Manuals+ — User Manuals Simplified.

MICROCHIP Trust Platform Manifest File Format User Guide

Home » MICROCHIP » MICROCHIP Trust Platform Manifest File Format User Guide -

MICROCHIP

Trust Platform Manifest File Format
User Guide

Contents

1 Overview

2 Manifest Generation

3 Structure and Format of a Manifest File
4 Manifest File Example and Decoding

5 Revision History

6 The Microchip Website

7 Microchip Devices Code Protection
Feature

8 Legal Notice
9 Trademarks
10 Worldwide Sales and Service
11 Documents / Resources
11.1 References
12 Related Posts

Overview

The manifest file format is designed to convey the unique information about a group of secure subsystems,
including unique ID (e.g., serial number), public keys and certificates. This was primarily developed for Crpy to
Authentication™ (currently ATECC508A, ATECC608A and ATECC608B) secure elements. However, it is
structured to work for other secure subsystems as well.

Manifest files provide a way to link an actual Microchip Trust security device to the infrastructure environment that

https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/microchip
https://manuals.plus/microchip/trust-platform-manifest-file-format-manual.pdf

it needs to connect to. These files are a critical aspect of the Microchip Trust&GO, Trust FLEX and, optionally,
Trust CUSTOM development environments. Whether you connect to an loT cloud, a LoRaWAN® network or,
potentially, any other infrastructure or environment, the manifest file uniquely ties a given device to that
environment.

When working with Microchip Trustor, Trust FLEX or Trust CUSTOM products, a manifest file will be generated for
a group of devices that are provisioned through the Microchip Just-In-Time provisioning services. Each object
entry in the manifest file is known as a signed secure element and is signed by a Microchip Elliptic Curve
Cryptography (ECC) private key to validate its authenticity. The overall manifest is made of multiple signed secure
elements.

Specific information associated with the manufacturer, the secure product device and specific individual device
information are all part of the information associated with a given signed secure element.

The manifest file is available in a secure fashion only to the customer that orders the group of devices. Accessing
these manifest files is part of the development and provisioning flow provided through Microchip. Once
provisioning is completed for a group of products, the manifest file is available for download.

Manifest Generation

The manifest of the Trust FLEX and Trust&GO devices can be generated in two scenarios. One is through the
Microchip Just-In-Time provisioning services (Microchip-generated) and the second one is a custom generation
using the scripts provided (self-generated).

In both cases, the Trust&GO, Trust FLEX and Trust CUSTOM devices will have different information due to
differences in their configuration.

The following sections provide manifest file differences between:

1. Microchip and self-generated files
— Manifest signature
2. Trust&GO and Trust FLEX files

3. Prototype and production device files

1.1 Microchip vs. Self-Generated Files

The manifest file format and generation procedures are public information; hence, they can be generated by
users.

Due to this nature and when the procedures are followed, there will still be minor differences between Microchip
and self-generated files.

Manifest Signature

In the manifest file, each element is signed to ensure the integrity of the content. For a Microchip-generated
manifest file, the signing operation is performed by Microchip using its Certificate Authority (CA). The
corresponding CA certificate can be downloaded from the Microchip website. This certificate can be used to
validate the authenticity of the Microchip-generated files.

Tip:

« MCHP Manifest Signer Certificates (under Documentation tab)

« Direct link to Download

For a self-generated manifest file, it is not possible to get each element signed by Microchip CA, as users do not
have access to a CA private key. It is required to generate/use a local CA to perform the signature operations. In
this case, the users must share the validation certificate along with the manifest file to others. This enables them
to validate the content before using it further.

The other differences include:

1. Trust&GO — Content remains the same, as the device data are immutable, but signature and verification

certificates are different, as self-generated scripts use their own CA.

2. Trust FLEX
a. Device and signer certificates can be different if custom PKIl is selected during resource generation.
b. Slots 1-4, 13-15 vary based on additional key generations as part of resource generation at the user’s
location.

c. Signature and verification certificates are different, as self-generated scripts use their own CA.

1.2 Trust&GO vs. Trust FLEX vs. Trust CUSTOM Files

The manifest files only contain public information of the device, such as its serial number, certificates and slots’
public information. Depending on the configuration differences, the information in Trust&GO, Trust FLEX and Trust
CUSTOM files varies as follows:

Trust&GO Trust FLEX Trust CUSTOM

« Slot 0 public key information (immutable
« Slot 0 public key information (im |)
mutable) * Device and signer certificates signed by
« Device and signer certificates si | Microchip or customer CA based on custo
gned by Microchip CA (immutable | m PKI selection

) » Slot 1-4 public key information

+ Slot 13-15 public key information

 Custom information due to u
nique configuration

Certificate Slots in Trust FLEX Devices

When the user opts to create a custom certificate chain on the Trust FLEX device, the factory provisioned
certificates will be overwritten. Trust Platform Design Suite scripts/notebook allow the user to back up default
certificates into a local folder before overwriting custom certificates on the device. However, if the board changes
hands after provisioning, the new user will not have the back-up certificates and will not be able to revert to factory
default.

1.3 Prototype vs. Production Device Files

Prototype devices are meant to be used in-house for R&D; therefore, these devices do not come with a manifest
file generated in the factory. However, these devices will have the Slot 0 key generated along with the device and
signer certificates generated during factory provisioning. It is required to self-generate the manifest files for
prototype Trust&GO and Trust FLEX devices.

The Trust Platform Design Suite provides the required scripts/tools to self-generate the manifest files.

Tip:

« Trust&GO manifest generation scripts

» Trust FLEX manifest generation scripts (with dev key generation)

For production devices, users can always download the manifest file from the microchip DIRECT portal under their
personal login. These files are available only after devices are provisioned and shipped to the customer.
Figure 1-1. Microchip DIRECT Manifest Portal

jer Date ler Status Tracking Information
16-Jul-2020 Shipped View Tracking Information

Part Number: ATECC608A-TFLXTLSU Quantity: Line Status: Invoiced

Your Part Numbe Jate: 16-Jul-2020
Line Totalf Estim ate: 17-Aug-2020
o T . = g
Buy it again Modify order e: 20-Aug-2020
Shipg d: TNT Global Express Zone 3 EUR
:

Structure and Format of a Manifest File

2.1 Introduction

The base format is an array of JavaScript Object Notation (JSON) objects. Each object represents a single secure
element and is signed to allow cryptographic verification of its origins. The format is intentionally “flattened” with
common information repeated for each secure element. This is to facilitate parallel processing of manifests and to
allow splitting of entries into smaller manifests, where appropriate.

This format makes use of the JavaScript Object Signing and Encryption (JOSE) set of standards to represent
keys (JSON Web Key — JWK), certificates (x5¢c member in a JWK) and provide signing (JSON Web Signature —
JWS). In the object definitions, member values may be the name of another JSON object or just an example
value.

2.2 Binary Encoding

JSON has no native binary data format, so a number of string encodings are used to represent binary data
depending on context.

BASE64URL

This is a base64 encoding using a URL-safe alphabet, as described in RFC 4648 section 5, with the trailing
padding characters (“=") stripped.

This is the encoding used by the JOSE standards and will be found in the JWS, JWK and JWE objects used. This
is documented in RFC 7515 section 2.

This encoding is also used in a few other non-JOSE members to maintain consistency.

BASEG64

This is the standard base64 encoding, as described in RFC 4648 section 4, and includes the trailing padding
characters (“=").

This is used for encoding certificates (JOSE x5¢ members), presumably to more closely match the common PEM
encoding that certificates are often found in.

HEX

In some cases, short binary values are expressed as lowercase hex strings. This is to match convention with how
these values are typically seen and worked with.

2.3 Secure Element Manifest Object

At the top level, the secure element manifest format is a JSON array of Signed Secure Element objects where
each element represents a single secure element.

[

SignedSecureElement ,

SignedSecureElement ,

]
2.4 Signed Secure Element Object

The Signed Secure Element object is a JWS (RFC 7515) object using the Flattened JSON Serialization Syntax
(section 7.2.2).

{

“payload” : BASE64URL(UTF 8(SecureElement)) ,

“protected” : BASE64 URL(UTF8(SignedSecureElementProtectedHeader)),

“header” : {

“uniqueld” : “0123f1822¢38dd7a01”

}1
“signature” : BASE 64URL(JWS Signature)

}

RFC 7515 section 7.2.1 provides definitions for the encoding and contents of the JWS members being used in this

object. Below are some quick summaries and additional details about these members and the specific features
being used.

payload

An encoded SecureElement object, which is the primary content being signed. All information about the secure
element is contained here.

protected

An encoded SignedSecureElementProtectedHeader object, which describes how to verify the signature.

header

JWS unprotected header. This object contains the unique ID member repeated from the SecureElement object in
the payload. The unprotected header is not part of the signed data in the JWS; therefore, it does not need to be
encoded and is included to facilitate plain-text searches of the manifest without needing to decode the payload.
signature

The encoded JWS signature of the payload and protected members.

2.4.1 SignedSecureElementProtectedHeader Object

The SignedSecureElementProtectedHeader object is a JWS protected header that describes how to verify the
signature. While RFC 7515 section 4.1 lists out the available header members for a JWS, only the ones listed here
will be used.

{

“alg”: “ES256”,

“kid”: BASE64URL(Subject Key Identfier) ,

“x5t#S256” : BASE64 URL(SHA-256 Certificate Thumbprint)

}

alg

Describes the key type used to sign the payload. See RFC 7518 section 3.1. Only public key algorithms will be
used.

kid

Encoded Subject Key Identifier (RFC 5280 section 4.2.1.2) of the key used to sign the payload. This is the
BASE64URL encoding of the subject key identifier value, not the full extension. Used to help identify the key for
verification. kid is a free-form field in the JWS standard (see RFC 7515 section 4.1.4), so this definition applies
only to the SignedSecureElement object.

x5t#5256

SHA-256 thumbprint (a.k.a. fingerprint) of the certificate for the public key required to validate the signature. Like
kid, it can also be used to help identify the key for verification. See RFC 7515 section 4.1.8.

2.5 SecureElement Object

The SecureElement object contains all the information about the secure element.

{

“version” : 1,

“model” : “ATECC608A” ,

“partNumber” : “ATECC608A-MAHDA-T” ,

“manufacturer” : EntityName ,

“provisioner” : EntityName ,

“distributer” : EntityName ,

“groupld” : “359SCE55NV38H3CB” ,

“provisioningTimestamp” : “2018-01-15T17:22:45.000Z2” ,

“uniqueld” : “0123f1822¢38dd7a01” ,

“publicKeySet” : {

“keys” : [PublicdWK, ...]

b

“encryptedSecretKeySet” : {

“keys” : [EncryptedSecretJWK , ...]

}

“modelinfo” : Modellnfo

}

version

SecureElement object version as an integer. The current version is 1. Subsequent versions will strive to maintain
backwards compatibility with previous versions, where possible.

model

Name of the base secure element model. The current options are ATECC508A, ATECC608A and ATECC608B
from the Crypto Authentication family.

partNumber

Complete part number of the provisioned secure element.

manufacturer

An EntityName object that identifies the manufacturer of the secure element.

provisioner

An EntityName object that identifies who performed the provisioning/programming of the secure element.
distributer

An EntityName object that identifies who distributed the provisioned secure elements.

In many cases, this will be the same entity that generates the manifest data being described here.

groupld

Secure elements may be organized into groups identified by a single ID. If the secure element is part of a group,
this is the unique ID of that set. Group IDs should be globally unique.

provisioningTimestamp

Date and time the secure element was provisioned in UTC. Formatting is per RFC 3339.

uniqueld

Unique identifier for the secure element. For Crypto Authentication devices, this is the 9-byte device serial number
as a lowercase hex string.

publicKeySet

An object representing all the public keys (and certificate chains, if available) corresponding to private keys held
by the secure element. This object is a JSON Web Key Set (JWK Set) per RFC 7517 section 5, where keys are
an array of Public JWK objects.

encryptedSecretKeySet

An object representing all the secret keys (symmetric keys) and data held by the secure element that are marked
for export. The keys member is an array of EncryptedSecretJWK objects. Note that an encrypted JWK Set is not
used so the metadata about the individual keys (number and key IDs) can be read without decrypting.

modelinfo

If additional non-cryptographic information about the secure element needs to be conveyed, this Modulino object
may be present with model-specific information.

2.6 EntityName Object

The EntityName object is used to identify an entity responsible for some part of the secure element. The members
in this object are variable and must be the same as the attributes defined in sections 6.4.1 Organization Name
and 6.4.2 Organizational Unit Name of ITU-T X.509 (ISO/IEC 9594-6). While none of the members are required,
there must be at least one.

{

“organizationName” : “Microchip Technology Inc” ,

“organizationalUnitName” : “Secure Products Group” ,

}

organizationName

Name of the entity organization (e.g., company name).

organizationalUnitName Optional name of a unit within the organization that the entity applies to specifically.

2.7 Public JWK Object

This object represents an asymmetric public key and any certificates associated with it. This is a JWK object, as
defined by RFC 7517. Some JWK member specifications are repeated below for easy reference along with
expectations for specific models of secure elements.

The following definition is for elliptic curve public keys, supported by the Crypto Authentication family of secure
elements.

{

i‘kid” : HO" ,
i‘kty” : “ ECU ,
“crv” : “P-256"

“x” : BASEG4URL(X) ,

“y” : BASE64URL(Y) ,

“x5¢” : [BASE 64(cert) , ...]

}

The following JWK fields required for elliptic curve public keys are defined in RFC 7518 section 6.2.1:

kid

Key ID string. It uniquely identifies this key on the secure element. For Crypto Authentication secure elements, this
will be the slot number of the corresponding private key.

kty

Key type. CryptoAuthentication secure elements only support EC public keys, as defined in RFC 7518 section 6.1.
crv

For elliptic curve keys, this is the curve name. CryptoAuthentication secure elements only support the P-256
curve, as defined in RFC 7518 section 6.2.1.1.

X

For elliptic curve keys, this is the encoded public key X integer, as defined in RFC 7518 section 6.2.1.2.

y

For elliptic curve keys, this is the encoded public key Y integer, as defined in RFC 7518 section 6.2.1.3.

x5¢

If the public key has a certificate associated with it, that certificate will be found at the first position in this array.
Subsequent certificates in the array will be the CA certificates used to validate the previous one. Certificates will
be BASE64 encoded (not BASE64URL) strings of the DER certificate. This is defined in RFC 7517 section 4.7.
2.8 EncryptedSecretJWK Object

This object represents a secret key (symmetric key) or secret data in a secure element that is encrypted for the
recipient of the manifest.

It is a JSON Web Encryption (JWE) object, as defined by RFC 7516. The JWE payload will be the JSON
serialization (not compact serialization) of a JWK object, as defined by RFC 7517, with a key type of octet
(“kty”:"oct”). See RFC 7518 section 6.4 for details on the symmetric key JWK. This technique is described in RFC
7517 section 7.

2.9 Modelinfo Object

This object holds additional model-specific information about a secure element that is not captured by the other
cryptographic members. It has no specific members, but depends on the model of the secure element.

Currently, only the CryptoAuthentication models (ATECC508A and ATECC608A) have a Modelinfo object defined.
2.9.1 CryptoAuthentication Modellnfo Object

Modellnfo members defined for CryptoAuthentication models (ATECC508A or ATECC608A):

{

“deviceRevision” : “00006002” ,

“publicData” : [CryptoAuthPublicDataElement , ...]

}

deviceRevision

The 4-byte device revision number as returned by the Info (Mode = 0x00) command. Encoded as a lowercase hex
string.

publicData

An array of CryptoAuthPublicDataElement objects that defines a location and the public data at that location.
2.9.1.1 CryptoAuthPublicDataElement Object

This object defines the location and contents of a public data element in CryptoAuthentication secure elements.

{

“zone” : “data”,
“slot” : 14 ,
“offset” : 0,

“data” : BASE64URL(data)

}

zone

CryptoAuthentication zone where the data are found. The options are “data” for one of the slots, “otp” for the OTP
zone or “config” for the configuration zone.

slot

If the zone is “data”, this is the slot index (0-15) where the data can be found.

offset

Byte offset into the zone/slot that the data can be found at.

data

Actual data at the location specified by the other members. This data will be BASE64URL encoded (with padding
characters (“=") stripped).

Manifest File Example and Decoding

The following subsections provide examples of a manifest file entry, manifest CA certificate and a Python code
example that can be used to decode the manifest file. These files can be downloaded from the Microchip website
at Manifest Example Files. The content of the download file is shown below.

Manifest Files Example

ExampleManifest.json A single element manifest file in json format.

ExampleManifestMCHP_CA.cr
t

An example of a manufacturing CA certificate produced by Microchip.

A Python script that will read the example Manifest json file and decode it into

ExampleManifestDecode.py . ,
its respective elements.

3.1 Manifest Example
This is an example of a Secure Element Manifest object with a single SignedSecureElement entry:

[

{

“payload” :
“eyJ2ZXJzaW9uljoxLCJtb2RIbCI6IkFURUNDN]jA4QSIsInBhcnROdW1iZXIiOiJBVEVDQzYwOEEtTUFIMjliLCJtYW5
1Z
mFjdHVyZXliOnsib3JnYW5pemF0aW9uTmFtZSI61k1pY3JvY2hpcCBUZWNobm9sb2d5IEluYylsim9yZ2FuaXphdGlv
bmF
sVW5pdEShbWUIOIJTZWN1ecmUgUHJVZHVjdHMgR3JvdXAifSwicHJvdmIzaW9uZXliOnsib3JnYW5pemF0aW9uTm
FtZSlel
k1pY3JvY2hpcCBUZWNobm9sb2d5IEluYylsim9yZ2FuaXphdGlvbmFsVW5pdE5ShbWUIOIJTZWN1ecmUgUHJvZHV|d
HMgR3J
vdXAifSwiZGlzdHJpYnV0b3liOnsib3JnYW5pemF0aW9uTmFtZSI61k1pY3JvY2hpcCBUZWNobm9sb2d5IEIuYylsim9
yZ
2FuaXphdGlvbmFsVW5pdE5hbWUIOiJNaWNyb2NoaXAgRGlyZWNOIn0sImdyb3VwSWQIOilzNTITQOU1NUSWMzh
IMONCliw
icHJvdmlzaW9uaW5nVGItZXNOYW1wljoiMjAXOSOwMS0yNFQxNjozNToyMy40NzNaliwidW5pcXVISWQIOilwMTIz
ZjE4AM
jJjMzhkZDdhMDEILCJwdWJsaWNLZXITZXQiOnsia2V5cyl6W3sia2lkljoiMClsImt0eSI6IkVDIiwiY3J21joiUCOyNTY
iLCJ4ljoieDhUUFFrN2g1T3ctY2IxNXAtVEU2SVJIXSFFTRVRwUK50YNU3bmwwRm93TSIsInkiOiJ1eDN1UDhBbG9V
bThRb
k5ueUZMNIlwS0taWXhGQOIOVVIRTGdzdWhYb29zliwieDVijljpblk1JSUISVENDQVp1Z0F3SUJBZOIRVKN10GZzdk
FwM3I
kc25uU2FYd2dnVEFLQmMdncWhrak9QUVFEQWpCUE1TRXdId1IEVIFRSORCaE5hV055YjJOb2FYQWdWR1ZgYUc
1dmJHOWSIU
0JKYm1NeEtgQWICZ05WQKFNTUIVTnIIWEIwYnICQmMRYUm9aVzUwYVdOaGRHbHZiaUJUYVdkdVpYSWdSall3
TURBZ0Z3MHh
PVEF4TWpReE5qQXdNREJhROE4eU1EUTNNREV5TKkRFMk1EQXdNRM93UmpFaE1COEdBMVVFQ2d3WVRXbG
pjbTIgYUdsd0IGU
mxZMmh1YjJ4dloza2dTVzVqTVNFdOh3WURWUVFEREJNd01USXpSakUOTWpKRE16aEVSRGRCTURFZ1FWUKZ
RME13V1RBVEJ
nY3Foa2pPUFFJQkJnZ3Foa2pPUFFNQkJ3TKkNBQVRIeE0O5Q1R1SGs3RDV4dIhtbjVNVG90oR29kQkIST2xFMDF1N2
VIWFFXa
kE3¢c2Q3ai9BSmFGSnZFSnpaOGhTK2tkQ21tV01SUWIMVIAWQzRMTGOWNktMbzJBd1hqgQU1CZ05WSFIJNQKFm
OEVBakFBTUE
OROExVWREJOVCL3dRRUF3SURpREFkQMAOVKhRNEVGZ1FVcy9HcVpRNKk1BYjd6SCO9yMVFVNThPYOVGdVpJd
0h3WURWUjBgQ
kdnd02vQVUrOXIxRW9yNndiV1NgODJyRWRzSIBzOU52d11I3Q2dZSUtvWkl6ajBFQXdJRFNBQXdSUUINTkxUeks 1N
ml1VVI
FSGU5WXdxSXM2dVRhbm14Mk9yQjZoL1FZRHNJT1dzTUNJUUNMMURzbHhnVXU4OHhveXInTVNnTDIYOGXjS
DVCejlISQURKY
W1JZi91UUtnPTOILCJNSUIDQIRDQOFhcWdBdOICQWdJUWVRcW4xWDF6M09sdFpkdG1pM2F5WGpBS0JnZ3Fo
a2pPUFFRREF

gQIBNUOV3SHdZRFZRUUtEQmMhQOYVdOeWIly TmOhWEFnVkdWamFHNXZiRzluZVNCSmJtTXhLakFvQmdOVkJBT
U1JVU55ZVhCM
GJ5QkJKWFJvWIc1MGFXTmhkR2x2YmICU2lyOTBJRU5CSURBdA01qgQWdGdzB4TORFeU1UUXhPVEF3TURCYUd
BOHINRFE1TVR

http://examplemanifest.json
http://examplemanifestmchp_ca.crt
http://examplemanifestdecode.py

JeE5SERTVNREF3TUZvd1R6RWhNQjhHQTFVRUNNd1IUV2xqY205amFHbHAJRIJsWTJodWIlyeHZaM2tnU1c1ak1T
b3dLQVIEV

IFRRERDRKRjomx3ZEc4Z1FYVjBhR1Z1ZEdsallYUnBiMjRnVTJsbmJtVnlJRVky TURBd1dUQVRCZ2NxaGtqT1BRS
uJCzad
xaGtqT1BRTUJCA05DQUFSMIlwRNndzbVBubVZTOGhic1M2ZjV3REZ1TjFOYVRSWmpDS2FkbOFnNU9DMjFJZGR
EJdG9INzJYN

UZmeHJFV1JzV2h5bU1 mWWxWb2RFZHB4ZDZEdFIscW8yWXdaREFPQmMAOVkhROEJBZjhFQkFNQOFZWXdFZ1
IEVIIWVEFRSC9
CQWd3QmdFQi93SUJBREFkQMAOVKhRNEVGZ1FVKzI5cUVvcjZ3YIdTajgyckVkcOpQczIOdnZZdOh3WURWU|BgQ
kdnd0ZvQ
VVIdTESYmMNhM2VKMnIPQUdsNkVxTXNLUU9Lb3d3Q2dZSUtvWkI6ajBFQXdJRFNRQXdSZ0loQU1Zd01IbXBpekd
PYUgOR3h
UbDVLc1Y2WEFGTk1CZmUzTko5MVIzTmhgZi9BaUVBeHFJc2JyR3VYNFdSU2N0ZDUzZUxvL0O1MNIQyYmdHK1V
2ejJRcFISN

Flkdz0iXX0seyJraWQiQilxliwia3R5ljoiRUMILCJjenYiOiJQLTI1NilsIngiOily T2huZTI2MGFUUONkclpObVh2dE9
XaXI1RVRnUmhudmV|SkRYUEh6RnBnliwieSI6ImhjUDkxQ01UQUt2amR6NI9pTIdPNDZnNNXVQalJ2Smt1dVFNIRI
Y2tGL

UEIifSx7ImtpZCI6ljliLCJrdHkiOiJFQylsImNydil6lIAtMjU2liwie CI6IkVFRXhpUmYwVEJYd1BrTGloSIZSdGVTWTN
oVS1JR1RMbFVPLUZSTUpaRmciLCJ5ljoiTnVib2F3NFdfY TNLd2kwbFZIRzIwNGgOMkkObTd2bUs1UDQ5U1BIYkZ2
TSJOL

Hsia2lkljoiMylsimt0eSI6IkVDIiwiY3J21joiUCOyNTYiLCJ4ljoiakt COERrY2k1RXhSemcwcXREZEFqcFJJSFNoeF!
PTjgyWVoyLWhhamVuWSIsInkiOiJOWU1KOUROYKNONk9wbmoyZzQzQWhrMnB4UXU5S1JkTXkzb TBmLUpfclJFI
nOseydra
WQIOil0liwia3R5ljoiRUMILCJjcnYiOiJQLTI1NilsIngiOiJMVFUwSUdoM3ItQXpXbFdtWjg0ZmhYN1IrQjRaQ21tbFY
tWU9ORHREYURVIiwieSI6ImN2TnlyVEpEV1hmNFhPNIB6eWJSV29FY1FMVDRGMO05WUDhZajlitWDhxYncifV19f
Q”,

“protected” :
“eydJ0eXAiOiJKV1QiLCJhbGciOiJFUzI1NilsImtpZCI61jdjQOIMbEFPd1IvMS1QQ2hHAW95VUITTUszZylsIng1dCNTM
jU2ljoiVEV]NDZTVDJSREZfQU92QnRvQ1IhODM4VIdJUGZOVI8yalRxTmE0ajVSNCJ9” ,

“header” : {

“uniqueld” : “0123f1822¢38dd7a01”

|3

“signature”

“7btSLIbS3Yoc6yMckm7Moceis_ PNsFbNJ6iktVKI86luxZ6cU_yVZuLSgLCstMs4_EBFpvsyFy7lj5rM9oMDw”

}

]

Decoding the protected member gives the following SignedSecureElementProtectedHeader:
{

“typ” : “UWT”,

“alg” : “ES256” ,

“kid” : “7cCILIAOwYo1-PChGuoyUISMK3g” ,

“x5t#S256” : “TEc46ST2RDF_AOvBtoCYa838VWIPINV_2jTgNa4j5R4”

}

Decoding the payload member gives the following SecureElement:
{

“version” : 1,

“model” : “ATECC608A” ,

“partNumber” : “ATECC608A-MAH22” ,

“manufacturer” : {

“organizationName” : “Microchip Technology Inc”,

LI

“organizationalUnitName” : “Secure Products Group”
Y

“provisioner” : {

“organizationName” : “Microchip Technology Inc” ,
“organizationalUnitName” : “Secure Products Group”
Y

“distributor” : {

“organizationName” : “Microchip Technology Inc”,
“organizationalUnitName” : “Microchip Direct”

I
“groupld” : “359SCE55NV38H3CB” ,

“provisioningTimestamp” : “2019-01-24T16:35:23.4732”,

“uniqueld” : “0123f1822¢38dd7a01”,

“publicKeySet” : {

“keys”: [

{

“kid”: “0”,

“kty”: “EC”,

“crv”: “P-256" ,

“X": “x8TPQk7h50w-cb15p-TE6IRqQHQSETpRNNbu7nl0FowM” ,

“y”: “ux3uP8AloUm8QNnNnyFLEROKKZYxFCItU_QLgsuhXoos” ,

“x5¢”: |

“MIIB9TCCAZugAwIBAgIQVCu8fsvAp3ydsnnSaXwgg TAKBggghkiOPQQDAjBPMSEwHwWYDVQQKDBhNaWNyb2N
0aXAgVGVja
G5vbG9IneSBJbmMxKjAoBgNVBAMMIUNyeXB0byBBdXRoZW50aWNhdGIvbiBTaWduZXIgRjYwMDAgFwOxOTAXx
MjQxNjAwMDB

aGA8yMDQ3MDEyNDE2MDAwMFowRJEhMB8GA1UECgwY TWIjcm9jaGIwIFRIY2hub2xvZ3kgSW5MSEwWHwWY DV
QQDDBgwMTIzR
jE4MjJDMzhERDdBMDEgQVRFQOMwWWTATBgcghkjOPQIBBggghkjOPQMBBWNCAATHXM9CTuHk7D5xvXmn5M
TohGodBIROIEO
1u7ueXQWjA7sd7j/AJaFJvEJzZ8hS+kdCimWMRQILVPOC4LLoVEKLo2AwXjAMBgNVHRMBAfSEAJAAMA4GA1Ud
DwEB/

wQEAwIDIDAdBgNVHQ4EFgQUs/GgZQ6MAb7zH/
r1Qo580cEFuZIwHwYDVROjBBgwFoAU+9yqEor6wbWSj82rEdsJPs9INvvYwCgY1KoZIzjOEAwWIDSAAWRQIgNLTzK5S
6b5UYE
He9Ywqls6uTanmx20rB6h/QYDsIOWsMCIQCL1DsIxgUu88xoyygMSgL9X8IcH5Bz9RADJamlf/luQKg==",
“MIICBTCCAaqgAwIBAgIQeQqn1X1z30ItZdtmi3ay XjAKBggghkjOPQQDA]BPMSEwHwWYDVQQKDBhNaWNyb2No
aXAgVGVja
G5vbG9IneSBJbmMxKjAoBgNVBAMMIUNyeXB0byBBdXRoZW50aWNhdGIvbiBSb290IENBIDAWMjAgFwOxODEyM
TQxOTAwMDB

aGA8yMDQ5MTIXNDESMDAwMFowTzEhMB8GA1UECgwY TWIljcm9jaGIwIFRIY2hub2xvZ3kgSW5jMSowKAYDVQ
QDDCFDcnlwd

G8gQXV0aGVudGljYXRpb24gU2inbmVylEY2MDAWWTAT BgcghkjOPQIBBggghkjOPQMBBWNCAAR2ROFwsmPn
mVS8hbsS6f5
wDFuN1NaTRZjCKadoAg50C21IddDtoe72X5FfxrEWRsWhymMfYIVodEdpxd6DtYIgo2YwZDAOBgNVHQ8BAISEB
AMCAYYwE

gYDVROTAQH/BAgwBgEB/
wIBADAdBgNVHQ4EFgQU+9yqEoréwbWSj82rEdsJPs9NvvYwHwYDVROjBBgwFoAUeu19bca3eJ2yOAGIGEqMsK
QOKowwCgY

IKoZIzj0OEAWIDSQAwWRgIhAMYwMempizBOaH4GxTI5Ks V6 XAFNMBfe3NJ91R3Nhjf/AIEAxqlIsbrGuX4WRSctd53eL
o/

ML6T2bgG+Uvz2QpYR4Ydw="

]

b

{

“kid”: “1”,

“kty”: “EC”,

“crv”: “P-256" ,

“x”: “20hne9v0aTSCdrZNmXvtOWirSETgRhnvecJDXPHzFpg” ,

“y”: “hcP91CMTAKVvjdz6_iNWO46g5uPjRvJkuuQ_6THCkF-A”

b

{

“kid”: “2”,

“kty”: “EC”,

“crv”: “P-256" ,

“x”: “EEExiRfOTBXwPKLihJVRteSY3hU-IGTLIUO-FRMJZFg” ,

“y”: “Nuboaw4W_a3Kwi0lVeG9p4h4214m7vmK5P49SPebFvM”

b

{

“Wid”: “3” ,

“kty”: “EC” ,

“crv’: “P-256” ,

“X’: “jKB8Dkci5EXRzg0qtDdAjpRIHShxYONS2YZ2-hajenY” ,
“y*: “NYMJ9DtbCt60pnj2g43Ahk2pxQuIKRAMy3mOf-J_rRE”
|8

{

“Kid”: “4” ,

“kty”: “EC” ,

“crv”; “P-256" ,

“x”: “LTUOIGh3ymAzWIWmZ84fhX7YkB4ZCmmIV-YONDtDaDU’" ,
“y”: “cyNr2TIDWXf4XO6PzybRWoECQLT4F3NVP8Yj2-X8gbw”

}
]
}
}

The SignedSecureElement example above can be verified with the following certificate:

—BEGIN CERTIFICATE—
MIIBxjCCAWygAwIBAgIQZGIWYMZI9cMcBZipXx TOWDAKBggghkjOPQQDAJABMSEw
HwYDVQQKDBhNaWNyb2NoaXAgVGVjaG5vbG9neSBJbmMxFzAVBgNVBAMMDKxvZyBT
aWduZXIgMDAxMB4XDTE5MDEyMjAwMjcOMIoXDTE5MDcyMjAwMjcOMIowPDEhMB8G
ATUECgwYTWIjicm9jaGIwIFRIY2hub2xvZ3kgSW5jMRcwFQYDVQQDDA5Mb2cgU2In
bmVyIDAWMTBZMBMGBygGSM49AgEGCCqGSM49AWEHAOIABEU8/ZyRdTu4NOkuu76C
R1JR5vz04EuRqL4TQxMinRiUc3Htqy3806HrXo2gmNoyrO0xd212pfQhXWYuLT35
MGWjUDBOMBO0GA1UdDgQWBBTtwIguUA7BijX48KEa6jJQhlwre DAfBgNVHSMEGDAW
gBTtwlguUA7BijX48KEa6jJQhlwreDAMBgNVHRMBAfSEAJAAMA0GCCqGSM49BAMC
AOgAMEUCIQD9/x9zxmHkeWGwjEq67QsQgqBVmoY8k6PvFVr4Bz1tYOwIgYfck+fv/
pno8+2vVTkQDhcinNrgoPLQORzV5/I/b4z4=

—END

CERTIFICATE—

3.2 Decode Python Example

This is a Python script example for verifying the signed entries and decoding the contents. The script is tested on
Python 2.7 and Python 3.7. Required packages can be installed with the Python package manager pip:
pip install python-jose[cryptography]

(c) 2019 Microchip Technology Inc. and its subsidiaries.

#

Subject to your compliance with these terms, you may use Microchip software

and any derivatives exclusively with Microchip products. It is your

responsibility to comply with third party license terms applicable to your

use of third party software (including open source software) that may

accompany Microchip software.

#

THIS SOFTWARE IS SUPPLIED BY MICROCHIP “AS IS”. NO WARRANTIES, WHETHER

EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE, INCLUDING ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A

PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT,

SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE
OF ANY KIND WHATSOEVER RELATED TO THE SOFTWARE, HOWEVER CAUSED, EVEN IF
MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE

FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP’S TOTAL

LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THIS SOFTWARE WILL NOT EXCEED
THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR

THIS SOFTWARE.

import json

from base64 import b64decode , b16encode

from argparse import ArgumentParser

import jose . jws

from jose . utils import base64url_decode , base64url_encode

from cryptography import x509

from cryptography . hazmat . backends import default_backend
from cryptography . hazmat . primitives import hashes , serialization
from cryptography . hazmat . primitives . asymmetric import ec
parser = ArgumentParser (

description = ‘Verify and decode secure element manifest’

)

parser . add_argument (

‘“manifest’,

help = ‘Manifest file to process’,

nargs =1,

type = str,

required =True ,

metavar ='file’

)

parser . add_argument (

‘—cert’,

help = ‘Verification certificate file in PEM format’ ,

nargs =1,

type = str,

required =True ,

metavar ='file’

)

args = parser . parse_args ()

List out allowed verification algorithms for the JWS. Only allows
public-key based ones.

verification_algorithms = [

‘RS256’ , ‘RS384° , ‘RS512’ |, ‘ES256’ , ‘ES384’ , ‘ES512’

]

Load manifest as JSON

with open (args . manifest[0], ‘rb’) as f:

manifest = json . load (f)

Load verification certificate in PEM format

with open (args.cert[0],‘rb’) as f:

verification_cert = x509 . load_pem_x509_certificate (

data =f . read (),

backend = default_backend ()

)

Convert verification certificate public key to PEM format
verification_public_key_pem = verification_cert . public_key ().public_bytes (
encoding =serialization . Encoding. PEM ,

format =serialization . PublicFormat . SubjectPublicKeylnfo

). decode (‘ascii’)

Get the base64url encoded subject key identifier for the verification cert
ski_ext = verification_cert . extensions . get_extension_for_class (
extclass =x509 . SubjectKeyldentifier

)

verification_cert_kid_b64 = base64url_encode (

ski_ext . value . digest

). decode (‘ascii’)

Get the base64url encoded sha-256 thumbprint for the verification cert
verification_cert_x5t_s256_b64 = base64url_encode (
verification_cert . fingerprint (hashes . SHA256 ())

). decode (‘ascii’)

Process all the entries in the manifest

for i, signed_se in enumerate (manifest):

print ()

print (‘Processing entry {} of {}:” . format (i +1 , len(manifest)))
print (‘uniqueld: {} . format (

signed_se [‘header’][‘uniqueld’]

)

Decode the protected header

protected = json . loads (

base64url_decode (

signed_se [‘protected’]. encode (‘ascii’)

)

)

if protected [‘kid’] != verification_cert_kid_b64 :

raise ValueError (‘kid does not match certificate value’)

if protected [‘x5t#S256' | |= verification_cert_x5t_s256_b64 :
raise ValueError (‘x5t#S256 does not match certificate value’)
Convert JWS to compact form as required by python-jose
jws_compact = ‘. . join ([

signed_se [‘protected’],

signed_se [‘payload’],

signed_se [‘signature’]

)

Verify and decode the payload. If verification fails an exception will
be raised.

se = json. loads (

jose . jws . verify (

token =jws_compact ,

key = verification_public_key_pem,

algorithms =verification_algorithms

)

)

if se [‘uniqueld’] != signed_se [‘header’][‘uniqueld’]:
raise ValueError (

(

‘uniqueld in header “{}” does not match version in’ +

‘ payload “{}*

). format (

signed_se [‘header’][‘uniqueld’],

se [‘uniqueld’]

)

)

print (‘Verified’)

print (‘SecureElement = ‘)

print (json . dumps (se, indent =2))

Decode public keys and certificates

try :

public_keys = se [‘publicKeySet’][‘keys’]

except KeyError :

public_keys =]

for jwk in public_keys :

print (‘Public key in slot {}” . format (int (jwk[‘kid’])))

if jwk [‘kty’] = ‘EC’ :

raise ValueError (

‘Unsupported {}' . format (json . dumps ({ ‘kty’ : jwk['kty’ 1}))
)

if jwk [‘crv’] I= ‘P-256’ :

raise ValueError (

‘Unsupported {}' . format (json . dumps ({ ‘crv’ : jwk[‘crv’]}))
)

Decode x and y integers

Using int.from_bytes() would be more efficient in python 3
X =int (

b16encode (base64url_decode (jwk[‘X’]. encode (‘utf8’))),

16

)

y = int (

b16encode (base64url_decode (jwk[‘y’]. encode (‘utf8’))),
16

)

public_key = ec . EllipticCurvePublicNumbers (
curve =ec. SECP256R1 (),

X =X,

y=y

). public_key (default_backend ())

print (public_key . public_bytes (

encoding =serialization . Encoding . PEM ,
format =serialization . PublicFormat . SubjectPublicKeyInfo
). decode (‘ascii’))

Decode any available certificates

for cert_b64 in jwk . get(‘x5¢’, []):

cert = x509. load_der_x509_certificate (

data =b64decode (cert_b64),

backend =default_backend ()

)

print (cert . public_bytes (

encoding =serialization . Encoding . PEM

). decode (‘ascii’))

Revision History

Doc Rev. Date Description

A 02/2022 Initial release of this document

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files
and information easily available to customers. Some of the content available includes:

« Product Support — Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

« General Technical Support — Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

« Business of Microchip — Product selector and ordering guides, latest Microchip press releases, listing of

seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers
will receive email notification whenever there are changes, updates, revisions or errata related to a specified
product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

« Distributor or Representative

« Local Sales Office

http://www.microchip.com/
http://www.microchip.com/pcn

« Embedded Solutions Engineer (ESE)
« Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also
available to help customers. A listing of sales offices and locations is included in this document.
Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip products:

« Microchip products meet the specifications contained in their particular Microchip Data Sheet.

o Microchip believes that its family of products is secure when used in the intended manner, within operating
specifications, and under normal conditions.

« Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code
protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright
Act.

« Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code
protection does not mean that we are guaranteeing the product is “unbreakable”. Code protection is constantly

evolving. Microchip is committed to continuously improving the code protection features of our products.

Legal Notice

This publication and the information herein may be used only with Microchip products, including to design, test,
and integrate Microchip products with your application. Use of this information in any other manner violates these
terms. Information regarding device applications is provided only for your convenience and may be superseded by
updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local
Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-
us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP “AS IS”. MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR
CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP’S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE
WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR
THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer
agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses
resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual
property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, Any Rate, AVR, AVR logo, AVR Freaks, Bestie, Bit
Cloud, Crypto Memory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeelLoq, Kleer, LANCheck,
LinkMD, maXStylus, maXTouch, MedialLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB,

http://www.microchip.com/support
http://www.microchip.com/en-us/support/design-help/client-support-services

OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity,
SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, Sync Server, Tachyon, TimeSource, tinyAVR, UNI/O,
Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other
countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed
Control, Hyper Light Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC,
ProASIC Plus, ProASIC Plus logo, Quiet- Wire, Smart Fusion, Sync World, Temux, TimeCesium, TimeHub,
TimePictra, TimeProvider, TrueTime, WinPath, and ZL are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Any In, Any Out, Augmented
Switching, Blue Sky, Body Com, Code Guard, CryptoAuthentication, Crypto Automotive, Crypto Companion,
Crypto Controller, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S,
EtherGREEN, Grid Time, Ideal Bridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-
Chip Connectivity, JitterBlocker, Knob-on-Display, max Crypto, max View, mem Brain, Mindi, MiWi, MPASM, MPF,
MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, NVM Express, NVMe, Omniscient Code
Generation, PICDEM, PICDEM.net, PI Ckit, PI Ctail, Power Smart, PureSilicon, QMatrix, REAL ICE, Ripple
Blocker, RTAX, RTG4, SAMICE, Serial Quad 1/O, simpleMAP, SimpliPHY, SmartBuffer, Smart HLS, SMART-I.S.,
storClad, SQI, SuperSwitcher, SuperSwitcher Il, Switchtec, SynchroPHY, Total Endurance, TSHARC, USB Check,
VariSense, Vector Blox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, Symmcom, and Trusted Time are
registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany || GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

©2022, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.

ISBN: 978-1-5224-9757-8

Quality Management System

For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199

Tel: 480-792-7200

Fax: 480-792-7277
Technical Support: www.

microchip.com/support
Web Address: www.micr

ochip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, Ml
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia — Sydney
Tel: 61-2-9868-6733
China — Beijing
Tel: 86-10-8569-7000
China — Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China — Dongguan
Tel: 86-769-8702-9880
China — Guangzhou
Tel: 86-20-8755-8029
China — Hangzhou
Tel: 86-571-8792-8115
China — Hong Kong SA
R
Tel: 852-2943-5100
China — Nanjing
Tel: 86-25-8473-2460
China — Qingdao
Tel: 86-532-8502-7355
China — Shanghai
Tel: 86-21-3326-8000
China — Shenyang
Tel: 86-24-2334-2829
China — Shenzhen
Tel: 86-755-8864-2200
China — Suzhou
Tel: 86-186-6233-1526
China — Wuhan
Tel: 86-27-5980-5300
China — Xian
Tel: 86-29-8833-7252
China — Xiamen
Tel: 86-592-2388138
China — Zhuhai
Tel: 86-756-3210040

India — Bangalore
Tel: 91-80-3090-4444
India — New Delhi
Tel: 91-11-4160-8631
India — Pune
Tel: 91-20-4121-0141
Japan — Osaka
Tel: 81-6-6152-7160
Japan — Tokyo
Tel: 81-3-6880- 3770
Korea — Daegu
Tel: 82-53-744-4301
Korea — Seoul
Tel: 82-2-554-7200

Malaysia — Kuala Lumpu

r
Tel: 60-3-7651-7906
Malaysia — Penang
Tel: 60-4-227-8870

Philippines — Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan — Hsin Chu
Tel: 886-3-577-8366
Taiwan — Kaohsiung
Tel: 886-7-213-7830
Taiwan — Taipei
Tel: 886-2-2508-8600
Thailand — Bangkok
Tel: 66-2-694-1351
Vietham — Ho Chi Minh
Tel: 84-28-5448-2100

Austria — Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark —
Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland — Espoo
Tel: 358-9-4520-820
France — Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany — Garching
Tel: 49-8931-9700
Germany — Haan
Tel: 49-2129-3766400
Germany — Heilbronn
Tel: 49-7131-72400
Germany — Karlsruhe
Tel: 49-721-625370
Germany — Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany — Rosenheim
Tel: 49-8031-354-560
Israel — Ra’anana
Tel: 972-9-744-7705
Italy — Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy — Padova
Tel: 39-049-7625286
Netherlands — Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway — Trondheim
Tel: 47-72884388
Poland — Warsaw
Tel: 48-22-3325737
Romania — Bucharest
Tel: 40-21-407-87-50
Spain — Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden — Gothenberg
Tel: 46-31-704-60-40
Sweden — Stockholm
Tel: 46-8-5090-4654
UK — Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

© 2022 Microchip Technology Inc. and its subsidiaries

Family Reference Manual

http://www.microchip.com/support
http://www.microchip.com

Documents / Resources

MICROCHIP Trust Platform Manifest File Format [pdf] User Guide
Trust Platform Manifest File Format, Manifest File Format

References

« O

« S Empowering Innovation | Microchip Technology

« S Empowering Innovation | Microchip Technology

« S Support | Microchip Technology

« S Product Change Notification | Microchip Technology

« S Quality | Microchip Technology

« S Microchip Lightning Support

» &) cryptoauth_trustplatform_designsuite/TrustFLEX/00_resource_generation at master -
MicrochipTech/cryptoauth_trustplatform_designsuite - GitHub

+ O cryptoauth_trustplatform_designsuite/TrustnGO/00_resource_generation at master -
MicrochipTech/cryptoauth_trustplatform_designsuite - GitHub

« ><_RFC 3339 - Date and Time on the Internet: Timestamps

« ><_RFC 4648: The Base16, Base32, and Base64 Data Encodings

o ><_RFC 4648: The Base16, Base32, and Base64 Data Encodings

« ><_RFC 5280 - Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile

o ><_RFC 7515: JSON Web Signature (JWS)

o *<_RFC 7515: JSON Web Signature (JWS)

o *<_RFC 7515: JSON Web Signature (JWS)

o *<_RFC 7515: JSON Web Signature (JWS)

e *<_RFC 7515: JSON Web Signature (JWS)

o *<_RFC 7515: JSON Web Signature (JWS)

o *<_RFC 7515: JSON Web Signature (JWS)

e *<_RFC 7516: JSON Web Encryption (JWE)

e *<_RFC 7517 - JSON Web Key (JWK)

e < RFC 7517: JSON Web Key (JWK)

e < RFC 7517: JSON Web Key (JWK)

o > RFC 7517: JSON Web Key (JWK)

o >« RFC 7518: JSON Web Algorithms (JWA)

o >« RFC 7518: JSON Web Algorithms (JWA)

o >« RFC 7518: JSON Web Algorithms (JWA)

o >« RFC 7518: JSON Web Algorithms (JWA)

o >« RFC 7518: JSON Web Algorithms (JWA)

https://manuals.plus/m/00b5a64bae3acaac55da6d8e10f807df8f7ee6523fca858803b7b106aea0c433
https://manuals.plus/m/00b5a64bae3acaac55da6d8e10f807df8f7ee6523fca858803b7b106aea0c433_optim.pdf
http://picdem.net
http://www.microchip.com
http://www.microchip.com/
http://www.microchip.com/en-us/support/
http://www.microchip.com/pcn
http://www.microchip.com/quality
http://www.microchip.com/support
https://github.com/MicrochipTech/cryptoauth_trustplatform_designsuite/tree/master/TrustFLEX/00_resource_generation
https://github.com/MicrochipTech/cryptoauth_trustplatform_designsuite/tree/master/TrustnGO/00_resource_generation
https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc4648#section-4
https://tools.ietf.org/html/rfc4648#section-5
https://tools.ietf.org/html/rfc5280#section-4.2.1.2
https://tools.ietf.org/html/rfc7515
https://tools.ietf.org/html/rfc7515#section-2
https://tools.ietf.org/html/rfc7515#section-4.1
https://tools.ietf.org/html/rfc7515#section-4.1.4
https://tools.ietf.org/html/rfc7515#section-4.1.8
https://tools.ietf.org/html/rfc7515#section-7.2.1
https://tools.ietf.org/html/rfc7515#section-7.2.2
https://tools.ietf.org/html/rfc7516
https://tools.ietf.org/html/rfc7517
https://tools.ietf.org/html/rfc7517#section-4.7
https://tools.ietf.org/html/rfc7517#section-5
https://tools.ietf.org/html/rfc7517#section-7
https://tools.ietf.org/html/rfc7518#section-3.1
https://tools.ietf.org/html/rfc7518#section-6.1
https://tools.ietf.org/html/rfc7518#section-6.2.1
https://tools.ietf.org/html/rfc7518#section-6.2.1.1
https://tools.ietf.org/html/rfc7518#section-6.2.1.2

o *<_RFC 7518: JSON Web Algorithms (JWA)
o *<_RFC 7518: JSON Web Algorithms (JWA)
o " X.520 : Information technology - Open Systems Interconnection - The Directory: Selected attribute

types
« S microchip.com/en-us/product/ATECC608B-TNGTLS#document-table

« Client Support Services | Microchip Technology

Manuals+,

https://tools.ietf.org/html/rfc7518#section-6.2.1.3
https://tools.ietf.org/html/rfc7518#section-6.4
https://www.itu.int/rec/T-REC-X.520-201610-S
https://www.microchip.com/en-us/product/ATECC608B-TNGTLS#document-table
https://www.microchip.com/en-us/support/design-help/client-support-services
https://manuals.plus/

	MICROCHIP Trust Platform Manifest File Format User Guide
	Overview
	Manifest Generation
	Structure and Format of a Manifest File
	Manifest File Example and Decoding
	Revision History
	The Microchip Website
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Worldwide Sales and Service
	Documents / Resources
	References

