hidden

when the GUI app starts up.

Add the code line of calling the API gui_event_face_rec_action() with different event ID parameter

on the “Released” trigger in the Event Setting of all the buttons Registration, Recognition and

Delete User for triggering the events of face registration, face recognition and deleting user. Figure

8 shows the code for the event of the button Registriation:



3. Update the generated code from GUI Guider to the MCUXpresso project.

Replace the contents except for the folder images in the folder generated of the MCUXpresso project SW

with the corresponding ones in the folder generated of GUI Guider project SW.

Note: For more details about the modifications introduced above, check the example software at
https://mcuxpresso.nxp.com/appcodehub.

Verifications with the example project

To get the example software package containing the resources and tools for this application note, visit:
https://mcuxpresso.nxp.com/appcodehub. Open the example project on MCUXpresso IDE. Build and program
the .axf file to the address 0x30000000 and program the resource bin file camera_preview_resource.bin to the
address 0x30800000.

The LVGL GUI face recognition example works normally as below:

Preview: With power up, the video streams captured by the camera shows on the specific area of camera

preview on the GUI screen. The status label displays “Preview…”. For details, see Figure 3. The button Delete

User is hidden. When clicking the area outside the buttons and images, it shows the preview state as the above

after the face registration or recognition action ends.

Registration:

tartup: When the Registration button is clicked, the face registration starts. The status label changes to

display “Registration…”, the face guide rectangle shows blue, and the progress bar starts showing the

progress. Make sure the user’s face showing into the blue face guide rectangle for registration.

uccess: The status label shows “Registration…OK” and the registered user ID number, the face guide

rectangle becomes red if the face registration is successful before the progress shows full on the bar.

Failure -> Time out: The status label shows “Registration…Time out” if the face registration is still failed

when the progress shows full on the bar.

Failure -> Duplication: The status label shows “Registration…Failed”, the face guide rectangle becomes

green if the registered face is recognized before the progress shows full on the bar.

ecognition:

Startup: When the Recognition button is clicked, the face recognition starts. The status label changes to

display “Recognition…”, the face guide rectangle shows blue, and the progress bar starts showing the

progress. Make sure the user’s face is shown into the blue face guide rectangle for registration.

uccess: The status label shows “Recognition…OK” and the recognized user ID number, the face guide

rectangle becomes green if the face recognition is successful before the progress shows full on the bar.

https://mcuxpresso.nxp.com/appcodehub
https://mcuxpresso.nxp.com/appcodehub


At the point, the button Delete User appears. It means that the user is allowed to be deleted only when it

is recognized.

ailure: The status label shows “Recognition…Time out” if the face recognition is still failed when the

progress shows full on the bar.

Delete User: When the button “Delete User” is clicked, after the face recognition is successful, the status label

changes to display “Delete User…OK” with the face guide rectangle becoming blue and the progress showing

full on the bar. The button Delete User is hidden again. The recognized face/user is deleted from the database.

It means this face/user cannot be recognized until is registered again.

Note about the source code in the document
Example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2024 NXP Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following

disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the

following disclaimer in the documentation and/or other materials must be provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote

products derived from this software without specific prior written permission

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Revision history

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still under internal review and subject to formal
approval, which may result in modifications or additions. NXP Semiconductors does not give any representations
or warranties as to the accuracy or completeness of information included in a draft version of a document and
shall have no liability for the consequences of use of such information.

Disclaimer

Limited warranty and liability — Information in this document is believed to be accurate and reliable.



However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to

the accuracy or completeness of such information and shall have no liability for the consequences of use of

such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an

information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential

damages (including – without limitation -lost profits, lost savings, business interruption, costs related to the

removal or replacement of any products or rework charges) whether or not such damages are based on tort

(including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’

aggregate and cumulative liability towards customer for the products described herein shall be limited in

accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published

in this document, including without limitation specifications and product descriptions, at any time and without

notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable

for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death

or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for

inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such

inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes

only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the

specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP

Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or

customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors

product is suitable and fit for the customer’s applications and products planned, as well as for the planned

application and use of customer’s third party customer(s). Customers should provide appropriate design and

operating safeguards to minimize the risks associated with their applications and products. NXP

Semiconductors does not accept any liability related to any default, damage, costs or problem which is based

on any weakness or default in the customer’s applications or products, or the application or use by customer’s

third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications

and products using NXP Semiconductors products in order to avoid a default of the applications and the

products or of the application or use by customer’s third party customer(s). NXP does not accept any liability in

this respect.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general

terms and conditions of commercial sale, as published at https://www.nxp.com/profile/terms, unless otherwise

agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and

conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying

the customer’s general terms and conditions with regard to the purchase of NXP Semiconductors products by

customer.

Export control — This document as well as the item(s) described herein may be subject to export control

regulations. Export might require a prior authorization from competent authorities.



Suitability for use in non-automotive qualified products  — Unless this document expressly states that this

specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It

is neither qualified nor tested in accordance with automotive testing or application requirements. NXP

Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive

equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive

specifications and standards, customer (a) shall use the product without NXP Semiconductors’ warranty of the

product for such automotive applications, use and specifications, and (b) whenever customer uses the product

for automotive applications beyond NXP Semiconductors’ specifications such use shall be solely at customer’s

own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product

claims resulting from customer design and use of the product for automotive applications beyond NXP

Semiconductors’ standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including the legal information in that

document, is for reference only. The English version shall prevail in case of any discrepancy between the

translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may

support established security standards or specifications with known limitations. Customer is responsible for the

design and operation of its applications and products throughout their lifecycles to reduce the effect of these

vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other open

and/or proprietary technologies supported by NXP products for use in customer’s applications. NXP accepts no

liability for any vulnerability. Customer should regularly check security updates from NXP and follow up

appropriately. Customer shall select products with security features that best meet rules, regulations, and

standards of the intended application and make the ultimate design decisions regarding its products and is

solely responsible for compliance with all legal, regulatory, and security related requirements concerning its

products, regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the
investigation, reporting, and solution release to security vulnerabilities of NXP products.
NXP B.V. — NXP B.V. is not an operating company and it does not distribute or sell products.

Trademarks
Notice: All referenced brands, product names, service names, and trademarks are the property of their respective
owners.

NXP — wordmark and logo are trademarks of NXP B.V.

AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex,
DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates,
Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, μVision, Versatile — are trademarks
and/or registered trademarks of Arm Limited (or its subsidiaries or affiliates) in the US and/or elsewhere. The
related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights
reserved.

i.MX — is a trademark of NXP B.V.

J-Link — is a trademark of SEGGER Microcontroller GmbH.

Microsoft, Azure, and ThreadX — are trademarks of the Microsoft group of companies.



Please be aware that important notices concerning this document and the product(s) described herein, have been
included in section ‘Legal information’.

© 2024 NXP B.V.
For more information, please visit: https://www.nxp.com

Date of release: 19 April 2024

Document identifier: AN14263

FAQ

Q: What is the main purpose of this product? 
A: The main purpose is to enable face recognition function using an AI&ML vision algorithm model with a simple
LVGL GUI example on the SLN-TLHMI-IOT board.

Q: How can developers benefit from this application note? 
A: Developers can learn how to implement face recognition on the framework step by step using the provided
example and understand the device managers, HAL devices, and event mechanisms involved.

Documents / Resources

NXP AN14263 Implement LVGL GUI Face Recognition on Framewor  [pdf] User Guide
AN14263 Implement LVGL GUI Face Recognition on Framewor, AN14263, Implement LVGL GU
I Face Recognition on Framewor, LVGL GUI Face Recognition on Framewor, Face Recognition o
n Framewor, Recognition on Framewor, Framewor

References

 Application Code Hub

 Application Code Hub

User Manual

Manuals+, Privacy Policy

This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos are registered trademarks owned by Bluetooth
SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of these marks on this website does not imply any affiliation with or endorsement.

https://www.nxp.com
https://manuals.plus/m/028955d0f496368b9ce25ba6d83d515f1fab238533524f308f42612ccf2ad5fe
https://manuals.plus/m/028955d0f496368b9ce25ba6d83d515f1fab238533524f308f42612ccf2ad5fe_optim.pdf
http://mcuxpresso.nxp.com/appcodehub
https://mcuxpresso.nxp.com/appcodehub
https://manual.tools/?p=13283264#MTA0LjI4LjIzNC4xNzg7Ozs7
https://manuals.plus/
https://manuals.plus/privacy-policy

	NXP AN14263 Implement LVGL GUI Face Recognition on Framewor User Guide
	NXP AN14263 Implement LVGL GUI Face Recognition on Framewor
	Product Information
	Product Usage Instructions
	Overview
	Development environment
	Vision architecture on framework
	Implement face recognition on the framework
	Verifications with the example project
	Legal information
	FAQ
	Documents / Resources
	References



