
LabOne Programming
Manual

LabOne Programming Manual
Zurich Instruments AG

Revision 22.08

Copyright © 2008-2022 Zurich Instruments AG

The contents of this document are provided by Zurich Instruments AG (ZI), "as is". ZI makes no representations or warranties with
respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications
and product descriptions at any time without notice.

LabVIEW is a registered trademark of National Instruments Inc. MATLAB is a registered trademark of The MathWorks, Inc. All other
trademarks are the property of their respective owners.

Table of Contents

What’s New in the LabOne Programming Manual .. IV
1. Introduction ... 7

1.1. LabOne Programming Quick Start Guide ... 8
1.2. LabOne Software Architecture .. 11
1.3. Comparison of the LabOne APIs ... 15
1.4. Initializing a Connection to a Data Server ... 16
1.5. Compatibility .. 21

2. Instrument Communication ... 22
2.1. Data Server’s Node Tree .. 23
2.2. Data Streaming ... 31
2.3. Comparison of Data Acquisition Methods ... 35
2.4. Demodulator Sample Data Structure .. 36
2.5. Instrument-Specific Considerations .. 37

3. LabOne API Programming .. 38
3.1. An Introduction to LabOne Modules .. 39
3.2. Low-level LabOne API Commands .. 41
3.3. AWG Module .. 46
3.4. Data Acquisition Module ... 58
3.5. Device Settings Module .. 80
3.6. Impedance Module ... 83
3.7. Multi-Device Synchronisation Module ... 91
3.8. PID Advisor Module .. 94
3.9. Precompensation Advisor Module ... 108
3.10. Quantum Analyzer Module .. 119
3.11. Scope Module ... 123
3.12. Sweeper Module .. 134

4. MATLAB Programming ... 148
4.1. Installing the LabOne MATLAB API ... 149
4.2. Getting Started with the LabOne MATLAB API .. 152
4.3. LabOne MATLAB API Tips and Tricks .. 155
4.4. Troubleshooting the LabOne MATLAB API .. 157

5. Python Programming .. 159
5.1. Installing the LabOne Python API ... 160
5.2. Getting Started with the LabOne Python API .. 162
5.3. LabOne Python API Tips and Tricks .. 164

6. LabVIEW Programming ... 165
6.1. Installing the LabOne LabVIEW API ... 166
6.2. Getting Started with the LabOne LabVIEW API ... 168
6.3. LabVIEW Programming Tips and Tricks ... 173

7. .NET Programming .. 174
7.1. Installing the LabOne .NET API .. 175
7.2. Getting Started with the LabOne .NET API .. 176
7.3. LabOne .NET API Examples .. 180

8. C Programming ... 181
8.1. Getting Started .. 182
8.2. Error Handling and Logging in the LabOne C API .. 184

Glossary .. 185
Index .. 191

LabOne Programming Manual Revision 22.08 Zurich Instruments 3

What’s New in the LabOne Programming
Manual

Release 22.08

Release date: 31-Aug-2022

Update of the LabOne Programming Manual for LabOne Release 22.08.

Highlights:

∏SHFQC: Official support for the SHFQC Qubit Controller.

∏Quantum Analyzer Module: Enabled record functionality.

∏Python API: Renamed zhinst.ziPython to zhinst.core.

∏Python API: Added custom exception types to zhinst.core.

∏Python API: Added compile_seqc() to zhinst.core to compile AWG sequencer
codes.

∏Python API: Dropped support for Python 3.6.

∏C API: Added CMakeLists.txt to conveniently build C API examples.

∏MATLAB API: Enabled complex-valued vectors in Quantum Analyzer Module.

∏LabVIEW API: Introduced two DAQ Module tutorials for single-shot and continuous data
acquisition.

Release 22.02

Release date: 28-Feb-2022

Update of the LabOne Programming Manual for LabOne Release 22.02.

Highlights:

∏LabOne UI & API: Include 'Flat Top' window function in FFT mode of Scope, DAQ, and
Spectrum.

∏LabOne Data Server: Node paths are returned in lower case by listNodes and
listNodesJSON methods.

∏Python API: Support of Python 3.10.

∏MATLAB API: Examples are available in the public GitHub repository.

∏C API: Transactional commands are enabled for multi-parameter setting.

∏C API: Example for impedance data acquisition using poll and averaging.

∏C API: Example for short-open user compensation using MFIA Impedance Analyzer.

∏C API: Example to demonstrate acquisition of a single fresh value from a streaming
node.

LabOne Programming Manual Revision 22.08 Zurich Instruments IV

https://github.com/zhinst/labone-api-examples

Release 21.08

Release date: 31-Aug-2021

Update of the LabOne Programming Manual for LabOne Release 21.08.

Highlights:

∏Data Server, Webserver, and C API: Support for GNU/Linux and macOS on ARM64
architecture.

∏LabOne API: Data Server log messages propagated to Client via API.

∏Python API: Support of Python 3.7+ for Gnu/Linux on ARM64 processors.

∏Python API: Support of Python 3.9 for macOS on Apple M1 processor.

∏Python API: Examples moved from zhinst package to a public GitHub repository.

Release 21.02

Release date: 28-Feb-2021

Update of the LabOne Programming Manual for LabOne Release 21.02.

Highlights:

∏Released Online Programming Manual and API Documentation.

∏Data Server: Allow running multiple instances of data server on Windows.

∏Python API: Added support of Python 3.9 and removed support of Python 2.7.

∏Python API: Added API functions for adjusting debug level and log path for file output.

∏MATLAB API: Added one example to demonstrate command table feature of HDAWG.

Release 20.07

Release date: 28-Aug-2020

Update of the LabOne Programming Manual for LabOne Release 20.07.

Highlights:

∏All APIs: Improved error handling when setting an invalid wildcard path.

∏Python and MATLAB APIs: Enumerated integer nodes can be set using keyword strings
using the setString function to improve code readability.

∏C API: Scope module support added.

LabOne Programming Manual Revision 22.08 Zurich Instruments V

https://github.com/zhinst/labone-api-examples

Release 20.01

Release date: 28-Feb-2020

Update of the LabOne Programming Manual for LabOne Release 20.01.

Highlights:

∏LabOne API: Added quantum analyzer API module

∏LabOne API: improved error handling when a device is not connected or misspelled

∏LabOne API: included full revision information as a packed decimal in the revision node

∏API Log: removed module prefix from API log entries as it is no longer required

∏Python API: added deprecation warning for users of Python versions 2.7 and 3.5

∏C and .NET API: impedance flags added to 'ZISweeperImpedanceWave' class

LabOne Programming Manual Revision 22.08 Zurich Instruments VI

Chapter 1. Introduction
This chapter briefly describes the different possibilities to interface with a Zurich Instruments
device, other than via the LabOne User Interface. Zurich Instruments devices are designed with
the concept that "the computer is the cockpit"; there are no controls on the front panel of the
instrument, instead the user can configure their instrument from and stream data directly to their
computer. The aim of this approach is to give the user the freedom to choose where they connect
to, and how they control their instrument. Please refer to:

∏Section 1.1 for help LabOne programming quick start guide.

∏Section 1.2 for an overview of the LabOne software architecture.

∏Section 1.3 for a comparison of the LabOne APIs.

∏Section 1.4 for help initializing a connection to a data server.

Instrument Specifics

The LabOne Programming Manual is intended to be used in parallel to the corresponding user
manual for the instrument you are using. Please refer to the instrument-specific manual for
comprehensive documentation of its functionality and settings; a full list of settings can be found
in the "Device Node Tree" Chapter.

HF2 Real-time Option

The Real-time Option (RTK) for the HF2 Series is not a PC-based interface for controlling an
instrument and is documented in the HF2 User Manual.

LabOne Programming Manual Revision 22.08 Zurich Instruments 7

1.1. LabOne Programming Quick Start Guide

1.1. LabOne Programming Quick Start Guide
This section contains a collection of tips to help you get started programming with your
instrument as quickly as possible.

Use the LabOne User Interface to develop measurement methods

LabOne’s high-level measurement tools, such as the Sweeper Module are available in the LabOne
User Interface (UI) and APIs. Since they use the same internal library, these tools have consistent
behavior across all interfaces; their parameters may first be tuned in the UI before transferring
them to the API. Documentation for all the available high-level tools are provided in Chapter 3.

Let the LabOne User Interface write code for you

Use the command logging functionality of the the UI to copy code from the UI’s log to your
MATLAB, Python or .NET program. When you change a setting in the UI the corresponding
API command is displayed in the status bar. If "Show Log" is clicked, then the full history of
corresponding API commands is displayed. More information on finding settings is given in
Section 2.1.2.

Use Device Discovery to connect to your device

Device Discovery is included in every API and provides information on all the devices connected
via USB or that are visible on your local network. For example, from Python: Import the module,
create an instance of the Discovery tool and request discovery information on a specific device:

import zhinst.core
dev = 'dev2006'
d = zhinst.core.ziDiscovery()
props = d.get(d.find(dev))

Device Discovery returns a dictionary that contains connectivity information for the specified
device; we can use this information to create an API session (connect to a Data Server)
and subsequently connect the device on a physical interface (e.g. USB, ethernet) and start
communicating with the device:

api_session = zhinst.core.ziDAQServer(props['serveraddress'], props['serverport'],
 props['apilevel'])
api_session.connectDevice(dev, props['interfaces'][0])
api_session.getDouble('/{}/demods/0/rate'.format(dev))

LabOne Programming Manual Revision 22.08 Zurich Instruments 8

1.1. LabOne Programming Quick Start Guide

Out: 1.81e3

Further explanation about creating an API session with the appropriate the Data Server is
provided in Section 1.4.1.

Use the distributed examples as a base for your program

Each LabOne API contains many examples to help you get started. Our public GitHub repository
(https://github.com/zhinst/labone-api-examples) provides a constantly updated collection of
examples for the different APIs.

The following APIs provide built-in examples: MATLAB, LabVIEW, .NET, C.

Use the API’s logging capabilities

The LabOne APIs write log files containing useful debugging and status information. Enable
the API log to monitor the behavior of your program and add your own log entries with the
writeDebugLog() command. For example, in Python: Import the zhinst.core module,
create an API session and enable logging with the setDebugLevel() command:

import zhinst.core
api_session = zhinst.core.ziDAQServer('localhost', 8004, 6)
api_session.setDebugLevel(0)

Then create an instance of the Sweeper and write to the log:

h = api_session.sweep()
api_session.writeDebugLog(0, 'Will now configure and start the sweeper...')
h.set('sweep/device', 'dev2006')
h.execute()

These commands generate the log:

Will log to directory '/tmp/ziPythonLog_danielw'
11:55.25.805 [0] [status] Opening session: 127.0.0.1
11:55.25.805 [1] [trace] Will now configure and start the sweeper...
11:55.30.877 [2] [debug] Sweep execute, averaging 1 samples 0.001 s or 5 x tc,
 settling 0s or 5 x tc (0.01)
11:55.30.886 [3] [debug] Oscillator index 0 for path oscs/0/freq
11:55.30.887 [4] [warning] Sweeper will run in slower synchronous set mode. Enable
 controlled demodulators to get fast mode.
11:55.30.888 [5] [debug] Sweep fast: false, bandwidth control: 2, bw: 2000
11:55.30.889 [6] [debug] Used settlingTimeFactor 9.99805

See the API-specific chapter for more details:

∏Enabling Logging in the LabOne MATLAB API

∏Enabling Logging in the LabOne Python API

∏Error Handling and Logging in the LabOne C API

Use the API utility functions

The APIs are distributed with utility functions that replicate functionality incorporated in the UI.
For example, the MATLAB and Python APIs have utility functions to convert a demodulator’s time
constant to its corresponding 3dB bandwidth (tc2bw).

LabOne Programming Manual Revision 22.08 Zurich Instruments 9

https://github.com/zhinst/labone-api-examples

1.1. LabOne Programming Quick Start Guide

Load LabOne User Interface settings files from the APIs

The XML files used for device settings can not only be loaded and saved from the LabOne User
Interface but from any of the APIs. See Section 3.5 for more information.

LabOne Programming Manual Revision 22.08 Zurich Instruments 10

1.2. LabOne Software Architecture

1.2. LabOne Software Architecture

Zurich Instruments devices use a server-based connectivity methodology. Server-based means
that all communication between the user and the instrument takes place via a computer
program called a server, the Data Server. The Data Server recognizes available instruments and
manages all communication between the instrument and the host computer on one side, and
communication to all the connected clients on the other side. This allows for:

∏A multi-client configuration: Multiple interfaces (even from multiple computers on the
network) can access the settings and data on an instrument. Settings are synchronized
between all interfaces by the single instance of the Data Server.

∏A multi-device setup: Any of the Data Server’s clients can access multiple devices
simultaneously.

This software architecture is organized in layers, see Figure 1.1 for a schematic of the software
layers.

Figure 1.1. LabOne Software Architecture. The above diagram depicts the software architecture
when using Zurich Instruments. In the case of MFLI and MFIA instruments the Data Server and/
or the Web Server can also run on the device itself instead of on a host computer (see MFLI /
MFIA Software Configuration).

First, we briefly explain some terminology that is used throughout this manual.

∏Host computer: The computer where the Data Server is running and that is directly
connected to the instrument. Multiple remote computers on a local area network can
access the instrument by creating an API connection to the Data Server running on the host
computer.

∏Data Server: A computer program that runs on the host computer and manages settings on,
and data transfer to and from instruments by receiving commands from clients. It always
has the most up-to-date configuration of the device and ensures that the configuration is
synchronized between different clients.

LabOne Programming Manual Revision 22.08 Zurich Instruments 11

1.2. LabOne Software Architecture

∏ziServer.exe: The Data Server that handles communication with HF2 Instruments.

∏ziDataServer.exe: The Data Server that handles communication with HDAWG, MF and UHF
Instruments. Note, in the case of MFLI Instruments the Data Server runs on the instrument
itself.

∏Remote computer: A computer, available on the same network as the host computer, that
can communicate with an instrument via the Data Server program running on the host.

∏Client: A computer program that communicates with an instrument via the Data Server. The
client can be running either on the host or the remote computer.

∏API (Application Programming Interface): a collection of functions and data structures
which enable communication between software components. In our case, the various APIs
(e.g., LabVIEW, MATLAB®) provide functions to configure instruments and receive measured
experimental data.

∏Interface: Either a client or an API.

∏GUI (Graphical User Interface): A computer program that the user can operate via images as
opposed to text-based commands.

∏LabOne User Interface: The browser-based user interface that connects to the Web Server.

∏LabOne Web Server: The program that generates the browser-based LabOne User Interface.

∏ziControl: The standard GUI shipped for use with HF2 Instruments (before software release
15.11). HF2 support was added to the LabOne User Interface for devices with the WEB Option
installed in LabOne software release 15.11 .

∏ziCore: The internal core library upon which many APIs are based, see Chapter 3 for more
information.

∏Modules: ziCore software components that provide a unified interface to APIs to perform
a specific high-level common task such as sweeping data.

1.2.1. MFLI /MFIA Software Configuration

In their simplest form, The MFLI/MFIA instruments are self contained. The LabOne Web Server
and Data Server run on the instrument itself. Only the LabOne APIs run on an external PC.

However, to improve performance, other software configurations are possible. By installing the
LabOne software on an external PC, the MFLI/MFIA instrument can be accessed via a LabOne
Web Server running there. This gives advantages due to the improved computing power and the
greater memory resources of the external PC. Moreover, if performing measurements with two or
more synchronized MFLI/MFIA instruments, a LabOne Data Server running on the external PC can
also be used. Indeed, to synchronize multiple MFLI/MFIA instruments, this software configuration
is mandatory.

LabOne Programming Manual Revision 22.08 Zurich Instruments 12

1.2. LabOne Software Architecture

Figure 1.2. LabOne Software Configuration MFLI/MFIA. The above diagram shows the simplest
software configuration for the MFLI/MFIA instruments. The Data Server and Web Server run on
the device itself (devXXXX represents the serial number of the instrument).

Figure 1.3. LabOne Software Configuration for the MFLI with the LabOne Web Server running on
an external PC (devXXXX represents the serial number of the instrument).

LabOne Programming Manual Revision 22.08 Zurich Instruments 13

1.2. LabOne Software Architecture

Figure 1.4. LabOne Software Configuration for the MFLI with LabOne Web Server and Data
Server running on an external PC. This software configuration is mandatory when synchronizing
multiple MFLI/MFIA instruments.

LabOne Programming Manual Revision 22.08 Zurich Instruments 14

1.3. Comparison of the LabOne APIs

1.3. Comparison of the LabOne APIs
The various software interfaces available in LabOne allow the user to pick a programming
environment they are familiar with to achieve fast results. All other things being equal, here is a
brief discussion of the merits of each interface.

∏The LabVIEW Programming allows for quick and efficient implementation of virtual
instruments that run independently. These can easily be integrated in existing experiment
control performed in LabVIEW. This interface requires a National Instruments LabVIEW
license and LabVIEW 2009 (or higher).

∏The MATLAB Programming allows the user to directly obtain measurement data within the
MATLAB programming environment, where they can make use of the many built-in functions
available. This interface requires a MathWorks MATLAB license, but no additional MATLAB
Toolboxes.

∏The Python Programming allows the user to directly obtain measurement data within python.
Python is available as free and open source software; no license is required to use it.

∏The .NET Programming allows the user to directly obtain measurement data within the .NET
programming framework using the C#, Visual Basic or #F programming languages. To use
the .NET API a Microsoft Visual Studio installation is required.

∏The C API is a very versatile interface that will run on most platforms. However, since C
is a low-level programming language, the development cycle is slower than with the other
programming environments.

∏The text-based interface (HF2 Series only) allows the user to manually connect to the
HF2 Data Server in a console via telnet. While this interface is a very useful tool for HF2
programmers to verify instrument configuration set by other interfaces, it is limited in terms
of performance and maximum demodulator sample rate. See the HF2 User Manual for more
details.

Note

From LabOne Release 15.05 onwards the Sweeper and DAQ (formerly called Software Trigger)
Modules are also available in the LabVIEW and C APIs and from 16.12 onwards all Modules are
available. All modules were previously available in the MATLAB and Python LabOne APIs.

LabOne Programming Manual Revision 22.08 Zurich Instruments 15

1.4. Initializing a Connection to a Data Server

1.4. Initializing a Connection to a Data Server

As described in Section 1.2 an API client communicates with an instrument via a data server over
a TCP/IP socket connection. As such, the first step towards communicating with an instrument
is initializing an API session to the correct data server for the target device.

The choice of data server depends on the device class and on the network topology. HF2
instruments operate via a different data server program than HDAWG, MF and UHF instruments.
Users of MF instruments should be aware that the data server runs on the MF instrument itself
and not on a separate PC. Finally, in the case of MF instruments, the way to connect to the data
server depends on the interface (USB or 1GbE). In all cases, the desired data server is specified
by providing three parameters:

∏the data server host’s address (hostname),

∏the data server port,

∏the API level to use for the session.

1.4.1. Specifying the Data Server Hostname and Port

For users working with a single device, this section describes how to quickly connect to the
correct data server by manually specifying the required data server’s hostname and port and the
required API Level. Each API has a connect function which takes these three parameters in order
to initialize an API session, for example, in the LabOne MATLAB API:

>>> ziDAQ('connect', serverHostname, serverPort, apiLevel);

Data Server Port

A LabOne API client connects to the correct Data Server for their instrument by specifying the
appropriate port. By default, the data server programs for HDAWG, MF and UHF Instruments
listen to port 8004 for API connections and the data server program for HF2 instruments listens
to port 8005. The value of the port that the data server listens to can be changed using the --
port command-line option when starting the data server.

Data Server Hostname (HDAWG, HF2 and UHF Instruments)

In the simplest configuration for HDAWG, HF2 and UHF instruments, the instrument is attached to
the same PC where both the data server and API client are running. Since the API client is running
on the same PC as the data server, the 'localhost' (equivalently, '127.0.0.1') should be
specified as the data server address, Figure 1.5.

The API client may also connect to a data server running on a different PC from the client. In this
case, the data server address should be the IP address (or hostname, if available) of the PC where
the data server is running. Note, remote data server access is not enabled by default and the data
server must be configured in order to listen to non-localhost connections by either enabling the
--open-override command-line option when starting the data server or by setting the value
of the server node /zi/config/open to 1 on a running data server (clearly only possible from
a client running on the localhost). See Section 2.1.2 for more information on nodes.

LabOne Programming Manual Revision 22.08 Zurich Instruments 16

1.4. Initializing a Connection to a Data Server

Figure 1.5. Server address and port handling for HDAWG, HF2 and UHF instruments for the
case where the API client and data server are running on the same PC. In this case the server
hostname is localhost and the default port value is 8004 for HDAWG and UHF Instruments
and 8005 for HF2 Instruments.

Data Server Hostname (MF Instruments)

In the case of MF instruments the data server runs on the instrument itself and as such an API
client from a PC always accesses the data server remotely. Thus, in this case the data server
hostname is that of the instrument itself. This will be the same hostname (but not port) that is
used to run the LabOne User Interface in a web browser (when the Web Server is running on the
MF instrument), see Figure 1.6.

As described in more detailed in the Getting Started chapter of the MFLI User Manual, the MF
instrument hostname can either be its instrument serial of the form mf-dev3001, or its IP
address. The former is however only valid if the MF instrument is connected to a LAN with domain
name system via 1GbE. If it’s connected via the USB interface, finding out the IP address is easiest
by using the Start Menu Entry "LabOne User Interface MF USB" and then copying the IP address
from the browser’s address bar.

LabOne Programming Manual Revision 22.08 Zurich Instruments 17

1.4. Initializing a Connection to a Data Server

Figure 1.6. Server address and port handling on MF Instruments. The data server runs on
the instrument and the server hostname is the same as the instrument’s hostname. Using a
hostname of the form mf-dev3001 is only applicable when using the 1GbE interface. The default
data server port is 8004 for MF Instruments.

API Level and Connectivity Examples

The last parameter to specify, the API level, specifies the version of the API to use for the session.
In short, an API Level of 1 must be used for HF2 devices and an API Level 6 is recommended
for other instruments. Since the default API Level is 1, it is necessary to specify this parameter
for UHF, MF and HDAWG instruments. A more detailed explanation of API Levels is provided in
Section 1.4.2.

For example, to initialize a session to the HF2’s data server running on the localhost with the
LabOne Python API, the following commands should be used:

>>> import zhinst.core
>>> daq = zhinst.core.ziDAQServer('localhost', 8005, 1)

and in order to connect to the data server running on the MF instrument connected via 1GbE with
device serial 'dev3001' with the LabOne MATLAB API:

>> ziDAQ('connect', 'mf-dev3001', 8004, 6)

On an MF instrument connected via USB, the device serial cannot be directly used as
the hostname, instead one needs to use the instrument’s IP address. Unless this is known
beforehand, it can be determined by the network discovery functionality of the API. The following
python example shows how this can be done:

>>> import zhinst.core
>>> d = zhinst.core.ziDiscovery()
>>> d.find('mf-dev3001')
>>> devProp = d.get('mf-dev3001')
>>> daq = zhinst.core.ziDAQServer(devProp['serveraddress'], devProp['serverport'],
 6)

Working in a Multi-threaded Program

It is important to note that API session objects are not thread-safe, i.e. a single API session cannot
be shared between multiple client threads. If you want to use a LabOne API in a multi-threaded
program, for each client thread, use a separate API session.

1.4.2. LabOne API Levels

All of the LabOne APIs are based on an internal core API. Needless to say, we try as hard as
possible to make any improvements in our core API backwards compatible for the convenience
of our users. We take care that existing programs do not need to be changed upon a new

LabOne Programming Manual Revision 22.08 Zurich Instruments 18

1.4. Initializing a Connection to a Data Server

software release. Occasionally, however, we do have to make a breaking change in our API by
removing some old functionality. This old functionality is, however, phased out over several
software releases. First, the functionality is marked as deprecated and the user is informed via
a deprecation warning (this can be turned off). This indicator warns that this function may be
unsupported in the future. If we have to break some functionality we use a so-called API level.

With support of new devices and features we need to break functionality on the ziAPI.h e.g. data
returned by poll commands. In order to still support the old functionality we introduced API levels.
If a program only uses old functionality the API level 1 (default) can be used. If a user needs new
functionality, they need to use a higher API level. This will usually need some changes to the
existing code.

The current available API levels are:

∏API Level 1: HF2 support, basic UHF support.

∏API Level 4: UHF support, timestamp support in poll, PWA, name clean-up.

∏API Level 5: Introduction of scope offset for extended (non-hardware) scope inputs (UHF, MF
Instruments).

∏API Level 6: Timestamp support in poll for nodes that return a byte array.

Note that Levels 2 and 3 are used only internally and are not available to the general public.

Note

The HF2 Series only supports API Level 1.

Note

New HDAWG, MF and UHF API users are recommended to use API Level 6.

API Level 4 Features

The new features in API Level 4 are:

∏Timestamps are available for any settings or data node (that is either integer or float).

∏Greatly improved Scope data transfer rates (and new Scope data structure).

∏Greatly improved UHF Boxcar and PWA support.

API Level 5 Features

API Level 5 was introduced in LabOne Release 15.01 to accommodate a necessary change in the
Scope data structure:

∏The Scope data structure was extended with the new field "channeloffset" which contains
the offset value that must be added to the scaled wave value in order to obtain the
physical value recorded by the scope. For previous hardware scope "inputselects" there is
essentially no change, since their offset is always zero. However, for the extended values of
"inputselects", such as PID Out value, (available with the DIG option) the offset is determined
by the values of "limitlower" and "limitupper" configured by the user.

API Level 6 Features

API Level 6 was introduced in LabOne Release 17.06 to make the behavior of poll for nodes that
return a byte array consistent with nodes that return integer and float data:

LabOne Programming Manual Revision 22.08 Zurich Instruments 19

1.4. Initializing a Connection to a Data Server

∏Timestamps are returned for all byte array nodes.

∏New commands setString and getString are available and should be used instead of
setByte and getByte.

LabOne Programming Manual Revision 22.08 Zurich Instruments 20

1.5. Compatibility

1.5. Compatibility
Controlling an instrument requires the combination of several software components: The
instrument’s firmware, a Data Server and an API. In general, whenever possible, it is
recommended to use the latest (and same) software release version (e.g., "20.01") of all these
components. If you are bound to a certain version for technical reasons, then it is recommended
to use the same version of all components. However, this is not strictly necessary in all cases. If
it is absolutely necessary to mix versions, this section explains how to verify whether different
versions of various software components may be mixed with each other.

1.5.1. API and Data Server Compatibility

Although it is recommended to use the same software release version (e.g. "20.01") of both API
and Data Server, it is not strictly necessary. The interface between API and Data Server remains
the same between versions. However, there may be a change in some Section 2.1.2 that effects
specific functionality.

If you do need to mix versions, then please check the Release Notes (included in a LabOne
installation) to see if the functionality you require has changed. If so, then the same version of
API and Data Server must be used. Otherwise, it is possible to mix versions. If after checking the
Release Notes you are still not sure, then please contact Zurich Instruments customer support.

All the LabOne APIs have a utility function to check whether the API being used is the same version
as the Data Server it is connected to, e.g., api_server_version_check() in the Python API
and ziApiServerVersionCheck() in the MATLAB API.

LabOne Programming Manual Revision 22.08 Zurich Instruments 21

Chapter 2. Instrument Communication
This section describes the main concepts in LabOne software that allow high-speed data
acquisition and guides the user to the best acquisition method for their measurement task.

It is divided into sub-sections as follows:

∏Section 2.1 explains how device settings and data are organized and accessible in Data
Server’s Node Tree.

∏Section 2.2 explains Zurich Instruments' data streaming concept for data acquisition.

∏Section 2.3 compares the methods available for comparison of data acquisition methods.

∏Section 2.5 documents some Instrument-specific considerations.

LabOne Programming Manual Revision 22.08 Zurich Instruments 22

2.1. Data Server’s Node Tree

2.1. Data Server’s Node Tree

This chapter provides an overview of how an instrument’s configuration and output is organized
by the Data Server.

All communication with an instrument occurs via the Data Server program the instrument is
connected to (see Section 1.2 for an overview of LabOne’s software components). Although the
instrument’s settings are stored locally on the device, it is the Data Server’s task to ensure it
maintains the values of the current settings and makes these settings (and any subscribed data)
available to all its current clients. A client may be the LabOne User Interface or a user’s own
program implemented using one of the LabOne Application Programming Interfaces, e.g., Python.

The instrument’s settings and data are organized by the Data Server in a file-system-like
hierarchical structure called the node tree. When an instrument is connected to a Data Server,
its device ID becomes a top-level branch in the Data Server’s node tree. The features of the
instrument are organized as branches underneath the top-level device branch and the individual
instrument settings are leaves of these branches.

For example, the auxiliary outputs of the instrument with device ID "dev2006" are located in the
tree in the branch:

/DEV2006/AUXOUTS/

In turn, each individual auxiliary output channel has its own branch underneath the "AUXOUTS"
branch.

/DEV2006/AUXOUTS/0/
/DEV2006/AUXOUTS/1/
/DEV2006/AUXOUTS/2/
/DEV2006/AUXOUTS/3/

Whilst the auxiliary outputs and other channels are labelled on the instrument’s panels and
the User Interface using 1-based indexing, the Data Server’s node tree uses 0-based indexing.
Individual settings (and data) of an auxiliary output are available as leaves underneath the
corresponding channel’s branch:

/DEV2006/AUXOUTS/0/DEMODSELECT
/DEV2006/AUXOUTS/0/LIMITLOWER
/DEV2006/AUXOUTS/0/LIMITUPPER
/DEV2006/AUXOUTS/0/OFFSET
/DEV2006/AUXOUTS/0/OUTPUTSELECT
/DEV2006/AUXOUTS/0/PREOFFSET
/DEV2006/AUXOUTS/0/SCALE
/DEV2006/AUXOUTS/0/VALUE

These are all individual node paths in the node tree; the lowest-level nodes which represent a
single instrument setting or data stream. Whether the node is an instrument setting or data-
stream and which type of data it contains or provides is well-defined and documented on a per-
node basis in the Reference Node Documentation section in the relevant instrument-specific
user manual. The different properties and types are explained in Section 2.1.1.

For instrument settings, a Data Server client modifies the node’s value by specifying the
appropriate path and a value to the Data Server as a (path, value) pair. When an instrument’s
setting is changed in the LabOne User Interface, the path and the value of the node that was
changed are displayed in the Status Bar in the bottom of the Window. This is described in more
detail in Section 2.1.2.

LabOne Programming Manual Revision 22.08 Zurich Instruments 23

2.1. Data Server’s Node Tree

Module Parameters

LabOne Core Modules, such as the Sweeper, also use a similar tree-like structure to organize
their parameters. Please note, however, that module nodes are not visible in the Data Server’s
node tree; they are local to the instance of the module created in a LabOne client and are not
synchronized between clients.

2.1.1. Node Properties and Data Types

A node may have one or more of the following properties:

Read Data can be read from the node.

Write Data can be written to the node.

Setting The node corresponds to a writable instrument configuration. The data of these
nodes are persisted in snapshots of the instrument and stored in the LabOne XML
settings files.

Streaming A node with the read attribute that provides instrument data, typically at a
user-configured rate. The data is usually a more complex data type, for example
demodulator data is returned as ZIDemodSample. A full list of streaming nodes
is available in Table 2.1. Their availability depends on the device class (e.g. MF) and
the option set installed on the device.

A node may contain data of the following types:

Integer Integer data.

Double Double precision floating point data. Note that the actual value on
the device may only be calculated in single precision.

String A string array.

Enumerated (integer) As for Integer, but the node only allows certain values.

Composite data type For example, ZIDemodSample. These custom data types are
structures whose fields contain the instrument output, a timestamp
and other relevant instrument settings such as the demodulator
oscillator frequency. Documentation of custom data types is
available in Chapter 8. the C Programming Chapter in the LabOne
Programming manual.

2.1.2. Exploring the Node Tree

In the LabOne User Interface

A convenient method to learn which node is responsible for a specific instrument setting is to
check the Command Log history in the bottom of the LabOne User Interface. The command in
the Status Bar gets updated every time a configuration change is made. Figure 2.1 shows how
the equivalent MATLAB command is displayed after modifying the value of the auxiliary output
1’s offset. The format of the LabOne UI’s command history can be configured in the Config Tab
(MATLAB, Python and .NET are available). The entire history generated in the current UI session
can be viewed by clicking the "Show Log" button.

LabOne Programming Manual Revision 22.08 Zurich Instruments 24

2.1. Data Server’s Node Tree

Figure 2.1. When a device’s configuration is modified in the LabOne User Interface, the
Status Bar displays the equivalent command to perform the same configuration via a LabOne
programming interface. Here, the MATLAB code to modify auxiliary output 1’s offset value is
provided. When "Show Log" is clicked the entire configuration history is displayed in a new
browser tab.

In the Instrument-specific User Manual

Each instrument user manual has a "Device Node Tree" chapter that contains complete reference
documentation of every node available on the device. This documentation may be explored by
branch to obtain a complete overview of which settings are available on the instrument.

In a LabOne Programming Interface

A list of nodes (under a specific branch) can be requested from the Data Server in an API client
using the listNodes command (MATLAB, Python, .NET) or ziAPIListNodes() function (C
API). Please see each API’s command reference for more help using the listNodes command.
To obtain a list of all the nodes that provide data from an instrument at a high rate, so-called
streaming nodes, the streamingonly flag can be provided to listNodes. More information
on data streaming and streaming nodes is available in in Section 2.2).

The detailed descriptions of nodes that is provided in the instrument-specific user manual
section "Reference Node Documentation" is accessible directly in the LabOne MATLAB or Python
programming interfaces using the "help" command. The help command is daq.help(path)
in Python and ziDAQ('help', path) in MATLAB. The command returns a description of the
instrument node including access properties, data type, units and available options. The "help"
command also handles wildcards to return a detailed description of all nodes matching the path.
An example is provided below.

daq = zhinst.core.ziDAQServer('localhost', 8004, 6)
daq.help('/dev2006/auxouts/0/offset')
Out:
/DEV2006/AUXOUTS/0/OFFSET#
Add the specified offset voltage to the signal after scaling. Auxiliary Output
Value = (Signal+Preoffset)*Scale + Offset
Properties: Read, Write, Setting
Type: Double
Unit: V

2.1.3. Data Server Nodes

The Data Server has nodes in the node tree available under the top-level /ZI/ branch. These nodes
give information about the version and state of the Data Server the client is connected to. For
example, the nodes:

∏/ZI/ABOUT/VERSION

∏/ZI/ABOUT/REVISION

LabOne Programming Manual Revision 22.08 Zurich Instruments 25

2.1. Data Server’s Node Tree

are read-only nodes that contain information about the release version and revision of the Data
Server. The nodes under the /ZI/DEVICES/ list which devices are connected, discoverable and
visible to the Data Server.

The nodes:

∏/ZI/CONFIG/OPEN

∏/ZI/CONFIG/PORT

are settings nodes that can be used to configure which port the Data Server listens to for
incoming client connections and whether it may accept connections from clients on hosts other
than the localhost. See Section 1.4 for more information about specifying the Data Server host
and port.

Nodes that are of particular use to programmers are:

∏/ZI/DEBUG/LOGPATH - the location of the Data Server’s log in the PC’s file system,

∏/ZI/DEBUG/LEVEL - the current log-level of the Data Server (configurable; has the Write
attribute),

∏/ZI/DEBUG/LOG - the last Data Server log entries as a string array.

2.1.4. Reference Node Documentation

This section describes all the nodes in the data server’s node tree organized by branch.

ZI (LabOne Data Server Nodes)

/ZI/ABOUT/COMMIT

Properties: Read

Type: String

Unit: None

Contains the commit hash of the source code used to build this version of the LabOne software.

/ZI/ABOUT/COPYRIGHT

Properties: Read

Type: String

Unit: None

Holds the copyright notice.

/ZI/ABOUT/DATASERVER

Properties: Read

Type: String

Unit: None

LabOne Programming Manual Revision 22.08 Zurich Instruments 26

2.1. Data Server’s Node Tree

Contains information about the Zurich Instruments Data Server.

/ZI/ABOUT/FWREVISION

Properties: Read

Type: Integer (64 bit)

Unit: None

Contains the revision of the device firmware.

/ZI/ABOUT/REVISION

Properties: Read

Type: Integer (64 bit)

Unit: None

Contains the revision number of the Zurich Instruments Data Server.

/ZI/ABOUT/VERSION

Properties: Read

Type: String

Unit: None

Contains the version of the LabOne software.

/ZI/CLOCKBASE

Properties: Read

Type: Double

Unit: None

A fallback clock frequency that can be used by clients for calculating time bases when no other
is available.

/ZI/CONFIG/OPEN

Properties: Read, Write, Setting

Type: Integer (enumerated)

Unit: None

Enable communication with the LabOne Data Server from other computers in the network.

local0

Communication only possible with the local machine.

1 network

LabOne Programming Manual Revision 22.08 Zurich Instruments 27

2.1. Data Server’s Node Tree

Communication possible with other machines in the network.

/ZI/CONFIG/PORT

Properties: Read

Type: Integer (64 bit)

Unit: None

The IP port on which the LabOne Data Server listens.

/ZI/DEBUG/LEVEL

Properties: Read, Write, Setting

Type: Integer (enumerated)

Unit: None

Set the logging level (amount of detail) of the LabOne Data Server.

trace0

Trace. Messages designated as traces are logged.

debug1

Debug. Messages designated as debugging info are logged.

info2

Info. Messages designated as informational are logged.

status3

Status. Messages designated as status info are logged.

warning4

Warning. Messages designated as warnings are logged.

error5

Error. Messages designated as errors are logged.

fatal6

Fatal. Messages designated as fatal errors are logged.

/ZI/DEBUG/LOG

Properties: Read

Type: String

Unit: None

Returns the logfile text of the LabOne Data Server.

/ZI/DEBUG/LOGPATH

Properties: Read

LabOne Programming Manual Revision 22.08 Zurich Instruments 28

2.1. Data Server’s Node Tree

Type: String

Unit: None

Returns the path of the log directory.

/ZI/DEVICES/CONNECTED

Properties: Read

Type: String

Unit: None

Contains a list of devices connected to the LabOne Data Server.

/ZI/DEVICES/DISCOVER

Properties: Read, Write

Type: String

Unit: None

Not used.

/ZI/DEVICES/VISIBLE

Properties: Read

Type: String

Unit: None

Contains a list of devices in the network visible to the LabOne Data Server.

/ZI/MDS/GROUPS/n/DEVICES

Properties: Read, Write, Setting

Type: String

Unit: None

Contains a list of devices in this synchronization group.

/ZI/MDS/GROUPS/n/KEEPALIVE

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Set by the MDS module to indicate control over this synchronization group.

LabOne Programming Manual Revision 22.08 Zurich Instruments 29

2.1. Data Server’s Node Tree

/ZI/MDS/GROUPS/n/LOCKED

Properties: Read, Write, Setting

Type: Integer (64 bit)

Unit: None

Indicates whether the device group is locked by a MDS module.

/ZI/MDS/GROUPS/n/STATUS

Properties: Read, Write, Setting

Type: Integer (enumerated)

Unit: None

Indicates the status the synchronization group.

-1 Error. An error occurred in the synchronization process.

0 New

1 Sync

2 Alive

LabOne Programming Manual Revision 22.08 Zurich Instruments 30

2.2. Data Streaming

2.2. Data Streaming
Zurich Instrument’s Data Servers and devices allow high-speed data acquisition using the "data
streaming" concept. The term "data streaming" refers to the fact that the discrete values of
a device’s output are continuously pushed at a high rate from the device to an API client (via
the device’s physical connection and Data Server) analogously to media streaming where, for
example, video is continuously streamed from one computer to another over the internet.

Data streaming is only available for device outputs such as demodulator and pulse counters,
where it is relevant to acquire the instrument’s discrete data at a very high time resolution.
Settings nodes, for example, are not streamed but rather sent upon request. Some device
outputs additionally allow their data stream to be gated based on the value of another device
signal, such as a trigger input, for example. This allows even higher data transfer rates for short
bursts, that would otherwise not be possible when data is continuously sent from the device.

To optimize the bandwidth of the instrument’s physical connection to the Data Server (e.g. USB,
Ethernet), streaming data for all nodes is, by default, not sent by the device, rather each node
must be enabled at the desired rate by a client. When streaming data from a device output is
enabled, then it is always sent from the device to the Data Server. It is not sent from the Data
Server to the client, however, until the API client explicitly requests the data by "subscribing" to
the data server node providing the streaming data.

The advantage of Zurich Instruments' streaming concept is that it allows extremely high data
acquisition rates. Whereas "fixed rate" data transfer or "fixed-buffer size" data transfer (for all
nodes) allows very simple interfaces for data acquisition, it does not optimize the available
interface bandwidth since low update rates must be imposed to ensure that data loss does not
occur in all situations. Users who prefer a fixed rate or fixed-size buffer transfer may use the Data
Acquisition Module, which adds an additional layer of software on top of data streaming that
emulates these kinds of transfer.

In general, unless extremely fast update rates or high performance data transfer is required by
the client, the Data Acquisition Module is the recommended method to obtain data (as opposed
to the low-level subscribe and poll commands). This is due to the additional complexities involved
when working directly with "raw" streaming data, since users must:

∏Be aware that data loss may occur and must be correctly handled in their API client program.

∏Organize data that may be split across subsequent poll commands.

∏Align/interpolate streaming data from multiple nodes onto a common time grid if required.

The following sections explain these points in further detail, users who acquire the data from
Data Acquisition Module may prefer to skip ahead Section 2.3.

2.2.1. Streaming Nodes

When streaming nodes are recorded directly via the the low-level subscribe and poll commands
they continuously deliver either:

∏Continuous equidistantly spaced data in time, e.g., DEMODS/0/SAMPLE or CNTS/0/
SAMPLE,

∏Continuous non-equidistantly spaced data in time, e.g., BOXCARS/0/SAMPLE when the
boxcar is configured with an external reference-controlled oscillator (but this is somewhat
of a special case).

∏Non-continuous framed "block" data that consist of chunks of data, e.g., SCOPES/0/WAVE.

The qualifier "continuous" deserves further explanation. Each sample point is a discrete data
point sent from the device. Continuous means that the samples are not only continually sent,

LabOne Programming Manual Revision 22.08 Zurich Instruments 31

2.2. Data Streaming

but also that all the data from that device unit/output is sent without gaps in time. Block data on
the other hand is not continuous; it is a single burst of data from a device unit (e.g. scope) that
provides data at a very high data rate.

Nodes that deliver high-speed streaming data have the streaming property set (see Section 2.1.1).
This property can be used with the listNodes command in order to list all the streaming nodes
available on a particular device. For example, in Python:

daq = zhinst.core.ziDAQServer('localhost', 8004, 6)
from zhinst.core import ziListEnum
flags = ziListEnum.recursive | ziListEnum.absolute | ziListEnum.streamingonly
print(int(ziListEnum.streamingonly), flags)
Out:
16, 19
daq.connectDevice('dev2006', 'usb')
daq.listNodes('/dev2006/*/0', flags)
Out:
['/DEV2006/AUCARTS/0/SAMPLE',
'/DEV2006/AUPOLARS/0/SAMPLE',
'/DEV2006/AUXINS/0/SAMPLE',
'/DEV2006/BOXCARS/0/SAMPLE',
'/DEV2006/CNTS/0/SAMPLE',
'/DEV2006/DEMODS/0/SAMPLE',
'/DEV2006/DIOS/0/INPUT',
'/DEV2006/INPUTPWAS/0/WAVE',
'/DEV2006/OUTPUTPWAS/0/WAVE',
'/DEV2006/PIDS/0/STREAM/ERROR',
'/DEV2006/PIDS/0/STREAM/SHIFT',
'/DEV2006/PIDS/0/STREAM/VALUE',
'/DEV2006/SCOPES/0/STREAM/SAMPLE',
'/DEV2006/SCOPES/0/WAVE']

The table below gives an overview of the available streaming nodes on different devices.

Table 2.1. Device streaming nodes. Their availability depends on the device class(e.g. MF) and
the option set installed on the device.

Device Node Path Availability Type Description

AUCARTS/n/SAMPLE UHF ContinuousThe output samples of a Cartesian
Arithmetic Unit

AUPOLARS/n/SAMPLE UHF ContinuousThe output samples of a Polar
Arithmetic Unit

AUXINS/n/SAMPLE All
instruments

ContinuousThe auxiliary input samples. Typically
not used; these values are included as
fields in demodulator samples where
available.

BOXCARS/n/SAMPLE UHF with
Box Option

ContinuousThe output samples of a boxcar.

CNTS/n/SAMPLE UHF or
HDAWG with
CNT Option

ContinuousThe output samples of a counter unit.

DEMODS/n/SAMPLE UHFLI,
HF2LI, MFLI

ContinuousThe output samples of a demodulator.

DIOS/n/INPUT All
instruments

ContinuousThe DIO connector input values. Rarely
used; the input values are included as
a field in demodulator samples where
available.

LabOne Programming Manual Revision 22.08 Zurich Instruments 32

2.2. Data Streaming

Device Node Path Availability Type Description

IMPS/n/SAMPLE MFIA, MFLI
with IA
Option

ContinuousThe output samples of an impedance
channel.

INPUTPWAS/n/WAVE UHF with
BOX Option

Block The value of the input PWA.

OUTPUTPWAS/n/WAVE UHF with
BOX Option

Block The value of the output PWA.

PIDS/n/STREAM/ERROR UHF or MF
with PID
Option

ContinuousThe error value of a PID.

PIDS/n/STREAM/SHIFT UHF or MF
with PID
Option

ContinuousThe shift of a PID; the difference
between the center and the the output
value.

PIDS/n/STREAM/VALUE UHF or MF
with PID
Option

ContinuousThe output value of the PID.

SCOPES/n/STREAM/
SAMPLE

UHF or MF
with DIG
Option

Block Scope values as a continuous block
streaming node.

SCOPES/n/WAVE All
instruments

Block Scope values as a triggered block
streaming node.

TRIGGERS/STREAMS/n/
SAMPLE

HDAWG Block Trigger values.

2.2.2. Alignment of Streaming Node Data

In general, streaming nodes deliver equidistantly-spaced samples in time (assuming no sample
loss has occurred). However, different streaming nodes have different timestamp grids. This is
best explained in Figure 2.2.

Figure 2.2. Samples from different streaming nodes configured with different rates: Demod 1
at 2N kSamples/s, Demod 2 at N kSamples/s and PID Error 1 at M kSample/s (N not divisible by
M). Although each stream consists of equidistantly samples in time, the sample timestamps
from different streams are not necessarily aligned due to the different sampling rates.

2.2.3. Data Loss

While streaming nodes deliver equidistantly sampled data in time (with the exception of a boxcar
output based on an external reference controlled oscillator), they may be subject to data loss

LabOne Programming Manual Revision 22.08 Zurich Instruments 33

2.2. Data Streaming

(also called "sample loss"). This refers to the loss of data between instrument and Data Server
over the physical interface. Since data streaming is optimized for transfer speed, there is no
resend mechanism available that would automatically request that missing data be transferred
again to the Data Server; the data is lost and this case must be handled appropriately in API
programs. In the case of data loss, the returned data will simply be missing, i.e. data will no longer
be equidistantly sampled in time due to to the missing samples. As such, to check for data loss
on streaming node data, the user is advised to calculate the difference between timestamps and
verify that all differences correspond to the expected difference as defined by the configured
data streaming rate.

Data rates are not limited or throttled by the instrument to ensure that data loss does not occur;
the user is responsible to configure streaming data rates for the required nodes such that data
loss does not occur in their system. Data rates are not artificially limited due to the fact that
continuous and hardware triggered data acquisition may be combined. If the cumulative data
sent by the instrument over the physical interface exceeds the available bandwidth then data
loss will occur. The maximum available bandwidth of the physical interface is influenced by the
following factors:

∏Choice of physical interface (USB, 1GbE).

∏Additional load on the interface (Ethernet / USB hub) from other network traffic or devices.

∏Speed of the PC where the Data Server is running.

∏For the case of 1GbE interface only: The PC’s network card.

∏MF instruments only: Whether the Data and/or Web Servers are running on the instrument
or on the PC.

LabOne Programming Manual Revision 22.08 Zurich Instruments 34

2.3. Comparison of Data Acquisition Methods

2.3. Comparison of Data Acquisition Methods
In this section we briefly compare the methods available to obtain data from continuous
streaming instrument nodes (not for block streaming nodes, see Scope Data). Which method is
most appropriate depends on the requirements of the specific application. Table 2.2 provides a
top-level overview.

Table 2.2. Comparison of data acquisition methods available in the LabOne APIs.

Method Good for Not appropriate for

The getSample
function

∏Simple single-shot
measurements of
demodulator data.

∏Non-demodulator streaming
nodes.

∏Continuous data acquisition.

∏Triggered data acquisition.

Data Acquisition
Module in Triggered
Mode

∏Triggered data acquisition.

∏Aligned data from multiple
streams.

Data Acquisition
Module in Continuous
Mode

∏Continuous data acquisition.

∏Aligned data from multiple
streams.

The subscribe and poll
functions

∏Extremely high performance. ∏Data from between different
streaming nodes may not be
aligned by timestamp.

∏Data alignment between polls
not guaranteed.

Scope Data

It is recommended to use the Scope Module for acquiring scope data (from the node SCOPES/n/
WAVE). Although scope data can be acquired using the low-level subscribe and poll commands,
the Scope Module provides additional functionality such as multiple block assembly (SCOPES/
n/WAVE is a "block" streaming node, cf Section 2.1.1) and FFT of the data.

LabOne Programming Manual Revision 22.08 Zurich Instruments 35

2.4. Demodulator Sample Data Structure

2.4. Demodulator Sample Data Structure
An instrument’s demodulator data is returned as a data structure (typically a struct) with the
following fields (regardless of which API Level is used):

timestamp The instrument’s timestamp of the measured demodulator
data uint64. Divide by the instrument’s clockbase (/dev123/
clockbase) to obtain the time in seconds.

x The demodulator x value in Volts [double].

y The demodulator y value in Volts [double].

frequency The current frequency used by the demodulator in Hertz
[double].

phase The oscillator’s phase in Radians (not the demodulator phase)
[double].

auxin0 The auxiliary input channel 0 value in Volts [double].

auxin1 The auxiliary input channel 1 value in Volts [double].

bits The value of the digital input/output (DIO) connector.[integer].

time.dataloss Indicator of sample loss (including block loss) [bool].

time.blockloss Indication of data block loss over the socket connection. This
may be the result of a too long break between subsequent poll
commands [bool].

time.invalidtimestamp Indication of invalid time stamp data as a result of a sampling rate
change during the measurement [bool].

Note

Chapter 8 contains details of other data structures.

LabOne Programming Manual Revision 22.08 Zurich Instruments 36

2.5. Instrument-Specific Considerations

2.5. Instrument-Specific Considerations
This section describes some instrument-specific considerations when programming with the
LabOne APIs.

2.5.1. MF-Specific Considerations

Identifying which Data Server the MF device is connected to

If /DEV…./SYSTEM/ACTIVEINTERFACE has the value "pcie" the device is connected via the Data
Server running locally on the MF instrument itself. If it has the value "1GbE" it is connected via a
Data Server running on a PC.

2.5.2. UHF-Specific Considerations

UHF Lock-in Amplifiers perform an automatic calibration 10 minutes after power-up of the
Instrument. This internal calibration is necessary to achieve the specifications of the system.
However, if necessary, it can be ran manually by setting the device node /DEV…./SYSTEM/CALIB/
CALIBRATE to 1 and then disabled using the /DEV…./SYSTEM/CALIB/AUTO node.

The calibration routine takes about 200 ms and during that time the transfer of measurement
data will be stopped on the Data Server level. If a C Programming (LabOne C API) or LabVIEW
Programming client is polling data during this time, the user will experience data loss; ziAPI has
no functionality to deal with such a streaming interrupt. Clients polling data will be informed of
data loss, which allows the user to ignore this data.

Please see the UHF User Manual for more information about device calibration.

LabOne Programming Manual Revision 22.08 Zurich Instruments 37

Chapter 3. LabOne API Programming
Each of the LabOne APIs (LabVIEW, MATLAB, Python, C, .NET) provide an interface to configure
and acquire data from your instrument. All these programming interfaces are, however, thin
application layers based on a shared core API, ziCore. This chapter describes the low-level
command and high-level functionality provided by LabOne Modules that’s available in all the
LabOne interfaces.

∏Section 3.1 for an Introduction to LabOne Modules.

∏Section 3.2 for Low-level LabOne API Commands.

∏Section 3.3 for the AWG Module.

∏Section 3.4 for the Data Acquisition Module.

∏Section 3.5 for the Device Settings Module.

∏Section 3.6 for the Impedance Module.

∏Section 3.7 for the Multi-Device Synchronisation Module.

∏Section 3.8 for the PID Advisor Module.

∏Section 3.9 for the Precompensation Advisor Module.

∏Section 3.10 for the Quantum Analyzer Module.

∏Section 3.11 for the Scope Module.

∏Section 3.12 for the Sweeper Module.

LabOne Programming Manual Revision 22.08 Zurich Instruments 38

3.1. An Introduction to LabOne Modules

3.1. An Introduction to LabOne Modules
All of the LabOne APIs are based on a central API called ziCore. This allows them to share
a common structure which provides a uniform interface for programming Zurich Instruments
devices. The aim of this section is to familiarize the user with the key ziCore programming
concepts which can then be used in any of the LabOne APIs (LabVIEW, MATLAB, Python, .Net,
and C).

3.1.1. Software Architecture

Each of the ziCore-based APIs is designed to have a minimal code footprint: They are simply
small interface layers that use the functionality derived from ziCore, a central C++ API. The
derived API interfaces (LabVIEW, MATLAB, Python, .NET and C) provide a familiar interface to
the user and allow the them to receive and manipulate data from their instrument using the API
language’s native data types and formats. See Section 1.2 for an overview of the LabOne software
architecture.

3.1.2. ziCore Modules

In addition to the usual API commands available for instrument configuration and data retrieval,
e.g., setInt, poll), ziCore-based APIs also provide a number of so-called Modules: high-level
interfaces that perform common tasks such as sweeping data or performing FFTs.

The Module’s functionality is implemented in ziCore and each derived high-level API simply
provides an interface to that module from the API’s native environment. This design ensures that
the user can expect the same behavior from each module irrespective of which API is being used;
if the user is familiar with a module available in one high-level programming API, it is quick and
easy to start using the module in a different API. In particular, the LabOne User Interface is also
based on ziCore and as such, the user can expect the same behavior using a ziCore-based
API that is experienced in the LabOne User Interface, see Figure 3.1.

Figure 3.1. The same results and behavior can be obtained from Modules in any ziCore-based
interface; Sweeper Module results from the LabOne MATLAB API (left) and the LabOne User
Interface (right) using the same Sweeper and instrument settings.

The modules currently available in ziCore are:

∏The Sweeper Module for obtaining data whilst performing a sweep of one of the instrument’s
setting, e.g., measuring a frequency response.

∏The Data Acquisition Module for recording instrument data asynchronously based upon
user-defined triggers.

LabOne Programming Manual Revision 22.08 Zurich Instruments 39

3.1. An Introduction to LabOne Modules

∏The Device Settings Module for saving and loading instrument settings to and from (XML)
files.

∏The PID Advisor Module for modeling and simulating the PID incorporated in the instrument.

∏The Scope Module for obtaining scope data from the instrument.

∏The Impedance Module for performing impedance measurements.

∏The Multi-Device Synchronisation Module for synchronizing the timestamps of multiple
instruments.

∏The AWG Module for working with the AWG.

∏The Precompensation Advisor Module also for working with the AWG.

In addition to providing a unified-interface between APIs, modules also provide a uniform work-
flow regardless of the functionality the module performs (e.g., sweeping, recording data).

An important difference to low-level ziCore API commands is that Modules execute their
commands asynchronously, see Section 3.1.3.

3.1.3. Synchronous versus Asynchronous Commands

The low-level API commands such as setInt and poll are synchronous commands, that is the
interface will be blocked until that command has finished executing; the user cannot run any
commands in the meantime. Another feature of `ziCore’s Modules is that each instantiation of a
Module creates a new Thread and, as such, the commands executed by a Module are performed
asynchronously. Asynchronous means that the task is performed in the background and the
interface’s process is available to perform other tasks in the meantime, i.e., Module commands
are non-blocking for the user.

3.1.4. Converting LabOne’s "systemtime" to Local Time

Data returned by Core Modules, for example the data of a single sweep, contain a header with
a systemtime; field whose value is the POSIX time in microseconds at the point in time when
the data was acquired. It may correspond to the start of data acquisition or the end, depending
on the module, but will be consistent for all objects returned from one module. In order to help
convert this timestamp to an API environment’s native time format there are utility functions in
the LabOne APIs, where appropriate the example code in the function’s docstring demonstrates
their use. Please check the utility function of the respective API for more details.

LabOne Programming Manual Revision 22.08 Zurich Instruments 40

3.2. Low-level LabOne API Commands

3.2. Low-level LabOne API Commands
This section describes the API commands getSample(), subscribe and poll(). For
continuous data acquisition, however, it is recommended to use the Data Acquisition Module in
continuous mode.

3.2.1. The getSample command: For one-shot measurement
demodulator data

The simplest function to obtain demodulator data is the getSample command. It returns a single
sample from one demodulator channel, i.e., it returns the sample fields (not only the demodulator
outputs X and Y) described in Demodulator Sample Data Structure at one timestamp. The
getSample function returns the last sample for the specified demodulator that the Data Server
has received from the instrument.

Please note, the getSample function only works with the demodulator data type. It does not
work with other data types such as impedance or auxiliary input samples. For non-demodulator
sample types the recommended way to get data is via the subscribe and poll commands.

The getSample command raises a ZIAPITimeoutException if no demodulator data is
received from the device within 5 seconds. This is the case if the requested demodulator is not
enabled. As getSample only returns data from a single demodulator, wildcard path specification
(e.g., /devn/demods/*/sample) is not supported.

If multiple samples (even from one demodulator channel) are required, it is recommended to use
either subscribe and poll (for high performance API applications) or Data Acquisition Module.
Using getSample in anything other than low-speed loops data is not recommended.

3.2.2. The subscribe and poll commands: For high-
performance continuous or block streaming data

The subscribe and poll functions are low-level commands that allow high-speed data transfer
from the instrument to the API. The idea is as follows: The user may subscribe to one or more
nodes in the API session by calling subscribe for each node. This tells the Data Server to create a
buffer for each subscribed node and to start accumulating the data corresponding to the node
that is streamed from the instrument (or instruments, as the case may be). The user can then
call poll (in the same API session) to transfer the data from the Data Server’s buffers to the API’s
client code. If poll is not called within 5 seconds of either subscribing, the last call to poll or calling
the sync command (more information on sync below), the Data Server clears its buffers for the
subscribed nodes and starts accumulating data again. This means that for continuous transfer
of data, the user must regularly poll data from the Data Server to ensure that no data is lost in
between polls.

Simple Example

For example, the following Python code subscribes to the first and fifth demodulator sample
streaming nodes on a lock-in amplifier:

import zhinst.core

daq = zhinst.core.ziDAQServer('localhost', 8004, 6)
Enable the demodulator output and set the transfer rate.
This ensure the device actually pushes data to the Data Server.
daq.setInt('/dev2006/demods/0/enable', 1)
daq.setInt('/dev2006/demods/4/enable', 1)

LabOne Programming Manual Revision 22.08 Zurich Instruments 41

3.2. Low-level LabOne API Commands

This value will be corrected to the nearest legal value by the instrument's FW.
daq.setDouble('/dev2006/demods/0/rate', 10e3)
daq.setDouble('/dev2006/demods/4/rate', 10e3)
daq.subscribe('/dev2006/demods/0/sample')
daq.subscribe('/dev2006/demods/4/sample')
time.sleep(1) # Subscribed data is being accumulated by the Data Server.
data = daq.poll(0.020, 10, 0, True)
data.keys()
Out: dict_keys(['/dev2006/demods/0/sample', '/dev2006/demods/4/sample'])
len(data['/dev2006/demods/0/sample']['timestamp'])
Out: 13824
len(data['/dev2006/demods/4/sample']['timestamp'])
Out: 13746

The subscribe and poll commands return data from streaming nodes as sent from the
instrument’s firmware at the configured data rate. The data returned is the discrete device data as
sampled or calculated by the digital signal processing algorithms on the instrument. As explained
in Section 2.2.1 the data from multiple nodes may not be aligned due to different sampling rates
or different streaming node sources.

When you call subscribe on a node the Data Server starts accumulating data in a dedicated
buffer (for that node and the API session from which subscribe was called). When the buffer
becomes full, then the data is discarded by the Data Server (poll must be called frequently
enough to ensure that data is not lost in between multiple poll calls). When you call poll, then all
the data that has accumulated in the Data Server’s buffers (of subscribed nodes) is returned (it
is transferred to the API client) and is deleted from the Data Server’s buffers. The Data Server
continues to accumulate new data sent from the device for the subscribed nodes after polling
and will continue to do so until unsubscribe is called for that node. It is good practice to call
unsubscribe on the nodes when you no longer want to poll data from them so that the Data Server
stops accumulating data and can free up the system’s memory.

If you would like to continue recording new data for a subscribed node, but discard older
data, then either poll can be called (and the returned older data simply discarded) or the sync
command can be used. Sync clears the Data Server’s buffers of subscribed data but has an
additional function. Additionally, the sync command blocks (it is a synchronous command) until
all set commands have been sent to the device and have taken effect. E.g., if you enable the
instrument’s signal output and want to ensure that you only receive data from poll after the
setting has taken effect the device, then sync should be called after calling set and before calling
poll.

The first two mandatory parameters to poll are the "poll duration" and the "poll timeout"
parameters: Poll is also a synchronous command and will block for the specified poll duration. It
will return the data accumulated during the time in seconds specified by the poll duration, and
as mentioned above, it will also return the data previously accumulated data before calling poll. If
you would like to poll data continuously in a loop, then a very small poll duration should be used,
e.g., 0.05 seconds, so that it only blocks for this time. The poll timeout parameter typically must
not be set very carefully and a value of 100 ms is sufficient. It is indeed only relevant if set to a
larger value than poll duration. In this case, if no data arrives from the instrument, poll will wait
for poll timeout milliseconds before returning. If data does arrive after poll duration but before
the poll timeout, poll returns immediately. It is recommended to simply use a poll timeout of 100
ms (or if poll_duration is smaller, to set it equal to the poll_duration). Unfortunately, the units of
poll duration and poll timeout differ: The poll duration is in seconds, whereas poll timeout is in
milliseconds.

Ensure synchronization of settings before streaming data (sync)

To ensure that any settings have taken effect on the instrument before streaming data is
processed, a special sync command is provided which ensures that the API blocks during the full

LabOne Programming Manual Revision 22.08 Zurich Instruments 42

3.2. Low-level LabOne API Commands

command execution of sending down a marker to the device and receiving it again over the API.
During that time all buffers are cleaned. Therefore, after the sync command the newly recorded
poll data will be later in time than the previous set commands. Be aware that this command is
quite expensive ~100ms.

Asking poll to always return a value for a settings node (getAsEvent)

The poll command only returns value changes for subscribed nodes; no data will be returned for
the node if it has not changed since subscribing to it. If poll should also return the value of a node
that has not changed since subscribing, then getAsEvent may be used instead of or in addition
to subscribe. This ensures that a settings node value is always pushed.

daq = zhinst.core.ziDAQServer('localhost', 8004, 6)
Without getAsEvent no value would be returned by poll.
daq.getAsEvent('/dev2006/sigouts/0/amplitudes/3')
daq.subscribe('/dev2006/sigouts/0/amplitudes/3')
daq.poll(0.200, 10, 0, True)
Out: {'/dev2006/sigouts/0/amplitudes/0': {
'timestamp': array([26980521883432], dtype=uint64),
'value': array([0.30001831])}}

If no data was stored in the Data Server’s data buffer after issuing a poll, the command will wait
for the data until the timeout time. If the buffer is empty after the timeout time passed, poll
will either simply return an empty data structure (for example, an empty dictionary in Python) or
throw an error, depending which flags it have been provided.

Note

Often one of the LabOne ziCore Modules provide an easier and more efficient choice for
data acquisition than the comparably low-level poll command. Each ziCore Module is a
software component that performs a specific high-level measurement task, for example, the
Data Acquisition Module can be used to record bursts of data when a defined trigger condition
is fulfilled or the Sweeper Module can be used to perform a frequency response analysis. See
Section ziCore Modules for an overview of the available Modules.

Explanation of buffering in the Data Server and API Client

The following graphics illustrate how data are stored and transferred between the Instrument,
the Data Server, and the API session in the case when the API session is the only client of the
Data Server. Figure 3.2 shows the situation when the API session has subscribed to a node, but no
poll command is being sent. Figure 3.3 corresponds to the situation when the poll command
with a recording time of 0 is sent at regular intervals, and illustrates the moment just before the
last poll command. Figure 3.4 then illustrates the moment just after the last poll command.

LabOne Programming Manual Revision 22.08 Zurich Instruments 43

3.2. Low-level LabOne API Commands

Figure 3.2. Illustration of data storage and transfer: the API Session (no other Data Server
clients) is subscribed to a node (blue bars representing data stream) but never issues a poll
command. The data are stored in the Data Server’s buffer for a certain time and dumped
afterwards.

Figure 3.3. Illustration of data storage and transfer: the API Session is subscribed to a node and
regularly issues a poll command. The Data Server holds only the data in the memory that were
accumulated since the last poll command.

LabOne Programming Manual Revision 22.08 Zurich Instruments 44

3.2. Low-level LabOne API Commands

Figure 3.4. Illustration of data storage and transfer: the API Session is subscribed to a node
and regularly issues a poll command. Upon a new poll command, all data accumulated in
the Data Server buffer are transferred to the API Session and subsequently cleared from the
Data Server buffer.

In the following cases, the picture above needs to be modified:

1. Multiple Data Server clients: in case multiple clients (API sessions, Web Server) are subscribed
to the same node, the Data Server will keep the corresponding data in the buffer until all
clients have polled the data (or until it’s older than the buffer length). This means different
clients will not interfere with each other.

2. LabVIEW, C, and .NET APIs: in these APIs (unlike in MATLAB and Python), it’s not guaranteed
that a single poll command leads to the transfer of all data in the Data Server buffer because
the block size of transferred data is limited. Nonetheless, by calling poll frequently enough,
a gapless stream of data can be obtained.

3. HF2 Series instruments: the buffer Data Server for HF2 Series instruments is defined by its
memory size rather than by its length in units of time. This means that the duration for which
the Data Server will store data depends on the sampling rate.

LabOne Programming Manual Revision 22.08 Zurich Instruments 45

3.3. AWG Module

3.3. AWG Module

The AWG module allows programmers to access the functionality available in the LabOne User
Interface AWG tab. It allows users to compile and upload sequencer programs to the arbitrary
waveform generator on UHF and HDAWG instruments from any of the LabOne APIs.

This chapter only explains the specifics for working with an AWG from an API; reference
documentation of the LabOne AWG Sequencer Programming Language can be found in the UHF
or HDAWG User Manual.

Figure 3.5. An AWG signal generated and measured using a UHFLI with the AWG Option. The
waveform data was measured via a feedback cable using the UHF’s Scope. The plot was
generated by the Python API example for the UHFLI, example_awg.py, which also generates
the expected waveform and cross-correlates it with the measured waveform in order to overlay
the expected signal on the measurement data.

3.3.1. Getting Started with the AWG Module

The following API examples demonstrating AWG Module use are available:

∏MATLAB and Python, example_awg.{py,m}: Compiles and uploads an AWG sequencer
program from a string. It demonstrates how to define waveforms using the four methods
listed below in Section 3.3.3. Separate versions of these examples are available for both UHF
and HDAWG instruments.

∏MATLAB and Python, example_awg_sourcefile.{py,m}: Demonstrates how to compile
and upload an AWG sequencer program from a .seqc file. Separate versions of these
examples are available for both UHF and HDAWG instruments.

LabOne Programming Manual Revision 22.08 Zurich Instruments 46

https://github.com/zhinst/labone-api-examples/blob/main/uhf/python/example_awg.py

3.3. AWG Module

∏LabVIEW, ziExample-UHFLI-Module-AWG.vi: Compiles and uploads an AWG sequencer
program from a string and captures the generated waveform in the scope (UHF only).

∏.NET, ExampleAwgModule() (in Examples.cs): Compiles and uploads an AWG sequencer
program from a string. It demonstrates how to define waveforms using the four methods
listed below in Section 3.3.3.

∏C API, ExampleAWGUpload.c: Demonstrates how to compile and upload an AWG
sequencer program from a .seqc file.

3.3.2. Sequencer Program Compilation and Upload

Programming an AWG with a sequencer program is a 2-step process. First, the source code must
be compiled to a binary ELF file and secondly the ELF file must be uploaded from the PC to the
AWG on the UHF or HDAWG instrument. Both steps are performed by an instance of the AWG
Module regardless of whether the module is used in the API or the LabOne User Interface’s AWG
Sequencer tab.

Compilation

An AWG sequencer program can be provided to the AWG module for compilation as either a:

1. Source file: In this case the sequencer program file must reside in the "awg/src" sub-directory
of the LabOne user directory. The filename (without full directory path) must be specified
via the compiler/sourcefile parameter and compilation is started when the in-out
parameter compiler/start is set to 1.

2. String: A sequencer program may also be sent directly to the AWG Module as a string
(comprising of a valid sequencer program) without the need to create a file on disk. The
string is sent to the module by writing it to the compiler/sourcestring using the module
setString() function. In this case, compilation is started automatically after writing the
source string.

Upload

If the compiler/upload parameter is set to 1 the ELF file is automatically uploaded to the AWG
after successful compilation. Otherwise, it must be uploaded by setting the in-out parameter
elf/upload to 1. A running AWG must be disabled first in order to upload a new sequencer
program and it must be enabled again after upload.

3.3.3. Methods to define Waveforms in Sequencer Programs

The waveforms played by an AWG sequencer program can be defined, or in the last case,
modified, using the following four methods. These methods are demonstrated by the examples
listed in Section 3.3.1.

1. By using one of the waveform generation functions such as sine(), sinc(), gauss(),
etc. defined in the LabOne AWG Sequencer programming language. See the UHF, HDAWG or
SHFSG User Manual for full reference documentation.

2. By defining a placeholder waveform and later loading the actual waveform from the API.
This method is optimal, especially for long waveforms.1

1The UHF platform is an exception and this method is on the contrary slower. However, since the waveform memory is limited, that
should not be relevant for most of the practical purposes.

LabOne Programming Manual Revision 22.08 Zurich Instruments 47

3.3. AWG Module

3. By defining a waveform in a file, either with a floating point format in a CSV file, or a binary file.

API vector transfer

The waveform must be first defined in the sequence, either as placeholder or as completely
defined waveform with valid samples. In the first case, the compiler will only allocate the required
memory and the waveform content is loaded later. The waveform definition must specify the
length and eventual presence of markers. This should be respected later when the actual
waveform is loaded.

The waveform can be loaded from the API using the set command to write waveform data the
following nodes:

UHF /DEV…/AWGS/0/WAVEFORM/WAVES/<index>

HDAWG /DEV…/AWGS/[0-3]/WAVEFORM/WAVES/<index>

SHFSG /DEV…/SGCHANNELS/[0-7]/AWG/WAVEFORM/WAVES/<index> a

aOnly dual-channel waveforms

These nodes are the same regardless of the channel grouping mode on the HDAWG, so for
example even when using the 1x8 mode on HDAWG8, waveforms are addressed separately for all 4
AWG cores. Multiple waveform uploads can be combined into one set command, which reduces
upload time (see below). The assignment of a waveform to an index is done directly in the AWG
sequence program using the assignWaveIndex instruction. As example

wave w = placeholder(WFM_SIZE);
assignWaveIndex(1,w, INDEX);

will allocate a waveform of WFM_SIZE at the index INDEX.

Dual-channel waveforms

Dual-channel waveform are effectively a single waveform, so there is only one index associated:

wave w1 = placeholder(WFM_SIZE);
wave w2 = placeholder(WFM_SIZE);
assignWaveIndex(1,w1, 2,w2, INDEX);

HDAWG grouped mode

When the HDAWG is configured to work in grouped mode (all modes except 4x2 mode), see section
Section 3.3.4, the waveforms for each AWG core are treated separately, even when they are
played together. As in the 4x2 mode, waveforms can be either single- or dual-channel per core.
As an example, this sequence

//AWG CORE 1
wave w1 = placeholder(WFM_SIZE);
wave w2 = placeholder(WFM_SIZE);
assignWaveIndex(1,w1, 2,w2, INDEX1);

//AWG CORE 2
wave w3 = placeholder(WFM_SIZE);
assignWaveIndex(3,w3, INDEX2);

//Playback
playWave(1,w1, 2,w2, 3,w3);

defines one dual-channel waveform on core 1, and one single-channel waveform on core 2. They
can be loaded by writing their content to the nodes

LabOne Programming Manual Revision 22.08 Zurich Instruments 48

3.3. AWG Module

∏/DEV…/AWGS/0/WAVEFORM/WAVES/<INDEX1>

∏/DEV…/AWGS/1/WAVEFORM/WAVES/<INDEX2>

The waveform nodes use the internal raw format of the instrument and map the hardware
capabilities of an AWG core. Thus, each waveform node can hold up to two analog waveforms and
four markers. The length, number of waves and the presence of markers must be the same as
defined in the sequence. An analog waveform is represented as array of signed int16. The markers
are represented as array of int16, with the marker values defined in the four LSB; the other 12 bits
must be zeros (see Figure 3.6).

wave_int16 = int16((1 << 15 - 1) * wave_float);
markers = int16(mk1_out1 * 1 << 0 + mk2_out1 * 1 << 1 +
 mk1_out2 * 1 << 2 + mk2_out2 * 1 << 3);

If there is more than one analog waveform and/or markers, the arrays representing them must
be interleaved; the order should be the first wave, then the second and finally the markers (see
Figure 3.6).

Figure 3.6. Interleaving of waves and markers in AWG raw format

In Python, it’s convenient to use the helper functions
zhinst.utils.convert_awg_waveform and zhinst.utils.parse_awg_waveform to
write and read these nodes.

When uploading 2 or more waveforms with the Python API, it is recommended to perform the
waveform upload with a single set command. This is possible by combining multiple pairs of
waveform addresses and data as a Python list of tuples, and using this list as the argument of
the set command. In this way, the overhead in communication latency is paid only once, and
waveform upload is much faster than when issuing a set command for each waveform. The
example below shows both the usage of the helper functions, and the combination of multiple
waveform uploads in one set command.

Note

The set command is only available with the Python API. Other APIs are limited to the use of
setVector. setVector does not support combining multiple commands into one. Apart from
that, its usage is identical to that of set.

import zhinst.core
import zhinst.utils
import numpy as np

device = 'dev8000'
daq = zhinst.core.ziDAQServer('localhost', 8004, 6) #Connect to the dataserver
daq.connectDevice(device, '1GbE') #Connect to the device

#Generate a waveform and marker
WFM_SIZE = 1024
wave_a = np.sin(np.linspace(0, 10*np.pi, WFM_SIZE))*np.exp(np.linspace(0, -5,
 WFM_SIZE))
wave_b = np.sin(np.linspace(0, 20*np.pi, WFM_SIZE))*np.exp(np.linspace(0, -5,
 WFM_SIZE))
wave_c = np.sin(np.linspace(0, 30*np.pi, WFM_SIZE))*np.exp(np.linspace(0, -5,
 WFM_SIZE))

LabOne Programming Manual Revision 22.08 Zurich Instruments 49

3.3. AWG Module

marker_a = np.concatenate([0b11*np.ones(32),
 np.zeros(WFM_SIZE-32)]).astype(int)
marker_bc = np.concatenate([0b1111*np.ones(32),
 np.zeros(WFM_SIZE-32)]).astype(int)
#Convert and send them to the instrument
wave_raw_a = zhinst.utils.convert_awg_waveform(wave_a, markers=marker_a)
wave_raw_bc = zhinst.utils.convert_awg_waveform(wave_b, wave_c, markers=marker_bc)

INDEX1 = 0
INDEX2 = 1

set_cmd = [(f'/{device:s}/awgs/0/waveform/waves/{INDEX1}', wave_raw_a),
 (f'/{device:s}/awgs/0/waveform/waves/{INDEX2}', wave_raw_bc)]

daq.set(set_cmd)

The Python code above corresponds to an AWG sequence program as the one below, which
makes use of a single-channel and a dual-channel waveform playback.

wave w_a = placeholder(WFM_SIZE, true, true);
wave w_b = placeholder(WFM_SIZE, true, true);
wave w_c = placeholder(WFM_SIZE, true, true);
assignWaveIndex(1, w_a, INDEX1);
assignWaveIndex(w_b, w_c, INDEX2);

playWave(1, w_a);
playWave(w_b, w_c);

Note

The waveform nodes have the property SILENTWRITE. This means that subscribing to such a
node has no effect, i.e. changes to the node will not be returned in poll. To obtain the contents of
such nodes, getAsEvent has to be called followed by poll. For short vectors get may be used.

File on disk

A waveform stored on the disk can be loaded from the sequence by referring to the file name
without extension in the sequence program. For example

//Definition inline with playWave
playWave("wave_file");

//Assign first to a wave data type, then use
wave w = "wave_file";
playWave(w)

Two formats are supported, an CSV ASCII based and a binary one. The binary format should
be preferred as it offers faster compilation than the CSV format. The waveform files must be
located in the "awg/waveforms" sub-directory of the LabOne user directory (see explanation of
directory).

Binary

The binary format support only single-channel definition. To use dual-channel waveforms, two
files holding single-channel waveform can be loaded separately:

wave w1 = 'wave1';
wave w2 = 'wave2';

playWave(1,w1, 2,w2);

LabOne Programming Manual Revision 22.08 Zurich Instruments 50

3.3. AWG Module

The file must use the extension ".wave". Each sample is a word of 16 bits little-endian. The bits
are assigned as follow:

∏Bit 15-2: Wave, as 14 bit signed integer

∏Bit 1: Marker 2

∏Bit 0: Marker 1

As example, the waveform [-1.0, 0.0, 1.0], without marker will be saved as 04 80 00 00 FC 7F.
The same waveform with marker1 [1,0,0] and marker2 [1,1,0] would be FD 7F 01 00 02 00.

Figure 3.7. Binary format of samples

Note

By default the AWG compiler loads in memory all the binary waveforms present in the
directory. To achieve faster compilation, it’s advised to keep there only the required waveforms
or to use the compiler/waveform.

ASCII CSV

As alternative to binary waveform, the ASCII CSV format can be used. The CSV file should contain
floating-point values in the range from –1.0 to +1.0 and contain one or two columns, corresponding
to the single- and dual-channel waveforms. The file must use the extension ".csv". As an example,
the following specify a dual-channel wave with a length of 16 samples:

-1.0 0.0
-0.8 0.0
-0.7 0.1
-0.5 0.2
-0.2 0.3
-0.1 0.2
 0.1 0.0
 0.2 -0.1
 0.7 -0.3
 1.0 -0.2
 0.9 -0.3
 0.8 -0.2
 0.4 -0.1
 0.0 -0.1
-0.5 -0.1
-0.8 0.0

In order to obtain digital marker data from a file, specify a second wave file with integer instead of
floating-point values. The marker bits are encoded in the binary representation of the integer (i.e.,
integer 1 corresponds to the first marker high, 2 corresponds to the second marker high, and 3
corresponds to both bits high). Later in the program add up the analog and the marker waveforms.
For instance, if the floating-point analog data are contained in wave_file_analog.csv and
the integer marker data in wave_file_digital.csv, the following code can be used to
combine and play them.

wave w_analog = "wave_file_analog";
wave w_digital = "wave_file_digital";
wave w = w_analog + w_digital;
playWave(w);

LabOne Programming Manual Revision 22.08 Zurich Instruments 51

3.3. AWG Module

As an alternative to specifying analog data as floating-point values in one file, and marker data
as integer values in a second file, both may be combined into one file containing integer values.
The integer values in that file should be 18-bit unsigned integers with the two least significant
bits being the markers. The values are mapped to 0 ⇒ -FS, 262143 ⇒ +FS, with FS equal to the
full scale. This integer version of the CSV format is not to be confused with the binary file format
documented previously. To optimize compilation speed, the binary format should be preferred
over both versions of the CSV format.

3.3.4. HDAWG Channel Grouping

This section explains how to configure the index parameter and which AWGS node branch must
be used for different channel grouping configurations. The channel grouping is defined by the
value of the the node /DEV…./SYSTEM/AWG/CHANNELGROUPING as follows:

0: Use the outputs in groups of 2; each sequencer program controls 2 outputs. Each group
n=0,1,2,3 of AWGs (respectively n=0,1 on HDAWG4 instruments) is configured by the /DEV…
./AWGS/n branches. Each of these 4 groups requires its own instance of the AWG Module
and index should be set to n=0,1,2,3 for each group accordingly.

1: Use the outputs in groups of 4; each sequencer program controls 4 outputs. Each group n=0,1
of AWGs (respectively n=0 on HDAWG4 instruments) is configured by the /DEV…./AWGS/0
and /DEV…./AWGS/2 branches. Each of these two groups requires its own instance of the
AWG Module and index should be set to n=0,1 for each group accordingly. For HDAWG4
instruments, there is only one group of 4 outputs which is configured by the /DEV…./AWGS/0
branch.

2: HDAWG8 devices only. Use the outputs in a single group of 8; the (single) sequencer program
controls 8 outputs. There is only one group (n=0) of 8 AWGs which is configured by the /
DEV…./AWGS/0 branch. Only one instance of the AWG Module is required and its value of
index should be 0.

Table 3.1. Overview of the device nodes and the value of index used indifferent channel
grouping configurations on HDAWG8 instruments.

Value of
CHANNELGROUPING

Number
of Cores

AWG
Core

Corresponding
device AWG

branch index

Value of index

1 /DEV…./AWGS/0 0

2 /DEV…./AWGS/1 1

3 /DEV…./AWGS/2 2
0 4

4 /DEV…./AWGS/3 3

1 /DEV…./AWGS/0 0
1 2

2 /DEV…./AWGS/2 1

2 1 1 /DEV…./AWGS/0 0

Table 3.2. Overview of the device nodes and the value of index used indifferent channel
grouping configurations on HDAWG4 instruments.

Value of
CHANNELGROUPING

Number
of Cores

AWG
Core

Corresponding
device AWG

branch index

Value of index

1 /DEV…./AWGS/0 0
0 2

2 /DEV…./AWGS/1 1

LabOne Programming Manual Revision 22.08 Zurich Instruments 52

3.3. AWG Module

Value of
CHANNELGROUPING

Number
of Cores

AWG
Core

Corresponding
device AWG

branch index

Value of index

1 1 1 /DEV…./AWGS/0 0

3.3.5. AWG Module Node Tree

The following section contains reference documentation for the settings and measurement data
available on the AWG module.

Since these settings and data streams may be written and read using the LabOne APIs
(Application Programming Interfaces) this section is of particular interest to users who would like
to perform measurements programmatically via LabVIEW, Python, MATLAB, .NET or C.

awg

//awg/enable

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Start the AWG sequencers. In MDS mode, this will enable all devices in the correct order.

compiler

//compiler/sourcefile

Properties: Read, Write

Type: String

Unit: None

The filename of an AWG sequencer program file to compile and load. The file must be located in
the "awg/src" sub-directory of the LabOne user directory. This directory path is provided by the
value of the read-only directory parameter.

//compiler/sourcestring

Properties: Read, Write

Type: String

Unit: None

A string containing an AWG sequencer program may directly loaded to this parameter using the
module command setString. This allows compilation and upload of a sequencer program without
saving it to a file first. Compilation starts automatically after compiler/sourcestring has been set.

LabOne Programming Manual Revision 22.08 Zurich Instruments 53

3.3. AWG Module

//compiler/start

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Set to 1 to start compiling the AWG sequencer program specified by compiler/ sourcefile. The
module sets compiler/ start to 0 once compilation has successfully completed (or failed). If
compiler/upload is enabled then the sequencer program will additionally be uploaded to the AWG
upon after successful compilation.

//compiler/status

Properties: Read

Type: Integer (enumerated)

Unit: None

Compilation status

-1 Idle.

0 Compilation successful.

1 Compilation failed.

2 Compilation completed with warnings.

//compiler/statusstring

Properties: Read

Type: String

Unit: None

Status message of the compiler.

//compiler/upload

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Specify whether the sequencer program should be automatically uploaded to the AWG following
successful compilation.

//compiler/waveforms

Properties: Read, Write

LabOne Programming Manual Revision 22.08 Zurich Instruments 54

3.3. AWG Module

Type: String

Unit: None

A comma-separated list of waveform CSV files to be used by the AWG sequencer program.

device

//device

Properties: Read, Write

Type: String

Unit: None

The target device for AWG sequencer programs upload, e.g. 'dev2006'.

directory

//directory

Properties: Read, Write

Type: String

Unit: None

The path of the LabOne user directory. The AWG Module uses the following subdirectories in
the LabOne web server directory: "awg/src": Contains AWG sequencer program source files (user
created); "awg/elf": Contains compiled AWG binary (ELF) files (created by the module); "awg/
waves": Contains CSV waveform files (user created).

elf

//elf/checksum

Properties: Read

Type: Integer (64 bit)

Unit: None

The checksum of the generated ELF file.

//elf/file

Properties: Read, Write

Type: String

Unit: None

LabOne Programming Manual Revision 22.08 Zurich Instruments 55

3.3. AWG Module

The filename of the compiled binary ELF file. If not set, the name is automatically set based on the
source filename. The ELF file will be saved by the AWG Module in the "awg/elf" sub-directory of
the LabOne user directory. This directory path is provided by the value of the read-only directory
parameter.

//elf/status

Properties: Read

Type: Integer (enumerated)

Unit: None

Status of the ELF file upload.

-1 Idle.

0 Upload successful.

1 Upload failed.

2 Upload in progress.

//elf/upload

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Set to 1 to start uploading the AWG sequencer program to the device. The module sets elf/upload
to 0 once the upload has finished.

index

//index

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

The index of the current AWG Module to use when running with multiple AWG groups. See section
on channel grouping in the manual for further explanation.

mds

//mds/group

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

LabOne Programming Manual Revision 22.08 Zurich Instruments 56

3.3. AWG Module

The MDS group (multiDeviceSyncModule/group) to use for synchronized AWG playback.

progress

//progress

Properties: Read

Type: Double

Unit: None

Reports the progress of the upload as a value between 0 and 1.

sequencertype

//sequencertype

Properties: Read, Write

Type: Integer (enumerated)

Unit: None

Type of sequencer to compile for. For all devices but the SHFQC, the sequencer type is deduced
from the device type, and this node is ignored. For the SHFQC, the sequencer type must be
defined ("qa" or "sg").

auto-detect0

The sequencer type is deduced from the device type (for all devices but the SHFQC).

qa1

QA sequencer

sg2

SG sequencer

LabOne Programming Manual Revision 22.08 Zurich Instruments 57

3.4. Data Acquisition Module

3.4. Data Acquisition Module

The Data Acquisition Module corresponds to the Data Acquisition tab of the LabOne User
Interface. It enables the user to record and align time and frequency domain data from multiple
instrument signal sources at a defined data rate. The data may be recorded either continuously
or in bursts based upon trigger criteria analogous to the functionality provided by laboratory
oscilloscopes.

Figure 3.8. The plot was generated by example_data_acquisition_edge.py, an example
distributed on our public GitHub repository (https://github.com/zhinst/labone-api-examples).
The plot shows 10 bursts of data acquired from a demodulator; each burst was recorded when
the demodulator’s R value exceeded a specified threshold using a positive edge trigger.

3.4.1. DAQ Module Acquisition Modes and Trigger Types

This section lists the required parameters and special considerations for each trigger mode. For
reference documentation of the module’s parameters please see Section 3.4.3.

Table 3.3. Overview of the acquisition modes available in the Data Acquisition Module.

Mode / Trigger
Type

Description Value of type

Continuous Continuous recording of data. 0

Edge Edge trigger with noise rejection. 1

Pulse Pulse width trigger with noise rejection. 3

LabOne Programming Manual Revision 22.08 Zurich Instruments 58

https://github.com/zhinst/labone-api-examples/blob/main/common/python/example_data_acquisition_edge.py
https://github.com/zhinst/labone-api-examples

3.4. Data Acquisition Module

Mode / Trigger
Type

Description Value of type

Tracking (Edge or
Pulse)

Level tracking trigger to compensate for
signal drift.

4

Digital Digital trigger with bit masking. 2

Hardware Trigger on one of the instrument’s
hardware trigger channels (not available
on HF2).

6

Pulse Counter Trigger on the value of an instrument’s
pulse counter (requires CNT Option).

8

Continuous Acquisition

This mode performs back-to-back recording of the subscribed signal paths. The data is returned
by read() in bursts of a defined length (duration). This length is defined either:

∏Directly by the user via duration for the case of nearest or linear sampling (specified by
grid/mode).

∏Set by the module in the case of exact grid mode based on the value of grid/cols and the
highest sampling rate rate of all subscribed signal paths.

Acquisition using Level Edge Triggering

Parameters specific to edge triggering are:

∏level,

∏hysteresis.

The user can request automatic calculation of the level and hysteresis parameters by
setting the findlevel parameter to 1. Please see Determining the Trigger Level automatically
for more information.

Figure 3.9. Explanation of the Data Acquisition Module’s parameters for an Edge Trigger.

LabOne Programming Manual Revision 22.08 Zurich Instruments 59

3.4. Data Acquisition Module

Acquisition using Pulse Triggering

Parameters specific to pulse triggering are:

∏level,

∏hysteresis,

∏pulse/min,

∏pulse/max.

The user can request automatic calculation of the level and hysteresis parameters by
setting the findlevel parameter to 1. Please see Determining the Trigger Level automatically
for more information.

Figure 3.10. Explanation of the Data Acquisition Module’s parameters for a positive Pulse
Trigger.

Acquisition using Tracking Edge or Pulse Triggering

In addition to the parameters specific to edge and pulse triggers, the parameter that is of
particular importance when using a tracking trigger type is:

∏bandwidth

LabOne Programming Manual Revision 22.08 Zurich Instruments 60

3.4. Data Acquisition Module

Figure 3.11. Explanation of the Data Acquisition Module’s parameters for a Tracking Trigger.

Acquisition using Digital Triggering

To use the DAQ Module with a digital trigger, it must be configured to use a digital trigger type (by
setting type to 2) and to use the output value of the instrument’s DIO port as it’s trigger source.
This is achieved by setting triggernode to the device node /DEV…./DEMODS/N/SAMPLE.bits).
It is important to be aware that the Data Acquisition Module takes its value for the DIO output
from the demodulator sample field bits, not from a node in the /DEV…./DIOS/ branch. As such,
the specified demodulator must be enabled and and an appropriate transfer rate configured that
meets the required trigger resolution (the Data Acquisition Module can only resolve triggers at
the resolution of 1/(/DEV…./DEMODS/N/RATE); it is not possible to interpolate a digital signal to
improve trigger resolution and if the incoming trigger pulse on the DIO port is shorter than this
resolution, it may be missed).

The Digital Trigger allows not only the trigger bits (bits) to be specified but also a bit mask
(bitmask) in order to allow an arbitrary selection of DIO pins to supply the trigger signal. When a
positive, respectively, negative edge trigger is used, all of these selected pins must become high,
respectively low. The bit mask is applied as following. For positive edge triggering (edge set to
value 1), the Data Acquisition Module recording is triggered when the following equality holds for
the DIO value:

(/DEV..../DEMODS/N/SAMPLE.bits BITAND bitmask) == (bits BITAND bitmask)

and this equality has not been met for the previous value in time (the previous sample) of /DEV…./
DEMODS/N/SAMPLE.bits. For negative edge triggering (edge set to value 2), the Data Acquisition
Module recording is triggered when the following inequality holds for the current DIO value:

(/DEV..../DEMODS/N/SAMPLE.bits BITAND bitmask) != (bits BITAND bitmask)

and this inequality was not met (there was equality) for the previous value of the DIO value.

Acquisition using Hardware Triggering

There are no parameters specific only to hardware triggering since the hardware trigger defines
the trigger criterion itself; only the trigger edge must be specified. For a hardware trigger the
triggernode must be one of:

LabOne Programming Manual Revision 22.08 Zurich Instruments 61

3.4. Data Acquisition Module

∏/DEV…/CNTS/N/SAMPLE.TrigAWGTrigN + (requires CNT Option),

∏/DEV…/DEMODS/N/SAMPLE.TrigAWGTrigN,

∏/DEV…/DEMODS/N/SAMPLE.TrigDemod4Phase,

∏/DEV…/DEMODS/N/SAMPLE.TrigDemod8Phase,

∏/DEV…/CNTS/N/SAMPLE.TrigInN (requires CNT Option),

∏/DEV…/DEMODS/N/SAMPLE.TrigInN,

∏/DEV…/DEMODS/N/SAMPLE.TrigOutN.

The hardware trigger type is not supported on HF2 instruments.

Acquisition using Pulse Counter Triggering

Pulse Counter triggering requires the CNT Option. Parameters specific to the pulse counter
trigger type:

∏eventcount/mode.

The triggernode must be configured to be a pulse counter sample:

∏/DEV…./CNTS/N/SAMPLE.value

Determining the Trigger Level automatically

The Data Acquisition Module can calculate the level and hysteresis parameters based on
the current input signal for edge, pulse, tracking edge and tracking pulse trigger types. This is
particularly useful when using a tracking trigger, where the trigger level is relative to the output
of the low-pass filter tracking the input signal’s average (see Figure 3.11). In the LabOne User
Interface this functionality corresponds to the "Find" button in the Settings sub-tab of the Data
Acquisition Tab.

This functionality is activated via API by setting the findlevel parameter to 1. This is a single-
shot calculation of the level and hysteresis parameters, meaning that it is performed only once,
not continually. The Data Acquisition Module monitors the input signal for a duration of 0.1
seconds and sets the level parameter to the average of the largest and the smallest values
detected in the signal and the hysteresis to 10% of the difference between largest and smallest
values. When the Data Acquisition Module has finished its calculation of the level and hysteresis
parameters it sets the value of the findlevel parameter to 0 and writes the values to the level
and hysteresis parameters. Note that the calculation is only performed if the Data Acquisition
Module is currently running, i.e., after execute() has been called.

Arm the Data Acquisition Module: ready for trigger acquisition.
trigger.execute()
Tell the Data Acquisition Module to determine the trigger level.
trigger.set('findlevel', 1)
findlevel = 1
timeout = 10 # [s]
t0 = time.time()
while findlevel == 1:
 time.sleep(0.05)
 findlevel = trigger.getInt('findlevel')
 if time.time() - t0 > timeout:
 trigger.finish()
 trigger.clear()
 raise RuntimeError("Data Acquisition Module didn't find trigger level
 after %.3f seconds." % timeout)

LabOne Programming Manual Revision 22.08 Zurich Instruments 62

3.4. Data Acquisition Module

level = trigger.getDouble('level')
hysteresis = trigger.getDouble('hysteresis')

Example 3.1. Python code demonstrating how to use the findlevel parameter. Taken from
the Python example example_data_acquisition_grid.

3.4.2. Signal Subscription

The Data Acquisition Module uses dot notation for subscribing to the signals. Whereas with
the Software Trigger (Recorder Module) you subscribe to an entire streaming node, e.g. /DEV…
./DEMODS/N/SAMPLE and get all the signal components of this node back, with the Data
Acquisition Module you specify the exact signal you are interested in capturing, e.g. /DEV…./
DEMODS/N/SAMPLE.r /DEV…./DEMOD/0/SAMPLE.phase. In addition, by appending suffixes to
the signal path, various operations can be applied to the source signal and cascaded to obtain
the desired result. Some examples are given below (the /DEV…/DEMODS/n/SAMPLE prefix has
been omitted):

x Demodulator sample x component.

r.avg Average of demodulator sample abs(x + iy).

x.std Standard deviation of demodulator sample x component.

xiy.fft.abs.std Standard deviation of complex FFT of x + iy.

phase.fft.abs.avg Average of real FFT of linear corrected phase.

freq.fft.abs.pwr Power of real FFT of frequency.

r.fft.abs Real FFT of abs(x + iy).

df.fft.abs Real FFT of demodulator phase derivative (dθ/dt)/(2π).

xiy.fft.abs.pwr Power of complex FFT of x + iy.

xiy.fft.abs.filter Demodulator low-pass filter transfer function. Divide xiy.fft.abs by this
to obtain a compensated FFT.

The specification for signal subscription is given below together with the possible options. Angle
brackets <> indicate mandatory fields. Square brackets [] indicate optional fields.

<node_path><.source_signal>[.fft<.complex_selector>[.filter]][.pwr]
[.math_operation]

Signal Subscription Options

source signal

Node Signal
Name

Description (Path of the node
containing the signal(s))

Comment

x Demodulator output in-phase
component

y Demodulator output quadrature
component

r Demodulator output amplitude

theta Demodulator output phase

frequency Oscillator frequency

auxin0 Auxilliary input channel 1

demod

auxin1 Auxilliary input channel 2

LabOne Programming Manual Revision 22.08 Zurich Instruments 63

3.4. Data Acquisition Module

source signal

xiy Combined demodulator output
in-phase and quadrature
components

complex output (can only
be used as FFT input))

df Demodulator output phase
derivative (can only be used for
FFT(dθ/dt)/(2π)

realz In-phase component of
impedance sample

imagz Quadrature component of
impedance sample

absz Amplitude of impedance sample

phasez Phase of impedance sample

frequency Oscillator frequency

param0 Measurement parameter that
depends on circuit configuration

param1 Measurement parameter that
depends on circuit configuration

drive Amplitude of the AC signal
applied to the device under test

bias DC Voltage applied to the device
under test

impedance

z Combined impedance in-phase
and quadrature components

complex (can only be used
as FFT input)

other Nodes not listed here Nodes containing only
one signal do not have a
source_signal field.

FFT (optional)

Name (node_path) Description (Path of the node
containing the signal(s))

Comment

FFT complex output

complex_selector (mandatory with FFT)

Name (node_path) Description (Path of the node
containing the signal(s))

Comment

real Real component of FFT

imag Imaginary component of FFT

abs Absolute component of FFT

phase Phase component of FFT

filter (optional)

Name (node_path) Description (Path of the node
containing the signal(s))

Comment

filter Helper signal representing
demodulator low-pass filter
transfer function. It can only be
applied to 'abs' FFT output of

LabOne Programming Manual Revision 22.08 Zurich Instruments 64

3.4. Data Acquisition Module

filter (optional)

complex demodulator source
signal, i.e. 'xiy.fft.abs.filter'.
No additional operations are
permitted. Can be used to
compensate the FFT result for
the demodulator low-pass filter.

pwr (optional)

Name (node_path) Description (Path of the node
containing the signal(s))

Comment

pwr Power calculation

math_operation (optional)

Name (node_path) Description (Path of the node
containing the signal(s))

Comment

avg Average of grid repetitions
(parameter grid/repetitions)

std Standard deviation

3.4.3. Data Acquisition Module Node Tree

The following section contains reference documentation for the settings and measurement data
available on the data acquisition module.

Since these settings and data streams may be written and read using the LabOne APIs
(Application Programming Interfaces) this section is of particular interest to users who would like
to perform measurements programmatically via LabVIEW, Python, MATLAB, .NET or C.

awgcontrol

//awgcontrol

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Enable interaction with the AWG. If enabled, the row number is identified based on the digital
row ID number set by the AWG. If disabled, every new trigger event is attributed to a new row
sequentially.

bandwidth

//bandwidth

Properties: Read, Write

Type: Double

Unit: Hz

LabOne Programming Manual Revision 22.08 Zurich Instruments 65

3.4. Data Acquisition Module

Set to a value other than 0 in order to apply a low-pass filter with the specified bandwidth to the
triggernode signal before applying the trigger criteria. For edge and pulse trigger use a bandwidth
larger than the trigger signal’s sampling rate divided by 20 to keep the phase delay. For tracking
filter use a bandwidth smaller than the trigger signal’s sampling rate divided by 100 to track slow
signal components like drifts. The value of the filtered signal is returned by read() under the path /
DEV…./TRIGGER/LOWPASS.

bitmask

//bitmask

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Specify a bit mask for the DIO trigger value. The trigger value is bits AND bit mask (bitwise). Only
used when the trigger type is digital.

bits

//bits

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Specify the value of the DIO to trigger on. All specified bits have to be set in order to trigger. Only
used when the trigger type is digital.

buffercount

//buffercount

Properties: Read

Type: Integer (64 bit)

Unit: None

The number of buffers used internally by the module for data recording.

buffersize

//buffersize

Properties: Read

LabOne Programming Manual Revision 22.08 Zurich Instruments 66

3.4. Data Acquisition Module

Type: Double

Unit: Seconds

The buffersize of the module’s internal data buffers.

clearhistory

//clearhistory

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Set to 1 to clear all the acquired data from the module. The module immediately resets
clearhistory to 0 after it has been set to 1.

count

//count

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

The number of trigger events to acquire in single-shot mode (when endless is set to 0).

delay

//delay

Properties: Read, Write

Type: Double

Unit: Seconds

Time delay of trigger frame position (left side) relative to the trigger edge. delay=0: Trigger edge
at left border; delay<0: trigger edge inside trigger frame (pretrigger); delay>0: trigger edge before
trigger frame (posttrigger)

device

//device

Properties: Read, Write

LabOne Programming Manual Revision 22.08 Zurich Instruments 67

3.4. Data Acquisition Module

Type: String

Unit: None

The device serial to be used with the Data Acquisition Module, e.g. dev123 (compulsory
parameter).

duration

//duration

Properties: Read, Write

Type: Double

Unit: Seconds

The recording length of each trigger event. This is an input parameter when the sampling mode
(grid/mode) is either nearest or linear interpolation. In exact sampling mode duration is an output
parameter; it is calculated and set by the module based on the value of grid/cols and the highest
rate of all the subscribed signal paths.

edge

//edge

Properties: Read, Write

Type: Integer (enumerated)

Unit: None

The trigger edge to trigger upon when running a triggered acquisition mode.

rising1

Rising edge

falling2

Falling edge

both3

Both rising and falling

enable

//enable

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

LabOne Programming Manual Revision 22.08 Zurich Instruments 68

3.4. Data Acquisition Module

Set to 1 to enable the module and start data acquisition (is equivalent to calling execute()).

endless

//endless

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Set to 1 to enable endless triggering. Set to 0 and use count if the module should only acquire a
certain number of trigger events.

eventcount

//eventcount/mode

Properties: Read, Write

Type: Integer (enumerated)

Unit: None

Specifies the trigger mode when the triggernode is configured as a pulse counter sample value
(/DEV…./CNTS/0/SAMPLE.value).

every_sample0

Trigger on every sample from the pulse counter, regardless of the counter value.

incrementing_counter1

Trigger on incrementing counter values.

fft

//fft/absolute

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Set to 1 to shift the frequencies in the FFT result so that the center frequency becomes the
demodulation frequency rather than 0 Hz (when disabled).

//fft/window

Properties: Read, Write

Type: Integer (enumerated)

LabOne Programming Manual Revision 22.08 Zurich Instruments 69

3.4. Data Acquisition Module

Unit: None

The FFT window function to use (default 1 = Hann). Depending on the application, it makes a huge
difference which of the provided window functions is used. Please check the literature to find out
the best trade off for your needs.

rectangular0

Rectangular

hann1

Hann

hamming2

Hamming

blackman_harris3

Blackman Harris 4 term

exponential16

Exponential (ring-down)

cos17

Cosine (ring-down)

cos_squared18

Cosine squared (ring-down)

findlevel

//findlevel

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Set to 1 to automatically find appropriate values of the trigger level and hysteresis based on the
current triggernode signal value. The module sets findlevel to 0 once the values have been found
and set.

flags

//flags

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Record flags. FILL = 0x1: always enabled; ALIGN = 0x2: always enabled; THROW = 0x4: Throw if
sample loss is detected; DETECT = 0x8: always enabled.

LabOne Programming Manual Revision 22.08 Zurich Instruments 70

3.4. Data Acquisition Module

forcetrigger

//forcetrigger

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Set to 1 to force acquisition of a single trigger for all subscribed signal paths (when running in a
triggered acquisition mode). The module immediately resets forcetrigger to 0 after it has been
set to 1.

grid

//grid/cols

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Specify the number of columns in the returned data grid (matrix). The data along the horizontal
axis is resampled to the number of samples defined by grid/cols. The grid/mode parameter
specifies how the data is sample onto the time, respectively frequency, grid.

//grid/direction

Properties: Read, Write

Type: Integer (enumerated)

Unit: None

The direction to organize data in the grid’s matrix.

forward0

Forward. The data in each row is ordered chronologically, e.g., the first data point in
each row corresponds to the first timestamp in the trigger data.

reverse1

Reverse. The data in each row is in reverse chronological order, e.g., the first data
point in each row corresponds to the last timestamp in the trigger data.

bidirectional2

Bidirectional. The ordering of the data alternates between Forward and Backward
ordering from row-to-row. The first row is Forward ordered.

//grid/mode

Properties: Read, Write

Type: Integer (enumerated)

LabOne Programming Manual Revision 22.08 Zurich Instruments 71

3.4. Data Acquisition Module

Unit: None

Specify how the acquired data is sampled onto the matrix’s horizontal axis (time or frequency).
Each trigger event becomes a row in the matrix and each trigger event’s subscribed data is
sampled onto the grid defined by the number of columns (grid/cols) and resampled as specified
with this parameter.

nearest1

Use the closest data point (nearest neighbour interpolation).

linear2

Use linear interpolation.

4 Do not resample the data from the subscribed signal path(s) with the highest
sampling rate; the horizontal axis data points are determined from the sampling
rate and the value of grid/cols. Subscribed signals with a lower sampling rate are
upsampled onto this grid using linear interpolation.

//grid/overwrite

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

If enabled, the module will return only one data chunk (grid) when it is running, which will then be
overwritten by subsequent trigger events.

//grid/repetitions

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Number of statistical operations performed per grid. Only applied when the subscribed signal
path is, for example, an average or a standard deviation.

//grid/rowrepetition

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Enable row-wise repetition. With row-wise repetition, each row is calculated from successive
repetitions before starting the next row. With grid-wise repetition, the entire grid is calculated
with each repetition.

//grid/rows

Properties: Read, Write

LabOne Programming Manual Revision 22.08 Zurich Instruments 72

3.4. Data Acquisition Module

Type: Integer (64 bit)

Unit: None

Specify the number of rows in the grid’s matrix. Each row is the data recorded from one trigger
event.

//grid/waterfall

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Set to 1 to enable waterfall mode: Move the data upwards upon each trigger event; the data from
newest trigger event is placed in row 0.

historylength

//historylength

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Sets an upper limit for the number of data captures stored in the module.

holdoff

//holdoff/count

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

The number of skipped trigger events until the next trigger event is acquired.

//holdoff/time

Properties: Read, Write

Type: Double

Unit: Seconds

The hold-off time before trigger acquisition is re-armed again. A hold-off time smaller than the
duration will produce overlapped trigger frames.

LabOne Programming Manual Revision 22.08 Zurich Instruments 73

3.4. Data Acquisition Module

hysteresis

//hysteresis

Properties: Read, Write

Type: Double

Unit: Many

If non-zero, hysteresis specifies an additional trigger criteria to level in the trigger condition. The
trigger signal must first go higher, respectively lower, than the hysteresis value and then the
trigger level for positive, respectively negative edge triggers. The hysteresis value is applied below
the trigger level for positive trigger edge selection. It is applied above for negative trigger edge
selection, and on both sides for triggering on both edges. A non-zero hysteresis value is helpful
to trigger on the correct edge in the presence of noise to avoid false positives.

level

//level

Properties: Read, Write

Type: Double

Unit: Many

The trigger level value.

preview

//preview

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

If set to 1, enable the data of an incomplete trigger to be read. Useful for long trigger durations
(or FFTs) by providing access to the intermediate data.

pulse

//pulse/max

Properties: Read, Write

Type: Double

Unit: Seconds

LabOne Programming Manual Revision 22.08 Zurich Instruments 74

3.4. Data Acquisition Module

The maximum pulse width to trigger on when using a pulse trigger.

//pulse/min

Properties: Read, Write

Type: Double

Unit: Seconds

The minimum pulse width to trigger on when using a pulse trigger.

refreshrate

//refreshrate

Properties: Read, Write

Type: Double

Unit: Hz

Set the maximum refresh rate of updated data in the returned grid. The actual refresh rate
depends on other factors such as the hold-off time and duration.

save

//save/csvlocale

Properties: Read, Write

Type: String

Unit: None

The locale to use for the decimal point character and digit grouping character for numerical values
in CSV files: "C": Dot for the decimal point and no digit grouping (default); " (empty string): Use the
symbols set in the language and region settings of the computer.

//save/csvseparator

Properties: Read, Write

Type: String

Unit: None

The character to use as CSV separator when saving files in this format.

//save/directory

Properties: Read, Write

Type: String

LabOne Programming Manual Revision 22.08 Zurich Instruments 75

3.4. Data Acquisition Module

Unit: None

The base directory where files are saved.

//save/fileformat

Properties: Read, Write

Type: Integer (enumerated)

Unit: None

The format of the file for saving data.

mat0

MATLAB

csv1

CSV

zview2

ZView (Impedance data only)

sxm3

SXM (Image format)

hdf54

HDF5

//save/filename

Properties: Read, Write

Type: String

Unit: None

Defines the sub-directory where files are saved. The actual sub-directory has this name with a
sequence count (per save) appended, e.g. daq_000.

//save/save

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Initiate the saving of data to file. The saving is done in the background. When the save has finished,
the module resets this parameter to 0.

//save/saveonread

Properties: Read, Write

Type: Integer (64 bit)

LabOne Programming Manual Revision 22.08 Zurich Instruments 76

3.4. Data Acquisition Module

Unit: None

Automatically save the data to file immediately before reading out the data from the module using
the read() command. Set this parameter to 1 if you want to save data to file when running the
module continuously and performing intermediate reads.

spectrum

//spectrum/autobandwidth

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Set to 1 to initiate automatic adjustment of the subscribed demodulator bandwidths to obtain
optimal alias rejection for the selected frequency span which is equivalent to the sampling rate.
The FFT mode has to be enabled (spectrum/enable) and the module has to be running for this
function to take effect. The module resets spectrum/autobandwidth to 0 when the adjustment
has finished.

//spectrum/enable

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Enables the FFT mode of the data Acquisition module, in addition to time domain data
acquisition. Note that when the FFT mode is enabled, the grid/cols parameter value is rounded
down to the nearest binary power.

//spectrum/frequencyspan

Properties: Read, Write

Type: Double

Unit: None

Sets the desired frequency span of the FFT.

//spectrum/overlapped

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Enables overlapping FFTs. If disabled (0), FFTs are performed on distinct abutting data sets. If
enabled, the data sets of successive FFTs overlap based on the defined refresh rate.

LabOne Programming Manual Revision 22.08 Zurich Instruments 77

3.4. Data Acquisition Module

triggered

//triggered

Properties: Read

Type: Integer (64 bit)

Unit: None

Indicates whether the module has recently triggered: 1=Yes, 0=No.

triggernode

//triggernode

Properties: Read, Write

Type: String

Unit: None

The node path and signal that should be used for triggering, the node path and signal should be
separated by a dot (.), e.g. /DEV…/DEMODS/0/SAMPLE.X.

type

//type

Properties: Read, Write

Type: Integer (enumerated)

Unit: None

Specifies how the module acquires data.

continuous0

Continuous acquisition (trigger off).

analog_edge_trigger1

Analog edge trigger.

digital_trigger2

Digital trigger mode (on DIO source).

analog_pulse_trigger3

Analog pulse trigger.

analog_tracking_trigger4

Analog tracking trigger.

change_trigger5

Change trigger.

6 hardware_trigger

LabOne Programming Manual Revision 22.08 Zurich Instruments 78

3.4. Data Acquisition Module

Hardware trigger (on trigger line source).

pulse_tracking_trigger7

Pulse tracking trigger, see also bandwidth.

event_count_trigger8

Event count trigger (on pulse counter source).

LabOne Programming Manual Revision 22.08 Zurich Instruments 79

3.5. Device Settings Module

3.5. Device Settings Module
The Device Settings Module provides functionality for saving and loading device settings to and
from file. The file is saved in XML format.

In general, users are recommended to use the utility functions provided by the APIs instead
of using the Device Settings module directly. The MATLAB API provides ziSaveSettings()
and ziLoadSettings() and the Python API provides zhinst.utils.save_settings()
and zhinst.utils.load_settings. These are convenient wrappers to the Device Settings
module for loading settings synchronously, i.e., these functions block until loading or saving has
completed, the desired behavior in most cases. Advanced users can use the Device Settings
module directly if they need to implement loading or saving asynchronously (non-blocking).

3.5.1. Device Settings Module Node Tree

The following section contains reference documentation for the settings and measurement data
available on the device settings module.

Since these settings and data streams may be written and read using the LabOne APIs
(Application Programming Interfaces) this section is of particular interest to users who would like
to perform measurements programmatically via LabVIEW, Python, MATLAB, .NET or C.

command

//command

Properties: Read, Write

Type: String

Unit: None

The command to execute: 'save' = Read device settings and save to file; 'load' = Load settings
from file an write to device; 'read' = Read device settings only (no save).

device

//device

Properties: Read, Write

Type: String

Unit: None

Comma separated list of devices that should be used for loading/saving device settings, e.g.
'dev99,dev100'.

errortext

//errortext

Properties: Read

LabOne Programming Manual Revision 22.08 Zurich Instruments 80

3.5. Device Settings Module

Type: String

Unit: None

The error text used in error messages.

filename

//filename

Properties: Read, Write

Type: String

Unit: None

Name of settings file to use.

finished

//finished

Properties: Read

Type: Integer (64 bit)

Unit: None

The status of the command.

path

//path

Properties: Read, Write

Type: String

Unit: None

Directory where settings files should be located. If not set, the default settings location of the
LabOne software is used.

throwonerror

//throwonerror

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

LabOne Programming Manual Revision 22.08 Zurich Instruments 81

3.5. Device Settings Module

Throw an exception is there was error executing the command.

LabOne Programming Manual Revision 22.08 Zurich Instruments 82

3.6. Impedance Module

3.6. Impedance Module

The Impedance Module corresponds to the Cal sub-tab in the LabOne User Interface Impedance
Analyzer tab. It allows the user to perform a compensation that will be applied to impedance
measurements.

3.6.1. Impedance Module Node Tree

The following section contains reference documentation for the settings and measurement data
available on the impedance module.

Since these settings and data streams may be written and read using the LabOne APIs
(Application Programming Interfaces) this section is of particular interest to users who would like
to perform measurements programmatically via LabVIEW, Python, MATLAB, .NET or C.

calibrate

//calibrate

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

If set to true will execute a compensation for the specified compensation condition.

comment

//comment

Properties: Read, Write

Type: String

Unit: None

Comment string that will be saved together with the compensation data.

device

//device

Properties: Read, Write

Type: String

Unit: None

Device string defining the device on which the compensation is performed.

LabOne Programming Manual Revision 22.08 Zurich Instruments 83

3.6. Impedance Module

directory

//directory

Properties: Read, Write

Type: String

Unit: None

The directory where files are saved.

expectedstatus

//expectedstatus

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Bit field of the load condition that the corresponds a full compensation. If status is equal the
expected status the compensation is complete.

filename

//filename

Properties: Read, Write

Type: String

Unit: None

The name of the file to use for user compensation.

freq

//freq/samplecount

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Number of samples of a compensation trace.

//freq/start

Properties: Read, Write

LabOne Programming Manual Revision 22.08 Zurich Instruments 84

3.6. Impedance Module

Type: Double

Unit: Hz

Start frequency of compensation traces.

//freq/stop

Properties: Read, Write

Type: Double

Unit: Hz

Stop frequency of compensation traces.

highimpedanceload

//highimpedanceload

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Enable a second high impedance load compensation for the low current ranges.

load

//load

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Load the impedance user compensation data from the file specified by filename.

loads

//loads/0/c

Properties: Read, Write

Type: Double

Unit: F

Parallel capacitance of the first compensation load (SHORT).

LabOne Programming Manual Revision 22.08 Zurich Instruments 85

3.6. Impedance Module

//loads/0/r

Properties: Read, Write

Type: Double

Unit: Ohm

Resistance value of first compensation load (SHORT).

//loads/1/c

Properties: Read, Write

Type: Double

Unit: F

Parallel capacitance of the first compensation load (SHORT).

//loads/1/r

Properties: Read, Write

Type: Double

Unit: Ohm

Resistance value of first compensation load (SHORT).

//loads/2/c

Properties: Read, Write

Type: Double

Unit: F

Parallel capacitance of the first compensation load (SHORT).

//loads/2/r

Properties: Read, Write

Type: Double

Unit: Ohm

Resistance value of first compensation load (SHORT).

//loads/3/c

Properties: Read, Write

Type: Double

Unit: F

LabOne Programming Manual Revision 22.08 Zurich Instruments 86

3.6. Impedance Module

Parallel capacitance of the first compensation load (SHORT).

//loads/3/r

Properties: Read, Write

Type: Double

Unit: Ohm

Resistance value of first compensation load (SHORT).

message

//message

Properties: Read

Type: String

Unit: None

Message string containing information, warnings or error messages during compensation.

mode

//mode

Properties: Read, Write

Type: Integer (enumerated)

Unit: None

Compensation mode to be used. Defines which load steps need to be compensated.

short_open3

SO (Short-Open)

load4

L (Load)

short_load5

SL (Short-Load)

open_load6

OL (Open-Load)

short_open_load7

SOL (Short-Open-Load)

load_load_load8

LLL (Load-Load-Load)

LabOne Programming Manual Revision 22.08 Zurich Instruments 87

3.6. Impedance Module

openstep

//openstep

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Perform an additional open compensation step.

path

//path

Properties: Read, Write

Type: String

Unit: None

The path of the directory where the user compensation file is located.

precision

//precision

Properties: Read, Write

Type: Integer (enumerated)

Unit: None

Precision of the compensation. Will affect time of a compensation and reduces the noise on
compensation traces.

standard0

Standard speed

high1

Low speed / high precision

progress

//progress

Properties: Read

Type: Double

LabOne Programming Manual Revision 22.08 Zurich Instruments 88

3.6. Impedance Module

Unit: None

Progress of a compensation condition.

save

//save

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Save the current impedance user compensation data to the file specified by filename.

status

//status

Properties: Read

Type: Integer (64 bit)

Unit: None

Bit coded field of the already compensated load conditions (bit 0 = first compensation step, bit
1 = second compensation step, …).

step

//step

Properties: Read, Write

Type: Integer (enumerated)

Unit: None

Compensation step to be performed when calibrate indicator is set to true.

first_load0

First load

second_load1

Second load

third_load2

Third load

fourth_load3

Fourth load

LabOne Programming Manual Revision 22.08 Zurich Instruments 89

3.6. Impedance Module

todevice

//todevice

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

If enabled will automatically transfer compensation data to the persistent flash memory in case
of a valid compensation.

validation

//validation

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Enable the validation of compensation data. If enabled the compensation is checked for too big
deviation from specified load.

LabOne Programming Manual Revision 22.08 Zurich Instruments 90

3.7. Multi-Device Synchronisation Module

3.7. Multi-Device Synchronisation Module

The Multi-Device Synchronisation Module corresponds to the MDS tab in the LabOne User
Interface. In essence, the module enables the clocks of multiple instruments to be synchronized
such that timestamps of the same value delivered by different instruments correspond to the
same point in time, thus allowing several instruments to operate in unison and their measurement
results to be directly compared. The User Manual gives a more comprehensive description of
multi-instrument synchronization, and also details the cabling required to achieve this.

3.7.1. Multi-Device Synchronisation Module Node Tree

The following section contains reference documentation for the settings and measurement data
available on the multi-device synchronisation module.

Since these settings and data streams may be written and read using the LabOne APIs
(Application Programming Interfaces) this section is of particular interest to users who would like
to perform measurements programmatically via LabVIEW, Python, MATLAB, .NET or C.

devices

//devices

Properties: Read, Write

Type: String

Unit: None

Defines which instruments should be included in the synchronization. Expects a comma-
separated list of devices in the order the devices are connected.

group

//group

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Defines in which synchronization group should be accessed by the module.

message

//message

Properties: Read

Type: String

Unit: None

LabOne Programming Manual Revision 22.08 Zurich Instruments 91

3.7. Multi-Device Synchronisation Module

Status message of the module.

phasesync

//phasesync

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Set to 1 to reset the phases of all oscillators on all of the synchronized devices.

recover

//recover

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Set to 1 to resynchronize the device group if the synchronization has been lost.

start

//start

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Set to true to start the synchronization process.

status

//status

Properties: Read

Type: Integer (enumerated)

Unit: None

Status of the synchronization process.

-1 error

LabOne Programming Manual Revision 22.08 Zurich Instruments 92

3.7. Multi-Device Synchronisation Module

0 idle

1 synchronization in progress

2 successful synchronization

LabOne Programming Manual Revision 22.08 Zurich Instruments 93

3.8. PID Advisor Module

3.8. PID Advisor Module
The PID Advisor Module provides the functionality available in the Advisor, Tuner and Display sub-
tabs of the LabOne User Interface’s PID / PLL tab. The PID Advisor is a mathematical model of the
instrument’s PID and can be used to calculate PID controller parameters for optimal feedback
loop performance. The controller gains calculated by the module can be easily transferred to
the device via the API and the results of the Advisor’s modeling are available as Bode and step
response plot data as shown in Figure 3.12.

Figure 3.12. The plot was generated by example_pid_advisor_pll.py, an example
distributed on our public GitHub repository (https://github.com/zhinst/labone-api-examples).
It configures the PID Advisor to optimize an internal PLL control loop. The data used in the Bode
and step response plots is returned by the PID Advisor in the bode respectively step output
parameters.

3.8.1. PID Advisor Module Work-Flow

PID Advisor usage via the LabOne APIs closely follows the work-flow used in the LabOne
User Interface. Here are the steps required to calculate optimal PID parameters, transfer
the parameters to an instrument and then continually modify the instrument’s parameters to
minimize the residual error using Auto Tune.

1. Create an instance of the PID Advisor module.

2. Configure the module’s parameters using set() to specify, for example, which of the
instrument’s PIDs to use and which type of device under test (DUT) to model. If values are
specified for the P, I and D gains they serve as initial values for the optimization process. See
Section 3.8.5 for a full list of PID Advisor parameters.

3. Start the module by calling execute().

4. Start optimization of the PID parameters by setting the calculate parameter to 1. The
optimization process has finished when the value of calculate returns to 0. Optimization
may take up to a minute to complete, but is much quicker in most cases.

5. Read out the optimized parameters, Bode and step response plot data (see Figure 3.12) for
inspection using get().

6. Transfer the optimized gain parameters from the Advisor Module to the instrument’s nodes
by setting the todevice parameter to 1.

7. Enable the instrument’s PID (/DEV…./PIDS/n/ENABLE).

8. The Auto Tune functionality may be additionally enabled by setting tune to 1 and
configuring the parameters in the tuner branch. This functionality continuously updates the

LabOne Programming Manual Revision 22.08 Zurich Instruments 94

https://github.com/zhinst/labone-api-examples/blob/main/common/python/example_pid_advisor_pll.py
https://github.com/zhinst/labone-api-examples

3.8. PID Advisor Module

instrument’s PID parameters specified by tuner/mode in order to minimize the residual error
signal. Note, Auto Tune is not available for HF2 instruments.

The reader is encouraged to refer to the instrument-specific User Manual for more details on the
Advisor optimization and Tuner process. Each of the LabOne APIs include an example to help get
started programming with PID Advisor Module.

3.8.2. PLL Parameter Optimization on HF2 Instruments

On HF2 instruments the PID and PLL are implemented as two separate entities in the device’s
firmware. On all other devices there is only a PID unit and a PLL is created by configuring a PID
appropriately (by setting the device node /devN/pids/0/mode to 1, see your instrument User
Manual for more information). Since both a PID and a PLL exist on HF2 devices, when the PID
Advisor Module is used to model a PLL, the pid/type parameter must be set to either pid or
pll to indicate which hardware unit on the HF2 is to be modeled by the Advisor.

The MATLAB and Python APIs have additional HF2-specific examples for using the PID Advisor
Module with the HF2’s PLL.

3.8.3. Instrument Settings written by todevice

This section lists which device nodes are configured upon setting the todevice parameter
to 1. Note, the parameter is immediately set back to 0 and no sync() is performed, if a
synchronization of instrument settings is required before proceeding, the user must execute a
sync command manually.

For HF2 instruments there are two main cases to differentiate between, defined by whether type
is set to "pid" or "pll" (see Section 3.8.2 for an explanation). For UHF and MF devices type can
only be set to "pid", for these devices Table 3.4 and Table 3.5 describe which device nodes are
configured.

Table 3.4. The device nodes configured when type is "pid" (default behavior).The value of n in
device nodes corresponds to the value of index.

Device node (/DEV…/) Value set (prefix `` omitted) Device class

PIDS/n/P Advised pid/p. All devices

PIDS/n/I Advised pid/i. All devices

PIDS/n/D Advised pid/d. All devices

PIDS/n/DEMOD/TIMECONSTANT User-configured or advised pid/
timeconstant.

All devices

PIDS/n/DEMOD/ORDER User-configured pid/order. All devices

PIDS/n/DEMOD/HARMONIC User-configured pid/harmonic. All devices

PIDS/n/RATE User-configured pid/rate. Not HF2

PIDS/n/DLIMITTIMECONSTANT User-configured or advised pid/
dlimittimeconstant.

Not HF2

Table 3.5. The additional device nodes configured when type is "pid" (default behavior) and
dut/source=4 (internal PLL). The value of n in device nodes corresponds to the value of
index.

Device node (/DEV…/) Value set Device class

PIDS/n/CENTER User-configured dut/fcenter. All devices

LabOne Programming Manual Revision 22.08 Zurich Instruments 95

3.8. PID Advisor Module

Device node (/DEV…/) Value set Device class

PIDS/n/LIMITLOWER Calculated -bw*2, if autolimit=1. Not HF2

PIDS/n/LIMITUPPER Calculated bw*2, if autolimit=1. Not HF2

PIDS/n/RANGE Calculated bw*2, if autolimit=1. HF2 only

Table 3.6. The device nodes configured when type is "pll" (HF2 instruments only - see
Section 3.8.2 for an explanation). The value of n in device nodes corresponds to the value of
index.

Device node (/DEV…/) Value set

PLLS/n/AUTOTIMECONSTANT Set to 0.

PLLS/n/AUTOPID Set to 0.

PLLS/n/P Advised pid/p.

PLLS/n/I Advised pid/i.

PLLS/n/D Advised pid/d.

PLLS/n/HARMONIC Advised demod/harmonic.

PLLS/n/ORDER Advised demod/order.

PLLS/n/TIMECONSTANT User-configured or advised demod/timeconstant.

3.8.4. Monitoring the PID’s Output

This section is not directly related to the functionality of the PID Advisor itself, but describes how
to monitor the PID’s behavior by accessing the corresponding device’s nodes on the Data Server.

MF and UHF Instruments

On MF and UHF instruments, the PID’s error, shift and output value are available from the device’s
PID streaming nodes:

∏/DEV…./PIDS/n/STREAM/ERROR

∏/DEV…./PIDS/n/STREAM/SHIFT

∏/DEV…./PIDS/n/STREAM/VALUE.

These are high-speed streaming nodes with timestamps available for each value. They may
be recorded using the Data Acquisition Module (recommended) or via the subscribe and poll
commands (very high-performance applications). The PID streams are aligned by timestamp with
demodulator streams. A specific streaming rate may be requested by setting the /DEV…/PIDS/
n/STREAM/RATE node; the device firmware will set the next lowest configurable rate (which
corresponds to a legal demodulator rate). The configured rate can be read out from the /DEV…/
PIDS/n/STREAM/EFFECTIVERATE node. If the instrument has the DIG Option installed, the PID’s
outputs can also be obtained using the instrument’s scope at rates of up to 1.8 GHz (although not
continuously). Note, that /DEV…/PIDS/n/STREAM/{RATE EFFECTIVERATE} do not effect the rate
of the PID itself, only the rate at which data is transferred to the PC. The rate of an instrument’s
PID is configured by /DEV…/PIDS/n/RATE.

HF2 Instruments

On HF2 instruments the PID’s error, shift and center values are available using the device nodes:

∏/DEV…./PIDS/n/ERROR (output node),

∏/DEV…./PIDS/n/SHIFT (output node),

LabOne Programming Manual Revision 22.08 Zurich Instruments 96

3.8. PID Advisor Module

∏/DEV…./PIDS/n/CENTER (setting node),

where the PID’s output can be calculated as OUT = CENTER + SHIFT. When data is
acquired from these nodes using the subscribe and poll commands the node values do not
have timestamps associated with them (since the HF2 Data Server only supports API Level 1).
Additionally, these nodes are not high-speed streaming nodes; they are updated at a low rate that
depends on the rate of the PID, this is a approximately 10 Hz if one PID is enabled. It is not possible
to configure the rate of the PID on HF2 instruments. It is possible, however, to subscribe to the /
DEV…/PIDS/n/ERROR node in the Data Acquisition Module, here, timestamps are approximated
for each error value. It is not possible to view these values in the HF2 scope.

The PLL Module

Deprecation notice The PLL Advisor Module introduced in LabOne 14.08 became deprecated as of
LabOne 16.12. In LabOne 16.12 the PLL Advisor’s functionality was combined within the PID Advisor
module. Users of the PLL Advisor Module should use the PID Advisor Module instead.

3.8.5. PID Advisor Module Node Tree

The following section contains reference documentation for the settings and measurement data
available on the PID advisor module.

Since these settings and data streams may be written and read using the LabOne APIs
(Application Programming Interfaces) this section is of particular interest to users who would like
to perform measurements programmatically via LabVIEW, Python, MATLAB, .NET or C.

advancedmode

//advancedmode

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

If enabled, automatically calculate the start and stop value used in the Bode and step response
plots.

auto

//auto

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

If enabled, automatically trigger a new optimization process upon an input parameter value
change.

LabOne Programming Manual Revision 22.08 Zurich Instruments 97

3.8. PID Advisor Module

bode

//bode

Properties: Read

Type: ZIAdvisorWave

Unit: None

Contains the resulting bode plot of the PID simulation.

bw

//bw

Properties: Read

Type: Double

Unit: Hz

Calculated system bandwidth.

calculate

//calculate

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Set to 1 to start the PID Advisor’s modelling process and calculation of optimal parameters. The
module sets calculate to 0 when the calculation is finished.

demod

//demod/harmonic

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Only relevant when /DEV…/PIDS/n/INPUT is configured to be a demodulator output. Specifies
the demodulator’s harmonic to use in the PID Advisor model. This value will be transferred to the
instrument node (/DEV…./DEMODS/m/HARMONIC) when the PID is enabled.

LabOne Programming Manual Revision 22.08 Zurich Instruments 98

3.8. PID Advisor Module

//demod/order

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Only relevant when /DEV…/PIDS/n/INPUT is configured to be a demodulator output. Specifies
the demodulator’s order to use in the PID Advisor model. This value will be transferred to the
instrument node (/DEV…./DEMODS/m/ORDER) when the PID is enabled.

//demod/timeconstant

Properties: Read, Write

Type: Double

Unit: Seconds

Only relevant when /DEV…/PIDS/n/INPUT is configured to be a demodulator output
and pidAdvisor/pid/autobw=0. Specify the demodulator’s timeconstant to use in the PID
Advisor model. This value will be transferred to the instrument node (/DEV…./DEMODS/m/
TIMECONSTANT) when the PID is enabled.

device

//device

Properties: Read, Write

Type: String

Unit: None

Device string specifying the device for which the PID advisor is performed.

display

//display/freqstart

Properties: Read, Write

Type: Double

Unit: Hz

Start frequency for Bode plot. If advancedmode=0 the start value is automatically derived from
the system properties.

//display/freqstop

Properties: Read, Write

LabOne Programming Manual Revision 22.08 Zurich Instruments 99

3.8. PID Advisor Module

Type: Double

Unit: Hz

Stop frequency for Bode plot.

//display/timestart

Properties: Read, Write

Type: Double

Unit: Seconds

Start time for step response. If advancedmode=0 the start value is 0.

//display/timestop

Properties: Read, Write

Type: Double

Unit: Seconds

Stop time for step response.

dut

//dut/bw

Properties: Read, Write

Type: Double

Unit: Hz

Bandwidth of the DUT (device under test).

//dut/damping

Properties: Read, Write

Type: Double

Unit: None

Damping of the second order low pass filter.

//dut/delay

Properties: Read, Write

Type: Double

Unit: Seconds

LabOne Programming Manual Revision 22.08 Zurich Instruments 100

3.8. PID Advisor Module

IO Delay of the feedback system describing the earliest response for a step change.

//dut/fcenter

Properties: Read, Write

Type: Double

Unit: Hz

Resonant frequency of the of the modelled resonator.

//dut/gain

Properties: Read, Write

Type: Double

Unit: Depends on Input, Output, and DUT model

Gain of the DUT transfer function.

//dut/q

Properties: Read, Write

Type: Double

Unit: None

Quality factor of the modelled resonator.

//dut/source

Properties: Read, Write

Type: Integer (enumerated)

Unit: None

Specifies the model used for the external DUT (device under test) to be controlled by the PID.

low_pass_1st_order1

Low-pass first order.

low_pass_2nd_order2

Low-pass second order.

resonator_frequency3

Resonator frequency.

internal_pll4

Internal PLL.

vco5

Voltage-controlled oscillator (VCO).

LabOne Programming Manual Revision 22.08 Zurich Instruments 101

3.8. PID Advisor Module

resonator_amplitude6

Resonator amplitude.

impulse

//impulse

Properties: Read

Type: ZIAdvisorWave

Unit: None

Reserved for future use - not yet supported.

index

//index

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

The 0-based index of the PID on the instrument to use for parameter detection.

pid

//pid/autobw

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

If enabled, adjust the demodulator bandwidth to fit best to the specified target bandwidth of the
full system. In this case, demod/timeconstant is ignored.

//pid/autolimit

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

If enabled, set the instrument PID limits based upon the calculated bw value.

LabOne Programming Manual Revision 22.08 Zurich Instruments 102

3.8. PID Advisor Module

//pid/d

Properties: Read, Write

Type: Double

Unit: (Output Unit . s) / Input Unit

The initial value to use in the Advisor for the differential gain. After optimization has finished it
contains the optimal value calculated by the Advisor.

//pid/dlimittimeconstant

Properties: Read, Write

Type: Double

Unit: Seconds

The initial value to use in the Advisor for the differential filter timeconstant gain. After
optimization has finished it contains the optimal value calculated by the Advisor.

//pid/i

Properties: Read, Write

Type: Double

Unit: Output Unit / (Input Unit . s)

The initial value to use in the Advisor for the integral gain. After optimization has finished it
contains the optimal value calculated by the Advisor.

//pid/mode

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Select PID Advisor mode. Bit encoded: bit 0 — optimize P gain; bit 1 — optimize I gain; bit
2 — optimize D gain; bit 3 — optimize D filter limit

//pid/p

Properties: Read, Write

Type: Double

Unit: Output Unit / Input Unit

The initial value to use in the Advisor for the proportional gain. After optimization has finished it
contains the optimal value calculated by the Advisor.

LabOne Programming Manual Revision 22.08 Zurich Instruments 103

3.8. PID Advisor Module

//pid/rate

Properties: Read, Write

Type: Double

Unit: Hz

PID Advisor sampling rate of the PID control loop.

//pid/targetbw

Properties: Read, Write

Type: Double

Unit: Hz

PID system target bandwidth.

//pid/type

Properties: Read, Write

Type: String

Unit: None

HF2 instruments only. Specify whether to model the instrument’s PLL or PID hardware unit when
dut/source=4 (internal PLL).

pm

//pm

Properties: Read

Type: Double

Unit: deg

Simulated phase margin of the PID with the current settings. The phase margin should be greater
than 45 deg and preferably greater than 65 deg for stable conditions.

pmfreq

//pmfreq

Properties: Read

Type: Double

LabOne Programming Manual Revision 22.08 Zurich Instruments 104

3.8. PID Advisor Module

Unit: Hz

Simulated phase margin frequency.

progress

//progress

Properties: Read

Type: Double

Unit: None

Reports the progress of a PID Advisor action as a value between 0 and 1.

response

//response

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Set to 1 to calculate the Bode and the step response plot data from the current pid/* parameters
(only relevant when auto=0). The module sets response back to 0 when the plot data has been
calculated.

stable

//stable

Properties: Read

Type: Integer (64 bit)

Unit: None

If equal to 1, the PID Advisor found a stable solution with the given settings. If equal to 0, the
solution was deemed instable - revise your settings and rerun the PID Advisor.

step

//step

Properties: Read

Type: ZIAdvisorWave

Unit: None

LabOne Programming Manual Revision 22.08 Zurich Instruments 105

3.8. PID Advisor Module

The resulting step response data of the PID Advisor’s simulation.

targetfail

//targetfail

Properties: Read

Type: Integer (64 bit)

Unit: None

A value of 1 indicates the simulated PID BW is smaller than the Target BW.

tf

//tf/closedloop

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Switch the response calculation mode between closed or open loop.

//tf/input

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Start point for the plant response simulation for open or closed loops.

//tf/output

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

End point for the plant response simulation for open or closed loops.

todevice

//todevice

Properties: Read, Write

LabOne Programming Manual Revision 22.08 Zurich Instruments 106

3.8. PID Advisor Module

Type: Integer (64 bit)

Unit: None

Set to 1 to transfer the calculated PID advisor data to the device, the module will immediately
reset the parameter to 0 and configure the instrument’s nodes.

tune

//tune

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

If enabled, optimize the instrument’s PID parameters so that the noise of the closed- loop system
gets minimized. The HF2 doesn’t support tuning.

tuner

//tuner/averagetime

Properties: Read, Write

Type: Double

Unit: Seconds

Time for a tuner iteration.

//tuner/mode

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Select tuner mode. Bit encoded: bit 0 — tune P gain; bit 1 — tune I gain; bit 2 — tune D gain; bit
3 — tune D filter limit

LabOne Programming Manual Revision 22.08 Zurich Instruments 107

3.9. Precompensation Advisor Module

3.9. Precompensation Advisor Module
The Precompensation Advisor Module provides the functionality available in the LabOne User
Interface’s Precompensation Tab. In essence the precompensation allows a pre-distortion or
pre-emphasis to be applied to a signal before it leaves the instrument, to compensate for
undesired distortions caused by the device under test (DUT). The Precompensation Advisor
module simulates the precompensation filters in the device, allowing the user to experiment with
different filter settings and filter combinations to obtain an optimal output signal, before using
the setup in the actual device.

Figure 3.13. The plot was generated by example_precompensation_curve_fit.py, an
example distributed on our public GitHub repository (https://github.com/zhinst/labone-api-
examples).

3.9.1. Precompensation Advisor Module Work-Flow

Precompensation Advisor usage via the LabOne APIs closely follows the work-flow used in the
LabOne User Interface.

1. Create an instance of the Precompensation Advisor module (one instance is required for each
AWG waveform output in use).

2. Decide which filters to use.

3. Set the coefficients/time constants of the filters.

4. Read and analyze the results of the simulation via the wave/output, wave/output/
forwardwave and wave/output/backwardwave parameters.

5. Adjust filter coefficients and repeat the previous two steps until an optimal output waveform
is achieved.

LabOne Programming Manual Revision 22.08 Zurich Instruments 108

https://github.com/zhinst/labone-api-examples/blob/main/hdawg/python/example_precompensation_curve_fit.py
https://github.com/zhinst/labone-api-examples
https://github.com/zhinst/labone-api-examples

3.9. Precompensation Advisor Module

Refer to the appropriate user manual for a comprehensive description of the Precompensation
Advisor.

Note that with the Precompensation Advisor module, the execute(), finish(), finished() read(),
progress(), subscribe() and unsubscribe() commands serve no purpose. Indeed some APIs do not
provide all of these commands. Each time one or more filter parameters are changed, the module
re-runs the simulation and the results can be read via the wave/output, wave/output/
forwardwave and wave/output/backwardwave parameters.

3.9.2. Precompensation Advisor Module Node Tree

The following section contains reference documentation for the settings and measurement data
available on the precompensation advisor module.

Since these settings and data streams may be written and read using the LabOne APIs
(Application Programming Interfaces) this section is of particular interest to users who would like
to perform measurements programmatically via LabVIEW, Python, MATLAB, .NET or C.

bounces

//bounces/0/amplitude

Properties: Read, Write

Type: Double

Unit: None

Amplitude of the bounce compensation filter.

//bounces/0/delay

Properties: Read, Write

Type: Double

Unit: None

Delay between original signal and the bounce echo.

//bounces/0/enable

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Enable the bounce compensation filter.

device

//device

Properties: Read, Write

LabOne Programming Manual Revision 22.08 Zurich Instruments 109

3.9. Precompensation Advisor Module

Type: String

Unit: None

Device string defining the device on which the compensation is performed.

exponentials

//exponentials/0/amplitude

Properties: Read, Write

Type: Double

Unit: None

Amplitude of the exponential filter.

//exponentials/0/enable

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Enable the exponential filter.

//exponentials/0/timeconstant

Properties: Read, Write

Type: Double

Unit: Seconds

Time constant (tau) of the exponential filter.

//exponentials/1/amplitude

Properties: Read, Write

Type: Double

Unit: None

Amplitude of the exponential filter.

//exponentials/1/enable

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

LabOne Programming Manual Revision 22.08 Zurich Instruments 110

3.9. Precompensation Advisor Module

Enable the exponential filter.

//exponentials/1/timeconstant

Properties: Read, Write

Type: Double

Unit: Seconds

Time constant (tau) of the exponential filter.

//exponentials/2/amplitude

Properties: Read, Write

Type: Double

Unit: None

Amplitude of the exponential filter.

//exponentials/2/enable

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Enable the exponential filter.

//exponentials/2/timeconstant

Properties: Read, Write

Type: Double

Unit: Seconds

Time constant (tau) of the exponential filter.

//exponentials/3/amplitude

Properties: Read, Write

Type: Double

Unit: None

Amplitude of the exponential filter.

//exponentials/3/enable

Properties: Read, Write

LabOne Programming Manual Revision 22.08 Zurich Instruments 111

3.9. Precompensation Advisor Module

Type: Integer (64 bit)

Unit: None

Enable the exponential filter.

//exponentials/3/timeconstant

Properties: Read, Write

Type: Double

Unit: Seconds

Time constant (tau) of the exponential filter.

//exponentials/4/amplitude

Properties: Read, Write

Type: Double

Unit: None

Amplitude of the exponential filter.

//exponentials/4/enable

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Enable the exponential filter.

//exponentials/4/timeconstant

Properties: Read, Write

Type: Double

Unit: Seconds

Time constant (tau) of the exponential filter.

//exponentials/5/amplitude

Properties: Read, Write

Type: Double

Unit: None

Amplitude of the exponential filter.

LabOne Programming Manual Revision 22.08 Zurich Instruments 112

3.9. Precompensation Advisor Module

//exponentials/5/enable

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Enable the exponential filter.

//exponentials/5/timeconstant

Properties: Read, Write

Type: Double

Unit: Seconds

Time constant (tau) of the exponential filter.

//exponentials/6/amplitude

Properties: Read, Write

Type: Double

Unit: None

Amplitude of the exponential filter.

//exponentials/6/enable

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Enable the exponential filter.

//exponentials/6/timeconstant

Properties: Read, Write

Type: Double

Unit: Seconds

Time constant (tau) of the exponential filter.

//exponentials/7/amplitude

Properties: Read, Write

Type: Double

Unit: None

LabOne Programming Manual Revision 22.08 Zurich Instruments 113

3.9. Precompensation Advisor Module

Amplitude of the exponential filter.

//exponentials/7/enable

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Enable the exponential filter.

//exponentials/7/timeconstant

Properties: Read, Write

Type: Double

Unit: Seconds

Time constant (tau) of the exponential filter.

fir

//fir/coefficients

Properties: Read, Write

Type: ZIVectorData

Unit: None

Vector of FIR filter coefficients. Maximum length 40 elements. The first 8 coefficients are applied
to 8 individual samples, whereas the following 32 Coefficients are applied to two consecutive
samples each.

//fir/enable

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Enable the FIR filter.

highpass

//highpass/0/enable

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

LabOne Programming Manual Revision 22.08 Zurich Instruments 114

3.9. Precompensation Advisor Module

Enable the high-pass compensation filter.

//highpass/0/timeconstant

Properties: Read, Write

Type: Double

Unit: Seconds

Time constant (tau) of the high-pass compensation filter.

latency

//latency/enable

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Enable latency simulation for the calculated waves.

//latency/value

Properties: Read

Type: Double

Unit: None

Total delay of the output signal accumulated by all filter stages (read-only).

samplingfreq

//samplingfreq

Properties: Read

Type: Double

Unit: Hz

Sampling frequency for the simulation (read-only). The value comes from the /device/system/
clocks/sampleclock/freq node if available. Default is 2.4 GHz.

wave

//wave/input/awgindex

Properties: Read, Write

LabOne Programming Manual Revision 22.08 Zurich Instruments 115

3.9. Precompensation Advisor Module

Type: Integer (64 bit)

Unit: None

Defines with which AWG output the module is associated. This is used for loading an AWG wave
as the source.

//wave/input/delay

Properties: Read, Write

Type: Double

Unit: Seconds

Artificial time delay of the simulation input.

//wave/input/gain

Properties: Read, Write

Type: Double

Unit: None

Artificial gain with which to scale the samples of the simulation input.

//wave/input/inputvector

Properties: Read, Write

Type: ZIVectorData

Unit: None

Node to upload a vector of amplitude data used as a signal source. It is assumed the data are
equidistantly spaced in time with the sampling rate as defined in the "samplingfreq" node.

//wave/input/length

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Number of points in the simulated wave.

//wave/input/offset

Properties: Read, Write

Type: Double

Unit: V

Artificial vertical offset added to the simulation input.

LabOne Programming Manual Revision 22.08 Zurich Instruments 116

3.9. Precompensation Advisor Module

//wave/input/samplingfreq

Properties: Read, Write

Type: Double

Unit: Hz

The sampling frequency determined by the timestamps from the CSV file.

//wave/input/source

Properties: Read, Write

Type: Integer (enumerated)

Unit: None

Type of wave used for the simulation.

step0

Step function

impulse1

Pulse

nodes2

Load AWG with the wave specified by the waveindex and awgindex nodes.

manual3

Manually loaded wave through the /inputvector node.

//wave/input/statusstring

Properties: Read

Type: String

Unit: None

The status of loading the CSV file.

//wave/input/waveindex

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Determines which AWG wave is loaded from the the AWG output. Internally, all AWG sequencer
waves are indexed and stored. With this specifier, the respective AWG wave is loaded into the
Simulation.

LabOne Programming Manual Revision 22.08 Zurich Instruments 117

3.9. Precompensation Advisor Module

//wave/output/backwardwave

Properties: Read

Type: ZIAdvisorWave

Unit: None

Initial wave upon which the filters have been applied in the reverse direction. This wave is a
simulation of signal path response which can be compensated with the filter settings specified
in the respective nodes.

//wave/output/forwardwave

Properties: Read

Type: ZIAdvisorWave

Unit: None

Initial wave upon which the filters have been applied. This wave is a representation of the AWG
output when precompensation is enabled with the filter settings specified in the respective
nodes.

//wave/output/initialwave

Properties: Read

Type: ZIAdvisorWave

Unit: None

Wave onto which the filters are applied.

LabOne Programming Manual Revision 22.08 Zurich Instruments 118

3.10. Quantum Analyzer Module

3.10. Quantum Analyzer Module
The Quantum Analyzer (QA) module corresponds to the Quantum Analyzer Result Logger tab of
LabOne user interface (UI). This nodule allows the user to record multiple measurement shots in
its history tab and to apply matrix transformations on the measured complex signals, i.e. and
components obtained by weighted integration. It applies transform operations on the measured
signals with the following order.

1. Shift or translation

2. Rotation

3. Scaling or dilation

The transform parameters are set by the module nodes and displayed in the control sub-tab of
the QA tab in LabOne UI. The equivalent transformed outcome is obtained by matrix multiplication
of the corresponding operators as shown in Equation 1.

where and are shift parameters, is rotation angle in degree, and and are scaling

factors. All the measurement shots are recorded in the History sub-tab of the QA tab and can be
saved in CSV, HDF5, and MATLAB formats.

3.10.1. Quantum Analyzer Module Node Tree

The following section contains reference documentation for the settings and measurement data
available on the quantum analyzer module.

Since these settings and data streams may be written and read using the LabOne APIs
(Application Programming Interfaces) this section is of particular interest to users who would like
to perform measurements programmatically via LabVIEW, Python, MATLAB, .NET or C.

clearhistory

//clearhistory

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Remove all records from the history list.

historylength

//historylength

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

LabOne Programming Manual Revision 22.08 Zurich Instruments 119

3.10. Quantum Analyzer Module

Maximum number of entries stored in the measurement history.

rotation

//rotation

Properties: Read, Write

Type: Double

Unit: None

Rotation angle applied to the recorded complex values.

save

//save/csvlocale

Properties: Read, Write

Type: String

Unit: None

The locale to use for the decimal point character and digit grouping character for numerical values
in CSV files: "C": Dot for the decimal point and no digit grouping (default); " (empty string): Use the
symbols set in the language and region settings of the computer.

//save/csvseparator

Properties: Read, Write

Type: String

Unit: None

The character to use as CSV separator when saving files in this format.

//save/directory

Properties: Read, Write

Type: String

Unit: None

The base directory where files are saved.

//save/fileformat

Properties: Read, Write

Type: Integer (enumerated)

Unit: None

LabOne Programming Manual Revision 22.08 Zurich Instruments 120

3.10. Quantum Analyzer Module

The format of the file for saving data.

mat0

MATLAB

csv1

CSV

zview2

ZView (Impedance data only)

sxm3

SXM (Image format)

hdf54

HDF5

//save/filename

Properties: Read, Write

Type: String

Unit: None

Defines the sub-directory where files are saved. The actual sub-directory has this name with a
sequence count (per save) appended, e.g. daq_000.

//save/save

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Initiate the saving of data to file. The saving is done in the background. When the save has finished,
the module resets this parameter to 0.

//save/saveonread

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Automatically save the data to file immediately before reading out the data from the module using
the read() command. Set this parameter to 1 if you want to save data to file when running the
module continuously and performing intermediate reads.

scalingi

//scalingi

Properties: Read, Write

LabOne Programming Manual Revision 22.08 Zurich Instruments 121

3.10. Quantum Analyzer Module

Type: Double

Unit: None

Scaling factor applied to the I component of the recorded data points.

scalingq

//scalingq

Properties: Read, Write

Type: Double

Unit: None

Scaling factor applied to the Q component of the recorded data points.

shifti

//shifti

Properties: Read, Write

Type: Double

Unit: None

Translation shift applied to the I component of the recorded data points.

shiftq

//shiftq

Properties: Read, Write

Type: Double

Unit: None

Translation shift applied to the Q component of the recorded data points.

LabOne Programming Manual Revision 22.08 Zurich Instruments 122

3.11. Scope Module

3.11. Scope Module

The Scope Module corresponds to the functionality available in the Scope tab in the LabOne User
Interface and provides API users with an interface to acquire assembled and scaled scope data
from the instrument programmatically.

Figure 3.14. The plot was generated by example_scope.py, an example distributed on our
public GitHub repository (https://github.com/zhinst/labone-api-examples). The example runs
the Scope Module in both time and frequency mode with scope record averaging enabled.

3.11.1. Introduction to Scope Data Transfer

In general, an instrument’s scope can generate a large amount of data which requires special
treatment by the instrument’s firmware, the Data Server, LabOne API and API client in order to
process it correctly and efficiently. The Scope Module was introduced in LabOne 16.12 to simplify
scope data acquisition for the user. This section provides a top-level overview of how scope data
can be acquired and define the terminology used in subsequent sections before looking at the
special and more simplified case when the Scope Module is used.

There are three methods of obtaining scope data from the device:

1. By subscribing directly to the instrument node /DEV…./SCOPES/n/WAVE and using the
poll() command. This refers to the lower-level interface provided by the ziDAQServer
class subscribe() and poll() commands.

2. By subscribing to the instrument node /DEV…./SCOPES/n/WAVE in the Scope Module and
using using the Scope Module’s read() command.

3. By subscribing to the instrument’s scope streaming node /DEV…./SCOPES/n/STREAM/
SAMPLE which continuously streams scope data as a block stream. This is only available on
MF and UHF instruments with the DIG Option enabled. The Scope Module does not support
acquisition from the scope streaming node.

Segmented Mode

Additionally, MF and UHF instruments which have the DIG option enabled can optionally record
data in "segmented" mode which allows back-to-back measurements with very small hold-off
times between measurements. Segmented mode enables the user to make a fixed number of
measurements (the segments), which are stored completely in the memory of the instrument,
before they are transferred to the Data Server (this overcomes the data transfer rate limitation of

LabOne Programming Manual Revision 22.08 Zurich Instruments 123

https://github.com/zhinst/labone-api-examples/blob/main/common/python/example_scope.py
https://github.com/zhinst/labone-api-examples

3.11. Scope Module

the device’s connected physical interface, e.g., USB or 1GbE for a fixed number of measurements).
The advantage to this mode is precisely that the hold-off time, i.e. the delay between two
measurements, can be very low. Data recorded in segmented mode is still available from the
instrument node /DEV…./SCOPES/n/WAVE as for non-segmented data, but requires an additional
reshaping described in Section 3.11.6.

Scope Data Nomenclature

We’ll use the following terminology to describe the scope data streamed from the device:

Wave The name of the leaf (/DEV…./SCOPES/n/WAVE) in the device node tree that contains
scope data pushed from the instrument’s firmware to the Data Server. The data
structure returned by this node is defined by the API Level of the connected session.
It is also the name of the structure member in scope data structures that holds
the actual scope data samples. See Scope Data Structures below for detailed
information.

Record Refers to one complete scope data element returned by the Scope Module. It may
consist of one or multiple segments.

Segment A segment is a completely assembled and scaled wave. If the instrument’s scope is
used in segmented mode, each record will consist of multiple segments. If not used in
segmented mode, each record comprises of a single segment and the terms record
and segment can be used interchangeably.

Block When the length of data (/DEV…./SCOPES/n/LENGTH) in a scope segment is very
large the segment returned by the device node (/DEV…./SCOPES/n/WAVE) is split into
multiple blocks. When using the poll/subscribe method the user must assemble these
blocks; the Scope Module assembles them for the user into complete segments.

Shot The term shot is often used when discussing data acquired from laboratory
oscilloscopes, we try to avoid it in the following in order to more easily distinguish
between records and segments when recording in segmented mode.

Scope Data Structures

The device node /DEV…./SCOPES/n/WAVE (and /DEV…./SCOPES/n/STREAM/SAMPLE DIG
Option enabled, API level > 4) return the following data structures2 based on the API level used
by the session:

ScopeWave API Level 1, HF2 only. The simplest scope data structure. The wave structure
member in the data structure always has a fixed length of 2048. Scope
records are never split into multiple blocks; no assembly required. The HF2
does not support segmented recording; a segment is equivalent to a record.

ZIScopeWave API Level 4. An extended scope data structure used with MF and UHF
instruments. The data in the wave structure member consists of one
scope block; for long scope segments, complete scope segments must be
assembled by combining these blocks. The data in wave is not scaled or
offset.

ZIScopeWaveEx API Level > 5. As for ZIScopeWave, but contains the additional structure
member channelOffset.

The Scope Module always returns scope data in the ZIScopeWaveEx2 format, regardless of which
supported API level (1, >4) was used in the session where the Scope Module was instantiated.

2Please refere to the Labone API documentation

LabOne Programming Manual Revision 22.08 Zurich Instruments 124

3.11. Scope Module

However, the data in the wave structure member always consists of complete segments (it does
not need to be reassembled from multiple blocks). More differences between the data returned
by the node /DEV…./SCOPES/n/WAVE and the Scope Module are highlighted in Section 3.11.2.

3.11.2. Advantages of the Scope Module

Although it is possible to acquire scope data using the lower-level subscribe/poll method, the
Scope Module provides API users with several advantages. Specifically, the Scope Module:

1. Provides a uniform interface to acquire scope data from all instrument classes (HF2 scope
usage differs from and MF and UHF devices, especially with regards to scaling).

2. Scales and offsets the scope wave data to get physically meaningful values. If data is polled
from the device node using subscribe/poll the scaling and offset must be applied manually.

3. Assembles large multi-block transferred scope data into single complete records. When the
scope is configured to record large scope lengths and data is directly polled from the device
node /DEV…/SCOPES/n/WAVE the data is split into multiple blocks for efficient transfer of
data from the Data Server to the API; these must then be programmatically reassembled. The
Scope Module performs this assembly and returns complete scope records (unless used in
pass-through mode, mode=0).

4. Can be configured to return the FFT of the acquired scope records (with mode=3) as provided
by the Scope Tab in the LabOne UI. FFT data is not available from the device nodes in the /
DEV/…./SCOPES/ branch using subscribe/poll.

5. Can be configured to average the acquired scope records the averager/ parameters.

6. Can be configured to return a specific number of scope records using the historylength
parameter.

3.11.3. Working with Scope Module

It is important to note that the instrument’s scope is implemented in the firmware of the
instrument itself and most of the parameters relevant to scope data recording are configured
as device nodes under the /DEV…/SCOPES/ branch. Please refer to the instrument-specific User
Manual for a description of the Scope functionality and a list of the available nodes.

The Scope Module does not modify the instrument’s scope configuration and, as such, processes
the data arriving from the instrument in a somewhat passive manner. The Scope Module simply
reassembles data transferred in multiple blocks into complete segments (so that they consist
of the configured /DEV…./SCOPES/n/LENGTH) and applies the offset and scaling required to get
physically meaningful values to the (integer) data sent by the instrument.

The following steps should be used as a guideline for a Scope Module work-flow:

1. Create an instance of the Scope Module. This instance may be re-used for recording data with
different instrument settings or Scope Module configurations.

2. Subscribe in the Scope Module to the scope’s streaming block node (/DEV…./SCOPES/n/
WAVE) to specify which device and scope to acquire data from. Data will only be acquired
after enabling the scope and calling Scope Module execute().

3. Configure the instrument ready for the experiment. When acquiring data from the signal
inputs it is important to specify an appropriate value the for input range (/DEV…./SIGINS/n/
RANGE) to obtain the best bit resolution in the scope. The signal input range on MF and UHF
instruments can be adjusted automatically, see the /DEV…./SIGINS/n/AUTORANGE node and
API utility functions demonstrating its use (e.g. zhinst.utils.sigin_autorange() in
the LabOne Python API).

LabOne Programming Manual Revision 22.08 Zurich Instruments 125

3.11. Scope Module

4. Configure the instrument’s scope as required for the measurement. If recording signals other
than hardware channel signals (such as a PID’s error or a demodulator R output), be sure to
configure the /DEV…./SCOPES/n/CHANNELS/n/LIMIT\{LOWER UPPER} accordingly to obtain
the best bit resolution in the scope).

5. Configure the * parameters as required, in particular:

∏Set mode in order to specify whether to return time or frequency domain data. See
Section 3.11.4 for more information on the Scope Module’s modes.

∏Set the historylength parameter to tell the Scope Module to only return a certain
number of records. Note, as the Scope Module is acquiring data the records output
parameter may grow larger than historylength; the Scope Module will return the last
number of records acquired.

∏Set averager/weight to a value larger than 1 to enable averaging of scope records,
see Section 3.11.5.

6. Enable the scope (if not previously enabled) and call Scope Module execute() to start
acquiring data.

7. Wait for the Scope Module to acquire the specified number of records. Note, if certain scope
parameters are modified during recording, the history of the Scope Module will be cleared,
Section 3.11.7 for the list of parameters that trigger a Scope Module reset.

8. Call Scope Module read() to transfer data from the Module to the client. Data may be
read out using read() before acquisition is complete (advanced use). Note, an intermediate
read will create a copy in the client of the incomplete record which could be critical for
memory consumption in the case of very long scope lengths or high segment counts. The
data structure returned by read() is of type ZIScopeWaveEx2

9. Check the flags of each record indicating whether any problems occurred during acquisition.

10. Extract the data for each recorded scope channel and, if recording data in segmented mode,
reshape the wave data to allow easier access to multi-segment records (see Section 3.11.6)
Note, the scope data structure only returns data for enabled scope channels.

Data Acquisition and Transfer Speed

It is important to note that the time to transfer long scope segments from the device to the
Data Server can be much longer than the duration of the scope record itself. This is not due to
the Scope Module but rather due to the limitation of the physical interface that the device is
connected on (USB, 1GbE). Please ensure that the PC being used has adequate memory to hold
the scope records.

3.11.4. Scope Module Modes

The mode is applied for all scope channels returned by the Scope Module. Although it is not
possible to return both time and frequency domain data in one instance of the Scope Module,
multiple instances may be used to obtain both.

The Scope Module does not return an array consisting of the points in time (time mode)
or frequencies (FFT mode) corresponding to the samples in ZIScopeWaveEx2. These can be
constructed as arrays of n points, where n is the configured scope length (/DEV…/SCOPES/n/
LENGTH)) spanning the intervals:

Time mode [0, dt*totalsamples], where dt and totalsamples are fields in
ZIScopeWaveEx2.
In order to get a time array relative to the trigger position, (timestamp
- triggertimestamp)/float(clockbase) must be subtracted from the

LabOne Programming Manual Revision 22.08 Zurich Instruments 126

3.11. Scope Module

times in the interval, where timestamp and triggerstamp are fields in
ZIScopeWaveEx2.

FFT mode [0, (clockbase/2^scope_time)/2], where scope_time is the value of the
device node /DEV…./SCOPES/n/TIME. and clockbase is the value of /DEV…./
CLOCKBASE.

3.11.5. Averaging

When averager/weight is set to be greater than 1, then each new scope record in the history
element is an exponential moving average of all the preceding records since either execute()
was called or averager/restart was set to 1. The average is calculated by the Scope Module
as following:

alpha = 2/(weight + 1)
newVal = alpha * lastRecord + (1 - alpha) * history
history = newVal

where newVal becomes the last record in the Scope Module’s history. If the scope is in Single
mode, no averaging is performed. The weight corresponds to the number of segments to achieve
63% settling, doubling the value of weight achieves 86% settling.

It is important to note that the averaging functionality is performed by the Scope Module on the
PC where the API client runs, not on the device. Enabling averaging does not mean that less data
is sent from the instrument to the Data Server.

The average calculation can be restarted by setting averager/restart to 1. It is currently
not possible to tell how many scope segments have been averaged (since the reset). In general,
however, the way to track the current scope record is via the sequenceNumber field in
ZIScopeWaveEx2.

3.11.6. Segmented Recording

When the instrument’s scope runs segmented mode the wave structure member in the
ZIScopeWaveEx2 is an array consisting of length*segment_count where length is the value
of /DEV…./SCOPES/0/LENGTH and num_segments is /DEV…./SCOPES/n/SEGMENTS/COUNT.
This is equal to the value of the totalsamples structure member.

The Scope Module’s progress() method can be used to check the progress of the acquisition of
a single segmented recording. It is possible to read out intermediate data before the segmented
recording has finished. This will however, perform a copy of the data; the user should ensure that
adequate memory is available.

If the segment count in the instrument’s scope is changed, the Scope Module must be re-
executed. It is not possible to read multiple records consisting of different numbers of segments
within one Scope Module execution.

3.11.7. Scope Parameters that reset the Scope Module

The Scope Module parameter records and progress are reset and all records are cleared from
the Scope Module’s history when the following critical instrument scope settings are changed:

∏/DEV…/SCOPES/n/LENGTH

∏/DEV…/SCOPES/n/RATE

∏/DEV…/SCOPES/n/CHANNEL

∏/DEV…./SCOPES/n/SEGMENTS/COUNT

∏/DEV…./SCOPES/n/SEGMENTS/ENABLE

LabOne Programming Manual Revision 22.08 Zurich Instruments 127

3.11. Scope Module

3.11.8. Device-specific considerations

Scope Module Use on HF2 Instruments

The HF2 scope is supported by the Scope Module, in which case the API connects to the HF2 Data
Server using LabOne API Levels 1 (the HF2 Data Server does not support higher levels). When using
the Scope Module with HF2 Instruments the parameter externalscaling must be additionally
configured based on the currently configured scope signal’s input/output hardware range, see
the externalscaling entry for more details. This is not necessary for other instrument
classes.

Scope Module Use on MF and UHF Instruments

For MF and UHF instruments no special considerations must be made except that LabOne API
Levels 4 is not supported by the Scope Module; a higher API level must be used.

Whilst not specific to the Scope Module, it should be noted that the instrument’s scope is not
affected by loading device presets, in particular, default scope settings are not obtained by
loading the instrument’s factory preset.

3.11.9. Scope Module Node Tree

The following section contains reference documentation for the settings and measurement data
available on the scope module.

Since these settings and data streams may be written and read using the LabOne APIs
(Application Programming Interfaces) this section is of particular interest to users who would like
to perform measurements programmatically via LabVIEW, Python, MATLAB, .NET or C.

averager

//averager/resamplingmode

Properties: Read, Write

Type: Integer (enumerated)

Unit: None

Specifies the resampling mode. When averaging scope data recorded at a low sampling rate that
is aligned by a high resolution trigger, scope data must be resampled to keep the corresponding
samples between averaged recordings aligned correctly in time relative to the trigger time.

linear0

Linear interpolation

pchip1

PCHIP interpolation

//averager/restart

Properties: Read, Write

LabOne Programming Manual Revision 22.08 Zurich Instruments 128

3.11. Scope Module

Type: Integer (64 bit)

Unit: None

Set to 1 to reset the averager. The module sets averager/restart back to 0 automatically.

//averager/weight

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Specify the averaging behaviour. weight=0: Averaging disabled. weight>1: Moving average,
updating last history entry.

clearhistory

//clearhistory

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Remove all records from the history list.

error

//error

Properties: Read

Type: Integer (64 bit)

Unit: None

Indicates whether an error occurred whilst processing the current scope record; set to non-
zero when a scope flag indicates an error. The value indicates the accumulated error for all the
processed segments in the current record and is reset for every new incoming scope record.
It corresponds to the status LED in the LabOne User Interface’s Scope tab - API users are
recommended to use the flags structure member in ZIScopeWaveEx instead of this output
parameter.

externalscaling

//externalscaling

Properties: Read, Write

LabOne Programming Manual Revision 22.08 Zurich Instruments 129

3.11. Scope Module

Type: Double

Unit: None

Scaling to apply to the scope data transferred over API level 1 connection. Only relevant for HF2
Instruments.

fft

//fft/power

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Enable calculation of the power value.

//fft/spectraldensity

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Enable calculation of the spectral density value.

//fft/window

Properties: Read, Write

Type: Integer (enumerated)

Unit: None

FFT Window

rectangular0

Rectangular

hann1

Hann (default)

hamming2

Hamming

blackman_harris3

Blackman Harris

exponential16

Exponential (ring-down)

cos17

Cosine (ring-down)

18 cos_squared

LabOne Programming Manual Revision 22.08 Zurich Instruments 130

3.11. Scope Module

Cosine squared (ring-down)

historylength

//historylength

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Maximum number of entries stored in the measurement history.

lastreplace

//lastreplace

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Reserved for LabOne User Interface use.

mode

//mode

Properties: Read, Write

Type: Integer (enumerated)

Unit: None

The Scope Module’s data processing mode.

passthrough0

Passthrough: scope segments assembled and returned unprocessed, non-
interleaved.

exp_moving_average1

Moving average: entire scope recording assembled, scaling applied, averager if
enabled (see averager/weight), data returned in float non-interleaved format.

2 Reserved for future use (average n segments).

fft3

FFT, same as mode 1, except an FFT is applied to every segment of the scope
recording before averaging. See the fft/* parameters for FFT parameters.

LabOne Programming Manual Revision 22.08 Zurich Instruments 131

3.11. Scope Module

records

//records

Properties: Read

Type: Integer (64 bit)

Unit: None

The number of scope records that have been processed by the Scope Module since execute()
was called or a critical scope setting has been modified (see manual for a list of scope settings
that trigger a reset).

save

//save/csvlocale

Properties: Read, Write

Type: String

Unit: None

The locale to use for the decimal point character and digit grouping character for numerical values
in CSV files: "C": Dot for the decimal point and no digit grouping (default); " (empty string): Use the
symbols set in the language and region settings of the computer.

//save/csvseparator

Properties: Read, Write

Type: String

Unit: None

The character to use as CSV separator when saving files in this format.

//save/directory

Properties: Read, Write

Type: String

Unit: None

The base directory where files are saved.

//save/fileformat

Properties: Read, Write

Type: Integer (enumerated)

Unit: None

LabOne Programming Manual Revision 22.08 Zurich Instruments 132

3.11. Scope Module

The format of the file for saving data.

mat0

MATLAB

csv1

CSV

zview2

ZView (Impedance data only)

sxm3

SXM (Image format)

hdf54

HDF5

//save/filename

Properties: Read, Write

Type: String

Unit: None

Defines the sub-directory where files are saved. The actual sub-directory has this name with a
sequence count (per save) appended, e.g. daq_000.

//save/save

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Initiate the saving of data to file. The saving is done in the background. When the save has finished,
the module resets this parameter to 0.

//save/saveonread

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Automatically save the data to file immediately before reading out the data from the module using
the read() command. Set this parameter to 1 if you want to save data to file when running the
module continuously and performing intermediate reads.

LabOne Programming Manual Revision 22.08 Zurich Instruments 133

3.12. Sweeper Module

3.12. Sweeper Module

The Sweeper Module allows the user to perform sweeps as in the Sweeper Tab of the LabOne
User Interface. In general, the Sweeper can be used to obtain data when measuring a DUT's
response to varying (or sweeping) one instrument setting while other instrument settings are
kept constant.

3.12.1. Configuring the Sweeper

In this section we briefly describe how to configure the Sweeper Module. See Section 3.12.2 for a
full list of the Sweeper’s parameters and description of the Sweeper’s outputs.

Specifying the Instrument Setting to Sweep

The Sweeper’s gridnode parameter, the so-called sweep parameter, specifies the instrument’s
setting to be swept, specified as a path to an instrument’s node. This is typically an oscillator
frequency in a Frequency Response Analyzer, e.g., /dev123/oscs/0/freq, but a wide range
of instrument settings can be chosen, such as a signal output amplitude or a PID controller’s
setpoint.

Specifying the Range of Values for the Sweep Parameter

The Sweeper will change the sweep parameter’s value samplecount times within the range of
values specified by start and stop. The xmapping parameter specifies whether the spacing
between two sequential values in the range is linear (=0) or logarithmic (=1).

Controlling the Scan mode: The Selection of Range Values

The scan parameter defines the order that the values in the specified range are written to
the sweep parameter. In sequential scan mode (=0) , the sweep parameter’s values change
incrementally from smaller to larger values. In order to scan the sweep parameter’s in the
opposite direction, i.e., from larger to smaller values, reverse scan mode (=3) can be used.

In binary scan mode (=1) the first sweep parameter’s value is taken as the value in the middle of the
range, then the range is split into two halves and the next two values for the sweeper parameter
are the values in the middle of those halves. This process continues until all the values in the range
were assigned to the sweeper parameter. Binary scan mode ensures that the sweep parameter
uses values from the entire range near the beginning of a measurement, which allows the user
to get feedback quickly about the measurement’s entire range. Since the Sweeper Module is
an asynchronous interface, it’s possible to continuously read and plot data whilst the sweep
measurement is ongoing and update points in a graph dynamically.

In bidirectional scan mode (=2) the sweeper parameter’s values are first set from smaller to larger
values as in sequential mode, but are then set in reverse order from larger to smaller values. This
allows for effects in the sweep parameter to be observed that depend on the order of changes
in the sweep parameter’s values.

Controlling how the Sweeper sets the Demodulator’s Time Constant

The bandwidthcontrol parameter specifies which demodulator filter bandwidth (equivalently
time constant) the Sweeper should set for the current measurement point. The user can either
specify the bandwidth manually (=0), in which case the value of the current demodulator filter’s
bandwidth is simply used for all measurement points; specify a fixed bandwidth (=1), specified
by bandwidth, for all measurement points; or specify that the Sweeper sets the demodulator’s

LabOne Programming Manual Revision 22.08 Zurich Instruments 134

3.12. Sweeper Module

bandwidth automatically (=2). Note, to use either Fixed or Manual mode, bandwidth must be set
to a value > 0 (even though in manual mode it is ignored).

Specifying the Sweeper’s Settling Time

For each change in the sweep parameter that takes effect on the instrument the Sweeper waits
before recording measurement data in order to allow the measured signal to settle. This behavior
is configured by two parameters in the settling/ branch: settling/time and settling/
inaccuracy.

The settling/time parameter specifies the minimum time in seconds to wait before recording
measurement data for that sweep point. This can be used to specify to the settling time required
by the user’s experimental setup before measuring the response in their system.

The settling/inaccuracy parameter is used to derive the settling time to allow for the lock-
in amplifier’s demodulator filter response to settle following a change of value in the sweep
parameter. More precisely, the settling/inaccuracy parameter specifies the amount of
settling time as the time required to attain the specified remaining proportion [1e-13, 0.1] of an
incoming step function. Based upon the value of settling/inaccuracy and the demodulator
filter order, the number of demodulator filter time constants to wait is calculated and written
to settling/tc (upon calling the module’s execute() command) which can then be read
back by the user. See Section 3.12.2 for recommended values of settling/inaccuracy. The
relationship between settling/inaccuracy and settling/tc is plotted in Figure 3.15.

The actual amount of time the Sweeper Module will wait after setting a new sweep parameter
value before recording measurement data is defined in Equation 1. For a frequency sweep, the
settling/inaccuracy parameter will tend to influence the settling time at lower frequencies,
whereas settling/time will tend to influence the settling time at higher frequencies.

The settling time ts used by the Sweeper for each measurement point; the amount of time
between setting the sweep parameter and recording measurement data is determined by the
settling/tc and settling/time (see Equation 1).

Note

Note, although it is recommended to use settling/inaccuracy, it is still possible to set the
settling time via settling/tc instead of settling/inaccuracy (the parameter applied will
be simply the last one that is set by the user).

LabOne Programming Manual Revision 22.08 Zurich Instruments 135

3.12. Sweeper Module

Figure 3.15. A plot showing the values of the Sweeper’s settling/tc as calculated from
settling/inaccuracy parameter and their dependency on demodulator order filter.

Specifying which Data to Measure

Which measurement data is actually returned by the Sweeper’s read command is configured by
subscribing to node path using the Sweeper Module’s subscribe command.

Specifying how the Measurement Data is Averaged

One Sweeper measurement point is obtained by averaging recorded data which is configured via
the parameters in the averaging/ branch.

The averaging/tc parameter specifies the minimum time window in factors of demodulator
filter time constants during which samples will be recorded in order to average for one returned
sweeper measurement point. The averaging/sample parameter specifies the minimum
number of data samples that should be recorded and used for the average. The Sweeper takes
both these settings into account for the measurement point’s average according to Equation 2.

The number of samples N used to average one sweeper measurement point is determined by the
parameters averaging/time, averaging/tc, and averaging/sample as well as the rate
of data transfer from the instrument to the data server (see Equation 2).

LabOne Programming Manual Revision 22.08 Zurich Instruments 136

3.12. Sweeper Module

Note

Note, the value of the demodulator filter’s time constant may be controlled by the Sweeper
depending on the value of bandwidthcontrol and bandwidth, see the section above called
the section called “Controlling how the Sweeper sets the Demodulator’s Time Constant ”. For a
frequency sweep, the averaging/tc parameter will tend to influence the number of samples
recorded at lower frequencies, whereas averaging/sample will influence averaging behavior
at higher frequencies.

An Explanation of Settling and Averaging Times in a Frequency Sweep

Figure 3.16 shows which demodulator samples are used in order to calculate an averaged
measurement point in a frequency sweep. This explanation of the Sweeper’s parameters is
specific to the following commonly-used Sweeper settings:

∏gridnode is set to an oscillator frequency, e.g., /dev123/oscs/0/freq.

∏bandwidthcontrol is set to 2, corresponding to automatic bandwidth control, i.e., the
Sweeper will set the demodulator’s filter bandwidth settings optimally for each frequency
used.

∏scan is set to 0, corresponding to sequential scan mode for the range of frequency values
swept, i.e, the frequency is increasing for each measurement point made.

Each one of the three red segments in the demodulator data correspond to the data used to
calculate one single Sweeper measurement point. The light blue bars correspond to the time the
sweeper should wait as indicated by settling/tc (this is calculated by the Sweeper Module
from the specified settling/inaccuracy parameter). The purple bars correspond to the time
specified by the settling/time parameter. The sweeper will wait for the maximum of these
two times according to Equation 1. When measuring at lower frequencies the Sweeper sets a
smaller demodulator filter bandwidth (due to automatic bandwidthcontrol) corresponding to
a larger demodulator filter time constant. Therefore, the settling/tc parameter dominates
the settling time used by the Sweeper at low frequencies and at high frequencies the settling/
time parameter takes effect. Note, that the light blue bars corresponding to the value of
settling/tc get shorter for each measurement point (larger frequency used → shorter time
constant required), whereas the purple bars corresponding to settling/time stay a constant
length for each measurement point. Similarly, the averaging/tc parameter (yellow bars)
dominates the Sweeper’s averaging behavior at low frequencies, whereas averaging/samples
(green bars) specifies the behavior at higher frequencies, see also Equation 2.

LabOne Programming Manual Revision 22.08 Zurich Instruments 137

3.12. Sweeper Module

Figure 3.16. Plot demonstrating how the Sweeper records three measurement points from
demodulator data when using automatic bandwidth control in a frequency sweep. Please see
the section called “An Explanation of Settling and Averaging Times in a Frequency Sweep”, for
a detailed explanation.

Average Power and Standard Deviation of the Measured Data

The Sweeper returns measurement data upon calling the Sweeper’s read() function. This
returns not only the averaged measured samples (e.g. r) but also their average power (rpwr) and
standard deviation (rstddev). In order to obtain reliable values from this statistical data, please
ensure that the averaging branch parameters are configured correctly. It’s recommended
to use at least a value of 12 for averaging/sample to ensure enough values are used to
calculate the standard deviation and 5 for averaging/tc in order to prevent aliasing effects
from influencing the result.

3.12.2. Sweeper Module Node Tree

The following section contains reference documentation for the settings and measurement data
available on the sweeper module.

Since these settings and data streams may be written and read using the LabOne APIs
(Application Programming Interfaces) this section is of particular interest to users who would like
to perform measurements programmatically via LabVIEW, Python, MATLAB, .NET or C.

averaging

//averaging/sample

Properties: Read, Write

Type: Integer (64 bit)

Unit: Samples

Sets the number of data samples per sweeper parameter point that is considered in the
measurement.

LabOne Programming Manual Revision 22.08 Zurich Instruments 138

3.12. Sweeper Module

//averaging/tc

Properties: Read, Write

Type: Double

Unit: TC

Sets the effective number of time constants per sweeper parameter point that is considered in
the measurement.

//averaging/time

Properties: Read, Write

Type: Double

Unit: Seconds

Sets the effective measurement time per sweeper parameter point that is considered in the
measurement.

awgcontrol

//awgcontrol

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Enable AWG control for sweeper. If enabled the sweeper will automatically start the AWG and
records the sweep sample based on the even index in hwtrigger.

bandwidth

//bandwidth

Properties: Read, Write

Type: Double

Unit: Hz

Defines the measurement bandwidth when using Fixed bandwidth mode (sweep/
bandwidthcontrol=1), and corresponds to the noise equivalent power bandwidth (NEP).

bandwidthcontrol

//bandwidthcontrol

Properties: Read, Write

LabOne Programming Manual Revision 22.08 Zurich Instruments 139

3.12. Sweeper Module

Type: Integer (enumerated)

Unit: None

Specify how the sweeper should specify the bandwidth of each measurement point. Automatic is
recommended, in particular for logarithmic sweeps and assures the whole spectrum is covered.

manual0

Manual (the sweeper module leaves the demodulator bandwidth settings entirely
untouched)

fixed1

Fixed (use the value from sweep/bandwidth)

auto2

Automatic. Note, to use either Fixed or Manual mode, sweep/bandwidth must be set
to a value > 0 (even though in manual mode it is ignored).

bandwidthoverlap

//bandwidthoverlap

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

If enabled the bandwidth of a sweep point may overlap with the frequency of neighboring sweep
points. The effective bandwidth is only limited by the maximal bandwidth setting and omega
suppression. As a result, the bandwidth is independent of the number of sweep points. For
frequency response analysis bandwidth overlap should be enabled to achieve maximal sweep
speed.

clearhistory

//clearhistory

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Remove all records from the history list.

device

//device

Properties: Read, Write

Type: String

Unit: None

LabOne Programming Manual Revision 22.08 Zurich Instruments 140

3.12. Sweeper Module

The device ID to perform the sweep on, e.g., dev123 (compulsory parameter, this parameter must
be set first).

endless

//endless

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Enable Endless mode; run the sweeper continuously.

filtermode

//filtermode

Properties: Read, Write

Type: Integer (enumerated)

Unit: None

Selects the filter mode.

application0

Application (the sweeper sets the filters and other parameters automatically)

advanced1

Advanced (the sweeper uses manually configured parameters)

gridnode

//gridnode

Properties: Read, Write

Type: String

Unit: Node

The device parameter (specified by node) to be swept, e.g., "oscs/0/freq".

historylength

//historylength

Properties: Read, Write

LabOne Programming Manual Revision 22.08 Zurich Instruments 141

3.12. Sweeper Module

Type: Integer (64 bit)

Unit: None

Maximum number of entries stored in the measurement history.

loopcount

//loopcount

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

The number of sweeps to perform.

maxbandwidth

//maxbandwidth

Properties: Read, Write

Type: Double

Unit: Hz

Specifies the maximum bandwidth used when in Auto bandwidth mode (sweep/
bandwidthcontrol=2). The default is 1.25 MHz.

omegasuppression

//omegasuppression

Properties: Read, Write

Type: Double

Unit: dB

Damping of omega and 2omega components when in Auto bandwidth mode (sweep/
bandwidthcontrol=2). Default is 40dB in favor of sweep speed. Use a higher value for strong offset
values or 3omega measurement methods.

order

//order

Properties: Read, Write

LabOne Programming Manual Revision 22.08 Zurich Instruments 142

3.12. Sweeper Module

Type: Integer (64 bit)

Unit: None

Defines the filter roll off to use in Fixed bandwidth mode (sweep/bandwidthcontrol=1). Valid
values are between 1 (6 dB/octave) and 8 (48 dB/octave).

phaseunwrap

//phaseunwrap

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Enable unwrapping of slowly changing phase evolutions around the +/-180 degree boundary.

remainingtime

//remainingtime

Properties: Read

Type: Double

Unit: Seconds

Reports the remaining time of the current sweep. A valid number is only displayed once the
sweeper has been started. An undefined sweep time is indicated as NAN.

samplecount

//samplecount

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

The number of measurement points to set the sweep on.

save

//save/csvlocale

Properties: Read, Write

LabOne Programming Manual Revision 22.08 Zurich Instruments 143

3.12. Sweeper Module

Type: String

Unit: None

The locale to use for the decimal point character and digit grouping character for numerical values
in CSV files: "C": Dot for the decimal point and no digit grouping (default); " (empty string): Use the
symbols set in the language and region settings of the computer.

//save/csvseparator

Properties: Read, Write

Type: String

Unit: None

The character to use as CSV separator when saving files in this format.

//save/directory

Properties: Read, Write

Type: String

Unit: None

The base directory where files are saved.

//save/fileformat

Properties: Read, Write

Type: Integer (enumerated)

Unit: None

The format of the file for saving data.

mat0

MATLAB

csv1

CSV

zview2

ZView (Impedance data only)

sxm3

SXM (Image format)

hdf54

HDF5

//save/filename

Properties: Read, Write

LabOne Programming Manual Revision 22.08 Zurich Instruments 144

3.12. Sweeper Module

Type: String

Unit: None

Defines the sub-directory where files are saved. The actual sub-directory has this name with a
sequence count (per save) appended, e.g. daq_000.

//save/save

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Initiate the saving of data to file. The saving is done in the background. When the save has finished,
the module resets this parameter to 0.

//save/saveonread

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

Automatically save the data to file immediately before reading out the data from the module using
the read() command. Set this parameter to 1 if you want to save data to file when running the
module continuously and performing intermediate reads.

scan

//scan

Properties: Read, Write

Type: Integer (enumerated)

Unit: None

Selects the scanning type.

sequential0

Sequential (incremental scanning from start to stop value)

binary1

Binary (Non-sequential sweep continues increase of resolution over entire range)

bidirectional2

Bidirectional (Sequential sweep from Start to Stop value and back to Start again)

reverse3

Reverse (reverse sequential scanning from stop to start value)

LabOne Programming Manual Revision 22.08 Zurich Instruments 145

3.12. Sweeper Module

settling

//settling/inaccuracy

Properties: Read, Write

Type: Double

Unit: None

Demodulator filter settling inaccuracy defining the wait time between a sweep parameter
change and recording of the next sweep point. The settling time is calculated as the time
required to attain the specified remaining proportion [1e-13, 0.1] of an incoming step function.
Typical inaccuracy values: 10m for highest sweep speed for large signals, 100u for precise
amplitude measurements, 100n for precise noise measurements. Depending on the order of the
demodulator filter the settling inaccuracy will define the number of filter time constants the
sweeper has to wait. The maximum between this value and the settling time is taken as wait time
until the next sweep point is recorded. See programming manual for the relationship between
sweep/settling/inaccuracy and sweep/settling/tc.

//settling/tc

Properties: Read, Write

Type: Double

Unit: TC

Minimum wait time in factors of the time constant (TC) between setting the new sweep parameter
value and the start of the measurement. This filter settling time is preferably configured via the
sweep/settling/inaccuracy. The maximum between this value and sweep/settling/time is taken
as effective settling time.

//settling/time

Properties: Read, Write

Type: Double

Unit: Seconds

Minimum wait time in seconds between setting the new sweep parameter value and the start of
the measurement. The maximum between this value and sweep/settling/tc is taken as effective
settling time.

sincfilter

//sincfilter

Properties: Read, Write

Type: Integer (64 bit)

Unit: None

LabOne Programming Manual Revision 22.08 Zurich Instruments 146

3.12. Sweeper Module

Enables the sinc filter if the sweep frequency is below 50 Hz. This will improve the sweep speed
at low frequencies as omega components do not need to be suppressed by the normal low pass
filter.

start

//start

Properties: Read, Write

Type: Double

Unit: Many

The start value of the sweep parameter.

stop

//stop

Properties: Read, Write

Type: Double

Unit: Many

The stop value of the sweep parameter.

xmapping

//xmapping

Properties: Read, Write

Type: Integer (enumerated)

Unit: None

Selects the spacing of the grid used by sweep/gridnode (the sweep parameter).

linear0

Linear

log1

Logarithmic distribution of sweep parameter values

LabOne Programming Manual Revision 22.08 Zurich Instruments 147

Chapter 4. MATLAB Programming
The MathWorks' numerical computing environment MATLAB® has powerful tools for data
analysis and visualization that can be used to create graphical user interfaces or automatically
generate reports of experimental results in various formats. LabOne’s MATLAB API, also known
as ziDAQ, "Zurich Instruments Data Acquisition", enables the user to stream data from
their instrument directly into MATLAB allowing them to take full advantage of this powerful
environment.

This chapter aims to help you get started using Zurich Instruments LabOne’s MATLAB API, ziDAQ,
to control your instrument.

Please refer to:

∏Section 4.1 for help installing the LabOne MATLAB API.

∏Section 4.2 for help getting Started with the LabOne MATLAB API and running the examples.

∏Section 4.3 for some LabOne MATLAB API tips and tricks.

∏Section 4.4 for help troubleshooting the LabOne MATLAB API.

Note

For a full reference of the MATLAB API visit the LabOne API documentation. The LabOne API
documentation is available within your LabOne Software or can be accessed online at the Zurich
Intruments website (www.zhinst.com)

Note

The MATLAB examples can be downloaded from our GitHub repository.

Note

This section and the provided examples are not intended to be a MATLAB tutorial. See either
MathWorks' online Documentation Center or one of the many online resources, for example, the
MATLAB Programming Wikibook for help to get started programming with MATLAB.

LabOne Programming Manual Revision 22.08 Zurich Instruments 148

https://www.mathworks.com
https://github.com/zhinst/labone-api-examples
https://www.mathworks.ch/ch/help/matlab/index.html
https://en.wikibooks.org/wiki/MATLAB_Programming

4.1. Installing the LabOne MATLAB API

4.1. Installing the LabOne MATLAB API

4.1.1. Requirements

One of the following platforms and MATLAB versions (with valid license) is required to use the
LabOne MATLAB API:

1. 32 or 64-bit Windows with MATLAB R2009b or newer.

2. 64-bit Linux with MATLAB R2016b or newer.

3. 64-bit macOS and MATLAB R2013b or newer.

The LabOne MATLAB API ziDAQ is included in a standard LabOne installation and is also
available as a separate package (see below, Separate MATLAB Package). No installation as such
is required, only a few configuration steps must be performed to use ziDAQ in MATLAB. Both the
main LabOne installer and the separate LabOne MATLAB API package are available from Zurich
Instruments' download page.

Separate MATLAB Package

The separate MATLAB API package should be used if you would like to:

1. Use the MATLAB API to work with an instrument remotely (i.e., on a separate PC from where
the Data Server is running) and you do not require a full LabOne installation. This is the case,
for example, with MF Instruments.

2. Use the MATLAB API on a PC where you do not have administrator rights.

4.1.2. Windows, Linux or Mac

No additional installation steps are required to use ziDAQ on either Windows, Linux or Mac; it’s
only necessary to add the folder containing LabOne’s MATLAB Driver to MATLAB’s search path.
This is done as following:

1. Start MATLAB and either set the "Current Folder" (current working directory) to the MATLAB
API folder in your LabOne installation or the extracted zip archive of the separate MATLAB
API package (see above, Separate MATLAB Package) as appropriate.

If using a LabOne installation on Windows this is typically:

C:\Program Files\Zurich Instruments\LabOne\API\MATLAB\

and on Linux this is the location where you unpacked the LabOne .tar.gz file:

[PATH]/LabOne64/API/MATLAB/

2. In the MATLAB Command Window, run the MATLAB script ziAddPath located in the MATLAB
directory:

>> ziAddPath;

On Windows (similar for Linux and Mac) you should see the following output in MATLAB’s
Command Window:

Added ziDAQ's Driver, Utilities and Examples directories to MATLAB's path
for this session.

LabOne Programming Manual Revision 22.08 Zurich Instruments 149

http://www.zhinst.com/downloads

4.1. Installing the LabOne MATLAB API

To make this configuration persistent across MATLAB sessions either:

1. Run the 'pathtool' command in the MATLAB Command Window and add the
 following paths WITH SUBFOLDERS to the MATLAB search path:

 C:\Program Files\Zurich Instruments\LabOne\API\MATLAB\

or

2. Add the following line to your MATLAB startup.m file:

 run('C:\Program Files\Zurich Instruments\LabOne\API\MATLAB\ziAddPath');

This is sufficient configuration if you would only like to use ziDAQ in the current MATLAB
session.

3. To make this configuration persistent between MATLAB sessions do either one of the next
two steps (as also indicated by the output of ziAddPath):

1. Run the pathtool and click "Add with Subfolders". Browse to the "MATLAB" directory
that was located above in Step 1 and click "OK".

2. Edit your startup.m to contain the line indicated in the output from Step 2 above.
For more help on MATLAB’s startup.m file, type the following in MATLAB’s Command
Window:

>> docsearch('startup.m')

4. Verify your MATLAB configuration as described in Section 4.1.3.

4.1.3. Verifying Successful MATLAB Configuration

In order to verify that MATLAB is correctly configured to use ziDAQ please perform the following
steps:

1. Ensure that the correct Data Server is running for your HDAWG, HF2 or UHF Instrument (the
Data Server on MF Instruments starts when the device is powered on). The quickest way to
check is to start the User Interface for your device, see Section 1.2 for more details.

2. Proceed either of the following two ways:

a. The easiest way to verify correct configuration is run one of the MATLAB API’s examples
(see <<pm.matlab.github_repository). In the MATLAB command Window run, for example,
example_poll with your device ID as the input argument:

>> example_poll('dev123'); % Replace with your device ID.

If this fails, please try issuing the connect command, as described in the next method.

b. If a device is not currently available, correct MATLAB API configuration can be checked by
initializing an API session to the Data Server without device communication.

An API session with the Data Server is created using ziDAQ’s `connect (the port
specifies which Data Server to connect to on the localhost) cf. Section 1.4.1). In the
MATLAB command window type one of the following:

* `>> ziDAQ('connect', 'localhost', 8005) % 8005 for HF2 Series`
* `>> ziDAQ('connect', 'localhost', 8004, 6) % 8004 for HDAWG, UHFLI`
* `>> ziDAQ('connect', mf-hostname, 8004, 6) % 8004 for MFLI (see below)`

Note, using 'localhost' above assumes that the Data Server is running on the same
computer from which you are using MATLAB. See Section 1.4.1 for information about
ports and host names when connecting to the Data Server. For MFLI instruments
the hostname/IP address of the MFLI instrument must be provided (the value of mf-

LabOne Programming Manual Revision 22.08 Zurich Instruments 150

4.1. Installing the LabOne MATLAB API

hostname), see Section 1.4.1 and the Getting Started chapter of the MFLI User Manual
for more information.

3. If no error is reported then MATLAB is correctly configured to use ziDAQ - congratulations!
Otherwise, please try the steps listed in Section 4.4.

LabOne Programming Manual Revision 22.08 Zurich Instruments 151

4.2. Getting Started with the LabOne MATLAB API

4.2. Getting Started with the LabOne MATLAB API

This section introduces the user to the LabOne MATLAB API.

4.2.1. Contents of the LabOne MATLAB API

Alongside the driver for interfacing with your Zurich Instruments device, the LabOne MATLAB API
includes many files for documentation, utility functions and examples. See the Contents.m file
located in a LabOne MATLAB API directory (see Step 1 in Section 4.1.2 for its typical location) for
a description of the API’s sub-folders and files. Run the command:

>> doc('Contents')

in the MATLAB Command Window in the LabOne MATLAB API directory or take a look at the
LabOne API documentation for a detailed overview.

MATLAB Driver Naming

On Windows the MEX-file (the ziDAQ MATLAB Driver/DLL) is called either ziDAQ.mexw64 or
ziDAQ.mexw32 for 64-bit and 32-bit platforms respectively, on Linux it’s called ziDAQ.mexa64
and on Mac it’s called ziDAQ.mexmaci64. When more than one MEX-file is present, MATLAB
automatically selects the correct MEX-file for the current platform.

4.2.2. Using the Built-in Documentation

To access `ziDAQ’s documentation within MATLAB, type either of the following in the MATLAB
Command Window:

>> help ziDAQ

>> doc ziDAQ

This documentation is located in the file MATLAB/Driver/ziDAQ.m. See the LabOne API
documentation for a detailed overview.

4.2.3. Running the Examples

Prerequisites for running the MATLAB examples:

1. MATLAB is configured for ziDAQ as described above in Section 4.1.

2. The Data Server program is running and the instrument is discoverable, this is the case if the
instrument can be seen in the User Interface.

3. Signal Output 1 of the instrument is connected to Signal Input 1 via a BNC cable; many of the
MATLAB examples measure on this hardware channel.

See Section 4.2.1 for a list of available examples bundled with the LabOne MATLAB API. All the
examples follow the same structure and take one input argument: the device ID of the instrument
they are to be ran with. For example:

>> example_sweeper('dev123');

The example should produce some output in the MATLAB Command Window, such as:

LabOne Programming Manual Revision 22.08 Zurich Instruments 152

4.2. Getting Started with the LabOne MATLAB API

ziDAQ version Jul 7 2015 accessing server localhost 8005.
Will run the example on `dev123`, an `HF2LI` with options `MFK|PLL|MOD|RTK|PID`.
Sweep progress 9%
Sweep progress 19%
Sweep progress 30%
Sweep progress 42%
Sweep progress 52%
Sweep progress 58%
Sweep progress 68%
Sweep progress 79%
Sweep progress 91%
Sweep progress 100%
ziDAQ: AtExit called

Most examples will also plot some data in a MATLAB figure, see Figure 4.1 for an example. If you
encounter an error message please ensure that the Section 4.2.3 are fulfilled and see Section 4.4
for help troubleshooting the error.

Figure 4.1. The plot produced by the LabOne MATLAB API example example_sweeper.m; the
plots show the instruments demodulator output when performing a frequency sweep over a
simple feedback cable.

Note

The examples serve as a starting point for your own measurement needs. However, before editing
the m-files, be sure to copy them to your own user space (they could be overwritten upon
updating your LabOne installation) and give them a unique name to avoid name conflicts in
MATLAB.

LabOne Programming Manual Revision 22.08 Zurich Instruments 153

4.2. Getting Started with the LabOne MATLAB API

4.2.4. Using ziCore Modules in the LabOne MATLAB API

In the LabOne MATLAB API ziCore Modules are configured and controlled via MATLAB "handles".
For example, in order to use the Sweeper Module a handle is created via:

>> h = ziDAQ('sweep');

and the Module’s parameters are configured using the set command and specifying the Module’s
handle with a path, value pair, for example:

>> ziDAQ('set', h, 'start', 1.2e5);

The parameters can be read-back using the get command, which supports wildcards, for
example:

>> sweep_params = ziDAQ('get', h, '*');

The variable sweep_params now contains a struct of all the Sweeper’s parameters. The other
main Module commands are used similarly, e.g., ziDAQ('execute', h) to start the sweeper.
See Section 3.1.2 for more help with Modules and a description of their parameters.

Note

The Data Acquisition Module uses dot notation for subscribing to signals. In the data structure
returned by the MATLAB API, the dots are replaced by underscores in order not to conflict with
the dot notation used for member selection in MATLAB, e.g. /devNNN/demods/0/sample.r is
accessed using devNNN.demods(1).sample_r.

4.2.5. Enabling Logging in the LabOne MATLAB API

Logging from the API is not enabled by default upon initializing a server session with ziDAQ, it
must be enabled (after using connect) with the setDebugLevel command. For example,

>> ziDAQ('setDebugLevel', 0);

sets the API’s logging level to 0, which provides the most verbose logging output. The other log
levels are defined as follows:

trace:0, debug:1, info:2, status:3, warning:4, error:5, fatal:6.

It is also possible for the user to write their own messages directly to ziDAQ’s log using the
`writeDebugLog command. For example to write a log message of info severity level:

>> ziDAQ('writeDebugLog', 1, 'Hello log!');

On Windows the logs are located in the directory C:\Users\[USER]\AppData\Local\Temp
\Zurich Instruments\LabOne Note that AppData is a hidden directory. The easiest way
to find it is to open a File Explorer window and type the text %AppData%\.. in the address bar,
and navigate from there. The directory contains folders containing log files from various LabOne
components, in particular, the ziDAQLog folder contains logs from the LabOne MATLAB API. On
Linux, the logs can be found at "/tmp/ziDAQLog_USERNAME", where "USERNAME" is the same
as the output of the "whoami" command.

LabOne Programming Manual Revision 22.08 Zurich Instruments 154

4.3. LabOne MATLAB API Tips and Tricks

4.3. LabOne MATLAB API Tips and Tricks

In this section some tips and tricks for working with the LabOne MATLAB API are provided.

The structure of ziDAQ commands.

All LabOne MATLAB API commands are based on a call to the MATLAB function ziDAQ(). The
first argument to ziDAQ() specifies the API command to be executed and is an obligatory
argument. For example, a session is instantiated between the API and the Data Server with
the MATLAB command ziDAQ('connect'). Depending on the type of command specified,
optional arguments may be required. For example, to obtain an integer node value, the node path
must be specified as a second argument to the 'getInt' command:

s = ziDAQ('getInt','/dev123/sigouts/0/on');

where the output argument contains the current value of the specified node.

To set an integer node value, both the node path and the value to be set must be specified as
the second and third arguments:

ziDAQ('setInt','/dev123/sigouts/0/on', 1);.

See the LabOne API documentation for a detailed overview.

Data Structures returned by ziDAQ.

The output arguments that ziDAQ returns are designed to use the native data structures
that MATLAB users are familiar with and that reflect the data’s location in the instruments
node hierarchy. For example, when the poll command returns data from the instruments
fourth demodulator (located in the node hierarchy as /dev123/demods/3/sample), the output
argument contains a nested struct in which the data can be accessed by

data = ziDAQ('poll', poll_length, poll_timeout);
x = data.dev123.demods(4).sample.x;
y = data.dev123.demods(4).sample.y;

The instrument’s node tree uses zero-based indexing; MATLAB uses
one-based indexing.

See the tip Data Structures returned by ziDAQ.: The fourth demodulator sample located
at /dev123/demods/3/sample, is indexed in the data structure returned by poll as
data.dev123.demods(4).sample.

Explicitly convert uint64 data types to double.

MATLAB’s native data type is double-precision floating point and doesn’t support performing
calculations with with other data types such as 64-bit unsigned integers, for example:

>> a = uint64(2); b = uint64(1); a - b
? Undefined function or method 'minus' for input arguments of type 'uint64'.

Due to this limitation, be sure to convert demodulator timestamps to double before performing
calculations. For example, in the following, both clockbase and timestamp (both 64-bit unsigned

LabOne Programming Manual Revision 22.08 Zurich Instruments 155

4.3. LabOne MATLAB API Tips and Tricks

integers) need to be converted to double before converting the timestamps from the instrument’s
native "ticks" to seconds via the instrument’s clockbase:

data = ziDAQ('poll', 1.0, 500); % poll data
sample = data.(device).demods(0).sample; % get the sample from the zeroth demod
% convert timestamps from ticks to seconds via the device's clockbase
% (the ADC's sampling rate), specify reference start time via t0.
clockbase = double(ziDAQ('getInt',['/' device '/clockbase']));
t = (double(sample.timestamp) - double(sample.timestamp(1)))/clockbase;

Use the utility function ziCheckPathInData.

Checking that a sub-structure in the nested data structure returned by poll actually exists can
be cumbersome and can require multiple nested if statements; this can be avoided by using the
utility function ziCheckPathInData. For example, the code:

data = ziDAQ('poll', poll_length, poll_timeout);
if isfield(data,device)
 if isfield(data.(device),'demods')
 if length(data.(device).demods) >= channel
 if ~isempty(data.(device).demods(channel).sample)
 % do something with the demodulator sample...

can be replaced by:

data = ziDAQ('poll', poll_length, poll_timeout);
if ziCheckPathInData(data, ['/' device '/demods/' demod_c '/sample']);
 % do something with the demodulator sample...

LabOne Programming Manual Revision 22.08 Zurich Instruments 156

4.4. Troubleshooting the LabOne MATLAB API

4.4. Troubleshooting the LabOne MATLAB API

This section intends to solve possible error messages than can occur when using ziDAQ in
MATLAB.

Error message: "Undefined function or method 'ziDAQ' for input
arguments of type '*'"

MATLAB can not find the LabOne MATLAB API library. Check whether the MATLAB/Driver
subfolder of your LabOne installation is in the MATLAB Search Path by using the command:

>> path

and repeating the steps to configure MATLAB’s search path in Section 4.1.2.

Error message: "Undefined function or method 'example_sweeper'"

MATLAB can not find the example. Check whether the MATLAB/Examples/Common subfolder
(respectively MATLAB/Examples/HDAWG, MATLAB/Examples/HF2 or MATLAB/Examples/
UHF) of your LabOne installation are in the MATLAB Search Path by using the command:

>> path

and repeating the steps to configure MATLAB’s search path in Section 4.1.2.

Error message: "Error using: ziDAQ ZIAPIException with status code:
32870. Connection invalid."

The MATLAB API can not connect to the Data Server. Please check that the correct port was used;
that the correct server is running for your device and that the device is connected to the server,
see Section 1.4.1.

Error Message: "Error using: ziAutoConnect at 63 ziAutoConnect()
failed to find a running server or failed to find a connected a device…
"

The utility function ziAutoConnect() located in MATLAB/Utils/ tries to determine which
Data Server is running and whether any devices are connected to that Data Server. It is only
supported by UHFLI and HF2 Series instruments, MFLI instruments are not supported. Some
suggestions to verify the problem:

∏Please verify in the User Interface, whether a device is connected to the Data Server running
on your computer.

∏If the Data Server is running on a different computer, connect manually to the Data Server
via ziDAQ’s `connect function:

>> ziDAQ('connect', hostname, port, api_level);

LabOne Programming Manual Revision 22.08 Zurich Instruments 157

4.4. Troubleshooting the LabOne MATLAB API

where hostname should be replaced by the IP of the computer where the Data Server is
running, port is specified as in Section 1.4.1. and api_level is specified as described in
Section 1.4.2.

Error Message: "Error using: ziDAQ ZIAPIException on path /dev123/
sigins/0/imp50 with status code: 16387. Value or Node not found"

The API is connected to the Data Server, but the command failed to find the specified node.
Please:

∏Check whether your instrument is connected to the Data Server in the User Interface; if it
is not connected the instruments device node tree, e.g., /dev123/, will not be constructed
by the Data Server.

∏Check whether the node path is spelled correctly.

∏Explore the node tree to verify the node actually exists with the listNodes command:

>> ziDAQ('listNodes', '/dev123/sigins/0', 3)

Error Message: "using: ziDAQ Server not connected. Use
'ziDAQ('connect', …) first."

A ziDAQ command was issued before initializing a connection to the Data Server. First use the
connect command:

>> ziDAQ('connect', hostname, port, api_level);

where hostname should be replaced by the IP address of the computer where the Data Server
is running, port is specified as in Section 1.4.1 and api_level is specified as described in
Section 1.4.2. If the Data Server is running on the same computer, use 'localhost' as the
hostname.

Error Message: "Attempt to execute SCRIPT ziDAQ as a function:
ziDAQ.m"

There could be a problem with your LabOne MATLAB API installation. The call to ziDAQ() is trying
to call the help file ziDAQ.m as a function instead of calling the ziDAQ() function defined in
the MEX-file. In this case you need to ensure that the ziDAQ MEX-file is in your search path as
described in Section 4.1 and navigate away from the Driver directory. Secondly, ensure that the
LabOne MATLAB MEX-file is in the Driver folder as described in Section 4.2.1.

LabOne Programming Manual Revision 22.08 Zurich Instruments 158

Chapter 5. Python Programming
The Zurich Instruments LabOne Python API is distributed as the zhinst Python package via
PyPi, the official third-party software repository for Python. The zhinst package contains the
zhinst.core binary extension that is used to communicate with Zurich Instruments data
servers and devices. It allows users to configure and stream data from their instrument directly
into a Python programming environment using Python’s own native data structures and numpy
arrays.

This chapter aims to help you get started using the Zurich Instruments LabOne Python API to
control your instrument.

Please refer to:

∏Section 5.1 for help installing the LabOne Python API.

∏Section 5.2 for help getting started with the LabOne Python API and running the examples.

∏Section 5.3 for LabOne Python API tips and tricks.

LabOne API documentation

For a full reference of the Python API visit the LabOne API documentation. The LabOne API
documentation is available within your LabOne Software or can be accessed online at the Zurich
Intruments website (www.zhinst.com).

LabOne API Examples

To see the Python API in action take a look at some of the examples that we published on our
public GitHub repository (https://github.com/zhinst/labone-api-examples).

About Python

Python is open source software, freely available for download from Python’s official website.
Python is a high-level programming language with an extensive standard library renowned for
its "batteries included" approach. Combined with the numpy package for scientific computing,
Python is a powerful computational tool for scientists that does not require an expensive
software license.

This chapter and the provided examples are not intended to be a Python tutorial. For help getting
started with Python itself, see either the Python Tutorial or one of the many online resources, for
example, the learnpython.org.

LabOne Programming Manual Revision 22.08 Zurich Instruments 159

https://pypi.org/project/zhinst/
https://github.com/zhinst/labone-api-examples
https://www.python.org
https://www.numpy.org
https://docs.python.org/3/tutorial/
https://www.learnpython.org

5.1. Installing the LabOne Python API

5.1. Installing the LabOne Python API
This section lists detailed requirements. In most cases, installing the LabOne Python API should
be as simple as searching for and installing the zhinst package in your Python distribution’s
package manager or running the command-line command:

pip install zhinst

5.1.1. Requirements

The following requirements must be fulfilled in order to install and use the LabOne Python API:

1. One of the following supported platforms and Python versions:

1. Windows 10, x86_64, with a Python 3.5-3.9 installation.

2. GNU/Linux with glibc 2.17 or newer (CentOS/RHEL 7+, all recent versions of Debian and
Ubuntu). x86_64 wheels are available for Python 3.5-3.9. aarch64 wheels are available
for Python 3.7-3.9.

3. macOS 10.11+ x86_64 and Python 3.5-3.9. macOS 11+ arm64 (Apple Silicon) wheels are
provided for Python 3.9+.

2. Installation on Linux requires pip 19.3+ for support of the manylinux2014 platform tag. In
case of problems, please try to install the package in a virtual environment with latest pip:

$ python3 -m venv venv
$. venv/bin/activate
$ pip install --upgrade pip
$ pip install zhinst

3. The numpy Python package.

5.1.2. Recommended Python Packages

The following Python packages can additionally be useful for programming with the LabOne
Python API:

1. matplotlib - recommended to plot the output from many of the provided examples.

2. scipy - recommended to load data saved from the LabOne UI in binary MATLAB format
(.mat).

5.1.3. Installation (Windows, Linux, macOS)

The following installs the zhinst package from PyPi over the internet locally for the user
performing the installation and does not require administrator rights. If the target PC for
installation does not have access to the internet, please additionally see Offline Installation.

1. Determine the path to the target Python installation. If the Python executable is not in your
path, you can obtain the full path to your Python executable as follows:

import sys
print(sys.executable)

On Windows this will print something similar to:

C:\Python37\python.exe

2. Install the zhinst package. Using the full path to the Python executable,
PATH_TO_PYTHON_EXE, as determined above in Step 1, open a command prompt and run
Python with the pip module to install the zhinst package:

LabOne Programming Manual Revision 22.08 Zurich Instruments 160

https://www.python.org/dev/peps/pep-0599/
https://www.numpy.org
https://matplotlib.org/
https://www.scipy.org

5.1. Installing the LabOne Python API

PATH_TO_PYTHON_EXE -m pip install --user zhinst

The --user flag tells pip to install the zhinst package locally for the user executing the
command. Normally administrator rights are required in order to install the zhinst package
for all users of the computer, for more information see below.

Global Installation as Administrator

In order to install the zhinst package for all users of the target Python installation, it must be
installed using administrator rights and pip’s `--user command-line flag should be not be
used. On Windows, Step 2 must be ran in a command prompt opened with administrator rights,
this is normally achieved by doing a mouse right-click on the shortcut to cmd.exe and selecting
"Run as administrator". On Linux, the package can be installed by preceding the installation step
by “sudo”.

5.1.4. Offline Installation

To install zhinst package on a computer without access to the internet, please download the
correct wheel file for your system and Python version from https://pypi.org/project/zhinst/ from
another computer and copy it to the offline computer. If the numpy package is not yet installed,
it can be downloaded from https://pypi.org/project/numpy/. Then the wheels can be installed as
described above using pip, except that the name of the wheel file must be provided as the last
argument to pip instead of the name of the package, zhinst.

LabOne Programming Manual Revision 22.08 Zurich Instruments 161

https://pypi.org/project/zhinst/
https://pypi.org/project/numpy/

5.2. Getting Started with the LabOne Python API

5.2. Getting Started with the LabOne Python API

This section introduces the user to the LabOne Python API.

5.2.1. Contents of the LabOne Python API

Alongside the binary extension zhinst.core for interfacing with Zurich Instruments Data
Servers and devices, the LabOne Python API includes utility functions.

5.2.2. Using the Built-in Documentation

zhinst.core's built-in documentation can be accessed using the help command in a python
interactive shell:

∏On module level:

>>> import zhinst.core
>>> help(zhinst.core)

∏On class level, for example, for the Sweeper Module:

>>> import zhinst.core
>>> help(zhinst.core.SweeperModule)

∏On function level, for example, for the ziDAQServer poll method:

>>> import zhinst.core
>>> help(zhinst.core.ziDAQServer.poll)

See the LabOne API documentation for a full documentation.

5.2.3. Using ziCore Modules in the LabOne Python API

In the LabOne Python API ziCore Modules are configured and controlled via an instance
of the Module’s class. This Module object is created using the relevant function from
zhinst.core.ziDAQServer. For example, an instance of the Sweeper Module is created
using zhinst.core.ziDAQServer’s `sweep() function. As such, an API session must be
instantiated first using zhinst.core.ziDAQServer (see Section 1.4.1 for more information
about initializing API session) and then a sweeper object is created from instance of the API
session as following:

>>> daq = zhinst.core.ziDAQServer('localhost', 8004, 6) # Create a connection
 to the Data Server ('localhost' means the Server is running on the same PC as
 the API client, use the device serial of the form 'mf-dev3000' if using an MF
 Instrument.
>>> sweeper = daq.sweep();

Note, that since creating a Module object without an API connection to the Data Server does
not make sense, the Sweeper object is instantiated via the sweep method of the ziDAQServer
class, not directly from the SweeperModule class.

The Module’s parameters are configured using the Module’s set method and specifying a path,
value pair, for example:

>>> sweeper.set('start', 1.2e5);

The parameters can be read-back using the get method, which supports wildcards, for example:

>>> sweep_params = sweeper.get('*');

LabOne Programming Manual Revision 22.08 Zurich Instruments 162

5.2. Getting Started with the LabOne Python API

The variable sweep_params now contains a dictionary of all the Sweeper’s parameters. The
other main Module commands are similarly used, e.g., sweeper.execute(), to start the
sweeper. See Section 3.1.2 for more help with Modules and a description of their parameters.

5.2.4. Enabling Logging in the LabOne Python API

Logging from the API is not enabled by default upon initializing a server session. It must be
enabled (after using connect) with the setDebugLevel command. For example,

>>> daq.setDebugLevel(0)

sets the API’s logging level to 0, which provides the most verbose logging output. The other log
levels are defined as following:

trace:0, debug:1, info:2, status:3, warning:4, error:5, fatal:6.

It is also possible for the user to write their own messages directly to the LabOne Python API log
using the writeDebugLog command. For example to write a log message of info severity level:

>>> daq.writeDebugLog(1, 'Hello log!')

On Windows the logs are located in the directory C:\Users\[USER]\AppData\Local\Temp
\Zurich Instruments\LabOne Note that AppData is a hidden directory. The easiest way
to find it is to open a File Explorer window and type the text %AppData%\.. in the address bar,
and navigate from there. The directory contains folders containing log files from various LabOne
components, in particular, the ziPythonLog folder contains logs from the LabOne Python API.
On Linux, the logs can be found at "/tmp/ziPythonLog_USERNAME", where "USERNAME" is the
same as the output of the "whoami" command.

LabOne Programming Manual Revision 22.08 Zurich Instruments 163

5.3. LabOne Python API Tips and Tricks

5.3. LabOne Python API Tips and Tricks
In this section some tips and tricks for working with the LabOne Python API are provided.

Data Structures returned by the LabOne Python API.

The output arguments that the LabOne Python API returns are designed to use the native
data structures that Python users are familiar with and that reflect the data’s location in
the instruments node hierarchy. For example, when the poll command returns data from
the instruments fourth demodulator (located in the node hierarchy as /dev123/demods/3/
sample), the output argument contains a tree of nested dictionaries in which the data can be
accessed by

data = daq.poll(poll_length, poll_timeout);
x = data['dev123']['demods']['4']['sample']['x'];
y = data['dev123']['demods']['4']['sample']['y'];

Tell poll to return a flat dictionary

By default, the data returned by poll is contained in a tree of nested dictionaries that closely
mimics the tree structure of the instrument node hierarchy. By setting the optional fifth argument
of poll to True, the data will be a flat dictionary. This can help avoid many nested if statements
in order to check that the expected data was returned by poll. For example:

daq.subscribe('/dev123/demods/0/sample')
flat_dictionary_key = False
data = daq.poll(0.1, 200, 1, flat_dictionary_key)
if 'dev123' in data:
 if 'demods' in data['device']:
 if '0' in data['device']['demods']:
 # access the demodulator data:
 x = data['dev123']['demods']['0']['sample']['x']
 y = data['dev123']['demods']['0']['sample']['y']

Could be rewritten more concisely as:

daq.subscribe('/dev123/demods/0/sample')
flat_dictionary_key = True
data = daq.poll(0.1, 200, 1, flat_dictionary_key)
if '/dev123/demods/0/sample' in data:
 # access the demodulator data:
 x = data['/dev123/demods/0/sample']['x']
 y = data['/dev123/demods/0/sample']['y']

Use the Utility Routines to load Data saved from the LabOne UI and
ziControl in Python.

 The utilities package zhinst.utils contains several routines to help loading .csv or .mat
files saved from either the LabOne User Interface or ziControl into Python. These functions are
generally minimal wrappers around NumPy (genfromtxt()) or scipy (loadmat()) routines.
However, the function load_labone_demod_csv() is optimized to load demodulator data
saved in .csv format by the LabOne UI (since it specifies the .csv columns' dtypes explicitly)
and the function load_zicontrol_zibin() can directly load data saved in binary format from
ziControl. See the LabOne API documentation for reference documentation on these commands.

LabOne Programming Manual Revision 22.08 Zurich Instruments 164

https://www.numpy.org
https://www.scipy.org

Chapter 6. LabVIEW Programming
Interfacing with your Zurich Instruments device via National Instruments' LabVIEW® is an
efficient choice in terms of development time and run-time performance. LabVIEW is a graphical
programming language designed to interface with laboratory equipment via so-called VIs ("virtual
instruments"), whose key strength is the ease of displaying dynamic signals obtained from your
instrument.

This chapter aims to help you get started using the Zurich Instruments LabOne LabVIEW API to
control your instrument.

Please refer to:

∏Section 6.1 for help installing the LabOne LabVIEW API.

∏Section 6.2 for help getting started with the LabOne LabVIEW API and running the LabOne
Example VIs.

∏Section 6.3 for some LabVIEW programming tips and tricks.

Note

This section and the provided examples are not intended to be a general LabVIEW tutorial. See,
for example, the National Instruments website for help to get started programming with LabVIEW.

LabOne Programming Manual Revision 22.08 Zurich Instruments 165

https://www.ni.com/en-us/shop/labview.html
https://www.ni.com/getting-started/labview-basics/

6.1. Installing the LabOne LabVIEW API

6.1. Installing the LabOne LabVIEW API

6.1.1. Requirements

One of the following platforms and LabVIEW versions is required to use the LabOne LabVIEW API:

1. Windows with 32- or 64-bit LabVIEW 2009 or newer.

2. Linux with 64-bit LabVIEW 2010 or newer.

3. macOS with LabVIEW 2010 or newer.

The LabOne LabVIEW API is included in a standard LabOne installation and is also available as a
separate package (see below, Separate LabVIEW Package). In order to make the LabOne LabVIEW
API available for use within LabVIEW, a directory needs to be copied to a specific directory of
your LabVIEW installation. Both the main LabOne installer and the separate LabOne LabVIEW API
package are available from Zurich Instruments' download page.

Separate LabVIEW Package

The separate LabVIEW API package should be used if you would like to either:

1. Use the LabVIEW API on macOS (the main LabOne installer is not available for macOS).

2. Use the LabVIEW API to work with an instrument remotely (i.e., on a separate PC from where
the Data Server is running) and you do not require a full LabOne installation. This is the case,
for example, with MF Instruments.

6.1.2. Windows Installation

1. Locate the instr.lib directory in your LabVIEW installation and delete any previous Zurich
Instruments API directories. The instr.lib directory is typically located at:

C:\Program Files\National Instruments\LabVIEW 201x\instr.lib\

Previous Zurich Instruments installations will be directories located in the instr.lib
directory that are named either:

∏Zurich Instruments HF2, or

∏Zurich Instruments LabOne

These folders may simply be deleted (administrator rights required).

2. On Windows, either navigate to the API\LabVIEW subdirectory of your LabOne installation
or, in the case of the separate installer (see Separate LabVIEW Package), the directory of the
unzipped LabOne LabVIEW package, and copy the subdirectory

Zurich Instruments LabOne

to the instr.lib directory in your LabVIEW installation as located in Step 1. Note, you will
need administrator rights to copy to this directory.

In the case of copying from a LabOne installation, this folder is typically located at:

C:\Program Files\Zurich Instruments\LabOne\API\LabVIEW\

3. Restart LabVIEW and verify your installation as described in Section 6.1.4.

LabOne Programming Manual Revision 22.08 Zurich Instruments 166

http://www.zhinst.com/downloads

6.1. Installing the LabOne LabVIEW API

6.1.3. Linux and Mac Installation

1. Locate the instr.lib directory in your LabVIEW installation and remove any previous Zurich
Instruments API installations. The instr.lib directory is typically located on Linux at:

/usr/local/natinst/LabVIEW-201x/instr.lib/

and on macOS at:

/Applications/National Instruments/LabVIEW 201x/instr.lib/

Previous Zurich Instruments installations will be folders located in the instr.lib directory
that are named either:

∏Zurich Instruments HF2, or

∏Zurich Instruments LabOne.

These folders may simply be deleted (administrator rights required).

2. Navigate to the path where you unpacked LabOne or the Separate LabVIEW Package and copy
the subdirectory

Zurich Instruments LabOne/

to the instr.lib directory in your LabVIEW installation as located in Step 1. Note, you will
need administrator rights to copy to this directory.

Note, when copying from the main LabOne tarball (Linux only), the Zurich Instruments
LabOne/ directory is located in

[PATH]/LabOneLinux64/API/LabVIEW/

3. Restart LabVIEW and verify your installation as described in Section 6.1.4.

6.1.4. Verifying your Installation

If the LabOne LabVIEW API palette can be accessed from within LabVIEW, the LabOne LabVIEW
API is correctly installed. See Section 6.2.1 for help finding the palette.

LabOne Programming Manual Revision 22.08 Zurich Instruments 167

6.2. Getting Started with the LabOne LabVIEW API

6.2. Getting Started with the LabOne LabVIEW API

6.2.1. Locating the LabOne LabVIEW VI Palette

In order to locate the LabOne LabVIEW VIs start LabVIEW and create a new VI. In the VI’s "Block
Diagram" (CTRL-e) you can to access the LabOne LabVIEW API palette with a mouse right-click
and browsing the tree under "Instrument I/O" → "Instr. Drivers", see Figure 6.1.

Figure 6.1. Locating the LabOne LabVIEW Palette

6.2.2. LabOne LabVIEW Programming Concepts

As described in Section 1.2 a LabVIEW program communicates to a Zurich Instrument device
via a software program running on the PC called the data server. In general, the outline of the
instruction flow for a LabVIEW virtual instrument is as following:

1. Initialization: Open a connection from the API to the data server program.

2. Configuration: Perform the instrument’s settings. For example, using the virtual instrument
ziSetValueDouble.vi.

3. Data: Read data from the instrument.

4. Utility: Perform data analysis on the read data, potentially repeating Step 2 and/or Step 3.

5. Close: Terminate the API’s connection to the data server program.

The VI Tree.vi included the LabOne LabVIEW API demonstrates this flow and lists common
VIs used for working with a Zurich Instruments device, see Figure 6.2. The VI Tree.vi can be
found either via the LabOne VI palette, see Section 6.2.1, or by opening the file in the Public
folder of your LabOne LabVIEW installation, typically located at:

LabOne Programming Manual Revision 22.08 Zurich Instruments 168

6.2. Getting Started with the LabOne LabVIEW API

C:\Program Files\National Instruments\LabVIEW 2012\instr.lib\Zurich Instruments
 LabOne\Public\VI Tree.vi

Figure 6.2. An overview of the LabOne LabVIEW VIs is given in VI Tree.vi. Press CTRL-h after
selecting one of the VIs to obtain help.

6.2.3. Using ziCore Modules in the LabOne LabVIEW API

LabOne ziCore Modules Modules (e.g. Sweeper) enable high-level measurement tools to use
with your Zurich instrument device in LabVIEW. The outline of the instruction flow for a LabVIEW
Module is as following:

1. Initialization: Create a ziModHandle from a ziHandle ziModStart.vi.

2. Configuration: Perform the module’s settings. For example, using the virtual instrument
ziModSetValue.vi.

3. Subscribe: Define the recorded data node ziModSubscribe.vi.

4. Execute: Start the operation of the module ziModExecute.vi.

5. Data: Read data from the module. For example, using the ziModGetNextNode.vi and
ziModGetData.vi.

6. Utility: Perform data analysis on the read data, potentially repeating Step 2, Step 3 and/or
Step 4.

7. Clear: Terminate the API’s connection to the module ziModClear.vi.

LabOne Programming Manual Revision 22.08 Zurich Instruments 169

6.2. Getting Started with the LabOne LabVIEW API

6.2.4. Finding help for the LabOne VIs from within LabVIEW

As is customary for LabVIEW, built-in help for LabOne’s VIs can be obtained by selecting the VI with
the mouse in a block diagram and pressing CTRL-h to view the VI’s context help. See Figure 6.2
for an example.

6.2.5. Finding the LabOne LabVIEW API Examples

Many examples come bundled with the LabOne LabVIEW API which demonstrate the most
important concepts of working with Zurich Instrument devices. The easiest way to browse the
list of available examples is via the NI Example Finder: In LabVIEW select "Find Examples…" from
the "Help" menu-bar and search for "LabOne", see Figure 6.3.

The examples are located in the directory instr.lib/Zurich Instruments LabOne/
Examples found in LabVIEW installation directory. In order to modify an example for your needs,
please copy it to your local workspace.

Figure 6.3. Search for "LabOne" in NI’s Example Finder to find examples to run with your
instrument.

6.2.6. Running the LabOne Example VIs

This section describes how to run a LabOne LabVIEW example on your instrument.

Note

Please ensure that the example you would like to run is supported by your instrument class and
its options set. For example, examples for HF2 Instruments can be found in the Example Finder

LabOne Programming Manual Revision 22.08 Zurich Instruments 170

6.2. Getting Started with the LabOne LabVIEW API

(see Section 6.2.5) by searching for "HF2", examples for the UHFLI by searching for "UHFLI" and
examples for the MFLI by searching for "MFLI".

Device Connection

After opening one of the LabOne LabVIEW examples, please ensure that the example is
configured to run on the desired instrument type. ziOpen.vi establishes a connection to a Data
Server. The address is of the format {<host>}{:<port>}::{<Device ID>}. Usually it is
sufficient to provide the Device ID only highlighted in Figure 6.4. The Device ID corresponds to the
serial number (S/N) found on the instrument rear panel. The host and port are then determined by
network discovery. Should the discovery not work, prepend <host>:<port>:: to the Device ID.
Examples are "myhf2.company.com:8004::dev466" or "myhf2.company.com:8004". In the latter
case the first found instrument on the data server listening on "myhf2.company.com:8004" will
be selected.

Figure 6.4. LabOne LabVIEW Example Poll Data: Device selection.

Running the VI and Block Diagram

The example can be ran as any LabVIEW program; by clicking the "Run" icon in the icon bar. Be
sure to check the example’s code and explanation by pressing CTRL-e to view the example’s block
diagram, see Figure 6.5.

LabOne Programming Manual Revision 22.08 Zurich Instruments 171

6.2. Getting Started with the LabOne LabVIEW API

Figure 6.5. LabOne LabVIEW Example Poll Data: Block Diagram.

LabOne Programming Manual Revision 22.08 Zurich Instruments 172

6.3. LabVIEW Programming Tips and Tricks

6.3. LabVIEW Programming Tips and Tricks

Use the User Interface’s command log or Server’s text interface
while programming with LabVIEW

As with all other interfaces, LabVIEW uses the "path" and "nodes" concept to address settings on
an instrument, see Section 1.2. In order to learn about or verify the nodes available it can be very
helpful to view the command log in the User Interface (see the bar in the bottom of the screen)
to see which node has been configured during a previous setting change. The text interface (HF2
Series) provides a convenient way to explore the node hierarchy.

Always close ziHandles and ziModHandles or LabVIEW runs out of
memory

If you use the "Abort Execution" button of LabVIEW, your LabVIEW program will not close any
existing connections to the ziServer. Any open connection inside of LabVIEW will persist and
continue to consume about 12 MB of RAM so that with time you will run out of memory. Completely
exit LabVIEW in order to release the memory again.

Use shift registers

The structure of efficient LabVIEW code is distinguished by signals being "piped through" by use
of shift registers in loops and by the absence of object replication. Using shift registers in LabVIEW
avoids copying of data and, more important, running the garbage collector frequently.

Figure 6.6. Examples of simple LabVIEW programs for the Zurich Instruments HF2 Series. Left:
A well implemented loop, Right: An example while-loop implemented wrong.

LabOne Programming Manual Revision 22.08 Zurich Instruments 173

Chapter 7. .NET Programming
This chapter helps you get started using Zurich Instruments LabOne’s .NET API to control your
instrument or integrate your instrument into an established .NET based control framework.

Please refer to:

∏Section 7.1 for help installing the LabOne .NET API.

∏Section 7.2 for help getting startedwith the LabOne .NET API.

LabOne API documentation

This chapter and the examples are not intended to be a .NET and Visual Studio or an introduction
to any specific programming language.

Note

For a full reference of the .Net API visit the LabOne API documentation. The LabOne API
documentation is available within your LabOne Software or can be accessed online at the Zurich
Intruments website (www.zhinst.com)

LabOne Programming Manual Revision 22.08 Zurich Instruments 174

7.1. Installing the LabOne .NET API

7.1. Installing the LabOne .NET API

7.1.1. Requirements

To use LabOne’s .NET API, ziDotNET, a Microsoft Visual Studio installation is required. The .NET
API is a class library supporting x64 and win32 platforms. As the API is platform specific the
project also needs to be platform specific.

The LabOne .NET API ziDotNET is included in a standard LabOne installation. No installation as
such is required, but the corresponding dynamically linked library (DLL) files need to be copied
to the folder of the Visual Studio solution, and a few configuration steps must be performed.
The main LabOne installer is available from Zurich Instruments' download page (www.zhinst.com/
downloads).

LabOne Programming Manual Revision 22.08 Zurich Instruments 175

http://www.zhinst.com/downloads
http://www.zhinst.com/downloads

7.2. Getting Started with the LabOne .NET API

7.2. Getting Started with the LabOne .NET API

This section introduces the user to the LabOne .NET API. In order to use the LabOne API for .NET
applications two DLL libraries should be copied to the application execution folder. The libraries
are platform specific. Therefore, the project platform of the project should be restricted either
to x64 or win32 CPU architecture. The following figures illustrate the initial steps to create a C#
project using the LabOne API. The setup for other languages like Visual Basic or F# is equivalent.

Figure 7.1. Creating a new C# project based on a solution.

Create a new project and choose Visual C# as a programming language and Console Application
as target.

LabOne Programming Manual Revision 22.08 Zurich Instruments 176

7.2. Getting Started with the LabOne .NET API

Figure 7.2. C# project with main program code opened in editor. Initially the project will support
any CPU architecture. The ziDotNET API only supports x64 and win32 platforms.

The first step which needs to be done is to define the target platform as initially a Visual C# project
is platform independent. To do this, click on the Active solution platform box, select
Configuration Manager… to open the the Configuration Manager. In the following
window click on the arrow under platform add a New target and choose x64 (Figure 7.3).

Figure 7.3. C# project with main program code opened in editor. Initially the project will support
any CPU architecture. The ziDotNET API only supports x64 and win32 platforms.

The LabOne API for .NET consists of two DLLs for each platform that supply all functionality for
connecting to the LabOne Data Servers on the specific platform (x64 and win32) and executing
LabOne Modules. For simplicity we only discuss the x64 platform in this section, but the needed
steps are analogous for the win32 platform. For x64 the two DLLs are ziDotNETCore-win64.dll
and ziDotNET-win64.dll. The two DLL must accompany the executable using the functionality.
The DLL files are installed under your LabOne installation path in the API/DotNet folder (usually
C:\Program Files\Zurich Instruments\LabOne\API\DotNET). Copy the two DLLs for
your platform into the solution folder.

LabOne Programming Manual Revision 22.08 Zurich Instruments 177

7.2. Getting Started with the LabOne .NET API

Figure 7.4. Reference to the API DLL ziDotNET for the specific platform.

To add the DLL to the project go to the solution explorer of your project (Figure 7.2) and right click
on References and add the ziDotNET-win64.dll (Figure 7.4)

Figure 7.5. Added using zhinst; statement and code to open the connection to the server.

LabOne Programming Manual Revision 22.08 Zurich Instruments 178

7.2. Getting Started with the LabOne .NET API

Figure 7.5 shows a first simple program which is done by adding using zhinst; to the include
directive and the following code to the main body.

ziDotNET daq = new ziDotNET();
daq.init("localhost",8004,(ZIAPIVersion_enum)5);

If everything is configured correctly, the code compiles and when executed opens a session to a
running LabOne data server and closes it before exiting the program.

LabOne Programming Manual Revision 22.08 Zurich Instruments 179

7.3. LabOne .NET API Examples

7.3. LabOne .NET API Examples
The source code for the following program (Examples.cs) can be found in your LabOne installation
path in the API/DotNet folder (usually C:\Program Files\Zurich Instruments\LabOne
\API\DotNET).

The examples are documented in the LabOne API documentation.

LabOne Programming Manual Revision 22.08 Zurich Instruments 180

Chapter 8. C Programming
The LabOne C API, also known as ziAPI, provides a simple and robust way to communicate with
the Data Server. It enables you to get or set parameters and receive streaming data.

LabOne API documentation

For a full reference of the ziAPI visit the LabOne API documentation. The LabOne API
documentation is available within your LabOne Software or can be accessed online at the Zurich
Intruments website (www.zhinst.com)

LabOne Programming Manual Revision 22.08 Zurich Instruments 181

8.1. Getting Started

8.1. Getting Started
After installing the LabOne software package and relevant drivers for your instrument you are
ready start programming with ziAPI. All you need is a C compiler, linker and editor. The structure
of a program using ziAPI can be split into three parts: initialization/connection, data manipulation
and disconnection/cleanup. The basic object that is always used is the ziConnection data
structure. First, ziConnection is has to be initialized by calling ziAPIInit. After initialization
ziConnection is ready to connect to a ziServer by calling ziAPIConnect. Then ziConnection is
ready to be used for getting and setting parameters and streaming data. When ziConnection
is not needed anymore the established connection to the ziServer has to be hung up using
ziAPIDisconnect before cleaning it up by calling ziAPIDestroy.

8.1.1. Examples

Along with the LabOne C API DLL, a LabOne installation includes examples to help getting started
with the LabOne C API.

On Windows they are located in the folder:

C:\Program Files\Zurich Instruments\LabOne\API\C\examples\

and on Linux and macOS, after extracting the LabOne tarball, they are located in the folder:

API/C/examples.

Below you find a simple program, which sets the demodulator rate of all demods for all devices.

// Copyright [2016] Zurich Instruments AG
#include <stdlib.h>
#include <stdio.h>

#include "ziAPI.h"

int main() {
 ZIResult_enum retVal;
 ZIConnection conn;
 char* errBuffer;
 const char* serverAddress = getenv("LABONE_SERVER");
 if (serverAddress == NULL) {
 serverAddress = "localhost";
 }
 printf("ENV LABONE_SERVER=%s\n", serverAddress);

 const char* device = getenv("LABONE_DEVICE_MF");
 if (device == NULL) {
 device = "dev3519";
 }
 printf("ENV LABONE_DEVICE_MF=%s\n", device);

 // Initialize ZIConnection.
 retVal = ziAPIInit(&conn);
 if (retVal != ZI_INFO_SUCCESS) {
 ziAPIGetError(retVal, &errBuffer, NULL);
 fprintf(stderr, "Can't init Connection: %s\n", errBuffer);
 return 1;
 }

 // Connect to the Data Server: Use port 8005 for the HF2 Data Server, use
 // 8004 for the UHF and MF Data Servers. HF2 only support ZI_API_VERSION_1,
 // see the LabOne Programming Manual for an explanation of API Levels.
 retVal = ziAPIConnectEx(conn, serverAddress, 8004, ZI_API_VERSION_6, NULL);
 if (retVal != ZI_INFO_SUCCESS) {

LabOne Programming Manual Revision 22.08 Zurich Instruments 182

8.1. Getting Started

 ziAPIGetError(retVal, &errBuffer, NULL);
 fprintf(stderr, "Error, can't connect to the Data Server: `%s`.\n",
 errBuffer);
 } else {
 // Set all demodulator rates of device dev3519 to 150 Hz
 char path[1024];
 snprintf(path, sizeof(path), "/%s/demods/*/rate", device);
 retVal = ziAPISetValueD(conn, path, 150);
 if (retVal != ZI_INFO_SUCCESS) {
 ziAPIGetError(retVal, &errBuffer, NULL);
 fprintf(stderr, "Can't set parameter: %s\n", errBuffer);
 }

 // Disconnect from the Data Server. Since ZIAPIDisconnect always returns
 // ZI_INFO_SUCCESS no error handling is required.
 ziAPIDisconnect(conn);
 }

 // Destroy the ZIConnection. Since ZIAPIDestroy always returns
 // ZI_INFO_SUCCESS, no error handling is required.
 ziAPIDestroy(conn);

 return 0;
}

LabOne Programming Manual Revision 22.08 Zurich Instruments 183

8.2. Error Handling and Logging in the LabOne C API

8.2. Error Handling and Logging in the LabOne C
API

This section describes how to get more information when an error occurs.

In general, two types of errors can occur when using ziAPI. The two types are distinguished by
the origin of the error: Whether it occurred within ziAPI itself or whether it occurred internally in
the Zurich Instruments Core library.

All ziAPI functions (apart from a very few exceptions) return an exit code ZIResult_enum, which
will be non-zero if the function call was not entirely successful. If the error originated in ziAPI
itself, the exit code describes precisely the type of error that occurred (in other words, the exit
code is not ZI_ERROR_GENERAL). In this case the error message corresponding to the exit code
can be obtained with the function ziAPIGetError.

However, if the error has occurred internally, the exit code will be ZI_ERROR_GENERAL. In
this case, the exit code does not describe the type of error precisely, instead a detailed error
message is available to the user which can be obtained with the function ziAPIGetLastError. The
function ziAPIGetLastError may be used with any function that takes a ZIConnection as an input
argument (with the exception of ziAPIInit, ziAPIDestroy, ziAPIConnect, ziAPIConnectEx) and is the
recommended function to use, if applicable, otherwise ziAPIGetError should be used.

The function ziAPIGetLastError was introduced in LabOne 15.11 due to the availability of
ziCoreModules" in ziAPI - its not desirable in general to map every possible error to an exit code
in ziAPI; what is more relevant is the associated error message.

In addition to these two functions, ziAPI’s log can be very helpful whilst debugging ziAPI-based
programs. The log is not enabled by default; it’s enabled by specifying a logging level with
ziAPISetDebugLevel.

LabOne Programming Manual Revision 22.08 Zurich Instruments 184

Glossary
This glossary provides easy to understand descriptions for many terms related to measurement
instrumentation including the abbreviations used inside this user manual.

A

A/D Analog to Digital.
See also ADC.

AC Alternate Current

ADC Analog to Digital Converter

AM Amplitude Modulation

Amplitude Modulated AFM
(AM-AFM)

AFM mode where the amplitude change between drive and measured signal
encodes the topography or the measured AFM variable.
See also Atomic Force Microscope.

API Application Programming Interface

ASCII American Standard Code for Information Interchange

Atomic Force Microscope
(AFM)

Microscope that scans surfaces by means an oscillating mechanical
structure (e.g. cantilever, tuning fork) whose oscillating tip gets so close
to the surface to enter in interaction because of electrostatic, chemical,
magnetic or other forces. With an AFM it is possible to produce images with
atomic resolution.
See also Amplitude Modulated AFM, Frequency Modulated AFM, Phase
Modulated AFM.

AVAR Allen Variance

B

Bandwidth (BW) The signal bandwidth represents the highest frequency components of
interest in a signal. For filters the signal bandwidth is the cut-off point,
where the transfer function of a system shows 3 dB attenuation versus
DC. In this context the bandwidth is a synonym of cut-off frequency fcut-

off or 3dB frequency f-3dB. The concept of bandwidth is used when the
dynamic behavior of a signal is important or separation of different signals
is required.
In the context of a open-loop or closed-loop system, the bandwidth can
be used to indicate the fastest speed of the system, or the highest signal
update change rate that is possible with the system.
Sometimes the term bandwidth is erroneously used as synonym of
frequency range.
See also Noise Equivalent Power Bandwidth.

BNC Bayonet Neill-Concelman Connector

C

CF Clock Fail (internal processor clock missing)

LabOne Programming Manual Revision 22.08 Zurich Instruments 185

Common Mode Rejection
Ratio (CMRR)

Specification of a differential amplifier (or other device) indicating the
ability of an amplifier to obtain the difference between two inputs while
rejecting the components that do not differ from the signal (common
mode). A high CMRR is important in applications where the signal of
interest is represented by a small voltage fluctuation superimposed on a
(possibly large) voltage offset, or when relevant information is contained
in the voltage difference between two signals. The simplest mathematical
definition of common-mode rejection ratio is: CMRR = 20 * log(differential
gain / common mode gain).

CSV Comma Separated Values

D

D/A Digital to Analog

DAC Digital to Analog Converter

DC Direct Current

DDS Direct Digital Synthesis

DHCP Dynamic Host Configuration Protocol

DIO Digital Input/Output

DNS Domain Name Server

DSP Digital Signal Processor

DUT Device Under Test

Dynamic Reserve (DR) The measure of a lock-in amplifier’s capability to withstand the disturbing
signals and noise at non-reference frequencies, while maintaining the
specified measurement accuracy within the signal bandwidth.

E

XML Extensible Markup Language.
See also XML.

F

FFT Fast Fourier Transform

FIFO First In First Out

FM Frequency Modulation

Frequency Accuracy (FA) Measure of an instrument’s ability to faithfully indicate the correct
frequency versus a traceable standard.

Frequency Modulated AFM
(FM-AFM)

AFM mode where the frequency change between drive and measured signal
encodes the topography or the measured AFM variable.
See also Atomic Force Microscope.

Frequency Response
Analyzer

Instrument capable to stimulate a device under test and plot the frequency
response over a selectable frequency range with a fine granularity.

LabOne Programming Manual Revision 22.08 Zurich Instruments 186

Frequency Sweeper See also Frequency Response Analyzer.

G

Gain Phase Meter See also Vector Network Analyzer.

GPIB General Purpose Interface Bus

GUI Graphical User Interface

I

I/O Input / Output

Impedance Spectroscope
(IS)

Instrument suited to stimulate a device under test and to measure the
impedance (by means of a current measurement) at a selectable frequency
and its amplitude and phase change over time. The output is both amplitude
and phase information referred to the stimulus signal.

Input Amplitude Accuracy
(IAA)

Measure of instrument’s capability to faithfully indicate the signal
amplitude at the input channel versus a traceable standard.

Input voltage noise Total noise generated by the instrument and referred to the signal input,
thus expressed as additional source of noise for the measured signal.

IP Internet Protocol

L

LAN Local Area Network

LED Light Emitting Diode

Lock-in Amplifier (LI, LIA) Instrument suited for the acquisition of small signals in noisy environments,
or quickly changing signal with good signal to noise ratio - lock-in amplifiers
recover the signal of interest knowing the frequency of the signal by
demodulation with the suited reference frequency - the result of the
demodulation are amplitude and phase of the signal compared to the
reference: these are value pairs in the complex plane (X, Y), (R, Θ).

M

Media Access Control
address (MAC address)

Refers to the unique identifier assigned to network adapters for physical
network communication.

Multi-frequency (MF) Refers to the simultaneous measurement of signals modulated at arbitrary
frequencies. The objective of multi-frequency is to increase the information
that can be derived from a measurement which is particularly important
for one-time, non-repeating events, and to increase the speed of a
measurement since different frequencies do not have to be applied one
after the other.
See also Multi-harmonic.

Multi-harmonic (MH) Refers to the simultaneous measurement of modulated signals at various
harmonic frequencies. The objective of multi-frequency is to increase the
information that can be derived from a measurement which is particularly

LabOne Programming Manual Revision 22.08 Zurich Instruments 187

important for one-time, non-repeating events, and to increase the speed of
a measurement since different frequencies do not have to be applied one
after the other.
See also Multi-frequency.

N

Noise Equivalent Power
Bandwidth (NEPBW)

Effective bandwidth considering the area below the transfer function
of a low-pass filter in the frequency spectrum. NEPBW is used when
the amount of power within a certain bandwidth is important, such as
noise measurements. This unit corresponds to a perfect filter with infinite
steepness at the equivalent frequency.
See also Bandwidth.

Nyquist Frequency (NF) For sampled analog signals, the Nyquist frequency corresponds to two
times the highest frequency component that is being correctly represented
after the signal conversion.

O

Output Amplitude Accuracy
(OAA)

Measure of an instrument’s ability to faithfully output a set voltage at a given
frequency versus a traceable standard.

OV Over Volt (signal input saturation and clipping of signal)

P

PC Personal Computer

PD Phase Detector

Phase-locked Loop (PLL) Electronic circuit that serves to track and control a defined frequency.
For this purpose a copy of the external signal is generated such
that it is in phase with the original signal, but with usually better
spectral characteristics. It can act as frequency stabilization, frequency
multiplication, or as frequency recovery. In both analog and digital
implementations it consists of a phase detector, a loop filter, a controller,
and an oscillator.

Phase modulation AFM
(PM-AFM)

AFM mode where the phase between drive and measured signal encodes
the topography or the measured AFM variable.
See also Atomic Force Microscope.

PID Proportional-Integral-Derivative

PL Packet Loss (loss of packets of data between the instruments and the host
computer)

R

RISC Reduced Instruction Set Computer

Root Mean Square (RMS) Statistical measure of the magnitude of a varying quantity. It is especially
useful when variates are positive and negative, e.g., sinusoids, sawtooth,
square waves. For a sine wave the following relation holds between the

LabOne Programming Manual Revision 22.08 Zurich Instruments 188

amplitude and the RMS value: URMS = UPK / √2 = UPK / 1.41. The RMS is also
called quadratic mean.

RT Real-time

S

Scalar Network Analyzer
(SNA)

Instrument that measures the voltage of an analog input signal providing
just the amplitude (gain) information.
See also Spectrum Analyzer, Vector Network Analyzer.

SL Sample Loss (loss of samples between the instrument and the host
computer)

Spectrum Analyzer (SA) Instrument that measures the voltage of an analog input signal providing
just the amplitude (gain) information over a defined spectrum.
See also Scalar Network Analyzer.

SSH Secure Shell

T

TC Time Constant

TCP/IP Transmission Control Protocol / Internet Protocol

Thread An independent sequence of instructions to be executed by a processor.

Total Harmonic Distortion
(THD)

Measure of the non-linearity of signal channels (input and output)

TTL Transistor to Transistor Logic level

U

UHF Ultra-High Frequency

UHS Ultra-High Stability

USB Universal Serial Bus

V

VCO Voltage Controlled Oscillator

Vector Network Analyzer
(VCO)

Instrument that measures the network parameters of electrical networks,
commonly expressed as s-parameters. For this purpose it measures the
voltage of an input signal providing both amplitude (gain) and phase
information. For this characteristic an older name was gain phase meter.
See also Gain Phase Meter, Scalar Network Analyzer.

X

XML Extensible Markup Language: Markup language that defines a set of rules
for encoding documents in a format that is both human-readable and
machine-readable.

LabOne Programming Manual Revision 22.08 Zurich Instruments 189

Z

ZCtrl Zurich Instruments Control bus

ZoomFFT This technique performs FFT processing on demodulated samples, for
instance after a lock-in amplifier. Since the resolution of an FFT depends on
the number of point acquired and the spanned time (not the sample rate),
it is possible to obtain very highly resolution spectral analysis.

ZSync Zurich Instruments Synchronization bus

LabOne Programming Manual Revision 22.08 Zurich Instruments 190

Index

Symbols
.NET, 174

Comparison to other interfaces, 15
Examples, 180
Getting started, 176
Installing the API, 175
Requirements, 175

A
API

Compatibility, 18
Levels, 18
Versions, 18

Asynchronous commands, 40
AWG Module, 46

C
C API

Comparison to other interfaces, 15
C Programming Language

Comparison to other interfaces, 15
Comparison of LabOne APIs, 15
Compatibility

Data Server and API, 21
Software, 21

D
Data Acquisition Module, 58
Data Server, 11

Node, 23
Data Streaming, 31
Device Settings Module, 80
Device Synchronisation Module, 91

I
Impedance Module, 83

L
LabOne

API overview, 15
Comparison of APIs, 15

LabOne Programming
Quick Start Guide, 8

LabVIEW, 165
Comparison to other interfaces, 15
Concepts, 168
Examples, finding, 170
Examples, running, 170
Finding examples, 170
Finding help, 170
Getting started, 168
Installation, 166

Linux, 167
Mac, 167
Windows, 166

LabOne VI Palette, 168
Modules, 169
Palette, LabOne, 168
Requirements, 166
Running examples, 170
Tips and tricks, 173
VI Palette, 168

Low-level commands, 41

M
MATLAB, 148

Built-in help, 152
Comparison to other interfaces, 15
Contents of the API package, 152
Examples, running, 152
Getting started, 152
Help, accessing, 152
Installation, 149, 149
Logging, 154
Modules, 154
Modules, configuring, 154
Requirements, 149
Running examples, 152
Tips and tricks, 155
Troubleshooting, 157
Verifying correct configuration, 150

MF
Data Server, 37

Multi-Device Synchronisation Module, 91
Multi-threading, 18

N
Node

Leaf, 23
Listing Nodes, 24
Properties, 24
Server node, 25
Streaming nodes, 31
Types, 24

P
PID Advisor Module, 94
PLL Module, 97
Precompensation Advisor Module, 108
Python, 159

Built-in help, 162
Comparison to other interfaces, 15
Contents of the API package, 162
Getting started, 162
Help, accessing, 162
Installation, 160
Installing the API, 160
Loading data in Python, 164

LabOne Programming Manual Revision 22.08 Zurich Instruments 191

Logging, 163
Modules, 162
Modules, configuring, 162
Recommended python packages for the LabOne
Python API, 160
Requirements for using the Python API, 160
Tips and tricks, 164

Q
Quantum Analyzer Module, 119
Quick Start Guide

LabOne Programming, 8

S
Scope Module, 123
Streaming, 31, 31
Sweeper Module, 134

Bandwidth control, 134
Measurement data, 136
Measurement data, averaging, 136
Scanning mode, 134
Settling time, 135
Settling time, definition, 135
Sweep parameter, 134
Sweep range, 134

Synchronous commands, 40

U
UHF

Automatic calibration, 37
Calibration, 37

Z
ziAPI

Comparison to other interfaces, 15
ziDAQ

Installation, 149
Requirements, 149

LabOne Programming Manual Revision 22.08 Zurich Instruments 192

	LabOne Programming Manual
	Table of Contents
	What’s New in the LabOne Programming Manual
	Chapter 1. Introduction
	1.1. LabOne Programming Quick Start Guide
	1.2. LabOne Software Architecture
	1.2.1. MFLI /MFIA Software Configuration

	1.3. Comparison of the LabOne APIs
	1.4. Initializing a Connection to a Data Server
	1.4.1. Specifying the Data Server Hostname and Port
	Data Server Port
	Data Server Hostname (HDAWG, HF2 and UHF Instruments)
	Data Server Hostname (MF Instruments)
	API Level and Connectivity Examples
	Working in a Multi-threaded Program

	1.4.2. LabOne API Levels
	API Level 4 Features
	API Level 5 Features
	API Level 6 Features

	1.5. Compatibility
	1.5.1. API and Data Server Compatibility

	Chapter 2. Instrument Communication
	2.1. Data Server’s Node Tree
	2.1.1. Node Properties and Data Types
	2.1.2. Exploring the Node Tree
	2.1.3. Data Server Nodes
	2.1.4. Reference Node Documentation
	ZI (LabOne Data Server Nodes)

	2.2. Data Streaming
	2.2.1. Streaming Nodes
	2.2.2. Alignment of Streaming Node Data
	2.2.3. Data Loss

	2.3. Comparison of Data Acquisition Methods
	2.4. Demodulator Sample Data Structure
	2.5. Instrument-Specific Considerations
	2.5.1. MF-Specific Considerations
	2.5.2. UHF-Specific Considerations

	Chapter 3. LabOne API Programming
	3.1. An Introduction to LabOne Modules
	3.1.1. Software Architecture
	3.1.2. ziCore Modules
	3.1.3. Synchronous versus Asynchronous Commands
	3.1.4. Converting LabOne’s "systemtime" to Local Time

	3.2. Low-level LabOne API Commands
	3.2.1. The getSample command: For one-shot measurement demodulator data
	3.2.2. The subscribe and poll commands: For high-performance continuous or block streaming data

	3.3. AWG Module
	3.3.1. Getting Started with the AWG Module
	3.3.2. Sequencer Program Compilation and Upload
	3.3.3. Methods to define Waveforms in Sequencer Programs
	API vector transfer
	File on disk
	Binary
	ASCII CSV

	3.3.4. HDAWG Channel Grouping
	3.3.5. AWG Module Node Tree
	awg
	compiler
	device
	directory
	elf
	index
	mds
	progress
	sequencertype

	3.4. Data Acquisition Module
	3.4.1. DAQ Module Acquisition Modes and Trigger Types
	Continuous Acquisition

	3.4.2. Signal Subscription
	Signal Subscription Options

	3.4.3. Data Acquisition Module Node Tree
	awgcontrol
	bandwidth
	bitmask
	bits
	buffercount
	buffersize
	clearhistory
	count
	delay
	device
	duration
	edge
	enable
	endless
	eventcount
	fft
	findlevel
	flags
	forcetrigger
	grid
	historylength
	holdoff
	hysteresis
	level
	preview
	pulse
	refreshrate
	save
	spectrum
	triggered
	triggernode
	type

	3.5. Device Settings Module
	3.5.1. Device Settings Module Node Tree
	command
	device
	errortext
	filename
	finished
	path
	throwonerror

	3.6. Impedance Module
	3.6.1. Impedance Module Node Tree
	calibrate
	comment
	device
	directory
	expectedstatus
	filename
	freq
	highimpedanceload
	load
	loads
	message
	mode
	openstep
	path
	precision
	progress
	save
	status
	step
	todevice
	validation

	3.7. Multi-Device Synchronisation Module
	3.7.1. Multi-Device Synchronisation Module Node Tree
	devices
	group
	message
	phasesync
	recover
	start
	status

	3.8. PID Advisor Module
	3.8.1. PID Advisor Module Work-Flow
	3.8.2. PLL Parameter Optimization on HF2 Instruments
	3.8.3. Instrument Settings written by todevice
	3.8.4. Monitoring the PID’s Output
	MF and UHF Instruments
	HF2 Instruments

	3.8.5. PID Advisor Module Node Tree
	advancedmode
	auto
	bode
	bw
	calculate
	demod
	device
	display
	dut
	impulse
	index
	pid
	pm
	pmfreq
	progress
	response
	stable
	step
	targetfail
	tf
	todevice
	tune
	tuner

	3.9. Precompensation Advisor Module
	3.9.1. Precompensation Advisor Module Work-Flow
	3.9.2. Precompensation Advisor Module Node Tree
	bounces
	device
	exponentials
	fir
	highpass
	latency
	samplingfreq
	wave

	3.10. Quantum Analyzer Module
	3.10.1. Quantum Analyzer Module Node Tree
	clearhistory
	historylength
	rotation
	save
	scalingi
	scalingq
	shifti
	shiftq

	3.11. Scope Module
	3.11.1. Introduction to Scope Data Transfer
	3.11.2. Advantages of the Scope Module
	3.11.3. Working with Scope Module
	3.11.4. Scope Module Modes
	3.11.5. Averaging
	3.11.6. Segmented Recording
	3.11.7. Scope Parameters that reset the Scope Module
	3.11.8. Device-specific considerations
	3.11.9. Scope Module Node Tree
	averager
	clearhistory
	error
	externalscaling
	fft
	historylength
	lastreplace
	mode
	records
	save

	3.12. Sweeper Module
	3.12.1. Configuring the Sweeper
	Specifying the Instrument Setting to Sweep
	Specifying the Range of Values for the Sweep Parameter
	Controlling the Scan mode: The Selection of Range Values
	Controlling how the Sweeper sets the Demodulator’s Time Constant
	Specifying the Sweeper’s Settling Time
	Specifying which Data to Measure
	Specifying how the Measurement Data is Averaged
	An Explanation of Settling and Averaging Times in a Frequency Sweep
	Average Power and Standard Deviation of the Measured Data

	3.12.2. Sweeper Module Node Tree
	averaging
	awgcontrol
	bandwidth
	bandwidthcontrol
	bandwidthoverlap
	clearhistory
	device
	endless
	filtermode
	gridnode
	historylength
	loopcount
	maxbandwidth
	omegasuppression
	order
	phaseunwrap
	remainingtime
	samplecount
	save
	scan
	settling
	sincfilter
	start
	stop
	xmapping

	Chapter 4. MATLAB Programming
	4.1. Installing the LabOne MATLAB API
	4.1.1. Requirements
	4.1.2. Windows, Linux or Mac
	4.1.3. Verifying Successful MATLAB Configuration

	4.2. Getting Started with the LabOne MATLAB API
	4.2.1. Contents of the LabOne MATLAB API
	4.2.2. Using the Built-in Documentation
	4.2.3. Running the Examples
	4.2.4. Using ziCore Modules in the LabOne MATLAB API
	4.2.5. Enabling Logging in the LabOne MATLAB API

	4.3. LabOne MATLAB API Tips and Tricks
	4.4. Troubleshooting the LabOne MATLAB API

	Chapter 5. Python Programming
	5.1. Installing the LabOne Python API
	5.1.1. Requirements
	5.1.2. Recommended Python Packages
	5.1.3. Installation (Windows, Linux, macOS)
	5.1.4. Offline Installation

	5.2. Getting Started with the LabOne Python API
	5.2.1. Contents of the LabOne Python API
	5.2.2. Using the Built-in Documentation
	5.2.3. Using ziCore Modules in the LabOne Python API
	5.2.4. Enabling Logging in the LabOne Python API

	5.3. LabOne Python API Tips and Tricks

	Chapter 6. LabVIEW Programming
	6.1. Installing the LabOne LabVIEW API
	6.1.1. Requirements
	6.1.2. Windows Installation
	6.1.3. Linux and Mac Installation
	6.1.4. Verifying your Installation

	6.2. Getting Started with the LabOne LabVIEW API
	6.2.1. Locating the LabOne LabVIEW VI Palette
	6.2.2. LabOne LabVIEW Programming Concepts
	6.2.3. Using ziCore Modules in the LabOne LabVIEW API
	6.2.4. Finding help for the LabOne VIs from within LabVIEW
	6.2.5. Finding the LabOne LabVIEW API Examples
	6.2.6. Running the LabOne Example VIs
	Device Connection
	Running the VI and Block Diagram

	6.3. LabVIEW Programming Tips and Tricks

	Chapter 7. .NET Programming
	7.1. Installing the LabOne .NET API
	7.1.1. Requirements

	7.2. Getting Started with the LabOne .NET API
	7.3. LabOne .NET API Examples

	Chapter 8. C Programming
	8.1. Getting Started
	8.1.1. Examples

	8.2. Error Handling and Logging in the LabOne C API

	Glossary
	Index

