

MEAN WELL HSP-300 Series 300W Single Output with PFC **Function Owner's Manual**

Home » MEAN WELL » MEAN WELL HSP-300 Series 300W Single Output with PFC Function Owner's Manual

300W Single Output with PFC Function **HSP-300** series

https://www.meanwell.com/Upload/PDF/Enclosed Type EN.pdf

Contents

- 1 Features:
- **2 GTIN CODE**
- **3 SPECIFICATION**
- 4 Mechanical
- **Specification**
- **5 Block Diagram**
- **6 Derating Curve**
- **7 Static Characteristics**
- 8 Installation
- 9 Documents / Resources
 - 9.1 References

Features:

- Universal AC input / Full range
- Withstand 300VAC surge input for 5 seconds
- Built-in active PFC function
- · Low leakage current<imA
- Protections: Short circuit / Overload / Over voltage / Over temperature
- Cooling by free air convection
- · Low profile:31mm
- · Conformal coated
- LED indicator for power on
- Suitable for high efficiency moving sign applications
- 3 years warranty

GTIN CODE

MW Search: https://www.meanwell.com/serviceGTIN.aspx

SPECIFICATION

MODEL		HSP-300-2.8	HSP-300-4.2	HSP-300.5
OUTP UT	DC VOLTAGE	2.8V	4.2V	5V
	RATED CURRENT	60A	60A	60A
	CURRENT RANG E Note.5	0 – 60A	0 – 60A	0 – 60A
	RATED POWER(c onvection)	168W	252W	300W
	RIPPLE & NOISE (max.) Note.2	110mVp-p	150mVp-p	150mVp-p
	VOLTAGE ADJ. R ANGE	2.5-3V	3.6-4.4V	4.5-5.5V
	VOLTAGE TOLER ANCE Note.3	±2.0%	±2.0%	±2.0%
	LINE REGULATIO N	±0.5%	±0.5%	±0.5%
	LOAD REGULATI ON	±1.0%	±1.0%	±1.0%
	SETUP, RISE TIM E	2000ms, 100ms/230VAC 3000ms, 100ms/115VAC at full load		
	HOLD UP TIME (T yp.)	8ms/230VAC 8ms/115VAC at full load		
INPUT	VOLTAGE RANGE Note.4	180 – 264VAC 254 – 370VDC or 90-135VAC 127-190VDC		
	FREQUENCY RA NGE	47 – 63Hz		
	POWER FACTOR (Typ.)	PF:-0.93/230VAC PF .10.98/115VAC at full load		
	EFFICIENCY (Typ.)	80%	85%	87%
	AC CURRENT (Ty p.)	2.8A/115VAC 1.4A/230V AC	3.9A/115VAC 1.95A/230 VAC	4.7A/115VAC 2.35A/230VAC
	INRUSH CURRENT (Typ.)	Cold start 30A/115VAC 60A/230VAC		
	LEAKAGE CURR ENT	<1mA/ 240VAC		

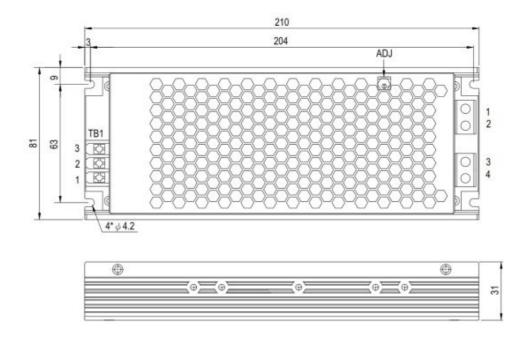
	OVERLOAD	105-150% rated output power			
PROT ECTIO N		Protection type : Hiccup mode, recovers automatically after fault condition is rem oved			
	SHORT CIRCUIT	Protection type: Hiccup mode, recovers automatically after fault condition is removed			
	OVER VOLTAGE	3.22 – 3.78V	14.6 – 5.4V 15.7	- 7.0V	
		Protection type : Shut down olp voltage, re power on to recover			
	OVER TEMPERAT URE	Shut down o/p voltage, recovers automatically after fault condition is removed			
	WORKING TEMP.	-30 - +70-C (Refer to "Derating Curve)			
ENVIR ONME NT	WORKING HUMI DITY	20 -90% RH non-condensing			
	STORAGE TEMP., HUMIDITY	-40 - +85 C, 10 - 95% RH			
	TEMP. COEFFICI ENT	10.03%/C (0 – 60 C)			
	VIBRATION	10 – 500Hz, 2G 10min./1cycle, 60min. each along X, Y, Z axes			
SAFET Y & EMC (Note 5)	SAFETY STANDA RDS	UL60950-1,IEC62368-1,GB 4943.1,EAC TP TC 004,TUV BS EN/EN 62368-1 ap proved			
	WITHSTAND VOL TAGE	I/P-0/P:3.0KVAC I/P-FG:2.0KVAC 0/P-FG:0.5KVAC			
	ISOLATION RESI STANCE	I/P-0/P, I/P-FG, 0/P-FG:100M Ohms/500VDC/25 C170%RH			
	EMC EMISSION	Compliance to BS EN/EN55032 (CISPR32),GB17625.1,GB/T 9254.1,Class B, B S EN/EN61000-3-2,-3, EAC TP TC 020			
	EMC IMMUNITY	Compliance to BS EN/EN61000-4-2,3,4,5,6,8,11;BS EN/EN55035, light industry level (surge 4KV), EAC TP TC 020			
	MTBF	1277.1K hrs min. Telcordia SR-332(Bellcore) ;148.2K hrs min. MIL-HDBK-217F (25°C)			
	DIMENSION	210'81'31mm (L'W'H)			
	PACKING	0.8kg; 15pcs/ 12.1kg/ 0.7CUFT			

OTHE RS

- 1. All parameters NOT specially mentioned are measured at 230VAC input, rated load and 25°C of ambient temperature.
- 2. Ripple & noise are measured at 20MHz of bandwidth by using a 12" twisted pair-wire terminated wit h a 0.1uf & 47uf parallel capacitor.
- 3. Tolerance: includes set up tolerance, line regulation and load regulation.
- 4. Derating may be needed under low input voltages. Please check the static characteristics for more details.

NOTE

- 5. Please refer to "Static Characteristics".
- 6. The power supply is considered a component which will be installed into a final equipment. All the E MC tests are been executed by mounting the unit on A450mm* 450mm metal plate with 1mm of thickn ess. The final equipment must be re-confirmed that it still meets EMC directives.

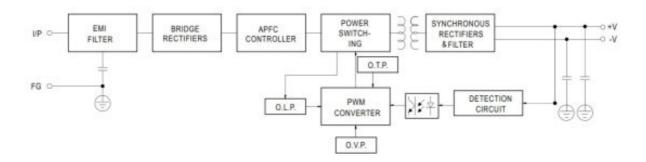

For guidance on how to

perform these EMC tests, please refer to "EMI testing of component power supplies." (as available on https://www.meanwell.com//Upload/PDF/EMI_statement_en.pdf)

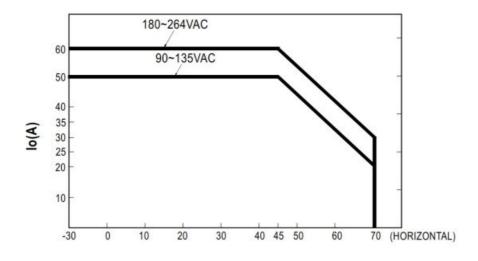
* Product Liability Disclaimer For detailed information, please refer to https://www.meanwell.com/serviceDisclaimer.aspx

Mechanical Specification

CASE NO.: 233B Unit:mm Tolerance:±1

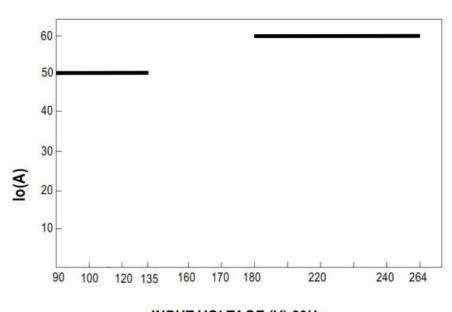

AC Input Terminal(TB1) pin NO. Assignment

Pin No.	Assignment	Terminal
1	AC/L	
2	AC/N	DG28C-B-03P-13-00AH
3		


DC Output Terminal pin NO. Assignment

Pin No.	Assignment	Terminal
1,2	+V	NEL-400-02P
3,4	-V	1422 400 021

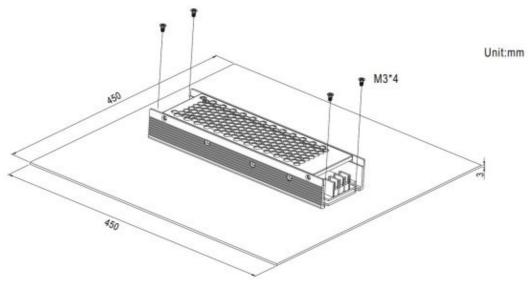
Block Diagram



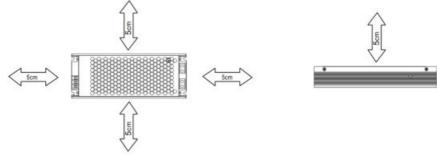
Derating Curve

AMBIENT TEMPERATURE (°C)

Static Characteristics



INPUT VOLTAGE (V) 60Hz


Installation

1. Operate with additional aluminum plate

In order to meet the Derating Curve and the "Static Characteristics", HSP-300 series must be installed onto an aluminum plate (or the cabinet of the same size) on the bottom. The size of the suggested aluminum plate is shown as below. And for optimizing thermal performance, the aluminum plate must have an even and smooth surface (or coated with thermal grease), and HSP-300 series must be firmly mounted at the center of the aluminum plate.

2. For heat dissipation, at least 5cm installation distance around the PSU should be kept, shown as below:

File Name: HSP-300-SPEC 2024-10-16

Downloaded from Arrow.com.

Documents / Resources

MEAN WELL HSP-300 Series 300W Single Output with PFC Function [pdf] Owner's Manual HSP-300-2.8, HSP-300-4.2, HSP-300-5, HSP-300 Series 300W Single Output with PFC Function, HSP-300 Series, 300W Single Output with PFC Function, P FC Function

References

User Manual

This website is an independent publication and is neither affiliated with nor endorsed by any of the trademark owners. The "Bluetooth®" word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. The "Wi-Fi®" word mark and logos are registered trademarks owned by the Wi-Fi Alliance. Any use of these marks on this website does not imply any affiliation with or endorsement.