

MAXLINEAR XR77103-A0R5 Universal PMIC 3 Output Buck **Regulator User Manual**

Home » MAXLINEAR » MAXLINEAR XR77103-A0R5 Universal PMIC 3 Output Buck Regulator User Manual 🖺

Contents

- 1 MAXLINEAR XR77103-A0R5 Universal PMIC 3 Output Buck Regulator
- 2 Introduction
- **3 Evaluation Board Overview**
- 4 I/O and Test Points
- 5 Documents / Resources
 - **5.1 References**
- **6 Related Posts**

MAXLINEAR XR77103-A0R5 Universal PMIC 3 Output Buck Regulator

Introduction

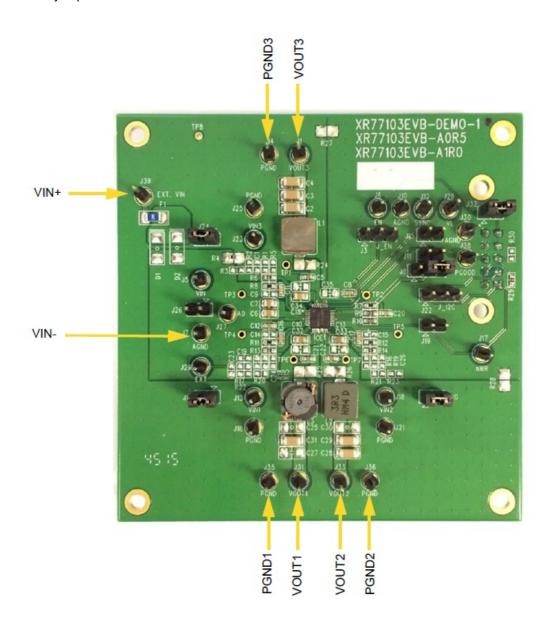
The XR77103-A0R5 evaluation board provides a platform to evaluate the features and performance of the XR77103-A0R5 Universal PMIC 3 Output Buck Regulator. The XR77103-A0R5 output voltages are set via an external resistor divider down to 0.8V with a 4.5V to 14V input voltage range, and it is packaged in a 4mm x 4mm TQFN.

Quick EVB Set Up and Start-Up Factory Settings

The evaluation board has been set up with the following factory default configuration for quick set up and operation:

- VIN = 5.5V to 14V, optimized for a 12V input rail.
- · Maximum IOUT per channel is 2A.
- 500kHz Switching frequency.
- Two channels may be paralleled for output currents up to 5A peak and 4A steady state (however additional hardware modification is required for parallel operation).
- Low power spectral density (PSM) mode operation enabled.

Quick Start Up


To quickly see the regulator in operation:

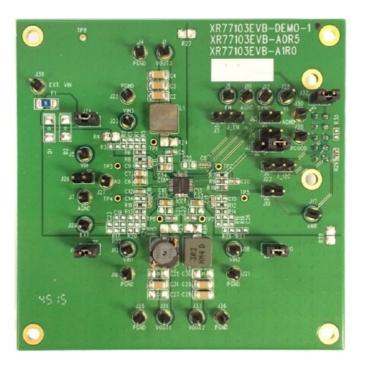

- 1. 1. Use the factory settings and default configuration. If other settings or components are desired, apply them before the next steps. For more information, see
 - "System Set-Up" on page 5 for more.
- 2. Connect a turned-off power supply that is within the above VIN specification (from 5.5V to 14V, 12V typical) to VIN+ and VIN- with short and thick leads. Use test pins EXT. VIN (J39) and AGND (J7) to connect and monitor VIN+ and VIN- respectively. See locations in Figure 1 on page 2.
- 3. Initially set to 0A, connect electronic loads to each desired channel that will be no more than the maximum IOUT (2A) to VOUTx and PGNDx (where x = the channel number) with short and thick leads. Use test pins in Table 1 on page 1 to connect and monitor VOUTx and PGNDx respectively. See locations in Figure 1 on page 2. For all channels with the electronic load connected, ensure that the respective VIN jumper is installed per Table 1 on page 1.
- 4. Turn on the 12V power supply and check VOUT. The EVB powers up and regulates the enabled outputs at 3.3V (Ch1), 1.8V (Ch2) and 1.2V (Ch3) (factory default settings). PGOOD is asserted active high once sequencing is done, outputs are in regulation, and reset timer expires.
- 5. Set or vary the load (do not exceed the maximum IOUT) and check VOUT and other desired performance levels such as regulation and efficiency. For more information about monitoring, see "I/O and Test Points" on page 4.

Table 1: Jumper Connections for VIN, VOUT and PGND

Channel	VI (1) N	VOUT	PGND
1	J14	VOUT1, J31	PGND1, J35
2	J20	VOUT2, J33	PGND2, J36
3	J24	VOUT3, J1	PGND3, J4

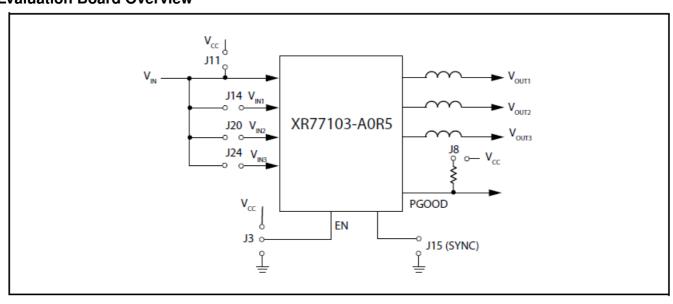
1. Factory default: jumpers installed.

Reference Documentation

For additional information, refer to the XR77103-A0R5 data sheet, including a full list of IC features, pinout, pin descriptions, typical performance characteristics, and external component calculations.

Ordering Information

Table 2: Evaluation Board Ordering Part Number


Evaluation Board	Board Description
XR77103EVB-A0R5	XR77103-A0R5 evaluation board.

This manual provides the EVB schematics ("XR77103EVB-A0R5 Schematic" on page 7), the PCB layout ("XR77103EVB-A0R5 Schematic" on page 7) and the bill of materials ("XR77103EVB-A0R5 Bill of Materials" on page 10) that you can use on your board design.

For more information about the schematics, go to www.maxlinear.com/XR77103-A0R5.

Note: For the most up-to-date information, go to www.maxlinear.com/XR77103-A0R5.

Evaluation Board Overview

The XR77103-A0R5 EVB block diagram is shown in Figure 3.

I/O and Test Points

VIN, LX and PGOOD Test Points

Test points are available for VIN (TP8), the LX switching nodes (TP6 for LX1, TP7 for LX2, and TP1 for LX3), the compensation pins (TP4 for COMP1, TP5 for COMP2, TP3 for COMP3), and PGOOD (TP2) for monitoring.

Table 3: Test Points

Test Point	Function
TP1	LX3
TP2	PGOOD
TP3	COMP3
TP4	COMP1
TP5	COMP2
TP6	LX1
TP7	LX7
TP8	VIN

The PGOOD output can be used externally. For more information about PGOOD options, see "Jumper J8" on page 5.

Jumper J3

Table 5: Jumper J3 Options for the EN Pin

Jumper Options	Description
Jumper 1-2 (default)	The EN (enable) pin is tied to VCC and channels are enabled at power up.
Jumper 2-3	The EN (enable) pin is tied to GND, permanently disabling the channels.
No jumper	The jumper is open, allowing EN to be controlled external to the board.

Jumper J8

Table 6: Jumper J8 Pull Up Options for the PGOOD Pin

Jumper Options	Description
Jumper 1-2 (defa ult)	PGOOD is pulled up to the VCC pin.
No jumper	PGOOD is not pulled up by this jumper.

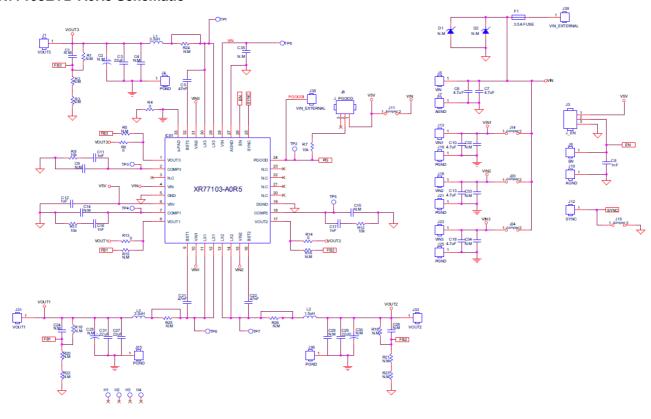
Jumper J11

For operation from a 5V rail, it is required that the LDO output is connected to VIN, which can be accomplished by populating J11. This enhances the operation of the drivers for VIN < 5V.

Important: Remove J11 for operation at higher VIN. The board also has Zener diode placeholders which can be installed to protect the IC if higher VIN is accidentally applied.

Table 7: Jumper J11 and Operation from a 5V Rail

Jumper Options	Description
Jumper 1-2	Ties the LDO output to VIN which is required for 5V operation.
No jumper (defaul t)	LDO output is not tied to VIN.


Jumpers J14, J20 and J24

Jumpers J14, J20 and J24 are available to connect or disconnect VIN from VIN1, VIN2, and VIN3 respectively. Factory default is VIN is connected to VIN1, VIN2, and VIN3.

Jumper J15

Jumper J15 is available to ground SYNC. Factory default is that the SYNC pin is not grounded on the board. When not grounded, the SYNC pin may be connected and synchronized to an external clock in applications where EMI control is critical.

XR77103EVB-A0R5 Schematic

XR77103EVB-A0R5 PCB Layers

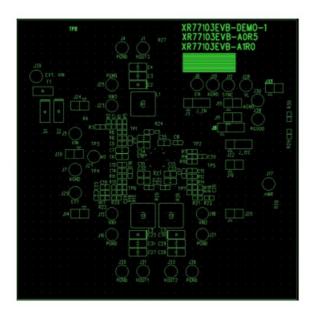


Figure 5: Silkscreen Top

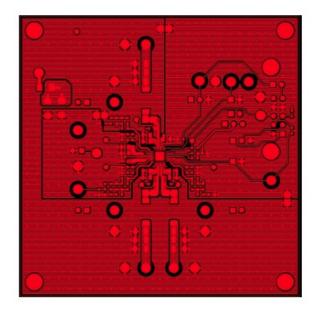


Figure 6: Assembly Top/Layer 1

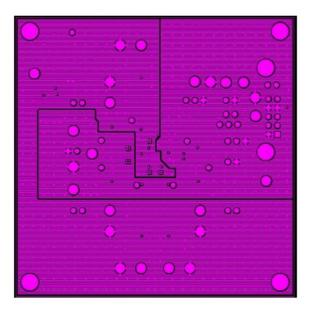


Figure 7: Layer 2

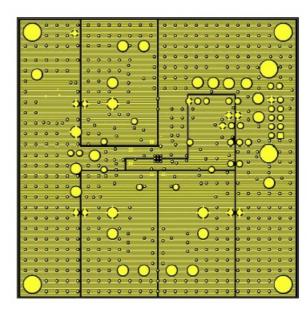


Figure 8: Layer 3

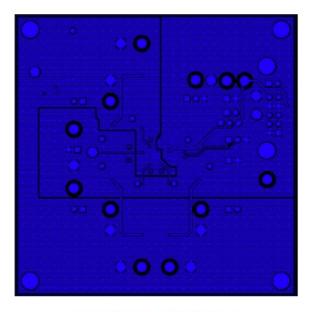


Figure 9: Assembly Bottom

XR77103EVB-A0R5 Bill of Materials

Table 8: XR77103EVB-A0R5 Bill of Materials

Ite m	Qty	Reference Designator	Component	Manufacturer / Part Number	Package Size
1	1	РСВ	XR77103 Evaluation Board	MaxLinear	
2	4	C3, C27, C29, C31	CAP CER 22uF 16V X5R 1206 10 %	Murata GRM31CR61 C226KE15K	1206
3	3	C5, C21, C22	CAP CER 47nF 50V X7R 10%	Murata GRM188R71 H473KA61D	0603
4	5	C6, C7, C10, C13, C18	CAP CER 4.7uF 25V X7R 10%	Murata GRM21BR71 E475KA73L	0805
5	4	C8, C11, C16, C17	CAP CER 1nF 50V X7R 10%	Murata GRM188R71 H102KA01D	0603
6	1	C12	CAP CER 1uF, 10V, X7R, 10%	Murata GRM188R71A105KA6 1D	0603
7	6	R4, R6, R13, R14, R27, R28	Resistor 0Ω, 1/10W, SMD	Panasonic ERJ-3GEY0R00V	0603
8	4	R7, R8, R11, R12	Resistor 10.0kΩ, 1/10W, 1%, SMD	Panasonic ERJ-3EFK1002V	0603
9	1	F1	Fuse Board Mount 3.5A, 63VDC	Vishay MFU1206FF0 3500P100	1206
10	20	J1, J4, J5, J6, J7, J10, J 12, J13, J16, J18, J21, J23, J25, J29, J31, J33, J35, J36, J38, J39	Header 1-pin	Wurth Elektronik 61300111121	2.54mm
11	2	J3, J8	Header 3-pin	Wurth Elektronik 61300311121	2.54mm
12	5	J11, J14, J15, J20, J24	Jumper 2-pin	Wurth Elektronik 61300211121	2.54mm
13	2	L1, L3	Inductor 3.3μH, 6A, 30mΩ, SMD	Vishay IHLP2525CZE R3R3M01	6.86 x 6.4 7mm
14	1	L2	Inductor 1.5μH, 9A, 15mΩ, SMD	Vishay IHLP2525CZE R1R5M01	6.47 x 6.4 7mm
15	1	U1	Universal PMIC 3 Output Buck Reg ulator	MaxLinear XR77103ELBTR-A0R 5	4mm x 4 mm

The content of this document is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by MaxLinear, Inc. MaxLinear, Inc. assumes no responsibility or liability for any errors or inaccuracies that may appear in the informational content contained in this guide. Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced into, stored in, or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose,

without the express written permission of MaxLinear, Inc. Maxlinear, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless MaxLinear, Inc. receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) the potential liability of MaxLinear, Inc. is adequately protected under the circumstances. MaxLinear, Inc. may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering the subject matter in this document. Except as expressly provided in any written license agreement from MaxLinear, Inc., the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property. MaxLinear, the MaxLinear logo, any MaxLinear trademarks (XML, Full-Spectrum Capture, FSC, G.now, AirPHY, Puma, and anyway), and the MaxLinear logo on the products sold are all property of MaxLinear, Inc. or one of MaxLinear's subsidiaries in the U.S.A. and other countries. All rights reserved. *Other company trademarks and product names appearing herein are the property of their respective owners. © 2022 MaxLinear, Inc. All rights reserved.

Corporate Headquarters: 5966 La Place Court, Suite 100 Carlsbad, CA 92008

Tel.: +1 (760) 692-0711 Fax: +1 (760) 444-8598 www.maxlinear.com

Documents / Resources

MAXLINEAR XR77103-A0R5 Universal PMIC 3 Output Buck Regulator [pdf] User Manual XR77103-A0R5, Universal PMIC 3 Output Buck Regulator, XR77103-A0R5 Universal PMIC 3 Output Buck Regulator

References

- XR76108 MaxLinear
- **XR76117 MaxLinear**
- MaxLinear
- XR77103 MaxLinear
- XR77103-A0R5 MaxLinear
- XR77103-A1R0 MaxLinear

Manuals+