
Home » MICROCHIP » MICROCHIP DS00004807F PolarFire Family FPGA Custom Flow User Guide

 PolarFire Family FPGA Custom Flow User Guide
Libero SoC v2024.2

Contents
1 Introduction (Ask a Question)
2 Overview (Ask a Question)
3 Component Configuration (Ask a Question)
4 Constraint Generation (Ask a Question)
5 Synthesizing Your Design (Ask a Question)
6 Simulating Your Design (Ask a Question)
7 Implementing Your Design (Ask a Question)
8 Appendix A—Sample SDC Constraints (Ask a
Question
9 Appendix C—Derive Constraints (Ask a Question)
10 Revision History (Ask a Question)
11 Documents / Resources

11.1 References

Introduction (Ask a Question)

Libero System-on-Chip (SoC) software provides a fully integrated Field Programmable Gate Array (FPGA) design
environment. However, a few users might want to use third-party synthesis and simulation tools outside the Libero
SoC environment. Libero can now be integrated into the FPGA design environment. It is recommended to use
Libero SoC to manage the entire FPGA design flow.
This user guide describes the Custom Flow for PolarFire and PolarFire SoC Family devices, a process to integrate
Libero as a part of the larger FPGA design flow. Supported Device Families® The following table lists the device
families that Libero SoC supports. However, some information in this guide might only apply to a specific family of
devices. In this case, such information is clearly identified.

MICROCHIP DS00004807F PolarFire Family FPGA Custom
Flow User Guide

Manuals+ — User Manuals Simplified.

https://manuals.plus/#content
https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/microchip
https://manuals.plus/microchip/ds00004807f-polarfire-family-fpga-custom-flow-manual.pdf
https://manuals.plus/#introduction_ask_a_question
https://manuals.plus/#overview_ask_a_question
https://manuals.plus/#component_configuration_ask_a_question
https://manuals.plus/#constraint_generation_ask_a_question
https://manuals.plus/#synthesizing_your_design_ask_a_question
https://manuals.plus/#simulating_your_design_ask_a_question
https://manuals.plus/#implementing_your_design_ask_a_question
https://manuals.plus/#appendix_a-sample_sdc_constraints_ask_a_question
https://manuals.plus/#appendix_c-derive_constraints_ask_a_question
https://manuals.plus/#revision_history_ask_a_question
https://manuals.plus/#documents_resources
https://manuals.plus/#references
https://microchipsupport.force.com/s/newcase?pub_guid=GUID-A6A753FB-3F6D-4212-A361-9034AAF693FA&pub_lang=en-US&pub_ver=7&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-81D89143-7721-417B-9A7C-FE911F855C5E&cover_title=PolarFire%20Family%20FPGA%20Custom%20Flow%20User%20Guide&tech_support_link=NA&revision_letter=F&source=PDF&title=Introduction

Table 1. Device Families Supported by Libero SoC

Device Family Description

PolarFire® PolarFire FPGAs deliver the industry’s lowest power at mid-range densities with excepti
onal security and reliability.

PolarFire SoC PolarFire SoC is the first SoC FPGA with a deterministic, coherent RISC-V CPU cluster,
and a deterministic L2 memory subsystem enabling Linux® and real-time applications.

Overview (Ask a Question)

While Libero SoC provides a fully integrated end-to-end design environment to develop SoC and FPGA designs, it
also provides the flexibility to run synthesis and simulation with third-party tools outside the Libero SoC
environment. However, some design steps must remain within the Libero SoC environment.
The following table lists the major steps in the FPGA design flow and indicates the steps for which Libero SoC
must be used.
Table 1-1. FPGA Design Flow

Design Flow Step Must Use Libero Description

Design Entry: HDL No Use third-party HDL editor/checker tool outside
Libero® SoC if desired.

Design Entry: Configurators Yes Create first Libero project for IP catalog core co
mponent generation.

Automatic PDC/SDC constraint gen
eration No

Derived constraints need all HDL files and a de
rive_constraints utility when performed outside
of Libero SoC, as described in Appendix C—D
erive Constraints.

Simulation No

Use third-party tool outside Libero SoC, if desir
ed. Requires download of pre-compiled simulat
ion libraries for target device, target simulator,
and target Libero version used for backend imp
lementation.

Synthesis No Use third-party tool outside Libero SoC if desire
d.

Design Implementation: Manage C
onstraints, Compile Netlist, Place-a
nd- Route (see Overview)

Yes Create second Libero project for the backend i
mplementation.

Timing and Power Verification Yes Stay in second Libero project.

Configure Design Initialization Data
and Memories Yes

Use this tool to manage different types of mem
ories and design initialization in the device. Sta
y in second project.

Programming File Generation Yes Stay in second project.

 Important: You must download precompiled libraries available at the PreCompiled Simulation Libraries
page to use a third-party simulator.
In a pure Fabric FPGA flow, enter your design using HDL or schematic entry and pass that directly
to the synthesis tools. The flow is still supported. PolarFire and PolarFire SoC FPGAs have significant
proprietary hard IP blocks requiring the use of configuration cores (SgCores) from the Libero SoC IP

https://www.microchip.com/en-us/products/fpgas-and-plds/fpgas/polarfire-fpgas/polarfire-mid-range-fpgas
https://www.microchip.com/en-us/products/fpgas-and-plds/system-on-chip-fpgas/polarfire-soc-fpgas
https://microchipsupport.force.com/s/newcase?pub_guid=GUID-A6A753FB-3F6D-4212-A361-9034AAF693FA&pub_lang=en-US&pub_ver=7&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-1BA4CB4D-FE1F-4BF9-9865-B061E5938FCA&cover_title=PolarFire%20Family%20FPGA%20Custom%20Flow%20User%20Guide&tech_support_link=NA&revision_letter=F&source=PDF&title=Overview
https://www.microchip.com/en-us/products/fpgas-and-plds/fpga-and-soc-design-tools/pre-compiled-simulation-libraries

catalog. Special handling is required for any blocks that comprise SoC functionality:

PolarFire

– PF_UPROM

– PF_SYSTEM_SERVICES

– PF_CCC

– PF CLK DIV

– PF_CRYPTO

– PF_DRI

– PF_INIT_MONITOR

– PF_NGMUX

– PF_OSC

– RAMs (TPSRAM, DPSRAM, URAM)

– PF_SRAM_AHBL_AXI

– PF_XCVR_ERM

– PF_XCVR_REF_CLK

– PF_TX_PLL

– PF_PCIE

– PF_IO

– PF_IOD_CDR

– PF_IOD_CDR_CCC

– PF_IOD_GENERIC_RX

– PF_IOD_GENERIC_TX

– PF_IOD_GENERIC_TX_CCC

– PF_RGMII_TO_GMII

– PF_IOD_OCTAL_DDR

– PF_DDR3

– PF_DDR4

– PF_LPDDR3

– PF_QDR

– PF_CORESMARTBERT

– PF_TAMPER

– PF_TVS, and so on.

In addition to the preceding listed SgCores, there are many DirectCore soft IPs available for PolarFire and
PolarFire SoC device families in the Libero SoC Catalog that use the FPGA fabric resources.
For design entry, if you use any one of the preceding components, you must use Libero SoC for part of the design
entry (Component Configuration), but you can continue the rest of your Design Entry (HDL entry, and so on)
outside of Libero. To manage the FPGA design flow outside of Libero, follow the steps provided in the rest of this
guide.
1.1 Component Life Cycle (Ask a Question)
The following steps describe the life cycle of an SoC component and provide instructions on how to handle the
data.

1. Generate the component using its configurator in Libero SoC. This generates the following types of data:

– HDL files

https://microchipsupport.force.com/s/newcase?pub_guid=GUID-A6A753FB-3F6D-4212-A361-9034AAF693FA&pub_lang=en-US&pub_ver=7&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-629C079A-798B-4DCE-A6D0-6DAB11116E13&cover_title=PolarFire%20Family%20FPGA%20Custom%20Flow%20User%20Guide&tech_support_link=NA&revision_letter=F&source=PDF&title=Component%20Life%20Cycle

– Memory files

– Stimulus and Simulation files

– Component SDC file

2. For HDL files, instantiate and integrate them in the rest of the HDL design using the external design entry

tool/process.

3. Supply memory files and stimulus files to your simulation tool.

4. Supply Component SDC file to Derive Constraint tool for Constraint Generation. See Appendix C—Derive

Constraints for more details.

5. You must create a second Libero project, where you import the post-Synthesis netlist and your component

metadata, thus completing the connection between what you generated and what you program.

1.2 Libero SoC Project Creation (Ask a Question)
Some design steps must be run inside the Libero SoC environment (Table 1-1). For these steps to run, you must
create two Libero SoC projects. The first project is used for design component configuration and generation, and
the second project is for the physical implementation of the top-level design.
1.3 Custom Flow (Ask a Question)
The following figure shows:

Libero SoC can be integrated as a part of the larger FPGA design flow with the third-party synthesis and

simulation tools outside the Libero SoC environment.

Various steps involved in the flow, starting from design creation and stitching all the way to programming the

device.

The data exchange (inputs and outputs) that must occur at each design flow step.

 Tip:

1. SNVM.cfg, UPROM.cfg

https://microchipsupport.force.com/s/newcase?pub_guid=GUID-A6A753FB-3F6D-4212-A361-9034AAF693FA&pub_lang=en-US&pub_ver=7&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-718017DD-BDB6-43D9-9F5E-4CE5B16FAAEF&cover_title=PolarFire%20Family%20FPGA%20Custom%20Flow%20User%20Guide&tech_support_link=NA&revision_letter=F&source=PDF&title=Libero%20SoC%20Project%20Creation
https://microchipsupport.force.com/s/newcase?pub_guid=GUID-A6A753FB-3F6D-4212-A361-9034AAF693FA&pub_lang=en-US&pub_ver=7&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-63C667EB-C47A-4396-AEF9-E2849595AD73&cover_title=PolarFire%20Family%20FPGA%20Custom%20Flow%20User%20Guide&tech_support_link=NA&revision_letter=F&source=PDF&title=Custom%20Flow

2. *.mem file generation for Simulation: pa4rtupromgen.exe takes UPROM.cfg as input and generates

UPROM.mem.

The following are the steps in the custom flow:

1. Component configuration and generation:

a. Create a first Libero project (to serve as a Reference Project).

b. Select the Core from the Catalog. Double click the core to give it a component name and configure the

component.

This automatically exports component data and files. A Component Manifests is also generated. See

Component Manifests for details. For more details, see Component Configuration.

2. Complete your RTL design outside of Libero:

a. Instantiate the component HDL files.

b. The location of the HDL files is listed in the Component Manifests files.

3. Generate SDC constraints for the components. Use Derive Constraints utility to generate the timing constraint

file(SDC) based on:

a. Component HDL files

b. Component SDC files

c. User HDL files

For more details, see Appendix C—Derive Constraints.

4. Synthesis tool/simulation tool:

a. Get HDL files, stimulus files, and component data from the specific locations as noted in the Component

Manifests.

b. Synthesize and simulate the design with third-party tools outside Libero SoC.

5. Create your second (Implementation) Libero Project.

6. Remove synthesis from the design flow tool chain (Project > Project Settings > Design Flow > clear the Enable

Synthesis check box).

7. Import the design source files (post-synthesis *.vm netlist from synthesis tool):

– Import post-synthesis *.vm netlist (File>Import> Synthesized Verilog Netlist (VM)).

– Component metadata *.cfg files for uPROM and/or sNVM.

8. Import any Libero SoC block component files. The block files must be in the *.cxz file format.

For more information on how to create a block, see PolarFire Block Flow User Guide .

9. Import the design constraints:

– Import I/O constraint files (Constraints Manager > I/OAttributes > Import).

– Import floorplanning *.pdc files (Constraints Manager > Floor Planner > Import).

– Import *.sdc timing constraint files (Constraints Manager > Timing >Import). Import the SDC file generated

through Derive Constraint tool.

– Import *.ndc constraint files (Constraints Manager > NetlistAttributes > Import), if any.

10. Constraint file and tool association

– In the Constraint Manager, associate the *.pdc files to place and route, the *.sdc files to place and route and

timing verifications, and the *.ndc files to Compile Netlist.

11. Complete design implementation

– Place and route, verify timing and power, configure design initialization data and memories, and programming

file generation.

https://coredocs.s3.amazonaws.com/Libero/2021_3/Tool/pf_block_flow_ug.pdf

12. Validate the design

– Validate the design on FPGA and debug as necessary using the design tools provided with the Libero SoC

design suite.

Component Configuration (Ask a Question)

The first step in the custom flow is to configure your components using a Libero reference project (also called first
Libero project in Table 1-1). In subsequent steps, you use data from this reference project.
If you are using any components listed earlier, under the Overview in your design, perform the steps described in
this section.
If you are not using any of the above components, you can write your RTL outside of Libero and directly import it
into your Synthesis and Simulation tools. You can then proceed to the post-synthesis section and only import your
post-synthesis *.vm netlist into your final Libero implementation project (also called second Libero project in Table
1-1).
2.1 Component Configuration Using Libero (Ask a Question)
After selecting the components that must be used from the preceding list, perform the following steps:

1. Create a new Libero project (Core Configuration and Generation): Select the Device and Family that you target

your final design to.

2. Use one or more of the cores mentioned in Custom Flow.

a. Create a SmartDesign and configure the desired core and instantiate it in the SmartDesign component.

b. Promote all the pins to top level.

c. Generate the SmartDesign.

d. Double click the Simulate tool (any of Pre-Synthesis or Post-Synthesis or Post-Layout options) to invoke the

simulator. You can exit the simulator after it is invoked. This step generates the simulation files necessary for

your project.

 Tip: You must perform this step if you want to simulate your design outside Libero.
For more information, see Simulating Your Design.
e. Save your project—this is your reference project.
2.2 Component Manifests (Ask a Question)
When you generate your components, a set of files is generated for each component. The Component Manifest
report details the set of files generated and used in each subsequent step (Synthesis, Simulation, Firmware
Generation, and so on). This report gives you the locations of all the generated files needed to proceed with the
Custom Flow. You can access the component manifest in the Reports area: Click Design > Reports to open the
Reports tab. In the Reports tab, you see a set of manifest.txt files (Overview), one for each component you
generated.
Tip: You must set a component or module as ‘”root”‘ to see the component manifest file contents in the Reports
tab.
Alternatively, you can access the individual manifest report files for each core component generated or
SmartDesign component from <project>/component/work/<component name>/<instance name>/<component
name>_manifest.txt or <project>/component/work/<SmartDesign name>/<SmartDesign name>_manifest.txt. You
can also access the manifest file contents of each component generated from the new Components tab in Libero,
where the file locations are mentioned with respect to the project directory.

https://microchipsupport.force.com/s/newcase?pub_guid=GUID-A6A753FB-3F6D-4212-A361-9034AAF693FA&pub_lang=en-US&pub_ver=7&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-FE19AAE3-578B-4B77-857E-C2796C8240F2&cover_title=PolarFire%20Family%20FPGA%20Custom%20Flow%20User%20Guide&tech_support_link=NA&revision_letter=F&source=PDF&title=Component%20Configuration
https://microchipsupport.force.com/s/newcase?pub_guid=GUID-A6A753FB-3F6D-4212-A361-9034AAF693FA&pub_lang=en-US&pub_ver=7&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-D10FA60B-0643-4011-8C4C-7FA0B2F0385A&cover_title=PolarFire%20Family%20FPGA%20Custom%20Flow%20User%20Guide&tech_support_link=NA&revision_letter=F&source=PDF&title=Component%20Configuration%20Using%20Libero
https://microchip.my.site.com/s/newcase?pub_guid=GUID-A6A753FB-3F6D-4212-A361-9034AAF693FA&pub_lang=en-US&pub_ver=7&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-E82E32F4-E622-477E-A4C9-37BB5DE032DC&cover_title=PolarFire%20Family%20FPGA%20Custom%20Flow%20User%20Guide&tech_support_link=NA&revision_letter=F&source=PDF&title=Component%20Manifests

Focus on the following Component Manifest reports:

If you instantiated cores into a SmartDesign, read the file <smartdesign_name>_manifest.txt.

If you created components for cores, read the <core_component_name>_manifest.txt.

You must use all Component Manifests reports that apply to your design. For example, if your project has a
SmartDesign with one or more core components instantiated in it and you intend to use them all in your final
design, then you must select files listed in the Component Manifests reports of all those components for use in
your design flow.
2.3 Interpreting Manifest Files (Ask a Question)
When you open a component manifest file, you see paths to files in your Libero project and pointers on where in
the design flow to use them. You might see the following types of files in a manifest file:

HDL source files for all Synthesis and Simulation tools

Stimulus files for all Simulation tools

Constraint files

Following is the Component Manifest of a PolarFire core component.

Each type of file is necessary downstream in your design flow. The following sections describe integration of the
files from the manifest into your design flow.

Constraint Generation (Ask a Question)

https://microchipsupport.force.com/s/newcase?pub_guid=GUID-A6A753FB-3F6D-4212-A361-9034AAF693FA&pub_lang=en-US&pub_ver=7&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-D1EA28EE-C1D7-475E-8789-C11E2A0C2C1A&cover_title=PolarFire%20Family%20FPGA%20Custom%20Flow%20User%20Guide&tech_support_link=NA&revision_letter=F&source=PDF&title=Interpreting%20Manifest%20Files
https://microchipsupport.force.com/s/newcase?pub_guid=GUID-A6A753FB-3F6D-4212-A361-9034AAF693FA&pub_lang=en-US&pub_ver=7&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-7FB25783-9511-4451-81D5-F2FB57D51DA2&cover_title=PolarFire%20Family%20FPGA%20Custom%20Flow%20User%20Guide&tech_support_link=NA&revision_letter=F&source=PDF&title=Constraint%20Generation

When performing configuration and generation, ensure to write/generate the SDC/PDC/NDC constraint files for
the design to pass them to Synthesis, Place-and-Route, and Verify Timing tools.
Use the Derive Constraints utility outside of the Libero environment to generate constraints instead of writing them
manually. To use the Derive Constraint utility outside of the Libero environment, you must:

Supply user HDL, component HDL, and component SDC constraint files

Specify the top level module

Specify the location where to generate the derived constraint files

The SDC component constraints are available under <project>/component/work/<component
name>/<instance_name>/ directory after component configuration and generation.
For more details on how to generate constraints for your design, see Appendix C—Derive Constraints.

Synthesizing Your Design (Ask a Question)

One of the primary features of the Custom Flow is to allow you to use a third-party synthesis
tool outside Libero. The custom flow supports the use of Synopsys SynplifyPro. To synthesize your
project, use the following procedure:

1. Create a new project in your Synthesis tool, targeting the same device family, die, and package as the Libero

project you created.

a. Import your own RTL files as you normally do.

b. Set the Synthesis output to be Structural Verilog (.vm).

Tip: Structural Verilog (.vm) is the only supported synthesis output format in PolarFire.

2. Import Component HDL files into your Synthesis project:

a. For each Component Manifests Report: For each file under HDL source files for all Synthesis and Simulation

tools, import the file into your Synthesis Project.

3. Import the file polarfire_syn_comps.v (if using Synopsys Synplify) from <Libero

Installation location>/data/aPA5M to your Synthesis project.

4. Import the previously generated SDC file through the Derived Constraint tool (see Appendix

A—Sample SDC Constraints) into the Synthesis tool. This constraint file constrains the synthesis tool to

achieve timing closure with less effort and fewer design iterations.

 Important: 

If you plan to use the same *.sdc file to constrain Place-and-Route during the design implementation phase,

you must import this *.sdc into the synthesis project. This is to ensure that there are no design object name

mismatches in the synthesized netlist and the Place-and-Route constraints during the implementation phase of

the design process. If you do not include this *.sdc file in the Synthesis step, the netlist generated from

Synthesis may fail the Place and Route step because of design object name mismatches.

a. Import Netlist Attributes *.ndc, if any, into the Synthesis tool.

b. Run Synthesis.

The location of your Synthesis tool output has the *.vm netlist file generated post Synthesis. You must import

the netlist into the Libero Implementation Project to continue with the design process.

Simulating Your Design (Ask a Question)

https://microchip.my.site.com/s/newcase?pub_guid=GUID-A6A753FB-3F6D-4212-A361-9034AAF693FA&pub_lang=en-US&pub_ver=7&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-568A8F4F-5C22-46BE-82A7-E99D4E82354F&cover_title=PolarFire%20Family%20FPGA%20Custom%20Flow%20User%20Guide&tech_support_link=NA&revision_letter=F&source=PDF&title=Synthesizing%20Your%20Design
https://login.microchip.com/fa3b8c7a-0b90-4cf4-8888-f4adea962b97/b2c_1a_signup_signin/oauth2/v2.0/authorize?response_type=code&client_id=464bf79e-0585-4cb6-a04c-7c2b29b5228c&redirect_uri=https%253A%252F%252Fmicrochip.my.site.com%252Fservices%252Fauthcallback%252FCommunity_portal_oAuth&scope=openid+464bf79e-0585-4cb6-a04c-7c2b29b5228c&state=CAAAAZX52FoGMDAwMDAwMDAwMDAwMDAwAAAA_sHYGrgLbyKXWB5e-TwqVED0KrbAmJXphPHzzzE9OF9FxBtHDX8y74AsNiYaaUAIWzktusHNzjdrlyYwCx_N8LsZR5RIBE9snu5a0FuZcFhFlLJ5fz7eK5mSwHje41eH2g_sJxUATc_UFOiLAx6cQgupdQu4BQkyEu58hworrHM2W2CXeVRccZ5dQHSPBOEm2WVqVYS5Ko9gn4Zq_q-Ugkz0R4g51eGRMZ0QSF8L48VX-GuCPArOi8oK5l_7cfYkT-SqOZfO_P-p-T1_4VdIenNnR_899vG31IlYvfg3TScUXYFO3loWuvGLBOBZ3KuVcTNyoXt4qJEYR1FtNUB4v-iGr-g_KMp9xusVA8rlROI-YkrbogcmEQaYL8N3l-A0DvWnmeOC15b31HlSziLIhgNT2H1bsfrZnb_-da81mfxG3kiar35sMKkrvLocZIWIkWyk8PSeyyHpNYKq6eoG302Nh9gyJ7hcq7oihoI_qZTIfMPXKI0FKSRXAuAlBFiBuVc5jTt3_s0zDCGEhO9LHKq4Cw4t5LtIwZFSwfMJ7K0uSKqXvMZmMHtYPeFzJwc-BtdwFmdPNPcUOc9jkBCDemZDt7br5K7SNUt63BJ193PAPxRTcrAFgqgKnyBAry7CUzcenyze_PkC7nhr_PAMR-A2OEGzrDBdPGDs4jh0loXpTKiusHxJiuDWoRPWXrIy6PpCgAMPbeGxmkWwr1Rd0Io%253D

To simulate your design outside of Libero (that is, using your own simulation environment and simulator), perform
the following steps:

1. Design Files:

a. Pre-Synthesis simulation:

• Import your RTL into your simulation project.

• For each Component Manifests Report.

– Import each file under HDL source files for all Synthesis and Simulation tools into your simulation project.

• Compile these files as per your simulator’s instructions.

b. Post-synthesis simulation:

• Import your post-synthesis *.vm netlist (generated in Synthesizing Your Design) into your simulation project

and compile it.

c. Post-layout simulation:

• First, complete implementing your design (see Implementing Your Design). Ensure that your final Libero

project is in post-layout state.

• Double-click Generate BackAnnotated Files in the Libero Design Flow window. It generates two files:

<project directory>/designer/<root>/<root>_ba.v/vhd <project directory>/designer/

<root>/<root>_ba.sdf

• Import both of these files into your simulation tool.

2. Stimulus and Configuration files:

a. For each Component Manifests Report:

• Copy all files under the Stimulus Files for all Simulation Tools sections to the root directory of your Simulation

project.

b. Ensure that any Tcl files in the preceding lists (in step 2.a) are executed first, before the start of simulation.

c. UPROM.mem: If you use the UPROM core in your design with the option Use content for simulation enabled

for one or more data storage clients that you wish to simulate, you must use the executable pa4rtupromgen

(pa4rtupromgen.exe on windows) to generate the UPROM.mem file. The pa4rtupromgen executable takes the

UPROM.cfg file as inputs through a Tcl script file and outputs the UPROM.mem file required for simulations.

This UPROM.mem file must be copied to the simulation folder prior to the simulation run. An example showing

the pa4rtupromgen executable usage is provided in the following steps. The UPROM.cfg file is available in the

directory <Project>/component/work/<uPROM component name>/ <uPROM instance name> in the Libero

project that you used to generate the UPROM component.

d. snvm.mem: If you use the System Services core in your design and configured the sNVM tab in the core with

the option Use content for simulation enabled for one or more clients that you wish to simulate, a snvm.mem file

is automatically generated to

the directory <Project>/component/work/<PolarFire System Services component name>/<uPROM instance

name> in the Libero project that you used to generate the System Services component. This snvm.mem file

must be copied to the simulation folder prior to the simulation run.

3. Create a working folder and a sub-folder named simulation under the working folder.

The pa4rtupromgen executable expect the presence of the simulation sub folder in the working folder and the

*.tcl script is placed in the simulation sub folder.

4. Copy the UPROM.cfg file from the first Libero project created for component generation into the working folder.

5. Paste the following commands in a *.tcl script and place it in the simulation folder created in step 3.

Sample *.tcl for PolarFire and PolarFire Soc Family devices to generate URPOM.mem file

from UPROM.cfg

set_device -fam <family> -die <internal_die_name> -pkg <internal_pkg_name>

set_input_cfg -path <path_to_UPROM.cfg>

set_sim_mem -path <path_to_UPROM_Initialization_File/UPROM.mem>

gen_sim -use_init false

For the proper internal name to use for the die and package, see the *.prjx file of the first Libero project (used

for component generation).

The argument use_init must be set to false.

Use the set_sim_mem command to specify the path to the output file UPROM.mem that is

generated upon execution of the script file with the pa4rtupromgen executable.

6. At the command prompt or cygwin terminal, go to the working directory created in step 3.

Execute the pa4rtupromgen command with the–script option and pass to it the *.tcl script created in the

previous step.

For Windows

<Libero_SoC_release_installation>/designer/bin/pa4rtupromgen.exe \

–script./simulation/<Tcl_script_name>.tcl

For Linux:

<Libero_SoC_release_installation>/bin/pa4rtupromgen

–script./simulation/<tcl_script_name>.tcl

7. After successful execution of the pa4rtupromgen executable, check that the UPROM.mem file is generated in

the location specified in the set_sim_mem command in the *.tcl script.

8. To simulate the sNVM, copy the snvm.mem file from your first Libero project (used for component configuration)

into the top level simulation folder of your simulation project to run simulation (outside of Libero SoC). To

simulate UPROM contents, copy the generated UPROM.mem file into the top level simulation folder of your

simulation project to run simulation (outside of Libero SoC).

 Important: To simulate the functionality of SoC Components, download the precompiled PolarFire simulation
libraries and import them into your simulation environment as described here. For more details, see Appendix B—
Importing Simulation Libraries into Simulation Environment.

Implementing Your Design (Ask a Question)

After completing the Synthesis and Post-Synthesis simulation in your environment, you must use Libero again to
physically implement your design, run timing and power analysis, and generate your programming file.

1. Create a new Libero project for the physical implementation and layout of the design. Ensure to target the

same device as in the reference project you created in Component Configuration.

2. After project creation, remove Synthesis from the tool chain in the Design Flow window (Project > Project

Settings > Design Flow > Uncheck Enable Synthesis).

3. Import your post-synthesis *.vm file into this project, (File > Import > Synthesized Verilog Netlist (VM)).

 Tip: It is recommended that you create a link to this file, so that if you resynthesize your design, Libero

always uses the latest post-synthesis netlist.

a. In the Design Hierarchy window, note the name of the root module.

https://microchipsupport.force.com/s/newcase?pub_guid=GUID-A6A753FB-3F6D-4212-A361-9034AAF693FA&pub_lang=en-US&pub_ver=7&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-F965CBB5-6C3C-4168-9F79-536DB5AB4A36&cover_title=PolarFire%20Family%20FPGA%20Custom%20Flow%20User%20Guide&tech_support_link=NA&revision_letter=F&source=PDF&title=Implementing%20Your%20Design

4. Import the constraints into the Libero project. Use the Constraint Manager to import *.pdc/*.sdc/*.ndc

constraints.

a. Import I/O *.pdc constraint files (Constraints Manager > I/O Attributes >Import).

b. Import Floorplanning *.pdc constraint files (Constraints Manager > Floor Planner >Import).

c. Import *.sdc timing constraint files (Constraints Manager > Timing > Import). If your design has any of the

cores listed in Overview, ensure to import the SDC file generated through derive constraint tool.

d. Import *.ndc constraint files (Constraints Manager > Netlist Attributes > Import).

5. Associate Constraints Files to design tools.

a. Open Constraint Manager (Manage Constraints > Open Manage Constraints View).

Check the Place-and-Route and Timing Verification check box next to the constraint file to establish constraint

file and tool association. Associate the *.pdc constraint to Place-andRoute and the *.sdc to both Place-and-

Route and Timing Verification. Associate the *.ndc file to Compile Netlist.

 Tip: If Place and Route fails with this *.sdc constraint file, then import this same *.sdc file to synthesis and

re-run synthesis.

6. Click Compile Netlist and then Place and Route to complete the layout step.

7. The Configure Design Initialization Data and Memories tool allows you to initialize design blocks, such as

LSRAM, µSRAM, XCVR (transceivers), and PCIe using data stored in nonvolatile µPROM, sNVM, or external

SPI Flash storage memory. The tool has the following tabs for defining the specification of the design

initialization sequence, the specification of the initialization clients, user data clients.

– Design Initialization tab

– µPROM tab

– sNVM tab

– SPI Flash tab

– Fabric RAMs tab

Use the tabs in the tool to configure the design initialization data and memories.

After completing the configuration, perform the following steps to program the initialization data:

• Generate initialization clients

• Generate or export the bitstream

• Program the device

For detailed information on how to use this tool, see Libero SoC Design Flow User Guide. For more information

on the Tcl commands used to configure various tabs in the tool and specify memory configuration files (*.cfg),

see Tcl Commands Reference Guide.

8. Generate a Programming File from this project and use it to program your FPGA.

Appendix A—Sample SDC Constraints (Ask a Question

Libero SoC generates SDC timing constraints for certain IP cores, such as CCC, OSC, Transceiver and so on.
Passing the SDC constraints to design tools increases the chance of meeting timing closure with less effort and
fewer design iterations. The full hierarchical path from the top-level instance is given for all design objects
referenced in the constraints.
7.1 SDC Timing Constraints (Ask a Question)
In the Libero IP core reference project, this top-level SDC constraint file is available from the Constraint Manager
(Design Flow > Open Manage Constraint View >Timing > Derive Constraints).

 Important: See this file to set the SDC constraints if your design contains CCC, OSC, Transceiver, and other
components. Modify the full hierarchical path, if necessary, to match your design hierarchy or use the
Derive_Constraints utility and steps in Appendix C—Derive Constraints on the component level SDC file.
Save the file to a different name and import the SDC file to the synthesis tool, Place-and-Route Tool, and Timing
Verifications, just like any other SDC constraint files.
7.1.1 Derived SDC File (Ask a Question)
This file was generated based on the following SDC source files:
/drive/icicle_kit_ref_des/icicle-kit-reference-design-master/MPFS_ICICLE/component/work/
PF_CCC_C0/PF_CCC_C0_0/PF_CCC_C0_PF_CCC_C0_0_PF_CCC.sdc
/drive/icicle_kit_ref_des/icicle-kit-reference-design-master/MPFS_ICICLE/component/work/
CLK_DIV/CLK_DIV_0/CLK_DIV_CLK_DIV_0_PF_CLK_DIV.sdc
/drive/icicle_kit_ref_des/icicle-kit-reference-design-master/MPFS_ICICLE/component/work/
TRANSMIT_PLL/TRANSMIT_PLL_0/TRANSMIT_PLL_TRANSMIT_PLL_0_PF_TX_PLL.sdc
/drive/icicle_kit_ref_des/icicle-kit-reference-design-master/MPFS_ICICLE/component/work/
DMA_INITIATOR/DMA_INITIATOR_0/DMA_INITIATOR.sdc
/drive/icicle_kit_ref_des/icicle-kit-reference-design-master/MPFS_ICICLE/component/work/
FIC0_INITIATOR/FIC0_INITIATOR_0/FIC0_INITIATOR.sdc
/drive/icicle_kit_ref_des/icicle-kit-reference-design-master/MPFS_ICICLE/component/work/
ICICLE_MSS/ICICLE_MSS.sdc
/drive/icicle_kit_ref_des/icicle-kit-reference-design-master/MPFS_ICICLE/component/work/

https://coredocs.s3.amazonaws.com/Libero/2024_2/Tool/libero_soc_tcl_cmd_ref_ug.pdf
https://microchipsupport.force.com/s/newcase?pub_guid=GUID-A6A753FB-3F6D-4212-A361-9034AAF693FA&pub_lang=en-US&pub_ver=7&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-1BA86DD5-2F3A-41B9-8C03-BAF2C9EFFB8F&cover_title=PolarFire%20Family%20FPGA%20Custom%20Flow%20User%20Guide&tech_support_link=NA&revision_letter=F&source=PDF&title=Appendix%20A%25E2%2580%2594Sample%20SDC%20Constraints
https://microchipsupport.force.com/s/newcase?pub_guid=GUID-A6A753FB-3F6D-4212-A361-9034AAF693FA&pub_lang=en-US&pub_ver=7&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-538239F6-D67C-454C-8882-84FD6688D165&cover_title=PolarFire%20Family%20FPGA%20Custom%20Flow%20User%20Guide&tech_support_link=NA&revision_letter=F&source=PDF&title=SDC%20Timing%20Constraints
https://microchipsupport.force.com/s/newcase?pub_guid=GUID-A6A753FB-3F6D-4212-A361-9034AAF693FA&pub_lang=en-US&pub_ver=7&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-F7CD74B7-86E3-4303-8E36-60F6CE2CC4A0&cover_title=PolarFire%20Family%20FPGA%20Custom%20Flow%20User%20Guide&tech_support_link=NA&revision_letter=F&source=PDF&title=Derived%20SDC%20File

PF_PCIE_C0/PF_PCIE_C0_0/PF_PCIE_C0_PF_PCIE_C0_0_PF_PCIE.sdc
/drive/icicle_kit_ref_des/icicle-kit-reference-design-master/MPFS_ICICLE/component/work/
PCIE_INITIATOR/PCIE_INITIATOR_0/PCIE_INITIATOR.sdc
/drive/aPA5M/cores/constraints/osc_rc160mhz.sdc
*** Any modifications to this file will be lost if derived constraints is re-run. ***
create_clock -name {CLOCKS_AND_RESETS_inst_0/OSCILLATOR_160MHz_inst_0/OSCILLATOR_160MHz_0/
I_OSC_160/CLK} -period 6.25
[get_pins { CLOCKS_AND_RESETS_inst_0/OSCILLATOR_160MHz_inst_0/OSCILLATOR_160MHz_0/
I_OSC_160/CLK }] create_clock -name {REF_CLK_PAD_P} -period 10 [get_ports { REF_CLK_PAD_P }]
create_clock -name {CLOCKS_AND_RESETS_inst_0/TRANSMIT_PLL_0/TRANSMIT_PLL_0/txpll_isnt_0/
DIV_CLK} -period 8
[get_pins { CLOCKS_AND_RESETS_inst_0/TRANSMIT_PLL_0/TRANSMIT_PLL_0/txpll_isnt_0/DIV_CLK }]
create_generated_clock -name {CLOCKS_AND_RESETS_inst_0/CCC_FIC_x_CLK/PF_CCC_C0_0/pll_inst_0/
OUT0} -multiply_by 25 -divide_by 32 -source
[get_pins { CLOCKS_AND_RESETS_inst_0/CCC_FIC_x_CLK/PF_CCC_C0_0/pll_inst_0/REF_CLK_0 }] -phase
0
[get_pins { CLOCKS_AND_RESETS_inst_0/CCC_FIC_x_CLK/PF_CCC_C0_0/pll_inst_0/OUT0 }]
create_generated_clock -name {CLOCKS_AND_RESETS_inst_0/CCC_FIC_x_CLK/PF_CCC_C0_0/pll_inst_0/
OUT1} -multiply_by 25 -divide_by 32 -source
[get_pins { CLOCKS_AND_RESETS_inst_0/CCC_FIC_x_CLK/PF_CCC_C0_0/pll_inst_0/REF_CLK_0 }] -phase
0
[get_pins { CLOCKS_AND_RESETS_inst_0/CCC_FIC_x_CLK/PF_CCC_C0_0/pll_inst_0/OUT1 }]
create_generated_clock -name {CLOCKS_AND_RESETS_inst_0/CCC_FIC_x_CLK/PF_CCC_C0_0/pll_inst_0/
OUT2} -multiply_by 25 -divide_by 32 -source
[get_pins { CLOCKS_AND_RESETS_inst_0/CCC_FIC_x_CLK/PF_CCC_C0_0/pll_inst_0/REF_CLK_0 }] -phase
0
[get_pins { CLOCKS_AND_RESETS_inst_0/CCC_FIC_x_CLK/PF_CCC_C0_0/pll_inst_0/OUT2 }]
create_generated_clock -name {CLOCKS_AND_RESETS_inst_0/CCC_FIC_x_CLK/PF_CCC_C0_0/pll_inst_0/
OUT3} -multiply_by 25 -divide_by 64 -source
[get_pins { CLOCKS_AND_RESETS_inst_0/CCC_FIC_x_CLK/PF_CCC_C0_0/pll_inst_0/REF_CLK_0 }] -phase
0
[get_pins { CLOCKS_AND_RESETS_inst_0/CCC_FIC_x_CLK/PF_CCC_C0_0/pll_inst_0/OUT3 }]
create_generated_clock -name
{CLOCKS_AND_RESETS_inst_0/CLK_160MHz_to_CLK_80MHz/CLK_DIV_0/I_CD/
Y_DIV} -divide_by 2 -source
[get_pins { CLOCKS_AND_RESETS_inst_0/CLK_160MHz_to_CLK_80MHz/CLK_DIV_0/I_CD/A }] [get_pins {
CLOCKS_AND_RESETS_inst_0/CLK_160MHz_to_CLK_80MHz/CLK_DIV_0/I_CD/Y_DIV }] set_false_path -
through [get_nets { DMA_INITIATOR_inst_0/ARESETN* }] set_false_path -from [get_cells {
DMA_INITIATOR_inst_0/*/SlvConvertor_loop[*].slvcnv/slvCDC/
genblk1*/rdGrayCounter*/cntGray* }] -to [get_cells {
DMA_INITIATOR_inst_0/*/SlvConvertor_loop[*].slvcnv/slvCDC/genblk1*/
rdPtr_s1* }] set_false_path -from [get_cells { DMA_INITIATOR_inst_0/*/SlvConvertor_loop[*].slvcnv/slvCDC/
genblk1*/wrGrayCounter*/cntGray* }] -to [get_cells {
DMA_INITIATOR_inst_0/*/SlvConvertor_loop[*].slvcnv/slvCDC/genblk1*/
wrPtr_s1* }] set_false_path -through [get_nets { FIC0_INITIATOR_inst_0/ARESETN* }] set_false_path -to [
get_pins { PCIE/PF_PCIE_C0_0/PCIE_1/INTERRUPT[0] PCIE/PF_PCIE_C0_0/
PCIE_1/INTERRUPT[1] PCIE/PF_PCIE_C0_0/PCIE_1/INTERRUPT[2] PCIE/PF_PCIE_C0_0/PCIE_1/
INTERRUPT[3] PCIE/PF_PCIE_C0_0/PCIE_1/INTERRUPT[4] PCIE/PF_PCIE_C0_0/PCIE_1/INTERRUPT[5]
PCIE/PF_PCIE_C0_0/PCIE_1/INTERRUPT[6] PCIE/PF_PCIE_C0_0/PCIE_1/INTERRUPT[7]
PCIE/PF_PCIE_C0_0/
PCIE_1/WAKEREQ PCIE/PF_PCIE_C0_0/PCIE_1/MPERST_N }] set_false_path -from [get_pins {
PCIE/PF_PCIE_C0_0/PCIE_1/TL_CLK }] set_false_path -through [get_nets {
PCIE_INITIATOR_inst_0/ARESETN* }] Appendix B—Importing Simulation Libraries into Simulation
Environment (Ask a Question)
The default simulator for RTL simulation with Libero SoC is ModelSim ME Pro.
Pre-compiled libraries for default simulator are available with Libero installation at
directory<install_location>/Designer/lib/modelsimpro/precompiled/vlog for® supported families. Libero SoC also
supports other third-party simulators editions of ModelSim, Questasim, VCS, Xcelium
, Active HDL, and Riviera Pro. Download respective pre-compiled libraries from Libero SoC v12.0 and later

https://microchipsupport.force.com/s/newcase?pub_guid=GUID-A6A753FB-3F6D-4212-A361-9034AAF693FA&pub_lang=en-US&pub_ver=7&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-12CE2A8E-1846-4B44-9EE7-92EFF2A1A043&cover_title=PolarFire%20Family%20FPGA%20Custom%20Flow%20User%20Guide&tech_support_link=NA&revision_letter=F&source=PDF&title=Appendix%20B%25E2%2580%2594Importing%20Simulation%20Libraries%20into%20Simulation%20Environment
https://www.microchip.com/en-us/products/fpgas-and-plds/fpga-and-soc-design-tools/fpga/libero-software-later-versions#downloads

based on the simulator and its version.
Similar to Libero environment, run.do file must be created to run simulation outside Libero.
Create a simple run.do file that has commands to establish library for compilation results, library mapping,
compilation, and simulation. Follow the steps to create a basic run.do file.

1. Create a logical library to store compilation results using vlib command vlib presynth.

2. Map the logical library name to pre-compiled library directory using vmap command vmap <logical_name>

<pre-compiled directory path>.

3. Compile source files—use language-specific compiler commands to compile design files into working directory.

– vlog for .v/.sv

– vcom for .vhd

4. Load the design for simulation using vsim command by specifying name of any top-level module.

5. Simulate the design using run command.

After loading the design, simulation time is set to zero, and you can enter the run command to begin simulation.

In the simulator transcript window, execute run.do file as run.do run the simulation. Sample run.do file as

follows.

quietly set ACTELLIBNAME PolarFire quietly set PROJECT_DIR “W:/Test/basic_test” if
{[file exists presynth/_info]} { echo “INFO: Simulation library presynth exists” } else
{ file delete -force presynth vlib presynth } vmap presynth presynth vmap PolarFire
“X:/Libero/Designer/lib/modelsimpro/precompiled/vlog/PolarFire” vlog -sv -work presynth
“${PROJECT_DIR}/hdl/top.v” vlog “+incdir+${PROJECT_DIR}/stimulus” -sv -work presynth “$
{PROJECT_DIR}/stimulus/tb.v” vsim -L PolarFire -L presynth -t 1ps presynth.tb add wave /tb/*
run 1000ns log /tb/* exit

Appendix C—Derive Constraints (Ask a Question)

This appendix describes the Derive Constraints Tcl commands.
9.1 Derive Constraints Tcl Commands (Ask a Question)
The derive_constraints utility helps you derive constraints from the RTL or the configurator outside the Libero SoC
design environment. To generate constraints for your design, you need the User HDL, Component HDL, and
Component Constraints files. The SDC component constraints files are available under
<project>/component/work/<component name>/<instance_name>/ directory after component configuration and
generation.
Each component constraint file consists of the set_component tcl command (specifies the component name) and
the list of constraints generated after configuration. The constraints are generated based on the configuration and
are specific to each component.
Example 9-1. Component Constraint File for the PF_CCC Core
Here is an example of a component constraint file for the PF_CCC core:
set_component PF_CCC_C0_PF_CCC_C0_0_PF_CCC
Microchip Corp.
Date: 2021-Oct-26 04:36:00
Base clock for PLL #0
create_clock -period 10 [get_pins { pll_inst_0/REF_CLK_0 }] create_generated_clock -divide_by 1 -source [
get_pins { pll_inst_0/
REF_CLK_0 }] -phase 0 [get_pins { pll_inst_0/OUT0 }] Here, create_clock and create_generated_clock are
reference and output clock constraints respectively, which are generated based on the configuration.
9.1.1 Working with derive_constraints Utility (Ask a Question)
Derive constraints traverse through the design and allocate new constraints for each instance of component
based on previously provided component SDC files. For the CCC reference clocks, it propagates back through the
design to find the source of the reference clock. If the source is an I/O, the reference clock constraint will be set on
the I/O. If it is a CCC output or another clock source (for example, Transceiver, oscillator), it uses the clock from
the other component and reports a warning if the intervals do not match. Derive constraints will also allocate
constraints for some macros like on-chip oscillators if you have them in your RTL.

https://microchip.my.site.com/s/newcase?pub_guid=GUID-A6A753FB-3F6D-4212-A361-9034AAF693FA&pub_lang=en-US&pub_ver=7&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-05E323D6-53B9-484F-8989-7AB23AB58F56&cover_title=PolarFire%20Family%20FPGA%20Custom%20Flow%20User%20Guide&tech_support_link=NA&revision_letter=F&source=PDF&title=Appendix%20C%25E2%2580%2594Derive%20Constraints
https://login.microchip.com/fa3b8c7a-0b90-4cf4-8888-f4adea962b97/b2c_1a_signup_signin/oauth2/v2.0/authorize?response_type=code&client_id=464bf79e-0585-4cb6-a04c-7c2b29b5228c&redirect_uri=https%253A%252F%252Fmicrochip.my.site.com%252Fservices%252Fauthcallback%252FCommunity_portal_oAuth&scope=openid+464bf79e-0585-4cb6-a04c-7c2b29b5228c&state=CAAAAZX5468OMDAwMDAwMDAwMDAwMDAwAAAA_vKTb6gKr8OVCMkvNsiklGrMdS7oBrESr4B8c9ltCG_trqyP3pp-b2XFYbO6s7CjDkKLYb5zKp29A3Nd--Tyk5-urhEgzJEztT0CrIZzwhdIAoft8AvO8_nXjoCy4hyVNTYpJXTk9vZ2zpgv_ZmYH1vNNmowEYuEZ0kvxxbeJQTFO7EIInI4vhxR6MZn5rIto8UnaplJwvY4l6KTLZXPMt8O2AFWI0e_uzEctBvbuS-mQrIf8-QQwERsPyJeobNYHSz58LDbPH0dmk1io_7kHb5ysKgZRsB2fE2dDUm64GC44szskGgNr55qx1R9NlXijZ1UlhGGICSLpg4xZn53PnlAbyh6B04MKv7jZlpVp_0wa4sFKaZSJvdH-qJCKegfiLk8aeBqYwM2mvO__eMv_TGvAnLwORqMxQXK8FoqeJVK5E-LwfpB-S9ExxZZLkKR8owMGkBiVMXjh3qc6Y7TD8yqdSQEKOFmX5Gdcy7qWAQr66AV8-OXey4OnOHnk7H-HJfQQFUm3_A0JZfooQyywyZXmyq_flPE9eh7vVNM_yeOLlADJlmIpqA3C0rQGl3W5-WATLttAeJBCm_JYYhqe8-kGziwDbPOqE-4V0E3cado1kNe5NaNsZteX9oA_ENjEvx3QJx5-OdNQgBzySqfyQZhJRz-RWbWoQHqKm1Adzpgo4_pTEe9g5V_yExPuQYaC6P5KaTgdHAbmY2v-JSywOQURTFOuuMsR3nI9iFSO-iV
https://login.microchip.com/fa3b8c7a-0b90-4cf4-8888-f4adea962b97/b2c_1a_signup_signin/oauth2/v2.0/authorize?response_type=code&client_id=464bf79e-0585-4cb6-a04c-7c2b29b5228c&redirect_uri=https%253A%252F%252Fmicrochip.my.site.com%252Fservices%252Fauthcallback%252FCommunity_portal_oAuth&scope=openid+464bf79e-0585-4cb6-a04c-7c2b29b5228c&state=CAAAAZX55KaEMDAwMDAwMDAwMDAwMDAwAAAA_ijvVCgx71-kUgIDyyegCt1nCMIJdYbFM1ZunaxIljxHzsnZGRfdeg7Us2zHZozJNvDq3ABV-rtQw9Uuaa1Usvm92tx3nEgH7gk2OjUianJAZolsNOl4xmq4qGhPZSfsjuLvHBv6YTOCkPC7TT5QF1PpDYlcETjtMv2IT0Z6e8FWASsdFX0KIXHzeee07MW0fPXkNOi0ERMXKY-M3POtl1NuLMRQFkNe98uHtjWFOWtLQDd-iRGmHGVLKACFtCFsHlaBDkxMPcKs-BhZIOxTLTC71w2eue7UFimiKEn65mcWpZH44gM6TXCk5hsS_ZEbfFo-qmUSduF8ClX3EWL4Yam3_5vYyBuoOX7ZFPduk8FgpZ33Y9Dw7zm_-IeYyhGO4sdPxHyMX4spXdz6nekoht0mJpU8VbHjFlkcJV0951PzXu-saWgOSlM4X8wO28MSIbI7WcK3pQgts0i9llPOJUoLqPWeUGj9SP2dx8ACk1AJLdrkfHYxb9CXQ2cBG2cpZYtcGRPCGc87IhOssQYR5BfqWsQ-BC19iocM_o-SlTzqONQqeFwRLz1vwrjCWz2Xsd3CBmQIfdlrMIdproPwAra7dyBlnW4ERLszV8qORsDqVxZx7ZdT-fB1W7qcdf85Ja_QIbffRuVeuOoy0Gx9KWsQvld3I4N99iDfntdxvhvl-0yogqABf99UmlljolMVLb9WD49mxZfPz2tGUgyu0ySN0kqBA0aqMHCHS_guHmbdAuriBsbxcBYDeZleQZnQkQ%253D%253D

To execute the derive_constraints utility, you must supply a .tcl file command-line argument with the following
information in the specified order.

1. Specify device information using the information in section set_device.

2. Specify path to the RTL files using the information in section read_verilog or read_vhdl.

3. Set top level module using the information in section set_top_level.

4. Specify path to the component SDC files using the information in section read_sdc or read_ndc.

5. Execute the files using the information in section derive_constraints.

6. Specify path to the SDC derived constraints file using the information in section write_sdc or write_pdc or

write_ndc.

Example 9-2. Execution and Contents of the derive.tcl File
The following is an example command-line argument to execute the derive_constraints utility.
$ <libero_installation_path>/bin{64}/derive_constraints derive.tcl
The contents of the derive.tcl file:
Device information
set_device -family PolarFire -die MPF100T -speed -1
RTL files
read_verilog -mode system_verilog project/component/work/txpll0/
txpll0_txpll0_0_PF_TX_PLL.v
read_verilog -mode system_verilog {project/component/work/txpll0/txpll0.v}
read_verilog -mode system_verilog {project/component/work/xcvr0/I_XCVR/
xcvr0_I_XCVR_PF_XCVR.v}
read_verilog -mode system_verilog {project/component/work/xcvr0/xcvr0.v}
read_vhdl -mode vhdl_2008 {project/hdl/xcvr1.vhd}
#Component SDC files
set_top_level {xcvr1}
read_sdc -component {project/component/work/txpll0/txpll0_0/
txpll0_txpll0_0_PF_TX_PLL.sdc}
read_sdc -component {project/component/work/xcvr0/I_XCVR/
xcvr0_I_XCVR_PF_XCVR.sdc}
#Use derive_constraint command
derive_constraints
#SDC/PDC/NDC result files
write_sdc {project/constraint/xcvr1_derived_constraints.sdc}
write_pdc {project/constraint/fp/xcvr1_derived_constraints.pdc}
9.1.2 set_device (Ask a Question)
Description
Specify family name, die name, and speed grade.
set_device -family <family_name> -die <die_name> -speed <speed>
Arguments

Parameter Type Description

-family <family_name> String Specify the family name. Possible values are PolarFire®, Polar
Fire SoC.

-die <die_name> String Specify the die name.

-speed <speed> String Specify the device speed grade. Possible values are STD or -1
.

https://microchipsupport.force.com/s/newcase?pub_guid=GUID-A6A753FB-3F6D-4212-A361-9034AAF693FA&pub_lang=en-US&pub_ver=7&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-5B1ABEA9-E925-4CCE-8401-659E7EA52591&cover_title=PolarFire%20Family%20FPGA%20Custom%20Flow%20User%20Guide&tech_support_link=NA&revision_letter=F&source=PDF&title=set_device

Return Type Description

0 Command succeeded.

1 Command failed. There is an error. You can observe the error message in
the console.

List of Errors

Error C
ode Error Message Description

ERR002
3

Required parameter—die is missi
ng The die option is mandatory and must be specified.

ERR000
5 Unknown die ‘MPF30’ The value of -die option is not correct. See the possible list of val

ues in option’s description.

ERR002
3 Parameter—die is missing value The die option is specified without value.

ERR002
3

Required parameter—family is mi
ssing The family option is mandatory and must be specified.

ERR000
4 Unknown family ‘PolarFire®’ The family option is not correct. See the possible list of values in

option’s description.

………… continued

Error C
ode Error Message Description

ERR002
3

Parameter—family is missing valu
e The family option is specified without value.

ERR002
3

Required parameter—speed is mi
ssing The speed option is mandatory and must be specified.

ERR000
7 Unknown speed ‘<speed>’ The speed option is not correct. See the possible list of values in

option’s description.

ERR002
3

Parameter—speed is missing val
ue The speed option is specified without value.

Example
set_device -family {PolarFire} -die {MPF300T_ES} -speed -1
set_device -family SmartFusion 2 -die M2S090T -speed -1
9.1.3 read_verilog (Ask a Question)
Description
Read a Verilog file using Verific.
read_verilog [-lib <libname>] [-mode <mode>] <filename>
Arguments

https://microchip.my.site.com/s/newcase?pub_guid=GUID-A6A753FB-3F6D-4212-A361-9034AAF693FA&pub_lang=en-US&pub_ver=7&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-2DB1B3E4-A476-4B00-8F78-4DF2C98809E3&cover_title=PolarFire%20Family%20FPGA%20Custom%20Flow%20User%20Guide&tech_support_link=NA&revision_letter=F&source=PDF&title=read_verilog

Parameter Type Description

-lib <libname> String Specify the library that contains the modules to be added into t
he library.

-mode <mode> String

Specify the Verilog standard. Possible values are verilog_95, v
erilog_2k, system_verilog_2005, system_verilog_2009, system
_verilog, verilog_ams, verilog_psl, system_verilog_mfcu. Value
s are case insensitive. Default is verilog_2k.

filename String Verilog file name.

Return Type Description

0 Command succeeded.

1 Command failed. There is an error. You can observe the error message in
the console.

List of Errors

Error C
ode Error Message Description

ERR002
3 Parameter—lib is missing value The lib option is specified without value.

ERR002
3

Parameter—mode is missing valu
e The mode option is specified without value.

ERR001
5 Unknown mode ‘<mode>’ The specified verilog mode is unknown. See the list of possible v

erilog mode in—mode option description.

ERR002
3

Required parameter file name is
missing No verilog file path is provided.

ERR001
6 Failed due to Verific’s parser Syntax error in verilog file. Verific’s parser can be observed in th

e console above the error message.

ERR001
2 set_device is not called The device information is not specified. Use set_device comman

d to describe the device.

Example
read_verilog -mode system_verilog {component/work/top/top.v}
read_verilog -mode system_verilog_mfcu design.v
9.1.4 read_vhdl (Ask a Question)
Description
Add a VHDL file into the list of VHDL files.
read_vhdl [-lib <libname>] [-mode <mode>] <filename>
Arguments

https://microchip.my.site.com/s/newcase?pub_guid=GUID-A6A753FB-3F6D-4212-A361-9034AAF693FA&pub_lang=en-US&pub_ver=7&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-89612E1D-0121-44C9-9725-BEA3DE0AF869&cover_title=PolarFire%20Family%20FPGA%20Custom%20Flow%20User%20Guide&tech_support_link=NA&revision_letter=F&source=PDF&title=read_vhdl

Parameter Type Description

-lib <libname> — Specify the library in which the content must be added.

-mode <mode> —
Specifies the VHDL standard. Default is VHDL_93. Possible
values are vhdl_93, vhdl_87, vhdl_2k, vhdl_2008, vhdl_psl. Val
ues are case insensitive.

filename — VHDL file name.

Return Type Description

0 Command succeeded.

1 Command failed. There is an error. You can observe the error message in
the console.

List of Errors

Error C
ode Error Message Description

ERR002
3 Parameter—lib is missing value The lib option is specified without value.

ERR002
3 Parameter—mode is missing value The mode option is specified without value.

ERR001
8 Unknown mode ‘<mode>’ The specified VHDL mode is unknown. See the list of possible

VHDL mode in—mode option description.

ERR002
3

Required parameter file name is mi
ssing No VHDL file path is provided.

ERR001
9

Unable to register invalid_path.v fil
e

The specified VHDL file does not exist or does not have read p
ermissions.

ERR001
2 set_device is not called The device information is not specified. Use set_device comma

nd to describe the device.

Example
read_vhdl -mode vhdl_2008 osc2dfn.vhd
read_vhdl {hdl/top.vhd}
9.1.5 set_top_level (Ask a Question)
Description
Specify the name of the top-level module in RTL.
set_top_level [-lib <libname>] <name>
Arguments

Parameter Type Description

-lib <libname> String The library to search for the top-level module or entity (Optional).

name String The top-level module or entity name.

https://login.microchip.com/fa3b8c7a-0b90-4cf4-8888-f4adea962b97/b2c_1a_signup_signin/oauth2/v2.0/authorize?response_type=code&client_id=464bf79e-0585-4cb6-a04c-7c2b29b5228c&redirect_uri=https%253A%252F%252Fmicrochip.my.site.com%252Fservices%252Fauthcallback%252FCommunity_portal_oAuth&scope=openid+464bf79e-0585-4cb6-a04c-7c2b29b5228c&state=CAAAAZX560wGMDAwMDAwMDAwMDAwMDAwAAAA_lBn8zw_ZegWGTACFEsFGUONkSDtEkY_8-Xmg5gI0WCt6W8tYIe1W1w_PVk7QTKvRWz0nlPMNCQG599golpYxr1vkfzaSXbbkmXK5bM7IdBK84SYA4uibr3SyyJMoZlHby4rPpM7KuTHLxa_P4tFNSQ7dxLW11QuYHdvevzoFT19KthheLhoTihUqo2EbB-nSAigyyJCt_THJtLpa7OQmNsO5Zq5MZlZuwsVcePMX_iPvmW7H5A_NPgOgHCysuacam2ryTelUfQYZPkDphQTvVXe8XWZ743p0jZ2QkTazKvGVKg2bKOH7ah5_6GrxtiqwBVVfCDFDm7efbdXVwgoALaO6j66W4-hZEyHLpPkGlc6xx1AzERYhw5sPhUqJvFzP3340dYlP7yyyisnr-3DXaGl8cni0xJsHwKJera8xv-zCMe5YN0w1skzKgbRgJAXyNI8SJh5jYXAvtZAe0vvB54AnKMbdCAfiCfJ5E06BBTMTGMqHF7N7N15QGSqKRqkcDB_1r3JrChYxNAWR-fvIRCUKyTQkXCqVk8gzlif4lzxl9ZCb2kgGA_p0GeA7eZEcz0z4dUvC7G7Vj1_w639J2X5EKEfshkq6RdJvpb5NxfA5j9OQy78iLA4Jf8xdYfa-AcAt21lOQiTcMYexLw3KW-GdSoFFOWKzEwI6CjdKmO7SvphQcmpQTC-oAEY4vC-NZqKYYL2oZuHp5_EfOoBzlg%253D

Return Type Description

0 Command succeeded.

1 Command failed. There is an error. You can observe the error message in
the console.

List of Errors

Error C
ode Error Message Description

ERR002
3

Required parameter top level is
missing The top level option is mandatory and must be specified.

ERR002
3 Parameter—lib is missing value The lib option is specified without values.

ERR001
4

Unable to find top level <top> in li
brary <lib>

The specified top-level module is not defined in the provided libr
ary. To fix this error, the top module or library name must be corre
cted.

ERR001
7 Elaborate failed Error in RTL elaboration process. The error message can be obs

erved from the console.

Example
set_top_level {top}
set_top_level -lib hdl top
9.1.6 read_sdc (Ask a Question)
Description
Read a SDC file into the component database.
read_sdc -component <filename>
Arguments

Parameter Type Description

-component — This is a mandatory flag for read_sdc command when we deriv
e constraints.

filename String Path to the SDC file.

Return Type Description

0 Command succeeded.

1 Command failed. There is an error. You can observe the error message in
the console.

List of Errors

Error C
ode Error Message Description

ERR002
3

Required parameter file name is
missing. The mandatory option file name is not specified.

ERR000
0

SDC file <file_path> is not reada
ble. The specified SDC file does not have read permissions.

ERR000
1 Unable to open <file_path> file. The SDC file does not exist. The path must be corrected.

ERR000
8

Missing set_component comman
d in <file_path> file

The specified component of SDC file does not specify the compo
nent.

Error C
ode Error Message Description

ERR000
9 <List of errors from sdc file>

The SDC file contains incorrect sdc commands. For example,

when there is an error in set_multicycle_path constraint: Error whi
le executing command read_sdc: in <sdc_file_path> file: Error in
command set_multicycle_path: Unknown parameter [get_cells {r
eg_a}].

Example
read_sdc -component {./component/work/ccc0/ccc0_0/ccc0_ccc0_0_PF_CCC.sdc}
9.1.7 read_ndc (Ask a Question)
Description
Read an NDC file into the component database.
read_ndc -component <filename>
Arguments

Parameter Type Description

-component — This is a mandatory flag for read_ndc command when we deriv
e constraints.

filename String Path to the NDC file.

Return Type Description

0 Command succeeded.

1 Command failed. There is an error. You can observe the error message in
the console.

List of Errors

Error Co
de Error Message Description

ERR000
1 Unable to open <file_path> file The NDC file does not exist. The path must be correct

ed.

ERR002
3

Required parameter—AtclParamO_ is miss
ing. The mandatory option filename is not specified.

ERR002
3

Required parameter—component is missin
g.

Component option is mandatory and must be specifie
d.

ERR000
0 NDC file ‘<file_path>’ is not readable. The specified NDC file does not have read permission

s.

Example
read_ndc -component {component/work/ccc1/ccc1_0/ccc_comp.ndc}
9.1.8 derive_constraints (Ask a Question)
Description
Instantiate component SDC files into the design-level database.
derive_constraints
Arguments

Return Type Description

0 Command succeeded.

1 Command failed. There is an error. You can observe the error message in
the console.

List of Errors

Error C
ode Error Message Description

ERR001
3

Top-level is not defi
ned

This means that the top-level module or entity is not specified. To fix this call, is
sue the
set_top_level command before the derive_constraints command.

Example
derive_constraints
9.1.9 write_sdc (Ask a Question)
Description
Writes a constraint file in SDC format.
write_sdc <filename>
Arguments

Parameter Type Description

<filename> String Path to the SDC file will be generated. This is a mandatory
option. If the file exists, it will be overwritten.

Return Type Description

0 Command succeeded.

1 Command failed. There is an error. You can observe the error message in
the console.

List of Errors

Error C
ode Error Message Description

ERR000
3 Unable to open <file path> file. File path is not correct. Check whether the parent directories

exist.

ERR000
2 SDC file ‘<file path>’ is not writable. The specified SDC file does not have write permission.

ERR002
3

Required parameter file name is mis
sing.

The SDC file path is a mandatory option and must be specifie
d.

Example
write_sdc “derived.sdc”
9.1.10 write_pdc (Ask a Question)
Description
Writes physical constraints (Derive Constraints only).
write_pdc <filename>
Arguments

Parameter Type Description

<filename> String Path to the PDC file will be generated. This is a mandatory
option. If the file path exists, it will be overwritten.

Return Type Description

0 Command succeeded.

1 Command failed. There is an error. You can observe the error message in
the console.

List of Errors

Error C
ode Error Messages Description

ERR000
3 Unable to open <file path> file The file path is not correct. Check whether the parent directorie

s exist.

ERR000
2

PDC file ‘<file path>’ is not writeabl
e. The specified PDC file does not have write permission.

ERR002
3

Required parameter file name is mi
ssing The PDC file path is a mandatory option and must be specified.

Example
write_pdc “derived.pdc”
9.1.11 write_ndc (Ask a Question)
Description
Writes NDC constraints into a file.
write_ndc <filename>
Arguments

Parameter Type Description

filename String Path to the NDC file will be generated. This is a mandatory opti
on. If the file exists, it will be overwritten.

Return Type Description

0 Command succeeded.

1 Command failed. There is an error. You can observe the error message in
the console.

List of Errors

Error C
ode Error Messages Description

ERR000
3 Unable to open <file_path> file. File path is not correct. The parent directories do not exist

.

ERR000
2 NDC file ‘<file_path>’ is not writable. The specified NDC file does not have write permission.

ERR002
3

Required parameter _AtclParamO_ is mi
ssing.

The NDC file path is a mandatory option and must be spe
cified.

Example
write_ndc “derived.ndc”
9.1.12 add_include_path (Ask a Question)
Description
Specifies a path to search include files when reading RTL files.
add_include_path <directory>
Arguments

Parameter Type Description

directory String Specifies a path to search include files when reading RTL files.
This option is mandatory.

Return Type Description

0 Command succeeded.

Return Type Description

1 Command failed. There is an error. You can observe the error message in
the console.

List of Errors

Error Co
de Error Message Description

ERR0023 Required parameter include path is missin
g.

The directory option is mandatory and must be provide
d.

Note: If the directory path is not correct, then add_include_path will be passed without an error.
However, read_verilog/read_vhd commands will fail due to Verific’s parser.
Example
add_include_path component/work/COREABC0/COREABC0_0/rtl/vlog/core

Revision History (Ask a Question)

The revision history describes the changes that were implemented in the document. The changes are listed by
revision, starting with the most current publication.

Revision Date Description

F 08/2024
The following changes are made in this revision:
• Updated section Appendix B—Importing Simulation Libraries i
nto Simulation Environment.

E 08/2024

The following changes are made in this revision:
• Updated section Overview.
• Updated section Derived SDC File.
• Updated section Appendix B—Importing Simulation Libraries i
nto Simulation Environment.

D 02/2024
This document is released with Libero 2024.1 SoC Design Suite wi
thout changes from v2023.2.
Updated section Working with derive_constraints Utility

C 08/2023 This document is released with Libero 2023.2 SoC Design Suite wi
thout changes from v2023.1.

B 04/2023 This document is released with Libero 2023.1 SoC Design Suite wi
thout changes from v2022.3.

A 12/2022 Initial Revision.

Microchip FPGA Support
Microchip FPGA products group backs its products with various support services, including Customer Service,
Customer Technical Support Center, a website, and worldwide sales offices.
Customers are suggested to visit Microchip online resources prior to contacting support as it is very likely that their
queries have been already answered.
Contact Technical Support Center through the website at www.microchip.com/support. Mention the FPGA
Device Part number, select appropriate case category, and upload design files while creating a technical support
case.

https://microchip.my.site.com/s/newcase?pub_guid=GUID-A6A753FB-3F6D-4212-A361-9034AAF693FA&pub_lang=en-US&pub_ver=7&pub_type=User%20Guide&bu=fpga&tpc_guid=GUID-87865236-88DC-447E-8533-C9D2358FE2AC&cover_title=PolarFire%20Family%20FPGA%20Custom%20Flow%20User%20Guide&tech_support_link=NA&revision_letter=F&source=PDF&title=Revision%20History
http://www.microchip.com/support

Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update
information, order status, and authorization.

From North America, call 800.262.1060

From the rest of the world, call 650.318.4460

Fax, from anywhere in the world, 650.318.8044

Microchip Information
The Microchip Website
Microchip provides online support via our website at www.microchip.com/. This website is used to make files
and information easily available to customers. Some of the content available includes:

Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s

guides and hardware support documents, latest software releases and archived software

General Technical Support – Frequently Asked Questions (FAQs), technical support requests, online discussion

groups, Microchip design partner program member listing

Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of

seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service
Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers
will receive email notification whenever there are changes, updates, revisions or errata related to a specified
product family or development tool of interest. To register, go to www.microchip.com/pcn and follow the
registration instructions.

Customer Support
Users of Microchip products can receive assistance through several channels:

Distributor or Representative

Local Sales Office

Embedded Solutions Engineer (ESE)

Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available
to help customers. A listing of sales offices and locations is included in this document. Technical support is
available through the website at: www.microchip.com/support
Microchip Devices Code Protection Feature
Note the following details of the code protection feature on Microchip products:

Microchip products meet the specifications contained in their particular Microchip Data Sheet.

Microchip believes that its family of products is secure when used in the intended manner, within operating

specifications, and under normal conditions.

Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code

protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright

Act.

Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code

protection does not mean that we are guaranteeing the product is “unbreakable”. Code protection is constantly

evolving. Microchip is committed to continuously improving the code protection features of our products.

http://www.microchip.com/
http://www.microchip.com/pcn
http://www.microchip.com/support

Legal Notice
This publication and the information herein may be used only with Microchip products, including to design, test,
and integrate Microchip products with your application. Use of this information in any other manner violates these
terms. Information regarding device applications is provided only for your convenience and may be superseded by
updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local
Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-
us/support/design-help/client-support-services.
THIS INFORMATION IS PROVIDED BY MICROCHIP “AS IS”. MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE. IN NO EVENT
WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL
LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR
ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE
DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP’S TOTAL
LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED
THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.
Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer
agrees to defend, indemnify and hold harmless Microchip from any and all damages, laims, suits, or expenses
resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual
property rights unless otherwise stated.
Trademarks
The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud,
CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD,
maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer,
PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC,
SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and
XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
AgileSwitch, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed
Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus,
ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, TimeCesium, TimeHub, TimePictra, TimeProvider, and
ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.
Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching,
BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion,
CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S,
EtherGREEN, EyeOpen, GridTime, IdealBridge, IGaT, In-Circuit Serial Programming, ICSP, INICnet, Intelligent
Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, MarginLink, maxCrypto, maxView,
memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mSiC, MultiTRAK, NetDetach,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, Power MOS IV, Power MOS 7, PowerSmart,
PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY,
SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY,
Total Endurance, Trusted Time, TSHARC, Turing, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan,
WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and
other countries.
SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks
of Microchip Technology Inc. in other countries.
GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.
All other trademarks mentioned herein are property of their respective companies.
2024, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.
ISBN: 978-1-6683-0183-8
Quality Management System
For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.
Worldwide Sales and Service

http://www.microchip.com/en-us/support/design-help/client-support-services
http://www.microchip.com/quality

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE

Corporate Office
2355 West Chandler Blv
d.
Chandler, AZ 85224-
6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support: www
.microchip.com/suppo
rt
Web Address: www.mi
crochip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada – Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia – Sydney
Tel: 61-2-9868-6733
China – Beijing
Tel: 86-10-8569-7000
China – Chengdu
Tel: 86-28-8665-5511
China – Chongqing
Tel: 86-23-8980-9588
China – Dongguan
Tel: 86-769-8702-9880
China – Guangzhou
Tel: 86-20-8755-8029
China – Hangzhou
Tel: 86-571-8792-8115
China – Hong Kong SAR
Tel: 852-2943-5100
China – Nanjing
Tel: 86-25-8473-2460
China – Qingdao
Tel: 86-532-8502-7355
China – Shanghai
Tel: 86-21-3326-8000
China – Shenyang
Tel: 86-24-2334-2829
China – Shenzhen
Tel: 86-755-8864-2200
China – Suzhou
Tel: 86-186-6233-1526
China – Wuhan
Tel: 86-27-5980-5300
China – Xian
Tel: 86-29-8833-7252
China – Xiamen
Tel: 86-592-2388138
China – Zhuhai
Tel: 86-756-3210040

India – Bangalore
Tel: 91-80-3090-4444
India – New Delhi
Tel: 91-11-4160-8631
India – Pune
Tel: 91-20-4121-0141
Japan – Osaka
Tel: 81-6-6152-7160
Japan – Tokyo
Tel: 81-3-6880- 3770
Korea – Daegu
Tel: 82-53-744-4301
Korea – Seoul
Tel: 82-2-554-7200
Malaysia – Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia – Penang
Tel: 60-4-227-8870
Philippines – Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan – Hsin Chu
Tel: 886-3-577-8366
Taiwan – Kaohsiung
Tel: 886-7-213-7830
Taiwan – Taipei
Tel: 886-2-2508-8600
Thailand – Bangkok
Tel: 66-2-694-1351
Vietnam – Ho Chi Minh
Tel: 84-28-5448-2100

Austria – Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark – Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland – Espoo
Tel: 358-9-4520-820
France – Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany – Garching
Tel: 49-8931-9700
Germany – Haan
Tel: 49-2129-3766400
Germany – Heilbronn
Tel: 49-7131-72400
Germany – Karlsruhe
Tel: 49-721-625370
Germany – Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany – Rosenheim
Tel: 49-8031-354-560
Israel – Hod Hasharon
Tel: 972-9-775-5100
Italy – Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy – Padova
Tel: 39-049-7625286
Netherlands – Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway – Trondheim
Tel: 47-72884388
Poland – Warsaw
Tel: 48-22-3325737
Romania – Bucharest
Tel: 40-21-407-87-50
Spain – Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden – Gothenberg
Tel: 46-31-704-60-40
Sweden – Stockholm
Tel: 46-8-5090-4654
UK – Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

https://phone.gd/phone/480-792-7200
https://phone.gd/phone/480-792-7277
http://www.microchip.com/support
http://www.microchip.com
https://phone.gd/phone/678-957-9614
https://phone.gd/phone/678-957-1455
https://phone.gd/phone/512-257-3370
https://phone.gd/phone/774-760-0087
https://phone.gd/phone/774-760-0088
https://phone.gd/phone/630-285-0071
https://phone.gd/phone/630-285-0075
https://phone.gd/phone/972-818-7423
https://phone.gd/phone/972-818-2924
https://phone.gd/phone/248-848-4000
https://phone.gd/phone/281-894-5983
https://phone.gd/phone/317-773-8323
https://phone.gd/phone/317-773-5453
https://phone.gd/phone/317-536-2380
https://phone.gd/phone/949-462-9523
https://phone.gd/phone/949-462-9608
https://phone.gd/phone/951-273-7800
https://phone.gd/phone/919-844-7510
https://phone.gd/phone/631-435-6000
https://phone.gd/phone/408-735-9110
https://phone.gd/phone/408-436-4270
https://phone.gd/phone/905-695-1980
https://phone.gd/phone/905-695-2078

Documents / Resources

MICROCHIP DS00004807F PolarFire Family FPGA Custom Flow [pdf] User Guide
DS00004807F PolarFire Family FPGA Custom Flow, DS00004807F, PolarFire Family FPGA Cu
stom Flow, Family FPGA Custom Flow, Custom Flow, Flow

References

 Empowering Innovation | Microchip Technology

 Empowering Innovation | Microchip Technology

 Design Help and Other Services | Microchip Technology

 Empowering Innovation | Microchip Technology

 Empowering Innovation | Microchip Technology

 Client Support Services | Microchip Technology

User Manual

Manuals+, Privacy Policy

This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos are registered trademarks owned by Bluetooth
SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of these marks on this website does not imply any affiliation with or endorsement.

https://manuals.plus/m/de76051d1c0e2c3a9fc032c44ef5b0e72c243369cd91d71763517aa5a0e9c40e
https://manuals.plus/m/de76051d1c0e2c3a9fc032c44ef5b0e72c243369cd91d71763517aa5a0e9c40e_optim.pdf
http://www.microchip.com
http://www.microchip.com/
http://www.microchip.com/en-us/support/design-help/
https://www.microchip.com
https://www.microchip.com/
https://www.microchip.com/en-us/support/design-help/client-support-services
https://manual.tools/?p=16278692#MTA0LjI4LjIwMi4xNzg7Ozs7
https://manuals.plus/
https://manuals.plus/privacy-policy

	MICROCHIP DS00004807F PolarFire Family FPGA Custom Flow User Guide
	Introduction (Ask a Question)
	Overview (Ask a Question)
	Component Configuration (Ask a Question)
	Constraint Generation (Ask a Question)
	Synthesizing Your Design (Ask a Question)
	Simulating Your Design (Ask a Question)
	Implementing Your Design (Ask a Question)
	Appendix A—Sample SDC Constraints (Ask a Question
	Appendix C—Derive Constraints (Ask a Question)
	Revision History (Ask a Question)
	Documents / Resources
	References

