
☰

Home » MIROBOT » MIROBOT Autobot AC Autonomous Driving Robot User Manual

Contents [hide]

1 MIROBOT Autobot AC Autonomous Driving Robot

2 Models and Key Component

3 Product Specifications

4 GPS Communication System

5 Sensing System: LiDAR & Depth Camera

6 Steering & Driving System

7 Autobot Chassis Design Diagram

8 Power Management

9 MiROS Visual Programming

10 ROS 2 Quick Start

11 Pre-installed ROS 2 Humble Packages

12 Autoware Software Stack

13 Documents / Resources

13.1 References

MIROBOT Autobot AC Autonomous Driving Robot

 Manuals+

https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/mirobot
https://manuals.plus/mirobot/autobot-ac-autonomous-driving-robot-manual.pdf

Summary

Powered by Autoware – the world’s leading open-source autonomous driving software

built on ROS (Robot Operating System) – Autobot is an all-in-one platform for

autonomous driving projects. Tailored for ROS engineers, educators, and students,

Autobot integrates Autoware’s full capabilities with support for ROS 2 Humble. It also

includes MiROS, a visual programming tool for ROS that enables intuitive, browser-

based development across multiple operating systems.

Autobot comes with 4 models:

Autobot – Suitable for ROS beginners and low budget projects.

Autobot AC – Autobot bundled with Auto Charging station and software.

Autobot Plus – This is the 4WD version of Autobot with Independent Suspension

Systems. This category is serious enough to be considered for industrial and

commercial development.

Autobot Plus AC – Autobot Plus bundled with Auto Charging station and software.

Models and Key Component

Product Specifications

GPS Communication System

RTK stands for Real-Time Kinematic, and it’s a technique used in GPS/GNSS

communication to provide highprecision positioning, typically down to the centimeter

level — much more accurate than standard GPS.

What does RTK do?

RTK improves positioning accuracy by using corrections from a nearby base station to

reduce GPS signal errors like:

Satellite clock drift

Atmospheric interference

Multipath effects

How RTK works:

1. Base station: A GPS receiver placed at a known, fixed location.

2. Rover: A mobile GPS receiver (like one on a robot, drone, or vehicle).

3. Communication link: The base sends real-time correction data (via radio, 4G, etc.) to

the rover.

4. Correction: The rover applies the correction to its own GPS signal to calculate a much

more precise location.

Accuracy:

Standard GPS: ~3–10 meters

Autobot RTK GPS: ~1.5 meters

RTK is commonly used in:

Autonomous vehicles

Drones and UAV mapping

Precision agriculture

Surveying and construction

Robotics (especially outdoor)

Differential Positioning RTK Module:

Equipped with a GNSS module, Autobot can connect to a base station via a 4G network

to access RTK differential signals and obtain high-precision positioning data.

Sensing System: LiDAR & Depth Camera

A LS C16 LiDAR is installed on all Autobot models. These 3D LiDAR’s offer a 360

degree scanning range and surroundings perception and boast a compact and light

design. They have a high Signal Noise Ratio and excellent detection performance on

high/low reflectivity objects and perform well in strong light conditions. They have a max

detection range of 150 metres and a max scan frequency of 20Hz. This LiDAR

integrates seamlessly into the Autobots, ensuring all mapping and navigational uses can

be easily achieved in your project. The below table summaries the technical

specifications of the C16 LiDAR:

Additionally, all Autobots are equipped with an Orbbec Gemini Pro Depth Camera, which

is an RGBD camera. This camera is optimized for a rage of uses including gesture

control, skeleton tracking, 3D scanning and point cloud development. The following table

summarizes the technical features of the depth camera.

 STM32 Board (Motor Control & IMU)

The STM32F103RC Board is the micro-controller used in all Autobots. It has a high

performance ARM Cortex -M3 32-bit RISC core operating at a 72MHz frequency along

with high-speed embedded memories. It operates in -40°C to +105°C temperature

range, suiting all robotic applications in worldwide climates. There are power-saving

modes which allow the design of low-power applications. Some of the applications of this

microcontroller include: motor drives, application control, robotic application, medical and

handheld equipment, PC and gaming peripherals, GPS platforms, industrial applications,

alarm system video intercom and scanners.

Steering & Driving System

The Steering and Driving system is integrated with the design and build of the Autobot.

Depending on the model purchased it will be either a 2 wheel or 4 wheel drive, with both

options being suitable to a variety of research and development purposes. The wheels

on all Autobots are solid rubber with snow protection grade tires. There is a coaxial

pendulum suspension system, and the top range Autobots are equipped with shock

absorbers with independent suspension systems, ensuring it is able to successfully

navigate difficult terrain.

Steering and Driving Technical Specifications:

Autobot Chassis Design Diagram

Power Management

LiFePO₄ Battery:

All Autobots come with a 6000 mAh or a 2000 mAh LiFePO₄ Battery and a Power

Charger.

Technical Specifications

Items 6000 mAh 20000 mAh

Autobot Model Autobot & Autobot AC
Autobot Plus & Autobot Plus A

C

Battery Pack 22.4V 6000mAh 22.4V 20000mAh

Core Material Lithium Iron Phosphate Lithium Iron Phosphate

Cutoff Voltage 16.5 V 16.5 V

Full Voltage 25.55 V 25.55 V

Charging Current 3A 3A

Shell Material Metal Metal

Discharge Perfor

mance
15A Continuous Discharge 20A Continuous Discharge

Plug

DC4017MM female connector (

charging) XT60U-F female con

nector (discharging)

DC4017MM female connector (

charging) XT60U-F female con

nector (discharging)

Battery Protection:

Short circuit, overcurrent, overcharge, over-discharge protection, support charging while

using, built-in safety valve, flame retardant board.

Auto Charge:

Auto Charge is an Auto Charging Station bundled with Autobot AC and Autobot Plus AC

models.

MiROS Visual Programming

MiROS is a cloud-based ROS (Robot Operating System) visual programming tool. ROS

is based on Linux and requires programming skills in C/C++ or Python. MiROS enables

Mac/Windows users to develop ROS programs by drag-and-drop coding without the

need to install a Linux VM (Virtual Machine).

1. Install Docker Desktop

Dockerization is one of the fundamental design principles for MiROS. Visit the website

below to download and install your respective Docker Desktop app:

https://www.docker.com/products/docker-desktop/

2. Install MiROS App

After installing Docker Desktop, visit the below website to download and install your

respective MiROS app. Please make sure to select to correct installer according to

your computer CPU architecture. The download website is here:

https://www.mirobot.ai/downloadmiros

Once you have successfully downloaded MiROS on your computer, you can locate

the MiROS installer in your download folder of your computer with an icon like this:

To install MiROS, simply double click the MiROS installer. Once the installation has

finished, you will find the MiROS app appears either on your Desktop or in your

Application Folder.

To launch MiROS, follow the below steps:

1. Launch Docker Desktop App.

2. Launch MiROS App.

3. You will see a Terminal window appears showing MiROS is pulling the ROS and its

associated Ubuntu image from the Cloud to your Docker. Your computer screen could

look like the picture shown below:

https://www.docker.com/products/docker-desktop/
https://www.mirobot.ai/downloadmiros

The above process will take about 3 ~ 5 minutes. Once this process has finished, your

computer’s default web browser will launch the MiROS website.

IMPORTANT�

Every time you launch MiROS on your Mac or Windows, you should launch Docker

Desktop first. If you have successfully installed MiROS, your Docker Desktop should

show the below docker image in your Images section shown as below:

has launched, however, the MiROS website is not loading and the web browser is blank,

you may enter the below URL to load the MiROS website:

localhost:8000

Once you see the below MiROS login page, you have successfully installed and

launched MiROS.

If this is you are a first time user of MiROS, please register a user account first.

Registering with MiROS will enable the following Cloud Services:

Save and syn your projects on the MiROS Cloud.

Access to your MiROS projects via any web browsers on any computers or robots.

Export your ROS code to any computers or robots.

Push your latest code on your GitHub repositories from any computers or robots.

Project Manager

Once you log in to MiROS, you will land in Project Manager.

Start with a template

If your robot model is listed in one of the templates, you can select the correct template

and proceed to create a new Workspace for your project. By selecting the right template,

your project will start with all the factory default ROS packages preinstalled on your

robot.

IMPORTANT�

If you create a new Workspace by selecting a robot template, the ROS packages you

are going to create and the factory default ROS packages are all stored and run on the

MiROS Cloud and the docker container in your localhost computer, not on your robot.

You can connect to your robot during your project development by topic subscriptions or

publications or trigger launch files on your robot remotely from MiROS on your localhost

computer. The ROS software on your robot is untouched throughout your project

development on MiROS until you export your own code to your robot and compile it.

Start from scratch

If your robot is not listed as one of the templates, you will need to create your own

project from scratch by clicking the red cross button.

When you are creating your project from scratch, you can still load the ROS packages

from your robot to MiROS webpage. You will learn about the details in the next chapter.

Mission Control

Mission Control is your control center to monitor, communicate and command your robot

either in a physical environment or in a simulated environment. The below screenshot is

the Mission Control user interface:

There are 3 main sections of Mission Control:

Tool Bar – The Tool Bar contains the following function buttons:

ROS Canvas – access to GUI-based programming environment.

Code View – access the code-base programming environment.

RQT – access ROS RQT tool.

Simulator – access ROS simulators such as Gazebo and Webots.

Visualiser – access ROS visualisation tools such as Rviz and Foxglove.

Sync to Git – connect to your GitHub account and sync with your GitHub repositories.

Download Code – download your MiROS generated ROS code to your localhost

computer.

Connect to Robot – a button to trigger connection between MiROS web interface and

your robot via local Wifi network.

Launch Files – send launch file commands to your robot via constant ssh connection.

Connect to Robot

MiROS connects to your robot via constant ssh connections. There are three

requirements in order to maintain the constant ssh connection between the MiROS

website and your robot:

Autobot IP: 192.168.0.100

SSH User Credentials:

User Name: wheeltec

Password: dongguan

Enter the path of the setup.bash file: /home/wheeltec/wheeltec_ros2/install/setup.bash

After connection is established between MiROS running on your localhost

computer and your robot, you can carry out the following actions:

You can send launch commands from your Launch File table in MiROS to your robot.

You can retrieve all of the ROS packages and active messages from your robot to

MiROS.

You can test your code and how your robot functions in real-time.

To connect to your robot, follow the following steps:

1. Click on “Connect to Robot” button on the top right corner of the Mission Control

interface.

2. You will see the following screenshot to enter your robot’s IP, domain ID and the ssh

login information.

IMPORTANT�

1. You should enter the setup.bash or local_setup.bash file on your robot.

2. If your project is based on an existing robot template, you don’t need to load all the

ROS packages from your robot to MiROS anymore. You should keep the “Do not load

any packages” option just above the blue “Connect” button. If you start your project

from scratch, you may change the option to “Load all packages from robot”.

After you have successfully connected to your robot, you will see the following

items added to your MiROS project:

Your robot’s IP is displayed on the top right corner of your Mission Control.

Your Launch File table should be filled with the launch files copied from your robot.

Enter into ROS Canvas, you will see all of your robot’s ROS packages are displayed

and labelled in red.

Launch Files

A Launch File in ROS is an XML file used to automate the process of starting multiple

nodes and setting up their configurations. These files make it easier to manage complex

robotic systems by launching multiple nodes, setting parameters, and defining how

nodes interact with each other, all in a single command.

Here are the key functions of a ROS launch file:

1. Launch Multiple Nodes: Instead of manually starting each node, a launch file can start

several nodes simultaneously.

2. Set Parameters: You can define and set global or node-specific parameters for the

ROS system.

3. Remap Topics: Launch files allow remapping of topic names so nodes can

communicate even if they are expecting different topic names.

4. Namespace Assignment: It can define namespaces to organize the nodes and topics

in a structured way.

5. Include Other Launch Files: Complex systems can be modularized by including other

launch files.

A basic example of a launch file (`example.launch`) looks like this:

“`xml

<launch>

<!– Launch node1 –>

<node name=”node1″ pkg=”package_name” type=”node_executable”

output=”screen”>

<param name=”param_name” value=”param_value”/>

</node>

<!– Launch node2 with remapped topic –>

<node name=”node2″ pkg=”package_name” type=”node_executable”>

<remap from=”/old_topic” to=”/new_topic”/>

</node>

</launch>

“`

This launch file starts two nodes (`node1` and `node2`), sets parameters, and remaps

a topic for `node2`. You can run it using the following command in ROS 2: roslaunch

package_name example.launch

Using launch files simplifies the management of large and complex robot systems in

ROS.

In Mission Control, the Launch Files are presented in a table view shown as the below

screenshot:

The Launch File table contains the Launch File Name, Package Name where the file

belongs to, a brief description and a “Launch” button to quickly send launch command to

your robot.

IMPORTANT�

In order to send launch command from your MiROS project to your robot and maintain a

constant ssh connection, the below requirements should be met:

Your localhost computer running MiROS and your robot should be connected to the

same local Wifi network.

You should know the ssh login information of your robot including its IP.

Your robot has installed MiROS Linux version. Without MiROS installed on your robot,

you still can connect to your robot from MiROS. However, the ssh connection is not

constant.

ROS 2 Quick Start

For Linux users who prefer command lines instead of visual programming, you can

follow the below instruction to start up Autobot in ROS 2.

When the robot is first powered on, it is controlled by ROS by default. Meaning, the

STM32 chassis controller board accepts commands from the ROS 2 Controller such

as Jetson Orin.

Initial setup is quick and easy, from your host PC (Ubuntu Linux recommended)

connect to the robot’s Wi-Fi hotspot. Password by default is “dongguan”.

Next, connect to robot using SSH via the Linux terminal, IP address is 192.168.0.100,

default password is dongguan.

~$ ssh wheeltec@192.168.0.100

With terminal access to the robot, you can navigate to the ROS 2 workspace folder,

under “wheeltec_ROS 2”

Prior to running test programs, navigate to wheeltec_ROS 2/turn_on_wheeltec_robot/

and locate wheeltec_udev.sh – This script must be run, typically only once to ensure

proper configuration of peripherals.

You are now able to test the robot’s functionality, to launch the ROS 2 controller

functionality, run:

“roslaunch turn_on_wheeltec_robot turn_on_wheeltec_robot.launch”

~$ ros2 launch turn_on_wheeltec_robot turn_on_wheeltec_robot.launch

In a second terminal, you can use the keyboard_teleop node to validate chassis

control, this is a modified version of the popular ROS 2 Turtlebot example. Type (more

tele-op control is available in section 8): “ros2 run wheeltec_robot_keyboard

wheeltec_keyboard”

Pre-installed ROS 2 Humble Packages

Below are the following user-oriented packages, whilst other packages may be present,

these are dependencies only.

turn_on_wheeltec_robot

This package is crucial for enabling robot functionality and communication with the

chassis controller.

The primary script “turn_on_wheeltec_robot.launch” must be used upon each boot to

configure ROS

2 and controller.

wheeltec_rviz2

Contains launch files to launch rviz with custom configuration for Pickerbot Pro.

wheeltec_robot_slam

SLAM Mapping and localisation package with custom configuration for Pickerbot Pro.

wheeltec_robot_rrt2

Rapidly exploring random tree algorithm – This package enables Pickerbot Pro to plan

a path to it’s desired location, by launching exploration nodes.

wheeltec_robot_keyboard

Convenient package for validating robot functionality and controlling using the

keyboard, including from remote host PC.

wheeltec_robot_nav2

ROS 2 Navigation 2 node package.

wheeltec_lidar_ros2

ROS 2 Lidar package for configuring Leishen M10/N10.

wheeltec_joy

Joystick control package, contains launch files for Joystick nodes.

simple_follower_ros2

Basic object and line following algorithms using either laser scan or depth camera.

ros2_astra_camera

Astra depth camera package with drivers and launch files

Autoware Software Stack

Autoware in ROS 2 is an open-source autonomous driving software stack built on top of

the Robot Operating System 2 (ROS 2) framework. It provides everything needed to

build, simulate, and deploy self-driving vehicle applications.

What is Autoware?

A modular, full-stack software platform for autonomous vehicles.

Developed and maintained by the Autoware Foundation.

Originally built on ROS 1 (as Autoware.AI), but now fully transitioned to ROS 2 (as

Autoware or formerly Autoware.Auto).

Core Components of Autoware:

Perception: Lidar-based 3D object detection, classification, tracking

Localization: Using sensor fusion (e.g., GPS + Lidar + IMU)

Planning: Route planning, behavior planning, trajectory generation

Control: Sending control commands to the vehicle (steering, throttle, brake)

Simulation: Integration with simulators like LGSVL, CARLA, and Gazebo

Mapping: HD map usage and generation

Use Cases:

Robotaxis

Autonomous delivery vehicles

Research in self-driving technology

Education and prototyping of mobility systems

Repositories & Tools:

GitHub: https://github.com/autowarefoundation

Autoware Universe: The ROS 2-based version, now the mainline development branch

Simulation tools: Integration with LGSVL, CARLA, and Gazebo for testing

Autoware Launcher: A GUI-based system to manage modules and configurations

Copyright © 2025 MiRobot. All rights reserved.

Documents / Resources

MIROBOT Autobot AC Autonomous Driving Robot [pdf] User Manual

Autobot, Autobot AC, Autobot Plus, Autobot Plus AC, Autobot AC Autono

mous Driving Robot, Autobot AC, Autonomous Driving Robot, Driving Ro

bot, Robot

References

User Manual

MIROBOT

AutoBot, Autobot AC, Autobot AC Autonomous Driving Robot, Autobot Plus, Autobot Plus AC, Autonomous Driving Robot,

Driving Robot, MIROBOT, Robot

Leave a comment
Your email address will not be published. Required fields are marked *

Comment *

https://github.com/autowarefoundation
https://manuals.plus/m/2c30884f06587de94382149edf999da83cac80ade8aed41eedfa1b3dbb88ca46
https://manuals.plus/m/2c30884f06587de94382149edf999da83cac80ade8aed41eedfa1b3dbb88ca46
https://manuals.plus/m/2c30884f06587de94382149edf999da83cac80ade8aed41eedfa1b3dbb88ca46_optim.pdf
https://manual.tools/?p=17204074#NTQuMjEyLjcxLjIyNzs3Mi4xNC4xOTkuMzIsIDEwNC4yMy4xNjAuNjk7NzIuMTQuMTk5LjMyOzcyLjE0LjE5OS4zMjs3Mi4xNC4xOTkuMzI=
https://manuals.plus/category/mirobot
https://manuals.plus/tag/autobot
https://manuals.plus/tag/autobot-ac
https://manuals.plus/tag/autobot-ac-autonomous-driving-robot
https://manuals.plus/tag/autobot-plus
https://manuals.plus/tag/autobot-plus-ac
https://manuals.plus/tag/autonomous-driving-robot
https://manuals.plus/tag/driving-robot
https://manuals.plus/tag/mirobot
https://manuals.plus/tag/robot

Search:

e.g. whirlpool wrf535swhz Search

Manuals+ | Upload | Deep Search | Privacy Policy | @manuals.plus | YouTube

This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos

are registered trademarks owned by Bluetooth SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of

these marks on this website does not imply any affiliation with or endorsement.

Name

Email

Website

 Save my name, email, and website in this browser for the next time I comment.

Post Comment

https://manuals.plus/
https://manuals.plus/upload
https://manuals.plus/deep-search
https://manuals.plus/privacy-policy
https://x.com/manualsplus
https://www.youtube.com/@manualsplus

	MIROBOT Autobot AC Autonomous Driving Robot
	Models and Key Component
	Product Specifications
	GPS Communication System
	Sensing System: LiDAR & Depth Camera
	Steering & Driving System
	Autobot Chassis Design Diagram
	Power Management
	MiROS Visual Programming
	ROS 2 Quick Start
	Pre-installed ROS 2 Humble Packages
	Autoware Software Stack
	Documents / Resources
	References

	Leave a comment

