Cisco C220 M4 1U Rack Server - 2 x Intel Xeon E5-2680 v3 2.50 GHz - 128 GB RAM - Serial ATA/600 Controller - CareTek Information Technology Solutions
Cisco C220 M4 1U Rack Server - 2 x Intel Xeon E5-2609 v4 1.70 GHz - 64 GB RAM - 12Gb/s SAS, Serial ATA/600 Controller - CareTek Information Technology Solutions
Cisco C220 M4 1U Rack Server - 2 x Intel Xeon E5-2680 v3 2.50 GHz - 128 GB RAM - Serial ATA/600 Controller - 2 Processor Support - 1.50 TB RAM Support - DDR4 SDRAM - 0, 1, 10 RAID Levels - Matrox G200e Up to 8 MB Graphic Card - Gigabit Ethernet, 10 G UCS-SP-C220M4-A1
Cisco UCS C220 M4 Server Installation and Service Guide February 04, 2016 Cisco Systems, Inc. www.cisco.com Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco website at www.cisco.com/go/offices. Text Part Number: OL-32473-01 THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS. THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY. The following information is for FCC compliance of Class A devices: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio-frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case users will be required to correct the interference at their own expense. The following information is for FCC compliance of Class B devices: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If the equipment causes interference to radio or television reception, which can be determined by turning the equipment off and on, users are encouraged to try to correct the interference by using one or more of the following measures: · Reorient or relocate the receiving antenna. · Increase the separation between the equipment and receiver. · Connect the equipment into an outlet on a circuit different from that to which the receiver is connected. · Consult the dealer or an experienced radio/TV technician for help. Modifications to this product not authorized by Cisco could void the FCC approval and negate your authority to operate the product. The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California. NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE. IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. CCDE, CCENT, CCSI, Cisco Eos, Cisco Explorer, Cisco HealthPresence, Cisco IronPort, the Cisco logo, Cisco Nurse Connect, Cisco Pulse, Cisco SensorBase, Cisco StackPower, Cisco StadiumVision, Cisco TelePresence, Cisco TrustSec, Cisco Unified Computing System, Cisco WebEx, DCE, Flip Channels, Flip for Good, Flip Mino, Flipshare (Design), Flip Ultra, Flip Video, Flip Video (Design), Instant Broadband, and Welcome to the Human Network are trademarks; Changing the Way We Work, Live, Play, and Learn, Cisco Capital, Cisco Capital (Design), Cisco:Financed (Stylized), Cisco Store, Flip Gift Card, and One Million Acts of Green are service marks; and Access Registrar, Aironet, AllTouch, AsyncOS, Bringing the Meeting To You, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, CCVP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Lumin, Cisco Nexus, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Collaboration Without Limitation, Continuum, EtherFast, EtherSwitch, Event Center, Explorer, Follow Me Browsing, GainMaker, iLYNX, IOS, iPhone, IronPort, the IronPort logo, Laser Link, LightStream, Linksys, MeetingPlace, MeetingPlace Chime Sound, MGX, Networkers, Networking Academy, PCNow, PIX, PowerKEY, PowerPanels, PowerTV, PowerTV (Design), PowerVu, Prisma, ProConnect, ROSA, SenderBase, SMARTnet, Spectrum Expert, StackWise, WebEx, and the WebEx logo are registered trademarks of Cisco and/or its affiliates in the United States and certain other countries. Cisco and the Cisco Logo are trademarks of Cisco Systems, Inc. and/or its affiliates in the U.S. and other countries. A listing of Cisco's trademarks can be found at www.cisco.com/go/trademarks. Third party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1005R) Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in illustrative content is unintentional and coincidental. Cisco UCS C220 M4 Server Installation and Service Guide © 2016 Cisco Systems, Inc. All rights reserved. CONTENTS 1 C H A P T E R 2 C H A P T E R Preface vii Audience vii Conventions vii Related Documentation xiii Documentation Feedback xiii Obtaining Documentation and Submitting a Service Request xiii Overview 1-1 External Features Overview 1-1 Replaceable Component Locations 1-5 Summary of Server Features 1-6 Installing the Server 2-1 Unpacking and Inspecting the Server 2-2 Preparing for Server Installation 2-3 Installation Guidelines 2-3 Rack Requirements 2-4 Equipment Requirements 2-4 Supported Slide Rail Kits 2-4 Slide Rail Adjustment Range and Cable Management Arm Dimensions 2-4 Installing the Server In a Rack 2-5 Installing the Slide Rails 2-5 Installing the Cable Management Arm (Optional) 2-8 Reversing the Cable Management Arm (Optional) 2-9 Initial Server Setup 2-10 Connecting and Powering On the Server (Standalone Mode) 2-10 Local Connection Procedure 2-10 Remote Connection Procedure 2-11 Cisco IMC Configuration Utility Setup 2-12 NIC Modes and NIC Redundancy Settings 2-14 NIC Modes 2-14 NIC Redundancy 2-14 OL-32473-DRAFT Cisco UCS C220 M4 Server Installation and Service Guide iii Contents 3 C H A P T E R System BIOS and Cisco IMC Firmware 2-15 Updating the BIOS and Cisco IMC Firmware 2-15 Accessing the System BIOS 2-16 Maintaining the Server 3-1 Server Monitoring and Management Tools 3-1 Cisco Integrated Management Interface 3-1 Server Configuration Utility 3-1 Status LEDs and Buttons 3-2 Front Panel LEDs 3-2 Rear Panel LEDs and Buttons 3-5 Internal Diagnostic LEDs 3-7 Preparing for Server Component Installation 3-8 Required Equipment 3-8 Shutting Down and Powering Off the Server 3-8 Removing and Replacing the Server Top Cover 3-9 Serial Number Location 3-10 Hot-Swap or Hot-Plug Replacement 3-10 Installing or Replacing Server Components 3-11 Replaceable Component Locations 3-12 Replacing SAS/SATA Hard Drives or Solid State Drives 3-13 SAS/SATA Drive Population Guidelines 3-13 Replacing a SAS/SATA Drive 3-14 Replacing NVMe PCIe Solid State Drives 3-15 NVMe PCIe SSD Population Guidelines 3-15 NVME PCIe SSD Requirements and Restrictions 3-15 Replacing an NVMe PCIe SSD 3-15 Installing PCIe Riser Version 2B 3-16 Replacing Fan Modules 3-19 Replacing the Motherboard RTC Battery 3-21 Replacing DIMMs 3-23 Memory Performance Guidelines and Population Rules 3-23 DIMM Replacement Procedure 3-26 Replacing CPUs and Heatsinks 3-27 Special Information For Upgrades to Intel Xeon v4 CPUs 3-27 CPU Configuration Rules 3-27 CPU Replacement Procedure 3-28 Additional CPU-Related Parts to Order with RMA Replacement Motherboards 3-31 Replacing an Internal SD Card 3-32 Cisco UCS C220 M4 Server Installation and Service Guide iv OL-32473-01 Contents A A P P E N D I X Enabling or Disabling the Internal USB Port 3-33 Replacing a Cisco Modular RAID Controller Riser (Internal Riser 3) 3-33 Replacing a Cisco Modular RAID Controller Card 3-35 RAID Card Firmware Compatibility 3-35 Replacement Procedure 3-35 Replacing a Modular RAID Controller Transportable Memory Module (TMM) 3-38 Replacing the Supercap Power Module (RAID Backup) 3-41 Replacing a Software RAID 5 Key Module 3-42 Replacing a PCIe Riser Assembly 3-44 Replacing a PCIe Card 3-46 PCIe Slots 3-46 Replacing a PCIe Card 3-47 Special Considerations for Cisco UCS Virtual Interface Cards 3-49 Special Considerations for Cisco UCS Fusion ioDrive3 Storage Accelerator Cards 3-50 Installing Multiple PCIe Cards and Resolving Limited Resources 3-51 Installing and Enabling a Trusted Platform Module 3-53 TPM 2.0 Considerations 3-53 Installing the TPM Hardware 3-53 Enabling TPM Support in the BIOS 3-55 Enabling the Intel TXT Feature in the BIOS 3-55 Replacing an mLOM Card 3-57 Replacing Power Supplies 3-59 Replacing an AC Power Supply 3-59 Installing a DC Power Supply (UCSC-PSUV2-1050DC) 3-61 Service DIP Switches 3-63 DIP Switch Location on the Motherboard 3-63 Using the BIOS Recovery DIP Switch 3-64 Procedure 1: Reboot with recovery.cap File 3-64 Procedure 2: Use BIOS Recovery DIP switch and recovery.cap File 3-65 Using the Clear Password DIP Switch 3-66 Using the Clear CMOS DIP Switch 3-67 Server Specifications A-1 Physical Specifications A-1 Environmental Specifications A-2 Power Specifications A-3 770 W AC Power Supply A-3 1050W DC Power Supply A-4 OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide v Contents B A P P E N D I X C A P P E N D I X D A P P E N D I X Power Cord Specifications B-1 Supported Power Cords and Plugs B-1 AC Power Cord Illustrations B-3 RAID Controller Considerations C-1 Supported RAID Controllers and Required Cables C-2 RAID Card Firmware Compatibility C-3 Write-Cache Policy for Cisco 12G SAS Modular RAID Controller C-3 Cisco UCS SAS 9300-8e HBA Considerations C-4 Mixing Rules C-4 Bad Drive and Predictive Failure Behavior C-4 Setting the Preferred Boot Device C-4 Mixing Drive Types in RAID Groups C-6 RAID Backup Units C-6 RAID Controller Migration C-7 RAID Controller Cabling C-8 Cable Routing C-8 Cisco UCS C220 M4 Server Cabling C-9 SFF 8-Drive Backplane Cabling C-9 LFF 4-Drive Backplane Cabling C-10 Embedded SATA RAID Controllers C-11 Embedded SATA RAID Controller Requirements C-11 Embedded SATA RAID: Two SATA Controllers C-12 Embedded SATA RAID Controller Considerations C-13 Installing a Software RAID 5 Key Module for Embedded RAID 5 Support C-13 Enabling the Embedded SATA RAID Controller in the BIOS C-13 Enabling SATA Mode and Selecting Option ROM Mode C-14 Disabling the Embedded RAID Controller in the BIOS C-15 Launching the LSI Embedded RAID Configuration Utility C-15 Installing LSI MegaSR Drivers For Windows and Linux C-16 Downloading the LSI MegaSR Drivers C-16 Microsoft Windows Driver Installation C-17 Linux Driver Installation C-19 Restoring RAID Configuration After Replacing a RAID Controller C-24 For More Information C-25 Installation for Cisco UCS Integration D-1 Cisco UCS C220 M4 Server Installation and Service Guide vi OL-32473-01 Preface This preface describes the audience, organization, and conventions of the Cisco UCS C220 M4 Server Installation and Service Guide. It also provides information about how to obtain related documentation. Audience This guide is for experienced network administrators who configure and maintain Cisco servers. Conventions This document uses the following conventions for notes, cautions, and safety warnings. Notes and cautions contain important information that you should know. Note Means reader take note. Notes contain helpful suggestions or references to material that are not covered in the publication. Caution Means reader be careful. Cautions contain information about something you might do that could result in equipment damage or loss of data. Safety warnings appear throughout this guide in procedures that, if performed incorrectly, can cause physical injuries. A warning symbol precedes each warning statement. OL-32473-DRAFT Cisco UCS C220 M4 Server Installation and Service Guide vii Warning IMPORTANT SAFETY INSTRUCTIONS This warning symbol means danger. You are in a situation that could cause bodily injury. Before you work on any equipment, be aware of the hazards involved with electrical circuitry and be familiar with standard practices for preventing accidents. Use the statement number provided at the end of each warning to locate its translation in the translated safety warnings that accompanied this device. Statement 1071 SAVE THESE INSTRUCTIONS Waarschuwing BELANGRIJKE VEILIGHEIDSINSTRUCTIES Dit waarschuwingssymbool betekent gevaar. U verkeert in een situatie die lichamelijk letsel kan veroorzaken. Voordat u aan enige apparatuur gaat werken, dient u zich bewust te zijn van de bij elektrische schakelingen betrokken risico's en dient u op de hoogte te zijn van de standaard praktijken om ongelukken te voorkomen. Gebruik het nummer van de verklaring onderaan de waarschuwing als u een vertaling van de waarschuwing die bij het apparaat wordt geleverd, wilt raadplegen. BEWAAR DEZE INSTRUCTIES Varoitus TÄRKEITÄ TURVALLISUUSOHJEITA Tämä varoitusmerkki merkitsee vaaraa. Tilanne voi aiheuttaa ruumiillisia vammoja. Ennen kuin käsittelet laitteistoa, huomioi sähköpiirien käsittelemiseen liittyvät riskit ja tutustu onnettomuuksien yleisiin ehkäisytapoihin. Turvallisuusvaroitusten käännökset löytyvät laitteen mukana toimitettujen käännettyjen turvallisuusvaroitusten joukosta varoitusten lopussa näkyvien lausuntonumeroiden avulla. SÄILYTÄ NÄMÄ OHJEET Attention IMPORTANTES INFORMATIONS DE SÉCURITÉ Ce symbole d'avertissement indique un danger. Vous vous trouvez dans une situation pouvant entraîner des blessures ou des dommages corporels. Avant de travailler sur un équipement, soyez conscient des dangers liés aux circuits électriques et familiarisez-vous avec les procédures couramment utilisées pour éviter les accidents. Pour prendre connaissance des traductions des avertissements figurant dans les consignes de sécurité traduites qui accompagnent cet appareil, référez-vous au numéro de l'instruction situé à la fin de chaque avertissement. CONSERVEZ CES INFORMATIONS Warnung WICHTIGE SICHERHEITSHINWEISE Dieses Warnsymbol bedeutet Gefahr. Sie befinden sich in einer Situation, die zu Verletzungen führen kann. Machen Sie sich vor der Arbeit mit Geräten mit den Gefahren elektrischer Schaltungen und den üblichen Verfahren zur Vorbeugung vor Unfällen vertraut. Suchen Sie mit der am Ende jeder Warnung angegebenen Anweisungsnummer nach der jeweiligen Übersetzung in den übersetzten Sicherheitshinweisen, die zusammen mit diesem Gerät ausgeliefert wurden. BEWAHREN SIE DIESE HINWEISE GUT AUF. Cisco UCS C220 M4 Server Installation and Service Guide viii OL-32473-DRAFT Avvertenza IMPORTANTI ISTRUZIONI SULLA SICUREZZA Questo simbolo di avvertenza indica un pericolo. La situazione potrebbe causare infortuni alle persone. Prima di intervenire su qualsiasi apparecchiatura, occorre essere al corrente dei pericoli relativi ai circuiti elettrici e conoscere le procedure standard per la prevenzione di incidenti. Utilizzare il numero di istruzione presente alla fine di ciascuna avvertenza per individuare le traduzioni delle avvertenze riportate in questo documento. CONSERVARE QUESTE ISTRUZIONI Advarsel VIKTIGE SIKKERHETSINSTRUKSJONER Dette advarselssymbolet betyr fare. Du er i en situasjon som kan føre til skade på person. Før du begynner å arbeide med noe av utstyret, må du være oppmerksom på farene forbundet med elektriske kretser, og kjenne til standardprosedyrer for å forhindre ulykker. Bruk nummeret i slutten av hver advarsel for å finne oversettelsen i de oversatte sikkerhetsadvarslene som fulgte med denne enheten. TA VARE PÅ DISSE INSTRUKSJONENE Aviso INSTRUÇÕES IMPORTANTES DE SEGURANÇA Este símbolo de aviso significa perigo. Você está em uma situação que poderá ser causadora de lesões corporais. Antes de iniciar a utilização de qualquer equipamento, tenha conhecimento dos perigos envolvidos no manuseio de circuitos elétricos e familiarize-se com as práticas habituais de prevenção de acidentes. Utilize o número da instrução fornecido ao final de cada aviso para localizar sua tradução nos avisos de segurança traduzidos que acompanham este dispositivo. GUARDE ESTAS INSTRUÇÕES ¡Advertencia! INSTRUCCIONES IMPORTANTES DE SEGURIDAD Este símbolo de aviso indica peligro. Existe riesgo para su integridad física. Antes de manipular cualquier equipo, considere los riesgos de la corriente eléctrica y familiarícese con los procedimientos estándar de prevención de accidentes. Al final de cada advertencia encontrará el número que le ayudará a encontrar el texto traducido en el apartado de traducciones que acompaña a este dispositivo. GUARDE ESTAS INSTRUCCIONES Varning! VIKTIGA SÄKERHETSANVISNINGAR Denna varningssignal signalerar fara. Du befinner dig i en situation som kan leda till personskada. Innan du utför arbete på någon utrustning måste du vara medveten om farorna med elkretsar och känna till vanliga förfaranden för att förebygga olyckor. Använd det nummer som finns i slutet av varje varning för att hitta dess översättning i de översatta säkerhetsvarningar som medföljer denna anordning. SPARA DESSA ANVISNINGAR OL-32473-DRAFT Cisco UCS C220 M4 Server Installation and Service Guide ix Cisco UCS C220 M4 Server Installation and Service Guide x OL-32473-DRAFT Aviso INSTRUÇÕES IMPORTANTES DE SEGURANÇA Este símbolo de aviso significa perigo. Você se encontra em uma situação em que há risco de lesões corporais. Antes de trabalhar com qualquer equipamento, esteja ciente dos riscos que envolvem os circuitos elétricos e familiarize-se com as práticas padrão de prevenção de acidentes. Use o número da declaração fornecido ao final de cada aviso para localizar sua tradução nos avisos de segurança traduzidos que acompanham o dispositivo. GUARDE ESTAS INSTRUÇÕES Advarsel VIGTIGE SIKKERHEDSANVISNINGER Dette advarselssymbol betyder fare. Du befinder dig i en situation med risiko for legemesbeskadigelse. Før du begynder arbejde på udstyr, skal du være opmærksom på de involverede risici, der er ved elektriske kredsløb, og du skal sætte dig ind i standardprocedurer til undgåelse af ulykker. Brug erklæringsnummeret efter hver advarsel for at finde oversættelsen i de oversatte advarsler, der fulgte med denne enhed. GEM DISSE ANVISNINGER OL-32473-DRAFT Cisco UCS C220 M4 Server Installation and Service Guide xi Cisco UCS C220 M4 Server Installation and Service Guide xii OL-32473-DRAFT Obtaining Documentation and Submitting a Service Request Related Documentation The documentation set for the Cisco Unified Computing System (UCS) C-Series rack-mount servers is described in the roadmap document at the following link: Cisco UCS C-Series Documentation Roadmap Documentation Feedback To provide technical feedback on this document, or to report an error or omission, please send your comments to ucs-docfeedback@external.cisco.com. We appreciate your feedback. Obtaining Documentation and Submitting a Service Request For information on obtaining documentation, using the Cisco Bug Search Tool (BST), submitting a service request, and gathering additional information, see What's New in Cisco Product Documentation. To receive new and revised Cisco technical content directly to your desktop, you can subscribe to the What's New in Cisco Product Documentation RSS feed. The RSS feeds are a free service. OL-32473-DRAFT Cisco UCS C220 M4 Server Installation and Service Guide xiii Obtaining Documentation and Submitting a Service Request Cisco UCS C220 M4 Server Installation and Service Guide xiv OL-32473-DRAFT Overview 1 C H A P T E R This chapter provides an overview of the Cisco UCS C220 M4 server features: · External Features Overview, page 1-1 · Replaceable Component Locations, page 1-5 · Summary of Server Features, page 1-6 External Features Overview The figures in this section show an overview of external server features. The server is orderable in two different versions, each with one of two different front panel/backplane configurations: · Cisco UCS C220 M4--Small form-factor (SFF) drives, with eight-drive backplane. This version holds up to eight 2.5-inch SAS hard drives or solid state drives (SSDs). This version supports up to two NVMe PCIe SSDs. See Figure 1-1. · Cisco UCS C220 M4--Large form factor (LFF) drives, with four-drive backplane. This version holds up to four 3.5-inch SAS hard drives. See Figure 1-2. · The rear panel features are the same for both versions of the server. See Figure 1-3. OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 1-1 External Features Overview Chapter 1 Overview Figure 1-1 shows the front panel features of the SFF drives, eight-drive version of the server. Figure 1-1 Cisco UCS C220 M4 Server (SFF Drives, 8-Drive) Front Panel Features 4 5 79 6 8 10 HDD 01 HDD 04 3 2 HDD 02 HDD 05 HDD 03 HDD 06 HDD 07 HDD 08 1 11 1 Drive bays 18 support SAS/SATA drives 7 System status LED 2 Drive bays 1 and 2 support SAS/SATA and 8 Fan status LED NVMe PCIe solid state drives (SSDs). 3 Pull-out asset tag 9 Temperature status LED 4 Operations panel buttons and LEDs 10 Power supply status LED 5 Power button/power status LED 11 Network link activity LED 6 Unit identification button/LED 12 KVM connector (used with KVM cable that provides two USB 2.0, one VGA, and one serial connector) 352973 Cisco UCS C220 M4 Server Installation and Service Guide 1-2 OL-32473-01 Chapter 1 Overview External Features Overview Figure 1-2 shows the front panel features of the LFF drives, four-drive version of the server. Figure 1-2 Cisco UCS C220 M4 Server (LFF Drives, 4-Drive) Front Panel Features 4 5 79 6 8 10 23 352974 HDD 01 HDD 02 HDD 03 HDD 04 1 11 1 Drives (up to four 2.5-inch drives) 7 Fan status LED 2 Pull-out asset tag 8 Temperature status LED 3 Operations panel buttons and LEDs 9 Power supply status LED 4 Power button/power status LED 10 Network link activity LED 5 Unit identification button/LED 11 KVM connector (used with KVM cable that provides two USB 2.0, one VGA, and one serial connector) 6 System status LED OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 1-3 352977 External Features Overview Chapter 1 Overview Figure 1-3 shows the rear panel features of the server (identical for both versions of the server). Figure 1-3 Cisco UCS C220 M4 Server Rear Panel Features 1 2 mLOM PCIe 01 PCIe 02 1 2 PSU 01 PSU 02 3 4 56 7 8 9 10 11 1 PCIe riser 1/slot 1 7 Serial port (RJ-45 connector) 2 PCIe riser 2/slot 2 8 Dual 1-Gb Ethernet ports (LAN1 and LAN2) 3 Modular LAN-on-motherboard (mLOM) card 9 VGA video port (DB-15) slot 4 Grounding-lug hole (for DC power supplies) 10 Rear unit identification button/LED 5 USB 3.0 ports (two) 11 Power supplies (up to two, redundant as 1+1) 6 1-Gb Ethernet dedicated management port Cisco UCS C220 M4 Server Installation and Service Guide 1-4 OL-32473-01 Chapter 1 Overview Replaceable Component Locations 352978 Replaceable Component Locations This section shows the locations of the field-replaceable components. The view in Figure 1-4 is from the top down with the top cover and air baffle removed. Figure 1-4 Replaceable Component Locations 2 3 4 5 6 78 FAN 6 SD 1 PSU 2 FAN 5 FAN 4 9 CPU 2 SD 2 PSU 1 10 1 PCIe Riser 2 11 FAN 3 FAN 2 CPU 1 PCIe Riser 1 12 FAN 1 13 17 16 15 14 1 Drive bays 18 support SAS/SATA drives. 10 Trusted platform module (TPM) socket SFF, 8-drive version only: Drive bays 1 and 2 on motherboard (not visible in this view) support SAS/SATA drives and NVMe PCIe SSDs. NVMe drives require PCIe riser version 2B in the server to provide the PCIe bus connection. 2 Cooling fan modules (six) 11 PCIe riser 2 (half-height PCIe slot 2) 3 Supercap Power Module (RAID backup) mounting 12 PCIe riser 1 (full-height PCIe slot 1) bracket 4 DIMM sockets on motherboard (24) 13 Modular LOM (mLOM) connector on chassis floor 5 CPUs and heatsinks (up to two) 14 Cisco modular RAID controller PCIe riser (dedicated riser with horizontal socket) 6 Embedded SATA RAID header for RAID 5 key 15 Cisco modular RAID controller card 7 SD card bays on motherboard (two) 16 Embedded SATA RAID mini-SAS connectors on motherboard (not visible in this view) 8 Internal USB 3.0 port on motherboard 17 RTC battery on motherboard 9 Power supplies (up to two, hot-swappable when redundant as 1+1) OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 1-5 Summary of Server Features Chapter 1 Overview Summary of Server Features Table 1-1 lists the features of the server. . Table 1-1 Cisco UCS C220 M4 Server Features Feature Chassis Processors Memory Multi-bit error protection Baseboard management Network and management I/O Modular LOM WoL Power ACPI Cooling PCIe I/O InfiniBand Description One rack-unit (1RU) chassis. Up to two Intel Xeon E5-2600 v3 Series processors. 24 DDR4 DIMM1 sockets on the motherboard (12 each CPU). Multi-bit error protection is supported. BMC, running Cisco Integrated Management Controller (Cisco IMC) firmware. Depending on your Cisco IMC settings, Cisco IMC can be accessed through the 1-Gb dedicated management port, the 1-Gb Ethernet LOM ports, or a Cisco virtual interface card. Supported connectors: · One 1-Gb Ethernet dedicated management port · Two 1-Gb BASE-T Ethernet LAN ports · One RS-232 serial port (RJ-45 connector) · One 15-pin VGA2 connector · Two USB3 3.0 connectors · One front-panel KVM connector that is used with the KVM cable, which provides two USB 2.0, one VGA, and one serial (DB-9) connector. Dedicated socket that can be used to add an mLOM card for additional rear-panel connectivity (up to four 1-Gb or 10-Gb Ethernet ports). 1-Gb BASE-T Ethernet LAN ports support the wake-on-LAN (WoL) standard. Two power supplies: · AC power supplies 770 W AC each. · DC power supplies 1050 W DC each. Do not mix power supply types or wattages in the server. Redundant as 1+1. See Power Specifications, page A-3. The advanced configuration and power interface (ACPI) 4.0 standard is supported. Six hot-swappable fan modules for front-to-rear cooling. Two horizontal PCIe4 expansion slots on two risers (single riser assembly). See Replacing a PCIe Card, page 3-46 for specifications of the slots. The bus slots in this server support the InfiniBand architecture. Cisco UCS C220 M4 Server Installation and Service Guide 1-6 OL-32473-01 Chapter 1 Overview Summary of Server Features Table 1-1 Cisco UCS C220 M4 Server Features (continued) Feature Storage Internal USB SD cards Disk Management (RAID) Description (continued) Drives are installed into front-panel drive bays. The server is orderable in two different versions, each with different front panel/backplane configurations · Cisco UCS C220 M4--Small form-factor (SFF) drives, with eight-drive backplane. Holds up to eight 2.5-inch SAS/SATA drives. SAS/SATA drives are hot-swappable.5 This version of the server also supports up to two NVMe PCIe SSDs in bays 1 and 2. NVME PCIe SSDs are hot-pluggable.6 NVMe drives require PCIe riser version 2B in the server to provide the PCIe bus connection. · Cisco UCS C220 M4--Large form factor (LFF) drives, with four-drive backplane. Holds up to four 3.5-inch SAS/SATA drives. One internal USB 3.0 port on the motherboard that you can use with a USB thumb drive for additional storage. Two internal bays on the motherboard for up to two SD cards. The two flash drives can be configured in a RAID 1 configuration. The server has a dedicated internal riser for a PCIe-style Cisco modular RAID controller card. The server can optionally use its own embedded SATA RAID controller. You can optionally add a RAID 5 key to upgrade this embedded SATA RAID. Note The embedded RAID option is not available with the large form factor drives, four-drive version of the server at this time. For a list of RAID7 controller options and required cabling, see Supported RAID Controllers and Required Cables, page C-2. RAID Backup The server has a mounting bracket for the supercap power module that is used with Cisco modular RAID controller card. Video VGA video resolution up to 1920 x 1200, 16 bpp at 60 Hz, and up to 256 MB of video memory. 1. DIMM = dual inline memory module 2. VGA = video graphics array 3. USB = universal serial bus 4. PCIe = peripheral component interconnect express 5. Hot swappable = no shutdown of the components is required before removal with the server power on. 6. Hot-pluggable = shutdown of the components is required before removal with the server power on. 7. RAID = redundant array of independent disks OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 1-7 Summary of Server Features Chapter 1 Overview Cisco UCS C220 M4 Server Installation and Service Guide 1-8 OL-32473-01 2 C H A P T E R Installing the Server This chapter describes how to install the server, and it includes the following sections: · Unpacking and Inspecting the Server, page 2-2 · Preparing for Server Installation, page 2-3 · Installing the Server In a Rack, page 2-5 · Initial Server Setup, page 2-10 · NIC Modes and NIC Redundancy Settings, page 2-14 · System BIOS and Cisco IMC Firmware, page 2-15 · Updating the BIOS and Cisco IMC Firmware, page 2-15 Note Before you install, operate, or service a server, review the Regulatory Compliance and Safety Information for Cisco UCS C-Series Servers for important safety information. Warning IMPORTANT SAFETY INSTRUCTIONS This warning symbol means danger. You are in a situation that could cause bodily injury. Before you work on any equipment, be aware of the hazards involved with electrical circuitry and be familiar with standard practices for preventing accidents. Use the statement number provided at the end of each warning to locate its translation in the translated safety warnings that accompanied this device. Statement 1071 SAVE THESE INSTRUCTIONS OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 2-1 Unpacking and Inspecting the Server Chapter 2 Installing the Server Unpacking and Inspecting the Server Caution When handling internal server components, wear an ESD strap and handle modules by the carrier edges only. Tip Keep the shipping container in case the server requires shipping in the future. Note The chassis is thoroughly inspected before shipment. If any damage occurred during transportation or any items are missing, contact your customer service representative immediately. Step 1 Step 2 Step 3 Remove the server from its cardboard container and save all packaging material. Compare the shipment to the equipment list provided by your customer service representative. Verify that you have all items. Check for damage and report any discrepancies or damage to your customer service representative. Have the following information ready: · Invoice number of shipper (see the packing slip) · Model and serial number of the damaged unit · Description of damage · Effect of damage on the installation Cisco UCS C220 M4 Server Installation and Service Guide 2-2 OL-32473-01 Chapter 2 Installing the Server Preparing for Server Installation Preparing for Server Installation This section provides information about preparing for server installation, and it includes the following topics: · Installation Guidelines, page 2-3 · Rack Requirements, page 2-4 · Equipment Requirements, page 2-4 · Slide Rail Adjustment Range and Cable Management Arm Dimensions, page 2-4 Installation Guidelines Warning To prevent the system from overheating, do not operate it in an area that exceeds the maximum recommended ambient temperature of: 40° C (104° F). Statement 1047 Warning The plug-socket combination must be accessible at all times, because it serves as the main disconnecting device. Statement 1019 Warning This product relies on the building's installation for short-circuit (overcurrent) protection. Ensure that the protective device is rated not greater than: 250 V, 15 A. Statement 1005 Warning Installation of the equipment must comply with local and national electrical codes. Statement 1074 Caution To ensure proper airflow it is necessary to rack the servers using rail kits. Physically placing the units on top of one another or "stacking" without the use of the rail kits blocks the air vents on top of the servers, which could result in overheating, higher fan speeds, and higher power consumption. We recommend that you mount your servers on rail kits when you are installing them into the rack because these rails provide the minimal spacing required between the servers. No additional spacing between the servers is required when you mount the units using rail kits. Caution Avoid UPS types that use ferroresonant technology. These UPS types can become unstable with systems such as the Cisco UCS, which can have substantial current draw fluctuations from fluctuating data traffic patterns. OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 2-3 Preparing for Server Installation Chapter 2 Installing the Server When you are installing a server, use the following guidelines: · Plan your site configuration and prepare the site before installing the server. See the Cisco UCS Site Preparation Guide for the recommended site planning tasks. · Ensure that there is adequate space around the server to allow for servicing the server and for adequate airflow. The airflow in this server is from front to back. · Ensure that the air-conditioning meets the thermal requirements listed in the Server Specifications, page A-1. · Ensure that the cabinet or rack meets the requirements listed in the "Rack Requirements" section on page 2-4. · Ensure that the site power meets the power requirements listed in the Server Specifications, page A-1. If available, you can use an uninterruptible power supply (UPS) to protect against power failures. Rack Requirements This section provides the requirements for the standard open racks. The rack must be of the following type: · A standard 19-in. (48.3-cm) wide, four-post EIA rack, with mounting posts that conform to English universal hole spacing, per section 1 of ANSI/EIA-310-D-1992. · The rack post holes can be square 0.38-inch (9.6 mm), round 0.28-inch (7.1 mm), #12-24 UNC, or #10-32 UNC when you use the supplied slide rails. · The minimum vertical rack space per server must be one RU, equal to 1.75 in. (44.45 mm). Equipment Requirements The slide rails sold by Cisco Systems for this server do not require tools for installation. Supported Slide Rail Kits This server supports two rail kit options: · Cisco part UCSC-RAILB-M4= (ball-bearing rail kit). · Cisco part UCSC-RAILF-M4= (friction rail kit). Do not attempt to use a rail kit that was for the Cisco UCS C220 M3 server; the rail kits for the Cisco UCS C220 M4 server have been designed specifically for it. Slide Rail Adjustment Range and Cable Management Arm Dimensions The slide rails for this server have an adjustment range of 24 to 36 inches (610 to 914 mm). The optional cable management arm (CMA) adds additional length requirements: · The additional distance from the rear of the server to the rear of the CMA is 5.4 inches (137.4 mm). · The total length of the server including the CMA is 35.2 inches (894 mm). Cisco UCS C220 M4 Server Installation and Service Guide 2-4 OL-32473-01 Chapter 2 Installing the Server Installing the Server In a Rack Installing the Server In a Rack This section contains the following sections: · Installing the Slide Rails, page 2-5 · Installing the Cable Management Arm (Optional), page 2-8 · Reversing the Cable Management Arm (Optional), page 2-9 Installing the Slide Rails This section describes how to install the server in a rack using the rack kits that are sold by Cisco. Warning To prevent bodily injury when mounting or servicing this unit in a rack, you must take special precautions to ensure that the system remains stable. The following guidelines are provided to ensure your safety: This unit should be mounted at the bottom of the rack if it is the only unit in the rack. When mounting this unit in a partially filled rack, load the rack from the bottom to the top with the heaviest component at the bottom of the rack. If the rack is provided with stabilizing devices, install the stabilizers before mounting or servicing the unit in the rack. Statement 1006 Step 1 Attach the inner rails to the sides of the server: a. Align an inner rail with one side of the server so that the three keyed slots in the rail align with the three pegs on the side of the server (see Figure 2-1). b. Set the keyed slots over the pegs, and then slide the rail toward the front to lock it in place on the pegs. The front slot has a metal clip that locks over the front peg. c. Install the second inner rail to the opposite side of the server. Figure 2-1 Attaching Inner Rail to Side of Server 1 2 1 Front of server 2 Locking clip on inner rail 353363 OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 2-5 Installing the Server In a Rack Chapter 2 Installing the Server Step 2 Open the front securing plate on both slide-rail assemblies. The front end of the slide-rail assembly has a spring-loaded securing plate that must be open before you can insert the mounting pegs into the rack-post holes (see Figure 2-2). On the outside of the assembly, push the green arrow button toward the rear to open the securing plate. Figure 2-2 Front Securing Mechanism, Inside of Front End 2 1 3 1 Front mounting pegs 2 Rack post 3 Securing plate shown pulled back to open position Step 3 Install the outer slide rails into the rack: a. Align one slide-rail assembly front end with the front rack-post holes that you want to use. The slide rail front-end wraps around the outside of the rack post and the mounting pegs enter the rack-post holes from the outside-front (see Figure 2-2). Note The rack post must be between the mounting pegs and the open securing plate. b. Push the mounting pegs into the rack-post holes from the outside-front. c. Press the securing plate release button, marked PUSH. The spring-loaded securing plate closes to lock the pegs in place. d. Adjust the slide-rail length, and then push the rear mounting pegs into the corresponding rear rack-post holes. The slide rail must be level front-to-rear. The rear mounting pegs enter the rear rack-post holes from the inside of the rack post. e. Attach the second slide-rail assembly to the opposite side of the rack. Ensure that the two slide-rail assemblies are at the same height with each other and are level front-to-back. f. Pull the inner slide rails on each assembly out toward the rack front until they hit the internal stops and lock in place. Cisco UCS C220 M4 Server Installation and Service Guide 2-6 OL-32473-01 Chapter 2 Installing the Server Installing the Server In a Rack Step 4 Insert the server into the slide rails: Caution This server can weigh up to 67 pounds (59 kilograms) when fully loaded with components. We recommend that you use a minimum of two people or a mechanical lift when lifting the server. Attempting this procedure alone could result in personal injury or equipment damage. a. Align the rear of the inner rails that are attached to the server sides with the front ends of the empty slide rails on the rack. b. Push the inner rails into the slide rails on the rack until they stop at the internal stops. c. Slide the release clip toward the rear on both inner rails, and then continue pushing the server into the rack until its front slam latches engage with the rack posts. Figure 2-3 Inner Rail Release Clip 1 2 3 1 Inner rail release clip 3 Outer rail attached to rack post 2 Inner rail attached to server and inserted into outer rail Step 5 (Optional) Secure the server in the rack more permanently by using the two screws that are provided with the slide rails. Perform this step if you plan to move the rack with servers installed. With the server fully pushed into the slide rails, open a hinged slam latch lever on the front of the server and insert the screw through the hole that is under the lever. The screw threads into the static part of the rail on the rack post and prevents the server from being pulled out. Repeat for the opposite slam latch. 353364 OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 2-7 Installing the Server In a Rack Chapter 2 Installing the Server Installing the Cable Management Arm (Optional) Note The CMA is reversible left to right. To reverse the CMA, see Reversing the Cable Management Arm (Optional), page 2-9 before installation. Step 1 Step 2 Step 3 Step 4 Step 5 With the server pushed fully into the rack, slide the CMA tab of the CMA arm that is farthest from the server onto the end of the stationary slide rail that is attached to the rack post (see Figure 2-4). Slide the tab over the end of the rail until it clicks and locks. Slide the CMA tab that is closest to the server over the end of the inner rail that is attached to the server (see Figure 2-4). Slide the tab over the end of the rail until it clicks and locks. Pull out the width-adjustment slider that is at the opposite end of the CMA assembly until it matches the width of your rack (see Figure 2-4). Slide the CMA tab that is at the end of the width-adjustment slider onto the end of the stationary slide rail that is attached to the rack post (see Figure 2-4). Slide the tab over the end of the rail until it clicks and locks. Open the hinged flap at the top of each plastic cable guide and route your cables through the cable guides as desired. Figure 2-4 Attaching the Cable Management Arm to the Rear of the Slide Rails 3 1 2 4 352584 1 CMA tab on arm farthest from server and end 3 CMA tab on width-adjustment slider and end of stationary outer slide rail of stationary outer slide rail 2 CMA tab on arm closest to the server and end 4 Rear of server of inner slide rail attached to server Cisco UCS C220 M4 Server Installation and Service Guide 2-8 OL-32473-01 Chapter 2 Installing the Server Installing the Server In a Rack Reversing the Cable Management Arm (Optional) Step 1 Step 2 Step 3 Rotate the entire CMA assembly 180 degrees. The plastic cable guides must remain pointing upward. Flip the tabs at the end of each CMA arm so that they point toward the rear of the server. Pivot the tab that is at the end of the width-adjustment slider. Depress and hold the metal button on the outside of the tab and pivot the tab 180 degrees so that it points toward the rear of the server. Figure 2-5 Reversing the CMA PUSH 352585 2 1 1 CMA tab on end of width-adjustment slider 2 Metal button for rotating OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 2-9 Initial Server Setup Chapter 2 Installing the Server Initial Server Setup Connecting and Powering On the Server (Standalone Mode) Note This section describes how to power on the server, assign an IP address, and connect to server management when using the server in standalone mode. To use the server in Cisco UCS Manager integration, specific cabling and settings are required. See Installation for Cisco UCS Integration, page D-1. The server is shipped with these default settings: · The NIC mode is Shared LOM EXT. Shared LOM EXT mode enables the 1-Gb Ethernet ports and the ports on any installed Cisco virtual interface card (VIC) to access Cisco Integrated Management Interface (Cisco IMC). If you want to use the 10/100/1000 dedicated management ports to access Cisco IMC, you can connect to the server and change the NIC mode as described in Step 1 of the following procedure. · The NIC redundancy is active-active. All Ethernet ports are utilized simultaneously. · DHCP is enabled. · IPv4 is enabled. There are two methods for connecting to the system for initial setup: · Local setup--Use this procedure if you want to connect a keyboard and monitor to the system for setup. This procedure can use a KVM cable (Cisco PID N20-BKVM) or the ports on the rear of the server. See Local Connection Procedure, page 2-10. · Remote setup--Use this procedure if you want to perform setup through your dedicated management LAN. See Remote Connection Procedure, page 2-11. Note To configure the system remotely, you must have a DHCP server on the same network as the system. Your DHCP server must be preconfigured with the range of MAC addresses for this server node. The MAC address is printed on a label that is on the pull-out asset tag on the front panel (see Figure 1-1 or Figure 1-2). This server node has a range of six MAC addresses assigned to the Cisco IMC. The MAC address printed on the label is the beginning of the range of six contiguous MAC addresses. Local Connection Procedure Step 1 Step 2 Attach a power cord to each power supply in your server, and then attach each power cord to a grounded AC power outlet. See Power Specifications, page A-3 for power specifications. Wait for approximately two minutes to let the server boot in standby power during the first bootup. You can verify system power status by looking at the system Power Status LED on the front panel (see External Features Overview, page 1-1). The system is in standby power mode when the LED is amber. Connect a USB keyboard and VGA monitor to the server using one of the following methods: · Connect a USB keyboard and VGA monitor to the corresponding connectors on the rear panel (see External Features Overview, page 1-1). 2-10 Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 Chapter 2 Installing the Server Initial Server Setup Step 3 Step 4 · Connect an optional KVM cable (Cisco PID N20-BKVM) to the KVM connector on the front panel (see External Features Overview, page 1-1 for the connector location). Connect your USB keyboard and VGA monitor to the KVM cable. Open the Cisco IMC Configuration Utility: a. Press and hold the front panel power button for four seconds to boot the server. b. During bootup, press F8 when prompted to open the Cisco IMC Configuration Utility. This utility has two windows that you can switch between by pressing F1 or F2. Continue with Cisco IMC Configuration Utility Setup, page 2-12. Remote Connection Procedure Step 1 Step 2 Step 3 Step 4 Attach a power cord to each power supply in your server, and then attach each power cord to a grounded AC power outlet. See Power Specifications, page A-3 for power specifications. Wait for approximately two minutes to let the server boot in standby power during the first bootup. You can verify system power status by looking at the system Power Status LED on the front panel (see External Features Overview, page 1-1). The system is in standby power mode when the LED is amber. Plug your management Ethernet cable into the dedicated management port on the rear panel (see External Features Overview, page 1-1). Allow your preconfigured DHCP server to assign an IP address to the server node. Use the assigned IP address to access and log in to the Cisco IMC for the server node. Consult with your DHCP server administrator to determine the IP address. Note The default user name for the server is admin. The default password is password. Step 5 Step 6 Step 7 From the Cisco IMC Server Summary page, click Launch KVM Console. A separate KVM console window opens. From the Cisco IMC Summary page, click Power Cycle Server. The system reboots. Select the KVM console window. Note The KVM console window must be the active window for the following keyboard actions to work. Step 8 Step 9 When prompted, press F8 to enter the Cisco IMC Configuration Utility. This utility opens in the KVM console window. This utility has two windows that you can switch between by pressing F1 or F2. Continue with Cisco IMC Configuration Utility Setup, page 2-12. OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 2-11 Initial Server Setup Chapter 2 Installing the Server Cisco IMC Configuration Utility Setup The following procedure is performed after you connect to the system and open the Cisco IMC Configuration Utility. Step 1 Step 2 Set NIC mode and NIC redundancy: a. Set the NIC mode to choose which ports to use to access Cisco IMC for server management (see Figure 1-3 on page 1-4 for identification of the ports): · Shared LOM EXT (default)--This is the shared LOM extended mode, the factory-default setting. With this mode, the Shared LOM and Cisco Card interfaces are both enabled. In this mode, DHCP replies are returned to both the shared LOM ports and the Cisco card ports. If the system determines that the Cisco card connection is not getting its IP address from a Cisco UCS Manager system because the server is in standalone mode, further DHCP requests from the Cisco card are disabled. Use the Cisco Card NIC mode if you want to connect to Cisco IMC through a Cisco card in standalone mode. · Shared LOM--The 1-Gb Ethernet ports are used to access Cisco IMC. You must select a NIC redundancy and IP setting. · Dedicated--The dedicated management port is used to access Cisco IMC. You must select a NIC redundancy and IP setting. · Cisco Card--The ports on an installed Cisco UCS virtual interface card (VIC) are used to access the Cisco IMC. You must select a NIC redundancy and IP setting. See also the required VIC Slot setting below. · VIC Slot--If you use the Cisco Card NIC mode, you must select this setting to match where your VIC is installed. The choices are Riser1, Riser2, or Flex-LOM (the mLOM slot). If you select Riser1, slot 1 is used. If you select Riser2, slot 2 is used. If you select Flex-LOM, you must use an mLOM-style VIC in the mLOM slot. b. Use this utility to change the NIC redundancy to your preference. This server has three possible NIC redundancy settings: None--The Ethernet ports operate independently and do not fail over if there is a problem. This setting can be used only with the Dedicated NIC mode. Active-standby--If an active Ethernet port fails, traffic fails over to a standby port. Active-active--All Ethernet ports are utilized simultaneously. The Shared LOM EXT mode can have only this NIC redundancy setting. Shared LOM and Cisco Card modes can have both Active-standby and Active-active settings. Choose whether to enable DHCP for dynamic network settings, or to enter static network settings. Note Before you enable DHCP, you must preconfigure your DHCP server with the range of MAC addresses for this server. The MAC address is printed on a label on the rear of the server. This server has a range of six MAC addresses assigned to Cisco IMC. The MAC address printed on the label is the beginning of the range of six contiguous MAC addresses. 2-12 Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 Chapter 2 Installing the Server Initial Server Setup Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 The static IPv4 and IPv6 settings include the following: · The Cisco IMC IP address. · The prefix/subnet. For IPv6, valid values are 1127. · The gateway. For IPv6, if you do not know the gateway, you can set it as none by entering :: (two colons). · The preferred DNS server address. For IPv6, you can set this as none by entering :: (two colons). (Optional) Use this utility to make VLAN settings. Press F1 to go to the second settings window, then continue with the next step. From the second window, you can press F2 to switch back to the first window. (Optional) Set a hostname for the server. (Optional) Enable dynamic DNS and set a dynamic DNS (DDNS) domain. (Optional) If you check the Factory Default check box, the server reverts to the factory defaults. (Optional) Set a default user password. (Optional) Enable auto-negotiation of port settings or set the port speed and duplex mode manually. Note Auto-negotiation is applicable only when you use the Dedicated NIC mode. Auto-negotiation sets the port speed and duplex mode automatically based on the switch port to which the server is connected. If you disable auto-negotiation, you must set the port speed and duplex mode manually. Step 10 Step 11 Step 12 (Optional) Reset port profiles and the port name. Press F5 to refresh the settings that you made. You might have to wait about 45 seconds until the new settings appear and the message, "Network settings configured" is displayed before you reboot the server in the next step. Press F10 to save your settings and reboot the server. Note If you chose to enable DHCP, the dynamically assigned IP and MAC addresses are displayed on the console screen during bootup. OL-32473-01 Use a browser and the IP address of the Cisco IMC to connect to the Cisco IMC management interface. The IP address is based upon the settings that you made (either a static address or the address assigned by your DHCP server). Note The default username for the server is admin. The default password is password. To manage the server, see the Cisco UCS C-Series Rack-Mount Server Configuration Guide or the Cisco UCS C-Series Rack-Mount Server CLI Configuration Guide for instructions on using those interfaces. The links to these documents are in the C-Series documentation roadmap: http://www.cisco.com/go/unifiedcomputing/c-series-doc Cisco UCS C220 M4 Server Installation and Service Guide 2-13 NIC Modes and NIC Redundancy Settings Chapter 2 Installing the Server NIC Modes and NIC Redundancy Settings NIC Modes This server has the following NIC mode settings that you can choose from: · Shared LOM EXT (default)--This is the Shared LOM extended mode, the factory-default setting. With this mode, the shared LOM and Cisco Card interfaces are both enabled. In this mode, DHCP replies are returned to both the shared LOM ports and the Cisco card ports. If the system determines that the Cisco card connection is not getting its IP address from a Cisco UCS Manager system because the server is in standalone mode, further DHCP requests from the Cisco card are disabled. If the system determines that the Cisco card connection is getting its IP address from a Cisco UCS Manager system, the reply has parameters that automatically move the server to UCSM mode. · Dedicated--The dedicated management port is used to access Cisco IMC. You must select a NIC redundancy and IP setting. · Shared LOM--The 1-Gb Ethernet ports are used to access Cisco IMC. You must select a NIC redundancy and IP setting. · Cisco Card--The ports on an installed Cisco UCS virtual interface card (VIC) are used to access Cisco IMC. You must select a NIC redundancy and IP setting. See also the required VIC Slot setting below. · VIC Slot--If you use the Cisco Card NIC mode, you select this setting to match where your VIC is installed. The choices are Riser1, Riser2, or Flex-LOM (the mLOM slot). If you select Riser1, slot 1 is used. If you select Riser2, slot 2 is used. If you select Flex-LOM, you must use an mLOM-style VIC in the mLOM slot. NIC Redundancy This server has the following NIC redundancy settings that you can choose from: None--The Ethernet ports operate independently and do not fail over if there is a problem. This setting can be used only with the Dedicated NIC mode. Active-standby--If an active Ethernet port fails, traffic fails over to a standby port. Active-active--All Ethernet ports are utilized simultaneously. Shared LOM EXT mode can have only this NIC redundancy setting. Shared LOM and Cisco Card modes can have both Active-standby and Active-active settings. The active/active setting uses Mode 5 or Balance-TLB (adaptive transmit load balancing). This is channel bonding that does not require any special switch support. The outgoing traffic is distributed according to the current load (computed relative to the speed) on each slave. Incoming traffic is received by the current slave. If the receiving slave fails, another slave takes over the MAC address of the failed receiving slave. 2-14 Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 Chapter 2 Installing the Server System BIOS and Cisco IMC Firmware System BIOS and Cisco IMC Firmware This section includes information about the system BIOS and it includes the following sections: · Updating the BIOS and Cisco IMC Firmware, page 2-15 · Accessing the System BIOS, page 2-16 Updating the BIOS and Cisco IMC Firmware Caution When you upgrade the BIOS firmware, you must also upgrade the Cisco IMC firmware to the same version or the server does not boot. Do not power off the server until the BIOS and Cisco IMC firmware are matching or the server does not boot. Cisco provides the Cisco Host Upgrade Utility to assist with simultaneously upgrading the BIOS, Cisco IMC, and other firmware to compatible levels. The server uses firmware obtained from and certified by Cisco. Cisco provides release notes with each firmware image. There are several methods for updating the firmware: · Recommended method for system components firmware update: Use the Cisco Host Upgrade Utility to simultaneously upgrade the Cisco IMC, BIOS, LOM, LSI storage controller, and Cisco UCS VIC firmware to compatible levels. See the Cisco Host Upgrade Utility Quick Reference Guide for your firmware level at the documentation roadmap link below. · You can upgrade the BIOS using the EFI interface, or upgrade from a Windows or Linux platform. See the Cisco UCS C-Series Rack-Mount Server BIOS Upgrade Guide. · You can upgrade the Cisco IMC and BIOS firmware by using the Cisco IMC GUI interface. See the Cisco UCS C-Series Rack-Mount Server Configuration Guide. · You can upgrade the Cisco IMC and BIOS firmware by using the Cisco IMC CLI interface. See the Cisco UCS C-Series Rack-Mount Server CLI Configuration Guide. For links to the documents listed above, see the documentation roadmap at the following URL: http://www.cisco.com/go/unifiedcomputing/c-series-doc OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 2-15 System BIOS and Cisco IMC Firmware Chapter 2 Installing the Server Accessing the System BIOS Step 1 Enter the BIOS setup utility by pressing the F2 key when prompted during bootup. Note The version and build of the current BIOS are displayed on the Main page of the utility. Step 2 Step 3 Step 4 Step 5 Step 6 Use the arrow keys to select the BIOS menu page. Highlight the field to be modified by using the arrow keys. Press Enter to select the field that you want to change, and then modify the value in the field. Press the right arrow key until the Exit menu screen is displayed. Follow the instructions on the Exit menu screen to save your changes and exit the setup utility (or Press F10). You can exit without saving changes by pressing Esc. 2-16 Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 3 C H A P T E R Maintaining the Server This chapter describes how to diagnose server system problems using LEDs. It also provides information about how to install or replace hardware components, and it includes the following sections: · Server Monitoring and Management Tools, page 3-1 · Status LEDs and Buttons, page 3-2 · Preparing for Server Component Installation, page 3-8 · Installing or Replacing Server Components, page 3-11 · Service DIP Switches, page 3-63 Server Monitoring and Management Tools Cisco Integrated Management Interface You can monitor the server inventory, health, and system event logs by using the built-in Cisco Integrated Management Controller (Cisco IMC) GUI or CLI interfaces. See the user documentation for your firmware release at the following URL: http://www.cisco.com/en/US/products/ps10739/products_installation_and_configuration_guides_list.html Server Configuration Utility Cisco has also developed the Cisco Server Configuration Utility for C-Series servers, which can aid and simplify the following tasks: · Monitoring server inventory and health · Diagnosing common server problems with diagnostic tools and logs · Setting the BIOS booting order · Configuring some RAID configurations · Installing operating systems You can download the ISO image from Cisco.com. See the user documentation for your version of the utility at the following URL: http://www.cisco.com/en/US/products/ps10493/products_user_guide_list.html OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 3-1 Status LEDs and Buttons Chapter 3 Maintaining the Server Status LEDs and Buttons This section describes the location and meaning of LEDs and buttons and includes the following topics · Front Panel LEDs, page 3-2 · Rear Panel LEDs and Buttons, page 3-5 · Internal Diagnostic LEDs, page 3-7 Front Panel LEDs Figure 3-1 shows the front panel LEDs. Table 3-1 defines the LED states. Figure 3-1 Front Panel LEDs 34 68 579 353088 12 HDD 01 HDD 04 HDD 02 HDD 05 HDD 03 HDD 06 HDD 07 HDD 08 1 Hard drive fault LED 6 Fan status LED Note: NVMe PCIe SSDs drive tray LEDs have slightly different behavior. See Table 3-1 for the LED states. 2 Hard drive activity LED 7 Temperature status LED 3 Power button/power status LED 8 Power supply status LED 4 Identification button/LED 9 Network link activity LED 5 System status LED Cisco UCS C220 M4 Server Installation and Service Guide 3-2 OL-32473-01 Chapter 3 Maintaining the Server Status LEDs and Buttons Table 3-1 Front Panel LEDs, Definitions of States LED Name State 1 SAS/SATA drive fault · Off--The hard drive is operating properly. SAS Note: If your controller is a · Amber--Drive fault detected. Cisco UCS RAID SAS 9300-8i or 9300-8e HBA, see Cisco UCS SAS 9300-8e HBA · Amber, blinking--The device is rebuilding. · Amber, blinking with one-second interval--Drive locate function activated. Considerations, page C-4 for differing LED behavior. 2 SAS/SATA drive activity · Off--There is no hard drive in the hard drive tray (no access, no fault). SAS · Green--The hard drive is ready. · Green, blinking--The hard drive is reading or writing data. 1 NVMe PCIe SSD status · Off--The drive is not in use and can be safely removed. PCIe (SFF, 8-drives version only) · Green--The drive is in use and functioning properly. · Green, blinking--the driver is initializing following insertion or the driver is unloading following an eject command. · Amber--The drive has failed. · Amber, blinking--A drive Locate command has been issued in the software. 2 NVMe PCIe SSD activity · Off--No drive activity. PCIe (SFF, 8-drives version only) · Green, blinking--There is drive activity. 3 Power button/LED · Off--There is no AC power to the server. · Amber--The server is in standby power mode. Power is supplied only to the Cisco IMC and some motherboard functions. · Green--The server is in main power mode. Power is supplied to all server components. 4 Unit identification · Off--The unit identification function is not in use. · Blue--The unit identification function is activated. OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 3-3 Status LEDs and Buttons Chapter 3 Maintaining the Server Table 3-1 Front Panel LEDs, Definitions of States (continued) LED Name 5 System status 6 Fan status 7 Temperature status 8 Power supply status 9 Network link activity State · Green--The server is running in normal operating condition. · Green, blinking--The server is performing system initialization and memory check. · Amber, steady--The server is in a degraded operational state. For example: Power supply redundancy is lost. CPUs are mismatched. At least one CPU is faulty. At least one DIMM is faulty. At least one drive in a RAID configuration failed. · Amber, blinking--The server is in a critical fault state. For example: Boot failed. Fatal CPU and/or bus error is detected. Server is in an over-temperature condition. · Green--All fan modules are operating properly. · Amber, steady--One or more fan modules breached the critical threshold. · Amber, blinking--One or more fan modules breached the non-recoverable threshold. · Green--The server is operating at normal temperature. · Amber, steady--One or more temperature sensors breached the critical threshold. · Amber, blinking--One or more temperature sensors breached the non-recoverable threshold. · Green--All power supplies are operating normally. · Amber, steady--One or more power supplies are in a degraded operational state. · Amber, blinking--One or more power supplies are in a critical fault state. · Off--The Ethernet link is idle. · Green--One or more Ethernet LOM ports are link-active, but there is no activity. · Green, blinking--One or more Ethernet LOM ports are link-active, with activity. Cisco UCS C220 M4 Server Installation and Service Guide 3-4 OL-32473-01 Chapter 3 Maintaining the Server Status LEDs and Buttons 353089 Rear Panel LEDs and Buttons Figure 3-2 shows the rear panel LEDs and buttons. Table 3-2 defines the LED states. Figure 3-2 Rear Panel LEDs and Buttons mLOM 1 PCIe 01 PCIe 02 1 2 2345 6 PSU 01 PSU 02 7 1 Optional mLOM card LEDs (not shown, see Table 3-2) 2 1-Gb Ethernet dedicated management link status LED 3 1-Gb Ethernet dedicated management link speed LED 4 1-Gb Ethernet link speed LED 5 1-Gb Ethernet link status LED 6 Rear unit identification button/LED 7 Power supply status LED Table 3-2 Rear Panel LEDs, Definitions of States LED Name 1 Optional mLOM 10-Gb SFP+ (there is a single status LED) 1 Optional mLOM 10-Gb BASE-T link speed 1 Optional mLOM 10-Gb BASE-T link status 2 1-Gb Ethernet dedicated management link speed 3 1-Gb Ethernet dedicated management link status 4 1-Gb Ethernet link speed State · Off--No link is present. · Green, steady--Link is active. · Green, blinking--Traffic is present on the active link. · Off--Link speed is 10 Mbps. · Amber--Link speed is 100 Mbps/1 Gbps. · Green--Link speed is 10 Gbps. · Off--No link is present. · Green--Link is active. · Green, blinking--Traffic is present on the active link. · Off--Link speed is 10 Mbps. · Amber--Link speed is 100 Mbps. · Green--Link speed is 1 Gbps. · Off--No link is present. · Green--Link is active. · Green, blinking--Traffic is present on the active link. · Off--Link speed is 10 Mbps. · Amber--Link speed is 100 Mbps. · Green--Link speed is 1 Gbps. OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 3-5 Status LEDs and Buttons Chapter 3 Maintaining the Server Table 3-2 Rear Panel LEDs, Definitions of States (continued) LED Name 5 1-Gb Ethernet link status 6 Rear unit identification 7 Power supply status State · Off--No link is present. · Green--Link is active. · Green, blinking--Traffic is present on the active link. · Off--The unit identification LED is not in use. · Blue--The unit identification LED is activated. AC power supplies: · Off--No AC input (12 V main power off, 12 V standby power off). · Green, blinking--12 V main power off; 12 V standby power on. · Green, solid--12 V main power on; 12 V standby power on. · Amber, blinking--Warning threshold detected but 12 V main power on. · Amber, solid--Critical error detected; 12 V main power off (for example, over-current, over-voltage, or over-temperature failure). DC power supply (UCSC-PSUV2-1050DC): · Off--No DC input (12 V main power off, 12 V standby power off). · Green, blinking--12 V main power off; 12 V standby power on. · Green, solid--12 V main power on; 12 V standby power on. · Amber, blinking--Warning threshold detected but 12 V main power on. · Amber, solid--Critical error detected; 12 V main power off (for example, over-current, over-voltage, or over-temperature failure). Cisco UCS C220 M4 Server Installation and Service Guide 3-6 OL-32473-01 Chapter 3 Maintaining the Server Status LEDs and Buttons Internal Diagnostic LEDs The server has internal fault LEDs for CPUs, DIMMs, fan modules, SD cards, the RTC battery, and the mLOM card. These LEDs are available only when the server is in standby power mode. An LED lights amber to indicate a faulty component. See Figure 3-3 for the locations of these internal LEDs. Figure 3-3 Internal Diagnostic LED Locations 1 23 4 353090 5 6 1 Fan module fault LEDs (one next to each fan 4 SD card fault LEDs (one next to each bay) connector on the motherboard) 2 CPU fault LEDs (one in front of each CPU) 5 RTC battery fault LED 3 DIMM fault LEDs (one in front of each DIMM socket on the motherboard) 6 mLOM card fault LED (on motherboard next to mLOM socket) Table 3-3 Internal Diagnostic LEDs, Definition of States LED Name Internal diagnostic LEDs (all) State · Off--Component is functioning normally. · Amber--Component has failed. OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 3-7 Preparing for Server Component Installation Chapter 3 Maintaining the Server Preparing for Server Component Installation This section describes how to prepare for component installation, and it includes the following topics: · Required Equipment, page 3-8 · Shutting Down and Powering Off the Server, page 3-8 · Removing and Replacing the Server Top Cover, page 3-9 · Serial Number Location, page 3-10 · Hot-Swap or Hot-Plug Replacement, page 3-10 Required Equipment The following equipment is used to perform the procedures in this chapter: · Number 2 Phillips-head screwdriver · Electrostatic discharge (ESD) strap or other grounding equipment such as a grounded mat Shutting Down and Powering Off the Server The server can run in two power modes: · Main power mode--Power is supplied to all server components and any operating system on your drives can run. · Standby power mode--Power is supplied only to the service processor and the cooling fans and it is safe to power off the server from this mode. You can invoke a graceful shutdown or a hard shutdown by using either of the following methods: · Use the Cisco IMC management interface. · Use the Power button on the server front panel. To use the Power button, follow these steps: Step 1 Step 2 Check the color of the Power Status LED (see the "Front Panel LEDs" section on page 3-2). · Green--The server is in main power mode and must be shut down before it can be safely powered off. Go to Step 2. · Amber--The server is already in standby mode and can be safely powered off. Go to Step 3. Invoke either a graceful shutdown or a hard shutdown: Caution To avoid data loss or damage to your operating system, you should always invoke a graceful shutdown of the operating system. Step 3 · Graceful shutdown--Press and release the Power button. The operating system performs a graceful shutdown and the server goes to standby mode, which is indicated by an amber Power Status LED. · Emergency shutdown--Press and hold the Power button for 4 seconds to force the main power off and immediately enter standby mode. Disconnect the power cords from the power supplies in your server to completely power off the server. Cisco UCS C220 M4 Server Installation and Service Guide 3-8 OL-32473-01 Chapter 3 Maintaining the Server Preparing for Server Component Installation Removing and Replacing the Server Top Cover Step 1 Step 2 Remove the top cover (see Figure 3-4). a. If the cover latch is locked, use a screwdriver to turn the lock 90-degrees counterclockwise to unlock it. See Figure 3-4. b. Lift on the end of the latch that has the green finger grip. The cover is pushed back to the open position as you lift the latch. c. Lift the top cover straight up from the server and set it aside. Replace the top cover: Note The latch must be in the fully open position when you set the cover back in place, which allows the opening in the latch to sit over a peg that is on the fan tray. a. With the latch in the fully open position, place the cover on top of the server about one-half inch (1.27 cm) behind the lip of the front cover panel. The opening in the latch should fit over the peg that sticks up from the fan tray. b. Press the cover latch down to the closed position. The cover is pushed forward to the closed position as you push down the latch. c. If desired, lock the latch by using a screwdriver to turn the lock 90-degrees clockwise. Figure 3-4 Removing the Top Cover 1 2 353091 1 Top cover OL-32473-01 2 Locking cover latch Cisco UCS C220 M4 Server Installation and Service Guide 3-9 Preparing for Server Component Installation Chapter 3 Maintaining the Server Serial Number Location The serial number for the server is printed on a label on the top of the server, near the front. Hot-Swap or Hot-Plug Replacement Some components can be removed and replaced without powering off and removing AC power from the server. This type of replacement has two varieties: hot-swap and hot-plug. · Hot-swap replacement--You do not have to precondition or shut down the component in the software before you remove it for the following components: SAS/SATA drives Cooling fan modules Power supplies (when 1+1 redundant) · Hot-plug replacement--You must take the component offline before removing it for the following component: NVMe PCIE SSD drives 3-10 Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 Chapter 3 Maintaining the Server Installing or Replacing Server Components Installing or Replacing Server Components Warning Blank faceplates and cover panels serve three important functions: they prevent exposure to hazardous voltages and currents inside the chassis; they contain electromagnetic interference (EMI) that might disrupt other equipment; and they direct the flow of cooling air through the chassis. Do not operate the system unless all cards, faceplates, front covers, and rear covers are in place. Statement 1029 Caution When handling server components, wear an ESD strap to avoid damage. Tip You can press the unit identification button on the front panel or rear panel to turn on a flashing unit identification LED on the front and rear panels of the server. This button allows you to locate the specific server that you are servicing when you go to the opposite side of the rack. You can also activate these LEDs remotely by using the Cisco IMC interface. See the "Status LEDs and Buttons" section on page 3-2 for locations of these LEDs. This section describes how to install and replace server components, and it includes the following topics: · Replaceable Component Locations, page 3-12 · Replacing SAS/SATA Hard Drives or Solid State Drives, page 3-13 · Replacing NVMe PCIe Solid State Drives, page 3-15 · Replacing Fan Modules, page 3-19 · Replacing the Motherboard RTC Battery, page 3-21 · Replacing DIMMs, page 3-23 · Replacing CPUs and Heatsinks, page 3-27 · Replacing an Internal SD Card, page 3-32 · Enabling or Disabling the Internal USB Port, page 3-33 · Replacing a Cisco Modular RAID Controller Riser (Internal Riser 3), page 3-33 · Replacing a Cisco Modular RAID Controller Card, page 3-35 · Replacing a Modular RAID Controller Transportable Memory Module (TMM), page 3-38 · Replacing the Supercap Power Module (RAID Backup), page 3-41 · Replacing a Software RAID 5 Key Module, page 3-42 · Replacing a PCIe Riser Assembly, page 3-44 · Replacing a PCIe Card, page 3-46 · Installing and Enabling a Trusted Platform Module (TPM), page 3-53 · Replacing an mLOM Card, page 3-58 · Replacing Power Supplies, page 3-60 OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 3-11 Installing or Replacing Server Components Chapter 3 Maintaining the Server Replaceable Component Locations This section shows the locations of the field-replaceable components. The view in Figure 3-5 is from the top down with the top cover and air baffle removed. Figure 3-5 Replaceable Component Locations 2 3 4 5 6 78 FAN 6 SD 1 PSU 2 FAN 5 FAN 4 9 CPU 2 SD 2 PSU 1 10 1 PCIe Riser 2 11 FAN 3 FAN 2 CPU 1 PCIe Riser 1 12 FAN 1 13 352978 3-12 17 16 15 14 1 Drive bays 18 support SAS/SATA drives. 10 Trusted platform module (TPM) socket on SFF, 8-drive version only: Drive bays 1 and 2 motherboard (not visible in this view) support SAS/SATA and NVMe PCIe SSDs. NVMe SSDs require PCIe riser version 2B in the server to provide the PCIe bus connection. 2 Cooling fan modules (six) 11 PCIe riser 2 (half-height PCIe slot 2) 3 Supercap Power Module (RAID backup) mounting bracket 12 PCIe riser 1 (full-height PCIe slot 1) 4 DIMM sockets on motherboard (24) 13 Modular LOM (mLOM) connector on chassis floor 5 CPUs and heatsinks (up to two) 14 Cisco modular RAID controller PCIe riser (dedicated riser with horizontal socket) 6 Embedded SATA RAID header for RAID 5 key 15 Cisco modular RAID controller card 7 SD card bays on motherboard (two) 16 Embedded SATA RAID mini-SAS connectors on motherboard (not visible in this view) 8 Internal USB 3.0 port on motherboard 17 RTC battery on motherboard 9 Power supplies (up to two, hot-swappable when redundant as 1+1) The Technical Specifications Sheets for all versions of this server, which include supported component part numbers, are at Cisco UCS Servers Technical Specifications Sheets. Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 Chapter 3 Maintaining the Server Installing or Replacing Server Components Replacing SAS/SATA Hard Drives or Solid State Drives This section includes the following information: · SAS/SATA Drive Population Guidelines, page 3-13 · Replacing a SAS/SATA Drive, page 3-14 SAS/SATA Drive Population Guidelines The server has two different drive backplane options: · The small form factor (SFF), 8-drives version can hold up to eight 2.5-inch SAS/SATA hard drives or solid state drives. SAS/SATA drives are hot-swappable. · The large form factor (LFF), 4-drives version can hold up to four 3.5-inch SAS/SATA hard drives. The drive-bay numbering is shown in Figure 3-6. Figure 3-6 Drive Numbering, SFF Drives, Eight-Drive Version HDD 01 HDD 04 HDD 02 HDD 05 HDD 03 HDD 06 HDD 07 HDD 08 Figure 3-7 Drive Numbering, LFF Drives, Four-Drive Version HDD 01 HDD 02 HDD 03 HDD 04 Observe these drive population guidelines for optimum performance: · When populating drives, add drives to the lowest-numbered bays first. · Keep an empty drive blanking tray in any unused bays to ensure proper airflow. · You can mix SAS/SATA hard drives and SAS/SATA SSDs in the same server (the LFF version of the server does not support SSDs). However, you cannot configure a logical volume (virtual drive) that contains a mix of hard drives and SSDs. That is, when you create a logical volume, it must contain all SAS/SATA hard drives or all SAS/SATA SSDs. 353092 353093 OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 3-13 Installing or Replacing Server Components Chapter 3 Maintaining the Server Replacing a SAS/SATA Drive Note You do not have to shut down the server or drive to replace SAS/SATA hard drives or SSDs because they are hot-swappable. To replace an NVMe PCIe SSD drive, which must be shut down before removal, see Replacing NVMe PCIe Solid State Drives, page 3-15. Step 1 Step 2 Remove the drive that you are replacing or remove a blank drive tray from the bay: a. Press the release button on the face of the drive tray. See Figure 3-8. b. Grasp and open the ejector lever and then pull the drive tray out of the slot. c. If you are replacing an existing drive, remove the four drive-tray screws that secure the drive to the tray and then lift the drive out of the tray. Install a new drive: a. Place a new drive in the empty drive tray and install the four drive-tray screws. b. With the ejector lever on the drive tray open, insert the drive tray into the empty drive bay. c. Push the tray into the slot until it touches the backplane, and then close the ejector lever to lock the drive in place. Figure 3-8 Replacing Hard Drives 12 353094 HDD 01 HDD 04 3 3 HDD 02 HDD 05 HDD 06 HDD 07 HDD 08 1 Ejector lever 2 Release button 3 3 3 Drive tray securing screws (4) 3-14 Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 Chapter 3 Maintaining the Server Installing or Replacing Server Components Replacing NVMe PCIe Solid State Drives · NVMe PCIe SSD Population Guidelines, page 3-15 · NVME PCIe SSD Requirements and Restrictions, page 3-15 · Replacing an NVMe PCIe SSD, page 3-15 · Installing PCIe Riser Version 2B, page 3-16 NVMe PCIe SSD Population Guidelines The SFF 8-drive version of the server supports up to two NVMe PCIe solid state drives (SSDs), in drive bays 1 and 2 only. NVME PCIe SSD Requirements and Restrictions Observe these requirements for NVMe PCIe SSDs: · The SFF, 8-drives version of the server. · PCIe riser version 2B (UCSC-PCI-2B-220M4), with bundled cables. This version of the riser has cable connectors for the PCIe cables that connect to the drive backplane. · The server must have two CPUs. PCIe riser 2 is not available in a single-CPU system. Observe these restrictions for NVMe PCIe SSDs: · You cannot boot from an NVMe PCIe SSD. · You cannot control NVMe PCIe SSDs with a SAS RAID controller because they communicate with the server via the PCIe bus. Caution NVMe PCIe SSDs are hot-pluggable, which means that you must shut down the drive before removal, but you do not have to fully power off the server. To replace a SAS/SATA drive, see Replacing a SAS/SATA Drive, page 3-14. Replacing an NVMe PCIe SSD For information about drive tray LEDs, see Front Panel LEDs, page 3-2. Step 1 Remove an existing NVMe PCIe SSD: a. Shut down the NVMe PCIe SSD. Use your operating system interface to shut down the drive, and then observe the drive-tray LED: Green--The drive is in use and functioning properly. Do not remove. Green, blinking--the driver is unloading following a shutdown command. Do not remove. Off--The drive is not in use and can be safely removed. b. Press the release button on the face of the drive tray. See Figure 3-8. c. Grasp and open the ejector lever and then pull the drive tray out of the slot. d. If you are replacing an existing SSD, remove the four drive tray screws that secure the SSD to the tray and then lift the SSD out of the tray. OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 3-15 Installing or Replacing Server Components Chapter 3 Maintaining the Server Note If this is the first time that NVMe PCIe SSDs are being installed in the server, you must install PCIe riser version 2B and connect its cables before installing the drive. See Installing PCIe Riser Version 2B, page 3-16. Step 2 Step 3 Install a new NVMe PCIe SSD: a. Place a new SSD in the empty drive tray and replace the four drive tray screws. b. With the ejector lever on the drive tray open, insert the drive tray into the empty drive bay. c. Push the tray into the slot until it touches the backplane, and then close the ejector lever to lock the drive in place. Observe the drive-tray LED and wait until it returns to solid green before accessing the drive: · Off--The drive is not in use. · Green, blinking--the driver is initializing following hot-plug insertion. · Green--The drive is in use and functioning properly. Installing PCIe Riser Version 2B PCIe Riser Version 2B (UCSC-PCI-2B-220M4) has two cable connectors that are used to provide communication with the PCIe bus. Figure 3-9 PCIe Riser Assembly UCSC-PCI-2B-C220M4 1 305242 1 Connectors for PCIe cables Step 1 Remove an existing PCIe riser assembly that you are replacing: a. Power off the server as described in Shutting Down and Powering Off the Server, page 3-8. b. Slide the server out the front of the rack far enough so that you can remove the top cover. You might have to detach cables from the rear panel to provide clearance. 3-16 Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 Chapter 3 Maintaining the Server Installing or Replacing Server Components Caution If you cannot safely view and access the component, remove the server from the rack. Step 2 Step 3 Step 4 Step 5 c. Remove the top cover as described in Removing and Replacing the Server Top Cover, page 3-9. d. Use two hands to grasp the metal bracket of the riser assembly and lift straight up to disengage its connectors from the two sockets on the motherboard. e. If the riser has any cards installed, remove them from the riser. Install a new PCIe riser assembly Version 2B: a. If you removed any cards from the old riser assembly, install the cards to the new riser assembly (see Replacing a PCIe Card, page 3-46). b. Position the riser assembly over its two sockets on the motherboard and over the chassis alignment channels (see Figure 3-26): c. Carefully push down on both ends of the riser assembly to fully engage its connectors with the two sockets on the motherboard. Connect the two cables that come with UCSC-PCI-2B-220M4: a. Connect both cable connectors to the two connectors on the riser 2B (see Figure 3-10). b. Route the cables to the front of the server using the recommended path through the chassis cable guides as shown in Figure 3-10. c. Connect the two ends of the cable to the PCIe connectors on the drive backplane. Connect the cable labeled Port A to the Port A connector; connect the cable labeled Port B to the Port B connector (see Figure 3-10). Replace the top cover. Replace the server in the rack, replace cables, and then power on the server by pressing the Power button. OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 3-17 Installing or Replacing Server Components Chapter 3 Maintaining the Server Figure 3-10 PCIe Riser Version 2B Cabling to Drive Backplane 1 PCIe connector, Port A 2 PCIe connector, Port B 3 Cable connector on PCIe riser 2B (UCSC-PCI-2B-220M4) 3-18 Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 Chapter 3 Maintaining the Server Installing or Replacing Server Components Replacing Fan Modules The six fan modules in the server are numbered as follows when you are facing the front of the server (also see Figure 3-12). Figure 3-11 Fan Module Numbering FAN 6 FAN 5 FAN 4 FAN 3 FAN 2 FAN 1 Tip Each fan module has a fault LED next to the fan connector on the motherboard that lights amber if the fan module fails. Standby power is required to operate these LEDs. Caution You do not have to shut down or power off the server to replace fan modules because they are hotswappable. However, to maintain proper cooling, do not operate the server for more than one minute with any fan module removed. Step 1 Remove a fan module that you are replacing (see Figure 3-12): a. Slide the server out the front of the rack far enough so that you can remove the top cover. You might have to detach cables from the rear panel to provide clearance. Caution If you cannot safely view and access the component, remove the server from the rack. Step 2 b. Remove the top cover as described in Removing and Replacing the Server Top Cover, page 3-9. c. Grasp the fan module at its front and on the green connector. Lift straight up to disengage its connector from the motherboard and free it from the two alignment pegs. Install a new fan module: a. Set the new fan module in place, aligning its two openings with the two alignment pegs on the motherboard. See Figure 3-12. b. Press down gently on the fan module connector to fully engage it with the connector on the motherboard. c. Replace the top cover. d. Replace the server in the rack. OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 3-19 Installing or Replacing Server Components Figure 3-12 Top View of Fan Module 1 2 Chapter 3 Maintaining the Server 353095 1 Openings in fan module for motherboard alignment pegs 2 Fan connector to motherboard 3-20 Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 Chapter 3 Maintaining the Server Installing or Replacing Server Components Replacing the Motherboard RTC Battery Warning There is danger of explosion if the battery is replaced incorrectly. Replace the battery only with the same or equivalent type recommended by the manufacturer. Dispose of used batteries according to the manufacturer's instructions. [Statement 1015] The real-time clock (RTC) battery retains system settings when the server is disconnected from power. The battery type is CR2032. Cisco supports the industry-standard CR2032 battery, which can be purchased from most electronic stores. Step 1 Remove the RTC battery (see Figure 3-13): a. Power off the server as described in Shutting Down and Powering Off the Server, page 3-8. b. Slide the server out the front of the rack far enough so that you can remove the top cover. You might have to detach cables from the rear panel to provide clearance. Caution If you cannot safely view and access the component, remove the server from the rack. Step 2 c. Remove the top cover as described in Removing and Replacing the Server Top Cover, page 3-9. d. Locate the RTC battery. See Figure 3-13. e. Gently remove the battery from the holder on the motherboard. Install an RTC battery: a. Insert the battery into its holder and press down until it clicks in place. Note The positive side of the battery marked "3V+" should face upward. b. Replace the top cover. c. Replace the server in the rack, replace cables, and power on the server by pressing the Power button. OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 3-21 Installing or Replacing Server Components Chapter 3 Maintaining the Server Figure 3-13 Motherboard RTC Battery Location FAN 6 FAN 5 FAN 4 SD 1 CPU 2 SD 2 PSU 2 PSU 1 PCIe Riser 2 FAN 3 FAN 2 FAN 1 CPU 1 PCIe Riser 1 1 1 RTC battery holder on motherboard 2 2 Prying point on battery in holder 353096 3-22 Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 Chapter 3 Maintaining the Server Installing or Replacing Server Components Replacing DIMMs This section includes the following topics: · Memory Performance Guidelines and Population Rules, page 3-23 · DIMM Replacement Procedure, page 3-26 Caution DIMMs and their sockets are fragile and must be handled with care to avoid damage during installation. Caution Cisco does not support third-party DIMMs. Using non-Cisco DIMMs in the server might result in system problems or damage to the motherboard. Note To ensure the best server performance, it is important that you are familiar with memory performance guidelines and population rules before you install or replace DIMMs. Memory Performance Guidelines and Population Rules This section describes the type of memory that the server requires and its effect on performance. The section includes the following topics: · DIMM Slot Numbering, page 3-23 · DIMM Population Rules, page 3-24 · Memory Mirroring and RAS, page 3-25 · Lockstep Channel Mode, page 3-25 DIMM Slot Numbering Figure 3-14 shows the numbering of the DIMM slots. Figure 3-14 DIMM Slots and CPUs CPU 2 CPU 1 Front of Server G1 G2 G3 H1 H2 H3 F3 F2 F1 E3 E2 E1 C1 C2 C3 D1 D2 D3 B3 B2 B1 A3 A2 A1 352815 OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 3-23 Installing or Replacing Server Components Chapter 3 Maintaining the Server DIMM Population Rules Observe the following guidelines when installing or replacing DIMMs: Observe the following guidelines when installing or replacing DIMMs: · Each CPU supports four memory channels. CPU1 supports channels A, B, C, and D. CPU2 supports channels E, F, G, and H. · Each channel has three DIMM sockets (for example, channel A = slots A1, A2, and A3). A channel can operate with one, two, or three DIMMs installed. If a channel has only one DIMM, populate slot 1 first (the blue slot). · When both CPUs are installed, populate the DIMM sockets of each CPU identically. Fill blue #1 slots in the channels first: A1, E1, B1, F1, C1, G1, D1, H1 Fill black #2 slots in the channels second: A2, E2, B2, F2, C2, G2, D2, H2 Fill white #3 slots in the channels third: A3, E3, B3, F3, C3, G3, D3, H3 · Any DIMM installed in a DIMM socket for which the CPU is absent is not recognized. In a single-CPU configuration, populate the channels for CPU1 only (A, B, C, D). · Memory mirroring reduces the amount of memory available by 50 percent because only one of the two populated channels provides data. When memory mirroring is enabled, DIMMs must be installed in sets of 4, 6, or 8 as described in Memory Mirroring and RAS, page 3-25. · Observe the DIMM mixing rules shown in Table 3-4. 3-24 Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 Chapter 3 Maintaining the Server Installing or Replacing Server Components Table 3-4 DIMM Mixing Rules for C220 M4 Servers DIMM Parameter DIMMs in the Same Channel DIMMs in the Same Bank DIMM Capacity: RDIMM = 8 or 16 GB LRDIMM = 32 or 64 GB · You can mix different capacity DIMMs in the same channel (for example, A1, A2, A3). · You can mix different capacity DIMMs in the same bank. However, for optimal performance DIMMs in the same bank (for example, A1, B1, C1, D1) should have the same capacity. DIMM Speed: 2133 or 2400 MHz You can mix speeds, but DIMMs will run at You can mix speeds, but DIMMs will run at the speed of the slowest DIMMs/CPUs the speed of the slowest DIMMs/CPUs installed in the channel. installed in the bank. DIMM Type: RDIMMs or LRDIMMs You cannot mix DIMM types in a channel. You cannot mix DIMM types in a bank. Memory Mirroring and RAS The Intel E5-2600 CPUs within the server support memory mirroring only when an even number of channels are populated with DIMMs. If one or three channels are populated with DIMMs, memory mirroring is automatically disabled. Furthermore, if memory mirroring is used, DRAM size is reduced by 50 percent for reasons of reliability. For details on populating recommended memory mirroring configurations, see the specification sheet for the server: · Cisco UCS C220 M4 High Density Rack Server (Small Form-Factor Disk Drive Model) Specification Sheet · Cisco UCS C220 M4 High Density Rack Server (Large Form-Factor Disk Drive Model) Specification Sheet Lockstep Channel Mode When you enable lockstep channel mode, each memory access is a 128-bit data access that spans four channels. Lockstep channel mode requires that all four memory channels on a CPU must be populated identically with regard to size and organization. DIMM socket populations within a channel (for example, A1, A2, A3) do not have to be identical but the same DIMM slot location across all four channels must be populated the same. For example, DIMMs in sockets A1, B1, C1, and D1 must be identical. DIMMs in sockets A2, B2, C2, and D2 must be identical. However, the A1-B1-C1-D1 DIMMs do not have to be identical with the A2-B2-C2-D2 DIMMs. OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 3-25 Installing or Replacing Server Components Chapter 3 Maintaining the Server DIMM Replacement Procedure This section includes the following topics: · Identifying a Faulty DIMM, page 3-26 · Replacing DIMMs, page 3-26 Identifying a Faulty DIMM Each DIMM socket has a corresponding DIMM fault LED, directly in front of the DIMM socket. See Figure 3-3 for the locations of these LEDs. The LEDs light amber to indicate a faulty DIMM. To operate these LEDs from the supercap power source, remove AC power cords and then press the unit identification button. See also Internal Diagnostic LEDs, page 3-7. Replacing DIMMs Step 1 Remove the DIMM that you are replacing: a. Power off the server as described in the Shutting Down and Powering Off the Server, page 3-8. b. Slide the server out the front of the rack far enough so that you can remove the top cover. You might have to detach cables from the rear panel to provide clearance. Caution If you cannot safely view and access the component, remove the server from the rack. Step 2 c. Remove the top cover as described in Removing and Replacing the Server Top Cover, page 3-9. d. Identify the faulty DIMM by observing the DIMM slot fault LEDs on the motherboard. e. Open the ejector levers at both ends of the DIMM slot, and then lift the DIMM out of the slot. Install a new DIMM: Note Before installing DIMMs, see the population guidelines: Memory Performance Guidelines and Population Rules, page 3-23. f. Align the new DIMM with the empty slot on the motherboard. Use the alignment key in the DIMM slot to correctly orient the DIMM. g. Push down evenly on the top corners of the DIMM until it is fully seated and the ejector levers on both ends lock into place. h. Replace the top cover. i. Replace the server in the rack, replace cables, and then power on the server by pressing the Power button. 3-26 Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 Chapter 3 Maintaining the Server Installing or Replacing Server Components Replacing CPUs and Heatsinks This section contains the following topics: · Special Information For Upgrades to Intel Xeon v4 CPUs, page 3-27 · CPU Configuration Rules, page 3-27 · CPU Replacement Procedure, page 3-28 · Additional CPU-Related Parts to Order with RMA Replacement Motherboards, page 3-31 Special Information For Upgrades to Intel Xeon v4 CPUs Caution You must upgrade your server firmware to the required minimum level before you upgrade to Intel v4 CPUs. Older firmware versions cannot recognize the new CPUs and this results in a non-bootable server. The minimum software and firmware versions required for the server to support Intel v4 CPUs are as follows: Table 3-5 Minimum Requirements For Intel Xeon v4 CPUs Software or Firmware Server CIMC Server BIOS Cisco UCS Manager (UCSM-managed system only) Minimum Version 2.0(10) 2.0(10) 3.1(0) Do one of the following actions: · If your server's firmware and/or Cisco UCS Manager software are already at the required levels shown in Table 3-5, you can replace the CPU hardware by using the procedure in this section. · If your server's firmware and/or Cisco UCS Manager software is earlier than the required levels, use the instructions in the Cisco UCS C-Series Servers Upgrade Guide for Intel Xeon v4 CPUs to upgrade your software. After you upgrade the software, return to the procedure in this section as directed to replace the CPU hardware. CPU Configuration Rules This server has two CPU sockets. Each CPU supports four DIMM channels (12 DIMM slots). See Figure 3-14. · The server can operate with one CPU or two identical CPUs installed. · The minimum configuration is that the server must have at least CPU1 installed. Install CPU1 first, and then CPU2. · The following restrictions apply when using a single-CPU configuration: The maximum number of DIMMs is 12 (only CPU1 channels A, B, C, and D). PCIe riser 2/slot 2 is unavailable. OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 3-27 Installing or Replacing Server Components Chapter 3 Maintaining the Server CPU Replacement Procedure Caution CPUs and their motherboard sockets are fragile and must be handled with care to avoid damaging pins during installation. The CPUs must be installed with heatsinks and their thermal pads to ensure proper cooling. Failure to install a CPU correctly might result in damage to the server. Note This server uses the new independent loading mechanism (ILM) CPU sockets, so no Pick-and-Place tools are required for CPU handling or installation. Always grasp the plastic frame on the CPU when handling. Step 1 Step 2 Power off the server as described in Shutting Down and Powering Off the Server, page 3-8. Slide the server out the front of the rack far enough so that you can remove the top cover. You might have to detach cables from the rear panel to provide clearance. Caution If you cannot safely view and access the component, remove the server from the rack. Step 3 Step 4 Step 5 Remove the top cover as described in Removing and Replacing the Server Top Cover, page 3-9. Remove the plastic air baffle that sits over the CPUs. Remove the heatsink that you are replacing. Use a Number 2 Phillips-head screwdriver to loosen the four captive screws that secure the heatsink and then lift it off of the CPU. Note Alternate loosening each screw evenly to avoid damaging the heatsink or CPU. Step 6 Open the CPU retaining mechanism: a. Unclip the first retaining latch labeled with the latch labeled with the icon. See Figure 3-15. b. Open the hinged CPU cover plate. icon, and then unclip the second retaining 3-28 Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 Chapter 3 Maintaining the Server Figure 3-15 CPU Socket 1 3 Installing or Replacing Server Components 5 2 352941 1 CPU retaining latch 2 CPU retaining latch 3 Hinged CPU cover plate 4 4 Hinged CPU seat 5 Finger grips on plastic CPU frame Step 7 Step 8 Remove any existing CPU: a. With the latches and hinged CPU cover plate open, swing up the CPU in its hinged seat to the open position, as shown in Figure 3-15. b. Grasp the CPU by the finger grips on its plastic frame and lift it up and out of the hinged CPU seat. c. Set the CPU aside on an anti-static surface. Install a new CPU: a. Grasp the new CPU by the finger grips on its plastic frame and align the tab on the frame that is labeled "ALIGN" with the SLS mechanism, as shown in Figure 3-16. b. Insert the tab on the CPU frame into the seat until it stops and is held firmly. The line below the word "ALIGN" should be level with the edge of the seat, as shown in Figure 3-16. c. Swing the hinged seat with the CPU down until the CPU frame clicks in place and holds flat in the socket. d. Close the hinged CPU cover plate. e. Clip down the CPU retaining latch with the with the icon. See Figure 3-15. icon, and then clip down the CPU retaining latch OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 3-29 334295 352942 Installing or Replacing Server Components Figure 3-16 CPU and Socket Alignment Features Chapter 3 Maintaining the Server 2 1 1 SLS mechanism on socket Step 9 Install a heat sink: 2 Tab on CPU frame (labeled ALIGN) Caution The heat sink must have new thermal grease on the heat sink-to-CPU surface to ensure proper cooling. If you are reusing a heat sink, you must remove the old thermal grease from the heatsink and the CPU surface. If you are installing a new heat sink, skip to Step d. a. Apply the cleaning solution, which is included with the heatsink cleaning kit (UCSX-HSCK=, shipped with spare CPUs), to the old thermal grease on the heatsink and CPU and let it soak for a least 15 seconds. b. Wipe all of the old thermal grease off the old heat sink and CPU using the soft cloth that is included with the heatsink cleaning kit. Be careful to not scratch the heat sink surface. Note New heatsinks come with a pre-applied pad of thermal grease. If you are reusing a heatsink, you must apply thermal grease from a syringe (UCS-CPU-GREASE3=). c. Using the syringe of thermal grease provided with the CPU (UCS-CPU-GREASE3=), apply 2 cubic centimeters of thermal grease to the top of the CPU. Use the pattern shown in Figure 3-17 to ensure even coverage. Figure 3-17 Thermal Grease Application Pattern 3-30 Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 Chapter 3 Maintaining the Server Installing or Replacing Server Components d. Align the four heatsink captive screws with the motherboard standoffs, and then use a Number 2 Phillips-head screwdriver to tighten the captive screws evenly. Note Alternate tightening each screw evenly to avoid damaging the heatsink or CPU. Step 10 Step 11 Step 12 Replace the air baffle. Replace the top cover. Replace the server in the rack, replace cables, and then power on the server by pressing the Power button. Additional CPU-Related Parts to Order with RMA Replacement Motherboards When a return material authorization (RMA) of the motherboard or CPU is done on a Cisco UCS C-series server, additional parts might not be included with the CPU or motherboard spare bill of materials (BOM). The TAC engineer might need to add the additional parts to the RMA to help ensure a successful replacement. · Scenario 1--You are reusing the existing heatsinks: Heat sink cleaning kit (UCSX-HSCK=) Thermal grease kit for C240 M4 (UCS-CPU-GREASE3=) · Scenario 2--You are replacing the existing heatsinks: Heat sink (UCSC-HS-C220M4=) Heat sink cleaning kit (UCSX-HSCK=) A CPU heatsink cleaning kit is good for up to four CPU and heatsink cleanings. The cleaning kit contains two bottles of solution, one to clean the CPU and heatsink of old thermal interface material and the other to prepare the surface of the heatsink. New heatsink spares come with a pre-applied pad of thermal grease. It is important to clean the old thermal grease off of the CPU prior to installing the heatsinks. Therefore, when you are ordering new heatsinks, you must order the heatsink cleaning kit. OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 3-31 Installing or Replacing Server Components Chapter 3 Maintaining the Server Replacing an Internal SD Card The server has two internal SD card bays on the motherboard. Dual SD cards are supported. RAID 1 support can be configured through the Cisco IMC interface. Step 1 Remove the SD card that you are replacing: a. Power off the server as described in Shutting Down and Powering Off the Server, page 3-8. b. Slide the server out the front of the rack far enough so that you can remove the top cover. You might have to detach cables from the rear panel to provide clearance. Caution If you cannot safely view and access the component, remove the server from the rack. Step 2 Step 3 c. Remove the top cover as described in Removing and Replacing the Server Top Cover, page 3-9. d. Locate the SD card that you are replacing on the motherboard (see Figure 3-18). e. Push on the top of the SD card, and then release it to allow it to spring up in the slot. f. Remove the SD card from the slot. Install an SD card: a. Insert the SD card into the slot with the label side facing up. b. Press on the top of the card until it clicks in the slot and stays in place. c. Replace the top cover. Replace the server in the rack, replace cables, and then power on the server by pressing the Power button. Figure 3-18 SD Card Bays and USB Port Locations on the Motherboard 1 2 FAN 6 FAN 5 FAN 4 FAN 3 FAN 2 FAN 1 SD 1 CPU 2 SD 2 PSU 2 PSU 1 PCIe Riser 2 CPU 1 PCIe Riser 1 353098 1 SD card bays SD1 and SD2 2 USB 3.0 port 3-32 Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 Chapter 3 Maintaining the Server Installing or Replacing Server Components Enabling or Disabling the Internal USB Port Caution We do not recommend that you hot-swap the internal USB drive while the server is powered on. The factory default is for all USB ports on the server to be enabled. However, the internal USB port can be enabled or disabled in the server BIOS. See Figure 3-18 for the location of the USB port on the motherboard. Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Enter the BIOS Setup Utility by pressing the F2 key when prompted during bootup. Navigate to the Advanced tab. On the Advanced tab, select USB Configuration. On the USB Configuration page, select USB Ports Configuration. Scroll to USB Port: Internal, press Enter, and then choose either Enabled or Disabled from the dialog box. Press F10 to save and exit the utility. Replacing a Cisco Modular RAID Controller Riser (Internal Riser 3) The server has a dedicated internal riser 3 that is only used for the Cisco modular RAID controller card. This riser plugs into a dedicated motherboard socket and provides a horizontal socket for the Cisco modular RAID controller card. Step 1 Prepare the server for component installation: a. Power off the server as described in Shutting Down and Powering Off the Server, page 3-8. b. Slide the server out the front of the rack far enough so that you can remove the top cover. You might have to detach cables from the rear panel to provide clearance. Caution If you cannot safely view and access the component, remove the server from the rack. Step 2 Step 3 c. Remove the top cover as described in Removing and Replacing the Server Top Cover, page 3-9. Remove the existing RAID controller riser (see Figure 3-19): a. If the existing riser has a card in it, disconnect the SAS cable from the card. b. Lift the riser straight up to disengage the riser from the motherboard socket. The riser bracket must also lift off of two pegs that hold it to the inner chassis wall. c. Set the riser upside down. d. Remove the card from the riser. Loosen the single thumbscrew that secures the card to the riser bracket and then pull the card straight out from its socket on the riser (see Figure 3-20). Install a new RAID controller riser: a. Install your RAID controller card into the new riser. See Replacing a Cisco Modular RAID Controller Card, page 3-35. OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 3-33 Installing or Replacing Server Components Chapter 3 Maintaining the Server Step 4 Step 5 b. Align the connector on the riser with the socket on the motherboard. At the same time, align the two slots on the back side of the bracket with the two pegs on the inner chassis wall. c. Push down gently to engage the riser connector with the motherboard socket. The metal riser bracket must also engage the two pegs that secure it to the chassis wall. d. Reconnect the SAS cable to its connector on the RAID controller card. Replace the top cover. Replace the server in the rack, replace cables, and then power on the server by pressing the Power button. Figure 3-19 Cisco Modular RAID Controller Riser (Internal Riser 3) Location FAN 6 FAN 5 FAN 4 FAN 3 FAN 2 FAN 1 SD 1 CPU 2 SD 2 PSU 2 PSU 1 PCIe Riser 2 CPU 1 PCIe Riser 1 353099 1 Cisco modular RAID controller riser assembly (top of bracket) 1 2 2 Cisco modular RAID controller card in riser 3-34 Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 Chapter 3 Maintaining the Server Installing or Replacing Server Components Replacing a Cisco Modular RAID Controller Card The server can use a Cisco modular RAID controller card that plugs into a horizontal socket on a dedicated internal riser 3. See also: · Replacing a Modular RAID Controller Transportable Memory Module (TMM), page 3-38 · Replacing the Supercap Power Module (RAID Backup), page 3-41 Note You cannot use a hardware RAID controller card and the embedded RAID controller at the same time. See RAID Controller Considerations, page C-1 for details about RAID support. RAID Card Firmware Compatibility Firmware on the RAID controller must be verified for compatibility with the current Cisco IMC and BIOS versions that are installed on the server. If not compatible, upgrade or downgrade the RAID controller firmware accordingly using the Host Upgrade Utility (HUU) for your firmware release to bring it to a compatible level. See the HUU guide for your Cisco IMC release for instructions on downloading and using the utility to bring server components to compatible levels: HUU Guides Replacement Procedure Step 1 Prepare the server for component installation: a. Power off the server as described in Shutting Down and Powering Off the Server, page 3-8. b. Slide the server out the front of the rack far enough so that you can remove the top cover. You might have to detach cables from the rear panel to provide clearance. Caution If you cannot safely view and access the component, remove the server from the rack. Step 2 Step 3 Step 4 c. Remove the top cover as described in Removing and Replacing the Server Top Cover, page 3-9. Remove the RAID controller riser from the server (see Figure 3-19): a. Disconnect the SAS cable from the existing RAID controller card. b. Lift the riser straight up to disengage the riser from the motherboard socket. The riser bracket must also lift off of two pegs that hold it to the inner chassis wall. c. Set the riser upside down. Remove the card from the riser: a. Loosen the single thumbscrew that secures the card to the metal riser bracket (see Figure 3-20). b. Pull the card straight out from its socket on the riser and the guide channel on the riser bracket. Install the RAID controller card into the riser: OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 3-35 Installing or Replacing Server Components Chapter 3 Maintaining the Server Caution Be careful when inserting the card to the riser so that you do not scrape electronic components on the underside of the card on features of the riser. The threaded standoff on the riser that is for the thumbscrew on the card might snag and damage the card components (see item 4 in Figure 3-20). Step 5 Step 6 Step 7 Step 8 a. With the riser upside down, set the card on the riser. Align the right end of the card with the alignment channel on the riser; align the connector on the card edge with the socket on the riser (see Figure 3-20). b. Being careful to avoid scraping the underside of the card on the threaded standoff on the riser, push on both corners of the card to seat its connector in the riser socket. c. Tighten the single thumbscrew that secures the card to the riser bracket. Return the riser to the server: a. Align the connector on the riser with the socket on the motherboard. At the same time, align the two slots on the back side of the bracket with the two pegs on the inner chassis wall. b. Push down gently to engage the riser connector with the motherboard socket. The metal riser bracket must also engage the two pegs that secure it to the chassis wall. Reconnect the SAS cable to its connector on the RAID controller card. Replace the top cover. Replace the server in the rack, replace cables, and then power on the server by pressing the Power button. 3-36 Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 Chapter 3 Maintaining the Server Installing or Replacing Server Components Figure 3-20 Cisco Modular RAID Controller Card in Riser 2 1 353288 4 3 1 Card socket on upside down riser 2 Guide channel on riser 3 Thumbscrew on card 4 Threaded standoff on riser CAUTION: Do not scrape the underside of the card on this threaded standoff. OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 3-37 Installing or Replacing Server Components Chapter 3 Maintaining the Server Replacing a Modular RAID Controller Transportable Memory Module (TMM) The transportable memory module (TMM) that attaches to the modular RAID controller card can be installed or replaced after-factory. See also: · Replacing a Cisco Modular RAID Controller Card, page 3-35 · Replacing the Supercap Power Module (RAID Backup), page 3-41 Step 1 Prepare the server for component installation: a. Power off the server as described in Shutting Down and Powering Off the Server, page 3-8. b. Slide the server out the front of the rack far enough so that you can remove the top cover. You might have to detach cables from the rear panel to provide clearance. Caution If you cannot safely view and access the component, remove the server from the rack. Step 2 Step 3 Step 4 Step 5 c. Remove the top cover as described in Removing and Replacing the Server Top Cover, page 3-9. Remove the RAID controller riser from the server (see Figure 3-19): a. Disconnect the SAS cable from the existing RAID controller card. b. Lift the riser straight up to disengage the riser from the motherboard socket. The riser bracket must also lift off of two pegs that hold it to the inner chassis wall. c. Set the riser upside down. Remove the card from the riser: a. Loosen the single thumbscrew that secures the card to the metal riser bracket (see Figure 3-20). b. Pull the card straight out from its socket on the riser and the guide channel on the riser bracket. c. Set the card on an antistatic surface. Remove a TMM from the modular RAID controller card (see Figure 3-21): a. The plastic bracket on the card has a securing plastic clip at each end of the TMM. Gently spread each clip away from the TMM. b. Pull straight up on the TMM to lift it off the two plastic guide pegs and the socket on the card. Install a TMM to the modular RAID controller card (see Figure 3-21): a. Align the TMM over the bracket on the card. Align the connector on the underside of the TMM with the socket on the card. Align the two guide holes on the TMM over the two guide pegs on the card. Caution In the next step, keep the TMM level and parallel with the surface of the card to avoid damaging the connector or socket. Step 6 b. Gently lower the TMM so that the guide holes on the TMM go over the guide pegs on the card. c. Press down on the TMM until the plastic clips on the bracket close over each end of the TMM. d. Press down on the TMM to fully seat its connector with the socket on the card. Install the modular RAID controller card back into the riser: 3-38 Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 Chapter 3 Maintaining the Server Installing or Replacing Server Components Note If this is a first-time installation of your TMM, you must also install a supercap power module (SCPM). The SCPM cable attaches to a connector on the TMM. See Replacing the Supercap Power Module (RAID Backup), page 3-41. Step 7 Step 8 Step 9 Step 10 a. Connect the cable from the supercap power module (RAID battery) to the connector on the TMM (see Figure 3-21). b. With the riser upside down, align the connector on the card with the socket on the riser. The end of the card should also go into the guide channel on the riser bracket (see Figure 3-20). c. Carefully push on both corners of the card until it is seated in the socket. d. Tighten the single thumbscrew that secures the card to the riser bracket. Return the riser to the server: a. Align the connector on the riser with the socket on the motherboard. At the same time, align the two slots on the back side of the bracket with the two pegs on the inner chassis wall. b. Push down gently to engage the riser connector with the motherboard socket. The metal riser bracket must also engage the two pegs that secure it to the chassis wall. Reconnect the SAS cable to its connector on the RAID controller card. Replace the top cover. Replace the server in the rack, replace cables, and then power on the server by pressing the Power button. OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 3-39 Installing or Replacing Server Components Figure 3-21 TMM on Modular RAID Controller Card Chapter 3 Maintaining the Server 4 3 1 2 2 8 1 1 5 67 1 TMM on modular RAID card 2 Securing bracket clips 3 Guide pegs on bracket protruding through guide holes on TMM 4 SCPM cable connector on TMM 5 Side view, guide peg 6 Side view, socket on modular RAID card 7 Side view, connector on underside of TMM 8 Side view, securing clips 304945 3-40 Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 Chapter 3 Maintaining the Server Installing or Replacing Server Components Replacing the Supercap Power Module (RAID Backup) This server supports installation of one supercap Power module (SCPM). The unit mounts to a bracket that is in the middle of the row of fan modules (see Figure 3-22). The SCPM provides approximately three years of backup for the disk write-back cache DRAM in the case of a sudden power loss by offloading the cache to the NAND flash. See also: · Replacing a Cisco Modular RAID Controller Card, page 3-35 · Replacing a Modular RAID Controller Transportable Memory Module (TMM), page 3-38 Warning There is danger of explosion if the battery is replaced incorrectly. Replace the battery only with the same or equivalent type recommended by the manufacturer. Dispose of used batteries according to the manufacturer's instructions. Statement 1015 Step 1 Remove an existing SCPM (see Figure 3-22). a. Power off the server as described in Shutting Down and Powering Off the Server, page 3-8. b. Slide the server out the front of the rack far enough so that you can remove the top cover. You might have to detach cables from the rear panel to provide clearance. Caution If you cannot safely view and access the component, remove the server from the rack. Step 2 c. Remove the top cover as described in Removing and Replacing the Server Top Cover, page 3-9. d. Disconnect the SCPM cable from the existing SCPM. e. Release the securing clip on the bracket retainer bar and then open the retainer bar (see Figure 3-22). f. Lift the SCPM free of the bracket and set it aside. Install a new SCPM: a. Set the new SCPM into the mounting bracket. b. Connect the cable from the Cisco modular RAID controller to the new SCPM. c. Close the retainer bar over the SCPM. Push down until the securing clip clicks and holds down the retainer bar. d. Replace the top cover. e. Replace the server in the rack, replace cables, and then power on the server by pressing the Power button. OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 3-41 Installing or Replacing Server Components Figure 3-22 SCPM Bracket Location Chapter 3 Maintaining the Server FAN 4 1 2 3 FAN 3 1 SCPM mounting bracket between fans 3 and 4 3 Retainer bar securing clip 2 Retainer bar 353097 Replacing a Software RAID 5 Key Module The server has a two-pin header on the motherboard for a RAID 5 key module. This module upgrades the embedded software RAID controller options to add RAID 5 support (see Embedded SATA RAID Controllers, page C-11). Step 1 Prepare the server for component installation: a. Power off the server as described in Shutting Down and Powering Off the Server, page 3-8. b. Slide the server out the front of the rack far enough so that you can remove the top cover. You might have to detach cables from the rear panel to provide clearance. Caution If you cannot safely view and access the component, remove the server from the rack. Step 2 c. Remove the top cover as described in Removing and Replacing the Server Top Cover, page 3-9. Remove any existing software RAID 5 key module: a. Locate the module on the motherboard (see Figure 3-23). b. Hold the retention clips on the header open while you grasp the RAID key board and pull straight up (see Figure 3-24). 3-42 Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 Chapter 3 Maintaining the Server Installing or Replacing Server Components Figure 3-23 RAID 5 Key Header Location on Motherboard 1 FAN 6 FAN 5 FAN 4 FAN 3 FAN 2 FAN 1 SD 1 CPU 2 SD 2 PSU 2 PSU 1 PCIe Riser 2 CPU 1 PCIe Riser 1 353100 1 Embedded software RAID 5 key header Step 3 Install a new software RAID 5 key module: a. Align the module with the pins in the motherboard header. b. Gently press down on the module until it is seated and the retention clip locks over the module (see Figure 3-24). Figure 3-24 Software RAID 5 Key Module Retention Clip 1 2 1 2 4 3 303691 1 Printed circuit board on module 2 Retention clip on motherboard header 3 Motherboard header 4 Retention clip in installed position Step 4 Replace the top cover. Step 5 Replace the server in the rack, replace cables, and then power on the server by pressing the Power button. OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 3-43 Installing or Replacing Server Components Chapter 3 Maintaining the Server Replacing a PCIe Riser Assembly The server contains two PCIe risers that are attached to a single riser assembly. Riser 1 provides PCIe slot 1 and riser 2 provides PCIe slot 2, as shown in Figure 3-25. See Table 3-6 for a description of the PCIe slots on each riser. Figure 3-25 Rear Panel, Showing PCIe Slots mLOM PCIe 01 PCIe 02 1 2 PSU 01 PSU 02 353101 To install or replace a PCIe riser, follow these steps: Step 1 Remove the PCIe riser assembly that you are replacing: a. Power off the server as described in Shutting Down and Powering Off the Server, page 3-8. b. Slide the server out the front of the rack far enough so that you can remove the top cover. You might have to detach cables from the rear panel to provide clearance. Caution If you cannot safely view and access the component, remove the server from the rack. Step 2 Step 3 Step 4 c. Remove the top cover as described in Removing and Replacing the Server Top Cover, page 3-9. d. Use two hands to grasp the metal bracket of the riser assembly and lift straight up to disengage its connectors from the two sockets on the motherboard. e. If the riser has any cards installed, remove them from the riser. Install a new PCIe riser assembly: a. If you removed any cards from the old riser assembly, install the cards to the new riser assembly (see Replacing a PCIe Card, page 3-46). b. Position the riser assembly over its two sockets on the motherboard and over the chassis alignment channels (see Figure 3-26): c. Carefully push down on both ends of the riser assembly to fully engage its connectors with the two sockets on the motherboard. Replace the top cover. Replace the server in the rack, replace cables, and then power on the server by pressing the Power button. 3-44 Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 Chapter 3 Maintaining the Server Installing or Replacing Server Components Figure 3-26 PCIe Riser Assembly Location and Alignment Channels FAN 6 FAN 5 FAN 4 FAN 3 FAN 2 FAN 1 SD 1 CPU 2 SD 2 PSU 2 PSU 1 PCIe Riser 2 CPU 1 PCIe Riser 1 1 2 1 PCIe riser assembly bracket 3 Chassis alignment channels 353102 OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 3-45 Installing or Replacing Server Components Chapter 3 Maintaining the Server Replacing a PCIe Card Caution Cisco supports all PCIe cards qualified and sold by Cisco. PCIe cards not qualified or sold by Cisco are the responsibility of the customer. Although Cisco will always stand behind and support the C-Series rack-mount servers, customers using standard, off-the-shelf, third-party cards must go to the third-party card vendor for support if any issue with that particular third-party card occurs. This section includes the following topics: · PCIe Slots, page 3-46 · Replacing a PCIe Card, page 3-47 · Special Considerations for Cisco UCS Virtual Interface Cards, page 3-49 · Special Considerations for Cisco UCS Fusion ioDrive3 Storage Accelerator Cards, page 3-50 · Installing Multiple PCIe Cards and Resolving Limited Resources, page 3-51 PCIe Slots The server contains two toolless PCIe risers for horizontal installation of PCIe cards. See Figure 3-27 and Table 3-6 for a description of the PCIe slots on these risers. Both slots support the network communications services interface (NCSI) protocol and standby power. Figure 3-27 Rear Panel, Showing PCIe Slots mLOM PCIe 01 PCIe 02 1 2 PSU 01 PSU 02 Table 3-6 PCIe Expansion Slots Slot Number Electrical Lane Width 1 (on riser 1) Gen-3 x16 2 (on riser version 2A)3 Gen-3 x16 2 (on riser version 2B)4 Gen-3 x8 Connector Length x24 connector x24 connector x24 connector Card Length1 3/4 length 1/2 length 1/2 length Card Height 2 Full-height 1/2 height 1/2 height NCSI Support Yes Yes Yes 1. This is the supported length because of internal clearance. 2. This is the size of the rear panel opening. 3. Slot 2 is not available in single-CPU configurations. 4. Riser version 2B(UCSC-PCI-2B-220M4) includes two cable connectors that support NVMe PCIe SSDs. These connectors are not available in a single-CPU configuration. 353101 3-46 Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 Chapter 3 Maintaining the Server Installing or Replacing Server Components Replacing a PCIe Card Note If you are installing a Cisco UCS Virtual Interface Card, there are prerequisite considerations. See Special Considerations for Cisco UCS Virtual Interface Cards, page 3-49. Note If you are installing a RAID controller card, see RAID Controller Considerations, page C-1 for more information about supported cards and cabling. To install or replace a PCIe card, follow these steps: Step 1 Remove an existing PCIe card (or a blank filler panel) from the PCIe riser: a. Shut down and power off the server as described in Shutting Down and Powering Off the Server, page 3-8. b. Slide the server out the front of the rack far enough so that you can remove the top cover. You might have to detach cables from the rear panel to provide clearance. Caution If you cannot safely view and access the component, remove the server from the rack. Step 2 c. Remove the top cover as described in Removing and Replacing the Server Top Cover, page 3-9. d. Remove any cables from the ports of the PCIe card that you are replacing. e. Use two hands to grasp the metal bracket of the riser assembly and lift straight up to disengage its connectors from the two sockets on the motherboard. f. Open the hinged plastic retainer that secures the rear-panel tab of the card (see Figure 3-28). g. Pull evenly on both ends of the PCIe card to remove it from the socket on the PCIe riser. If the riser has no card, remove the blanking panel from the rear opening of the riser. Install a new PCIe card: a. Open the hinged plastic retainer b. With the hinged tab retainer open, align the new PCIe card with the empty socket on the PCIe riser. c. Push down evenly on both ends of the card until it is fully seated in the socket. d. Ensure that the card's rear panel tab sits flat against the riser rear-panel opening and then close the hinged tab retainer over the card's rear-panel tab (see Figure 3-28). e. Position the PCIe riser over its two sockets on the motherboard and over the chassis alignment channels (see Figure 3-26). f. Carefully push down on both ends of the PCIe riser to fully engage its connector with the sockets on the motherboard. g. Replace the top cover. h. Replace the server in the rack, replace cables, and then power on the server by pressing the Power button. i. If the card that you replaced was a RAID controller, continue with Restoring RAID Configuration After Replacing a RAID Controller, page C-24. OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 3-47 Installing or Replacing Server Components Figure 3-28 PCIe Riser Assembly Chapter 3 Maintaining the Server 2 1 1 Hinged rear-panel tab retainer 2 Card socket on riser 2 version 2B 353289 3-48 Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 Chapter 3 Maintaining the Server Installing or Replacing Server Components Special Considerations for Cisco UCS Virtual Interface Cards Table 3-7 describes the requirements for the supported Cisco UCS virtual interface cards (VICs). The server can support up to two PCIe-style VICs plus one mLOM-style VIC. Note If you use the Cisco Card NIC mode, you must also make a VIC Slot setting that matches where your VIC is installed. The options are Riser1, Riser2, and Flex-LOM. See NIC Modes and NIC Redundancy Settings, page 2-14. If you want to use the Cisco UCS VIC card for Cisco UCS Manager integration, also see the Cisco UCS C-Series Server Integration with UCS Manager Guides for details about supported configurations, cabling, and other requirements. Table 3-7 Cisco UCS C220 M4 Requirements for Virtual Interface Cards Number of Primary Slot For This VIC Cisco UCS Primary Slot For Virtual Interface Card Supported Slots That Manager Cisco Card NIC (VIC) in Server Support VICs Integration Mode Minimum Cisco IMC Minimum VIC Firmware Firmware Cisco UCS VIC1225 UCSC-PCIE-CSC-02 2 PCIe PCIE 1 PCIE 2 PCIE 1 PCIE 1 1.4(6) 2.1(0) Cisco UCS VIC1225T UCSC-PCIE-C10T-02 Cisco UCS VIC13851 UCSC-PCIE-C40Q-03 2 PCIe 2 PCIe PCIE 1 PCIE 2 PCIE 1 PCIE 2 PCIE 1 PCIE 1 Not supported at PCIE 1 this time 1.5(1) 2.0(4) 2.1(1) 4.0(4b) Cisco UCS VIC 1227 1 mLOM mLOM mLOM mLOM 2.0(3) 4.0(0) UCSC-MLOM-CSC-02 Cisco UCS VIC 1227T 1 mLOM mLOM mLOM mLOM 2.0(4) 4.0(4b) UCSC-MLOM-C10T-02 Cisco UCS VIC 1387 1 mLOM mLOM mLOM mLOM 2.0(9) 4.1(1d) UCSC-MLOM-C40Q-03 1. For Cisco UCS VIC1385, always use the primary slot 1 for optimal performance. You can use the other supported slot, but you might see degraded performance. If multiple VIC cards are present, give the Cisco UCS VIC1385 priority on primary slot 1 for best performance. Note The Cisco UCS VIC 1227 (UCSC-MLOM-CSC-02) is not compatible to use in Cisco Card NIC mode with a certain Cisco SFP+ module. Do not use a Cisco SFP+ module part number 37-0961-01 that has a serial number in the range MOC1238xxxx to MOC1309xxxx. If you use the Cisco UCS VIC 1227 in Cisco Card NIC mode, use a different part number Cisco SFP+ module, or you can use this part number 37-0961-01 if the serial number is not included in the range above. See the data sheet for this adapter for other supported SFP+ modules: Cisco UCS VIC 1227 Data Sheet OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 3-49 Installing or Replacing Server Components Chapter 3 Maintaining the Server Special Considerations for Cisco UCS Fusion ioDrive3 Storage Accelerator Cards Table 3-8 describes the requirements for the supported Cisco UCS Fusion ioDrive3 cards. Table 3-8 Cisco UCS C220 M4 Requirements for Fusion ioDrive3 Cards Maximum Number of Cards Card Supported Cisco UCS 5800 GB MLC Fusion ioDrive3 1 Slots That Support These Cards PCIE 1 Slots That Support >25W Power Override All1 Minimum Cisco IMC Firmware 2.0(2) Card Height (rear-panel tab) Full height UCSC-F-FIO-5800M= Cisco UCS 2900 GB MLC Fusion ioDrive3 2 PCIE 1 Not 2.0(2) UCSC-F-FIO-2900M= PCIE 2 applicable Half height2 Cisco UCS 1450 GB MLC Fusion ioDrive3 2 PCIE 1 Not 2.0(2) UCSC-F-FIO-1450M= PCIE 2 applicable Half height Cisco UCS 1150 GB MLC Fusion ioDrive3 2 PCIE 1 Not 2.0(2) UCSC-F-FIO-1150M= PCIE 2 applicable Half height 1. All slots can be enabled to provide more than the default 25 W power draw for higher performance on some cards. See Enabling Higher Power-Draw for Fusion ioDrive3 Cards, page 3-50. 2. A rear-panel tab adapter is required to fit the half-height cards in full-height slots. Enabling Higher Power-Draw for Fusion ioDrive3 Cards Some Fusion ioDrive3 accelerator cards such as the 5800 GB card draw 25 W by default but can achieve higher performance when the PCIe slot is configured to provide more than 25 W for the device. PCIe slots that can be configured to support more than 25 W power draw: All. All slots can support the higher device power draw of 55 W (75 W maximum) when configured with the override parameter in the IO Accelerator VSL software. Note See the Cisco UCS power calculator to determine the total power draw for your exact server configuration: http://www.cisco.com/assets/cdc_content_elements/flash/dataCenter/cisco_ucs_power_calculator/ The override parameter in the IO Accelerator VSL software (in the /usr/modprove.d/iomemory-vsl.conf file) overrides the setting that prevents devices from drawing more than 25 W from the PCIe slot. The parameter is enabled by device, by using the device serial numbers. Note The override parameter is a setting for the IO Accelerator VSL software by server and is not stored in the device. When moved to a new server, the device defaults to the 25 W power limit until an external power cable is added or the override parameter is enabled for that device in the new server. Step 1 Determine the serial number of the installed Fusion device by using the fio-status command in the IO Accelerator VSL software. Sample output is shown here: fio-status Adapter: Dual Controller Adapter 3-50 Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 Chapter 3 Maintaining the Server Installing or Replacing Server Components Fusion-io ioDrive2 3.0TB, Product Number:F01-001-2T41-CS-0001, FIO SN:1149D0969 External Power: NOT connected PCIe Power limit threshold: 24.75W Connected ioMemory modules: fct2: SN:1149D0969-1121 fct3: SN:1149D0969-1111 In this example, 1149D0969 is the adapter serial number. If you have multiple Fusion ioDrive3 devices installed in your system, use the fio-beacon command to verify where each device is physically located. Note There is also a serial number label on the card, but we recommend that you use the fio-status command to confirm the serial number is an adapter serial number (FIO SN in the sample output above). Step 2 Step 3 Set the override parameter by editing the /usr/modprove.d/iomemory-vsl.conf file, which is installed when you install the device drivers. Change the value for the external_power_override parameter, where the <value> for this parameter is a comma-separated list of adapter serial numbers. options iomemory-vsl external_power_override=<value> For example: options iomemory-vsl external_power_override=1149D0969,1159E0972 Reboot the server or unload and then load the drivers to enforce the parameter changes. Installing Multiple PCIe Cards and Resolving Limited Resources When a large number of PCIe add-on cards are installed in the server, the system might run out of the following resources required for PCIe devices: · Option ROM memory space · 16-bit I/O space The topics in this section provide guidelines for resolving the issues related to these limited resources: · Resolving Insufficient Memory Space to Execute Option ROMs, page 3-51 · Resolving Insufficient 16-Bit I/O Space, page 3-52 Resolving Insufficient Memory Space to Execute Option ROMs The system has very limited memory to execute PCIe legacy option ROMs, so when a large number of PCIe add-on cards are installed in the server, the system BIOS might not able to execute all of the option ROMs. The system BIOS loads and executes the option ROMs in the order that the PCIe cards are enumerated (slot 1, slot 2, slot 3, and so on). If the system BIOS does not have sufficient memory space to load any PCIe option ROM, it skips loading that option ROM, reports a system event log (SEL) event to the Cisco IMC controller and reports the following error in the Error Manager page of the BIOS Setup utility: ERROR CODE SEVERITY 146 Major INSTANCE N/A DESCRIPTION PCI out of resources error. Major severity requires user intervention but does not prevent system boot. OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 3-51 Installing or Replacing Server Components Chapter 3 Maintaining the Server To resolve this issue, disable the Option ROMs that are not needed for system booting. The BIOS Setup Utility provides the setup options to enable or disable the Option ROMs at the PCIe slot level for the PCIe expansion slots and at the port level for the onboard NICs. These options can be found in the BIOS Setup Utility Advanced PCI Configuration page. · Guidelines for RAID controller booting If the server is configured to boot primarily from RAID storage, make sure that the option ROMs for the slots where your RAID controllers installed are enabled in the BIOS, depending on your RAID controller configuration. If the RAID controller does not appear in the system boot order even with the option ROMs for those slots enabled, the RAID controller option ROM might not have sufficient memory space to execute. In that case, disable other option ROMs that are not needed for the system configuration to free up some memory space for the RAID controller option ROM. · Guidelines for onboard NIC PXE booting If the system is configured to primarily perform PXE boot from onboard NICs, make sure that the option ROMs for the onboard NICs to be booted from are enabled in the BIOS Setup Utility. Disable other option ROMs that are not needed to create sufficient memory space for the onboard NICs. Resolving Insufficient 16-Bit I/O Space The system has only 64 KB of legacy 16-bit I/O resources available. This 64 KB of I/O space is divided between the CPUs in the system because the PCIe controller is integrated into the CPUs. This server BIOS has the capability to dynamically detect the 16-bit I/O resource requirement for each CPU and then balance the 16-bit I/O resource allocation between the CPUs during the PCI bus enumeration phase of the BIOS POST. When a large number of PCIe cards are installed in the system, the system BIOS might not have sufficient I/O space for some PCIe devices. If the system BIOS is not able to allocate the required I/O resources for any PCIe devices, the following symptoms have been observed: · The system might get stuck in an infinite reset loop. · The BIOS might appear to hang while initializing PCIe devices. · The PCIe option ROMs might take excessive time to complete, which appears to lock up the system. · PCIe boot devices might not be accessible from the BIOS. · PCIe option ROMs might report initialization errors. These errors are seen before the BIOS passes control to the operating system. · The keyboard might not work. To work around this problem, rebalance the 16-bit I/O load using the following methods: 1. Physically remove any unused PCIe cards. 2. If the system has one or more Cisco virtual interface cards (VICs) installed, disable the PXE boot on the VICs that are not required for the system boot configuration by using the Network Adapters page in the Cisco IMC Web UI to free up some 16-bit I/O resources. Each VIC uses a minimum 16 KB of 16-bit I/O resource, so disabling PXE boot on Cisco VICs would free up some 16-bit I/O resources that can be used for other PCIe cards that are installed in the system. 3-52 Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 Chapter 3 Maintaining the Server Installing or Replacing Server Components Installing and Enabling a Trusted Platform Module (TPM) The trusted platform module (TPM) is a small circuit board that attaches to a motherboard socket. The socket location is on the motherboard between the power supplies and PCIe riser 2 (see Figure 3-29). TPM 2.0 Considerations Trusted platform module (TPM) version 2.0 is supported on Intel v3- or Intel v4-based platforms. If there is an existing TPM 1.2 installed in the server, you cannot upgrade to TPM 2.0. If there is no existing TPM in the server, you can install TPM 2.0. You must first upgrade to Intel v4 code, regardless of whether the installed CPU is Intel v3 or v4. TPM 2.0 requires Intel v4 code or later. Caution If your Intel v3 or Intel v4 system is currently supported and protected by TPM version 2.0, a potential security exposure might occur if you downgrade the system software and BIOS to a version earlier than those shown in Table 3-10. Note If the TPM 2.0 becomes unresponsive, reboot the server. Table 3-9 Intel CPU Intel v3 Intel v4 TPM Matrix by Intel CPU Version TPM Version Supported TPM 1.2 TPM 2.0 TPM 1.2 TPM 2.0 Minimum Cisco IMC Version 2.0(3) 2.0(10) 2.0(10) 2.0(10) Minimum UCS Manager (UCSM) Version 2.2(3) 2.2(7) or 3.1(1) 2.2(7) or 3.1(1) 2.2(7) or 3.1(1) OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 3-53 Installing or Replacing Server Components Chapter 3 Maintaining the Server Installing the TPM Hardware This section contains the following procedures, which must be followed in this order when installing and enabling a TPM: 1. Installing the TPM Hardware, page 3-54 2. Enabling TPM Support in the BIOS, page 3-56 3. Enabling the Intel TXT Feature in the BIOS, page 3-56 Note For security purposes, the TPM is installed with a one-way screw. It cannot be removed with a standard screwdriver. Step 1 Prepare the server for component installation. a. Power off the server as described in Shutting Down and Powering Off the Server, page 3-8. b. Slide the server out the front of the rack far enough so that you can remove the top cover. You might have to detach cables from the rear panel to provide clearance. Caution If you cannot safely view and access the component, remove the server from the rack. Step 2 Step 3 c. Remove the top cover as described in Removing and Replacing the Server Top Cover, page 3-9. d. Check if there is a card installed in PCIe riser 2. See Figure 3-29. · If no card is installed in PCIe riser 2, you can access the TPM socket. Go to Step 2. · If a card is installed in PCIe riser 2, remove the PCIe riser assembly from the chassis. See Replacing a PCIe Riser Assembly, page 3-44 for details. Install a TPM (see Figure 3-29): a. Locate the TPM socket on the motherboard, as shown in Figure 3-29. b. Align the connector that is on the bottom of the TPM circuit board with the motherboard TPM socket. Align the screw hole on the TPM board with the screw hole adjacent to the TPM socket. c. Push down evenly on the TPM to seat it in the motherboard socket. d. Install the single one-way screw that secures the TPM to the motherboard. e. If you removed the PCIe riser assembly, return it to the server now. See Replacing a PCIe Riser Assembly, page 3-44 for details. f. Replace the top cover. g. Replace the server in the rack and then power on the server by pressing the Power button. Continue with Enabling TPM Support in the BIOS, page 3-56. 3-54 Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 Chapter 3 Maintaining the Server Figure 3-29 TPM Socket Location on Motherboard Installing or Replacing Server Components FAN 6 FAN 5 FAN 4 FAN 3 FAN 2 FAN 1 SD 1 PSU 2 CPU 2 SD 2 PSU 1 1 PCIe Riser 2 CPU 1 PCIe Riser 1 353103 1 TPM socket and screw hole on motherboard OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 3-55 Installing or Replacing Server Components Chapter 3 Maintaining the Server Enabling TPM Support in the BIOS Note After hardware installation, you must enable TPM support in the BIOS: Step 1 Step 2 Step 3 Enable TPM support: a. Watch during bootup for the F2 prompt, and then press F2 to enter BIOS setup. b. Log in to the BIOS Setup Utility with your BIOS Administrator password. c. On the BIOS Setup Utility window, choose the Advanced tab. d. Choose Trusted Computing to open the TPM Security Device Configuration window. e. Change TPM SUPPORT to Enabled. f. Press F10 to save your settings and reboot the server. Verify that TPM support is now enabled: a. Watch during bootup for the F2 prompt, and then press F2 to enter BIOS setup. b. Log into the BIOS Setup utility with your BIOS Administrator password. c. Choose the Advanced tab. d. Choose Trusted Computing to open the TPM Security Device Configuration window. e. Verify that TPM SUPPORT and TPM State are Enabled. Continue with Enabling the Intel TXT Feature in the BIOS, page 3-56. Enabling the Intel TXT Feature in the BIOS Intel Trusted Execution Technology (TXT) provides greater protection for information that is used and stored on the business server. A key aspect of that protection is the provision of an isolated execution environment and associated sections of memory where operations can be conducted on sensitive data, invisibly to the rest of the system. Intel TXT provides for a sealed portion of storage where sensitive data such as encryption keys can be kept, helping to shield them from being compromised during an attack by malicious code. Step 1 Step 2 Step 3 Reboot the server and watch for the prompt to press F2. When prompted, press F2 to enter the BIOS Setup utility. Verify that the prerequisite BIOS values are enabled: a. Choose the Advanced tab. b. Choose Intel TXT(LT-SX) Configuration to open the Intel TXT(LT-SX) Hardware Support window. c. Verify that the following items are listed as Enabled: VT-d Support (default is Enabled) VT Support (default is Enabled) TPM Support TPM State 3-56 Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 Chapter 3 Maintaining the Server Installing or Replacing Server Components Step 4 Step 5 · If VT-d Support and VT Support are already enabled, skip to Step 4. · If VT-d Support and VT Support are not enabled, continue with the next steps to enable them. d. Press Escape to return to the BIOS Setup utility Advanced tab. e. On the Advanced tab, choose Processor Configuration to open the Processor Configuration window. f. Set Intel (R) VT and Intel (R) VT-d to Enabled. Enable the Intel Trusted Execution Technology (TXT) feature: a. Return to the Intel TXT(LT-SX) Hardware Support window if you are not already there. b. Set TXT Support to Enabled. Press F10 to save your changes and exit the BIOS Setup utility. OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 3-57 Installing or Replacing Server Components Chapter 3 Maintaining the Server Replacing an mLOM Card The server can use a modular LOM (mLOM) card to provide additional rear-panel connectivity. The mLOM card socket remains powered when the server is in 12 V standby power mode and it supports the network communications services interface (NCSI) protocol. Step 1 Remove any existing mLOM card (or a blanking panel): a. Power off the server as described in Shutting Down and Powering Off the Server, page 3-8. b. Slide the server out the front of the rack far enough so that you can remove the top cover. You might have to detach cables from the rear panel to provide clearance. Caution If you cannot safely view and access the component, remove the server from the rack. Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 c. Remove the top cover as described in Removing and Replacing the Server Top Cover, page 3-9. See the location of the mLOM socket in Figure 3-30. You might have to remove PCIe riser 1 and the Cisco modular RAID controller riser to provide clearance. · If there is no card in PCIe riser 1 or the RAID card riser, you can access the mLOM socket. Continue with Step 3. · If there is a card in PCIe riser 1 or the RAID card riser, remove those risers to provide clearance. See Replacing a PCIe Riser Assembly, page 3-44 and Replacing a Cisco Modular RAID Controller Card, page 3-35 for instructions. Loosen the single thumbscrew that secures the mLOM card to the chassis floor and then slide the mLOM card horizontally to disengage its connector from the motherboard socket. Install a new mLOM card: a. Set the mLOM card on the chassis floor so that its connector is aligned with the motherboard socket and its thumbscrew is aligned with the standoff on the chassis floor. b. Push the card's connector into the motherboard socket horizontally. c. Tighten the thumbscrew to secure the card to the chassis floor. If you removed PCIe riser 1 or the RAID card riser, return them to the server. See Replacing a PCIe Riser Assembly, page 3-44 or Replacing a Cisco Modular RAID Controller Card, page 3-35 for instructions. Replace the top cover. Replace the server in the rack, replace cables, and then power on the server by pressing the Power button. 3-58 Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 Chapter 3 Maintaining the Server Installing or Replacing Server Components Figure 3-30 mLOM Card Socket Location FAN 6 FAN 5 FAN 4 FAN 3 FAN 2 FAN 1 SD 1 CPU 2 SD 2 PSU 2 PSU 1 PCIe Riser 2 CPU 1 PCIe Riser 1 1 353104 1 mLOM card socket location on motherboard (under a PCIe riser 1 card and the RAID controller card) OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 3-59 Installing or Replacing Server Components Replacing Power Supplies Chapter 3 Maintaining the Server The server can have one or two power supplies. When two power supplies are installed they are redundant as 1+1. · Replacing an AC Power Supply, page 3-60 · Installing a DC Power Supply (UCSC-PSUV2-1050DC), page 3-61 · Installation Grounding, page 3-62 · See also Power Specifications, page A-3 for more information about the power supplies. · See also Rear Panel LEDs and Buttons, page 3-5 for information about the power supply LEDs. Note If you have ordered a server with power supply redundancy (two power supplies), you do not have to power off the server to replace power supplies because they are redundant as 1+1. Note Do not mix power supply types or wattages in the server. Replacing an AC Power Supply Step 1 Step 2 Remove the power supply that you are replacing or a blank panel from an empty bay (see Figure 3-31): a. Perform one of the following actions: If your server has only one power supply, shut down and power off the server as described in the "Shutting Down and Powering Off the Server" section on page 3-8. If your server has two power supplies, you do not have to shut down the server. b. Remove the power cord from the power supply that you are replacing. c. Grasp the power supply handle while pinching the release lever toward the handle. d. Pull the power supply out of the bay. Install a new power supply: a. Grasp the power supply handle and insert the new power supply into the empty bay. b. Push the power supply into the bay until the release lever locks. c. Connect the power cord to the new power supply. d. If you shut down the server, press the Power button to return the server to main power mode. 3-60 Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 353105 Chapter 3 Maintaining the Server Figure 3-31 Removing and Replacing Power Supplies 1 mLOM PCIe 01 PCIe 02 1 2 Installing or Replacing Server Components PSU 01 PSU 02 1 Hole for chassis grounding lug screw 2 Power supply release lever 2 3 3 Power supply handle Installing a DC Power Supply (UCSC-PSUV2-1050DC) Warning A readily accessible two-poled disconnect device must be incorporated in the fixed wiring. Statement 1022 Warning This product requires short-circuit (overcurrent) protection, to be provided as part of the building installation. Install only in accordance with national and local wiring regulations. Statement 1045 Warning Installation of the equipment must comply with local and national electrical codes. Statement 1074 Caution Before beginning this wiring procedure, turn off the DC power source from your facility's circuit breaker to avoid electric shock hazard. Step 1 Turn off the DC power source from your facility's circuit breaker to avoid electric shock hazard. Note The required DC input cable is Cisco part CAB-48DC-40A-8AWG. This 3-meter cable has a 3-pin connector on one end that is keyed to the DC input socket on the power supply, as shown in Figure 3-32. The other end of the cable has no connector so that you can wire it to your facility's DC power. Step 2 Step 3 Step 4 Step 5 Wire the non-terminated end of the cable to your facility's DC power input source. Connect the terminated end of the cable to the socket on the power supply. The connector is keyed so that the wires align for correct polarity and ground, as shown in Figure 3-32. Return DC power from your facility's circuit breaker. See Installation Grounding, page 3-62 for information about additional chassis grounding. OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 3-61 Installing or Replacing Server Components Chapter 3 Maintaining the Server Figure 3-32 1050 W, 48 VDC Power Supply and Cable 1 2 3 305145 +DC 1050W DC - DC 1 Keyed cable connector (CAB-48DC-40A-8AWG) 2 Keyed DC input socket 3 PSU status LED See Rear Panel LEDs and Buttons, page 3-5 for details. Installation Grounding AC power supplies have internal grounding and so no additional grounding is required when the supported AC power cords are used. When using a DC power supply, additional grounding of the server chassis to the earth ground of the rack is available. A screw hole for use with your grounding lug and grounding wire are supplied on the chassis rear panel. Note The grounding point on the chassis is sized for a single #10-32 screw. A lock-washer is required to secure the lug to the chassis. You must provide your own screw with lock-washer, grounding lug, and grounding wire. The grounding lug must be a single-hole lug that fits a #10-32 screw and 14 AWG wire. The grounding cable that you provide must be 14 AWG (2 mm), minimum 60° C wire, or as permitted by the local code. See Figure 3-31 for the location of the grounding lug screw-hole on the chassis rear panel. 3-62 Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 Chapter 3 Maintaining the Server Service DIP Switches Service DIP Switches This section includes the following topics: · DIP Switch Location on the Motherboard, page 3-63 · Using the BIOS Recovery DIP Switch, page 3-64 · Using the Clear Password DIP Switch, page 3-66 · Using the Clear CMOS DIP Switch, page 3-67 DIP Switch Location on the Motherboard See Figure 3-33. The position of the block of DIP switches (SW6) is shown in red. In the magnified view, all switches are shown in the default position. · BIOS recovery--Switch 1 · Clear password--Switch 2 · Not used--Switch 3 · Clear CMOS--Switch 4 Figure 3-33 Service DIP Switches (SW6) 353106 OL-32473-01 1 DIP switch block SW6 2 BIOS recovery switch 1 ON DIP 12 3 4 2 1 3 4 3 Clear password switch 2 4 Clear CMOS switch 4 Cisco UCS C220 M4 Server Installation and Service Guide 3-63 Service DIP Switches Chapter 3 Maintaining the Server Using the BIOS Recovery DIP Switch Depending on which stage the BIOS becomes corrupted, you might see different behavior. · If the BIOS BootBlock is corrupted, you might see the system get stuck on the following message: Initializing and configuring memory/hardware · If it is a non-BootBlock corruption, the following message is displayed: ****BIOS FLASH IMAGE CORRUPTED**** Flash a valid BIOS capsule file using Cisco IMC WebGUI or CLI interface. IF Cisco IMC INTERFACE IS NOT AVAILABLE, FOLLOW THE STEPS MENTIONED BELOW. 1. Connect the USB stick with recovery.cap file in root folder. 2. Reset the host. IF THESE STEPS DO NOT RECOVER THE BIOS 1. Power off the system. 2. Mount recovery jumper. 3. Connect the USB stick with recovery.cap file in root folder. 4. Power on the system. Wait for a few seconds if already plugged in the USB stick. REFER TO SYSTEM MANUAL FOR ANY ISSUES. Note As indicated by the message shown above, there are two procedures for recovering the BIOS. Try procedure 1 first. If that procedure does not recover the BIOS, use procedure 2. Procedure 1: Reboot with recovery.cap File Step 1 Step 2 Download the BIOS update package and extract it to a temporary location. Copy the contents of the extracted recovery folder to the root directory of a USB thumb drive. The recovery folder contains the recovery.cap file that is required in this procedure. Note The recovery.cap file must be in the root directory of the USB thumb drive. Do not rename this file. The USB thumb drive must be formatted with either FAT16 or FAT32 file systems. Step 3 Step 4 Step 5 Step 6 Insert the USB thumb drive into a USB port on the server. Reboot the server. Return the server to main power mode by pressing the Power button on the front panel. The server boots with the updated BIOS boot block. When the BIOS detects a valid recovery.cap file on the USB thumb drive, it displays this message: Found a valid recovery file...Transferring to Cisco IMC System would flash the BIOS image now... System would restart with recovered image after a few seconds... Wait for server to complete the BIOS update, and then remove the USB thumb drive from the server. Note During the BIOS update, Cisco IMC shuts down the server and the screen goes blank for about 10 minutes. Do not unplug the power cords during this update. Cisco IMC powers on the server after the update is complete. 3-64 Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 Chapter 3 Maintaining the Server Service DIP Switches Procedure 2: Use BIOS Recovery DIP switch and recovery.cap File See Figure 3-33 for the location of the SW8 block of DIP switches. Step 1 Step 2 Download the BIOS update package and extract it to a temporary location. Copy the contents of the extracted recovery folder to the root directory of a USB thumb drive. The recovery folder contains the recovery.cap file that is required in this procedure. Note The recovery.cap file must be in the root directory of the USB thumb drive. Do not rename this file. The USB thumb drive must be formatted with either FAT16 or FAT32 file systems. Step 3 Step 4 Step 5 Power off the server as described in Shutting Down and Powering Off the Server, page 3-8. Disconnect all power cords from the power supplies. Slide the server out the front of the rack far enough so that you can remove the top cover. You might have to detach cables from the rear panel to provide clearance. Caution If you cannot safely view and access the component, remove the server from the rack. Step 6 Step 7 Step 8 Step 9 Step 10 Remove the top cover as described in Removing and Replacing the Server Top Cover, page 3-9. Slide the BIOS recovery DIP switch from position 1 to the closed position (see Figure 3-33). Reconnect AC power cords to the server. The server powers up to standby power mode. Insert the USB thumb drive that you prepared in Step 2 into a USB port on the server. Return the server to main power mode by pressing the Power button on the front panel. The server boots with the updated BIOS boot block. When the BIOS detects a valid recovery.cap file on the USB thumb drive, it displays this message: Found a valid recovery file...Transferring to Cisco IMC System would flash the BIOS image now... System would restart with recovered image after a few seconds... Step 11 Wait for server to complete the BIOS update, and then remove the USB thumb drive from the server. Note During the BIOS update, Cisco IMC shuts down the server and the screen goes blank for about 10 minutes. Do not unplug the power cords during this update. Cisco IMC powers on the server after the update is complete. Step 12 Step 13 After the server has fully booted, power off the server again and disconnect all power cords. Slide the BIOS recovery DIP switch from the closed position back to the default position 1 (see Figure 3-33). Note If you do not move the jumper, after recovery completion you see the prompt, "Please remove the recovery jumper." Step 14 Replace the top cover, replace the server in the rack, replace power cords and any other cables, and then power on the server by pressing the Power button. OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 3-65 Service DIP Switches Chapter 3 Maintaining the Server Using the Clear Password DIP Switch See Figure 3-33 for the location of this DIP switch. You can use this switch to clear the administrator password. Step 1 Step 2 Step 3 Power off the server as described in Shutting Down and Powering Off the Server, page 3-8. Disconnect all power cords from the power supplies. Slide the server out the front of the rack far enough so that you can remove the top cover. You might have to detach cables from the rear panel to provide clearance. Caution If you cannot safely view and access the component, remove the server from the rack. Step 4 Step 5 Step 6 Step 7 Remove the top cover as described in Removing and Replacing the Server Top Cover, page 3-9. Slide the clear password DIP switch from position 2 to the closed position (see Figure 3-33). Reinstall the top cover and reconnect AC power cords to the server. The server powers up to standby power mode, indicated when the Power LED on the front panel is amber. Return the server to main power mode by pressing the Power button on the front panel. The server is in main power mode when the Power LED is green. Note You must allow the entire server, not just the service processor, to reboot to main power mode to complete the reset. The state of the jumper cannot be determined without the host CPU running. Step 8 Step 9 Step 10 Press the Power button to shut down the server to standby power mode, and then remove AC power cords from the server to remove all power. Remove the top cover from the server. Slide the clear CMOS DIP switch from the closed position back to default position 2 (see Figure 3-33). Note If you do not move the jumper, the CMOS settings are reset to the default every time that you power-cycle the server. Step 11 Replace the top cover, replace the server in the rack, replace power cords and any other cables, and then power on the server by pressing the Power button. 3-66 Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 Chapter 3 Maintaining the Server Service DIP Switches Using the Clear CMOS DIP Switch See Figure 3-33 for the location of this DIP switch. You can use this switch to clear the server's CMOS settings in the case of a system hang. For example, if the server hangs because of incorrect settings and does not boot, use this jumper to invalidate the settings and reboot with defaults. Caution Clearing the CMOS removes any customized settings and might result in data loss. Make a note of any necessary customized settings in the BIOS before you use this clear CMOS procedure. Step 1 Step 2 Step 3 Power off the server as described in Shutting Down and Powering Off the Server, page 3-8. Disconnect all power cords from the power supplies. Slide the server out the front of the rack far enough so that you can remove the top cover. You might have to detach cables from the rear panel to provide clearance. Caution If you cannot safely view and access the component, remove the server from the rack. Step 4 Step 5 Step 6 Step 7 Remove the top cover as described in Removing and Replacing the Server Top Cover, page 3-9. Slide the clear CMOS DIP switch from position 4 to the closed position (see Figure 3-33). Reinstall the top cover and reconnect AC power cords to the server. The server powers up to standby power mode, indicated when the Power LED on the front panel is amber. Return the server to main power mode by pressing the Power button on the front panel. The server is in main power mode when the Power LED is green. Note You must allow the entire server, not just the service processor, to reboot to main power mode to complete the reset. The state of the jumper cannot be determined without the host CPU running. Step 8 Step 9 Step 10 Press the Power button to shut down the server to standby power mode, and then remove AC power cords from the server to remove all power. Remove the top cover from the server. Slide the clear CMOS DIP switch from the closed position back to default position 4 (see Figure 3-33). Note If you do not move the jumper, the CMOS settings are reset to the default every time that you power-cycle the server. Step 11 Replace the top cover, replace the server in the rack, replace power cords and any other cables, and then power on the server by pressing the Power button. OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide 3-67 Service DIP Switches Chapter 3 Maintaining the Server 3-68 Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 A A P P E N D I X Server Specifications This appendix lists the technical specifications for the server and includes the following sections: · Physical Specifications, page A-1 · Environmental Specifications, page A-2 · Power Specifications, page A-3 Physical Specifications Table A-1 lists the physical specifications for the server. Table A-1 Physical Specifications Description Height Width Depth (length) Maximum weight (fully loaded chassis) Specification 1.7 in. (4.3 cm) 16.9 in. (42.9 cm) 29.8 in. (75.8 cm) SFF 8-drive: 37.9 lb. (17.2 Kg) LFF 4-drive: 39.9 lb. (18.1 Kg) OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide A-1 Environmental Specifications Appendix A Server Specifications Environmental Specifications Table A-2 lists the environmental specifications for the server. Table A-2 Environmental Specifications Description Specification Temperature, operating 41 to 95°F (5 to 35°C) Derate the maximum temperature by 1°C per every 305 meters of altitude above sea level. Temperature, non-operating (when the server is stored or transported) 40 to 149°F (40 to 65°C) Humidity (RH), operating 10 to 90% Humidity, non-operating 5 to 93% Altitude, operating 0 to 10,000 feet Altitude, non-operating (when the server is stored or transported) 0 to 40,000 feet Sound power level 5.4 Measure A-weighted per ISO7779 LwAd (Bels) Operation at 73°F (23°C) Sound pressure level 37 Measure A-weighted per ISO7779 LpAm (dBA) Operation at 73°F (23°C) Cisco UCS C220 M4 Server Installation and Service Guide A-2 OL-32473-01 Appendix A Server Specifications Power Specifications Power Specifications The power specifications for the power supply options are listed in the following sections: · 770 W AC Power Supply, page A-3 · 1050W DC Power Supply, page A-4 You can get more specific power information for your exact server configuration by using the Cisco UCS Power Calculator: http://ucspowercalc.cisco.com Note Do not mix power supply types in the server. Both power supplies must be identical. 770 W AC Power Supply Table A-3 lists the specifications for each 770 W AC power supply (Cisco part number UCSC-PSU1-770W). Table A-3 Power Supply Specifications Description AC input voltage AC input frequency Maximum AC input current Maximum input volt-amperes Maximum output power per PSU Maximum inrush current Maximum hold-up time Power supply output voltage Power supply standby voltage Efficiency rating Form factor Input connector Specification Nominal range: 100120 VAC, 200240 VAC (Range: 90132 VAC, 180264 VAC) Nominal range: 50 to 60Hz (Range: 4763 Hz) 9.5 A at 100 VAC 4.5 A at 208 VAC 950 VA at 100 VAC 770 W 15 A (sub-cycle duration) 12 ms at 770 W 12 VDC 12 VDC Climate Savers Platinum Efficiency (80Plus Platinum certified) RSP2 IEC320 C14 OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide A-3 Power Specifications Appendix A Server Specifications 1050W DC Power Supply Table A-3 lists the specifications for each 1050 W DC power supply (Cisco part number UCSC-PSUV2-1050DC=). Table A-4 Power Supply Specifications Description DC input voltage range Maximum DC input current Maximum input W Maximum output power per PSU Maximum inrush current Maximum hold-up time Power supply output voltage Power supply standby voltage Efficiency rating Form factor Input connector Specification Nominal range: 48 to 60 VDC nominal (Range: 40 to 72 VDC) 32 A at 40 VDC 1234 W 1050 W on 12 VDC main power 36 W on 12 VDC standby power 35 A (sub-cycle duration) 5 ms at 100% load (1050 W main and 36 W standby) 12 VDC 12 VDC 92% at 50% load RSP2 Fixed 3-wire block Cisco UCS C220 M4 Server Installation and Service Guide A-4 OL-32473-01 B A P P E N D I X Power Cord Specifications This appendix provides supported power cable specifications. Supported Power Cords and Plugs Each power supply has a separate power cord. Standard power cords or jumper power cords are available for connection to the server. The jumper power cords, for use in racks, are available as an optional alternative to the standard power cords. Note Only the approved power cords or jumper power cords provided with the server are supported. Table B-1 lists the power cords for the server power supplies. Table B-1 Supported Power Cords for the Server Description CAB-250V-10A-AR Power Cord, 250 VAC 10 A IRAM 2073 Plug Argentina CAB-9K10A-AU 250 VAC 10 A 3112 Plug, Australia CAB-250V-10A-CN Power Cord, 250 VAC 10 A GB 2009 Plug China CAB-9K10A-EU Power Cord, 250 VAC 10 A M 2511 Plug Europe CAB-250V-10A-ID Power Cord, 250 VAC 16A EL-208 Plug South Africa, United Arab Emirates, India CAB-250V-10A-IS Power Cord, 250 VAC 10 A SI32 Plug Israel Length Feet Meters 8.2 2.5 8.2 2.5 8.2 2.5 8.2 2.5 8.2 2.5 8.2 2.5 Power Cord Reference Illustration Figure B-1 Figure B-2 Figure B-3 Figure B-4 Figure B-5 Figure B-6 OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide B-1 Supported Power Cords and Plugs Appendix B Power Cord Specifications Table B-1 Supported Power Cords for the Server (continued) Description Feet CAB-9K10A-IT 8.2 Power Cord, 250 VAC 10 A CEI 23-16 Plug Italy CAB-9K10A-SW 8.2 Power Cord, 250 VAC 10 A MP232 Plug Switzerland CAB-9K10A-UK 8.2 Power Cord, 250 VAC 10 A BS1363 Plug (13 A fuse) United Kingdom CAB-AC-250V/13A 6.6 Power Cord, 250 VAC 13 A IEC60320 Plug North America CAB-N5K6A-NA 8.2 Power Cord, 250 VAC 13 A NEMA 6-15 Plug, North America CAB-9K12A-NA 8.2 Power cord, 125 VAC, 13 A, NEMA 5-15 Plug North America CAB-C13-CBN 2.2 Cabinet Jumper Power Cord, 250 VAC 10 A, C13-C14 Connectors CAB-C13-C14-2M 6.6 Cabinet Jumper Power Cord, 250 VAC 10 A, C13-C14 Connectors CAB-C13-C14-AC 9.8 Cabinet Jumper Power Cord, 250 VAC 10 A, C13-C14 Connectors CAB-48DC-40A-8AWG 11.7 Power cord, -48 VDC 40 A, Three-socket Mini-Fit connector to three-wire pigtail 8 AWG Length Meters 2.5 2.5 2.5 2.0 2.5 2.5 0.68 2.0 3.0 3.5 Power Cord Reference Illustration Figure B-7 Figure B-8 Figure B-9 Figure B-10 Figure B-11 Figure B-12 Figure B-13 Figure B-14 Figure B-15 Figure B-16 Cisco UCS C220 M4 Server Installation and Service Guide B-2 OL-32473-01 Appendix B Power Cord Specifications Supported Power Cords and Plugs AC Power Cord Illustrations This section includes the AC power cord illustrations. See Figure B-1 through Figure B-15. Figure B-1 CAB-250V-10A-AR 2500 mm Plug: EL 219 (IRAM 2073) Cordset rating: 10 A, 250/500 V MAX Length: 8.2 ft Connector: EL 701 (IEC60320/C13) 186571 Figure B-2 CAB-9K10A-AU Cordset rating: 10 A, 250 V/500V Length: 2500mm Plug: EL 206 A.S. 3112-2000) Connector: EL 701C (IEC 60320/C15) Figure B-3 CAB-250V-10A-CN 186581 Plug: EL 218 (CCEE GB2009) Cordset rating 10A, 250V (2500 mm) Connector: EL 701 (IEC60320/C13) 186573 OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide B-3 186576 Supported Power Cords and Plugs Figure B-4 CAB-9K10A-EU Appendix B Power Cord Specifications Plug: M2511 Cordset rating: 10A/16 A, 250 V Length: 8 ft 2 in. (2.5 m) Figure B-5 CAB-250V-10A-ID Connector: VSCC15 OVE 187490 Plug: EL 208 Cordset rating 16A, 250V (2500mm) Connector: EL 701 Figure B-6 CAB-250V-10A-IS EL-212 16A 250V Plug: EL 212 (SI-32) Cordset rating 10A, 250V/500V MAX (2500 mm) Connector: EL 701B (IEC60320/C13) 186574 Cisco UCS C220 M4 Server Installation and Service Guide B-4 OL-32473-01 Appendix B Power Cord Specifications Figure B-7 CAB-9K10A-IT Supported Power Cords and Plugs Plug: I/3G (CEI 23-16) Cordset rating: 10 A, 250 V Length: 8 ft 2 in. (2.5 m) Connector C15M (EN60320/C15 ) Figure B-8 CAB-9K10A-SW 186575 186578 Plug: MP232-R Cordset rating: 10 A, 250 V Length: 8 ft. 2 in (2.5 m) Connector: IEC 60320 C15 Figure B-9 CAB-9K10A-UK Cordset rating: 10 A, 250 V/500 V MAX Length: 2500mm Plug: EL 210 (BS 1363A) 13 AMP fuse Connector: EL 701C (EN 60320/C15) 186580 OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide B-5 Supported Power Cords and Plugs Figure B-10 CAB-AC-250V/13A Appendix B Power Cord Specifications Cordset rating 13A, 250V (6.6 feet) (79±2m) Plug: EL312MoldedTwistlock (NEMA L6-20) Figure B-11 CAB-N5K6A-NA Connector: EL 701 (IEC60320/C13) 186568 186570 Plug: NEMA 6-15P Cordset rating: 10 A, 250 V Length: 8.2 ft Connector: IEC60320/C13 Figure B-12 CAB-9K12A-NA Cordset rating 13A, 125V (8.2 feet) (2.5m) Plug: NEMA 5-15P Connector: IEC60320/C15 192260 Cisco UCS C220 M4 Server Installation and Service Guide B-6 OL-32473-01 Appendix B Power Cord Specifications Figure B-13 CAB-C13-CBN, Jumper Power Cord (0.68 m) Supported Power Cords and Plugs Cordset rating 10A, 250V (686mm) Plug: SS10A Figure B-14 CAB-C13-C14-2M, Jumper Power Cord (2 m) Connector: HS10S 186569 Cordset rating 10A, 250V (2.0 m) Plug: SS10A Figure B-15 CAB-C13-C14-AC, Jumper Power Cord (3 m) Connector: HS10S 336014 Plug: SS10A Cordset rating 10A, 250V (3.0 m) Connector: HS10S 336013 OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide B-7 Supported Power Cords and Plugs Appendix B Power Cord Specifications Figure B-16 CAB-48DC-40A-8AWG, DC Power Cord (3.5 m) Cisco UCS C220 M4 Server Installation and Service Guide B-8 OL-32473-01 C A P P E N D I X RAID Controller Considerations This appendix contains the following sections: · Supported RAID Controllers and Required Cables, page C-2 · RAID Card Firmware Compatibility, page C-3 · Write-Cache Policy for Cisco 12G SAS Modular RAID Controller, page C-3 · Cisco UCS SAS 9300-8e HBA Considerations, page C-4 · RAID Controller Migration, page C-7 · Mixing Drive Types in RAID Groups, page C-6 · RAID Backup Units, page C-6 · RAID Controller Migration, page C-7 · RAID Controller Cabling, page C-8 · Embedded SATA RAID Controllers, page C-11 · Restoring RAID Configuration After Replacing a RAID Controller, page C-24 · For More Information, page C-25 OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide C-1 Supported RAID Controllers and Required Cables Appendix C RAID Controller Considerations Supported RAID Controllers and Required Cables This server supports the RAID controller options and cable requirements shown in Table C-1. Caution Do not mix controller types in the server. Do not use the embedded MegaRAID controller and a hardware RAID controller card at the same time. This combination is not supported and could result in data loss. Note NVMe PCIe SSDs cannot be controlled with a SAS RAID controller. Table C-1 Controller Cisco UCS C220 M4 RAID Options Server Version/ Style Maximum Drives Controlled SCPM Embedded RAID (PCH SATA) On · SFF 8-drives/no expander: No board 8 internal SATA drives · LFF 4-drives/no expander: Cisco UCS 12G SAS Modular RAID Controller PCIe This controller can be ordered with modular flash-based write cache (FBWC) options: 512 MB, 1 GB, 2 GB, or 4 GB. The embedded RAID option is not available with the large form factor drives, 4-drive version of the server at this time. · SFF 8-drives/no expander: Yes2 8 internal drives · LFF 4-drives/no expander: 4 internal drives Cisco UCS 12G SAS Modular HBA Note: See also Write-Cache Policy for Cisco 12G SAS Modular RAID Controller, page C-3. PCIe · SFF 8-drives/no expander: No 8 internal drives · LFF 4-drives/no expander: 4 internal drives Cisco UCS RAID SAS PCIe · All server versions No 9300-8e HBA 8 external SAS+SATA Note: See also Cisco ports, controlling up to UCS SAS 9300-8e 1024 non-RAID external HBA Considerations, drives page C-4. 1. Embedded RAID 5 support requires an optional RAID 5 key module. 2. SCPM = supercap power module (RAID backup unit). RAID Levels 0, 1, 51, 10 Server Version/Required Cables · SFF 8-drives/no expander: (UCS-220CBLSR8=) · LFF 4-drives/no expander: Not supported. Variable by cache size: · No cache: 0, 1, 10 · 512MB cache: 0, 1, 5, 10, 50 · 1GB, 2GB, or 4GB cache: 0, 1, 5, 6, 10, 50, 60 Non-RAID · SFF 8-drives/no expander: (UCS-220CBLMR8=) · LFF 4 drives/no expander: (UCS-220CBLMR4=) · SFF 8 drives/expander: (UCS-220CBLMR8=) · LFF 4 drives/no expander: (UCS-220CBLMR4=) Non-RAID · External drive cables are not sold by Cisco. Cisco UCS C220 M4 Server Installation and Service Guide C-2 OL-32473-01 Appendix C RAID Controller Considerations RAID Card Firmware Compatibility RAID Card Firmware Compatibility Firmware on the RAID controller must be verified for compatibility with the current Cisco IMC and BIOS versions that are installed on the server. If not compatible, upgrade or downgrade the RAID controller firmware accordingly using the Host Upgrade Utility (HUU) for your firmware release to bring it to a compatible level. See the HUU guide for your Cisco IMC release for instructions on downloading and using the utility to bring server components to compatible levels: HUU Guides Write-Cache Policy for Cisco 12G SAS Modular RAID Controller For this server and other Cisco Generation M4 servers, the default write-cache policy for the Cisco Modular RAID controller is Write Through (irrespective of the presence of a charged Supercap power module or "good BBU"). This utilizes the optimal performance characteristics of the controller. If you have Cisco IMC 2.0(5) or later firmware installed to the M4 server, the write policy can be set to Write Back, if preferred. You can set the write policy using the following methods: · For standalone servers, use the Cisco IMC interface to set Virtual Drive Properties > Write Policy. See the "Managing Storage Adapters" section in your Cisco IMC Configuration Guide. Cisco IMC GUI and CLI Configuration Guides · For Cisco UCS-integrated servers, use the Cisco UCS Manager interface to set the write-cache policy as part of virtual drive configuration in your storage profile. Cisco UCS Manager Configuration Guides · Use the LSI Option ROM Configuration Utility. OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide C-3 Cisco UCS SAS 9300-8e HBA Considerations Appendix C RAID Controller Considerations Cisco UCS SAS 9300-8e HBA Considerations This section contains the following topics: · Mixing Rules, page C-4 · Bad Drive and Predictive Failure Behavior, page C-4 · Setting the Preferred Boot Device, page C-4 Mixing Rules Mixing the Cisco UCS 9300-8e HBA in the same server as the Cisco UCS 12G SAS Modular HBA requires the following firmware levels: · Cisco IMC/BIOS 2.0(8) or later · Cisco UCS Manager 2.2(6) or later (for integrated servers only) Bad Drive and Predictive Failure Behavior The bad drive and predictive failure behavior for the Cisco UCS SAS 9300-e HBA cards is different than that for LSI MegaRAID cards. The list below compares behavior for these HBA cards and LSI MegaRAID cards. · Bad/invalid/0MB drive handling: MegaRAID: The bad drive is marked BAD in the GUI/CLI interfaces and the fault LED on the drive is solid amber. HBA: The bad drive is not shown in the GUI/CLI and there is no LED indication. · Drive predictive failure: MegaRAID: If the drive is part of a RAID volume with a spare, the software performs an auto-copy backup and then marks the drive failed/BAD with the fault LED on the drive solid amber. HBA: There is no error handling and there is no LED indication. The operating system must handle the fault. Setting the Preferred Boot Device Currently, the boot device order for these HBAs does not map to a physical slot as seen in the Boot Option dialog of the server BIOS Setup Utility. This makes it difficult to differentiate between multiple devices. Use the following procedure to select the preferred boot device in the LSI BIOS CU SAS Topology screen. When you select the preferred boot device in the BIOS CU SAS Topology screen, it is displayed at the top of the list in the server BIOS Setup Utility Boot Option dialog, making it easy to identify. Step 1 Step 2 In the LSI SAS BIOS CU, navigate to the SAS Topology screen. Press Alt+B to select or deselect a device as the preferred boot device. On this screen, you can identify the device by slot number. Cisco UCS C220 M4 Server Installation and Service Guide C-4 OL-32473-01 Appendix C RAID Controller Considerations Cisco UCS SAS 9300-8e HBA Considerations Step 3 Step 4 Step 5 Step 6 Press Alt+A to select or deselect a device as the alternate boot device. On this screen, you can identify the device by slot number. The alternate boot device is used if the preferred boot device is not detected. Return to the BIOS CU SAS Topology screen. The Device Info column shows which devices you selected with the designators Boot and Alt. In the server BIOS Setup Utility, open the Boot Option dialog. The preferred device that you selected in the LSI BIOS CU is listed at the top of the list. Select the device at the top of the list as your boot option. OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide C-5 Mixing Drive Types in RAID Groups Appendix C RAID Controller Considerations Mixing Drive Types in RAID Groups Table C-2 lists the technical capabilities for mixing hard disk drive (HDD) and solid state drive (SSD) types in a RAID group. However, see the recommendations that follow for the best performance. Table C-2 Drive Type Mixing in RAID Groups Mix of Drive Types in RAID Group SAS HDD + SATA HDD SAS SSD + SATA SSD HDD + SSD Allowed? Yes Yes No Mixing Drive Types in RAID Groups For the best performance, follow these guidelines: · Use either all SAS or all SATA drives in a RAID group. · Use the same capacity for each drive in the RAID group. · Never mix HDDs and SSDs in the same RAID group. RAID Backup Units This server supports installation of one supercap Power Module (SCPM). The unit mounts to a bracket in-line with the fan modules (see Figure 3-22). The optional SCPM provides approximately three years of backup for the disk write-back cache DRAM in the case of a sudden power loss by offloading the cache to the NAND flash. For SCPM replacement instructions, see Replacing the Supercap Power Module (RAID Backup), page 3-41. Cisco UCS C220 M4 Server Installation and Service Guide C-6 OL-32473-01 Appendix C RAID Controller Considerations RAID Controller Migration RAID Controller Migration This server supports hardware RAID (PCIe controller card) and embedded software RAID. See Table C-3 for which migrations are allowed and a summary of migration steps. Table C-3 RAID Controller Migration Starting RAID Controller None (no drives) Onboard SCU storage support is disabled in BIOS Embedded software RAID Onboard SCU storage support is enabled in BIOS Migrate to Hardware RAID Allowed? Allowed 1. Install card. 2. Install cables. Caution Data migration from software RAID to hardware RAID is not supported and could result in data loss. Migrate to Software RAID Allowed? Allowed 1. (Optional) Install RAID 5 key module to motherboard. 2. Install cables. 3. Enable SCU storage support in the BIOS. Not applicable Hardware RAID Onboard SCU storage support is disabled in BIOS Allowed only before there is data on the drives; data migration is not supported. 1. Disable SCU storage support in BIOS. 2. Install card. 3. Install cables. Not applicable Not allowed OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide C-7 RAID Controller Cabling Appendix C RAID Controller Considerations RAID Controller Cabling This section includes the following topics: · Cable Routing, page C-8 · Cisco UCS C220 M4 Server Cabling, page C-9 Cable Routing The RAID controller connectors in this server are shown in Figure C-1. · The red line shows the recommended cable routing path from the Cisco modular RAID controller card or the embedded SATA RAID motherboard connectors to the drive backplane. Cable guides on the chassis wall help route the cables. · The blue line indicates the recommended cable routing path from the Cisco modular RAID controller to the SCPM (RAID backup). · The green line shows the recommended cable routing path from an HBA card in slot 1 to the drive backplane. Figure C-1 RAID Controller Connectors 2 FAN 6 SD 1 PSU 2 FAN 5 CPU 2 PSU 1 SD 2 1 FAN 4 PCIe Riser 2 FAN 3 FAN 2 FAN 1 CPU 1 PCIe Riser 1 1 SAS/SATA connectors on the drive backplane 2 SCPM mounting bracket 43 3 Cisco modular RAID controller riser (dedicated internal riser) 4 Embedded RAID mini-SAS connectors on motherboard (two) 353107 Cisco UCS C220 M4 Server Installation and Service Guide C-8 OL-32473-01 Appendix C RAID Controller Considerations RAID Controller Cabling Cisco UCS C220 M4 Server Cabling This section contains the following topics: · SFF 8-Drive Backplane Cabling, page C-9 · LFF 4-Drive Backplane Cabling, page C-10 SFF 8-Drive Backplane Cabling The cable connections required for each type of controller are as follows: Embedded RAID This option can control up to eight SATA drives. The required UCS-220CBLSR8= cable kit has two mini-SAS cables (mini-SAS HD to mini-SAS iPass connectors). Step 1 Step 2 Connect mini-SAS cable 1 from the PORT A motherboard connector to the PORT A connector on the backplane. Connect mini-SAS cable 2 from the PORT B motherboard connector to the PORT B connector on the backplane. Cisco UCS 12G Modular RAID Controller This option can control up to eight SAS/SATA drives. The required UCS-220CBLMR8= cable kit has one Y-cable with a mini-SAS HD double connector on one end and two mini-SAS HD single connectors on the other end. Step 1 Step 2 Step 3 Connect the mini-SAS double connector to the modular RAID controller card. Connect single connector PORT A to the PORT A connector on the backplane. Connect single connector PORT B to the PORT B connector on the backplane. Cisco UCS SAS 9300-8i HBA This option can control up to eight SAS/SATA drives (non-RAID). The required UCS-220CBLHBA8= cable kit has one Y-cable with a mini-SAS HD double connector on one end and two mini-SAS HD single connectors on the other end. Step 1 Step 2 Step 3 Connect the mini-SAS double connector to the HBA card. Connect single connector PORT A to the PORT A connector on the backplane. Connect single connector PORT B to the PORT B connector on the backplane. OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide C-9 RAID Controller Cabling Appendix C RAID Controller Considerations LFF 4-Drive Backplane Cabling The cable connections required for each type of controller are as follows: Embedded RAID Note The embedded RAID option is not available with the large form factor drives, 4-drive version of the server at this time. Cisco UCS 12G Modular RAID Controller This option can control up to four SAS/SATA drives. The required UCS-220CBLMR4= cable kit has one Y-cable with a mini-SAS HD double connector on one end and two mini-SAS HD single connectors on the other end. Step 1 Step 2 Step 3 Connect the mini-SAS double connector to the modular RAID controller card. Connect single connector PORT A to the PORT A connector on the backplane. Connect single connector PORT B to the PORT B connector on the backplane. C-10 Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 Appendix C RAID Controller Considerations Embedded SATA RAID Controllers Embedded SATA RAID Controllers Note VMware ESX/ESXi or any other virtualized environments are not supported for use with the embedded MegaRAID controller. Hypervisors such as Hyper-V, Xen, or KVM are also not supported for use with the embedded MegaRAID controller. This server includes an embedded MegaRAID controller that can control up to eight SATA-only drives. This section contains the following topics: · Embedded SATA RAID Controller Requirements, page C-11 · Embedded SATA RAID: Two SATA Controllers, page C-12 · Embedded SATA RAID Controller Considerations, page C-13 · Installing a Software RAID 5 Key Module for Embedded RAID 5 Support, page C-13 · Enabling the Embedded SATA RAID Controller in the BIOS, page C-13 · Disabling the Embedded RAID Controller in the BIOS, page C-15 · Launching the LSI Embedded RAID Configuration Utility, page C-15 · Installing LSI MegaSR Drivers For Windows and Linux, page C-16 Embedded SATA RAID Controller Requirements The embedded SATA RAID controller hub requires the following items: · The embedded RAID option is available only with the small form factor drives version of this server at this time. · Mini-SAS cables: SFF 8-drive: UCS-220CBLSR8= LFF 4-drive: UCS-220CBLSR4= · The embedded SATA RAID controller must be enabled in the server BIOS. · (Optional) A SATA RAID 5 key module. This optional module can be installed to a motherboard header to add SATA RAID 5 support. · (Optional) LSI MegaSR drivers for Windows or Linux. OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide C-11 Embedded SATA RAID Controllers Appendix C RAID Controller Considerations Embedded SATA RAID: Two SATA Controllers The embedded RAID Patsburgh controller hub (PCH) is split into two controllers: SATA and sSATA (secondary SATA). These two controllers are seen as separate RAID controllers in the Cisco IMC interface and are configurable separately. · The first SATA controller controls drives 14; the secondary sSATA controller controls drives 58. · When configuring RAID groups, you cannot create a group that spans more than four drives. The first SATA controller can control a RAID group of up to four drives, comprised only of drives 14. The secondary sSATA controller can control a RAID group of up to four drives, comprised only of drives 58. See Figure C-2. Figure C-2 Embedded RAID Controller Drive Groups HDD 01 HDD 04 HDD 02 HDD 05 HDD 03 HDD 06 HDD 07 HDD 08 353286 PCH SATA sSATA · See Enabling the Embedded SATA RAID Controller in the BIOS, page C-13 for instructions on enabling the two SATA controllers. · Each controller is listed separately in the BIOS. You can select the boot order of the controllers in the BIOS (use the Boot Options tab in the BIOS Setup Utility). Note To set boot order for virtual drives, use the LSI Embedded RAID Configuration Utility. See Launching the LSI Embedded RAID Configuration Utility, page C-15. C-12 Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 Appendix C RAID Controller Considerations Embedded SATA RAID Controllers Embedded SATA RAID Controller Considerations Note the following considerations: · The default setting for this embedded controller hub is SATA RAID 0, 1, and 10 support for up to eight SATA drives (in two groups of four drives). · You can upgrade to SATA RAID 0, 1, 5, 10 support for up to eight SATA drives (in two groups of four drives) by installing a RAID 5 key module on the motherboard. See Installing a Software RAID 5 Key Module for Embedded RAID 5 Support, page C-13. · When you order the server with this embedded controller, the controller is enabled in the BIOS. Instructions for enabling the controller are included for the case in which a server is reset to defaults (Disabled). See Enabling the Embedded SATA RAID Controller in the BIOS, page C-13. · You cannot downgrade from using a hardware RAID controller card to using the software RAID embedded controller (see RAID Controller Migration, page C-7). Caution Data migration from software RAID (embedded RAID) to hardware RAID (a controller card) is not supported and could result in data loss. Migrations from software RAID to hardware RAID are supported only before there is data on the drives, or when there are no drives in the server (see RAID Controller Migration, page C-7). · The required drivers for this controller are already installed and ready to use with the LSI SWRAID Configuration Utility. However, if you will use this controller with Windows or Linux, you must download and install additional drivers for those operating systems. See Installing LSI MegaSR Drivers For Windows and Linux, page C-16. Installing a Software RAID 5 Key Module for Embedded RAID 5 Support The software RAID 5 key module contains a chip on a small circuit board. This module attaches to a two-pin motherboard header. This chip upgrades support to add embedded SATA RAID 5 support. To install a RAID 5 key module, see Installing a Software RAID 5 Key Module for Embedded RAID 5 Support, page C-13. Enabling the Embedded SATA RAID Controller in the BIOS Note The default setting in the BIOS for the embedded controller is disabled. When you enable this controller, both the primary (SATA) and secondary (sSATA) controllers are enabled. OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide C-13 Embedded SATA RAID Controllers Appendix C RAID Controller Considerations Enabling SATA Mode and Selecting Option ROM Mode Step 1 Set the SATA mode for managing the two boot drives: a. Boot the server and press F2 when prompted to enter the BIOS Setup utility. b. Choose the Advanced tab, and then choose LOM and PCIe Slots Configuration. c. Select PCH SATA Mode and then choose one of the options from the dialog: AHCI--Not used at this time. Disabled--The embedded RAID controller is disabled. LSI SW RAID--In supported server versions, you can manage the internal SSD boot drives or the front-facing drives by using the server's embedded SATA RAID controller. Note Before you change from LSI SW RAID mode to AHCI mode, delete all the RAID volumes configured in the connected physical drives. d. If you selected LSI SW RAID mode and you want to set the option ROM mode, continue with the next step. If not, skip to Step 3. Note There is no option ROM mode setting in AHCI SATA mode. Step 2 Step 3 Optional: Set the SATA option ROM mode for the two boot drives (only with LSI SW RAID SATA mode): a. Choose the Advanced tab, and then choose LOM and PCIe Slots Configuration. b. Select PCH SATA OPROM Mode and then choose one of the options from the dialog: Enabled--You can boot from these boot drives. You can use the UEFI management interface or the free-standing legacy management utility. Disabled--You cannot boot from these boot drives. UEFI Only--Select this to enable booting but manage RAID only by using the UEFI version of the LSI utility that is built into the server BIOS. See Launching the LSI Embedded RAID Configuration Utility, page C-15. Legacy Only--Select this enable booting but manage RAID only by using the free-standing version of the LSI utility. See Launching the LSI Embedded RAID Configuration Utility, page C-15. Press F10 to save your changes and exit the utility. C-14 Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 Appendix C RAID Controller Considerations Embedded SATA RAID Controllers Disabling the Embedded RAID Controller in the BIOS Step 1 Step 2 Step 3 Step 4 Boot the server and press F2 when prompted to enter the BIOS Setup Utility. Select the Advanced tab, and then select LOM and PCIe Slots Configuration. Set PCH SATA Mode to Disabled. Press F10 to save your changes and exit the utility. Launching the LSI Embedded RAID Configuration Utility Launch the LSI utility by pressing Ctrl-M when you see the prompt during system boot. For information about using the Embedded MegaRAID software to configure your disk arrays, see the LSI Embedded MegaRAID Software User Guide. OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide C-15 Embedded SATA RAID Controllers Appendix C RAID Controller Considerations Installing LSI MegaSR Drivers For Windows and Linux Note The required drivers for this controller are already installed and ready to use with the LSI software RAID Configuration Utility. However, if you will use this controller with Windows or Linux, you must download and install additional drivers for those operating systems. This section explains how to install the LSI MegaSR drivers for the following supported operating systems: · Microsoft Windows Server · Red Hat Enterprise Linux (RHEL) · SUSE Linux Enterprise Server (SLES) For the specific supported OS versions, see the Hardware and Software Interoperability Matrix for your server release. This section contains the following topics: · Downloading the LSI MegaSR Drivers, page C-16 · Microsoft Windows Driver Installation, page C-17 · Linux Driver Installation, page C-19 Downloading the LSI MegaSR Drivers The MegaSR drivers are included in the C-Series driver ISO for your server and OS. Download the drivers from Cisco.com. Step 1 Find the drivers ISO file download for your server online and download it to a temporary location on your workstation: a. See the following URL: http://www.cisco.com/cisco/software/navigator.html b. Click Unified Computing and Servers in the middle column. c. Click Cisco UCS C-Series Rack-Mount Standalone Server Software in the right-hand column. d. Click your model of server in the right-hand column. e. Click Unified Computing System (UCS) Drivers. f. Click the release number that you are downloading. g. Click Download to download the drivers' ISO file. h. Verify the information on the next page, and click Proceed With Download. i. Continue through the subsequent screens to accept the license agreement and then browse to a location where you want to save the drivers' ISO file. C-16 Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 Appendix C RAID Controller Considerations Embedded SATA RAID Controllers Microsoft Windows Driver Installation This section describes how to install the LSI MegaSR driver in a Windows installation. This section contains the following topics: · Windows Server 2008R2 Driver Installation, page C-17 · Updating the Windows Driver, page C-18 · Linux Driver Installation, page C-19 Windows Server 2008R2 Driver Installation The Windows operating system automatically adds the driver to the registry and copies the driver to the appropriate directory. Step 1 Create a RAID drive group using the LSI Software RAID Configuration Utility before you install this driver for Windows. Launch this utility by pressing Ctrl-M when LSI SWRAID is shown during the BIOS POST. Step 2 Download the Cisco UCS C-Series drivers' ISO, as described in Downloading the LSI MegaSR Drivers, page C-16. Step 3 Prepare the drivers on a USB thumb drive: a. Burn the ISO image to a disk. b. Browse the contents of the drivers folders to the location of the embedded MegaRAID drivers: /<OS>/Storage/Intel/C600/ c. Expand the Zip file, which contains the folder with the MegaSR driver files. d. Copy the expanded folder to a USB thumb drive. Step 4 Start the Windows driver installation using one of the following methods: · To install from local media, connect an external USB DVD drive to the server and then insert the first Windows installation disk into the drive. Skip to Step 6. · To install from remote ISO, log in to the server's Cisco IMC interface and continue with the next step. Step 5 Launch a Virtual KVM console window and click the Virtual Media tab. a. Click Add Image and browse to select your remote Windows installation ISO file. b. Check the check box in the Mapped column for the media that you just added, and then wait for mapping to complete. Step 6 Power cycle the server. Step 7 Press F6 when you see the F6 prompt during bootup. The Boot Menu window opens. Step 8 On the Boot Manager window, choose the physical disk or virtual DVD and press Enter. The Windows installation begins when the image is booted. Step 9 Press Enter when you see the prompt, "Press any key to boot from CD." Step 10 Observe the Windows installation process and respond to prompts in the wizard as required for your preferences and company standards. OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide C-17 Embedded SATA RAID Controllers Appendix C RAID Controller Considerations Step 11 When Windows prompts you with "Where do you want to install Windows," install the drivers for embedded MegaRAID: a. Click Load Driver. You are prompted by a Load Driver dialog box to select the driver to be installed. b. Connect the USB thumb drive that you prepared in Step 3 to the target server. c. On the Windows Load Driver dialog that you opened in Step a, click Browse. d. Use the dialog box to browse to the location of the drivers folder on the USB thumb drive, and then click OK. Windows loads the drivers from the folder and when finished, the driver is listed under the prompt, "Select the driver to be installed." e. Click Next to install the drivers. Updating the Windows Driver Step 1 Step 2 Step 3 Step 4 Click Start, point to Settings, and then click Control Panel. Double-click System, click the Hardware tab, and then click Device Manager. Device Manager starts. In Device Manager, double-click SCSI and RAID Controllers, right-click the device for which you are installing the driver, and then click Properties. On the Driver tab, click Update Driver to open the Update Device Driver wizard, and then follow the wizard instructions to update the driver. C-18 Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 Appendix C RAID Controller Considerations Embedded SATA RAID Controllers Linux Driver Installation This section explains the steps to install the embedded MegaRAID device driver in a Red Hat Enterprise Linux installation or a SUSE Linux Enterprise Server installation. This section contains the following topics: · Obtaining the Driver Image File, page C-19 · Preparing Physical Installation Disks For Linux, page C-19 · Installing the Red Hat Linux Driver, page C-21 · Installing the SUSE Linux Enterprise Server Driver, page C-22 Obtaining the Driver Image File See Downloading the LSI MegaSR Drivers, page C-16 for instructions on obtaining the drivers. The Linux driver is offered in the form of dud-[driver version].img, which is the boot image for the embedded MegaRAID stack. Note The LSI MegaSR drivers that Cisco provides for Red Hat Linux and SUSE Linux are for the original GA versions of those distributions. The drivers do not support updates to those OS kernels. Preparing Physical Installation Disks For Linux This section describes how to prepare physical Linux installation disks from the driver image files, using either the Windows operating system or the Linux operating system. Note The driver image is too large for a floppy disk, so use a USB thumb drive instead. Note Alternatively, you can mount the dud.img file as a virtual floppy disk, as described in the installation procedures. Preparing Physical Installation Disks with the Windows Operating System Under Windows, you can use the RaWrite floppy image-writer utility to create disk images from image files. Step 1 Step 2 Step 3 Download the Cisco UCS C-Series drivers ISO, as described in Downloading the LSI MegaSR Drivers, page C-16 and save it to your Windows system that has a diskette drive. Extract the dud.img file: a. Burn the ISO image to a disc. b. Browse the contents of the drivers folders to the location of the embedded MegaRAID drivers: /<OS>/Storage/Intel/C600/ c. Expand the Zip file, which contains the folder with the driver files. Copy the driver update disk image dud-[driver version].img and your file raw write.exe to a directory. OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide C-19 Embedded SATA RAID Controllers Appendix C RAID Controller Considerations Note RaWrite is not included in the driver package. Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Step 10 Step 11 Step 12 Step 13 Step 14 If necessary, use this command to change the filename of the driver update disk to a name with fewer than eight characters: copy dud-[driver version].img dud.img Open the DOS Command Prompt and navigate to the directory where raw write.exe is located. Enter the following command to create the installation diskette: raw write Press Enter. You are prompted to enter the name of the boot image file. Enter: dud.img Press Enter. You are prompted for the target disk. Insert a floppy disk into the server and enter: A: Press Enter. Press Enter again to start copying the file to the diskette. After the command prompt returns and the floppy disk drive LED goes out, remove the disk. Label the diskette with the image name. Preparing Installation Disks with a Linux Operating System Under Red Hat Linux and SUSE Linux, you can use a driver disk utility to create disk images from image files. Note The driver image is too large for a floppy disk, so use a USB thumb drive instead. Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Download the Cisco UCS C-Series drivers ISO, as described in Downloading the LSI MegaSR Drivers, page C-16 and save it to your Linux system that has a disk drive. Extract the dud.img file: a. Burn the ISO image to a disc. b. Browse the contents of the drivers folders to the location of the embedded MegaRAID drivers: /<OS>/Storage/Intel/C600/ c. Expand the Zip file, which contains the folder with the driver files. Copy the driver update disk image dud-[driver version].img to your Linux system. Insert a blank USB thumb drive into a port on your Linux system. Create a directory and mount the DUD image to that directory: mkdir <destination_folder> mount -oloop <driver_image> <destination_folder> Copy the contents in the directory to your USB thumb drive. C-20 Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 Appendix C RAID Controller Considerations Embedded SATA RAID Controllers Installing the Red Hat Linux Driver Note This server supports Red Hat Linux 6.5 or later. For the specific supported OS versions, see the Hardware and Software Interoperability Matrix for your server release. This section describes the fresh installation of the Red Hat Enterprise Linux device driver on systems with the embedded MegaRAID stack. Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Create a RAID drive group using the LSI Software RAID Configuration utility before you install this driver for the OS. Launch this utility by pressing Ctrl-M when LSI SWRAID is shown during the BIOS POST. Prepare the dud.img file using one of the following methods: · To install from a physical disk: Use one of the procedures in Preparing Physical Installation Disks For Linux, page C-19. Then return to Step 4 of this procedure. · To install from a virtual floppy disk: Download and save the Cisco UCS C-Series drivers' ISO, as described in Downloading the LSI MegaSR Drivers, page C-16. Then continue with the next step. Extract the dud.img file: a. Burn the ISO image to a disc. b. Browse the contents of the drivers folders to the location of the embedded MegaRAID drivers: /<OS>/Storage/Intel/C600/ c. Copy the dud-<driver version>.img file to a temporary location on your workstation. Start the Linux driver installation using one of the following methods: · To install from local media, connect an external USB DVD drive to the server and then insert the first RHEL installation disk into the drive. Then continue with Step 6. · To install from remote ISO, log in to the server's Cisco IMC interface. Then continue with the next step. Launch a Virtual KVM console window and click the Virtual Media tab. a. Click Add Image and browse to select your remote RHEL installation ISO file. b. Click Add Image again and browse to select your dud.img file. c. Check the check boxes in the Mapped column for the media that you just added, then wait for mapping to complete. Power cycle the server. Press F6 when you see the F6 prompt during bootup. The Boot Menu window opens. On the Boot Manager window, select the physical disk or virtual DVD and press Enter. The RHEL installation begins when the image is booted. OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide C-21 Embedded SATA RAID Controllers Appendix C RAID Controller Considerations Step 9 Enter one of the following commands at the boot prompt: · For RHEL 6.x (32- and 64-bit), enter: linux dd blacklist=isci blacklist=ahci nodmraid noprobe=<atadrive number> · For RHEL 7.x (32- and 64-bit), enter: linux dd modprobe.blacklist=ahci nodmraid Note The noprobe values depend on the number of drives. For example, to install RHEL 6.5 on a RAID 5 configuration with three drives, enter Linux dd blacklist=isci blacklist=ahci nodmraid noprobe=ata1 noprobe=ata2 Step 10 Step 11 Step 12 Step 13 Step 14 Step 15 Press Enter. The prompt asks whether you have a driver disk. Use the arrow key to choose Yes, and then press Enter. Choose fd0 to indicate that you have a floppy disk with the driver on it. Do one of the following actions: · If you prepared the IMG file on a physical diskette in Step 2, connect an external disk drive to the target server and then insert the disk in the A:/ drive and press Enter. · If you mapped the IMG file as a virtual floppy in Step 5, choose the location of the virtual floppy. The installer locates and loads the driver for your device. The following message appears: Loading megasr driver... Follow the Red Hat Linux installation procedure to complete the installation. Reboot the system. Installing the SUSE Linux Enterprise Server Driver For the specific supported OS versions, see the Hardware and Software Interoperability Matrix for your server release. This section describes the installation of the SUSE Linux Enterprise Server driver on a system with the embedded MegaRAID stack. Step 1 Step 2 Step 3 Create a RAID drive group using the LSI SWRAID Configuration utility before you install this driver for the OS. Launch this utility by pressing Ctrl+M when LSI SWRAID is shown during the BIOS POST. Prepare the dud.img file using one of the following methods: · To install from a physical disk, use one of the procedures in Preparing Physical Installation Disks For Linux, page C-19. Then return to Step 4 of this procedure. · To install from a virtual floppy disk, download and save the Cisco UCS C-Series drivers' ISO, as described in Downloading the LSI MegaSR Drivers, page C-16. Then continue with the next step. Extract the dud.img file: a. Burn the ISO image to a disc. b. Browse the contents of the drivers folders to the location of the embedded MegaRAID drivers: C-22 Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 Appendix C RAID Controller Considerations Embedded SATA RAID Controllers Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Step 10 Step 11 Step 12 Step 13 Step 14 Step 15 Step 16 /<OS>/Storage/Intel/C600/ c. Copy the dud-<driver version>.img file to a temporary location on your workstation. Start the Linux driver installation using one of the following methods: · To install from local media, connect an external USB DVD drive to the server and then insert the first RHEL install disc into the drive. Skip to Step 6. · To install from remote ISO, log in to the server's Cisco IMC interface and continue with the next step. Launch a Virtual KVM console window and click the Virtual Media tab. a. Click Add Image and browse to select your remote RHEL installation ISO file. b. Click Add Image again and browse to select your dud.img file. c. Check the check box in the Mapped column for the media that you just added, and then wait for mapping to complete. Power cycle the server. Press F6 when you see the F6 prompt during bootup. The Boot Menu window opens. On the Boot Manager window, select the physical disk or virtual DVD and press Enter. The SLES installation begins when the image is booted. When the first SLES screen appears, choose Installation. Enter one of the following in the Boot Options field: · For SLES 11 and SLES 11 SP1 (32- and 64-bit), enter: brokenmodules=ahci · For SLES 11 SP2 (32-and 64-bit), enter: brokenmodules=ahci brokenmodules=isci · For SLES 12, enter: brokenmodules=ahci Press F6 for the driver and choose Yes. Do one of the following actions: · If you prepared the IMG file on a physical disk in Step 2, insert the USB thumb drive to the target server and then insert the disk in the A:/ drive and press Enter. · If you mapped the IMG file as a virtual floppy in Step 5, choose the location of the virtual floppy. "Yes" appears under the F6 Driver heading. Press Enter to choose Installation. Press OK. The following message is displayed: LSI Soft RAID Driver Updates added. At the menu, choose the driver update medium and press the Back button. Continue and complete the installation process by following the prompts in the installation wizard. OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide C-23 Restoring RAID Configuration After Replacing a RAID Controller Appendix C RAID Controller Considerations Restoring RAID Configuration After Replacing a RAID Controller When you replace a RAID controller, the RAID configuration that is stored in the controller is lost. Step 1 Step 2 Step 3 Replace your RAID controller. See Replacing a PCIe Card, page 3-46. If this was a full chassis swap, replace all drives into the drive bays, in the same order that they were installed in the old chassis. Reboot the server and watch for the prompt to press F. Note For newer RAID controllers, you are not prompted to press F. Instead, the RAID configuration is imported automatically. In this case, skip to Step 6. Step 4 Step 5 Step 6 Press F when you see the following on-screen prompt: Foreign configuration(s) found on adapter. Press any key to continue or `C' load the configuration utility, or `F' to import foreign configuration(s) and continue. Press any key (other than C) to continue when you see the following on-screen prompt: All of the disks from your previous configuration are gone. If this is an unexpected message, then please power of your system and check your cables to ensure all disks are present. Press any key to continue, or `C' to load the configuration utility. Watch the subsequent screens for confirmation that your RAID configuration was imported correctly. · If you see the following message, your configuration was successfully imported. The LSI virtual drive is also listed among the storage devices. N Virtual Drive(s) found on host adapter. · If you see the following message, your configuration was not imported. This situation can happen if you do not press F quickly enough when prompted. In this case, reboot the server and try the import operation again when you are prompted to press F. 0 Virtual Drive(s) found on host adapter. C-24 Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 Appendix C RAID Controller Considerations For More Information For More Information The LSI utilities have help documentation for more information about using the utilities. For basic information about RAID and for using the utilities for the RAID controller cards that are supported in Cisco servers, see the Cisco UCS Servers RAID Guide. Full Avago Technologies/LSI documentation is also available: · For hardware SAS MegaRAID--Avago Technologies/LSI 12 Gb/s MegaRAID SAS Software User's Guide, Rev. F · For software embedded MegaRAID--LSI Embedded MegaRAID Software User Guide OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide C-25 For More Information Appendix C RAID Controller Considerations C-26 Cisco UCS C220 M4 Server Installation and Service Guide OL-32473-01 D A P P E N D I X Installation for Cisco UCS Integration The Cisco UCS Manager integration instructions have been moved to the integration guides found here: Cisco UCS C-Series Server Integration with UCS Manager Guides Refer to the guide that is for the version of Cisco UCS Manager that you are using. Also refer to the release notes for Cisco UCS Manager software and C-Series software for any special considerations regarding integration in your release. · Cisco UCS Manager Release Notes · Cisco C-Series Software Release Notes OL-32473-01 Cisco UCS C220 M4 Server Installation and Service Guide D-1 Appendix D Installation for Cisco UCS Integration Cisco UCS C220 M4 Server Installation and Service Guide D-2 OL-32473-01Acrobat Elements 10.0.0 (Windows); modified using iText 2.1.7 by 1T3XT FrameMaker 11.0.2