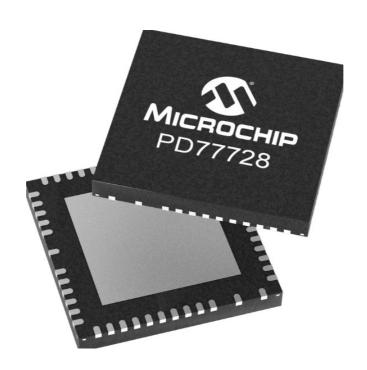


MICROCHIP PD77728 Auto Mode Register Map Instruction Manual

Home » MICROCHIP » MICROCHIP PD77728 Auto Mode Register Map Instruction Manual



Contents

- 1 MICROCHIP PD77728 Auto Mode Register Map
- **2 Product Usage Instructions**
- 3 Introduction
- **4 Register Functionality**
- **5 Revision History**
- **6 Microchip Information**
- 7 Worldwide Sales and Service
- 8 Documents / Resources
 - 8.1 References
- 9 Related Posts

MICROCHIP PD77728 Auto Mode Register Map

Product Specifications

Model: PD77728

· Mode: Auto

• Register Map: Included

Product Usage Instructions

Automode Operational Flowchart

The Automode Operational Flowchart provides a step-by-step guide for utilizing the PD77728 register map:

- 1. Start the process.
- 2. Perform Initial Setting (optional) by configuring Interrupt mask (0x01), Port Priority (0x15), Miscellaneous(0x17), Ports mapping (0x26), OSS multi-bit port priority (0x27, 0x28), Port power limit (0x2A, 0x2B), and Adjustable Inrush (0x40).
- 3. Check if the Initial setting is completed.
- 4. If YES, proceed to Port Mode Setting by configuring Port mode (0x12) and Power Enable pushbutton (0x19).
- 5. If NO, check if Interrupt Pin is low.
- 6. If YES, read Event Occurred register (0x00) and the corresponding Events registers (0x02-0x0B).
- 7. Check if the Port is ON.
- 8. If YES, read Port Measurements Parameters: Voltage & Current (0x30-0x3F), IEEE Signature Parameters (0x44-0x4B), Classification Parameters (0x4C- 0x4F), and Autoclass Parameters (0x51-0x54)
- 9. End the process.

Register Map Details

The PD77728 device's register map details are listed in various tables:

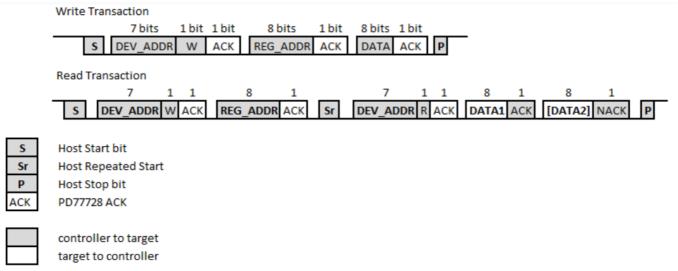
- 1. Interrupts (Table 2-1)
- 2. Event (Table 2-2)
- 3. Status (Table 2-3)

Frequently Asked Questions (FAQ)

• Q: What are the main components of the PD77728 Auto Mode Register Map?

A: The main components include Interrupts, Events, and Status registers as detailed in the register map tables.

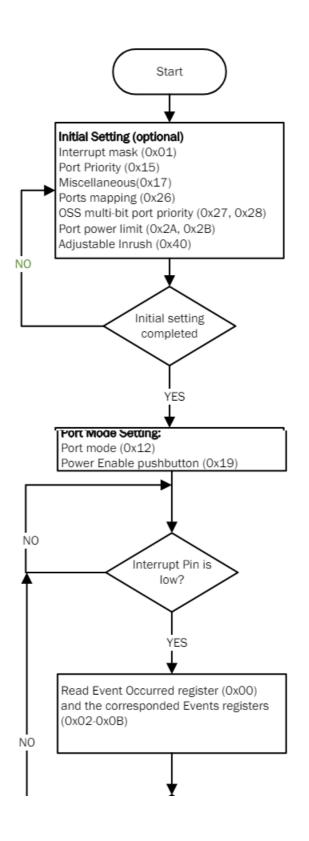
• Q: How do I configure the Port Mode Setting in the Automode Operational Flowchart?

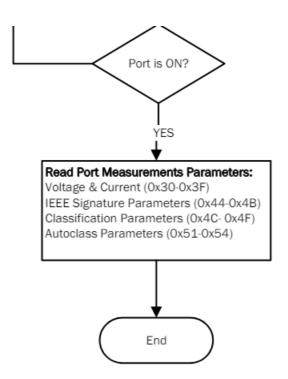

A: You can configure the Port Mode by setting the Port mode (0x12) and Power Enable pushbutton (0x19) as per the provided instructions.

PD77728 Auto Mode Register Map

Introduction

This document describes the PD77728 register map and register functionality. The PD77728 communication method is based on I2C, using register access as shown in Figure 1. Each PD77728 includes two consecutive I2C addresses (a single I2C address controls 4 ports of 2 pairs). The two I2C addresses are set by pins A1–A4, and each address is 7 bits. The PD77728 device does not require clock stretch support from the host. See the I2C section in the PD77728 Datasheet to program the I2C address.


Figure 1. I2C Transactions



1. Automode Operational Flowchart

The following figure shows the Automode Operational Flowchart of the PD77728 register map.

Figure 1-1. Automode Operational Flowchart

2. Register Map

The following tables list the register map details of the PD77728 device.

Table 2-1. Interrupts

Addre ss	Name	R/W	Туре	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
0x00	Interrupt	RO	Syste m	Suppl y Eve nt	Start Fault	Overload	Class Done	I2C SR/ C ap Me as	Disc o nn ect	Pwr Good Even t	Pwr E nable Event	1000, 0000b
0x01	Int Mask	R/W	Syste m	Mask								1000, 0000b

Table 2-2. Event

Addres s	Name	R/W	Туре	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Rese t Stat e
0x02		RO		Power	Good Cl	nange	•	Power	Enable	Change)	0000,
0x03	Power	CoR	4321	Port 4	Port 3	Port 2	Port 1	Port 4	Port 3	Port 2	Port 1	000b
0x04	Detection/	RO		Class	Done	,		Detect	CC Dor	ne		0000,
0x05	Classificatio n	CoR	4321	Port 4	Port 3	Port 2	Port 1	Port 4	Port 3	Port 2	Port 1	000b
0x06		RO		Underload Overload							0000,	
0x07	Fault	CoR	4321	Port 4	Port 3	Port 2	Port 1	Port 4	Port 3	Port 2	Port 1	000b
0x08		RO		Curre	nt Limit Fa	ault		Power	Up Fau	lt		0000,
0x09	Start	CoR	4321	Port 4	Port 3	Port 2	Port 1	Port 4	Port 3	Port 2	Port 1	0 000b
0x0A		RO			VDD	VDD U				oss	DAM	
0x0B	Supply	CoR	4321	Over Tem p	UVLO Failure	VLO Warnin g	Vpwr UVL O	PCU T34	PCU T1 2	Even t	RAM Fault	00xx, 0 000 b

Table 2-3. Status

Addres s	Name	R/W	Туре	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
0x0C	Detect / Class Status	RO	1									0000, 00 00b
0x0D	Detect / Class Status	RO	2	Detected Class (see Table 3-8) Detection Status (see Table 3-7)								0000, 00 00b
0x0E	Detect / Class Status	RO	3	3-8)				non ou	100 (000 Tax	3.0 0 1)	0000, 00 00b	
0x0F	Detect / Class Status	RO	4									0000, 00 00b
				Power	Good			Powe	r Enabl	е		0000,
0x10	Power	RO	4321	Port Port Port Port 4 3 2 1 4					Port 3	Port 2	Port 1	00b
0x11	Pin	RO	System	em AUT O Client Address Reserved Reserved								0,SA[4: 0], 0,0b

Table 2-4. Configuration

Addre ss	Name	R/W	Туре	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
0x12	Port Mode	R/W	4321	Port 4 N ee Table	•	Port 3 M ee Table	,	Port 2 N	Mode (s e 3-9)	Port 1 M e Table 3	•	0000, 00 00 b
				Port Po	wer Prio	rity		Disable	PCUT			0000, 00
0x15	PWRP R	R/W	4321	Port 4	Port 3	Port 2	Port 1	Port 4	Port 3	Port 2	Port 1	00b
				Interru			Multi-	Change	9		0x29	1100,
0x17	Misc	R/W	Globa I	pt Pin Enabl e	Port S ig Me asure	Reserv ed	Bit Priorit y	CLAS S	DETE CT	Reserv ed	Behav ior	00 00b
	Power			Power (Off			Power	On			0000, 00
	Enabl e	wo	4321	Port 4	Port 3	Port 2	Port 1	Port 4	Port 3	Port 2	Port 1	00b

Table 2-5. General

Addres s	Name	R/ W	Туре	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
0x1B	ID	RO	System	Manufacture ID IC ID								xxxx,x101b (Note 1)
0x1C	AC/C C	RO	4321	AutoCl	ass Dete	ected		Conne	ction Cl	heck Re	sults	0000,0000b
				Port 4	Port 3 Port 2 Port				4	Port 1,	, 2	

- Note:
- 1. x = Unknown value
- Table 2-6. Specialized

Addre ss	Name	R/ W	Ty pe	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Sta te
0x24	Power on Fault	RO	432	Port 4	1	Port :	2	Port 2)	Port 1		0000,0000 b
0x25	1 Ower off aut	CO R	1	T OIL	T	T OIL	,	1 Oit 2	•	T OIL I		0000,0000 b
0x26	Ports Matrix	R/ W	432 1	Port 4	4 rem	Port 3	3 rem	Port 2 ap	? rem	Port 1	rema	1110,0100 b
0x27	Multi-Bit Power Priori	R/ W 21 Resv		Port 2	2	Resv		Port 1		0000,0000 b		
0x28	ty	R/ W	43	Resv		Port 4	4	Resv		Port 3	3	0000,0000 b
0x2A	4P Police Config	R/ W	21	4P P	olice Po	ort 1, 2						1111,1111 b
0x2B	The Folice Corning	R/ W	43	4P P	olice Po	ort 3, 4						1111,1111 b
0x2C	Temp. RO 432 Die Temperature 367 – 2 * (re (degrees Celsius)						(regVa	al_decii	mal)		_	
0x2E	VPWR	RO	432	V _{PWR}	LSB							_
0x2F	1 VI VVI	RO	1	Rese	rved	V _{PWF}	MSB					_

Table 2-7. Extended Register Set—Port Parametric Measurement

Address	Name	R/W	Туре	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
0x30	I-LSB	RO	1	Port 1	Curren	t LSB						0000,0000b
0x31	I-MSB	RO	1	Reser	ved	Port 1	Curren	t MSB				0000,0000b
0x32	V-LSB	RO	1	Port 1	Voltage		0000,000b					
0x33	V-MSB	RO	1	Reser	ved		0000,000b					
0x34	I-LSB	RO	2	Port 2	Curren	t LSB						0000,000b
0x35	I-MSB	RO	2	Reser	ved	Port 2	Curren	t MSB				0000,000b
0x36	V-LSB	RO	2	Port 2	Voltage	LSB						0000,000b
0x37	V-MSB	RO	2	Reser		0000,0000b						
0x38	I-LSB	RO	2	Port 3	Curren		0000,000b					

Address	Name	R/W	Туре	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
0x39	I-MSB	RO	2	Reser	ved	Port 3	Curren	t MSB				0000,000b
0x3A	V-LSB	RO	2	Port 3 Voltage LSB							0000,000b	
0x3B	V-MSB	RO	2	Reserved Port 3 Voltage MSB							0000,000b	
0x3C	I-LSB	RO	2	Port 4	Curren	t LSB						0000,000b
0x3D	I-MSB	RO	2	Reser	ved	Port 4	Curren	t MSB				0000,0000b
0x3E	V-LSB	RO	2	Port 4 Voltage LSB								0000,000b
0x3F	V-MSB	RO	2	Reserved Port 4 Voltage MSB								0000,000b

Table 2-8. Extended Register Set—Configuration 1

Addre ss	Name	R/ W	Туре	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
	Foldback and In	R						Adjus	table I	nrush		
0x40	rush	W	4321	Not Used				Port 4	Port 3	Port 2	Port 1	0000,0000b
0x41	Firmware	RO	Syst em	Firmware Revision							xxxx,xxxxb (Note 1)	
0x43	Device ID	RO	Syst em	Device ID Silicon revision							Contact Microchip for t he most updated firm ware.	

- Note:
- 1. x = Unknown variable
- Table 2-9. Port Signature Measurements

Addres s	Name	R/ W	Typ e	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
0x44	Detect Resistance	RO	4	Port	1 Detec	ction S	ignatur	e Resi	stance			0000,000b
0x45	Detect Resistance	RO	3	Port 2	2 Detec	ction S	ignatur	e Resi	stance			0000,000b
0x46	Detect Resistance	RO	2	Port 3	3 Detec	ction S	ignatur	e Resi	stance			0000,000b
0x47	Detect Resistance	RO	1	Port 4	4 Detec	ction S	ignatur	e Resis	stance			0000,000b
0x48	Detect Resistance	RO	4	Port ⁻	1 Detec	ction S	ignatur	e Capa	citance	9		0000,000b
0x49	Detect Resistance	RO	3	Port 2	2 Detec	ction S	ignatur	e Capa	citance)		0000,000b
0x4A	Detect Resistance	RO	2	Port 3	3 Detec	ction S	ignatur	e Capa	citance)		0000,000b
0x4B	Detect Resistance	RO	1	Port 4	4 Detec	ction S	ignatur	e Capa	citance)		0000,0000b

Table 2-10. Assigned Class Status

Addr ess	Name	R/ W	Ty pe	Bit 7	Bit 6	Bit 5	Bit 4		Bi t 3	Bi t 2	Bi t 1	Bi t 0	Reset S tate
0x4C		R O	1	Assi	gned (Class	Port 1	Requested Class	s Por	t 1			0000,00 00b
0x4D	Assigned	R O	2	Assi	gned (Class	Port 2 Requested Class Port 2						0000,00 00b
0x4E	Class	R O	3	Assi	gned (Class	Port 3	Requested Class	s Por	t 3			0000,00 00b
0x4F		R O	4	Assi	gned (Class	Port 4	Requested Class	s Por	t 4			0000,00 00b

Table 2-11. AutoClass Configuration and Status

Addr ess	Name	R/ W	Ty pe	Bit 7	Bit 6		Bi t 5	Bi t 4	Bi t 3	Bi t 2	Bi t 1	Bi t 0	Reset S tate
0x51		R O	1	Don	е	Calculated Auto0	Class	Pow	er Po	ort 1			0000,00 00b
0x52	AutoClass P	R O	2	Don	е	Calculated Auto0	Class	Pow	er Po	ort 2			0000,00 00b
0x53	ower	R O	3	Don	е	Calculated Auto0	Class	Pow	er Po	ort 3			0000,00 00b
0x54		R O	4	Don	е	Calculated Auto0	Class	Pow	er Po	ort 4			0000,00 00b

Register Functionality

The address of each register represents a byte of data.

The register has the following modes:

- RO: Read only, this register can be read by the host (this register cannot be set by the host).
- R/W: Read/Write, this register can be read and set by the host.
- COR: Clear On Read, this register can be read only by the host (once it is read, its value is reset).
- Type:
 - System: The register represents functionality of the whole I2C address, linked to this register.
 - Port: The register represents functionality of a port or a few ports, the related port number is written in the cell.

Event Registers (0x00 to 0x0B) 0x00—Interrupt Event

- Each bit represents a system event. When the bit is equal to 1, it indicates that an event has occurred.
- The following table lists the events associated with the register.
- Table 3-1. System Event

Bi t	Event Name	Event Description
0	Power Enable	Port has started power-up cycle.
1	Power Good	Port has finished the power-up stage and is delivering power.
2	Disconnect	Port that delivered power has moved from ON to OFF status.
3	I2C Bus Soft Reset/Legacy D etection Ready	I2C bus, 50 ms timeout from Start to Stop condition IEEE [®] detection fail a nd legacy detection reset is ready to read.
4	Classification Done	Classification and AutoClass completed
5	Overload	Overload or current limit event
6	Start Error	Inrush current too high or insufficient power allocation
7	Supply	Failure related the system supply

- 0x01—Interrupt Mask
- Each bit represents a mask to a system event, described in register 0x00.
- When the bit is set by the host to 1, an event is reported in the relative bit of register 0x00. 0x02/0x03—Power
 Events
- These two registers indicate any change in port power good/power enable status.
- Register 0x02 is a read only register.
- Register 0x03 is a COR register; when it is read, both the registers, 0x02 and 0x03, are cleared. Register 0x10 (Power Status) provides the actual power status of the port.
- Bits 0...3 indicate power enable/disable change:
 - 0 = No change
 - 1 = Change occurred

Bits 4...7 indicate power good change

- 0 = No change
- 1 = Change occurred

0x04/0x05—Detection, Classification, and Connection Check Events

- These two registers indicate changes in Detection, Classification, and Connection Check Events status.
- Register 0x04 is a read only register.
- Register 0x05 is a COR register; when it is read, both the registers, 0x04 and 0x05, are cleared.
- Registers 0x4C to 0x54 provide the full information about the requested class, assigned class, and AutoClass status.
- Bits 0...3 indicate detection and connection check change.
 - 0 = Detection and connection check not completed yet
 - 1 = Detection and connection check have been completed Bits 4...7 indicate detection and connection check change
 - 0 = Classification not completed yet
 - 1 = Classification has been completed 0x06/0x07—Underload/Overload Events
- These two registers indicate changes in the port status due to underload/disconnect or overload event.
- Register 0x06 is a read only register.
- Register 0x07 is a COR register; when it is read, both registers 0x06 and 0x07 are cleared.

- The port's power limit value can be set in register 0x29.
- Bits 0...3 indicate an event of overload
 - 0 = No change
 - 1 = Power was removed from the ports due to overload
- Bits 4...7 indicate an event of underload/PD disconnect/MPS
 - 0 = No change
 - 1 = Power was removed from the ports due to underload/PD disconnect/MPS 0x08/0x09—Power-up Fault/Current Limit Events
- These two registers indicate changes in the port status due to port power-up fault (that is, high inrush), and when port was disconnected due to current limit event longer then
- TLIM or short circuit.
- Register 0x08 is a read only register.
- Register 0x09 is a COR register; when it is read, both registers 0x06 and 0x07 are cleared.
- Bits 0...3 indicate an event of power-up fault
 - \circ 0 = No fault
 - 1 = Power up fault on the port
- Bits 4...7 indicate an event of underload/PD disconnect/MPS
 - 0 = No fault
 - □ 1 = Power was removed from the ports due to current limit event/short 0x0A/0x0B—Supply Events
- Register Functionality These two registers indicate failures in the power supply of the system.
- · Each bit reflects a certain failure.
- Register 0x0A is a read only register.
- Register 0x0B is a COR register; when it is read, both the registers, 0x06 and 0x07, are cleared.
 The following table describes the failure associated with the two registers.

Table 3-2. Supply Failure Event

Bi t	Event Name	Event Description
0	NA	Always 0
1	OSS Event	 0 = No event 1 = An event occurred (Reg 0x00, bit 2 is also set due to OSS event)
2	4-Pair Port—Over Power Event (Ports 1 and 2)	 0 = No event 1 = Over power of event occurred (Reg 0x00, bit 5 is also set)
3	4-Pair Port—Over Power Event (Ports 3 and 4)	 0 = No event 1 = Over power of event occurred (Reg 0x00, bit 5 is also set)
4	V _{MAIN} too low	 0 = No event 1 = V_{MAIN} is below the minimum threshold
5	V _{DD} too low warning	 0 = No event 1 = V_{DD} is below the minimum warning threshold (2.7 V_{DC})
6	V _{DD} too low failure	 0 = No event 1 = V_{DD} is below the minimum failure threshold (2.4 V_{DC}, PoE is disabled)
7	Over Temperature	 0 = No event 1 = Temperature exceeds the setting

Status Registers (0x0C to 0x11)

These four registers that provide the port detection status are listed in Table 3-3, and the actual detected classification is listed in Table 3-4. These registers are read only.

- 0x0C: Port 1 Detection Status/Detected Classification
- 0x0D: Port 2 Detection Status/Detected Classification
- 0x0E: Port 3 Detection Status/Detected Classification
- 0x0F: Port 3 Detection Status/Detected Classification
- Each register is divided into bits for detection status and requested class status.

Value Bin/Hex	Detection Status
0000b/0x0	Unknown: POR value
0001b/0x1	Short circuit
0010b/0x2	Port is pre-charged
0011b/0x3	Resistor is too low
0100b/0x4	Valid IEEE® 802.3bt detection
0101b/0x5	Resistor is too high
0110b/0x6	Port is open/empty
0111b/0x7	External voltage is detected on port

Value Bin/Hex	Detection Status		
1110b/0x14	MOSFET_FAULT		

Table 3-4. Requested Class Status (Bits 4...7)

Value Bin/Hex	Requested Class Status	
0000b/0x0	Unknown: POR value	
0001b/0x1	Class 1	
0010b/0x2	Class 2	
0011b/0x3	Class 3	
0100b/0x4	Class 4	
0101b/0x5	Reserved: Treated as class 0	
0110b/0x6	Class 0	
0111b/0x7	Over current	
1000b/0x8	Class 5 4P SS	
1001b/0x9	Class 6 4P SS	
1010b/0xA	Class 7 4P SS	
1011b/0xB	Class 8 4P SS	
1100b/0xC	Class 4 + (PSE port is limited to type 1 power budget)	
1101b/0xD	Class 5 4P DS	
1110b/0xE	Reserved	
1111b/0xF	Classification mismatch	

Notes:

- SS = Single Signature
- DS = Dual Signature

0x10—Power Enable/Power Good

- The Power Enable bit (bits 0..3, a bit per port) is set when a port is in powered-up process.
- The Power Good Status bit (bits 4..7, a bit per port) represents a power delivery port, after it is turned on successfully.
- This register is linked to the event registers 0x02/0x03.
- Bits 0...3 Power Enable
- 0 = Port is not in power-up process
- 1 = Port is in powered-up process
- Bits 4...7 Power Good
- 0 = Port is off
- 1 = Port was powered-up successfully

0x11—I2C Status

• Bits 3...6 provide the value of pins A1...A4 (pins 48..51), which set the I2C address of both quads.

Configuration Registers (0x12 to 0x19 and 0x27/0x28) 0x12—Port Operation Mode Setting

- This register is read/write, to set all 4 ports according to Table 3-5. Each 2 bits set a port according to Table 3-5:
 - Bits 0..1 set port 1
 - Bits 2..3 set port 2
 - Bits 4..5 set port 3
 - Bits 6..7 set port 4

Table 3-5. Port Operation Mode

Port Operation Mode	Description	Valu e
Disable	Any PoE activity is disabled (detection, classification, power).	00b
Autonomous	 PSE is enabled. Detection, classification, power-up, and power are preformed automatically. 	11b

- 0x15—Port Priority
- · This register is read/write.
- Bits 0..3 should be set to 0.
- Bits 4..7 set if the port are effected by the OSS pin:
 - Bit 4 sets port 1
 - o Bit 5 sets port 2

- Bit 6 sets port 3
- Bit 7 sets port 4
- When the bit is set to 0, the port is not disconnected due to OSS level changes. When the bit is set to 1, the power of that port is removed during OSS changes. 0x17—Misc
- This register is read/write, only bit 4 should be set.
- Bit 4 set the OSS mode:
 - 0 = OSS mode is a single bit
 - 1 = OSS is multi-bit
- 0x19—Power Pushbutton
- This register is read/write.
- Bits 4..7 are used to disable momentary the PoE activity of the ports, bit per port. After that the port will continue its activity per register 0x14
 - 0 = Performs nothing.
 - 1 = Port is momentary turned off. After the action, the bit will be internally cleared. After the action, the bit will be internally cleared.
- A bit per port:
 - Bit 4 sets port 1
 - Bit 5 sets port 2
 - Bit 6 sets port 3
 - Bit 7 sets port 4

0x27/0x28—Multi-Bit Priority

- These 2 registers are read/write, only bit 4 should be set, all other bits should be kept as in the default.
- In each register, the priority of two ports can be set, 8 levels of priority, while priority 7 is the highest priority, and priority 0 is the lowest.
- Register 0x27 sets the priority of ports 1, 2.
- Register 0x28 sets ports 3, 4.
- General Registers (0x1B and 0x1C)

0x1B—Manufacture ID and Chip IC

- This register is read only.
- The register value is 0x2D (00101101b).

0x1C—AutoClass and Connection Check Result

- · This register is read only.
- Bits 0...1 provide the result of the connection check of the first 4-pair port (ports 1 and 2), per Table 3-6.
- Bits 2...3 provide the result of the connection check of the second 4-pair port (ports 3 and 4), per Table 3-6.

Table 3-6. Connection Check Result

Value	Connection Check Result
0x0	Unknown or incomplete.
0x1	4-pair single signature.
0x2	4-pair dual signature.
0x3	Faulty connection check, or invalid signature detected on one of the pair sets.

Bits 4...7 Indicate if the connected PD supports AutoClass:

- 0 = PD does not support AutoClass
- 1 = PD supports AutoClass

A bit per port:

- Bit 4 sets port 1
- Bit 5 sets port 2
- Bit 6 sets port 3
- Bit 7 sets port 4

Note: The result of the AutoClass measurements is read in registers 0x51 to 0x54.

Specialized Registers (0x24 to 0x2F) 0x24/0x25—Power on Error

- These two registers indicate an error during power on sequence (detection, classification, or insufficient power).
- Register 0x24 is a read only register.
- Register 0x25 is a COR register; when it is read, both registers 0x24 and 0x25 are cleared.

Each port is represented by 2 bits, as seen in Table 3-8:

- Bits 0..1 represent port 1
- Bits 2..3 represent port 2
- Bits 4..5 represent port 3
- Bits 6..7 represent port 4

Table 3-7. Power on Error Result

Value	Power on Failure Description	
0x0	No failure	
0x1	Invalid detection	
0x2	Invalid classification	
0x3	Insufficient power	

0x26—Ports Matrix (Remap)

- This register is read/write, is intended re-arrange the ports matrix differently than the default matrix (0xE4).
- If the register is not modified by the user, the default port matrix is shown in Table 3-8.

Each port is represented by 2 bits:

- Bits 0..1 represent logical port 1
- Bits 2..3 represent logical port 2
- Bits 4..5 represent logical port 3
- Bits 6..7 represent logical port 4

Table 3-8. Default Port Matrix

Bits	Value	Logical Port	Physical Port
01	0 (00b)	1	1
23	1 (01b)	2	2
45	2 (10b)	3	3
67	3 (11b)	4	4

0x2A/0x2B—4-Pair Police Configuration

- These two registers are read/write, to set the power limit of the ports (PCUT). Register 0x2A sets the 4-pair port based ports 1 and 2.
- Register 0x2B sets the 4-pair port based ports 3 and 4.
- The following table lists the power level of the 4-pair port.
- The power limit is equal to PCUT = 0.5 * Value

Table 3-9. PCUT Value

Assigned Class	Value Hex/De	Minimum P _{CUT} Setting (0x1 7 Bit 0 = 0)	Minimum P _{CUT} Setting (0x1 7 Bit 0 = 1)
Class 0	0x22 (34d)	15.5W	17W
Class 1	0x08 (8d)	4W	17W
Class 2	0x0E (14d)	7W	17W
Class 3	0x22 (34d)	15.5W	17W
Class 4	0x40 (64d)	30W	32W

Assigned Class	Value Hex/De	Minimum P _{CUT} Setting (0x1 7 Bit 0 = 0)	Minimum P _{CUT} Setting(0x1 7 Bit 0 = 1)
Class 5—4P SS	0x5A (90d)	45W	45W
Class 6—4P SS	0x78 (120d)	60W	60W
Class 7—4P SS	0x96 (150d)	75W	75W
Class 8—4P SS	0xB4 (180d)	90W	90W
Class 4+—Type 1 limited	0x22 (34d)	15.5W	17W
ANY 4P DS PD	0xB4 (180d)	90W	90W

0x2C—Chip Temperature

This is a read-only register provide the die temperature, based on the following formula: 367 – {2 * (regVal_decimal)} (degrees Celsius)

0x2E/0x2F—VMAIN Measurement

- These two registers are read only, and provide the level of VMAIN by 14 bits, with resolution of 64.4 mV per bit.
- Register 0x2E represents the 8 LSB bits of the measurement.
- Register 0x2F represents the 6 MSB bits, bits 6 and 7 of that register are not used.
- The maximum value can be measured is 61V, VMAIN above 61V is reported as 61V (0x3B3).
- Example: VMAIN of 55V is provided as 0x356 (55V/64.4 mV = 854).
- Port Voltage and Current Measurement Registers (0x30 to 0x3F)
- The voltage and current of each port are provided by four registers (two for port voltage and two for current).
- The two current registers per port provide the current level by 14 bits, with resolution of 1 mA per LSB. The maximum value that can be measured is 1020 mA, current above that level is reported as 1020 mA (0x3FC).
- The two voltage registers per port provide the voltage level by 14 bits, with resolution of 64.4 mV per LSB. The maximum value can be measured is 61V, voltage above that level is reported as 61V (0x3B3).

0x30/0x31—Port 1 Current Measurement

- Register 0x30 represents the 8 LSB bits of the measurement.
- Register 0x31 represents the 6 MSB bits, bits 6 and 7 of that register are not used. 0x32/0x33—Port 1 Voltage
 Measurement
- Register 0x30 represents the 8 LSB bits of the measurement.
- Register 0x31 represents the 6 MSB bits, bits 6 and 7 of that register are not used. 0x34/0x35—Port 2 Current
 Measurement
- Register 0x30 represents the 8 LSB bits of the measurement.
- Register 0x31 represents the 6 MSB bits, bits 6 and 7 of that register are not used. 0x36/0x37—Port 2 Voltage
 Measurement
- Register 0x30 represents the 8 LSB bits of the measurement.
- Register 0x31 represents the 6 MSB bits, bits 6 and 7 of that register are not used.

0x38/0x39—Port 3 Current Measurement

- Register 0x30 represents the 8 LSB bits of the measurement.
- Register 0x31 represents the 6 MSB bits, bits 6 and 7 of that register are not used. 0x3A/0x3B—Port 3 Voltage
 Measurement
- Register 0x30 represents the 8 LSB bits of the measurement.
- Register 0x31 represents the 6 MSB bits, bits 6 and 7 of that register are not used. 0x3C/0x3D—Port 4 Current Measurement
- Register 0x30 represents the 8 LSB bits of the measurement.
- Register 0x31 represents the 6 MSB bits, bits 6 and 7 of that register are not used. 0x3E/0x3F—Port 4 Voltage
 Measurement
- Register 0x30 represents the 8 LSB bits of the measurement.
- Register 0x31 represents the 6 MSB bits, bits 6 and 7 of that register are not used.
- Port Inrush Current Control Register (0x40)

0x40—Inrush Current Control

Only bits 0-3 are active, bits 4-7 are not used.

Each bit sets a port:

- Bit 0 sets port 1
- Bit 1 sets port 2
- Bit 2 sets port 3
- Bit 3 sets port 4
- 0: If in the end of the start-up period inrush current is still high, port is not powered up.
- 1: If in the end of the start-up period inrush current is still high, port is powered up normally.
- Firmware Version and Chip ID Registers (0x41 and 0x43)

0x41—Firmware Version

- · This register is read only.
- For the most recent version, contact Microchip.
- 0x43—Silicon Version and Chip ID
- This register is read only.
- Bits 0...4 show the chip ID.
- Bits 5...7 show the silicon version.
- For the most recent version, contact Microchip.
- Port Signature Measurement Registers (0x44 to 0x4B)

0x44-0x47—Signature Measured Resistance

- These four registers are read only, and provide the resistance measured during the signature detection.
- Register per port, 256Ω per bit $(480\Omega$ for short, 65280Ω maximum).
- 0x48-0x4B-Signature Measured Capacitance
- Register Functionality These four registers are read only, and provide the capacitance measured during the signature detection.

• Register per port, with a resolution of 64 nF per bit.

Port Classification Status Registers (0x4C to 0x4F)

These four registers are read only and provide PD's requested class and the port's assigned class. The following table lists both values (requested and assigned).

Table 3-10. Requested and Assigned Values

Value of Reques	ted and Assigned	Class Status		
0	0	0	0	Unknown
0	0	0	1	Class 1
0	0	1	0	Class 2
0	0	1	1	Class 3
0	1	0	0	Class 4
0	1	0	1	NA
0	1	1	0	Class 0
0	1	1	1	NA
1	0	0	0	Class 5—4-Pair SS
1	0	0	1	Class 6—4Pair SS
1	0	1	0	Class 7—4-Pair SS
1	0	1	1	Class 8 —4-Pair SS
1	1	0	0	NA
1	1	0	1	Class 5—4-Pair DS
1	1	1	0	NA
1	1	1	1	NA

Notes:

- **SS** = Single Signature; DS = Dual Signature.
- If PSE has limited power budget and cannot deliver the power that the PD asks for, the port's assigned class might be lower than the PD's requested class.

0x4C—Port 1 Class Status

- Bits 0...3 provide PD's requested class. Bits 4...7 provide the port's assigned class. 0x4D—Port 2 Class Status
- Bits 0...3 provide PD's requested class. Bits 4...7 provide the port's assigned class. 0x4E—Port 3 Class Status
- Bits 0...3 provide PD's requested class. Bits 4...7 provide the port's assigned class. 0x4F—Port 4 Class Status
- Bits 0...3 provide PD's requested class. Bits 4...7 provide the port's assigned class.

AutoClass Status Registers (0x51 to 0x54)

- These four registers are read only and provide the AutoClass measurement and status.
- Bits 0...6 provide the power measured during the AutoClass stage, with a resolution of 0.5W per LSB. Bit 7 provides the AutoClass status:
- 0 = Measurement was not performed.
- 1 = AutoClass measurement was completed. 0x51—Port 1 AutoClass Status
 - Bits 0...6 are PD's requested class.
 - Bit 7 is AutoClass status.

• 0x52—Port 2 AutoClass Status

- Bits 0...6 are PD's requested class.
- Bit 7 is AutoClass status.

• 0x53—Port 3 AutoClass Status

- Bits 0...6 are PD's requested class.
- Bit 7 is AutoClass status.

• 0x53—Port 3 AutoClass Status

- Bits 0...6 are PD's requested class.
- Bit 7 is AutoClass status.

Revision History

The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication.

Revision	Date	Description
В	4/2023	Added section 1. Automode Operational Flowchart and Figure 1-1
Α	04/2023	Initial Revision

Microchip Information

• The Microchip Website

Microchip provides online support via our website at <u>www.microchip.com</u>. This website is used to make files and information easily available to customers. Some of the content available includes:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives
- Product Change Notification Service
- Microchip's product change notification service helps keep customers current on Microchip products.
 Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.
- To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

- Users of Microchip products can receive assistance through several channels:
 - Distributor or Representative
 - · Local Sales Office
 - Embedded Solutions Engineer (ESE)
 - Technical Support
- Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.
- Technical support is available through the website at: www.microchip.com/support
- Microchip Devices Code Protection Feature
- Note the following details of the code protection feature on Microchip products:
 - Microchip products meet the specifications contained in their particular Microchip Data Sheet.
 - Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
 - Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
 - Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code
 protection does not mean that we are guaranteeing the product is "unbreakable". Code protection is
 constantly evolving. Microchip is committed to continuously improving the code protection features of our
 products.
- · Legal Notice
- This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/client-support-services.
- THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS
 OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR
 OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
 WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
 PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.
- IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR
- ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.
- Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual

Trademarks

- The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
- AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet- Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.
- Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, KoD, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM- ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
- SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
- The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.
- GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.
- All other trademarks mentioned herein are property of their respective companies. © 2023, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.
- ISBN: 978-1-6683-2380-9
- Quality Management System
- For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office

- · 2355 West Chandler Blvd.
- Chandler, AZ 85224-6199
- Tel: 480-792-7200
- Fax: 480-792-7277
- · Technical Support:
- www.microchip.com/support
- · Web Address:
- www.microchip.com
- Atlanta
- · Duluth, GA
- Tel: 678-957-9614
- Fax: <u>678-957-1455</u>
- Austin, TX
- Tel: <u>512-257-3370</u>
- Boston
- · Westborough, MA
- Tel: 774-760-0087
- Fax: 774-760-0088
- Chicago
- Itasca, IL
- Tel: 630-285-0071
- Fax: 630-285-0075
- Dallas
- · Addison, TX
- Tel: 972-818-7423
- Fax: 972-818-2924
- Detroit
- Novi, MI
- Tel: 248-848-4000
- · Houston, TX
- Tel: 281-894-5983
- Indianapolis
- · Noblesville, IN
- Tel: 317-773-8323
- Fax: 317-773-5453
- Tel: 317-536-2380
- · Los Angeles
- Mission Viejo, CA
- Tel: 949-462-9523
- Fax: 949-462-9608
- Tel: 951-273-7800
- · Raleigh, NC
- Tel: 919-844-7510

- · New York, NY
- Tel: 631-435-6000
- · San Jose, CA
- Tel: 408-735-9110
- Tel: 408-436-4270
- Canada Toronto
- Tel: 905-695-1980
- Fax: 905-695-2078

ASIA/PACIFIC

- Australia Sydney
- Tel: 61-2-9868-6733
- China Beijing
- Tel: 86-10-8569-7000
- China Chengdu
- Tel: 86-28-8665-5511
- China Chongqing
- Tel: 86-23-8980-9588
- China Dongguan
- Tel: 86-769-8702-9880
- China Guangzhou
- Tel: 86-20-8755-8029
- China Hangzhou
- Tel: 86-571-8792-8115
- China Hong Kong SAR
- Tel: 852-2943-5100
- China Nanjing
- Tel: 86-25-8473-2460
- China Qingdao
- Tel: 86-532-8502-7355
- · China Shanghai
- Tel: 86-21-3326-8000
- China Shenyang
- Tel: 86-24-2334-2829
- China Shenzhen
- Tel: 86-755-8864-2200
- China Suzhou
- Tel: 86-186-6233-1526
- China Wuhan
- Tel: 86-27-5980-5300
- China Xian
- Tel: 86-29-8833-7252
- China Xiamen

- Tel: 86-592-2388138
- China Zhuhai
- Tel: 86-756-3210040
- India Bangalore
- Tel: 91-80-3090-4444
- India New Delhi
- Tel: 91-11-4160-8631
- India Pune
- Tel: 91-20-4121-0141
- Japan Osaka
- Tel: 81-6-6152-7160
- Japan Tokyo
- Tel: 81-3-6880- 3770
- Korea Daegu
- Tel: 82-53-744-4301
- Korea Seoul
- Tel: 82-2-554-7200
- Malaysia Kuala Lumpur
- Tel: 60-3-7651-7906
- · Malaysia Penang
- Tel: 60-4-227-8870
- Philippines Manila
- Tel: 63-2-634-9065
- Singapore
- Tel: 65-6334-8870
- Taiwan Hsin Chu
- Tel: 886-3-577-8366
- Taiwan Kaohsiung
- Tel: 886-7-213-7830
- Taiwan Taipei
- Tel: 886-2-2508-8600
- Thailand Bangkok
- Tel: 66-2-694-1351
- Vietnam Ho Chi Minh
- Tel: 84-28-5448-2100

EUROPE

- Austria Wels
- Tel: 43-7242-2244-39
- Fax: 43-7242-2244-393
- Denmark Copenhagen
- Tel: 45-4485-5910

- Fax: 45-4485-2829
- Finland Espoo
- Tel: 358-9-4520-820
- France Paris
- Tel: 33-1-69-53-63-20
- Fax: 33-1-69-30-90-79
- Germany Garching
- Tel: 49-8931-9700
- Germany Haan
- Tel: 49-2129-3766400
- Germany Heilbronn
- Tel: 49-7131-72400
- Germany Karlsruhe
- Tel: 49-721-625370
- Germany Munich
- Tel: 49-89-627-144-0
- Fax: 49-89-627-144-44
- Germany Rosenheim
- Tel: 49-8031-354-560
- Israel Ra'anana
- Tel: 972-9-744-7705
- Italy Milan
- Tel: 39-0331-742611
- Fax: 39-0331-466781
- Italy Padova
- Tel: 39-049-7625286
- Netherlands Drunen
- Tel: 31-416-690399
- Fax: 31-416-690340
- Norway Trondheim
- Tel: 47-72884388
- Poland Warsaw
- Tel: 48-22-3325737
- Romania Bucharest
- Tel: 40-21-407-87-50
- Spain Madrid
- Tel: 34-91-708-08-90
- Fax: 34-91-708-08-91
- Sweden Gothenberg
- Tel: 46-31-704-60-40
- Sweden Stockholm
- Tel: 46-8-5090-4654
- UK Wokingham

• Tel: 44-118-921-5800

• Fax: 44-118-921-5820

User Guide

© 2023 Microchip Technology Inc. and its subsidiaries

Documents / Resources

MICROCHIP PD77728 Auto Mode Register Map [pdf] Instruction Manual DS00004761B, PD77728 Auto Mode Register Map, PD77728, PD77728 Register Map, Auto Mode Register Map, Register Map, Map

References

- © <u>, ,337p</u>
- <u>Sempowering Innovation | Microchip Technology</u>
- <u>Sempowering Innovation | Microchip Technology</u>
- Design Help and Other Services | Microchip Technology
- <u>Sempowering Innovation | Microchip Technology</u>
- Microchip Lightning Support
- User Manual

Manuals+, Privacy Policy

This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of these marks on this website does not imply any affiliation with or endorsement.