Meskernel Meskernel TC22-700 Laser **Distance Sensor** # Meskernel TC22-700 Laser Distance Sensor User Manual Home » Meskernel TC22-700 Laser Distance Sensor User Manual #### **Contents** - 1 Meskernel TC22-700 Laser Distance Sensor - **2 Product Overview** - **3 Performance Parameters** - **4 TC22-700 Specification Dimensions** - **5 Interface** - **6 Communication protocols** - 7 Documents / Resources - 7.1 References - **8 Related Posts** # Meskernel Meskernel TC22-700 Laser Distance Sensor #### **Performance Parameters** | Model | Parameter Values | |---------------------------|---------------------------| | Lens size | 22mm | | Range | 3-700m @ 70% reflectivity | | Single Max Measuring time | ~1s | # **TC22-700 Specification Dimensions** Figure 3-1 Module overview dimensions: 42.87mm x 22.00mm x21.75mm # **Product Usage Instructions** # **Installation and Setup** Before installing and using the module, please ensure to carefully read the installation and operation section in the user manual to prevent any damage to the module. ## **FAQ** # Q: What is the operating temperature range of the TC22-700 laser distance sensor? A: The operating temperature range is from -10°C to +50°C. #### **Revision of Records** | Version | Revision date | Revisionists | Revisions | | | | | | |---------|---------------|--------------|--|--|--|--|--|--| | R0 | 2021/8/30 | kw | First edition | | | | | | | R1 2 | 2024/6/7 | kw | 1.Optimize the description of product performance parameters | | | | | | | | 2024/0/7 | IVW | 2.Optimized module communication operation in uctions | | | | | | #### **Product Overview** TC XX series laser distance measurement module is the latest generation of outdoor long-distance laser radar module, with strong measurement capability, high measurement accuracy, compact size, light weight, simple installation and operation and other characteristics. #### **Product Features** - Measure distances up to 700m in outdoor sunlight - Resistant to high and low temperatures-10~+50°C; - Compact in size, 43 mm long and 22 mm in diameter; - Light in weight; - UART TTL level outputs the distance value of the measured object, easy to use. - Please read the installation and operation section carefully before installing and using the module to prevent damage to the module. #### **Product number** | Product categ ory | Product number | Light source | Operating temp eratur | Power supply | Communication interf | |-------------------|----------------|--------------|-----------------------|--------------|----------------------------------| | TC22 | TC22-700 | 905nm | -10~50°C | 3.3V | TTL 3.3V, compatible with TTL 5V | # **Performance Parameters** Table 1-1 Performance specifications | Model | Parameter Values | |---------------------------|--| | Lens size | 22mm | | Range | 3-700m@70% reflectivity(1) | | Single Max Measuring time | ~1s | | Absolute accuracy | +/-1m | | Blind Zone | 3m | | Resolution | 0.1m | | Light source | 905nm laser | | Operating voltage | Typical value DC +3.3V operating range +2.5V~+3.5V | | Operating Current | 100mA | | Power consumption | 330mW@3.3V | | Operating temperature | -20~50°C | | Communication interface | UART Default baud rate 115200bps | | Serial port level | TTL 3.3V compatible with TTL 5V | | Dimension | 43*φ22mm | | Weight | ~15 g | Notes (1)Reflectivity of ordinary white wall/white paper is ~70% Focusing on developing stronger,faster,and more accurate laser measurement kernel # **TC22-700 Specification Dimensions** Figure 3-1 Module overview Figure 3-2 Module structure dimensions (unit: mm) # Interface **TC-XX Interface Description** Figure 4-1 Module pins #### **Table 4-1 Pin definitions** | P1/J1 serial number | Name | Function | Functional description | |---------------------|---------|------------------------|--| | 1 | VIN | Power | Input 3~3.3V DC p o w e r s u p p l y , c u r r e n t >300mA+ | | 2 | GND | Power source | Input power supply Communication ground | | 3 | UART RX | Communic ati on input | Serial communication, the serial port receiving pin on the mod ule side is connected to the sending pin on the controller side (compatible with TTL3.3V/TTL5V) | | 4 | UART TX | Communic ati on output | Serial communication, the serial port sending pin on the modul e side is connected to the receiving pin on the controller side (compatible with TTL3.3V/TTL5V) | # **Communication protocols** # Serial port configuration Controlling serial port basic configuration: Baud rate 115200bps Start Bit:1bit Data Bit:8 bits Stop Bit: 1 bit Parity Bit: None Flow Control: None #### **Control Commands** - 1. The communication bitstream of this system uses Little Endian mode. - 2. After accumulating the whole message as a U8 array, take the lower 8 bits as the CRC correction value, please refer to "Appendix 1:CRC Code Stream Calculation & Usage" for detailed usage. #### **Start/Stop Measurement** After starting the measurement, the module continuously measures and returns the measurement data until the specified number of measurements is reached or a stop command is received; see 5.2.2"Measurement Reporting" for the measurement data format. #### **Table5-1Startup Measurements** | Bytes | 0 | 1 | 2 | 3 | 4-5 | 6-7 | 8 | |-------|---------|---------|-------|----------------|---------|----------|------| | Name | MsgType | MsgCode | Brdld | PayLoadLe
n | МеаТуре | MeaTimes | CRC | | Data | 0xFA | 0x01 | 0xXX | 0x04 | 0 xAAAA | 0xBBBB | 0xZZ | - BrdId = 0xXX 0xXX Used to specify the module ID for message reception the default ID of the module is 0, 0xFF means broadcast message - MeaType = 0xAAAA indicates to start the measurement or to stop the measurement, where 1 means to start the measurement and 0 means to stop the measurement. - MeaTimes = 0xBBBB indicates number of times of consecutive measurements,0 means unlimited times and 1 means a single measurement. - Example of starting a single measurement fa 01 ff 04 01 01 00 01 00 00 - Example of starting a continuous measurement fa 01 ff 04 01 00 00 00 00 ff - Stop Measurement Example fa 01 ff 04 00 00 00 00 00 fe #### Measuring reporting After starting the measurement, the module will return the measured value after each measurement is completed (the maximum time for a single measurement is 1.5s) until the specified number of measurements is reached or a measurement stop message is received. Table 5-2 Measurement report message | Bytes | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |-------|---------|---------|-------|----------------|------------------|---|----------|---|------| | Name | MsgType | MsgCode | Brdld | PayLoadLe
n | DataValidIn
d | | Distance | | CRC | | Data | 0xFB | 0x03 | 0 xXX | 0x04 | 0 xAAAA | | 0xBBBB | | 0xZZ | | Unit | | | | | | | dm | | | BrdId = 0xXX Used to indicate the module ID sent DataValidInd = 0xAAAA indicates whether the data is valid or not, 1 indicates that the measurement data is valid, 0 indicates that measurement data is invalid. Distance = 0xBBBB Indicates the measured distance unit is dm Example: Take the message fb 03 00 04 01 00 4c 00 4f as an example | Bytes | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |-------|---------|---------|-------|----------------|------------------|---|---------------|----|------| | Name | MsgType | MsgCode | Brdld | PayLoadLe
n | DataValidIn
d | | n
Distance | | CRC | | Data | 0xFB | 0x03 | 0xXX | 0x04 | 0 xAAAA | | 0xBBE | 3B | 0xZZ | | Case | fb | 03 | 00 | 04 | 0100 | | 4c00 | | 4f | | | | | | | Valid data | | 76dm | | | ## **Setting module parameters** Table 5-4 setting module parameters | Bytes | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |-------|---------|---------|-------|----------------|---------|---|-------|----|------| | Name | MsgType | MsgCode | Brdld | PayLoadLe
n | Туре | | Value | | CRC | | Data | 0xFA | 0x06 | 0xXX | 0x04 | 0 xAAAA | | 0xBBI | ВВ | 0xZZ | BrdId = 0xXX is used to specify the module ID to be received, where 0xFF indicates a broadcast message Type = 0xAAAA parameter type (see Table 5-6 for the parameter types that can be modified) Value = 0xBBBB New setting value (except module ID setting which takes effect immediately, all other parameters take effect after reset) #### Example fa 06 f 04 00 00 00 00 03 Table 5-5 Setting module parameter response | Bytes | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |-------|---------|---------|-------|---------|---------|---|-------|----|------| | Name | MsgType | MsgCode | Brdld | PayLoad | Err | | Туре | | CRC | | Data | 0xFB | 0x07 | 0 xXX | 0x04 | 0 xAAAA | | 0xBBI | ВВ | 0xZZ | - BrdId = 0xXX used to indicate the module ID of the sending. - Err = 0xAAAAIndicates success or failure, where 0 indicates success and non-zero indicates failure - Type = 0xBBBB parameter type see table5-6 for modifiable parameter types - Example fb 07 00 04 00 00 00 00 06 - Table 5-6 Module parameter type | Туре | Name | Default | Range of values | Meaning | |------|-----------|---------|------------------------------------|--| | 0 | Module ID | 0 | 0-254 | The module ID is used in the request message to in dicate the receiving module The module ID is used to indicate the source of the message in a response or escalation message. 3 When the message sender does not care about the module ID of the receiver or wants to broadcast the message, fill in 0xFF for the module ID | | 1 | Baud Rate | 1152 | 9216,1152,
384,192,96,
24,12 | Unit 100bps | #### Read module parameter Table5-7 Module parameter read requests | Bytes | 0 | 1 | 2 | 3 | 4 | 5 | 6 | |-------|---------|---------|-------|------------|---------|---|------| | Name | MsgType | MsgCode | Brdld | PayLoadLen | Туре | | CRC | | Data | 0xFA | 0x01 | 0 xXX | 0x02 | 0 xAAAA | | 0xZZ | - BrdId = 0xXX is used to specify the received module ID, where 0xFF means broadcast message - Type = 0xAAAA parameter type see Table5-6for modifiable parameter types) - Example fa 08 f 02 00 00 03 #### Table 5-8 Module parameter read response | Bytes | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |-------|---------|---------|-------|---------|---------|---|--------|---|------| | Name | MsgType | MsgCode | Brdld | PayLoad | Err | | Туре | | CRC | | Data | 0xFB | 0x09 | 0xXX | 0x04 | 0 xAAAA | | 0xBBBB | | 0xZZ | - BrdId = 0xXX used to indicate the module ID of the sending - Type = 0xAAAA parameter type see Talbe5-6 for modifiable types - Value = 0xBBBB parameter value - Example fb 09 00 04 00 00 00 00 08 #### **Attention** The PTFS-XXX is an optical instrument which operation is affected by environmental conditions. As a result, the range achievable in an application varies, while the range accuracy is not affected by such factors. The following conditions may affect the range. #### **Influencing Factors** #### Factors affecting range | Elements | Working temperature | factors that shorten the measurement range | | | | | |-----------------------|--|--|--|--|--|--| | target surface | Bright and reflective surfaces, such as reflective panels. The light source of the measuring mo dule is redirected at the target. | dull and glossy table, black table,
sponge/fabric and other light-absorbing materi
als. Modular oblique targets | | | | | | airborne
particles | Clean air | Dust, fog, heavy rain, storms | | | | | | sunlight intensity | low-light environments | Beingbrightlyilluminated | | | | | # Reasons affecting the accuracy of measurements #### 1. Surface transparency To avoid measurement errors, do not measure against the surface of transparent objects, such as colorless liquids (e.g. water) or glass (dust-free), and take a test measurement of unfamiliar materials or liquids first. Measurement errors will occur when aiming at a target through a glass window or when there are several target objects in the line of sight. # 2. Damp, high gloss & mirror surfaces When the aiming angle is very small, the laser will be reflected. At this time, the signal received by the device will be too weak and affecting the accuracy or range; when the target is a mirror or other object, the laser signal will be reflected, resulting in a weak signal received by the device, and the distance from the device to the target may not be measured. 3. Inclined surfaces, circular surfaces Measurements can only be made when the target area is large enough to accommodate the laser spot. 4. Multi-path reflection When the laser light returned from other objects exceeds the reflected light from the target, erroneous measurement results may occur. Avoid all kinds of reflectors in the measurement light path. #### safety precautions The following instructions enable the person in charge of the PTFG and the user to be aware in advance of possible hazards in operation and to prevent them. The person in charge of the instrument should ensure that all users read and follow these instructions. If the PTFG is part of a system, the manufacturer of the system must be responsible for all safety-related issues, such as manuals, labeling, and instructions. Instrument use: 1. Permitted purpose: distance measurement 2. Scope of prohibition Using the instrument without following instructions; Modifying or upgrading equipment by destroying safety systems; Removing instructions and hazard symbols; Aim directly at the sun. WARNING: Prohibited methods of use may result in injury, instrument failure and damage if used. It is the responsibility of the person in of the instrument to inform the user of the dangers and how to prevent them. Do not operate the PTFG until you know how to use it. PTFG in conditions suitable for human survival. Do not use in flammable or explosive environments. #### Scope of responsibility Responsibility of the original equipment manufacturer: Provide the product, including this manual, software and original accessories, in a completely safe condition. #### Significant use hazards WARNING: Do not point the PTFG laser directly at the sun, as this may damage the instrument; do not point the PTFG laser directly at the human eye, as this may cause damage to the human eye. Appendix 1:CRC Code Stream Calculation & Usage Taking a single measurement message as an example, the message code stream is fa 01 f 04 01 00 01 00 00 - 1. Totalize the whole message by U8 array: 0xfa + 0x01 + 0xf + 0x04 + 0x01 + 0x00 + 0x01 + 0x00 = 0x200 - 2. Take the lower 8 bits of the accumulated value as the CRC value i.e. 0x00 Unity focus] integrity I progress together to a læ&r in the field of laser &tætim! Chengdu Meskernel Integrated Technology Co. Ltd #### **Documents / Resources** Meskernel TC22-700 Laser Distance Sensor [pdf] User Manual TC22-700, TCXX, TC22-700 Laser Distance Sensor, TC22-700, Laser Distance Sensor, Distance Sensor, Sensor #### References User Manual Manuals+, Privacy Policy This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of these marks on this website does not imply any affiliation with or endorsement.