
☰

Home » MICROCHIP » MICROCHIP CoreFPU Core Floating Point Unit User Guide

Contents [hide]

1 MICROCHIP CoreFPU Core Floating Point Unit

2 Introduction

3 1. Features

4 Functional Description

5 Implementation of CoreFPU in Libero Design Suite

6 Glossary

7 Device Resource Utilization and Performance

8 Revision History

9 Microchip Information

10 Documents / Resources

10.1 References

MICROCHIP CoreFPU Core Floating Point Unit

 Manuals+

https://manuals.plus/
https://manuals.plus/
https://manuals.plus/category/microchip
https://manuals.plus/microchip/corefpu-core-floating-point-unit-manual.pdf

Introduction

The Core Floating Point Unit (CoreFPU) is designed for floating-point arithmetic and

conversion operations, for single and double precision floating-point numbers.

CoreFPU supports fixed-point to floating-point and floating-point to fixed-point

conversions and floating-point addition, subtraction, and multiplication operations. The

IEEE® Standard for Floating-Point Arithmetic (IEEE 754) is a technical standard for

floating-point computation.

Important: CoreFPU supports calculations with normalized numbers only, and only

the Verilog language is supported; VHDL is not supported.

Summary

The following table provides a summary of the CoreFPU characteristics.

Table 1. CoreFPU Characteristics

Core Version This document applies to CoreFPU v3.0.

Supported Devi

ce Families

PolarFire® SoC

PolarFire

RTG4™

Supported Tool

Flow
Requires Libero® SoC v12.6 or later releases.

Licensing CoreFPU is not license locked.

Installation Instr

uctions

CoreFPU must be installed to the IP Catalog of Libero SoC

automatically through the IP Catalog update function. Alternatively,

CoreFPU could be manually downloaded from the catalog. Once th

e IP core is

installed, it is configured, generated and instantiated within SmartD

esign for inclusion in the project.

Device Utilizatio

n and Performa

nce

A summary of utilization and performance information for CoreFPU

is listed in Device Resource Utilization and Performance.

CoreFPU Change Log Information

This section provides a comprehensive overview of the newly incorporated features,

beginning with the most recent release. For more information about the problems

resolved, see the Resolved Issues section.

Version What’s New

v3.0 Implemented additional output flags to enhance the accuracy of the IP

v2.1 Added the double precision feature

v2.0 Updated the timing waveforms

v1.0 First production release of CoreFPU

1. Features

CoreFPU has the following key features:

Supports Single and Double Precision Floating Numbers as per IEEE-754 Standard

Supports Conversions as listed:

Fixed-point to Floating-point conversion

Floating-point to Fixed-point conversion

Supports Arithmetic Operations as listed:

Floating-point addition

Floating-point subtraction

Floating-point multiplication

Provides the Rounding Scheme (Round to nearest even) for the Arithmetic Operations

only

Provides Flags for Overflow, Underflow, Infinity (Positive Infinity, Negative Infinity),

Quiet NaN (QNaN) and Signalling NaN (SNaN) for Floating-Point Numbers.

Supports Fully pipelined implementation of Arithmetic Operations

Provides Provision to configure the Core for Design Requirements

Functional Description

The IEEE Standard for Floating-Point Arithmetic (IEEE 754) is a technical standard for

floating-point computation. The term floating-point refers to the radix point of the

number (decimal point or binary point), which is placed anywhere with respect to the

significant digits of the number.

A floating-point number is typically expressed in the scientific notation, with a fraction

(F), and an exponent (E) of a certain radix (r), in the form of F × r^E. Decimal numbers

use radix of 10 (F × 10^E); while binary numbers use radix of 2 (F × 2^E).

The representation of the floating-point number is not unique. For example, the

number 55.66 is represented as 5.566 × 10^1, 0.5566 × 10^2, 0.05566 × 10^3, and so

on. The fractional part is normalized. In the normalized form, there is only a single

non-zero digit before the radix point. For example, decimal number 123.4567 is

normalized as 1.234567 × 10^2; binary number 1010.1011B is normalized as

1.0101011B × 2^3.

It is important to note that floating-point numbers suffer from loss of precision when

represented with a fixed number of bits (for example, 32-bit or 64-bit). This is because

there are an infinite number of real numbers (even within a small range from 0.0 to

0.1). On the other hand, an

n- bit binary pattern represents a finite 2^n distinct numbers. Hence, not all the real

numbers are represented. The nearest approximation is used instead, which results in

the loss of accuracy.

The single precision floating-point number is represented as follows:

Sign bit: 1-bit

Exponent width: 8 bits

Significand precision: 24 bits (23 bits are explicitly stored)

Figure 2-1. 32-bit Frame

The double precision floating-point number is represented as follows:

Sign bit: 1-bit

Exponent width: 11 bits

Significand precision: 53 bits (52 bits are explicitly stored)

Figure 2-2. 64-bit Frame

The CoreFPU is the top-level integration of the two conversion modules (Fixed to Float

point and Float to Fixed point) and three arithmetic operations (FP ADD, FP SUB, and

FP MULT). The user can configure any one of the operations based on the requirement

so that the resources are utilized for the selected operation.

The following figure shows the top level CoreFPU block diagram with ports.

Figure 2-3. CoreFPU Ports Block Diagram

The following table lists the width of the Input and Output ports. Table 2-1. Input and

Output Port Width

Signal Single Precision Width Double Precision Width

ain [31:0] [63:0]

bin [31:0] [63:0]

aout [31:0] [63:0]

pout [31:0] [63:0]

Fixed-Point to Floating-Point (Conversion)

CoreFPU configured as fixed to floating-point infers the fixed-point to floating-point

conversion module. The input (ain) to CoreFPU is any fixed-point number containing the

integer and fractional bits. The CoreFPU configurator has the options to select the input

integer and fraction widths. The input is valid on di_valid signal and output is valid on

do_valid. The output (aout) of the fixed to float operation is in single or double precision

floating-point format.

Example for fixed-point to floating-point conversion operation is listed in the following

table.

Table 2-2. Example for Fixed-Point to Floating-Point Conversion

Fixed-Point Number Floating-Point Number

ain Integer
Fracti

on
aout

Si

gn

Ex

pon

ent

Mantissa

0x121

53524

(32-bit)

00010010000101010

0110

1010

0100

100

0x461

0a9a9
0

100

011

00

0010000101010011010

1001

0x000

00000

00008

CCC

(64-bit)

000000000000000000

000000000000000000

0000000000001

0001

1001

1001

100

0x3FF

19999

99999

99A

0

011

111

111

11

0001100110011001100

1100110011001100110

01100110011010

Floating-Point to Fixed-Point (Conversion)

CoreFPU configured as floating to fixed-point infers the floating-point to fixed-point

conversion module. The input (ain) to CoreFPU is any single or double precision floating-

point number and produces an output (aout) in fixed-point format containing integer and

fractional bits. The input is valid on di_valid signal and output is valid on do_valid. The

CoreFPU configurator has the options to select the output integer and fraction widths.

Example for floating-point to fixed-point conversion operation is listed in the following

table.

Table 2-3. Example for Floating-Point to Fixed-Point Conversion

Floating-Point Number Fixed-Point Number

ain
Si

gn

Ex

pon

ent

Mantissa aout Integer
Fracti

on

0x41b

d6783

(32-bit

)

0

100

000

11

0111101011001111000

0011

0x000

bd678
00000000000010111

1010

1100

1111

000

0x400

2094c

447c3

0d3

(64-bit

)

0

100

000

000

00

0010000010010100110

0010001000111110000

11000011010011

0x000

00000

00012

095

000000000000000000

000000000000000000

0000000000010

0100

0001

0010

101

Floating-Point Addition (Arithmetic Operation)

CoreFPU configured as FP ADD infers the floating-point addition module. It adds the two

floating-point numbers (ain and bin) and provides the output (pout) in floating-point

format. The input and output are single or double precision floating-point numbers. The

input is valid on di_valid signal and output is valid on do_valid. The core produce ovfl_fg

(Overflow), qnan_fg (Quiet Not a Number), snan_fg (Signalling Not a Number),

pinf_fg(Positive Infinity), and ninf_fg (Negative Infinity) flags based on the addition

operation.

Examples for floating-point addition operation are listed in the following tables.

Table 2-4. Example for Floating-Point Addition Operation (32-bit)

Floating-Point Value
Sig

n
Exponent Mantissa

Floating-point input 1 ain

(0x4e989680)
0 10011101 00110001001011010000000

Floating-point input 2 bin (0x4f19

1b40)
0 10011110 00110010001101101000000

Floating-point addition output

pout (0x4f656680)
0 10011110 11001010110011010000000

Table 2-5. Example for Floating-Point Addition Operation (64-bit)

Floating-Point Value Si

gn

Expone

nt
Mantissa

Floating-point input 1

ain (0x3ff4106ee30c

aa32)

0
0111111

1111

0100000100000110111011100011000011001

010101000110010

Floating-point input 2

bin (0x40020b2a787

98e61)

0
1000000

0000

0010000010110010101001111000011110011

000111001100001

Floating-point additio

n output pout (0x400

c1361e9ffe37a)

0
1000000

0000

1100000100110110000111101001111111111

110001101111010

Floating-Point Subtraction (Arithmetic Operation)

CoreFPU configured as FP SUB infers the floating-point subtraction module. It subtracts

the two floating-point numbers (ain and bin) and provides the output (pout) in floating-

point format. The input and output are single or double precision floating-point numbers.

The input is valid on di_valid signal and output is valid on do_valid. The core produce

ovfl_fg (Overflow), unfl_fg (underflow), qnan_fg (Quiet Not a Number), snan_fg

(Signalling Not a Number), pinf_fg (Positive Infinity), and ninf_fg (Negative Infinity) flags

based on the subtraction operation.

Examples for floating-point subtraction operation are listed in the following tables.

Table 2-6. Example for Floating-Point Subtraction Operation (32-bit)

Floating-Point Value
Sig

n
Exponent Mantissa

Floating-point input 1 ain (0xac854

65f)
1 01011001 00001010100011001011111

Floating-point input 2 bin (0x2f5167

79)
0 01011110 10100010110011101111001

Floating-point subtraction output po

ut (0xaf5591ac)
1 01011110 10101011001000110101011

Floating-Point Value
Si

gn

Expone

nt
Mantissa

Floating-point input 1

ain

(0x405569764adff823)

0
100000

00101

010101101001011101100100101011011111

1111100000100011

Floating-point input 2

bin

(0x4057d04e78dee3fc

)

0
100000

00101

011111010000010011100111100011011110

1110001111111100

Floating-point

subtraction output pou

t

(0xc02336c16ff75ec8)

1
100000

00010

001100110110110000010110111111110111

0101111011001000

Floating-Point Multiplication (Arithmetic Operation)

CoreFPU configured as FP MULT infers the floating-point multiplication module. It

multiplies the two floating-point numbers (ain and bin) and provides the output (pout) in

floating-point format. The input and output are single or double precision floating-point

numbers. The input is valid on di_valid signal and output is valid on do_valid. The core

produce ovfl_fg (Overflow), unfl_fg (Underflow), qnan_fg (Quiet Not a Number), snan_fg

(Signalling Not a Number), pinf_fg (Positive Infinity), and ninf_fg (Negative Infinity) flags

based on the multiplication operation.

Examples for floating-point multiplication operation are listed in the following tables.

Table 2-8. Example for Floating-Point Multiplication Operation (32-bit)

Floating-Point Value
Sig

n
Exponent Mantissa

Floating-point input 1 ain (0x1ec7a7

35)
0

0011110

1
10001111010011100110101

Floating-point input 2 bin (0x6ecf15e

8)
0

1101110

1
10011110001010111101000

Floating-point Multiplication output p

out (0x4e21814a)
0

1001110

0
01000011000000101001010

Floating-Point Value
Si

gn

Expone

nt
Mantissa

Floating-point input 1

ain (0x40c1f5a9930be0

df)

0
100000

01100

000111110101101010011001001100001011

1110000011011111

Floating-point input 2

bin

(0x400a0866c962b501)

0
100000

00000

101000001000011001101100100101100010

1011010100000001

Floating-point multiplica

tion output pout (0x40d

d38a1c3e2cae9)

0
100000

01101

110100111000101000011100001111100010

1100101011101001

 Truth Table for Addition and Subtraction

The following truth tables list the values for addition and subtraction operation. Table 2-

10. Truth Table for Addition

Data A Data B
Sign

Bit Result
Overflo

w

Underflo

w

SN

aN

QN

aN

PI

NF

NI

NF

QNaN/S

NaN
x 0

POSQN

aN
0 0 0 1 0 0

x
QNaN/S

NaN
0

POSQN

aN
0 0 0 1 0 0

zero zero 0
POSZE

RO
0 0 0 0 0 0

zero
posfinite(

y)
0

posfinite

(y)
0 0 0 0 0 0

zero
negfinite(

y)
1

negfinite

(y)
0 0 0 0 0 0

zero
posinfinit

e
0

posinfini

te
0 0 0 0 1 0

zero
neginfinit

e
1

neginfini

te
0 0 0 0 0 1

posfinite(

y)
zero 0

posfinite

(y)
0 0 0 0 0 0

posfinite
posinfinit

e
0

posinfini

te
0 0 0 0 1 0

Table 2-10. Truth Table for Addition (continued)

Data A Data B
Sign

Bit
Result

Overflo

w

Underflo

w

SN

aN

QN

aN

PI

NF

NI

NF

posfinite
neginfinit

e
1

neginfini

te
0 0 0 0 0 1

negfinite(

y)
zero 1

negfinite

(y)
0 0 0 0 0 0

negfinite
posinfinit

e
0

posinfini

te
0 0 0 0 1 0

negfinite
neginfinit

e
1

neginfini

te
0 0 0 0 0 1

posinfinit

e
zero 0

posinfini

te
0 0 0 0 1 0

posinfinit

e
posfinite 0

posinfini

te
0 0 0 0 1 0

posinfinit

e
negfinite 0

posinfini

te
0 0 0 0 1 0

posinfinit

e

posinfinit

e
0

posinfini

te
0 0 0 0 1 0

posinfinit

e

neginfinit

e
0

POSQN

aN
0 0 0 1 0 0

neginfinit

e
zero 1

neginfini

te
0 0 0 0 0 1

neginfinit

e
posfinite 1

neginfini

te
0 0 0 0 0 1

neginfinit

e
negfinite 1

neginfini

te
0 0 0 0 0 1

neginfinit

e

posinfinit

e
0

POSQN

aN
0 0 0 1 0 0

neginfinit

e

neginfinit

e
1

neginfini

te
0 0 0 0 0 1

posfinite posfinite 0 posfinite 0 0 0 0 0 0

posfinite posfinite 0
posinfini

te
0 0 0 0 1 0

posfinite posfinite 0/1 QNaN 0 0 0 1 0 0

posfinite posfinite 0/1 SNaN 0 0 1 0 0 0

posfinite posfinite 0
POSSN

aN
1 0 1 0 0 0

posfinite negfinite 0 posfinite 0 0 0 0 0 0

posfinite negfinite 1 negfinite 0 0 0 0 0 0

posfinite negfinite 0
POSSN

aN
0 1 1 0 0 0

negfinite posfinite 0 posfinite 0 0 0 0 0 0

negfinite posfinite 1 negfinite 0 0 0 0 0 0

negfinite posfinite 0
POSSN

aN
0 1 1 0 0 0

negfinite negfinite 1 negfinite 0 0 0 0 0 0

negfinite negfinite 1
neginfini

te
0 0 0 0 0 1

negfinite negfinite 0/1 QNaN 0 0 0 1 0 0

negfinite negfinite 0/1 SNaN 0 0 1 0 0 0

negfinite negfinite 0
POSSN

aN
1 0 1 0 0 0

Data A Data B
Sign

Bit
Result

Overflo

w

Underflo

w

SN

aN

QN

aN

PI

NF

NI

NF

QNaN/S

NaN
x 0

POSQN

aN
0 0 0 1 0 0

x
QNaN/S

NaN
0

POSQN

aN
0 0 0 1 0 0

zero zero 0
POSZE

RO
0 0 0 0 0 0

zero
posfinite(

y)
1

negfinite

(y)
0 0 0 0 0 0

zero
negfinite(

y)
0

posfinite

(y)
0 0 0 0 0 0

zero
posinfinit

e
1

neginfini

te
0 0 0 0 0 1

zero
neginfinit

e
0

posinfini

te
0 0 0 0 1 0

posfinite(

y)
zero 0

posfinite

(y)
0 0 0 0 0 0

posfinite
posinfinit

e
1

neginfini

te
0 0 0 0 0 1

posfinite
neginfinit

e
0

posinfini

te
0 0 0 0 1 0

negfinite(

y)
zero 1

negfinite

(y)
0 0 0 0 0 0

negfinite
posinfinit

e
1

neginfini

te
0 0 0 0 0 1

Table 2-11. Truth Table for Subtraction (continued)

Data A Data B
Sign

Bit
Result

Overflo

w

Underflo

w

SN

aN

QN

aN

PI

NF

NI

NF

negfinite
neginfinit

e
0

posinfini

te
0 0 0 0 1 0

posinfinit

e
zero 0

posinfini

te
0 0 0 0 1 0

posinfinit

e
posfinite 0

posinfini

te
0 0 0 0 1 0

posinfinit

e
negfinite 0

posinfini

te
0 0 0 0 1 0

posinfinit

e

posinfinit

e
0

POSQN

aN
0 0 0 1 0 0

posinfinit

e

neginfinit

e
0

posinfini

te
0 0 0 0 1 0

neginfinit

e
zero 1

neginfini

te
0 0 0 0 0 1

neginfinit

e
posfinite 1

neginfini

te
0 0 0 0 0 1

neginfinit

e
negfinite 1

neginfini

te
0 0 0 0 0 1

neginfinit

e

posinfinit

e
1

neginfini

te
0 0 0 0 0 1

neginfinit

e

neginfinit

e
0

POSQN

aN
0 0 0 1 0 0

posfinite posfinite 0 posfinite 0 0 0 0 0 0

posfinite posfinite 1 negfinite 0 0 0 0 0 0

posfinite posfinite 0
POSSN

aN
0 1 1 0 0 0

posfinite negfinite 0 posfinite 0 0 0 0 0 0

posfinite negfinite 0
posinfini

te
0 0 0 0 1 0

posfinite negfinite 0/1 QNaN 0 0 0 1 0 0

posfinite negfinite 0/1 SNaN 0 0 1 0 0 0

posfinite negfinite 0
POSSN

aN
1 0 1 0 0 0

negfinite posfinite 1 negfinite 0 0 0 0 0 0

negfinite posfinite 1
neginfini

te
0 0 0 0 0 1

negfinite posfinite 0/1 QNaN 0 0 0 1 0 0

negfinite posfinite 0/1 SNaN 0 0 1 0 0 0

negfinite posfinite 0
POSSN

aN
1 0 1 0 0 0

negfinite negfinite 0 posfinite 0 0 0 0 0 0

negfinite negfinite 1 negfinite 0 0 0 0 0 0

negfinite negfinite 0
POSSN

aN
0 1 1 0 0 0

Important:

They in the preceding tables denotes any number.

The in the preceding tables denotes a don’t care condition.

Truth Table for Multiplication

The following truth table lists the values for multiplication operation.

Table 2-12. Truth Table for Multiplication

Data A Data B
Sign

Bit
Result

Overflo

w

Underflo

w

SN

aN

QN

aN

PI

NF

NI

NF

QNaN/S

NaN
x 0

POSQN

aN
0 0 0 1 0 0

x
QNaN/S

NaN
0

POSQN

aN
0 0 0 1 0 0

zero zero 0
POSZE

RO
0 0 0 0 0 0

zero posfinite 0
POSZE

RO
0 0 0 0 0 0

zero negfinite 0
POSZE

RO
0 0 0 0 0 0

zero
posinfinit

e
0

POSQN

aN
0 0 0 1 0 0

zero
neginfinit

e
0

POSQN

aN
0 0 0 1 0 0

Table 2-12. Truth Table for Multiplication (continued)

Data A Data B
Sign

Bit
Result

Overflo

w

Underflo

w

SN

aN

QN

aN

PI

NF

NI

NF

posfinite zero 0
POSZE

RO 0 0 0 0 0 0

posfinite
posinfinit

e
0

posinfini

te
0 0 0 0 1 0

posfinite
neginfinit

e
1

neginfini

te
0 0 0 0 0 1

negfinite zero 0
POSZE

RO
0 0 0 0 0 0

negfinite
posinfinit

e
1

neginfini

te
0 0 0 0 0 1

negfinite
neginfinit

e
0

posinfini

te
0 0 0 0 1 0

posinfinit

e
zero 0

POSQN

aN
0 0 0 1 0 0

posinfinit

e
posfinite 0

posinfini

te
0 0 0 0 1 0

posinfinit

e
negfinite 1

neginfini

te
0 0 0 0 0 1

posinfinit

e

posinfinit

e
0

posinfini

te
0 0 0 0 1 0

posinfinit

e

neginfinit

e
1

neginfini

te
0 0 0 0 0 1

neginfinit

e
zero 0

POSQN

aN
0 0 0 1 0 0

neginfinit

e posfinite 1
neginfini

te 0 0 0 0 0 1

neginfinit

e
negfinite 0

posinfini

te
0 0 0 0 1 0

neginfinit

e

posinfinit

e
1

neginfini

te
0 0 0 0 0 1

neginfinit

e

neginfinit

e
0

posinfini

te
0 0 0 0 1 0

posfinite posfinite 0 posfinite 0 0 0 0 0 0

posfinite posfinite 0
posinfini

te
0 0 0 0 1 0

posfinite posfinite 0
POSQN

aN
0 0 0 1 0 0

posfinite posfinite 0
POSSN

aN
0 0 1 0 0 0

posfinite posfinite 0
POSSN

aN
1 0 1 0 0 0

posfinite posfinite 0
POSSN

aN
0 1 1 0 0 0

posfinite negfinite 1 negfinite 0 0 0 0 0 0

posfinite negfinite 1
neginfini

te
0 0 0 0 0 1

posfinite negfinite 0
POSQN

aN
0 0 0 1 0 0

posfinite negfinite 0
POSSN

aN
0 0 1 0 0 0

posfinite negfinite 0
POSSN

aN
1 0 1 0 0 0

posfinite negfinite 0
POSSN

aN
0 1 1 0 0 0

negfinite posfinite 1 negfinite 0 0 0 0 0 0

negfinite posfinite 1
neginfini

te
0 0 0 0 0 1

negfinite posfinite 0
POSQN

aN
0 0 0 1 0 0

negfinite posfinite 0
POSSN

aN
0 0 1 0 0 0

negfinite posfinite 0
POSSN

aN
1 0 1 0 0 0

negfinite posfinite 0
POSSN

aN
0 1 1 0 0 0

negfinite negfinite 0 posfinite 0 0 0 0 0 0

negfinite negfinite 0
posinfini

te
0 0 0 0 1 0

negfinite negfinite 0
POSQN

aN
0 0 0 1 0 0

negfinite negfinite 0
POSQN

aN
0 0 1 0 0 0

negfinite negfinite 0
POSQN

aN
1 0 1 0 0 0

negfinite negfinite 0
POSQN

aN
0 1 1 0 0 0

Important:

Sign Bit ‘0’ defines positive output and ‘1’ defines negative output.

The x in the preceding table denotes don’t care condition.

CoreFPU Parameters and Interface Signals

This section discusses the parameters in the CoreFPU Configurator settings and I/O

signals.

Configuration GUI Parameters

There are number of configurable options that apply to the FPU unit as shown in the

following table. If a configuration other than default is required, configuration dialog box

is used to select appropriate values for the configurable option.

Table 3-1. CoreFPU Configuration GUI Parameters

Parameter Na

me
Default Description

Precision Single

Select the operation as required:

Single Precision

Double Precision

Conversion Ty

pe

Fixed-point to Floating-p

oint conversion

Select the operation as required:

Fixed-point to Floating-point conversion

Floating-point to Fixed-point conversion

Floating-point addition

Floating-point subtraction

Floating-point multiplication

Input Fraction

Width1
15

Configures the fractional point in the Input

ain and bin signals

Valid range is 31–1

Output Fractio

n Width2
15

Configures the fractional point in the Outp

ut aout signals

Valid range is 51–1

Important:

1. This parameter is configurable only during fixed-point to floating-point conversion.

2. This parameter is configurable only during floating-point to fixed-point conversion.

Input and Output Signals (Ask a Question)

The following table lists the input and output port signals of CoreFPU.

Table 3-2. Port Description

Signal

Name

Wi

dth

Ty

pe
Description

clk 1
Inp

ut
Main system clock

rstn 1
Inp

ut Active-low asynchronous reset

di_vali

d
1

Inp

ut

Active-high input valid

This signal indicates that the data present on ain[31:0], ain[63:0]

and bin[31:0], bin[63:0] is valid.

ain
32/

64

Inp

ut
A Input Bus (It is used for all operations)

bin1
32/

64

Inp

ut
B Input Bus (It is used for arithmetic operations only)

aout2
32/

64

Ou

tpu

t

Output value when fixed to floating-point or floating to fixed-point

conversion operations are selected.

pout1
32/

64

Ou

tpu

t

Output value when addition, subtraction, or multiplication operati

ons are selected.

Table 3-2. Port Description (continued)

Signal

Name

Wi

dth

Ty

pe
Description

do_vali

d
1

Ou

tpu

t

Active-high signal

This signal indicates that the data present on pout/aout data bus

is valid.

ovfl_fg

3
1

Ou

tpu

t

Active-high signal

This signal indicates the overflow during floating-point operation

s.

unfl_fg 1

Ou

tpu

t

Active-high signal

This Signal indicates the underflow during floating point operatio

ns.

qnan_f

g3
1

Ou

tpu

t

Active-high signal

This signal indicates the Quiet Not a Number (QNaN) during floa

ting-point operations.

snan_f

g
1

Ou

tpu

t

Active-high signal

This signal indicates the Signalling Not-a-Number (SNaN) during

floating point operations.

pinf_fg

3
1

Ou

tpu

t

Active-high signal

This signal indicates the positive infinity during floating-point ope

rations.

ninf_fg 1

Ou

tpu

t

Active-high signal

This signal indicates the negative infinity during floating-point op

erations.

Important:

1. This port is available only for floating-point addition, subtraction, or multiplication

operations.

2. This port is available only for fixed-point to floating-point and floating-point to fixed-

point conversion operations.

3. This port is available for floating-point to fixed-point, floating-point addition, floating-

point subtraction, and floating-point multiplication.

Implementation of CoreFPU in Libero Design Suite

This section describes the implementation of CoreFPU in the Libero Design Suite.

SmartDesign

CoreFPU is available for download in the Libero IP catalog through the web repository.

Once it is listed in the catalog, the core is instantiated using the SmartDesign flow. For

information on using SmartDesign to configure, connect, and generate cores, see Libero

SoC online help.

After configuring and generating the core instance, the basic functionality is simulated

using the testbench supplied with the CoreFPU. The testbench parameters automatically

adjust to the CoreFPU configuration. The CoreFPU is instantiated as a component of a

larger design.

Figure 4-1. SmartDesign CoreFPU Instance for Arithmetic Operations

Figure 4-2. SmartDesign CoreFPU Instance for Conversion Operation

Fixed-Point to Floating-Point Conversion

During fixed-point to floating-point conversion, the Input Fraction Width is configurable.

The Output Width is set to 32-bit for single precision and 64-bit for double precision

floating-point by default.

To convert from fixed-point to floating-point, select Fixed to floating point Conversion

type, as shown in the following figure.

Floating-Point to Fixed-Point

During floating-point to fixed-point conversion, the Output Fractional Width is

configurable, and the Input Width is set to 32-bit for single precision and 64-bit for

double precision floating-point by default.

To convert from floating-point to fixed-point, select Floating point to fixed Conversion

type, as shown in the following figure.

Figure 4-4. CoreFPU Configurator for Floating Point to Fixed

Floating-Point Addition/Subtraction/Multiplication

During floating-point addition, subtraction, and multiplication operation, the Input Fraction

Width and Output Fraction Width are not configurable as these are floating-point

arithmetic operations, and the Input/Output Width is set to 32-bit single precision and 64-

bit for double precision floating-point by default.

The following figure shows the CoreFPU configurator for floating point subtraction

operation.

Figure 4-5. CoreFPU Configurator for Floating Point Subtraction

Simulation (Ask a Question)

To run simulations, in the core configuration window, select User Testbench. After

generating the CoreFPU, the pre-synthesis testbench Hardware Description Language

(HDL) files are installed in Libero.

Simulation Waveforms (Ask a Question)

This section discusses the simulation waveforms for CoreFPU.

The following figures show the waveform of fixed-point to floating-point conversion for

both 32-bit and 64-bit.

System Integration

The following figure shows an example of using the core. In this example, the design

UART is used as a communication channel between the design and the host PC. The

signals ain and bin (each of 32-bit or 64-bit width) are the inputs to the design from

UART. After the CoreFPU receives the di_valid signal, it computes the result. After

computing the result, the do_valid signal goes high and stores the result (aout/pout data)

in the output buffer. This same procedure is applicable for conversion and arithmetic

operations. For conversion operations, only input ain is sufficient whereas for arithmetic

operations, both ain and bin inputs are required. Output aout is enabled for conversion

operations and pout port is enabled for arithmetic operations.

Figure 4-16. Example of the CoreFPU System

1. Synthesis (Ask a Question)

To run synthesis on the CoreFPU, set the design root to the IP component instance

and from the Libero design flow pane, run the Synthesis tool.

Place and Route (Ask a Question)

After the design is synthesized, run the Place-and-Route tool. CoreFPU requires no

special placeand- route settings.

2. User Testbench (Ask a Question)

A user testbench is provided with the CoreFPU IP release. Using this testbench, you

can verify functional behavior of CoreFPU.

A simplified block diagram of the user testbench is shown in the following figure. The

user testbench instantiates the Configured CoreFPU design (UUT), and includes

behavioral test data generator, necessary clock, and reset signals.

Figure 4-17. CoreFPU User Testbench

Important: You have to monitor the output signals in ModelSim simulator, see Simulation

section.

Additional References (Ask a Question)

This section provides a list for additional information.

For updates and additional information about the software, devices, and hardware, visit

the

Intellectual Property pages on the Microchip FPGAs and PLDs website.

1. Known Issues and Workarounds (Ask a Question)

There are no known issues and workarounds for CoreFPU v3.0.

2. Discontinued Features and Devices (Ask a Question)

There are no discontinued features and devices with this IP release.

Glossary

The following are the list of terms and definitions used in the document.

Table 6-1. Terms and Definitions

Term Definition

FPU Floating Point Unit

FP ADD Floating-Point Addition

FP SUB Floating-Point Subtraction

FP MULT Floating-Point Multiplication

Resolved Issues

The following table lists all the resolved issues for the various CoreFPU releases.

Table 7-1. Resolved Issues

Rel

eas

e

Description

3.0

The following is the list of all resolved issues in the v3.0 release:

Case Number: 01420387 and 01422128

Added the rounding scheme logic (round to the nearest even number).

2.1

The following is the list of all resolved issues in the v2.1 release:

The design encounters issues due to the presence of duplicate modules when

multiple cores are instantiated.

Renaming the CoreFPU IP instance results in an “Undefined module” error.

1.0 Initial Release

Device Resource Utilization and Performance

The CoreFPU macro is implemented in the families listed in the following table.

Table 8-1. FPU PolarFire Unit Device Utilization for 32-Bit

FPGA Resources Utilization

Family
4L

UT

DF

F

Tot

al

Math Bloc

k
Device

Percentag

e

Performanc

e

Latenc

y

Fixed-Point to Floating-Point

PolarFir

e®
260

10

4
364 0

MPF30

0T
0.12 310 MHz 3

Floating-Point to Fixed-Point

PolarFir

e
591

10

2
693 0

MPF30

0T
0.23 160 MHz 3

Floating-Point Addition

PolarFir

e

157

5

15

51

312

6
0

MPF30

0T
1.06 340 MHz 16

Floating-Point Subtraction

PolarFir

e

156

1

15

49

311

0
0

MPF30

0T
1.04 345 MHz 16

Floating-Point Multiplication

PolarFir

e
465

84

7

131

2
4

MPF30

0T
0.44 385 MHz 14

FPGA Resources Utilization

Famil

y

4LU

T

DF

F

Tot

al

Math Bloc

k
Device

Percentag

e

Performanc

e

Latenc

y

Fixed-Point to Floating-Point

RTG4

™
264 104 368 0

RT4G1

50
0.24 160 MHz 3

Floating-Point to Fixed-Point

RTG4 439 112 551 0
RT4G1

50
0.36 105 MHz 3

Floating-Point Addition

RTG4
173

3

155

1

328

4
0

RT4G1

50
1.16 195 MHz 16

Floating-Point Subtraction

RTG4
172

9

154

9

325

8
0

RT4G1

50
1.16 190 MHz 16

Floating-Point Multiplication

RTG4 468 847
131

5
4

RT4G1

50
0.87 175 MHz 14

FPGA Resources Utilization

Family
4L

UT

DF

F

Tot

al

Math Bloc

k
Device

Percentag

e

Performanc

e

Latenc

y

Fixed-Point to Floating-Point

PolarFir

e®
638

20

1
849 0

MPF30

0T
0.28 305 MHz 3

Floating-Point to Fixed-Point

PolarFir

e

244

2

20

3

264

5
0

MPF30

0T
0.89 110 MHz 3

Floating-Point Addition

PolarFir

e

514

4

40

28

917

2
0

MPF30

0T
3.06 240 MHz 16

Floating-Point Subtraction

PolarFir

e

515

3

40

26

917

9
0

MPF30

0T
3.06 250 MHz 16

Floating-Point Multiplication

PolarFir

e

116

1

38

18

497

9
16

MPF30

0T
1.66 340 MHz 27

FPGA Resources Utilization

Famil

y

4LU

T

DF

F

Tot

al

Math Bloc

k
Device

Percentag

e

Performanc

e

Latenc

y

Fixed-Point to Floating-Point

RTG4

™
621 201 822 0

RT4G1

50
0.54 140 MHz 3

Floating-Point to Fixed-Point

RTG4
111

4
203

121

5
0

RT4G1

50
0.86 75 MHz 3

Floating-Point Addition

RTG4
494

1

402

8

896

9
0

RT4G1

50
5.9 140 MHz 16

Floating-Point Subtraction

RTG4
519

0

402

6

921

6
0

RT4G1

50
6.07 130 MHz 16

Floating-Point Multiplication

RTG4
116

5

381

8

498

3
16

RT4G1

50
3.28 170 MHz 27

Important: To increase the frequency, select Enable retiming option in synthesis setting.

Revision History

The revision history describes the changes that were implemented in the document. The

changes are listed by revision, starting with the most current publication.

Microchip FPGA Support

Microchip FPGA products group backs its products with various support services,

including Customer Service, Customer Technical Support Center, a website, and

worldwide sales offices. Customers are suggested to visit Microchip online resources

prior to contacting support as it is very likely that their queries have been already

answered.

Contact Technical Support Center through the website at www.microchip.com/support.

Mention the FPGA Device Part number, select appropriate case category, and upload

design files while creating a technical support case.

Contact Customer Service for non-technical product support, such as product pricing,

product upgrades, update information, order status, and authorization.

From North America, call 800.262.1060

From the rest of the world, call 650.318.4460

Fax, from anywhere in the world, 650.318.8044

Microchip Information

Trademarks

The “Microchip” name and logo, the “M” logo, and other names, logos, and brands are

registered and unregistered trademarks of Microchip Technology Incorporated or its

affiliates and/or subsidiaries in the United States and/or other countries (“Microchip

Trademarks”). Information regarding Microchip Trademarks can be found at

https://www.microchip.com/en-us/about/legal-information/microchip-trademarks

ISBN: 979-8-3371-0947-3

Legal Notice

This publication and the information herein may be used only with Microchip products,

including to design, test, and integrate Microchip products with your application. Use of

this information in any other manner violates these terms. Information regarding device

applications is provided only for your convenience and may be superseded by updates.

It is your responsibility to ensure that your application meets with your specifications.

Contact your local Microchip sales office for additional support or, obtain additional

support at www.microchip.com/en-us/support/design-help/client-support-services

THIS INFORMATION IS PROVIDED BY MICROCHIP “AS IS”. MICROCHIP MAKES NO

REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR

IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE

INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF

http://www.microchip.com/support
https://www.microchip.com/en-us/about/legal-information/microchip-trademarks.
http://www.microchip.com/en-us/support/design-help/client-support-services

NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR

PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR

PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL,

PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR

EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS

USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE

POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT

ALLOWED BY LAW, MICROCHIP’S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY

RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT

OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE

INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the

buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip

from any and all damages, claims, suits, or expenses resulting from such use. No

licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property

rights unless otherwise stated.

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip products:

Microchip products meet the specifications contained in their particular Microchip Data

Sheet.

Microchip believes that its family of products is secure when used in the intended

manner, within operating specifications, and under normal conditions.

Microchip values and aggressively protects its intellectual property rights. Attempts to

breach the code protection features of Microchip products are strictly prohibited and

may violate the Digital Millennium Copyright Act.

Neither Microchip nor any other semiconductor manufacturer can guarantee the

security of its code. Code protection does not mean that we are guaranteeing the

product is “unbreakable”. Code protection is constantly evolving. Microchip is

committed to continuously improving the code protection features of our products.

Documents / Resources

MICROCHIP CoreFPU Core Floating Point Unit [pdf] User Guide

v3.0, v2.1, v2.0, v1.0, CoreFPU Core Floating Point Unit, Core Floating P

oint Unit, Floating Point Unit, Point Unit

References

User Manual

MICROCHIP

Core Floating Point Unit, CoreFPU Core Floating Point Unit, Floating Point Unit, MICROCHIP, Point Unit, V1.0, v2.0, V2.1,

V3.0

Leave a comment
Your email address will not be published. Required fields are marked *

Comment *

Name

Email

Website

 Save my name, email, and website in this browser for the next time I comment.

https://manuals.plus/m/92a19b2c1621f6984ff32a3336f53e9bed03cde32c1895ef4574a37093ae1792
https://manuals.plus/m/92a19b2c1621f6984ff32a3336f53e9bed03cde32c1895ef4574a37093ae1792
https://manuals.plus/m/92a19b2c1621f6984ff32a3336f53e9bed03cde32c1895ef4574a37093ae1792_optim.pdf
https://manual.tools/?p=16952765#MTQ4LjExMy4yMTAuMjUwOzY2LjI0OS42Ni4xOTYsIDE3Mi43MS4xOTUuNDMsIDMuMjE3LjIwMC4xOTA7My4yMTcuMjAwLjE5MDs2Ni4yNDkuNjYuMTk2Ow==
https://manuals.plus/category/microchip
https://manuals.plus/tag/core-floating-point-unit
https://manuals.plus/tag/corefpu-core-floating-point-unit
https://manuals.plus/tag/floating-point-unit
https://manuals.plus/tag/microchip
https://manuals.plus/tag/point-unit
https://manuals.plus/tag/v1-0
https://manuals.plus/tag/v2-0
https://manuals.plus/tag/v2-1
https://manuals.plus/tag/v3-0

Search:

e.g. whirlpool wrf535swhz Search

Manuals+ | Upload | Deep Search | Privacy Policy | @manuals.plus | YouTube

This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos

are registered trademarks owned by Bluetooth SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of

these marks on this website does not imply any affiliation with or endorsement.

Post Comment

https://manuals.plus/
https://manuals.plus/upload
https://manuals.plus/deep-search
https://manuals.plus/privacy-policy
https://x.com/manualsplus
https://www.youtube.com/@manualsplus

	MICROCHIP CoreFPU Core Floating Point Unit
	Introduction
	1. Features
	Functional Description
	Implementation of CoreFPU in Libero Design Suite
	Glossary
	Device Resource Utilization and Performance
	Revision History
	Microchip Information
	Documents / Resources
	References

	Leave a comment

