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Product Information

Specifications:

Product Name: NeRSP: Neural 3D Reconstruction for Reflective Objects with Sparse Polarized Images

Authors: Yufei Han, Heng Guo, Koki Fukai, Hiroaki Santo, Boxin Shi, Fumio Okura, Zhanyu Ma, Yunpeng Jia

Affiliations: Beijing University of Posts and Telecommunications, Osaka University, Peking University

Abstract: The NeRSP product offers improved shape reconstruction results for reflective surfaces compared to

existing methods.

Product Usage Instructions

1. Introduction

The NeRSP product is designed for the 3D reconstruction of reflective objects using sparse polarized images. It

overcomes challenges related to finding multiview correspondences and disentangling shape from radiance

under limited correspondences.

2. Related Work

NeRSP is inspired by Neural Radiance Fields (NeRF) and other neural 3D reconstruction methods. It models

surface shape implicitly via signed distance field (SDF) and utilizes differentiable sphere tracing and volume

rendering to improve shape reconstruction quality.

3. Polarimetric Image Formation Model

NeRSP incorporates a polarimetric image formation model to derive photometric and geometric cues for

reconstruction.

FAQ:

Q: What is the advantage of using NeRSP for 3D reconstruction?

A: NeRSP offers better shape reconstruction results for reflective surfaces compared to existing methods due



to its innovative approach using sparse polarized images.

Q: Is the NeRSP product suitable for diffuse surfaces?

A: While NeRSP is primarily designed for reflective surfaces, it can also provide convincing shape estimation

for diffuse surfaces where photometric consistency is valid across views.
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Abstract

We present NeRSP, a Neural 3D reconstruction technique for Reflective surfaces with Sparse Polarized images.
Reflective surface reconstruction is extremely challenging as specular reflections are view-dependent and thus
violate the multiview consistency for multiview stereo. On the other hand, sparse image inputs, as a practical
capture setting, commonly cause incomplete or distorted results due to the lack of correspondence matching. This
paper jointly handles the challenges of sparse inputs and reflective surfaces by leveraging polarized images. We
derive photometric and geometric cues from the polarimetric image formulation model and multiview azimuth
consistency, which jointly optimize the surface geometry modeled via implicit neural representation. Based on the
experiments on our synthetic and real datasets, we achieve state-of-the-art surface reconstruction results with only
6 views as input.

Introduction

Multiview 3D reconstruction is a fundamental problem in computer vision (CV) and has been extensively studied
for many years [14]. With the advancement of implicit surface representation [27, 28] and neural radiance fields
[22], recent multiview 3D reconstruction methods [5, 33, 38, 41] have made tremendous progress. Despite the
compelling shape recovery results, most multiview stereo (MVS) methods still rely heavily on finding
correspondence between views, which is particularly challenging for reflective surfaces and sparse input views.

For reflective surfaces, the view-dependent surface ap-
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Figure 1. Shape recoveries of a reflective surface from 6 sparse polarized images capturing (top rows). Our
NeRSP achieves a better shape reconstruction result compared to existing methods that either address sparse
inputs (S-VolSDF [35]) or reflective reflectance (PANDORA [9]).

Pearance breaks the photometric consistency assumption used in the correspondence estimation in MVS. To
address this problem, recent neural 3D reconstruction methods (e.g., Ref-NeuS [13], NeRO [19], and PANDORA
[9]) explicitly model the reflectance and simultaneously estimate the reflectance and environment maps via inverse
rendering. However, dense image acquisition under diverse views is required to faithfully handle the additional
unknowns besides shape, such as albedo, roughness, and environment map.

From sparse input views, it is often challenging to find sufficient multiview correspondences. Especially when
representing view-dependent reflectances, it is difficult to disentangle shape from radiance under a limited number
of correspondences, leading to shape-radiance ambiguity [40]. Recent neural 3D reconstruction methods for
sparse views (e.g., S-VolSDF [35] and SparseNeuS [20]) require regularization using photometric consistency,
which can be violated for reflective surfaces.

To address both problems, we propose to use sparse polarized images instead of RGB inputs. Specifically, we
propose NeRSP, a Neural 3D reconstruction method to recover the shape of Reflective surfaces from Sparse
Polarized images. We use the angle of polarization (AoP) derived from polarized images, which directly reflects
the azimuth angle of the surface shape up to π and π/2 ambiguities. This geometric cue is known to enable
multiview shape reconstruction regardless of surface reflectance properties, but the estimated shape based solely
on the geometric cue is ambiguous [6] under sparse view settings. On the other hand, a photometric cue from the
polarimetric image formation model [2] helps neural surface reconstruction (e.g., PANDORA [9]) by minimizing the
difference between re-rendered and captured polarized images. However, the estimated shape based solely on
the photometric cue is also ill-posed under sparse inputs due to the shape-radiance ambiguity. Unlike the existing
polarimetric-based method PANDORA [9] considering the photometric cue only, our NeRSP shows the integration
of both geometric and photometric cues effectively narrows down the solution space for surface shape, shown to
be effective in reflective surface reconstruction based on sparse inputs, as visualized in Fig. 1.

Besides the proposed NeRSP for 3D reconstruction, we also built a Real-world MultiView Polarized image dataset
containing 6 objects with aligned ground-truth (GT) 3D meshes, named RMVP3D. Different from existing datasets
such as the PANDORA dataset [9] providing polarized images only, the aligned GT meshes and the surface
normals for each view allow a quantitative evaluation of multiview polarized 3D reconstruction.

To summarize, we advance multiview 3D reconstruction by proposing



NeRSP, the first method proposing to use the polarimetric information for reflective surface reconstruction under

sparse views;

a comprehensive analysis of the photometric and geometric cue derived from polarized images; and

RMVP3D, the first real-world multiview polarized image dataset with GT shapes for quantitative evaluation.

Related work

Multiview 3D reconstruction has been extensively studied for decades. Neural Radiance Fields (NeRF) [3, 22, 40]
have achieved great success in novel view synthesis in recent years. Inspired by NeRF, neural 3D reconstruction
methods [24] are proposed, where the surface shape is modeled implicitly via a signed distance field (SDF).
Beginning from DVR [24], the followed-up methods improve the shape reconstruction quality via differentiable
sphere tracing [37], volume rendering [26, 33, 38], or detail-enhanced shape representation [18, 34]. These
methods can achieve convincing shape estimation for diffuse surfaces where photo-metric consistency is valid
across views.

Reconstruction for reflective surfaces is challenging as the photometric consistency is invalid. Existing methods [5,
41, 42] explicitly model the view-dependent reflectance and disentangle the shape, spatially-varying il-luminations,
and reflectance properties like albedo and roughness. However, the estimates of the above variables are
unsatisfactory as the disentanglement is highly ill-posed. NeRO [19] proposes using the split-sum approximation
of the image formation model and further improves shape reconstruction quality without requiring object masks.
However, the above methods typically require dense image capture to guarantee plausible shape recovery results
for challenging reflective surfaces.

Reconstruction with sparse views is essential for practical scenarios requiring efficient capture. Due to the lack of
sufficient correspondence from limited views, the shape-radiance ambiguity cannot be resolved, leading to noisy
and distorted shape recoveries. Existing methods address this problem by adding regularizations such as surface
geometry smoothness [25], coarse depth prior [10, 32], or frequency control of the positional encoding [36]. Some
methods [7, 20, 39] formulate the sparse 3D reconstruction as a conditioned 3D generalization problem where
image features pre-trained are used as generalizable priors. S-VolSDF [35] applies the classical multiview stereo
method as initialization and regularizes the neural rendering optimization with a probability volume. However, it is
still challenging for current methods to recover reflective surfaces accurately.

Reconstruction using polarized images has been studied for both single-view settings [1, 2, 16, 23, 29] and
multiview settings [6, 8, 9, 11, 12, 43]. Unlike RGB images, the AoP from polarized images provides direct cues for
surface normal. Single-view shape from polarization (SfP) techniques benefit from this property and estimate the
surface normal under single distant light [21, 29] or unknown natural light [1, 16]. Multiview SfP methods [8, 43]
resolve the π and π/2 ambiguities in the AoP based on the multiview observations. PANDORA [9] is the first neural
3D reconstruction method based on polarized images, demonstrated to be effective in recovering surface shape
and illumination. MVAS [6] recovers surface shape from multiview azimuth maps, closely related to the AoP maps
derived from



polarized images. However, these methods do not explore using polarized images for reflective surface
reconstruction under sparse shots.

Polarimetric Image Formation Model

Before diving into the proposed method, we first introduce the polarimetric image formation model and derive the
photo-metric cue and geometric cue in our method. As shown in Fig. 2, a snapshot polarization camera records
image observations at four different polarization angles, with its pixel values denoted as {I0, I45, I90, I135}. These
four images reveal the polarization state of received lights, which is represented as a 4D Stokes vector s = [s0, s1,
s2, s3] computed as

We assume there is no circularly polarized light thus assigning s3 to be 0. The Stokes vector can be used to
compute the angle of polarization (AoP), i.e.

Based on the AoP and Stokes vector, we derive the geometric and photometric cues correspondingly.

Geometric cue
Given AoP ϕa, the azimuth angle of the surface can be either ϕa + π/2 or ϕa + π, known as the π and π/2
ambiguity depending on whether the surface is specular or diffuse dominant. In this section, we first introduce the
geometric cue brought by the multiview azimuth map and then extend it to the case of AoP.



Following MVAS [6], for a scene point x, its surface normal n and the projected azimuth angle ϕ in one camera
view follow the relationship as

where R = [r1, r2, r3]⊤ is the rotation matrix of the camera pose. We can further re-arrange Eq. (3) to get the
orthogonal relationship between surface normal and a projected tangent vector t(ϕ) as defined below,

The π ambiguity between AoP and azimuth angle can be naturally resolved as Eq. (4) stands if we add ϕ by π.
The π/2 ambiguity can be addressed by using a pseudo-projected tangent vector tˆ(ϕ) such that

If one scene point x is observed by f views, we can stack Eq. (4) and Eq. (5) based on k different rotations and
observed AoPs, leading to a linear system

T(x)n(x) = 0. (6)

We treat this linear system as our geometric cue for multi-view polarized 3D reconstruction.

Photometric cue
Assuming the incident environment illumination is unpolarized, the Stokes vector of the incident light direction ω
can be represented as

si(ω) = L(ω)[1, 0, 0, 0]⊤, (7)

where L(ω) denotes the light intensity. The outgoing light recorded by the polarization camera becomes partially
polarized due to the reflection. This process is modeled via a 4×4 Muller matrix H. Under an environment
illumination, the outgoing Stokes vector so can be formulated as the integral of the incident Stokes vector
multiplicated with the Muller matrix, i.e.

where v and Ω denote the view direction and integral domain. Following the polarized BRDF (pBRDF) model [2],
the output Stokes vector can be decomposed into the diffuse and specular parts modeled via Hd and Hs
correspondingly, i.e.



Following the derivation from PANDORA [9], we can further formulate the output Stokes vector as

where Ld =fΩ ρL(ω)ω⊤n T+i T−i dω is denoted as diffuse radiance related to surface normal n, Fresnel
transmission coefficients [2] T+i,o and T−i,o, diffuse albedo ρ, and the azimuth angle of incident light ϕn. Ls = fΩ
L(ω) DG 4n⊤v dω denotes specular radiance related to Fresnel reflection coefficients [2] R+ and R−, the incident
azimuth angle ϕh w.r.t. the half vector h = ω+v∥ω+v∥22, and the normal distribution and shadowing term D and G
in the Microfacet model [31].

Please check the supplementary material for more details. Based on the polarimetric image formation model
shown in Eq. (10), we build the photometric cue.

Proposed method

Our NeRSP takes sparse multiview polarized images, the corresponding silhouette mask of the target object, and
camera poses as input and outputs the surface shape of the object represented implicitly via SDF. We begin with
the discussion on photometric cues and geometric cues in resolving the shape reconstruction ambiguity, followed
by the instruction on network structure and loss function of our NeRSP.

Ambiguity in sparse 3D reconstruction
The geometric cue and photometric cue play an important role in reducing the solution space of the surface shape
under sparse views. As shown in Fig. 3, we illustrate the shape estimation under 2 views with different cues.
Given only RGB images as input (corresponding to the setting in NeRO [19] and S-VolSDF [35]), different
combinations of scene point positions, surface normals, and reflectance properties such as albedo can lead to the
same image observations, since there are only two RGB measurements for each 3D points along the camera ray.
With Stokes vectors extracted from the polarized images, the photometric cue brings 6 measurements for each 3D
point (Stokes vector has 3 elements), reducing the surface normal candidates un-fit to the polarimetric image
formation model.

On the other hand, based on AoP maps1 from polarized images, we can uniquely determine the surface normal up
to a π ambiguity for every scene point along the camera ray. However, it is still ambiguous to find the position
where the camera ray intersects the surface unless a third view is provided [6]. Therefore, under sparse views
setting (e.g., 2 views in Fig. 3), determining scene point position based on either geometric or photometric cue
remains ambiguous.
Our method combines these two cues derived from polarized images. As visualized in the bottom-right part of Fig.
3, the correct scene point position should have its surface normal lay in the intersection of normal candidate
groups derived from both photometric and geometric cues. As surface normal at different sampled scene points is
uniquely determined by geometric cues, we can easily determine whether the point is on the surface with the aid of
a photometric cue. In this way, we reduce the solution space of sparse-shot reflective surface reconstruction.



NeRSP
Network structure As shown in Fig. 4, our NeRSP applies a similar network structure with PANDORA [9] originally
derived from Ref-NeRF [30]. For a light ray emitted from camera center o with the direction v, we sample a point
on the ray with travel distance ti, its location is de-noted at xi = o + tiv. Following the volume rendering used in
NeRF [25], the observed Stokes vector s(v) can be integrated by the volume opacity σi and the Stokes vectors at
the sampled points along the ray, i.e.



where  denote the accumulated transmittance of a sampled point.

Motivated by the recent neural 3D reconstruction method NeuS [33], we derive the volume opacity from an SDF
network and also extract the surface normal from the gradient of the SDF. To compute so(xi, v) at sampled points,
we follow the polarimetric image formation model in Eq. (10). Specifically, the diffuse radiance Ld is related to the
diffuse albedo and Fresnel transmission coefficients, which depends on the scene positions but invariant to the
view direction. Therefore, we use a diffuse radiance network to map Ld from the features of each scene point. The
specular radiance Ls is related to the specular lobe determined by the view direction, surface normal, and surface
roughness. We therefore use a RoughnessNet to predict surface roughness. Together with the camera view
direction and predicted surface normal, we estimate the specular radiance Ls fol-lowing the integrated positional
encoding module proposed by Ref-NeRF [30]. Combining Ld and Ls, we reconstruct the observed Stokes vector
following Eq. (10).

Loss function
The photometric loss is defined as the L1 distance between the observed ˆs(v) and reconstructed Stokes vectors
s(v), i.e.,

where V denotes all the camera rays cast within object masks at different views. For the geometric loss. we first
find the 3D scene point x along the camera ray v until touching the surface and then locate the projected 2D-pixel
positions at different views. The geometric loss is defined based on the Eq. (6), i.e.,

where X denotes all the ray-surface intersections inside the object masks at different views. Besides the
photometric and geometric loss, we add mask loss supervised by the object masks and the Eikonal regularization
loss. The mask loss is defined as



where  represents the predicted mask at k-th camera ray, whose GT mask value is
denoted as Mk. BCE represents a binary cross-entropy loss.

where ni,k is the surface normal derived from the SDF network at the i-th sampled point along the k-th camera ray.
Our NeRSP is supervised by the combination of the above loss terms, i.e.

where λe, λm, and λp are the coefficients for the corresponding loss terms.

RMVP3D Dataset
To quantitatively evaluate the proposed method, we capture a Real-world Multiview Polarized image dataset with
aligned ground truth meshes. Figure 5 (left) illustrates our capturing setup, which includes a polarimetric camera,
FLIR BFS-U3-51S5PC-C, equipped with a 12 mm lens and a rotation rail. We use OpenCV for demosaicing the
raw data and obtain 1224×1024 color images with polarizer angles at 0, 45, 90, and 135 degrees. During the data
capture, we place target objects at the center of the rail and capture 60 images per object by manually moving the
camera. We collect 4 objects as targets: DOG, FROG, LION, and BALL, as shown in Fig. 5 (middle). For the
quantitative evaluation, we adopt a laser scanner Creaform HandySCAN BLACK with an accuracy of 0.01 mm to
obtain the ground truth mesh. To align the mesh to the captured image views, we first apply PANDORA [9] to
estimate a reference shape using all available views and then align the scanned mesh to the estimated one via the
ICP algorithm [4]. Besides the ground-truth shapes and multiview images, we also capture the environment map
using a 360-degree camera THETA Z1, benefiting quantitative evaluations on the illumination estimation for related
neural inverse rendering works.



Experiments

We evaluate NeRSP with three experiments: 1) comparison with existing multiview 3D reconstruction methods
quantitatively on a synthetic dataset; 2) ablation study on the contribution of geometric and photometric loss terms
3) qualitative and quantitative evaluations on real-world datasets. We also provide the BRDF and novel view
results in the supplementary material.

Datasets & Baselines
Dataset. We prepare two real-world datasets: the PAN-DORA dataset [9] and our proposed RMVP3D, where the
PANDORA dataset [9] is only used for qualitative evaluation as the ground truth meshes are not provided. We also
prepare a synthetic multiview polarized image dataset SMVP3D with Mitsuba rendering engine [15], which
contains 5 objects with spatially-varying and reflective reflectance, as visualized in Fig. 6. The objects are
illuminated by environment maps2 and captured by 6 views randomly distributed around the objects. Besides
rendered polarized images, we also export the stokes vectors, GT surface normal maps, and AoP maps for each
object.

Baselines. Our work solves multiview 3D reconstruction for reflective surfaces based on sparse polarized images.
Therefore, we choose the state-of-the-art 3D reconstruction methods targeting reflective surfaces NeRO [19] and
sparse views S-VolSDF [35]. The above two methods are based on RGB image inputs. For multiview stereo
based on polarized images, we select PANDORA [9] and MVAS [6] as our baselines. NeRO [19] does not require
silhouette masks as input. For a fair comparison, we remove the background in the RGB images with the
corresponding masks before inputting to NeRO [19]. To compare different methods, we apply Chamfer distance
(CD) between the estimated and the GT meshes, and the mean angular error (MAE) between the estimated and
the GT surface normals at different views as our evaluation metrics.

Shape recovery on a synthetic dataset
As shown in Table 1, we summarize the shape estimation error of existing methods and ours on SMVP3D. Our
method achieves the smallest Chamfer distance along all of the 5 synthetic objects. Based on the visualized
shape estimates shown in Fig. 7, NeRO [19] and S-VolSDF [35] cannot accurately recover surface details as
highlighted in the closed-up views. One possible reason is that the disentanglement of the shape and reflective
reflectance from the sparse images is too challenging for these methods based on only RGB information. MVAS
[6] and PANDORA [9] address the geometric and photometric cues of the polarized images, separately. However,
the reconstructed reflective surface shapes are still unsatisfactory due to the ambiguities in geometric and
photometric cues under the sparse views setting. As highlighted in the closed-up views, benefiting from both
geometric and photometric cues, our method reduces the solution space of shape estimation, leading to the most
reasonable shape recoveries compared with the GT shapes.

Besides the evaluation of the reconstructed mesh, we also test the surface normal estimation results. As shown in
Table 2, we summarize the mean angular errors of estimated surface normals at 6 views from different methods.
Consistent with the evaluation results in Table 1, NeRSP achieves the smallest mean angular errors on average.
We also observed that the results from NeRO [19], MVAS [6], and PANDORA [9] have larger errors on objects with
fine details, such as DAVID and DRAGON objects. As an example, MVAS [6] has the second smallest Chamfer
distance shown in Table 1, but the mean angular error is over 20◦. One potential reason is existing methods
output smooth shapes in the sparse views setting, where the surface details such as the flakes of the DRAGON
are not well recovered.

Table 1. Comparison of shape recoveries on synthetic dataset evaluated by Chamfer distance (↓). The smallest
and second smallest errors are labeled in bold and underlined. “N/A” denotes the experiment where a specific
method cannot output reasonable shape estimation results.



Ablation study
In this section, we conduct an ablation study to test the effectiveness of geometric and photometric cues. Taking
the DRAGON object as an example, we conduct our method with and without the photometric loss Lp and the
geometric loss Lg. As shown in Fig. 8, we plot the shape and surface normal estimations by disabling the different
loss terms. Without the photometric loss, shape ambiguity due to the sparse views occurs. As shown from the
closed-up views, the shape near the leg part has a concave artifact, as there are only two visible views for this
region, unable to formulate a unique solution for the shape merely based on the AoP maps [6]. Without geometric
loss, we also obtain distorted shape results as the sparse image observations are not sufficient to uniquely
decompose the shape, reflectance, and illumination. By combining the photometric and geo-metric loss, our
NeRSP reduces the ambiguity of shape re-covery and the estimated shape is closer to the GT, as highlighted in
the closed-up views.



Figure 8. Ablation study on different loss terms. The top and bottom rows visualize the estimated shape and
surface normal, with the Chamfer distance and the mean angular error labeled on the top of each sub-figure,
respectively.

Shape recovery on real data
Besides the synthetic experiments shown in the previous section, we also evaluate our method on real-world
datasets PANDORA dataset [9] and RMVP3D to test its applicability in real-world 3D reconstruction scenarios.

Qualitative evaluation on the PANDORA dataset [9]. As shown in Fig. 9, we provide qualitative evaluations of the
PAN-DORA dataset [9]. Compared to the image appearance with the estimated results from S-VolSDF [35] and
NeRO [19], the shape is not fully disentangled from the reflectance, leading to bumpy surface shapes that are
closely related to the reflectance texture. MVAS [6] and PANDORA [9] have over-smoothed shape estimates or
concave shape artifacts, due to addressing only geometric or photometric cues under the sparse capture setting.
Our shape estimation results have no such shape artifacts and match the image observations closely.



Table 3. Quantitative evaluation on RMVP3D with Chamfer dis-tance (↓). Our method achieves the smallest error
on average.

Method DOG LION FROG BALL Average

NeRO [19] 9.11 10.74 6.21 3.87 7.48

S-VolSDF [35] 9.93 7.39 7.91 18.4 10.91

MVAS [6] 9.23 7.51 9.90 4.77 7.86

PANDORA [9] 14.3 15.04 11.27 3.96 11.14

NeRSP (Ours) 8.80 5.18 6.70 3.84 6.13

Quantitative evaluation on RMVP3D. As shown in Table 3, we present a quantitative evaluation of RMVP3D based
on Chamfer distance. Consistent with the synthetic experiment, our NeRSP achieves the smallest estimation error
on average. The visualized shapes shown in Fig. 10 further reveal that reflective surfaces are challenging to S-
VolSDF [35] for disentangling the shape from reflectance, as highlighted by the bumpy surface of the FROG object
in the closed-up views. NeRO [19] and PANDORA [9] have similar estimation errors with us on the simple BALL
object. For complex shapes like LION, distorted shape recoveries are obtained from these methods due to the
sparse view setting, while ours are closer to the GT meshes, demonstrating the effectiveness of our method on
real-world reflective surface reconstruction under sparse inputs.



Conclusion

We propose NeRSP, a neural 3D reconstruction method for reflective surfaces under sparse polarized images.
Due to the challenges of shape-radiance ambiguity and complex reflectance, existing methods struggle with either
reflective surfaces or sparse views and cannot address both problems with RGB images. We propose to use
polarized images as input. By combining the geometric and photometric cues extracted from polarized images, we
reduce the solution space of the estimated shape, allowing for the effective recovery of the reflective surface with
as few as 6 views, as demonstrated by publicly available and our datasets.

Limitation

The inter-reflections and polarized environ-ment light are not considered in this work, which could influence the

shape reconstruction accuracy. We noticed a most recent work NeISF [17] focusing on this topic, and we are

interested in combining our sparse shot merit with this work in the future.
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Photometric and geometric cues of NeRSP

Derivation of geometric cue
As shown in Fig. S1, given a scene point observed by different views, its surface normal at the target view can be
represented by the azimuth and elevation angles ϕ and θ respectively, i.e.,

The relationship between the azimuth angle and the element of the surface normal can be formulated as

The surface normal at the target view can be calculated by rotating the normal at the source view, i.e. ˆn = Rn.
Given the rotation matrix from the calibrated camera poses as R = [r1, r2, r3]⊤, Eq. (2) based on ˆn can be
formulated as

r⊤1 n cos ϕ − r⊤ 2 n sin ϕ = 0. (3)



Following MVAS [2], we can rearrange Eq. (3) to get the orthogonal relationship between the surface normal and
the projected tangent vector t(ϕ) as defined below,

This conclusion on azimuth angle can be extended to the angle of polarization (AoP). The π ambiguity can be
naturally resolved as Eq. (4) stands if we add ϕ by π. The π/2 ambiguity can be addressed by using a pseudo-
projected tangent vector tˆ(ϕ) such that

If one scene point x is observed by f views, we can stack Eq. (4) and Eq. (5) based on different rotations and
observed AoPs, leading to a linear system

T(x)n(x) = 0. (6)

We treat this linear system as our geometric cue for multi-view polarized 3D reconstruction.

Derivation of photometric cue
Following the polarized BRDF model [1], the output stokes vector can be decomposed into the diffuse and
specular parts modeled via Hd and Hs correspondingly, i.e.,

The diffuse stokes component under a single light can be formulated as

where ρd denotes the diffuse albedo, ϕn is the azimuth angle of incident light onto the plane perpendicular to the
surface normal, T+i,o and T−i,o denote the calculations of Fresnel transmission coefficients [1] that are related to
the angle between view direction and surface normal. Following the notions in PANDORA [3], we rewrite the
diffuse stokes vector under environment light as



where  is denoted as diffuse radiance. Instead of calculating from the
equation, the diffuse radiance as a spatially varying variable is mapped directly from a neural point feature
extracted by a coordinate-based MLP. On the other hand, the specular stokes vector under a single light direction
ω in the polarimetric BRDF model can be defined as

where ρs denotes the specular albedo; D and G denote the normal distribution and shadowing term in the
Microfacet model [8], which can be controlled by surface roughness; R+ and R− denote the calculations of the
Fresnel reflection coefficients [1], which are related to the angle between surface normal and incident light

direction; ϕh is the incident azimuth angle w.r.t. the half vector . Following the notions in
PANDORA [3], we rewrite the specular stokes vector under environment light as

where  denotes specular radiance. With the spilt-sum approximation [5], we can
further approximate Ls ≈ ρsDG/4n⊤v *fΩ L(ω) dω. Combining with the diffuse stokes vector shown in Eq. (9), we
build the photometric cue based on the following polarimetric image formation model

Implementation Details

This section presents the rendering details of our Synthetic Multi-view Polarized image dataset SMVP3D and the
training details of NeRSP.

Dataset
We provide SMVP3D, which contains images of five synthetic reflective objects under natural illumination. For
each object, we render 48 views and record the corresponding ground truth (GT) surface normal maps. We use
Mit-suba3 [4] as the rendering engine, with the BRDF type set to polarized plastic material in our rendering. For
the dif-fuse albedo ρd, we utilize a spatially varying albedo texture to enhance the realism of our rendering results.
At the same time, we keep the specular albedo ρs at a constant value of 1.0 and set the surface roughness to
0.05. This approach ensures uniform reflectivity across the surfaces of the objects. The resulting polarized images
are rendered at a resolution of 512 × 512 pixels.

Training
The hyperparameters λg, λm, and λe in our loss function are set to 1, 1, and 0.1, respectively. During the training



process, we employ a warm-up strategy following PAN-DORA [3], where for the first 1, 000 epochs, we consider
only unpolarized information in the photometric cue and assume that the object’s specular component is 0. In all
experiments, we use a resolution of 512 × 512 for training and testing on SMVP3D, and 512 × 612 for real-world
datasets. Our method generally converges around 100, 000 epochs, which takes about 6 hours on an Nvidia RTX
3090 GPU, with the memory consuming around 8, 000 MB.





BRDF estimation and re-rendering results

Figure S4 (top) presents our estimation of roughness, diffuse, and specular components. The estimates are a bit
noisy due to only 6 views. Similar to Ref-NeRF [7] where illumination is implicitly controlled via IDE, we cannot
conduct relighting experiments. Therefore, we show the novel view synthesis results instead, as visualized in Fig.
S4 (bottom). Compared with existing methods, our re-rendering images are closer to the corresponding real-world
observations.

Additional results on our datasets

In this section, we present additional results of shape reconstruction on SMVP3D and the Real-world Multi-view
Polarized image dataset RMVP3D.

Evaluation on SMVP3D
We present the qualitative reconstruction results of baseline methods and our approach in Fig. S2. The results
from MVAS [2] lack detail, as the photometric cue is not taken into account. While NeRO [6] offers improved shape
reconstructions, it fails to provide a reliable surface for textureless objects, such as DAVID. S-VolSDF [9] uses a
coarse-to-fine Multi-View Stereo (MVS) approach and shows increased sensitivity to texture information on object
surfaces, which sometimes leads to misinterpreting texture details as structural features. PANDORA [3] has



difficulty in effectively separating albedo and specular information, leading to unreliable reconstruction results. Our
method, NeRSP, effectively utilizes both photometric and geometric cues, resulting in reconstructions that more
accurately reflect the GT structure.

We also display the surface normal estimates and the corresponding angular error distributions in Fig. S3, which
consistently show that NeRSP achieves better shape reconstruction results for reflective surfaces with sparse
input views.

Evaluation on RMVP3D
In this section, we present another object reconstruction result on RMVP3D. Figure S5 shows that NeRO [6],
MVAS [2], and NeRSP can accurately reconstruct a simple spherical object with a reflective surface. In contrast,
S-VolSDF [9] and PANDORA [3] can not decompose the albedo and specular component of the surface, resulting
in distortion in the shape reconstruction process. To distinguish among the reconstruction results of NeRO [6],
MVAS [2], and NeRSP, we visualize the Chamfer Distance for the meshes reconstructed by each method. As
shown in Fig. S6, the color of each point indicates its Chamfer Distance, which is clipped between 0 and 5 mm.
These illustrations show that the reconstruction error associated with NeRSP is smaller compared to that of the
other two methods.



Ablation study on surface reflectance

Our method aims at reflective surface reconstruction, and it can also be applied to recovering the shape with
rough surfaces. As an example, we re-render the SNAIL object with its specular albedo ρs reducing from 1.0 to
0.1. The mean angular error (MAE) of the estimated surface normal at 6 input views from different methods is
shown in Table S1. The qualitative evaluation of the surface normal estimation and the corresponding angular
error distribution of different methods under the same input view are shown in Fig. S7. These experiments indicate
that most methods improve reconstruction quality on rough surfaces compared to reflective surfaces. In particular,
our method consistently delivers the most reliable surface reconstruction of the object.

Ablation study on #views

Our NeRSP aims at the reconstruction of reflective surfaces under sparse input views. The experiments shown in
the main paper take 6 sparse views as input. To evaluate our method under the different numbers of input views
(i.e., #views), we conduct experiments on the real-world object LION under the setting of 3, 6, 12, and 24 views.
Figure S8 visualizes the recovered shapes, while the qualitative evaluation with Chamfer Distance is presented in
Table S2.

Under sparse input views, such as 3, existing methods struggle to recover plausible results. This is mainly
because they focus either on photometric cues or geometric cues. Taking S-VolSDF [9] as an example, the
estimated shape, as observed in close-up views, is heavily influenced by the corresponding texture. This leads to
incorrect shapes due to the shape-radiance ambiguity under sparse views. By addressing both the geometric and
the photometric cues, our NeRSP reduces the ambiguity under sparse inputs. As a result, we achieve more
reasonable shape reconstruction. This observation remains valid when the number of input views exceeds 12. As
shown in Table S2, our NeRSP consistently achieves the smallest Chamfer Distance with an increasing number of
input views. This shows the effectiveness of our method on reflective surfaces over a wide range of views.

Table S2. Qualitative evaluation on LION measured by Chamfer Distance (↓) under different input views.



#Views NeRO [6] S-VolSDF [9] MVAS [2] PANDORA [3] NeRSP

3 34.48 31.50 23.96 24.44 24.01

6 10.74 7.39 7.51 15.04 5.18

12 5.50 6.80 5.31 12.1 4.29

24 4.96 6.14 5.32 12.5 4.11

Evaluation of the polarimetric MVIR dataset

Besides the real-world experiments on the PANDORA dataset [3] and our RMVP3D, we also provide the
evaluation of a multi-view polarized images dataset present in PMVIR [10]. As shown in Fig. S9, we visualize the
shape recovery results from PANDORA [3] and ours, taking 6 sparse views as input. Since there is no GT shape in
this dataset, we use the results from PMVIR [10] as a reference, which takes 31 and 56 views as input for the
camera and the car scene, respectively. We observe that our results are more reasonable compared to those
using PANDORA [3], demonstrating the effectiveness of our method on sparse 3D reconstruction.
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