

Microsemi HB0794 CoreReset_PF v2.3 Instructions

Home » Microsemi » Microsemi HB0794 CoreReset_PF v2.3 Instructions

Microsemi HB0794 CoreReset_PF v2.3 Instructions

Contents

- **1 Revision History**
- 2 Introduction
- 3 Design Description
- **4 Tool Flow**
- 5 Documents /

Resources

- **5.1 References**
- **6 Related Posts**

Revision History

The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication.

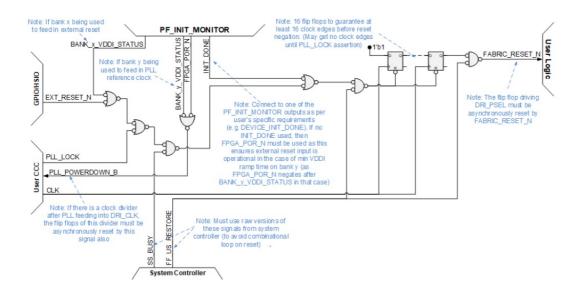
Revision 3.0

Added PolarFire® SoC support.

Revision 2.0

Updated for CoreReset PF v2.2.

Revision 1.0


Revision 1.0 was the first publication of this document. Created for CoreReset_PF v2.1

Introduction

CoreReset_PF allows synchronization of the resets to the user-specified clock domain to which each reset is feeded, so that, when assertion is asynchronous, negation is synchronous to the clock. CoreReset_PF block

diagram is as shown in Figure 1, page 2.

Figure 1 • CoreReset_PF Block Diagram

Key Features

- Generates a reset, which is asserted asynchronously by one of multiple potential sources and which negates synchronously to a specified clock. This ensures that the recovery time of downstream logic is met and that all flip flops come out of reset in the same clock period.
- Multiple reset can be used such as external gpio, phase lock loop lock or init done in conjunction with the master reset from the system controller (through CORESYSSERVICES_PF).

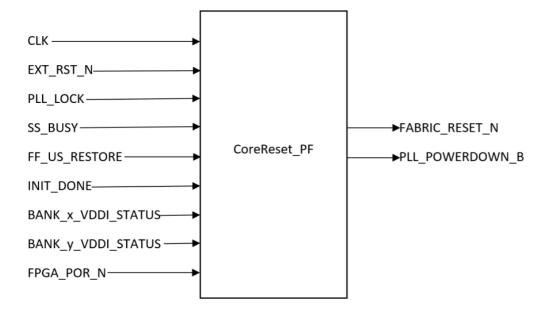
Core Version

This handbook is for CoreReset_PF version 2.3.

Supported Families

- PolarFire® SoC
- PolarFire®

Utilization and Performance


CoreReset_PF has been implemented for the PolarFire and PolarFire SoC device families. A summary of the implementation data for CoreReset_PF is listed in Table 1,

Design Description

I/O Signals

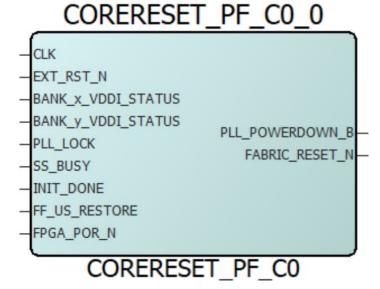
The port signals for the CoreReset PF macro are as shown in Figure 2, page 4 and defined in Table 2,

Figure 2 · CoreReset PF I/O Signal Diagram

Tool Flow

Licensing

CoreReset_PF is license free.


RTL

Complete RTL source code is provided for the core and testbenches.

SmartDesign

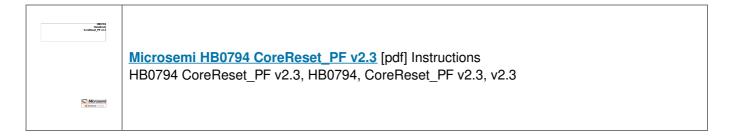
CoreReset_PF is preinstalled in the SmartDesign IP Deployment design environment. The core should be configured using the configuration GUI within SmartDesign, as shown in Figure 3, page 6. To know how to create SmartDesign project using the IP cores, refer to Libero SoC documents page and use the latest SmartDesign user guide.

Figure 3 • CoreReset_PF Full I/O View

Simulation Flows

The user testbench for CoreReset_PF is included in all releases. To run simulations, select the User Testbench flow within the SmartDesign CoreReset_PF configuration GUI, right-click the canvas, and select Generate Design. When SmartDesign generates the design files, it will install the user testbench files. To run the user testbench, Set the design root to the CoreReset_PF instantiation in the LiberoSoC design hierarchy pane and click the Simulation icon in the Libero SoC Design Flow window. This will invoke ModelSim® and automatically run the

simulation.


Synthesis in Libero SoC

After setting the design root appropriately for your design, click the Synthesis icon in the Libero SoC. The Synthesis window appears, displaying the Synplicity® project. Set Synplicity to use the Verilog 2001 standard if Verilog is being used. To run Synthesis, click the Run icon.

Place-and-Route in Libero SoC

After setting the design root appropriately for the design, and after running Synthesis, click the Layout icon in the Libero SoC software to invoke Designer. CoreReset_PF requires no special place-and-route settings.

Documents / Resources

References

• Microsemi | Semiconductor & System Solutions | Power Matters

Manuals+,