
Home » Microsemi » Microsemi SmartFusion2 DDR Controller and Serial High Speed Controller User Guide

SmartFusion2
DDR Controller and Serial High Speed Controller

Initialization Methodology
User Guide

Contents
1 Introduction
2 Theory of Operation
3 Using System Builder to Create a Design Using DDR and SERDESIF
Blocks
4 Using SmartDesign to Create a Design Using DDR and SERDESIF Blocks
5 Creating and Compiling the Firmware Application
6 BFM Files Used for Simulating the Design
7 Product Support
8 Documents / Resources

8.1 References
9 Related Posts

Introduction

When creating a design using a SmartFusion2 device, if you use one of the two DDR controllers (FDDR or
MDDR) or any of the Serial High speed controller (SERDESIF) blocks, you must initialize the configuration
registers of these blocks at run-time before they can be used. For example, for the DDR controller, you must set
the DDR mode (DDR3/DDR2/LPDDR), PHY width, burst mode and ECC.
Similarly, for the SERDESIF block used as a PCIe endpoint, you must set the PCIE BAR to AXI (or AHB) window.
This document describes the steps necessary to create a Libero design that automatically initializes the DDR
controller and SERDESIF blocks at power up. It also describes how to generate the firmware code from Libero
SOC that is used in the embedded design flow.
A detailed description of the theory of operations is provided first.

Microsemi SmartFusion2 DDR Controller and Serial High
Speed Controller User Guide

Manuals+ — User Manuals Simplified.

https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/microsemi
https://manuals.plus/microsemi/smartfusion2-ddr-controller-and-serial-high-speed-controller-manual.pdf

The next section describes how to create such a design using the Libero SoC System Builder, a powerful design
tool that, among other features, creates the ‘initialization’ solution for you if you are using DDR or SERDESIF
blocks in your design.
The next section describes how to put a complete ‘initialization’ solution together without using the SmartFusion2
System Builder. This helps explain what needs to be done if you do not wish to use the System Builder, and also
describes what the System Builder tool actually generates for you. This section addresses:

The creation of the configuration data for DDR controller and SERDESIF configuration registers

The creation of the FPGA logic required to transfer the configuration data to the different ASIC configuration

registers

Finally we describe the generated files related to:

The creation of firmware ‘initialization’ solution.

The simulation of the design for the DDR ‘initialization’ solution.

For details about the DDR controller and SERDESIF configuration registers, refer to the Microsemi
SmartFusion2 High Speed Serial and DDR Interfaces User’s Guide.

Theory of Operation

The Peripheral initialization solution uses the following major components:

The CMSIS SystemInit() function, which runs on the Cortex-M3 and orchestrates the initialization process.

The CoreConfigP soft IP core, which initializes the peripherals’ configuration registers.

The CoreResetP soft IP core, which manages the reset sequence of the MSS, DDR controllers, and

SERDESIF blocks..

The peripheral initialization process works as follows:

1. Upon reset, the Cortex-M3 runs the CMSIS SystemInit() function. This function is automatically executed

before the application’s main() function is executed.

The CoreResetP output signal MSS_HPMS_READY is asserted at the beginning of the initialization process,

indicating that the MSS and all the peripherals (except MDDR) are ready for communication.

2. The SystemInit() function writes configuration data to the DDR controllers and SERDESIF configuration

registers via the MSS FIC_2 APB3 bus. This interface is connected to the soft CoreConfigP core instantiated in

the FPGA fabric.

3. After all the registers are configured, the SystemInit() function writes to the CoreConfigP control registers to

indicate the completion of the register configuration phase; the CoreConfigP output signals CONFIG1_DONE

and CONIG2_DONE are then asserted.

There are two phases of register configuration (CONFIG1 and CONFIG2) depending upon the peripherals

used in the design.

4. If one or both of MDDR/FDDR are used, and none of the SERDESIF blocks are used in the design, there is

only one register configuration phase. Both the CoreConfigP output signals CONFIG1_DONE and

CONIG2_DONE are asserted one after the other without any wait/delay.

If one or more SERDESIF blocks in non-PCIe mode are used in the design, there is only one phase of register

https://www.microchip.com/en-us/products/fpgas-and-plds

configuration. CONFIG1_DONE and CONIG2_DONE are asserted one after the other without any wait/delay.

If one or more SERDESIF blocks in PCIe mode are used in the design, there are two phases of register

configuration. CONFIG1_DONE is asserted after the first phase of register configuration is complete.

SERDESIF system and lane registers are configured in this phase. If SERDESIF is configured in a non-PCIE

mode, CONFIG2_DONE signal is also asserted immediately.

5. The second phase of register configuration then follows (if SERDESIF is configured in PCIE mode). The

following are the different events that happen in the second phase:

– CoreResetP de-asserts PHY_RESET_N and CORE_RESET_N signals corresponding to each of the

SERDESIF blocks used. It also asserts an output signal SDIF_RELEASED after all the SERDESIF blocks are

out of reset. This SDIF_RELEASED signal is used to indicate to the CoreConfigP that the SERDESIF core is

out of reset and is ready for the second phase of register configuration.

– Once the SDIF_RELEASED signal is asserted, the SystemInit() function starts polling for the assertion of

PMA_READY on the appropriate SERDESIF lane. Once the PMA_READY is asserted, the second set of

SERDESIF registers (PCIE registers) are configured/written by the SystemInit() function.

6. After all the PCIE registers are configured, the SystemInit() function writes to the CoreConfigP control registers

to indicate the completion of the second phase of register configuration; the CoreConfigP output signal

CONIG2_DONE is then asserted.

7. Apart from the above signal assertions/de-assertions, CoreResetP also manages the initialization of the

various blocks by performing the following functions:

– De-asserting the FDDR core reset

– De-asserting the SERDESIF blocks PHY and CORE resets

– Monitoring of the FDDR PLL (FPLL) lock signal. The FPLL must have locked to guarantee that the FDDR

AXI/AHBLite data interface and the FPGA fabric can communicate correctly.

– Monitoring of the SERDESIF block PLL (SPLL) lock signals. The SPLL must have locked to guarantee that

the SERDESIF blocks AXI/AHBLite interface (PCIe mode) or XAUI interface can communicate properly with

the FPGA fabric.

– Waiting for the external DDR memories to settle and be ready to be accessed by the DDR controllers.

8. When all peripherals have completed their initialization, CoreResetP asserts the INIT_DONE signal; the

CoreConfigP internal register INIT_DONE is then asserted.

If one or both of MDDR/FDDR are used, and the DDR initialization time is reached, CoreResetP output signal

DDR_READY is asserted. Assertion of this signal DDR_READY can be monitored as an indication that the

DDR (MDDR/FDDR) is ready for communication.

If one or more SERDESIF blocks are used, and the second phase of register configuration is successfully

completed, CoreResetP output signal SDIF_READY is asserted. Assertion of this signal SDIF_READY can be

monitored as an indication that all the SERDESIF blocks are ready for communication.

9. The SystemInit() function, which has been waiting for INIT_DONE to be asserted, completes, and the

application’s main() function is executed. At that time, all used DDR controllers and SERDESIF blocks have

been initialized, and the firmware application and the FPGA fabric logic can reliably communicate with them.

The methodology described in this document relies on the Cortex-M3 executing the initialization process as part of
the system initialization code executed before the application’s main()function.
See the Flow Charts in Figure 1-1, Figure 1-2 and Figure 1-3 for the Initialization steps of FDDR/MDDR,
SEREDES(non-PCIe mode) and SERDES (PCIe mode).
Figure 1-4 shows a Peripheral Initialization timing diagram.

Figure 1-3 • SERDESIF (PCIe) Initialization Flow Chart
The initialization procedure described in this document requires you to run Cortex-M3 during the initialization
process, even if you are not planning on running any code on the Cortex-M3. You must create a basic firmware
application that does nothing (a simple loop, for example) and load that executable in the embedded Non Volatile
Memory (eNVM) so the DDR controllers and SERDESIF blocks are initialized when the Cortex-M3 boots.

Using System Builder to Create a Design Using DDR and SERDESIF Blocks

The SmartFusion2 System Builder is a powerful design tool that helps you capture your system-level
requirements and produces a design implementing those requirements. A very important function of the System
Builder is the automatic creation of the Peripheral Initialization sub-system. “Using SmartDesign to Create a
Design Using DDR and SERDESIF Blocks” on page 17 describes in detail how to create such a solution without
the System Builder.
If you are using System Builder, you must perform the following tasks to create a design that initializes your DDR
controllers and SERDESIF blocks at power up:

1. In the Device Features page (Figure 2-1), specify which DDR controllers are used and how many SERDESIF

blocks are used in your design.

2. In the Memory page, specify the type of DDR (DDR2/DDR3/LPDDR) and the configuration data for your

external DDR memories. See the Memory Page section for details.

3. In the Peripherals page, add fabric masters configured as AHBLite/AXI to the Fabric DDR Subsystem and/or

MSS DDR FIC Subsystem (optional).

4. In the Clock Settings page, specify the clock frequencies for the DDR sub-systems.

5. Complete your design specification and click Finish. This generates the System Builder created design,

including the logic necessary for the ‘initialization’ solution.

6. If you are using SERDESIF blocks, you must instantiate the SERDESIF blocks in your design and connect their

initializations ports to those of the System Builder generated core.

System Builder Device Features Page
In the Device Features page, specify which DDR controllers (MDDR and/or FDDR) are used and how many
SERDESIF blocks are used in your design (Figure 2-1).

Figure 2-1 • System Builder Device Features Page

System Builder Memory Page
To use the MSS DDR (MDDR) or Fabric DDR (FDDR), select the Memory Type from the drop-down list (Figure 2-
2).

Figure 2-2 • MSS External Memory

You must:

1. Select the DDR type (DDR2, DDR3 or LPDDR).

2. Define the DDR memory settling time. Consult your external DDR Memory Specifications to set the correct

memory setting time. The DDR memory may fail to initialize correctly if the memory settling time is not correctly

set.

3. Either import the DDR register configuration data or set your DDR Memory Parameters. For details, refer to the

Microsemi SmartFusion2 High Speed Serial and DDR Interfaces User’s Guide .

This data is used to generate the DDR register BFM and firmware configuration files as described in the “Creating
and Compiling the Firmware Application” on page 26 and “BFM Files Used for Simulating the Design” on page 27.
For details on DDR controller configuration registers, refer to the Microsemi SmartFusion2 High Speed Serial
and DDR Interfaces User’s Guide.
An example of the configuration file syntax is shown in Figure 2-3. The register names used in this file are the
same as those described in the Microsemi SmartFusion2 High Speed Serial and DDR Interfaces User’s
Guide

Figure 2-3 • Configuration File Syntax Example
System Builder Peripherals Page
In the Peripherals page, for each DDR controller a separate subsystem is created (Fabric DDR Subsystem for
FDDR and MSS DDR FIC Subsystem for MDDR). You can add a Fabric AMBA Master (configured as
AXI/AHBLite) core to each of these subsystems to enable fabric master access to the DDR controllers. Upon
generation, System Builder automatically instantiates bus cores (depending on the type of AMBA Master added)
and exposes the master BIF of the bus core and the clock and reset pins of the corresponding subsystems
(FDDR/MDDR) under appropriate pin groups, to the top. All you have to do is connect the BIFs to the appropriate
Fabric Master cores that you would instantiate in the design. In the case of MDDR, it is optional to add a Fabric
AMBA Master core to the MSS DDR FIC Subsystem; Cortex-M3 is a default master on this subsystem. Figure 2-4
shows the System Builder Peripherals Page.

http://www.actel.com/documents/SmartFusion2_Serial_DDR_UG.pdf
https://www.microchip.com/en-us/products/fpgas-and-plds
https://www.microchip.com/en-us/products/fpgas-and-plds

Figure 2-4 • System Builder Peripherals Page

System Builder Clock Settings Page
In the Clock Settings page, for each DDR controller, you must specify the clock frequencies related to each DDR
(MDDR and/or FDDR) sub-system.
For MDDR, you must specify:

MDDR_CLK – This clock determines the operating frequency of the DDR Controller and should match the

clock frequency you wish your external DDR memory to run at. This clock is defined as a multiple of the

M3_CLK (Cortex-M3 and MSS Main Clock, Figure 2-5). The MDDR_CLK must be less than 333 MHz.

DDR_FIC_CLK – If you have chosen to also access the MDDR from the FPGA fabric, you need to specify the

DDR_FIC_CLK. This clock frequency is defined as ratio of the MDDR_CLK and should match the frequency at

which the FPGA fabric sub-system that accesses the MDDR is running.

Figure 2-5 • Cortex-M3 and MSS Main Clock; MDDR Clocks

For FDDR, you must specify:

FDDR_CLK – Determines the operating frequency of the DDR Controller and should match the clock frequency

at which you wish your external DDR memory to run. Note that this clock is defined as a multiple of the

M3_CLK (MSS and Cortex-M3 clock, Figure 2-5). The FDDR_CLK must be within 20 MHz and 333 MHz.

FDDR_SUBSYSTEM_CLK – This clock frequency is defined as a ratio of the FDDR_CLK and should match

the frequency at which the FPGA fabric sub-system that accesses the FDDR is running.

Figure 2-6 • Fabric DDR Clocks
SERDESIF Configuration
The SERDESIF blocks are not instantiated in the System Builder generated design. However, for all the
SERDESIF blocks, initialization signals are available at the interface of the System Builder core and can be
connected to the SERDESIF cores at the next level of hierarchy, as shown in Figure 2-7.

Figure 2-7 • SERDESIF Peripheral Initialization Connectivity
Similar to the DDR configuration registers, each SERDES block also has configuration registers that must be
loaded at runtime. You can either import these register values or use the High Speed Serial Interface Configurator
(Figure 2-8) to enter your PCIe or EPCS parameters and the register values are automatically computed for you.
For details, refer to the SERDES Configurator User’s Guide.

http://www.microsemi.com/products/fpga-soc/soc-fpga/sf2docs#documents

Figure 2-8 • High Speed Serial Interface Configurator
Once you have integrated your user logic with the System Builder block and SERDES block, you can generate
your top level SmartDesign. This generates all HDL and BFM files that are necessary to implement and simulate
your design. You can then proceed with the rest of the Design Flow.

Using SmartDesign to Create a Design Using DDR and SERDESIF Blocks

This section describes how to put a complete ‘initialization’ solution together without using the SmartFusion2
System Builder. The goal is to help you understand what you must do if you do not wish to use the System
Builder. This section also describes what the System Builder tool actually generates for you. This section
describes how to:

Input the configuration data for DDR controller and SERDESIF configuration registers.

Instantiate and connect the Fabric Cores required to transfer the configuration data to the DDR controllers and

SERDESIF configuration registers.

DDR Controller Configuration
The MSS DDR (MDDR) and Fabric DDR (FDDR) controllers must be configured dynamically (at runtime) to match
the external DDR memory configuration requirements (DDR mode, PHY width, burst mode, ECC, etc.). Data
entered in MDDR/FDDR configurator is written to the DDR controller configuration registers by the CMSIS
SystemInit() function. The Configurator has three different tabs for entering different types of configuration data:

General data (DDR mode, Data Width, Clock Frequency, ECC, Fabric Interface, Drive Strength)

Memory Initialization data (Burst Length, Burst Order, Timing Mode, Latency, etc.)

Memory Timing data

Refer to the specifications of your external DDR memory and configure the DDR Controller to match the
requirements of your external DDR memory.
For details on DDR configuration, refer to the SmartFusion2 MSS DDR Configuration User Guide.
SERDESIF Configuration
Double-click the SERDES block in the SmartDesign canvas to open the Configurator to configure the SERDES
(Figure 3-1). You can either import these register values or use the SERDES configurator to enter your PCIe or
EPCS parameters and the register values is automatically computed for you. For details, refer to the SERDES
Configurator User’s Guide.

Figure 3-1 • High Speed Serial Interface Configurator
Creating the FPGA Design Initialization Sub-System
To initialize the DDR and SERDESIF blocks, you must create the initialization subsystem in the FPGA fabric. The
FPGA fabric initialization subsystem moves data from the Cortex-M3 to the DDR and SERDESIF configuration
registers, manages the reset sequences required for these blocks to be operational and signals when these
blocks are ready to communicate with the rest of your design. To create the initialization subsystem, you must:

Configure FIC_2 inside the MSS

Instantiate and configure the CoreConfigP and CoreResetP cores

Instantiate the on-chip 25/50MHz RC oscillator

Instantiate the System Reset (SYSRESET) macro

Connect these components to each peripheral’s configuration interfaces, clocks, resets and PLL lock ports

MSS FIC_2 APB Configuration
To configure the MSS FIC_2:

https://www.microchip.com/en-us/products/fpgas-and-plds/system-on-chip-fpgas/smartfusion-2-fpgas#documentation
http://www.microsemi.com/products/fpga-soc/soc-fpga/sf2docs#documents

1. Open the FIC_2 configurator dialog box from the MSS configurator (Figure 3-2).

2. Select Initialize peripherals using Cortex-M3.

3. Depending on your system, check one or both of the following checkboxes:

– MSS DDR

– Fabric DDR and/or SERDES Blocks

4. Click OK and proceed to generate the MSS (you may defer this action until you have fully configured the MSS

to your design requirements). The FIC_2 ports (FIC_2_APB_MASTER, FIC_2_APB_M_PCLK and

FIC_2_APB_M_RESET_N) are now exposed at the MSS interface and can be connected to the CoreConfigP

and CoreResetP cores.

Figure 3-2 • MSS FIC_2 Configurator

CoreConfigP
To configure CoreConfigP:

1. Instantiate CoreConfigP into your SmartDesign (typically the one where the MSS is instantiated).

This core can be found in the Libero Catalog (under Peripherals).

2. Double-click the core to open the configurator.

3. Configure the core to specify which peripherals need to be initialized (Figure 3-3)

Figure 3-3 • CoreConfigP Dialog Box

CoreResetP
To configure CoreResetP:

1. Instantiate CoreResetP into your SmartDesign (typically the one where the MSS is instantiated).

This core can be found in the Libero Catalog, under Peripherals.

2. Double-click the core inside the SmartDesign Canvas to open the Configurator (Figure 3-4).

3. Configure the core to:

– Specify the external reset behavior (EXT_RESET_OUT asserted). Choose one of four options:

o EXT_RESET_OUT is never asserted

o EXT_RESET_OUT is asserted if power up reset (POWER_ON_RESET_N) is asserted

o EXT_RESET_OUT is asserted if FAB_RESET_N is asserted

o EXT_RESET_OUT is asserted if power up reset (POWER_ON_RESET_N) or FAB_RESET_N is asserted

– Specify the Device Voltage. The selected value should match the voltage you selected in the Libero Project

Settings dialog box.

– Check the appropriate checkboxes to indicate which peripherals you are using in your design.

– Specify the external DDR memory setting time. This is the maximum value for all DDR memories used in your

application (MDDR and FDDR). Refer to the external DDR memory vendor datasheet to configure this

parameter. 200us is a good default value for DDR2 and DDR3 memories running at 200MHz. This is a very

important parameter to guarantee a working simulation and a working system on silicon. An incorrect value for

the settling time may result in simulation errors. Refer to the DDR memory vendor datasheet to configure this

parameter.

– For each SERDES block in your design, check the appropriate boxes to indicate whether:

o PCIe is used

o Support for PCIe Hot Reset is required

o Support for PCIe L2/P2 is required

Note: If you are using the 090 die(M2S090) and your design uses SERDESIF, you do not have to check any of the
following checkboxes: ‘Used for PCIe’, ‘Include PCIe HotReset support’ and ‘Include PCIe L2/P2 support’. If you
are using any non-090 device and using one or more SERDESIF blocks, you have to check all four checkboxes
under the appropriate SERDESIF section.
Note: For details on the options available to you in this configurator, refer to the CoreResetP Handbook.

Figure 3-4 • CoreResetPConfigurator

25/50MHz Oscillator Instantiation
CoreConfigP and CoreResetP are clocked by the on-chip 25/50MHz RC oscillator. You must instantiate a
25/50MHz Oscillator and connect it to these cores.

1. Instantiate the Chip Oscillators core into your SmartDesign (typically the one where the MSS is instantiated).

This core can be found in the Libero Catalog under Clock & Management.

2. Configure this core such that the RC oscillator drives the FPGA fabric, as shown in Figure 3-5.

Figure 3-5 • Chip Oscillators Configurator

System Reset (SYSRESET) Instantiation
The SYSRESET macro provides device level reset functionality to your design. The POWER_ON_RESET_N
output signal is asserted/de-asserted whenever the chip is powered up or the external pin DEVRST_N is
asserted/de-asserted (Figure 3-6).
Instantiate the SYSRESET macro into your SmartDesign (typically the one where the MSS is instantiated). This
macro can be found in the Libero Catalog under Macro Library.No configuration of this macro is necessary.

Figure 3-6 • SYSRESET Macro

Overall Connectivity
After you have instantiated and configured the MSS, FDDR, SERDESIF, OSC, SYSRESET, CoreConfigP and
CoreResetP cores in your design, you need to connect them to form the Peripheral Initialization subsystem. To
simplify the connectivity description in this document, it is broken into the APB3 compliant configuration data path
connectivity associated with the CoreConfigP and the CoreResetP related connections.
Configuration Data Path Connectivity
Figure 3-7 shows how to connect the CoreConfigP to the MSS FIC_2 signals and the peripherals’ APB3
compliant configuration interfaces.
Table 3-1 • Configuration Data Path Port/BIF Connections

FROM
Port/Bus Interface
(BIF)/ Component

TO
Port/Bus Interface (BIF)/Component

APB S PRESET N/ CoreC
onfigP

APB S PRESET N/ SDIF<
0/1/2/3>

APB S PRESET N/
FDDR

MDDR APB S PRESE T
N/MSS

APB S PCLK/ CoreConfig
P

APB S PCLK/SDIF<O/ 1/
2/3> APB S PCLK/FDDR MDDR APB S POLK/ MS

S

MDDR APBmslave/ Core
Config

MDDR APB SLAVE (BIF)/
MSS

SDIF<0/1/2/ 3>
APBmslave/Config

APB SLAVE (BIF)/ SDIF<
0/1/2/3>

FDDR APBmslave APB SLAVE (BIF)/ FDDR

FIC 2 APBmmaster/ Core
ConfigP

FIC 2 APB MASTER/ MS
S

Figure 3-7 • FIC_2 APB3 Sub-System Connectivity

Clocks and Resets Connectivity
Figure 3-8 shows how to connect the CoreResetP to the external reset sources and the peripherals’ core reset
signals. It also shows how to connect the CoreResetP to the peripherals’ clock synchronization status signals
(PLL lock signals). In addition, it shows how the CoreConfigP and CoreResetP are connected.

Figure 3-8 • Core SF2Reset Sub-System Connectivity

Creating and Compiling the Firmware Application

When you export the firmware from LiberoSoC (Design Flow Window > Export Firmware > Export Firmware),
Libero generates the following files in the <project_folder>/firmware/drivers_config/ sys_config folder:

sys_config.c – Contains the data structures that hold the values for the peripheral registers.

sys_config.h – Contains the #define statements that specify which peripherals are used in the design and

need to be initialized.

sys_config_mddr_define.h – Contains the MDDR controller configuration data entered in the Registers

Configuration dialog box.

sys_config_fddr_define.h – Contains the FDDR controller configuration data entered in the Registers

Configuration dialog box.

sys_config_mss_clocks.h – This file contains the MSS clock frequencies as defined in the MSS CCC

configurator. These frequencies are used by the CMSIS code to provide correct clock information to many of

the MSS drivers that must have access to their Peripheral Clock (PCLK) frequency (e.g., MSS UART baud rate

divisors are a function of the baud rate and the PCLK frequency).

sys_config_SERDESIF_<n>.c – Contains the SERDESIF_<n> register configuration data provided during the

SERDESIF_<n> block configuration in design creation.

sys_config_SERDESIF_<n>.h – Contains the #define statements that specify the number of register

configuration pairs and the lane number that needs to be polled for PMA_READY(only in PCIe mode).

These files are required for the CMSIS code to compile properly and contain information regarding your current
design, including peripheral configuration data and clock configuration information for the MSS.
Do not edit these files manually; they are created to the corresponding component/peripheral directories every
time the SmartDesign components containing the respective peripherals are generated. If any changes are made
to the configuration data of any of the peripherals, you need to re-export the firmware projects so that the updated
firmware files (see the list above) are exported to the <project_folder>/ firmware/drivers_config/sys_config folder.
When you export the firmware, Libero SoC creates the firmware projects: a library where your design

configuration files and drivers are compiled.
If you check the Create project <SoftConsole/IAR/Keil> checkbox when you export the firmware, a software
SoftConsole/IAR/Keil project is created to hold the application project where you can edit the main.c and user C/H
files. Open the SoftConSole/IAR/Keil project to compile the CMSIS code correctly and have your firmware
application properly configured to match your hardware design.

BFM Files Used for Simulating the Design

When you generate the SmartDesign components containing the peripherals associated with your design, the
simulation files corresponding to the respective peripherals are generated in the <project dir>/simulation directory:

test.bfm – Top-level BFM file that is first executed during any simulation that exercises the SmartFusion2 MSS

Cortex-M3 processor. It executes peripheral_init.bfm and user.bfm, in that order.

MDDR_init.bfm – If your design uses the MDDR, Libero generates this file; it contains BFM write commands

that simulate writes of the MSS DDR configuration register data you entered (using the Edit Registers

dialogbox or in the MSS_MDDR GUI) into the MSS DDR Controller registers.

FDDR_init.bfm – If your design uses the FDDR, Libero generates this file; it contains BFM write commands

that simulate writes of the Fabric DDR configuration register data you entered (using the Edit Registers

dialogbox or in the FDDR GUI) into the Fabric DDR Controller registers.

SERDESIF_<n>_init.bfm – If your design uses one or more SERDESIF blocks, Libero generates this file for

each of the SERDESIF_<n> blocks used; it contains BFM write commands that simulate writes of the

SERDESIF configuration register data you entered (using the Edit Registers dialog box or in the

SERDESIF_<n> GUI) into the SERDESIF_<n> registers. If the SERDESIF block is configured as PCIe, this file

also has some #define statements that control the execution of the 2 register configuration phases in perfect

order.

user.bfm – Contains the user commands. These commands are executed after peripheral_init.bfm has

completed. Edit this file to enter your BFM commands.

SERDESIF_<n>_user.bfm – Contains the user commands. Edit this file to enter your BFM commands. Use

this if you have configured SERDESIF_<n> block in BFM PCIe simulation mode and as an AXI/AHBLite

master. If you have configured SERDESIF_<n> block in RTL simulation mode, you will not need this file.

When you invoke simulation every time, the following two simulation files are re-created to the <project
dir>/simulation directory with updated contents:

subsystem.bfm – Contains the #define statements for each peripheral used in your design, that specify the

particular section of the peripheral_init.bfm to be executed corresponding to each peripheral.

operipheral_init.bfm – Contains the BFM procedure that emulates the CMSIS:: SystemInit() function run on

the Cortex-M3 before you enter the main() procedure. It copies the configuration data for any peripheral used in

the design to the correct peripheral configuration registers and then waits for all the peripherals to be ready

before asserting that you can use these peripherals. It executes MDDR_init.bfm and FDDR_init.bfm.

Using these generated files, the DDR controllers in your design are configured automatically, simulating what
would happen on a SmartFusion2 device. You can edit the user.bfm file to add any commands required to
simulate your design (Cortex-M3 is the master). These commands are executed after the peripherals have been
initialized. Do not edit the test.bfm, subsystem.bfm, peripheral_init.bfm, MDDR_init.bfm, FDDR_init.bfm files and
the SERDESIF_<n>_init.bfm files.

Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer Service,
Customer Technical Support Center, a website, electronic mail, and worldwide sales offices.
This appendix contains information about contacting Microsemi SoC Products Group and using these support
services.
Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update
information, order status, and authorization.
From North America, call 800.262.1060
From the rest of the world, call 650.318.4460
Fax, from anywhere in the world, 408.643.6913
Customer Technical Support Center
Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled engineers who
can help answer your hardware, software, and design questions about Microsemi SoC Products. The Customer
Technical Support Center spends a great deal of time creating application notes, answers to common design
cycle questions, documentation of known issues, and various FAQs. So, before you contact us, please visit our
online resources. It is very likely we have already answered your questions.
Technical Support
Visit the Customer Support website (www.microsemi.com/soc/support/search/default.aspx) for more
information and support. Many answers available on the searchable web resource include diagrams, illustrations,
and links to other resources on the website.
Website
You can browse a variety of technical and non-technical information on the SoC home page, at
www.microsemi.com/soc.
Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be contacted by
email or through the Microsemi SoC Products Group website.
Email
You can communicate your technical questions to our email address and receive answers back by email, fax, or
phone. Also, if you have design problems, you can email your design files to receive assistance.
We constantly monitor the email account throughout the day. When sending your request to us, please be sure to
include your full name, company name, and your contact information for efficient processing of your request.
The technical support email address is soc_tech@microsemi.com.
My Cases
Microsemi SoC Products Group customers may submit and track technical cases online by going to My Cases.
Outside the U.S.
Customers needing assistance outside the US time zones can either contact technical support via email
(soc_tech@microsemi.com) or contact a local sales office. Sales office listings can be found at
www.microsemi.com/soc/company/contact/default.aspx.
ITAR Technical Support
For technical support on RH and RT FPGAs that are regulated by International Traffic in Arms Regulations (ITAR),
contact us via soc_tech_itar@microsemi.com. Alternatively, within My Cases, select Yes in the ITAR drop-down
list. For a complete list of ITAR-regulated Microsemi FPGAs, visit the ITAR web page.
Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions
for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy
markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF
integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso
Viejo, Calif. Learn more at www.microsemi.com.
© 2014 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

5-02-00384-1/08.14

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo CA 92656 USA

http://800.262.1060
http://650.318.4460
http://408.643.6913
http://www.microsemi.com/soc/support/search/default.aspx
http://www.microsemi.com/soc
mailto:soc_tech@microsemi.com
http://www.microsemi.com/soc/mycases/
mailto:soc_tech@microsemi.com
http://www.microsemi.com/soc/company/contact/default.aspx
mailto:soc_tech_itar@microsemi.com
http://www.microsemi.com

Within the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996

Documents / Resources

Microsemi SmartFusion2 DDR Controller and Serial High Speed Controller [pdf] User Gui
de
SmartFusion2 DDR Controller and Serial High Speed Controller, SmartFusion2 DDR, Controller
and Serial High Speed Controller, High Speed Controller

References

 library.no in parked

 Microsemi | Semiconductor & System Solutions | Power Matters

 SmartFusion® 2 FPGAs | Microchip Technology

 Libero® SoC Design Suite Versions 2023.1 to 12.0 | Microchip Technology

 Libero® SoC Design Suite Versions 2023.1 to 12.0 | Microchip Technology

 Libero® SoC Design Suite Versions 2022.3 to 12.0 | Microchip Technology

 Libero® SoC Design Suite Versions 2023.1 to 12.0 | Microchip Technology

 Libero® SoC Design Suite Versions 2023.1 to 12.0 | Microchip Technology

 Libero® SoC Design Suite Versions 2022.3 to 12.0 | Microchip Technology

Manuals+,

https://manuals.plus/m/87a4fb4b529fa41fec0fcc451a0f39077d43fe46130bedd025e43a812882e257
https://manuals.plus/m/87a4fb4b529fa41fec0fcc451a0f39077d43fe46130bedd025e43a812882e257_optim.pdf
http://library.no
http://www.microsemi.com
http://www.microsemi.com/products/fpga-soc/soc-fpga/sf2docs#documents
http://www.microsemi.com/soc
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/soc/company/contact/default.aspx#itartechsupport
http://www.microsemi.com/soc/ITAR/
http://www.microsemi.com/soc/mycases/
http://www.microsemi.com/soc/support/search/default.aspx
https://manuals.plus/

	Microsemi SmartFusion2 DDR Controller and Serial High Speed Controller User Guide
	Introduction
	Theory of Operation
	Using System Builder to Create a Design Using DDR and SERDESIF Blocks
	Using SmartDesign to Create a Design Using DDR and SERDESIF Blocks
	Creating and Compiling the Firmware Application
	BFM Files Used for Simulating the Design
	Product Support
	Documents / Resources
	References

