

MEAN WELL RSD-100D Series 100W Railway Single Output DC-DC Converter Owner's Manual

Home » MEAN WELL » MEAN WELL RSD-100D Series 100W Railway Single Output DC-DC Converter Owner's Manual ™

100W Railway Single Output DC-DC Converter RSD-100 series

Features:

- Compliance to BS EN/EN50155 and BS EN/EN45545-2 railway standard
- 2:1 wide input range
- Protections: Short circuit / Overload / Over voltage /Input reverse polarity
- 4000VDC I/O isolation
- · Cooling by free air convection
- · Half encapsulated
- Built-in constant current limiting circuit
- 1U low profile 36mm
- All using 105°C long life electrolytic capacitors
- · LED indicator for power on
- 100% full load burn-in test
- 3 years warranty

Contents

- 1 GTIN CODE
- **2 SPECIFICATION**
- 3 Mechanical

Specification

- 4 Block Diagram
- **5 Overload Protection**
- 6 Documents / Resources

GTIN CODE

MW Search: https://www.meanwell.com/serviceGTIN.aspx

SPECIFICATION

MODEL		RSD•1 00B-5	RSD•1 00B•12	RSD•1 00B-2 4	RSD•1 00C•5	RSD-1 00C-1 2	RSD-1 00C•2 4	RSD•1 00D•5	RSD•1 00D•1 2	RSD•1 00D•2 4
	DC VOLTAGE	5V	12V	24V	5V	12V	24V	5V	12V	24V
	RATED CURREN T	20A	8.4A	4.2A	20A	8.4A	4.2A	20A	8.4A	4.2A
	CURRENT RANGE	0 – 20 A	0 – 8.4 A	0 – 4.2 A	0 – 20 A	0 – 8.4 A	0 – 4.2 A	0 – 20 A	0 – 8.4 A	0 – 4.2 A
	RATED POWER	100W	100.8 W	100.8 W	100W	100.8 W	100.8 W	100W	100.8 W	100.8 W
	RIPPLE & NOISE (max.) Note/	100mV p-p	120mV p-p	150mV p-p	100mV p-p	120mV p-p	150mV p-p	100mV p-p	120mV p-p	150mV p-p
OUTP UT	VOLTAGE TOLER ANCE Note.3	±2.0%	±2.0%	±2.0%	±2.0%	±2.0%	±2.0%	±2.0%	±2.0%	±2.0%

ON	EGULATI EGULATI	±0.5%	±0.3%	±0.2%	±0.5%	±0.3%	±0.2%	±0.5%	±0.2%	±0.2%	
	EGULATI								1		
		±1.0%	±1.0%	±1.0%	±1.0%	±1.0%	±1.0%	±1.0%	±1.0%	±1.0%	
SETUP, RISE TI ME		800ms, 50ms at full load									
HOLD L Typ.)	JP TIME (Please refer o page 3 Hold up Time(Load de-rating curve)									
VOLT AGE	CONTIN UOUS	16.8 – 31.2VDC			33.6 – 62.4VDC			67.2 – 143VDC			
E E	1 SEC.	14.4 – 3	14.4 – 33.6VDC 28.8 – 67.2VDC					57.6 – 154VDC			
EFFICIENCY (Typ		88%	89%	89%	89%	91%	91%	89.5% 9)1%	90%	
DC CURRENT (T yp.)		4.8N24 V	4.8/V2 4V	4.8N24 V	2.4N48 V	2.4A/4 8V	2.4N48 V	1.2A/1 10V	1 1.2A/ 110V	1.2N11 0V	
INRUSH CURRE NT (Typ.)		30A/24VDC			30A/48VDC		30A/110VDC				
INTERRUPTION OF VOLTAGE SU PPLY		EN50155:2007-BIC- type comply with S1 level § full load, comply with S2 level § 7 0% load; 0-type comply with 52 level @full load									
		EN50155:2017-Comply with S1 level									
		105 -135% rated output power									
OVERLO	OAD	Protection type: Constant current limiting, recovers automatically after fault condition Is removed									
OVER VOLTAGE		5.75 – TV	1 13.8 - 16.2 V1	27.6 – 32.4V1 5.75	- 7V			5.75 – 7V	1 13.8 - 16.2 V1	27.6 – 32.4V	
		Protection type : Shut down ofp voltage, re-power on to recover									
WORKI	NG TEMP	-40 - +55t (no derating); +70°C § 60% load by free air convection; +70t no derating with external base plate, TX class compliance									
WORKI DITY	NG HUMI	5 – 95% RH non-condensing									
STORA	GE TEMP.	-40 – +85t									
TEMP. (ENT	COEFFICI	±0.03%/'C (0 – 50'C)									
VIBRAT	ION	10 – 500Hz, 5G 10minitcycle, 60min. each along X, Y, Z axes; Mounting: complete to IEC61373						complia			
OPERATUDE	TING ALTI	5000 me	eters								
	/ STAND	IEC 62368-1. UL 62368-1. AS/NZS 62368-1, EAC TP TC 004 approved. Design r efer to BS EN/EN62368-1									
	Typ.) VOLT AGE RANG E EFFICIE .) DC CUF yp.) INTERF OF VOL PPLY OVERLO WORKII . WORKII . WORKII DITY STORAG TEMP. G ENT VIBRAT OPERA	VOLT AGE RANG E 1 SEC. EFFICIENCY (Typ.) DC CURRENT (Typ.) INRUSH CURRENT (Typ.) INTERRUPTION OF VOLTAGE SUPPLY OVERLOAD OVER VOLTAGE WORKING TEMP WORKING HUMI DITY STORAGE TEMP. TEMP. COEFFICIENT VIBRATION OPERATING ALTI	Typ.) Please reservables VOLT AGE RANG RANG E 1 SEC. 14.4 – 33 EFFICIENCY (Typ ASSW) 88% 1 SEC. 14.4 – 33 DC CURRENT (T ASSW) 4.8N24 V V INRUSH CURRE NT (Typ.) 30A/24V 30A/24V INTERRUPTION OF VOLTAGE SUPLY EN5015 0% load OVERLOAD Protection 105 - 135 OVERLOAD Protection 5.75 – TV WORKING TEMP -40 – +5 10 mg with 6 WORKING HUMI DITY 5 – 95% STORAGE TEMP. -40 – +8 TEMP. COEFFICI ENT ±0.03%/ENT VIBRATION 10 – 500 OPERATING ALTI 5000 me	Typ.) VOLT AGE RANG E	Typ. Please refer o page 3 Hold	Typ.) Please refer o page 3 Hold up Time(NOLT CONTIN 16.8 - 31.2VDC 33.6 - 6	Typ. Please refer o page 3 Hold up Time(Load de Coad de C	Prease refer o page 3 Hold up Timet Load de-rating cut VOLT AGE RANG E	Typ. Please refer o page 3 Hold UP Time(Load de-rating curve)	Typ. Please fell o page 3 Hold up 1 lime (Load de-fating curve)	

SAFE	WITHSTAND VO LTAGE	11P-0/13:4KVDC I/P-FG:2.5KVDC O!P-FG:2.5KVDC					
TY & EMC (ISOLATION RESI STANCE	UP-0/P, I/P-FG, O/P-FG:100M Ohms! 500VDC I25-C/ 70% RH					
Note 5)	EMC EMISSION	Compliance to BS EWEN55032 (CISPR32) Conduction Emission: Class A, Radiat ion Emission: Class 6, EAC TP TC 020					
	EMC IMMUNITY	Compliance to BS EN/EN61000-4-2.3,4,5,6,8, BS EN/EN55035. light industry lev el, EAC TP TC 020					
	RAILWAY STAND ARD	BS EWEN50155 / IEC60571 including IEC61373 for shock & vibration, BS ENIEN 50121-3-2 for EMC; BS EWEN45545-2 for fire protection					
OTHE	MTBF	2446.2K hrs min. Telcordia SR-332 (Bell core) :254.2K hrs min. MIL-HDBK-217F (25C)					
RS	DIMENSION	161'68'36mm (12W*1-1)					
	PACKING	0.563Kg; 24pcs/14.5Kg10.91CUFT					
NOTE	1.All parameters NOT special y mentioned are measured at 24.48.110VDC input, rated load and 25t: of ambient temperature. 2.Ripple & noise are measured at 20MHz of bandwidth by using a 12" twisted pair-wire terminated with a 0.1 uf & 47u1 parallel capacitor. 3.Tolerance: includes set up tolerance, line regulation and load regulation. 4.Strongly recommended that external output capacitance should not exceed 5000uF. (Only for: RSD-100-5 / -12) 5.The power supply is considered a component which will be installed into a final equipment All the EMC tests are been executed by mounting the unit on a 360mm*360mm metal plate with 1mm of thicknes s. The final equipment must be re-confirmed that it sill meets EMC directives. For guidance on how to perform these EMC tests. please refer to "EMI testing of component power supplies: (as available on http://www.meanwell.com) 6.The ambient temperature derating of 3.5C/1000m with finless models and of 5C/1000m with fan models for operating altitude higher than 2000m(650040. ,I)., Product Liability Disclaimer: For detailed						

Mechanical Specification

• tc : Max. Case Temperature

Input Terminal Pin No. Assignment:

Pin No.	Assignment	
1	DC INPUT V+	
2	DC INPUT V-	
3	FG ≟	

Output Terminal Pin No. Assignment:

Pin No.	Assignment
1	DC OUTPUT -V
2	DC OUTPUT +V

Block Diagram

fosc: 130KHz

Input Fuse

There is one fuse connected in series to the positive input line, which is used to protect against abnormal surge. Fuse specifications of each model are shown as below.

Туре	Fuse Type	Reference and Rating
В	Time-Lag	Conquer UDA-A, 10A, 250V
С	Time-Lag	Conquer UDA-A, 5A, 250V
D	Time-Lag	Conquer UDA-A, 3.15A, 250V

Input Reverse Polarity Protection

There is a MOSFET connected in series to the negative input line. If the input polarity is connected reversely, the MOSFET opens and there will be no output to protect the unit.

Input Range and Transient Ability

The series has a wide range input capability. Within 30% of rated input voltage, it can be executed at full-load operation and operate properly; with± 40% of rated input voltage, it can withstand that for 1 second.

Input Under-Voltage Protection

If input voltage drops below Vipin, the internal control IC shuts down and there is no output voltage. It recovers automatically when input voltage reaches above Vipin, please refer to the curve below.

Inrush Current

Inrush current is suppressed by a resistor during the initial start-up, and then the resistor is bypassed by a MOSFET to reduce power consumption after accomplishing the start-up.

Hold-up Time

EN50155: 2007 version -

D type is in compliance with S2 level, while B and C types are in compliance with S1 level at full load output condition. To fulfil the requirements of S2 level, B and C types require de-rating their output load to 70%, please refer to the curve diagrams below.

This function is optional, which the standard product does not have it. If you do need the function, please contact MW for details.

Efficiency vs Load & Vin Curve

The efficiency vs load & Vin curves of each model are shown as below.

Parallel and Series Connection

A. Operation in Parallel

Since RSD-100 series don't have built-in parallel circuit, it can only use external circuits to achieve the redundant operation but not increase the current rating.

 Add a diode at the positive-output of each power supply (as shown as below), the current rating of the diode should be larger than the maximum output current rating and attached to a suitable heat sink. This is only for redundant use (increase the reliability of the system) and users have to check suitability of the circuit by themselves.

2. When using S.P.S. in parallel connection, the leakage current will increase at the same time. This could pose as a shock hazard for the user. So please contact the supplier if you have this kind of application.

B. Operation in Series

RSD-100 can be operated in series. Here are the methods of doing it:

1. Positive and negative terminals are connected as shown as below. According to the connection, you can get the positive and negative output voltages for your loads.

2. Increase the output voltage (current does not change). Because RSD-100 series have no reverse blocking diode in the unit, you should add an external blocking diode to prevent the damage of every unit while starting up. The voltage rating of the external diode should be larger than V1+V2 (as shown as below).

Overload Protection

If the output draw up to 105~135% of its output power rating, the converter will go into overload protection which is constant current mode. After the faulty condition is removed, it will recover automatically. Please refer to the diagram below for the detail operation characteristic. Please note that it's not suitable to operate within the overload region continuously, or it may cause to over temperature and reduce the life of the power supply unit or even damage it.

Over Voltage Protection

The converter shuts off to protect itself when the output voltage drawn exceeds 115~140% of its output rating. It must be repowered on to recover.

LED Indicator

Equipped with a built-in LED indicator, the converter provides an easy way for users to check its condition through the LED indicator.

Green: normal operation; No signal: no power or failure.

Derating Curve

a. Single unit operation

If the unit has no iron plate mounted on its bottom, the maximum ambient temperature for the unit will be 55 as operating under full load condition. It requires °C de-rating output current when ambient temperature is between 55-70 °C

, please refer to the de-rating curve as below.

Suitable installation methods are shown as below. Since RSD-100 is a semi-potted model, its thermal performances for the following installation methods are similar and share the same derating curve.

b. Operate with additional iron plate

If it is necessary to fulfil the requirements of EN50155 TX level that operate the unit fully-loaded at 70°C , RSD-100 series must be installed onto an iron plate on the bottom. The size of the suggested iron plate is shown as below. In order for optimal thermal performance, the iron plate must have an even & smooth surface and RSD-100 series must be firmly mounted at the center of the iron plate.

The load vs ambient temperature curve is shown as below.

Suitable installation methods are shown as below. Since RSD-100 is a semi-potted model, its thermal performances for the following installation methods are similar and share the same derating curve.

Immunity to Environmental Conditions

Test method	Standard	Test conditions	Status
Cooling Test	EN 50155 section 12.2.3 (Column 2, C lass TX) EN 60068-2-1	Temperature: -40`C Dwell Time: 2 hrs/cycle	No dama ge
Dry Heat Test	EN 50155 section 12.2.4 (Column 2, C lass TX) EN 50155 section 12.2.4 (Column 3, C lass TX & Column 4, Class TX) EN 60 068-2-2	Temperature: 70°C 1 zest Duration: 6 hrs! 10min	PASS
Damp Heat Test, Cyclic	EN 50155 section 12.2.5 EN 60068-2-30	Temperature: 25°C-55°C Humidity: 90 %-100% RH Duration: 48 hrs	PASS
Vibration Test	EN 50155 section 12.2.11 EN 61373	Temperature: 19°C Humidity: 65% Duration: 10 mins	PASS
Increased Vibrati on Test	EN 50155 section 12.2.11 EN 61373	Temperature: 19 C Humidity: 65% Dur ation: 5 hrs	PASS
Shock Test	EN 50155 section 12.2.11 EN 61373	Temperature: 21 ± St Humidity: 65 ± 5 % Duration: 30ms'18	PASS
Low Temperature Storage Test	EN 50155 section 12.2.3 (Column 2, C lass TX) EN 60068-2-1	Temperature: -40`C Dwell Time: 16 hrs	PASS
Salt Mist Test	EN 50155 section 12.2.10 (Class ST4)	Temperature: 35°C ±2t Duration: 96 hr s	PASS

EN45545-2 Fire Test Conditions

Test Items			Hazard Level			
Items		Standard	HL1	HL2	HL3	
	Oxygen index test	EN 45545-2:2013 EN ISO 4589-2:1 996	PASS	PASS	PASS	
R22	Smoke density test	EN 45545-2:2013 EN ISO 5659-2:2 006	PASS	PASS	PASS	
	Smoke toxicity test	EN 45545-2:2013 NF X70-100:2006	PASS	PASS	PASS	
R24	Oxygen index test	EN 45545-2:2013 EN ISO 4589-2:1 996	PASS	PASS	PASS	
R25	Glow-wire test	EN 45545-2:2013 EN 60695-2-11:2 000	PASS	PASS	PASS	
R26	Vertical flame test	EN 45545-2:2013 EN 60695-11:200	PASS	PASS	PASS	

https://www.meanwell.com/Upload/PDF/DC-DC_EN.pdf

Documents / Resources

MEAN WELL RSD-100D Series 100W Railway Single Output DC-DC Converter [pdf] Owner 's Manual

RSD-100D Series 100W Railway Single Output DC-DC Converter, RSD-100D Series, 100W R ailway Single Output DC-DC Converter, Single Output DC-DC Converter, Output DC-DC Converter, DC-DC Converter, Converter

Manuals+,