

Fast & effective USB Type-C[®] PD deployment with certified STM32 solutions.

No coding required.

Agenda

- 1 Introduction to USB Type-C® technology
- 2 Solutions using STM32 UCPD controller
- 3 Development ecosystem
- 4 USB Type-C® solution for Linux-based STM32 MPUs

Introduction to USB Type-C® Power Delivery technology

The industry is moving to USB Type-C® for charging embedded devices

Using a single USB Type-C® charging solution for small and medium devices to reduce charging options and e-waste

Why choose USB Type-C® for embedded devices

More versatile

- Reversible, robust connector, thinner than previous micro-C connector
- More interoperability: sink, source or dual role, while being host or device

More power

- 15 W at 5 V with Type-C only
- Up to 100 W with USB Power Delivery (USB PD) 3.1 protocol
- Extend power range up to 240 W @ 48 V with USB PD 3.1
- Universal fast charging capability with programming power supply (PPS)

More protocols and speeds

- Separate channels for USB 2.0 (LS/FS/HS) and USB 3.x (SuperSpeed)
- Proprietary protocols supported (DP, HDMI, Ethernet, Thunderbolt...)

More protection

- Device/source authentication via USB PD (Vendor define messages)
- Firmware update or secure firmware install (SFI)

Enabling many use cases

- Power swap capability (from sink to source or vice versa)
- USB data swap capability (from device to host or vice versa as for OTG)

USB Implementers Forum extends power range up to 240 W

Supply your device with a universal power adapter Output Out

Legacy USB

From 2.5 W (5V-0.5A)

USB Type-C® only

Up to 15 W (5V-3A)

USB Type-C® & PD3.1 (SPR*)

Up to 100 W 9V/15V/20V up to 5A (*standard power range) USB Type-C® & PD3.1 (EPR**)

Up to 240 W 28V/36/48V up to 5A (**extended power range)

More interoperability and use cases

Solutions using STM32 UCPD controller

Saving time, cost, and reducing complexity with STM32

STM32 with USB Type-C® connector simplifies your design, eliminating the need for an external PD controller

Fast prototyping without coding

- Ready-to-use hardware and firmware examples
- Code generation for all USB Type-C® roles on STM32
- Easy debug with STM32CubeMonUCPD software tool

Optimize bill of material and safety

- CC logic, PD transceiver PHY, USB2 device/host interface
- Companion Type-C Port Protection devices (TCPP0x)

STM32 supports the latest USB Type-C® and PD3.1 standards

- SPR and EPR(*) power range up to 240 W, PPS ready. Sink, source, dualrole power and data roles
- UCPD peripheral is USB-IF certified & supports connector management and USB PD r3.1 protocol (SPR, EPR*, PPS etc.)

A wide range of STM32 MCUs with UCPD

More than 730 STM32 MCUs feature a certified USB

Type-C® & PD 3.1 controller

Mainstream microcontrollers STM32G0

Ultra-low power microcontrollers

- STM32L5
- <u>STM32U5</u>

Mixed-signal microcontrollers STM32G4

High-performance microcontrollers

- STM32H5
- STM32H7R/S
- STM32N6 (coming soon)

Microprocessors

STM32MP2

UCPD highlights

Example in STM32G0x1 access line

UCPD peripheral

x 2

- Dual port USBP3.1 certified solution (TID 227)
- Support sink, source & dual role modes (DRP/DRD)
- CC logic control and voltage monitoring
- Built-in Rp/Rd and dead battery resistors
- USB PD transceiver PHY
- Digital BMC / CRC encoding/decoding
- Support programming power supply (PPS)
- Enable Fast role swap signaling (FRS)

USB2.0 dual role data interface

- USB2.0 data interface (FS, HS)
- Dual-Role mode supported (Device/Host)
- Crystal-less

Use the STM32-FINDER app to quickly find STM32 MCUs with USB interfaces

Our smartphone application STM32-FINDER allows you to identify STM32 with a UCPD controller

Architecture & solutions overview

STM32 USB PD3.1 controller

- Application tasks
- UCSI driver (optional)
- Policy manager
- USB PD stack
- UCPD peripheral

TCPP0x port protection

- Dead battery
- ESD/OVP protection
- N-gate driver
- OCP*
- Bus discharge*

*when required

References design

For SOURCE/Host
X-NUCLEO-SRC1M1

based on TCPP02-M18

- UCPD stands for USB Type-C® and power delivery controller
- UCSI stands USB Type-C® connector system interface

Safely connect with high-voltage Port Protection TCPP

		SINK TCPP01-M12	SOURCE TCPP02-M18	DRP TCPP03-M20
cc	ESD <u>+</u> 8 kV, OVP	~	~	~
	Dead batteries	~		~
	V _{conn} switch, Over current protection, discharge		~	~
V BUS	Gate driver	Sink	Source	Sink / Source
	Over Voltage protection	~		~
	Over current protection, current sense		~	Bidirectional
	Discharge		~	~
	Low pin count package	QFN-12L (3x3)	QFN-18L (3.5x3.5)	QFN-20L (4x4)

- VBUS monitoring and protection (OVP)
- Drive VBUS with integrated gate driver

Typical implementation for sink with TCPP01-M12

- CC lines OVP (6 V) against short-to-VBUS
- ESD protection
- Dead battery

Typical implementation for source with TCPP02-M18

- VBUS monitoring, OVP/OCP protections
- Integrated gate driver
- Integrated discharge for VBUS and VCONN

- CC lines OVP (6 V) against short-to-VBUS
- ESD protection
- Dead battery

Typical implementation for dual role with TCPP03-M20

- CC lines OVP (6 V) against short-to-VBUS
- 24 V ESD protection on CC lines
- VCONN OCP (100 mW) and OVP(6 V)
- Dead battery

Enable dual-role devices

- Dual role devices can act as source or sink (dual role power) while being host or device (dual role data) for USB data communication purposes.
- DRD allows developers to extend interoperability of their device by supporting advanced use-cases.
- Swapping between power and data roles is performed independently by using USB PD swap commands.

Dual-role device showcase with STM32H7S78-DK

Development ecosystem

Quickly evaluate our solutions with STM32 Nucleo USB Type-C® expansion boards

Ready to run firmware examples projects for STM32G0/G4 Nucleo-64 pin

X-CUBE-TCPP

For sink/device

X-NUCLEO-SNK1M1

Based on TCPP01-M12

For DRP/DRD

X-NUCLEO-DRP1M1

Based on TCPP03-M20

For source/host

X-NUCLEO-SRC1M1

Based on TCPP02-M18

A no-code solution for your development

Video tutorials. How to use X-CUBE-TCPP software to build:

- a USB-PD sink application
- a USB-PD source application
- a USB-PD dual-role application

Master USB Type-C®/PD on STM32 without coding

- Selection and configuration of STM32 UCPD peripheral
- Generation of certified USB Type-C® application codes for sink, source, and dual role using STM32CubeMX and X-CUBE-TCPP software pack

Debug your application with our monitoring tools.

<u>STM32CubeMonUCPD</u>, a free software monitoring tool for USB Type-C® applications

- Support of USB Type-C® 1.2 and USB PD r3.1
- Port configuration pane for PD setting, VDM, SOP, source, and sink capabilities
- Port communication pane for VBUS and IBUS monitoring, distant port capabilities, message selector, and real-time traces

STM32G071B-DISCO is a USB Type-C® and PD sniffer

- Discover, display USB Type-C® power and feature capabilities of any host.
- Sniff USB PD data packets and display Vbus voltage, Ibus current
- Inject USB PD3.1 packet

Reuse our application source codes in your project

Shorten development time with STM32CubeMCU packages

- USB PD middleware library
- Billboard USB drivers, FreeRTOS™, AzureRTOS ThreadX
- HAL, low-layer APIs CMSIS
- Application examples running on ST boards

Download links

- STM32CubeG0
- STM32CubeG4
- STM32CubeL5
- STM32CubeU5
- STM32CubeH5

Visit our Wiki page on USB Type-C®

Find all the information required for beginners and advanced users

https://wiki.st.com/stm32mcu/wiki/USB_Power_Delivery_overview

Hardware tools & reference designs

SOLUTIONS	STM32G0	STM32G4	STM32L5	STM32U5	STM32H5	STM32H7RS	STM32MP13
AC/DC USB PD power adapter	STEVAL-USBPD27S (27 W / PPS ready) STEVAL-2STPD01 (2x 60 W)						
USB Type-C [®] discovery kits	STM32G071B- DISCO (USB Type-C® Sniffer/Analyzer)	B-G474E-DPOW1 1 port DRP	STM32L562E-DK 1 port SNK	B-U585I-IOT02A 1 port DRP	STM32H573I-DK 1 port DRP/DRD 1 port sink	STM32H7S78-DK 1 port DRP 1 port sink	STM32MP135F-DK 1 port DRP/DRD UCSI-certified
Evaluation boards	STM32G0C1E-EV 1 port 45 W DRP 1 port Sink	STM32G474E-EVAL featuring 1 port DRP	STM32L552E-EVAL 1 port SNK	STM32U575I-EV 1 port DRP			
Nucleo board Nucleo shield	X-NUCLEO-SNK1M1 X-NUCLEO-DRP1M1 X-NUCLEO-SRC1M1	X-NUCLEO-SNK1M1 X-NUCLEO-DRP1M1 X-NUCLEO-SRC1M1	NUCLEO-L552ZE-Q 1 port SNK	NUCLEO-U575ZI-Q 1 port SNK	NUCLEO-H563ZI 1 port sink	NUCLEO-H7S3L8 1 port DRP	

2x60 W PD3.1 dual port power adapter

Based on STM32G0 and STPD01PUR programmable buck converters

Key features

- Two USB Power Delivery source ports
- Output power up to 120 W-rated (60 W per port), managed through a power sharing algorithm
- Up to four output PDOs for each port (5 V@3 A, 9 V@3 A, 15 V@3 A, 20 V@3 A)
- Compliant with USB Type-C® 2.1 and PD 3.1 specifications

Key products

- STM32G071RBT6 MCU embedding two USB PD interfaces.
- Two STPD01PUR DC-DC converters dynamically set by I²C, suitable to implement power sharing in USB PD applications
- Two on-board TCPP02-M18 protections for USB Type-C® and PD source applications
- OVP, UVP, OC, short-circuit, and OTP protections

Board: STEVAL-2STPD01

USB Type-C® solutions for Linux-based STM32 MPUs

Architecture & solutions overview

STM32 MPU or AP, SoC

- OS policy manager
- Application manager
- UCSI drivers

STM32 USB PD controller

- Application tasks
- UCSI driver (optional)
- Policy Manager
- USB PD stack
- UCPD peripheral

TCPP0x port protection

- Dead battery
- ESD/OVP protection
- N-gate driver
- OCP*
- Bus discharge**when required

Reference design

STM32MP135F-DK with X-CUBE-UCSI Cube expansion firmware

- UCPD stands for USB Type-C® and power Delivery controller
- UCSI stands USB Type-C® connector System interface

SoC / AP STM32MP1 MPU USB Host/Device UCSI DPM Power management PD stack UCPD hardware STM32G0 MCU PD controller PPM / LPM USB Type-C** connector

Turnkey UCSI-certified solution

X-CUBE-UCSI

- Allows users to implement USB Type-C® ports in OS-based system
- Compliant with the USB Type-C® connector system interface.
 (UCSI) specification enabling OS (Linux, Windows, Android) to supervise the USB Type-C® ports.

Reference design

- USB-certified (TID 8088) <u>STM32MP135F-DK</u> discovery board features an STM32MP135 as the main application processor, connected to an STM32G071 MCU as the UCSI PD controller.
- The X-CUBE-UCSI STM32Cube expansion software to build a USB PD dual-role power (DRP) project.

Releasing your creativity

/STM32

@ST_World

USB PD Community

STM32 solutions for USB Type-C® PD

STM32

wiki.st.com/USBPD

X-CUBE-TCPP on github.com

STM32 USB Type-C® & PD solutions

TCPP product page

Our technology starts with You

© STMicroelectronics - All rights reserved.

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to www.st.com/trademarks.

All other product or service names are the property of their respective owners.

