
Home » NXP » NXP AN14093 Fast Boot Falcon Mode Kernel User Guide  

NXP AN14093 Fast Boot Falcon Mode Kernel User Guide

NXP AN14093 Fast Boot Falcon Mode Kernel User Guide

Manuals+ —  User Manuals Simplified.

https://manuals.plus/#content
https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/nxp
https://manuals.plus/nxp/an14093-fast-boot-falcon-mode-kernel-manual.pdf


Contents
1  Introduction
2  Software environment
3  Hardware setup and equipment
4  General description
5  Measurements
6  Prerequisites
7  Build the images
8  Build the Linux kernel
9  Write the binaries on the SD card
10  Bootloader optimizations
11  Default boot mode
12  Falcon mode implementation
13  Memory map
14  Kernel space optimizations
15  User space optimizations
16  Results
17  Note about the source code in the
document
18  Revision history
19  Legal information
20  Trademarks
21  Documents / Resources

21.1  References

Introduction

This document guides how to reduce the boot time for the:

i.MX 8M family (i.MX 8M Mini LPDDR4 EVK, i.MX 8M Nano LPDDR4 EVK, and i.MX 8M Plus LPDDR4 EVK)

i.MX 9 family (i.MX 93 LPDDR4 EVK) The objectives of this document are as follows:

Bootloader optimizations

Linux kernel and user space optimizations

Comparison between default and improved boot time on all platforms

Software environment

An Ubuntu 20.04 PC is assumed. Linux board support package (BSP) release 6.1.22_2.0.0 is used in the
optimization process.

The following prebuild images are used:

i.MX 8M Mini:  imx-image-full-imx8mmevk.wic

i.MX 8M Nano: imx-image-full-imx8mnevk.wic

i.MX 8M Plus:  imx-image-full-imx8mpevk.wic

i.MX 93: imx-image-full-imx93evk.wic

Write the prebuild image on the SD card using the below command:
$ sudo dd if=.wic of=/dev/sd bs=1M status=progress conv=fsync

https://manuals.plus/#introduction
https://manuals.plus/#software_environment
https://manuals.plus/#hardware_setup_and_equipment
https://manuals.plus/#general_description
https://manuals.plus/#measurements
https://manuals.plus/#prerequisites
https://manuals.plus/#build_the_images
https://manuals.plus/#build_the_linux_kernel
https://manuals.plus/#write_the_binaries_on_the_sd_card
https://manuals.plus/#bootloader_optimizations
https://manuals.plus/#default_boot_mode
https://manuals.plus/#falcon_mode_implementation
https://manuals.plus/#memory_map
https://manuals.plus/#kernel_space_optimizations
https://manuals.plus/#user_space_optimizations
https://manuals.plus/#results
https://manuals.plus/#note_about_the_source_code_in_the_document
https://manuals.plus/#revision_history
https://manuals.plus/#legal_information
https://manuals.plus/#trademarks
https://manuals.plus/#documents_resources
https://manuals.plus/#references


Note: Check your card reader partition and replace sd with your corresponding partition.

Hardware setup and equipment

Development kit NXP i.MX 8MM EVK LPDDR4

Development kit NXP i.MX 8MN EVK LPDDR4

Development kit NXP i.MX 8MP EVK LPDDR4

Development kit NXP i.MX 93 EVK for 11×11 mm LPDDR4

microSD card: SanDisk Ultra 32 GB micro secure digital high capacity (SDHC) I Class 10 was used for the

current experiment

micro-USB (i.MX 8M) or Type-C (i.MX 93) cable for debug port

General description

This section describes an overview of the typical modifications required to achieve shorter boot times.

Reduce the bootloader time
You can opt for either of the following two ways to reduce the bootloader time.

Remove the boot delay — Saves about two seconds compared to default configuration while requiring

minimal changes. It leads to U-Boot skipping the wait for the keypress stage during boot.

Implement the Falcon mode — Saves about four seconds compared to the default configuration. It enables

the second program loader (SPL), a part of U-Boot to load the kernel directly, skipping the full U-Boot.

Reduce the Linux kernel boot time

Reduce console messages — Saves about three seconds. Add quiet to the kernel command line.

Slim down the kernel by removing drivers and filesystems —  By default, the kernel image contains a lot of

drivers and filesystems (ex: UBIFS) to enable most of the functionalities supported for the board. The list of

included drivers and filesystems can be trimmed according to your use case.

Reduce the user-space boot time

Change the running order in the initialization Systemd scripts — Saves about 600 ms. Launch the desired

process as soon as possible, considering its dependencies

Measurements

The scope of the measurements is between the board POR (Power-On Reset) and the start of the INIT process.

The setup used for the following measurements is described in the Boot Time Measurements Methodology
document.

Table 1. Measured intervals



Time point Interval between pulses Location of the pulse Boot stag
es

BootROM nRST -> before ddr_init() board/freescale/<board>/spl.c/bo
ard_init_ f()

SPLDDR initialization before ddr_init() -> after ddr_init(
)

board/freescale/<board>/spl.c/bo
ard_init_ f()

SPL initialization 
+ Load U-Boot im
age

after ddr_init() -> before
image_entry()

common/spl/spl.c/jump_to_image
_no_ args()

U-Boot initializati
ons (init_sequenc
e_f)

before image_entry() -> start init
_ sequence_ r common/board_r.c/board_init_r()

U-BOOT

U-Boot initializati
ons (init_sequenc
e_r)

start init_sequence_r -> u-boot 
main_ loop common/main.c

Boot sequence u-boot main_loop -> before load
_image include/configs/<board>.h

Kernel image loa
d

before load_image -> after load_
image include/configs/<board>.h

Kernel boot until I
NIT process after load_image -> /sbin/init get the timestamp during Kernel 

boot Kernel

Prerequisites

In this section, the software needed to compile the U-Boot and the Linux kernel in a standalone environment is
described.

Install the required dependencies

A series of dependencies, including an ARM64 cross-compiler, are required for this guide.
$ sudo apt install flex bison libssl-dev gcc-aarch64-linux-gnu u-boot-tools libncurses5-dev libncursesw5-dev uuid-
dev gnutls-dev

Next, download the required sources. Place them all in the same directory.

Download imx-mkimage

mkimage is a tool, which combines the SPL, U-Boot proper, ATF, and DDR firmware into a single image, resulting
in the U-Boot image to be flashed on the SD card.

$ git clone https://github.com/nxp-imx/imx-mkimage
$ cd imx-mkimage
$ git checkout lf-6.1.22-2.0.0

Download ATF

$ git clone https://github.com/nxp-imx/imx-atf

https://github.com/nxp-imx/imx-mkimage
https://github.com/nxp-imx/imx-atf


$ cd imx-atf
$ git checkout lf-6.1.22-2.0.0

Download U-Boot

$ git clone https://github.com/nxp-imx/uboot-imx
$ cd uboot-imx
$ git checkout lf-6.1.22-2.0.0

Download Linux kernel

$ git clone https://github.com/nxp-imx/linux-imx
$ cd linux-imx
$ git checkout lf-6.1.22-2.0.0

Download the double data rate (DDR) firmware

$ wget https://www.nxp.com/lgfiles/NMG/MAD/YOCTO/firmware-imx-8.20.bin
$ chmod +x firmware-imx-8.20.bin
$ ./firmware-imx-8.20.bin

[Only for i.MX 93] Download the EdgeLock Secure Enclave (ELE) firmware

$ wget https://www.nxp.com/lgfiles/NMG/MAD/YOCTO/firmware-sentinel-0.9.bin
$ chmod +x firmware-sentinel-0.9.bin
$ ./firmware-sentinel-0.9.bin

Build the images

Optionally, to check whether the sources and the prerequisites were downloaded correctly, execute the following
steps. Otherwise, skip for now and implement Section 7 “Bootloader optimizations” and Section 8 “Kernel
space optimizations”.

Build the Arm Trusted Firmware

$ CROSS_COMPILE=aarch64-linux-gnu- make PLAT= bl31 Where can have the following values: imx8mn,
imx8mm, imx8mp, or imx93. 
The generated binary is located in the build//release/ directory.

Build the U-Boot

1.  Copy bl31.bin from ATF (build//release/) to imx-mkimage//

2. Copy all lpddr4* files from firmware/ddr/synopsys/ of the firmware-imx package to imxmkimage//.

3. [Only for i.MX 93] Copy the image of the ELE firmware container mx93a0-ahab-container.img of the firmware-

sentinel to imx-mkimage/iMX9/.

4. Compile the U-Boot.

$ cd uboot-imx $ make distclean

$ ARCH=arm CROSS_COMPILE=aarch64-linux-gnu- make

$ CROSS_COMPILE=aarch64-linux-gnu- make -j

https://github.com/nxp-imx/uboot-imx
https://github.com/nxp-imx/linux-imx
https://www.nxp.com/lgfiles/NMG/MAD/YOCTO/firmware-imx-8.20.bin
https://www.nxp.com/lgfiles/NMG/MAD/YOCTO/firmware-sentinel-0.9.bin


$(nproc –all)

To build U-Boot without Falcon support (default boot mode to check that everything compiles), use the following

.

1. imx8mm_evk_defconfig for i.MX 8MM

2. imx8mn_evk_defconfig for i.MX 8MN

3. imx8mp_evk_defconfig for i.MX 8MP

4. imx93_11x11_evk_defconfig for i.MX 93 For the Falcon mode, the is (use this defconfig file only after

Section 7.3 “Falcon mode implementation”).

5. imx8mm_evk_falcon_defconfig for i.MX 8MM

6. imx8mn_evk_falcon_defconfig for i.MX 8MN

7. imx8mp_evk_falcon_defconfig for i.MX 8MP

8. imx93_11x11_evk_falcon_defconfig for i.MX 93

5. Copy u-boot*.bin and spl/u-boot-spl*.bin into imx-mkimage//.

6. Copy imx8mm-evk.dtb (for i.MX 8M Mini LPDDR4 EVK) or imx8mn-evk.dtb (for i.MX 8M Nano LPDDR4 EVK) or

imx8mp-evk.dtb (for i.MX 8M Plus LPDDR4 EVK) or imx93-11×11-evk.dtb for (i.MX 93 11×11 LPDDR4 EVK)

from uboot-imx/arch/arm/dts/ to imx-mkimage//.

7. Copy mkimage from uboot-imx/tools/ into imx-mkimage//, renaming into mkimage_uboot.

$ cp uboot-imx/tools/mkimage imx-mkimage//mkimage_uboot

8. Generate the complete U-Boot image:  flash.bin.

$ cd imx-mkimage # for i.MX 8M* 

$ make SOC= flash_evk # for i.MX 93 

$ make SOC=iMX9 flash_singleboot

Where can take the following values: iMX8MM, iMX8MN, iMX8MP.

Build the Linux kernel

$ cd linux-imx
$ ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- make imx_v8_defconfig
$ ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- make -j $(nproc –all) all

The resulted binary Image is located in arch/arm64/boot directory.

Write the binaries on the SD card

To check that the build is correct, write the resulted binaries on the SD card and boot the board.

Write the U-Boot image:

$ sudo dd if=flash.bin of=/dev/sd bs=1k seek= conv=fsync 

Where is:

32 – for i.MX 8M Nano, i.MX 8M Plus and i.MX 93

33 – for i.MX 8M Mini

Write the Linux Kernel:

$ sudo mount /dev/sd1 /mnt 

$ cp Image /mnt

$ umount /mnt



Bootloader optimizations

This chapter includes the following information.

Section 7.1 “Default boot mode”

Section 7.2 “Falcon mode”

Section 7.3 “Falcon mode implementation”

Section 7.4 “Memory map”

Section 7.5 “Function calls during the Falcon mode”

Default boot mode

Figure 1 describes the default boot sequence. After power on or reset, i.MX 8M executes the Boot ROM (the
primary program loader), stored in its read-only memory (ROM).

Boot ROM configures the system-on-chip (SoC) by performing basic peripheral initializations such as Phase
Locked Loops (PLLs), clock configurations, memory initialization (SRAM). Then it finds a boot device from where it
loads a bootloader image, which can include the following components: U-Boot SPL, ATF, U-Boot, and so on.

A typical U-Boot image does not fit inside the internal SRAM and therefore is split into two parts: secondary
program loader (SPL) and U-Boot proper.

SPL is the first stage of the bootloader, a smaller preloaded that shares sources as U-Boot, but with a minimal set
of code that fits into SRAM. SPL is loaded into SRAM. It configures and initializes some peripherals and, most
importantly, dynamic random-access memory (DRAM). Later, it loads the ATF and U-Boot proper into the DRAM.
The final step is to jump to ATF, which will, in turn, jump to U-Boot proper.

Arm Trusted Firmware (ATF), included recently in the i.MX8* family, provides a reference trusted code base for
the Armv8 architecture. It implements various Arm interface standards, including the Power State Coordination
Interface (PSCI). The binary is typically included in the bootloader binary. It is started in the early stages of U-Boot.
Without ATF, the kernel cannot set up the services, which must be executed in the Secure World environment.

U-Boot proper is the second stage bootloader. It offers a flexible way to load and start the Linux kernel. Also, it
provides a minimal set of tools to interact with the hardware on the board via a command-line interface. It runs
from DRAM and initializes the additional hardware devices. For example, network, USB, and DSI/CSI. Then, it
loads and prepares the device tree (FDT). The main task handled by the U-Boot is the loading and starting of the
kernel image itself.

Linux kernel runs from DRAM and takes over the system completely. The U-Boot has no longer control over the
system from this point onward.

Falcon mode
Falcon mode is a feature in U-Boot that enables fast booting by allowing SPL to start the Linux kernel.
It completely skips the U-Boot loading and initialization, with the effect of reducing the time spent in the
bootloader.

Figure 2 illustrates the Falcon mode booting sequence.



To implement this mode, perform the following actions:

Activate some specific configurations for Falcon.

Prepare the Flattened Device Tree (FDT) in advance.

Configure ATF to jump to kernel.

Generate the kernel flattened image tree (FIT) image containing the ATF and the kernel image.

Falcon mode implementation

For ease of implementation, a series of patches has been prepared for enabling the Falcon mode.
Download the associated software AN14093SW.zip to get the patches, and perform the following steps.

Apply the U-Boot patch:
$ cd uboot-imx
$ git am 0001-Enable-Fast-Boot-on-i.MX-8M-Family-and-i.MX-93.patch

This patch creates the Falcon configuration files for each platform (i.MX 8M and i.MX 93), which can be found in
the uboot-imx/configs/ directory, under the name: _falcon_ defconfig. The configuration files are based on the
default ones _defconfig, to which Falcon support is added as follows.

Enabled parameters [=y]

CONFIG_SPL_SERIAL

CONFIG_CMD_SPL — Enables spl export command in U-Boot; required for step 15.

CONFIG_SPL_MMC — Enables SPL to read from MMC using the SPL MMC API.

CONFIG_MMC_BROKEN_CD [only for i.MX 93]

CONFIG_SPL_FS_FAT — Enables SPL to read from FAT partition.

CONFIG_SPL_LOAD_FIT

CONFIG_FIT

CONFIG_SPL_OS_BOOT — Activates the Falcon mode.

CONFIG_ SPL_MMC_IO_VOLTAGE and CONFIG_SPL_MMC_UHS_SUPPORT — Enable MMC high speed

transfer for SPL, used to reduce the loading time for the Kernel image (*not functional for i.MX 8MM

since SPL DM is not supported due to OCRAM size limitation).

CONFIG_LTO [only for i.MX 8MN] — Reduces the binary size by adding link-time optimizations. Required on

i.MX 8M Nano to ensure the SPL image with FAT support fits.

Disabled parameter [=n]

CONFIG_SPL_BOOTROM_SUPPORT

Set parameters

CONFIG_SYS_SPL_ARGS_ADDR

With:

0x43000000 for i.MX 8MN, i.MX 8MM and i.MX 8MP

0x83000000 for i.MX 93



CONFIG_SPL_FS_LOAD_PAYLOAD_NAME with u-boot.itb

CONFIG_SPL_FS_LOAD_KERNEL_NAME with Image.itb

CONFIG_SPL_FS_LOAD_ARGS_NAME with:

imx8mm-evk-falcon.dtb for i.MX 8MM

imx8mn-evk-falcon.dtb for i.MX 8MN

imx8mp-evk-falcon.dtb for i.MX 8MP

imx93-11×11-evk-falcon.dtb for i.MX 93

CONFIG_CMD_SPL_WRITE_SIZE with 0xC000

CONFIG_FIT_EXTERNAL_OFFSET=0x3000 [only for i.MX 93]

In addition, the patch implements the spl_start_uboot() function, located in uboot-imx/board/ freescale//spl.c,

where is: imx8mm_evk, imx8mn_evk, imx8mp_evk or imx93_evk. This function checks if SPL should start the

kernel or U-Boot. If the ‘c’ key is pressed during boot, the function returns 1, meaning that U-Boot must be

started. Otherwise, SPL should start the kernel. To bring it up in the operational state in which Ethernet MAC

can interact with PHY, the PHY must be reset from SPL for i.MX 8M Family. This is also added when applying

the U-Boot patch. The PHY is reset in the board_init_r() function, located in the uboot-imx/common/spl/spl.c

file.

Apply the ATF patch:
$ cd imx-atf 
$ git am 0001-Add-support-to-jump-to-Kernel-directly-from-ATF.patch
The patch adds support for jumping directly to the kernel. Since ATF does not support to jump directly to kernel on
NXP platforms, the FDT address must be passed as an argument, in bl31_early_platform_setup2() function,
located in imx-atf/plat/imx/imx8m// _bl31_setup.c for i.MX8M Family and imx-
atf/plat/imx/imx93/imx93_bl31_setup.c for i.MX93.

Apply the mkimage patch:

$ cd imx-mkimage 
$ git am 0001-Add-scripts-for-Fast-Boot-implementation-for-i.MX8M-.patch

This patch adds the “os” property to uboot-1 node of the U-Boot FIT image source (u-boot.its) .This property is
required when loading U-Boot (the case when spl_start_uboot() returns 1) while Falcon Mode is enabled.
Otherwise, the U-Boot fails to boot.
In addition, the patch adds the script, which generates the U-Boot FIT image for i.MX 93 (since in this version does
not exist): imx-mkimage/iMX9/mkimage_fit_atf.sh.
The second script added by this patch is the one used to generate the kernel FIT image (ATF + kernel) – needed
for the Falcon mode implementation. This script is used for both i.MX 8M Family and i.MX 93.

1. Build the ATF as stated in  Section 5.1. Copy the modified ATF binary into imx-mkimage//.

2. Build the bootloader image as stated in Section 5.2 – Falcon Mode. Write the resulted U-Boot binary according

to Section 6.

3. [Only for i.MX93] Generate the U-Boot FIT image. When building the flash.bin image, the u-boot.itb FIT image

is not built automatically for i.MX93, since there is no script that generates it.

$ cd imx-mkimage/iMX9

$ DEK_BLOB_LOAD_ADDR=0x80400000 TEE_LOAD_ADDR=0x96000000

ATF_LOAD_ADDR=0x204e0000 ./mkimage_fit_atf.sh imx93-11×11-evk.dtb > u-boot.its

$ ./mkimage_uboot -E -p 0x3000 -f u-boot.its u-boot.itb

4. Copy the u-boot.itb binary located in imx-mkimage/ on the first (FAT) partition of the SD card.



5. Before building the Linux kernel, you may want to optimize it according to Section 8.2 “Remove the

unnecessary drivers and file systems”. Build the Linux kernel according to Section 5.3 “Build the Linux kernel”.

6. Generate the kernel FIT Image. The FIT image contains the ATF and the kernel Image. This is loaded during

Falcon mode by SPL. Since SPL does not load the ATF image in the Falcon mode, the ATF must be included

into the FIT image.

To prepare the FIT image (Image.itb), the mkimage_fit_atf_kernel.sh script is used. Copy the kernel Image to

the imx-mkimage// directory:

$ cp linux-imx/arch/arm64/boot/Image imx-mkimage/

Generate the FIT image:

For i.MX8M

$ cd imx-mkimage/iMX8M

# for i.MX8MM

$ ATF_LOAD_ADDR=0x00920000 KERNEL_LOAD_ADDR=0x40200000 ../mkimage_fit_atf_kernel.sh

> Image.its

# for i.MX8MN

$ ATF_LOAD_ADDR=0x00960000 KERNEL_LOAD_ADDR=0x40200000 ../mkimage_fit_atf_kernel.sh

> Image.its

# for i.MX8MP

$ ATF_LOAD_ADDR=0x00970000 KERNEL_LOAD_ADDR=0x40200000 ../mkimage_fit_atf_kernel.sh

> Image.its

# To generate the FIT binary run:

$ ./mkimage_uboot -E -p 0x3000 -f Image.its Image.itb

For i.MX93

$ cd imx-mkimage/iMX9

$ ATF_LOAD_ADDR=0x204e0000 KERNEL_LOAD_ADDR=0x80200000 ../

mkimage_fit_atf_kernel.sh > Image.its

# To generate the FIT binary run:

$ ./mkimage_uboot -E -p 0x3000 -f Image.its Image.itb

7. Copy the resulted Image.itb file to the first (FAT) partition of the SD card.

8. Prepare the Flattened Device Tree and write it on the SD card. When booting in Falcon Mode, a key step is to

prepare the device tree. Usually, U-Boot does FDT fixups when booting Linux. It means that to the initial device

tree, U-Boot adds the kernel arguments and the memory node, among other modifications. These arguments

can be found in one of the configuration files: uboot-imx/configs/_evk.h, under the name bootargs. They specify

console parameters and tell the kernel where to find the root file system. Where is: imx8mm, imx8mn, imx8mp

or imx93. There are two methods of generating the Flattened Device Tree:

Method 1: By manually adding the required fixups to the device tree

Method 2: By letting U-Boot to do the fixups and save the resulted device tree Method 2 is more general

and requires less knowledge, but it is also lengthier and with several other steps.

Method 1: You can try generating the FDT manually, by adding the bootargs and the memory node to the

kernel device tree. For example, for i.MX 93 create the imx93-11×11-evk-falcon.dts file in

linuximx/arch/arm64/boot/dts/freescale and add the code lines from below. The memory node is copied

from the U-Boot’s DTS. The included device tree can be changed according to your use case. In this

case, we are using the default kernel device tree.



#include “imx93-11×11-evk.dts” / { memory { reg = <0x00 0x80000000 0x00 0x80000000>; device_type =

“memory”; }; chosen { bootargs = “console=ttyLP0,115200 earlycon root=/dev/mmcblk1p2 rootwait rw”; };

};

Recompile the kernel to generate the associated device tree binary and copy the resulted imx93-11×11-

evk-falcon. dtb file to the first partition of the SD card.

If you chose the first method, the next step is to boot the board and the Falcon mode should be functional.

Method 2: FDT can be prepared by using a spl export command in the U-Boot stage. To enter in U-boat,

keep the C key pressed. The command is equivalent to running boom until the device tree fixup is

done. The device tree in memory is the one needed for the Falcon mode. This image has to be saved to

the SD card boot partition.

[Prerequisites]

a. Build the kernel legacy u Image file from Image.

Image is a special image file that adds a 64-byte header before the actual kernel Image, where loader

information is specified (load address, entry point, OS type, and so on).

This type of image is needed by the spl command, to generate the Flattened Device Tree.

For i.MX 8M

$ cd linux-imx/arch/arm64/boot

$ mkimage -A arm -O linux -T kernel -C none -a 0x43FFFFC0

-e 0x44000000 -n “Linux kernel” -d Image uImage

Image Name: Linux kernel

Created: Wed Jul 26 14:12:09 2023

Image Type: ARM Linux Kernel Image (uncompressed)

Data Size: 31072768 Bytes = 30344.50 KiB = 29.63 MiB

Load Address: 43ffffc0

Entry Point: 44000000

For i.MX 93

$ cd linux-imx/arch/arm64/boot

$ mkimage -A arm -O linux -T kernel -C none -a 0x83FFFFC0

-e 0x84000000 -n “Linux kernel” -d Image uImage

Image Name: Linux kernel

Created: Wed Jul 26 14:14:09 2023

Image Type: ARM Linux Kernel Image (uncompressed)

Data Size: 31072768 Bytes = 30344.50 KiB = 29.63 MiB

Load Address: 83ffffc0

Entry Point: 84000000

Where:

A [Architecture]: To set architecture.

O [os]: To set the operating system.

T [image type]: To set the image type.

C [compression type]: To set the compression type.

n [image name]: To set image name to image name.

d [image data file]: To use image data from an image data file.

a [load address]: To set the load address with a hex number.

e [entry point]: To set the entry point with a hex number.



b. Copy the kernel uImage to the EXT2 partition of the SD card.

sudo mount /dev/sd2 /mnt 

$ sudo mkdir -p /mnt/home/root/.falcon 

$ sudo cp uImage /mnt/home/root/.falcon

$ sudo umount /mnt

To prepare the FDT using spl export command, perform the following steps.

1. Boot the board into U-Boot and stop it right before entering in the autoboot sequence. To enter in

U-Boot, the ‘c’ key must be pressed during boot. At this point, Falcon Mode fails since there is no

prepared FDT for Linux kernel on the SD card.

2. [Optional] If you need a different FDT from the default one, run the following command first. The file

must be on the FAT partition on the SD.

u-boot=> setenv fdtfile .dtb

3. Load the FDT into RAM.

u-boot=> run loadfdt

43801 bytes read in 15 ms (2.8 MiB/s)

4. Load the kernel uImage into RAM.

u-boot=> ext2load mmc 1:2 ${loadaddr} /home/root/.falcon/uImage

31072832 bytes read in 387 ms (76.6 MiB/s)

5. If you require the kernel boot-time optimizations as well, run the commands from Section 8.1 “Add

quiet”, step 2, before the next step.

6. Load the kernel boot arguments.

u-boot=> spl export fdt ${loadaddr} – ${fdt_addr_r}

## Booting kernel from Legacy Image at 80400000 …

Image Name: Linux kernel

Created: 2023-07-19 6:57:40 UTC

Image Type: ARM Linux Kernel Image (uncompressed)

Data Size: 31072768 Bytes = 29.6 MiB

Load Address: 83ffffc0

Entry Point: 84000000

Verifying Checksum … OK

## Flattened Device Tree blob at 83000000

Booting using the fdt blob at 0x83000000

Working FDT set to 83000000

Loading Kernel Image

Using Device Tree in place at 0000000083000000, end 000000008300db18

Working FDT set to 83000000

subcommand failed (err=-1)

subcommand failed (err=-1)

Using Device Tree in place at 0000000083000000, end 0000000083010b18

Working FDT set to 83000000

Argument image is now in RAM: 0x0000000083000000

Note: The difference between the start and the end addresses in bold above is the size of the

patched FDT in memory. Copy the resulted FDT from RAM to the FAT partition of the SD card



specifying the right copy size as the last parameter. In the example output above, that would be

0x83010b18 – 0x83000000 = 0x10b18.

# for i.MX 93

u-boot=> fatwrite mmc ${mmcdev}:${mmcpart} ${fdt_addr_r} imx93-11×11-

evk-falcon.dtb 0x10b18

Note: The name of the saved FDT must match the name set in the

CONFIG_SPL_FS_LOAD_ARGS_NAME variable in Step 1 from Section 7.3 “Falcon mode

implementation”. Otherwise, the SPL does not load the device tree in the DRAM and the board fails

to boot.

9. After reboot, by default, the board will boot in Falcon Mode.

Memory map

Figure 3 is the memory map during Falcon Mode for i.MX93.
BootROM loads SPL and the SPL runs from the on-chip RAM (OCRAM – the internal processor memory). SPL
initializes the dynamic RAM (DDR), loads the ATF into OCRAM, then loads the kernel device tree and the kernel
image into DDR. SPL has a reserved memory space in DDR, for malloc. This area must not be overwritten while in
SPL

Table 2 lists the addresses for the i.MX 8M family.

Table 2. i.MX 8M family addresses}

Platform SPL ATF Kernel Image Kernel DTB

i.MX 8M Mini 0x007e1000 0x00920000 0x40200000 0x43000000

i.MX 8M Nano 0x00912000 0x00960000 0x40200000 0x43000000

i.MX 8M Plus 0x00920000 0x00970000 0x40200000 0x43000000



Function calls during the Falcon mode
Figure 4 lists the important functions called during the SPL Falcon mode

Kernel space optimizations

This section lists the steps to Section 8.1 “Add quiet” and Section 8.2 “Remove the unnecessary drivers and file
systems”.

Add quiet
To reduce the kernel time by about a half, add the quiet argument in the kernel botargos. It suppresses the debug
messages during the Linux startup sequence.

Note: The device tree must be regenerated with the new bootargs, using the spl export command.

1. To enter in U-Boot, keep the C key pressed while booting.

2. Edit the mmcargs parameter by adding quiet.

u-boot=> edit mmcargs

edit: setenv bootargs ${jh_clk} console=${console} root=${mmcroot} quiet

u-boot=> saveenv

Saving Environment to MMC… Writing to MMC(1)… OK

3. Regenerate and save the device tree to the SD card as in  Section 7.3 “Falcon mode implementation”, step

14.

Remove the unnecessary drivers and file systems
Depending on your use case, you can slim down the kernel by removing unnecessary drivers and file systems.



You can analyze kernel functions during boot with biograph, a kernel feature that allows you to graph what
happens in the kernel during initialization.

To create bootgraph, perform the following steps:

1. Add initcall_debug to the kernel botargos.

a. To enter in U-Boot, keep the C key pressed while booting,

b. Edit the mmcargs parameter by adding initcall_debug

u-boot=> edit mmcargs

edit: setenv bootargs ${jh_clk} console=${console} root=${mmcroot} quiet

initcall_debug

u-boot=> saveenv

Saving Environment to MMC… Writing to MMC(1)… OK

2. Regenerate and save the device tree to the SD card as in Section 7.3 “Falcon mode implementation”, step 14.

3. Boot the board and get the kernel log

root@imx8mn-lpddr4-evk:~# dmesg > boot.log

The boot.log file contains data like the following log. The data can be analyzed on how much time each function

spend during kernel boot.

[2.583922] initcall deferred_probe_initcall+0x0/0xb8 returned 0 after 895357

[2.583955] calling genpd_power_off_unused+0x0/0x98 @ 1

[2.583977] initcall genpd_power_off_unused+0x0/0x98 returned 0 after 12 usec

[2.583984] calling genpd_debug_init+0x0/0x90 @ 1

[2.584312] initcall genpd_debug_init+0x0/0x90 returned 0 after 321 usecs

[2.584333] calling ubi_init+0x0/0x23c @ 1

[2.584627] initcall ubi_init+0x0/0x23c returned 0 after 286 usecs

4. Copy the resulted boot.log file on the host PC. Go back on the host PC and create the graph using the following

commands.

$ cd linux-imx/scripts

$ ./bootgraph.pl boot.log > boot.svg

You can obtain something like this and can analyze how the kernel boot time is used.

5. To disable a driver or a feature, update the kernel configuration.

For example, we disabled the debug from the kernel (that reduce the size of the image) and the UBI file system.

a. Run the following commands to enter the kernel minicontig.

$ cd linux-imx

$ ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- make imx_v8_defconfig

$ ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- make minicontig

From the menuconfig, disable CONFIG_UBIFS_FS and CONFIG_DEBUG_KERNEL, similar to

Section 7.3 “Falcon mode implementation”. The resulting .config file contains the following lines.

# CONFIG_UBIFS_FS is not set

# CONFIG_DEBUG_KERNEL is not set

b. Build the new kernel image.



$ ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- make all

c. Regenerate the kernel FIT image as in Section 7.3 “Falcon mode implementation”, step 13 and copy it

to an SD card boot (FAT) partition.

d. [Optional] If you want to use the modified kernel during normal boot, copy the new Image binary to the first

SD card boot partition.

User space optimizations

This section lists the steps to Section “Start an application before systemd” and Section “Change the
dependencies of a systemd unit”.

Start an application before systemd
If required, a program can be started before systemd.

1. Create a script /home/root/newinit.sh, which starts your program before systemd. Below is a simple

example of how to start your program before systemd. Replace the echo line with your desired application.

#!/bin/sh

echo “Early start” > /dev/kmsg

exec /lib/systemd/systemd

2. Make the script executable.

$ chmod +x newinit.sh

3. Link /sbin/init to your newinit.sh script.

$ ln -sf /home/root/newinit.sh /sbin/init 

Note: To return to the initial configuration, use the following command.

$ ln -sf /lib/systemd/systemd /sbin/init

4. Reboot the board and check the kernel log. Searching the “Early start” string in dmesg, shows that the

newinit.sh script is executed before the init process.

Change the dependencies of a systemd unit
The easiest way to reduce the time spent in user space is to reorder the sequence in which applications are run.
To start the service earlier, change the dependencies with which System operates.
On the board, open a /lib/systemd/system/.service file and change the unit dependencies. For example,
starting before local-fs-pre.target.
[Unit]
…
Before=local-fs-pre.target
Default Dependencies=no

If the command system-analyze is called with the blame argument Systemd also provides a utility called systemd-
analyze, which prints the services and their starting time.
$ systemd-analyze blame

To disable a service, you can use the systemctl disable command. To disable some services (especially the ones
systemd provides), use the systemctl mask command. However, take care when disabling services since the
system can depend on them to operate properly.

Results

Table 3. Initial boot time measurements



SPL U-Boot Kernel

Board BootR
OM

DDRiniti
alization

SPLinitiali
zations+ L
oad U-Boo
t image

U-Boot init
ializations 
(init_ sequ
ence_ f)

U-Boot init
ializations 
(init_ sequ
ence_ r)

Boot s
equenc
e

Kern
el im
age l
oad

ATF + Ke
rnel boot 
until INIT
process

Tot
al ti
me

(ms) (ms) (ms) (ms) (ms) (ms) (ms) (ms) (ms
)

i.MX 8M
N 161 241 162 363 790 2894 333 3506 845

0

i.MX 8M
P 162 301 175 373 1726 4181 345 3627 108

90

i.MX 8M
M 142 265 117 412 812 2970 396 5002 101

16

i.MX 93 369 111 117 628 1172 3271 412 3090 917
0

Table 4. Optimized boot time measurements

SPL Kernel

Board BootROM DDR initializatio
n

SPL initializatio
ns

Kernel Image 
Load

ATF + Kernel Bo
ot until INIT proc
ess

Total
time

(ms) (ms) (ms) (ms) (ms) (ms)

i.MX 8MN 203 240 86 376 1185 2090

i.MX 8MP 187 301 97 382 1237 2204

i.MX 8MM 139 265 63 1336 2956 4759

i.MX 93 374 111 89 366 1391 2330

1. CONFIG_DEBUG_KERNEL disabled, resulting in a smaller kernel image size => decreases kernel image

loading.

2. Kernel log messages are suppressed using quiet.

3. i.MX 8M Mini EVK does not come with an integrated Wi-Fi Module connected to the PCIe port (unlike i.MX 8M

Plus). Therefore, the PCIe PHY initialization consumes time waiting for an active link. If a Wi-Fi module is

attached to the PCIe interface, the kernel boot time decreases to 1215 ms, so the total boot time is 3018 ms.

Note about the source code in the document

The example code shown in this document has the following copyright and BSD-3-Clause license:

Copyright 2023 NXP Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

[1]
[2]

[3
]

[3]

https://manuals.plus/#_bookmark32
https://manuals.plus/#_bookmark33
https://manuals.plus/#_bookmark34
https://manuals.plus/#_bookmark34


1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following

disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the

following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote

products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Revision history

Table 5. Revision history

Revision numb
er Revision Date Description

1 09 October 2023 Initial release

Legal information

Definitions
Draft — A draft status on a document indicates that the content is still under internal review and subject to formal
approval, which may result in modifications or additions. NXP Semiconductors does not give any representations
or warranties as to the accuracy or completeness of information included in a draft version of a document and
shall have no liability for the consequences of use of such information.

Disclaimers
Limited warranty and liability — Information in this document is believed to be accurate and reliable. However,
NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the consequences of use of such information. NXP
Semiconductors takes no responsibility for the content in this document if provided by an information source
outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential
damages (including – without limitation – lost profits, lost savings, business interruption, costs related to the
removal or replacement of any products or rework charges) whether or not such damages are based on tort
(including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’
aggregate and cumulative liability towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in
this document, including without limitation specifications and product descriptions, at any time and without notice.



This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for
use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or
severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion
and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion
and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only.
NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified
use without further testing or modification. Customers are responsible for the design and operation of their
applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for
any assistance with applications or customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned,
as well as for the planned application and use of customer’s third party customer(s). Customers should provide
appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based
on any weakness or default in the customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and
products using NXP Semiconductors products in order to avoid a default of the applications and the products or of
the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general
terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and
conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to  applying the
customer’s general terms and conditions with regard to the purchase of NXP Semiconductors products by
customer. Export control — This document as well as the item(s) described herein may be subject to export control
regulations. Export might require a prior authorization from competent authorities.

Suitability for use in non-automotive qualified products —  Unless this document expressly states that this
specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is
neither qualified nor tested in accordance with automotive testing or application requirements. NXP
Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive
equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive
specifications and standards, customer (a) shall use the product without NXP Semiconductors’ warranty of the
product for such automotive applications, use and specifications, and (b) whenever customer uses the product for
automotive applications beyond NXP Semiconductors’ specifications such use shall be solely at customer’s own
risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims
resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.

Translations — A non-English (translated) version of a document, including the legal information in that
document, is for reference only. The English version shall prevail in case of any discrepancy between the
translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified vulnerabilities or may
support established security standards or specifications with known limitations. Customer is responsible for the
design and operation of its applications and products throughout their lifecycles to reduce the effect of these
vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other open
and/or proprietary technologies supported by NXP products for use in customer’s applications. NXP accepts no
liability for any vulnerability. Customer should regularly check security updates from NXP and follow up



appropriately. Customer shall select products with security features that best meet rules, regulations, and
standards of the intended application and make the  ultimate design decisions regarding its products and is solely
responsiblefor compliance with all legal, regulatory, and security related requirements concerning its products,
regardless of any information or support that may be provided by NXP.

NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the
investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP B.V. — NXP B.V. is not an operating company and it does not distribute or sell products.

Trademarks

Notice: All referenced brands, product names, service names, and trademarks are the property of their respective
owners.
NXP — wordmark and logo are trademarks of NXP B.V.
EdgeLock — is a trademark of NXP B.V.
i.MX — is a trademark of NXP B.V.
Microsoft, Azure, and ThreadX — are trademarks of the Microsoft group of companies.

Documents / Resources

NXP AN14093 Fast Boot Falcon Mode Kernel  [pdf] User Guide
AN14093 Fast Boot Falcon Mode Kernel, AN14093, Fast Boot Falcon Mode Kernel, Boot Falcon 
Mode Kernel, Falcon Mode Kernel, Mode Kernel

References

 Automotive, IoT & Industrial Solutions | NXP Semiconductors

 Our Terms And Conditions Of Commercial Sale | NXP Semiconductors

 GitHub - nxp-imx/imx-atf: i.MX ARM Trusted firmware

 GitHub - nxp-imx/imx-mkimage: i.MX Mkimage Bootloader Tool

 GitHub - nxp-imx/linux-imx: i.MX Linux kernel

 GitHub - nxp-imx/uboot-imx: i.MX U-Boot

 systemd-analyze(1) - Linux manual page

 i.MX 8M Mini Evaluation Kit | NXP Semiconductors

 i.MX 8M Nano Evaluation Kit | NXP Semiconductors

 i.MX 8M Plus Evaluation Kit | NXP Semiconductors

 i.MX 93 Evaluation Kit | NXP Semiconductors

https://manuals.plus/m/ab807a6c9ea8cbcfd649268ad330196ed5c162760da5a7d212ded13a4aa2a2ab
https://manuals.plus/m/ab807a6c9ea8cbcfd649268ad330196ed5c162760da5a7d212ded13a4aa2a2ab_optim.pdf
http://www.nxp.com
http://www.nxp.com/profile/terms
https://github.com/nxp-imx/imx-atf
https://github.com/nxp-imx/imx-mkimage
https://github.com/nxp-imx/linux-imx
https://github.com/nxp-imx/uboot-imx
https://man7.org/linux/man-pages/man1/systemd-analyze.1.html
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/evaluation-kit-for-the-i-mx-8m-mini-applications-processor:8MMINILPD4-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/evaluation-kit-for-the-i-mx-8m-nano-applications-processor:8MNANOD4-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/evaluation-kit-for-the-i-mx-8m-plus-applications-processor:8MPLUSLPD4-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-93-evaluation-kit:i.MX93EVK


 Embedded Linux for i.MX Applications Processors | NXP Semiconductors

 nxp.com/lgfiles/NMG/MAD/YOCTO/firmware-imx-8.19.bin

 nxp.com/lgfiles/NMG/MAD/YOCTO/firmware-imx-8.20.bin

 nxp.com/lgfiles/NMG/MAD/YOCTO/firmware-sentinel-0.9.bin

User Manual

Manuals+, Privacy Policy

This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos are registered trademarks owned by Bluetooth
SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of these marks on this website does not imply any affiliation with or endorsement.

https://www.nxp.com/design/software/embedded-software/i-mx-software/embedded-linux-for-i-mx-applications-processors:IMXLINUX
https://www.nxp.com/lgfiles/NMG/MAD/YOCTO/firmware-imx-8.19.bin
https://www.nxp.com/lgfiles/NMG/MAD/YOCTO/firmware-imx-8.20.bin
https://www.nxp.com/lgfiles/NMG/MAD/YOCTO/firmware-sentinel-0.9.bin
https://manual.tools/?p=11793589#MTA0LjI4LjIwMi4xNzk7Ozs7
https://manuals.plus/
https://manuals.plus/privacy-policy

	NXP AN14093 Fast Boot Falcon Mode Kernel User Guide
	Introduction
	Software environment
	Hardware setup and equipment
	General description
	Measurements
	Prerequisites
	Build the images
	Build the Linux kernel
	Write the binaries on the SD card
	Bootloader optimizations
	Default boot mode
	Falcon mode implementation
	Memory map
	Kernel space optimizations
	User space optimizations
	Results
	Note about the source code in the document
	Revision history
	Legal information
	Trademarks
	Documents / Resources
	References



