
Initial Configuration

Table of contents

UEFI Menu 3

System Configuration and Services 21

Host-side Interface Configuration 30

Secure Boot 48

UEFI Secure Boot 49

Updating Platform Firmware 71

Default Passwords and Policies 74

Initial Configuration 1

Table of contents

UEFI Menu

System Configuration and Services

Host-side Interface Configuration

Secure Boot

UEFI Secure Boot

Updating Platform Firmware

Default Passwords and Policies

Initial Configuration 2

The following pages provide instructions regarding general configuration of the BlueField
DPU.

UEFI Menu

System Configuration and Services

Host-side Interface Configuration

Secure Boot

Default Passwords and Policies

Initial Configuration 3

UEFI Menu
Unified Extensible Firmware Interface (UEFI) is l ow-level firmware that is part of the
NVIDIA® BlueField® bootloader stack. UEFI acts as an interface between the BlueField's
Arm-trusted firmware (ATF) bootloader and the OS.

UEFI provides a menu which supports certain configuration options. This section lists and
describes configurations supported from the UEFI Device Manager menu.

Accessing the UEFI Menu

Info

The UEFI specification is available at UEFI.org.

Info

For more complete information beyond the Device Manager menu
option, please refer to the NVIDIA Networking Server-Side
Documentation of Flexboot & UEFI > User Manual > User Interface >
HII (UEFI) System Settings Configuration Options.

Info

Most of these menu items are also configurable via Redfish (when
enabled).

http://uefi.org/
https://docs.nvidia.com/networking/software/firmware-management/index.html#networking-server-side-flexboot-uefi
https://docs.nvidia.com/networking/software/firmware-management/index.html#networking-server-side-flexboot-uefi
https://docs.nvidia.com/networking/display/bluefieldbsp490/Redfish

Initial Configuration 4

To access the UEFI menu, users must have a connection to the BlueField console either
through a UART serial port or the virtual RShim console device. The console should be
configured to 115200 8N1. The UEFI's UI window size is 80 columns and 25 rows.
Configure your terminal size accordingly.

UEFI's UI uses a legacy character encoding, CP437 (code page 437), to ensure most
compatibility. Configure your terminal to use this code page to show the table borders
properly.

The following is an example for how to configure this properly in putty:

To enter the UEFI menu, hit the Esc key twice when prompted during the normal boot
sequence:

Initial Configuration 5

Front Page

Note

All BlueField platforms ship with a default UEFI menu password,
bluefield . If the password is set to bluefield when you enter

the UEFI menu, users are prompted to change it.

Tip

NVIDIA strongly recommends all DPUs have their UEFI password set
to a non-default value. This can be done using the UEFI menu or
Redfish.

Initial Configuration 6

There are three main menu items in the front page:

Device Manager

Boot Manager

Boot Maintenance Manager

The rest of this page focuses on Device Manager.

Device Manager

Initial Configuration 7

System Configuration

Lists different system configuration options.

Note

Some configuration options may require a system reset to take effect.

Initial Configuration 8

Menu
Optio
n

Description

Set
Pass
word

Set the system password.
Set the UEFI password. All BlueField Platforms ship with a default UEFI menu
password, bluefield . If the password is set to bluefield when you enter
the UEFI menu, users are prompted to change it.

Info

To change the configuration of any of these BIOS attributes using
Redfish, refer to section "Changing BIOS Attributes Value" in the BMC
Software User Manual.

Tip

https://docs.nvidia.com/networking/display/bluefieldbmc/bios+configuration#src-3095344453_BIOSConfiguration-ChangingBIOSAttributesValue

Initial Configuration 9

Menu
Optio
n

Description

Selec
t
SPCR
UART

Choose UART for serial port console redirection
[<Disabled>|<UART Port 0> | <UART Port 1>] .

Users may set the SPCR table (ACPI) to point to UART0, UART1, or disable the
feature. The OS can reference this table to steer serial output. For example, Linux
uses this table for its earlycon feature.

Enabl
e
SMM
U

Enable/disable the SMMU.
BlueField Platforms have an integrated SMMU on the SoC. Users may enable or
disable this unit. Enabling it can make the system more secure but, with certain
network flows, the enabled SMMU could cause performance issues.

Disab
le
SPMI

Enable/disable ACPI server platform management interface table.
Allows users to enable/disable the ACPI SPMI table. This table instructs the OS
on what interface/device to use for the IPMI SSIF.

NVIDIA strongly recommends all DPUs have their UEFI
password set to a non-default value. This can be done using
the UEFI menu or Redfish.

Warning
Leave this attribute to its default if you are not certain how
to configure it, or you may destabilize your system.

Warning
Leave this attribute to its default if you do not certain how to
configure it.

Warning

Initial Configuration 10

Menu
Optio
n

Description

Enabl
e 2nd
eMM
C

Enable/disable the second eMMC.
Some legacy BlueField systems have 2 eMMC devices. This feature has been
discontinued.

Boot
Partit
ion
Prote
ction

Enable/disable the eMMC boot partition protection. Takes effect after reboot.
There are 2 logical "boot partitions" on the eMMC device used to store ATF/UEFI
code. These are referred to as the primary/secondary boot partitions. Users can
write-protect these partitions using this attribute.

Leave this attribute to its default if you do not certain how to
configure it.

Warning
Leave this attribute to its default (disabled) if you do not
certain how to configure it, or your system will not boot
correctly.

Info
These are separate devices from the flash storage used by
the OS (for file systems). They do not contain file systems
and are only used for storing binary boot code on raw flash.
Do not confuse an eMMC boot partition with an EFI System
Partition (ESP) used to store boot loaders and OS images on
a FAT32 file system.

Info
If secure boot is enabled, these partitions are write-
protected by default.

Initial Configuration 11

Menu
Optio
n

Description

Disab
le
PCIe

Enable/disable PCIe root complex.
Normally, UEFI enumerates the PCIe bus during the boot process and reports
this information to the OS via the ACPI SSDT table. If this attribute is disabled,
UEFI does not populate the SSDT with the PCIe root complex information, so the
OS does not have visibility to devices on the PCIe bus.

Enabl
e OP-
TEE

Enable/disable support for trusted execution environment.

Note
This menu option is not currently supported for BlueField-3.

Note
This attribute is used for diagnostic purposes and should not
be modified.

Warning
Do not enable this feature. More information will be provided
in future releases.

Initial Configuration 12

Menu
Optio
n

Description

Disab
le
TMFF

Enable/disable the BlueField-specific ACPI TMFIFO table.
This can be used by some OSes to perform console/debugging over the BlueField
TMFIFO interface. It can override the SPCR table.

Disab
le
HEST

Disable OS error handling via HEST (hardware error source table).
HEST is a mechanism for reporting hardware errors (e.g., CPU errors, memory
errors, PCIe errors) to the OS.
By default, this option is disabled (i.e., HEST is enabled) so the OS can handle
hardware errors more gracefully by either logging them or taking corrective
action.
When this option is checked and HEST is disabled, the BIOS (ATF/UEFI) is
immediately involved when hardware errors happen, potentially preventing
undesired error propagation.

Disab
le
Force
Pxe
Retry

If enabled, PXE boot option entries are attempted only once instead of retrying
them in a loop when "ForcePxe" is requested via IPMI interface

Field
Mode

Disable/enable NIC BMC field mode.
Allows users to enable/disable NIC BMC field mode. When the NIC BMC has field
mode enabled, most of its functionality is disabled (beyond the serial console).
The BlueField Platform's OOB interface will also not be functional if field mode is
enabled.

Warning
Leave this attribute to its default if you are not certain how
to configure it.

Warning
Leave this attribute to default if you are not certain.

Initial Configuration 13

Menu
Optio
n

Description

Set
RTC

Allows users to set the time and date for the real-time clock.

BlueFi
eld
Mode
s

Internal CPU Model: [<Separated>|<Embedded>]
Host Privilege Level: [<Restricted>|<Privileged>]
NIC Mode – sets the BlueField to operate in either NIC mode or DPU mode

Redfi
sh
Confi
gurati
on

Enable/disable Redfish support. If UEFI is unable to discover a Redfish server, it
reverts to using the defined UEFI boot options (i.e., the "normal" UEFI boot
sequence). Disabling Redfish helps improve boot time as the Redfish server
discovery process is skipped.
Disabling Redfish in the UEFI menu disables the Redfish client in UEFI. However,
users can still interact with BMC Redfish server. Any request sent to the BMC
Redfish server when the UEFI Redfish client is disabled would be cached by the
BMC server until the UEFI Redfish client is re-enabled to process the pending
requests.
BMC Redfish server clears the pending cached request if BMC is factory reset or
power cycled.
The RTCSync option syncs RTC time with Redfish time under the Manager
schema.

Pass
word
Setti
ngs

Default Password Policy – mandates the password being set adheres to the
new policy of 12 characters minimum and 64 characters maximum. The last
5 passwords cannot be reused.

Warning
Leave this attribute to its default unless you are certain you
wish to enable field mode on the NIC BMC. Consult the DPU
BMC user manual for more information on field mode.

Note
Any change to this attribute requires device reset to take
effect.

Initial Configuration 14

Menu
Optio
n

Description

Set Legacy Password – set password with legacy password policy to
accommodate a UEFI firmware downgrade. The new password policy
(default) is not compatible with older versions of UEFI firmware.

Reset
EFI
Varia
bles

This action clears all EFI variables to factory default state. Reset the device to
take effect.

Emm
cWip
e

Clears the eMMC disk. The action is immutable and all data on eMMC is lost
after it is performed.

Nvme
Wipe

Clears the NVMe SSD. This action is immutable and all data on NVMe SSD is lost
after it is performed.

Large
ICMC
size

Set the large ICMC size in hex and MB. Valid value: 0-100000h in 80h increments.

Enabl
e
DDR
5600

Enable/disable DDR max speed of 5600 MT/s.

Warning
Only reset the EFI variable store under the advice of NVIDIA
Enterprise Support. Resetting the EFI variable store deletes
all UEFI variables including the boot options and the system
may not boot without setting new boot options.

Info
This menu option is only relevant for BlueField-3 platforms.

Info
This menu option is only relevant for B3220 BlueField-3
devices which have a default speed of 5200 MT/s. This speed
can be increased to 5600 MT/s provided the hardware can
support it, which is indicated via the fuse bits. Other

Initial Configuration 15

Menu
Optio
n

Description

L3
Cach
e
Partit
ion

Set the L3 cache partition level to allocate part of the L3 cache for the NIC and
others for the BlueField-3 Arm core. The customer-selectable L3 cache partition
to be allocated for the NIC can be selected from the following percentage levels:

L3 Cache Level # L3 Cache Percentage for NIC

0 (default) 0% (default)

1 12.5%

2 25%

3 37.5%

4 50%

5 62.5%

6 75%

7 87.5%

Secure Boot Configuration

Please refer to section "UEFI Secure Boot" for more information.

RAM Disk Configuration

BlueField SKUs are automatically fixed at 5600 MT/s
irrespective of this setting and cannot be reduced to 5200
MT/s.

Warning
Do not enable this feature. More information will be provided
in future software releases.

Initial Configuration 16

Provides option to create/delete RAM disks.

Tls Auth Configuration

Provides configuration (enroll/delete) of TLS auth certificates for HTTPS traffic in UEFI.

Note

If TLS Auth certificate is configured then all HTTPS traffic on all
network interfaces will be verified. UEFI only supports Server CA
configuration, Client CA configuration is currently not supported.

Initial Configuration 17

iSCSI Configuration

Provides configuration options for iSCSI.

Initial Configuration 18

Network Device List

Lists the MAC addresses of the available network interfaces in UEFI.

Initial Configuration 19

Users can find more information (Link status, Link speed, PCI ID, Link type, etc.) on each
interface upon selection. Users can also configure the interfaces (IPv4, IPv6, VLAN, HTTP
BOOT) as needed.

The following menu can be reached by selecting the
Nvidia Network Adapter - <mac-address> menu options:

Initial Configuration 20

Initial Configuration 21

System Configuration and
Services
This page provides information on system services and scripts based on the default DPU
OS (i.e., Ubuntu).

First Boot After BFB Installation

During the first boot, the cloud-init service configures the system based on the data
provided in the following files:

/var/lib/cloud/seed/nocloud-net/network-config – network interface
configuration

/var/lib/cloud/seed/nocloud-net/user-data – default users and
commands to run on the first boot

RDMA and ConnectX Driver Initialization

RDMA and NVIDIA® ConnectX® drivers are loaded upon boot by the openibd.service .

One of the kernel modules loaded by the openibd.service , ib_umad , triggers

modprobe rule from /etc/modprobe.d/mlnx-bf.conf file that runs the

/sbin/mlnx_bf_configure script. See Default Ports and OVS Configuration for more
information.

Note

The mlx5_core kernel module is loaded automatically by the kernel
as a registered device driver.

https://docs.nvidia.com/networking/display/bluefieldbsp490/Deploying+BlueField+Software+Using+BFB+from+Host

Initial Configuration 22

Firewall Configuration

The BFB image includes the following firewall configuration (enabled by default):

$ cat /etc/iptables/rules.v4

*mangle
:PREROUTING ACCEPT [45:3582]
:INPUT ACCEPT [45:3582]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [36:4600]
:POSTROUTING ACCEPT [36:4600]
:KUBE-IPTABLES-HINT - [0:0]
:KUBE-KUBELET-CANARY - [0:0]
COMMIT
*filter
:INPUT ACCEPT [41:3374]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [32:3672]
:DOCKER-USER - [0:0]
:KUBE-FIREWALL - [0:0]
:KUBE-KUBELET-CANARY - [0:0]
:LOGGING - [0:0]
:POSTROUTING - [0:0]
:PREROUTING - [0:0]
-A INPUT -j KUBE-FIREWALL
-A INPUT -p tcp -m tcp --dport 111 -j REJECT --reject-with icmp-
port-unreachable
-A INPUT -p udp -m udp --dport 111 -j REJECT --reject-with icmp-
port-unreachable
-A INPUT -i lo -m comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -d 127.0.0.0/8 -m mark --mark 0xb -m comment --comment
MD_IPTABLES -j DROP
-A INPUT -m mark --mark 0xb -m state --state RELATED,ESTABLISHED
-m comment --comment MD_IPTABLES -j ACCEPT

Initial Configuration 23

-A INPUT -p tcp -m tcp ! --dport 22 ! --tcp-flags FIN,SYN,RST,ACK
SYN -m mark --mark 0xb -m state --state NEW -m comment --comment
MD_IPTABLES -j DROP
-A INPUT -f -m mark --mark 0xb -m comment --comment MD_IPTABLES -
j DROP
-A INPUT -p tcp -m tcp --tcp-flags FIN,SYN,RST,PSH,ACK,URG
FIN,SYN,RST,PSH,ACK,URG -m mark --mark 0xb -m comment --comment
MD_IPTABLES -j DROP
-A INPUT -p tcp -m tcp --tcp-flags FIN,SYN,RST,PSH,ACK,URG NONE -
m mark --mark 0xb -m comment --comment MD_IPTABLES -j DROP
-A INPUT -m mark --mark 0xb -m state --state INVALID -m comment -
-comment MD_IPTABLES -j DROP
-A INPUT -p tcp -m tcp --tcp-flags RST RST -m mark --mark 0xb -m
hashlimit --hashlimit-above 2/sec --hashlimit-burst 2 --
hashlimit-mode srcip --hashlimit-name hashlimit_0 --hashlimit-
htable-expire 30000 -m comment --comment MD_IPTABLES -j DROP
-A INPUT -p tcp -m mark --mark 0xb -m state --state NEW -m
hashlimit --hashlimit-above 50/sec --hashlimit-burst 50 --
hashlimit-mode srcip --hashlimit-name hashlimit_1 --hashlimit-
htable-expire 30000
-m comment --comment MD_IPTABLES -j DROP
-A INPUT -p tcp -m mark --mark 0xb -m conntrack --ctstate NEW -m
hashlimit --hashlimit-above 60/sec --hashlimit-burst 20 --
hashlimit-mode srcip --hashlimit-name hashlimit_2 --hashlimit-
htable-expire 30000 -m comment --comment MD_IPTABLES -j DROP
-A INPUT -m mark --mark 0xb -m recent --rcheck --seconds 86400 --
name portscan --mask 255.255.255.255 --rsource -m comment --
comment MD_IPTABLES -j DROP
-A INPUT -m mark --mark 0xb -m recent --remove --name portscan --
mask 255.255.255.255 --rsource -m comment --comment MD_IPTABLES
-A INPUT -p tcp -m tcp --dport 22 -m mark --mark 0xb -m conntrack
--ctstate NEW -m recent --set --name DEFAULT --mask
255.255.255.255 --rsource -m comment --comment MD_IPTABLES
-A INPUT -p tcp -m tcp --dport 22 -m mark --mark 0xb -m conntrack
--ctstate NEW -m recent --update --seconds 60 --hitcount 50 --

Initial Configuration 24

name DEFAULT --mask 255.255.255.255 --rsource -m comment --
comment MD_IPTABLES -j DROP

-A INPUT -p tcp -m tcp --dport 443 -m mark --mark 0xb -m
conntrack --ctstate NEW -m recent --set --name DEFAULT --mask
255.255.255.255 --rsource -m comment --comment MD_IPTABLES
-A INPUT -p tcp -m tcp --dport 443 -m mark --mark 0xb -m
conntrack --ctstate NEW -m recent --update --seconds 60 --
hitcount 10 --name DEFAULT --mask 255.255.255.255 --rsource -m
comment --comment MD_IPTABLES -j DROP
-A INPUT -p udp -m udp --dport 161 -m mark --mark 0xb -m
conntrack --ctstate NEW -m recent --set --name DEFAULT --mask
255.255.255.255 --rsource -m comment --comment MD_IPTABLES
-A INPUT -p udp -m udp --dport 161 -m mark --mark 0xb -m
conntrack --ctstate NEW -m recent --update --seconds 60 --
hitcount 100 --name DEFAULT --mask 255.255.255.255 --rsource -m
comment --comment MD_IPTABLES -j DROP
-A INPUT -p tcp -m tcp --dport 22 -m mark --mark 0xb -m conntrack
--ctstate NEW,ESTABLISHED -m comment --comment MD_IPTABLES -j
ACCEPT
-A INPUT -p tcp -m tcp --dport 443 -m mark --mark 0xb -m
conntrack --ctstate NEW,ESTABLISHED -m comment --comment
MD_IPTABLES -j ACCEPT
-A INPUT -p tcp -m tcp --dport 179 -m mark --mark 0xb -m
conntrack --ctstate NEW,ESTABLISHED -m comment --comment
MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --dport 68 -m mark --mark 0xb -m conntrack
--ctstate NEW,ESTABLISHED -m comment --comment MD_IPTABLES -j
ACCEPT
-A INPUT -p udp -m udp --dport 122 -m mark --mark 0xb -m
conntrack --ctstate NEW,ESTABLISHED -m comment --comment
MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --dport 161 -m mark --mark 0xb -m
conntrack --ctstate NEW,ESTABLISHED -m comment --comment
MD_IPTABLES -j ACCEPT

Initial Configuration 25

-A INPUT -p udp -m udp --dport 6306 -m mark --mark 0xb -m
conntrack --ctstate NEW,ESTABLISHED -m comment --comment
MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --dport 69 -m mark --mark 0xb -m conntrack
--ctstate NEW,ESTABLISHED -m comment --comment MD_IPTABLES -j
ACCEPT
-A INPUT -p udp -m udp --dport 389 -m mark --mark 0xb -m
conntrack --ctstate NEW,ESTABLISHED -m comment --comment
MD_IPTABLES -j ACCEPT
-A INPUT -p tcp -m tcp --dport 389 -m mark --mark 0xb -m
conntrack --ctstate NEW,ESTABLISHED -m comment --comment
MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --dport 1812:1813 -m mark --mark 0xb -m
conntrack --ctstate NEW,ESTABLISHED -m comment --comment
MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --dport 49 -m mark --mark 0xb -m conntrack
--ctstate NEW,ESTABLISHED -m comment --comment MD_IPTABLES -j
ACCEPT
-A INPUT -p tcp -m tcp --dport 49 -m mark --mark 0xb -m conntrack
--ctstate NEW,ESTABLISHED -m comment --comment MD_IPTABLES -j
ACCEPT
-A INPUT -p udp -m udp --sport 53 -m mark --mark 0xb -m conntrack
--ctstate NEW,ESTABLISHED -m comment --comment MD_IPTABLES -j
ACCEPT
-A INPUT -p tcp -m tcp --sport 53 -m mark --mark 0xb -m conntrack
--ctstate NEW,ESTABLISHED -m comment --comment MD_IPTABLES -j
ACCEPT
-A INPUT -p udp -m udp --dport 500 -m mark --mark 0xb -m
conntrack --ctstate NEW,ESTABLISHED -m comment --comment
MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --dport 4500 -m mark --mark 0xb -m
conntrack --ctstate NEW,ESTABLISHED -m comment --comment
MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --dport 1293 -m mark --mark 0xb -m
conntrack --ctstate NEW,ESTABLISHED -m comment --comment
MD_IPTABLES -j ACCEPT

Initial Configuration 26

-A INPUT -p tcp -m tcp --dport 1293 -m mark --mark 0xb -m
conntrack --ctstate NEW,ESTABLISHED -m comment --comment
MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --dport 1707 -m mark --mark 0xb -m
conntrack --ctstate NEW,ESTABLISHED -m comment --comment
MD_IPTABLES -j ACCEPT
-A INPUT -p tcp -m tcp --dport 1707 -m mark --mark 0xb -m
conntrack --ctstate NEW,ESTABLISHED -m comment --comment
MD_IPTABLES -j ACCEPT
-A INPUT -i lo -p udp -m udp --dport 3786 -m conntrack --ctstate
NEW,ESTABLISHED -m comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -i lo -p udp -m udp --dport 33000 -m conntrack --ctstate
NEW,ESTABLISHED -m comment --comment MD_IPTABLES -j ACCEPT
-A INPUT -p icmp -m mark --mark 0xb -m comment --comment
MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --sport 5353 --dport 5353 -m mark --mark
0xb -m conntrack --ctstate NEW,ESTABLISHED -m comment --comment
MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --dport 33434:33523 -m mark --mark 0xb -m
comment --comment MD_IPTABLES -j REJECT --reject-with icmp-port-
unreachable
-A INPUT -p udp -m udp --dport 123 -m mark --mark 0xb -m
conntrack --ctstate NEW,ESTABLISHED -m comment --comment
MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --dport 514 -m mark --mark 0xb -m
conntrack --ctstate NEW,ESTABLISHED -m comment --comment
MD_IPTABLES -j ACCEPT
-A INPUT -p udp -m udp --dport 67 -m mark --mark 0xb -m conntrack
--ctstate NEW,ESTABLISHED -m comment --comment MD_IPTABLES -j
ACCEPT
-A INPUT -p tcp -m tcp --dport 60102 -m mark --mark 0xb -m
conntrack --ctstate NEW,ESTABLISHED -m comment --comment
"MD_IPTABLES: Feature HA port" -j ACCEPT
-A INPUT -m mark --mark 0xb -m comment --comment MD_IPTABLES -j
LOGGING
-A FORWARD -j DOCKER-USER

Initial Configuration 27

This configuration is provided by the bf-release package and is installed during the

first boot of the Ubuntu OS after the BFB installation using the cloud-init service and

the /var/lib/cloud/seed/nocloud-net/user-data configuration file.

-A OUTPUT -o oob_net0 -m comment --comment MD_IPTABLES -j ACCEPT
-A DOCKER-USER -j RETURN

-A LOGGING -m mark --mark 0xb -m comment --comment MD_IPTABLES -j
NFLOG --nflog-prefix "IPTables-Dropped: " --nflog-group 3
-A LOGGING -m mark --mark 0xb -m comment --comment MD_IPTABLES -j
DROP
-A PREROUTING -i oob_net0 -m comment --comment MD_IPTABLES -j
MARK --set-xmark 0xb/0xffffffff
-A PREROUTING -p tcp -m tcpmss ! --mss 536:65535 -m tcp ! --dport
22 -m mark --mark 0xb -m conntrack --ctstate NEW -m comment --
comment MD_IPTABLES -j DROP
COMMIT
*nat
:PREROUTING ACCEPT [1:320]
:INPUT ACCEPT [1:320]
:OUTPUT ACCEPT [8:556]
:POSTROUTING ACCEPT [8:556]
:KUBE-KUBELET-CANARY - [0:0]
:KUBE-MARK-DROP - [0:0]
:KUBE-MARK-MASQ - [0:0]
:KUBE-POSTROUTING - [0:0]
-A POSTROUTING -m comment --comment "kubernetes postrouting
rules" -j KUBE-POSTROUTING
-A KUBE-MARK-DROP -j MARK --set-xmark 0x8000/0x8000
-A KUBE-MARK-MASQ -j MARK --set-xmark 0x4000/0x4000
-A KUBE-POSTROUTING -m mark ! --mark 0x4000/0x4000 -j RETURN
-A KUBE-POSTROUTING -j MARK --set-xmark 0x4000/0x0
-A KUBE-POSTROUTING -m comment --comment "kubernetes service
traffic requiring SNAT" -j MASQUERADE --random-fully
COMMIT

Initial Configuration 28

To disable this default firewall configuration after OS is UP, run:

To disable this default firewall configuration during the BFB installation, use bf.cfg with

the following command in the bfb_modify_os function:

DHCP Client Configuration

The default DHCP client configuration sets the Vendor Class Identifier for both IPv4 and
IPv6 DHCP clients:

$ rm -f /etc/iptables/rules.v4
$ iptables -F

bfb_modify_os()
{
 perl -ni -e "if(/^write_files:/../^users/) {next unless
m{^users}; print} else {print}" /mnt/var/lib/cloud/seed/nocloud-
net/user-data
}

$ cat /etc/dhcp/dhclient.conf

option rfc3442-classless-static-routes code 121 = array of
unsigned integer 8;
send host-name = gethostname();
request subnet-mask, broadcast-address, time-offset, routers,
 domain-name, domain-name-servers, domain-search, host-
name,
 dhcp6.name-servers, dhcp6.domain-search, dhcp6.fqdn,
dhcp6.sntp-servers,
 netbios-name-servers, netbios-scope, interface-mtu,
 rfc3442-classless-static-routes, ntp-servers;

Initial Configuration 29

timeout 300;
send vendor-class-identifier "NVIDIA/BF/DP";

interface "oob_net0" {
 send vendor-class-identifier "NVIDIA/BF/OOB";
}

$ cat /etc/dhcp/dhclient6.conf

option dhcp6.vendor-opts code 16 = string;
send dhcp6.vendor-opts
00:00:16:47:00:0c:4E:56:49:44:49:41:2f:42:46:2f:44:50;
interface "oob_net0" {
 send dhcp6.vendor-opts
00:00:16:47:00:0d:4E:56:49:44:49:41:2F:42:46:2F:4F:4F:42;
}

Initial Configuration 30

Host-side Interface
Configuration
The NVIDIA® BlueField® DPU registers on the host OS a "DMA controller" for DPU
management over PCIe. This can be verified by running the following:

A special driver called RShim must be installed and run to expose the various BlueField
management interfaces on the host OS. Refer to section "Install RShim on Host" for
information on how to obtain and install the host-side RShim driver.

When the RShim driver runs properly on the host side, a sysfs device, /dev/rshim0/* ,

and a virtual Ethernet interface, tmfifo_net0 , become available. The following is an
example for querying the status of the RShim driver on the host side:

lspci -d 15b3: | grep 'SoC Management Interface'
27:00.2 DMA controller: Mellanox Technologies MT42822 BlueField-2
SoC Management Interface (rev 01)

systemctl status rshim
● rshim.service - rshim driver for BlueField SoC
 Loaded: loaded (/lib/systemd/system/rshim.service; disabled;
vendor preset: enabled)
 Active: active (running) since Tue 2022-05-31 14:57:07 IDT;
1 day 1h ago
 Docs: man:rshim(8)
 Process: 90322 ExecStart=/usr/sbin/rshim $OPTIONS
(code=exited, status=0/SUCCESS)
 Main PID: 90323 (rshim)
 Tasks: 11 (limit: 76853)
 Memory: 3.3M

https://docs.nvidia.com/networking/display/bluefieldbsp490/Deploying+BlueField+Software+Using+BFB+from+Host

Initial Configuration 31

If the RShim device does not appear, refer to section "RShim Troubleshooting".

Virtual Ethernet Interface

On the host, the RShim driver exposes a virtual Ethernet device called tmfifo_net0 .
This virtual Ethernet can be thought of as a peer-to-peer tunnel connection between the
host and the DPU OS. The DPU OS also configures a similar device. The DPU OS's BFB
images are customized to configure the DPU side of this connection with a preset IP of
192.168.100.2/30. It is up to the user to configure the host side of this connection.
Configuration procedures vary for different OSs.

The following example configures the host side of tmfifo_net0 with a static IP and
enables IPv4-based communication to the DPU OS:

 CGroup: /system.slice/rshim.service
 └─90323 /usr/sbin/rshim
May 31 14:57:07 … systemd[1]: Starting rshim driver for
BlueField SoC...
May 31 14:57:07 … systemd[1]: Started rshim driver for BlueField
SoC.
May 31 14:57:07 … rshim[90323]: Probing pcie-0000:a3:00.2(vfio)
May 31 14:57:07 … rshim[90323]: Create rshim pcie-0000:a3:00.2
May 31 14:57:07 … rshim[90323]: rshim pcie-0000:a3:00.2 enable
May 31 14:57:08 … rshim[90323]: rshim0 attached

ip addr add dev tmfifo_net0 192.168.100.1/30

Note

For instructions on persistent IP configuration of the tmfifo_net0
interface, refer to step "Assign a static IP to tmfifo_net0" under
"Updating Repo Package on Host Side".

https://docs.nvidia.com/pages/createpage.action?spaceKey=bluefieldbsp490&title=RShim+Troubleshooting&linkCreation=true&fromPageId=3432096249
https://docs.nvidia.com/networking/display/bluefieldbsp490/Installing+Repo+Package+on+Host+Side

Initial Configuration 32

Logging in from the host to the DPU OS is now possible over the virtual Ethernet. For
example:

RShim Support for Multiple DPUs

Multiple DPUs may connect to the same host machine. When the RShim driver is loaded
and operating correctly, each board is expected to have its own device directory on sysfs,
/dev/rshim<N> , and a virtual Ethernet device, tmfifo_net<N> .

The following are some guidelines on how to set up the RShim virtual Ethernet interfaces
properly if multiple DPUs are installed in the host system.

There are two methods to manage multiple tmfifo_net interfaces on a Linux platform:

Using a bridge, with all tmfifo_net<N> interfaces on the bridge – the bridge
device bares a single IP address on the host while each DPU has unique IP in the
same subnet as the bridge

Directly over the individual tmfifo_net<N> – each interface has a unique subnet
IP and each DPU has a corresponding IP per subnet

Whichever method is selected, the host-side tmfifo_net interfaces should have
different MAC addresses, which can be:

Configured using ifconfig . For example:

Or saved in configuration via the /udev/rules as can be seen later in this section.

In addition, each Arm-side tmfifo_net interface must have a unique MAC and IP
address configuration, as BlueField OS comes uniformly pre-configured with a generic

ssh ubuntu@192.168.100.2

$ ifconfig tmfifo_net0 192.168.100.1/24 hw ether
02:02:02:02:02:02

Initial Configuration 33

MAC, and 192.168.100.2. The latter must be configured in each DPU manually or by DPU
customization scripts during BlueField OS installation.

Multi-board Management Example

This example deals with two BlueField DPUs installed on the same server (the process is
similar for more DPUs).

This example assumes that the RShim package has been installed on the host server.

Configuring Management Interface on Host

1. Create a bf_tmfifo interface under /etc/sysconfig/network-scripts . Run:

2. Inside ifcfg-br_tmfifo , insert the following content:

3. Create a configuration file for the first BlueField DPU, tmfifo_net0 . Run:

Note

This example is relevant for CentOS/RHEL operating systems only.

vim /etc/sysconfig/network-scripts/ifcfg-br_tmfifo

DEVICE="br_tmfifo"
BOOTPROTO="static"
IPADDR="192.168.100.1"
NETMASK="255.255.255.0"
ONBOOT="yes"
TYPE="Bridge"

Initial Configuration 34

4. Inside ifcfg-tmfifo_net0 , insert the following content:

5. Create a configuration file for the second BlueField DPU, tmfifo_net1 . Run:

6. Create the rules for the tmfifo_net interfaces. Run:

7. Restart the network for the changes to take effect. Run:

vim /etc/sysconfig/network-scripts/ifcfg-tmfifo_net0

DEVICE=tmfifo_net0
BOOTPROTO=none
ONBOOT=yes
NM_CONTROLLED=no
BRIDGE=br_tmfifo

DEVICE=tmfifo_net1
BOOTPROTO=none
ONBOOT=yes
NM_CONTROLLED=no
BRIDGE=br_tmfifo

vim /etc/udev/rules.d/91-tmfifo_net.rules

/etc/init.d/network restart
Restarting network (via systemctl): [OK]

Initial Configuration 35

Configuring BlueField DPU Side

BlueField DPUs arrive with the following factory default configurations for tmfifo_net0.

Address Value

MAC 00:1a:ca:ff:ff:01

IP 192.168.100.2

Therefore, if you are working with more than one DPU, you must change the default MAC
and IP addresses.

Updating RShim Network MAC Address

1. Use a Linux console application (e.g. screen or minicom) to log into each BlueField.
For example:

2. Create a configuration file for tmfifo_net0 MAC address. Run:

3. Inside bf.cfg , insert the new MAC:

Note

This procedure is relevant for Ubuntu/Debian (sudo needed), and

CentOS BFBs. The procedure only affects the tmfifo_net0 on the
Arm side.

sudo screen /dev/rshim<0|1>/console 115200

sudo vi /etc/bf.cfg

Initial Configuration 36

4. Apply the new MAC address. Run:

5. Repeat this procedure for the second BlueField DPU (using a different MAC address).

Updating IP Address

For Ubuntu:

1. Access the file 50-cloud-init.yaml and modify the tmfifo_net0 IP address:

NET_RSHIM_MAC=00:1a:ca:ff:ff:03

sudo bfcfg

Info

Arm must be rebooted for this configuration to take effect. It is
recommended to update the IP address before you do that to
avoid unnecessary reboots.

Note

For comprehensive list of the supported parameters to customize
bf.cfg during BFB installation, refer to section "bf.cfg Parameters".

sudo vim /etc/netplan/50-cloud-init.yaml

https://docs.nvidia.com/pages/createpage.action?spaceKey=bluefieldbsp490&title=Installation+Troubleshooting&linkCreation=true&fromPageId=3432096249

Initial Configuration 37

2. Reboot the Arm. Run:

3. Repeat this procedure for the second BlueField DPU (using a different IP address).

For CentOS:

1. Access the file ifcfg-tmfifo_net0 . Run:

2. Modify the value for IPADDR :

3. Reboot the Arm. Run:

 tmfifo_net0:
 addresses:
 - 192.168.100.2/30 ===>>>
192.168.100.3/30

sudo reboot

Info

Arm must be rebooted for this configuration to take effect. It is
recommended to update the MAC address before you do that to
avoid unnecessary reboots.

vim /etc/sysconfig/network-scripts/ifcfg-tmfifo_net0

IPADDR=192.168.100.3

Initial Configuration 38

Or perform netplan apply .

4. Repeat this procedure for the second BlueField DPU (using a different IP address).

Permanently Changing Arm-side MAC Address

The default MAC address is 00:1a:ca:ff:ff:01 . It can be changed using ifconfig
or by updating the UEFI variable as follows:

1. Log into Linux from the Arm console.

2. Run:

reboot

Info

Arm must be rebooted for this configuration to take effect. It is
recommended to update the MAC address before you do that to
avoid unnecessary reboots.

Note

It is assumed that the commands in this section are executed with
root (or sudo) permission.

Initial Configuration 39

3. If not mounted, run:

The printf command sets the MAC address to 00:1a:ca:ff:ff:03 (the last six

bytes of the printf value). Either reboot the device or reload the tmfifo driver for the
change to take effect.

The MAC address can also be updated from the server host side while the Arm-side Linux
is running:

1. Enable the configuration. Run:

2. Display the current setting. Run:

$ "ls /sys/firmware/efi/efivars".

$ mount -t efivarfs none /sys/firmware/efi/efivars
$ chattr -i /sys/firmware/efi/efivars/RshimMacAddr-8be4df61-
93ca-11d2-aa0d-00e098032b8c
$ printf "\x07\x00\x00\x00\x00\x1a\xca\xff\xff\x03" > \
 /sys/firmware/efi/efivars/RshimMacAddr-8be4df61-93ca-11d2-
aa0d-00e098032b8c

echo "DISPLAY_LEVEL 1" > /dev/rshim0/misc

cat /dev/rshim0/misc
DISPLAY_LEVEL 1 (0:basic, 1:advanced, 2:log)
BOOT_MODE 1 (0:rshim, 1:emmc, 2:emmc-boot-swap)
BOOT_TIMEOUT 300 (seconds)
DROP_MODE 0 (0:normal, 1:drop)
SW_RESET 0 (1: reset)
DEV_NAME pcie-0000:04:00.2

Initial Configuration 40

3. Modify the MAC address. Run:

For more information and an example of the script that covers multiple DPU installation
and configuration, refer to section "Installing Full DOCA Image on Multiple DPUs" of the
NVIDIA DOCA Installation Guide.

OOB Ethernet Interface

The OOB interface is a gigabit Ethernet interface which provides TCP/IP network
connectivity to the Arm cores. This interface is named oob_net0 and is intended to be
used for management traffic (e.g. file transfer protocols, SSH, etc). The Linux driver that
controls this interface is named mlxbf_gige.ko , and is automatically loaded upon boot.
This interface can be configured and monitored by use of standard tools (e.g. ifconfig,
ethtool, etc). The OOB interface is subject to the following design limitations:

Only supports 1Gb/s full-duplex setting

Only supports GMII access to external PHY device

Supports maximum packet size of 2KB (i.e. no support for jumbo frames)

The OOB interface can also be used for PXE boot. This OOB port is not a path for the boot
stream. Any attempt to push a BFB to this port will not work. Please refer to How to use
the UEFI boot menu for more information about UEFI operations related to the OOB
interface.

OOB Interface MAC Address

The MAC address to be used for the OOB port is burned into Arm-accessible UPVS
EEPROM during the manufacturing process. This EEPROM device is different from the SPI
Flash storage device used for the NIC firmware and associated NIC MACs/GUIDs. The

DEV_INFO BlueField-2(Rev 1)
PEER_MAC 00:1a:ca:ff:ff:01 (rw)
PXE_ID 0x00000000 (rw)
VLAN_ID 0 0 (rw)

$ echo "PEER_MAC xx:xx:xx:xx:xx:xx" > /dev/rshim0/misc

https://docs.nvidia.com/doca/sdk/installation-guide/index.html#installing-full-doca-image-on-multiple-dpus
https://docs.nvidia.com/pages/createpage.action?spaceKey=bluefieldbsp490&title=Installation+Troubleshooting&linkCreation=true&fromPageId=3432096249
https://docs.nvidia.com/pages/createpage.action?spaceKey=bluefieldbsp490&title=Installation+Troubleshooting&linkCreation=true&fromPageId=3432096249

Initial Configuration 41

value of the OOB MAC address is specific to each platform and is visible on the board-
level sticker.

If there is a need to re-configure this MAC for any reason, follow these steps to configure
a UEFI variable to hold new value for OOB MAC.:

1. Log into Linux from the Arm console.

2. Issue the command ls /sys/firmware/efi/efivars to show whether efivarfs
is mounted. If it is not mounted, run:

3. Run:

Warning

It is not recommended to reconfigure the MAC address from the MAC
configured during manufacturing.

Note

The creation of an OOB MAC address UEFI variable will override the
OOB MAC address defined in EEPROM, but the change can be
reverted.

mount -t efivarfs none /sys/firmware/efi/efivars

chattr -i /sys/firmware/efi/efivars/OobMacAddr-8be4df61-93ca-
11d2-aa0d-00e098032b8c

Initial Configuration 42

4. Set the MAC address to 00:1a:ca:ff:ff:03 (the last six bytes of the printf value).

5. Reboot the device for the change to take effect.

To revert this change and go back to using the MAC as programmed during
manufacturing, follow these steps:

1. Log into UEFI from the Arm console, go to "Boot Manager" then "EFI Internal Shell".

2. Delete the OOB MAC UEFI variable. Run:

3. Reboot the device by running "reset" from UEFI.

4. Log into Linux from the Arm console.

5. Issue the command ls /sys/firmware/efi/efivars to show whether efivarfs
is mounted. If it is not mounted, run:

6. Run:

printf "\x07\x00\x00\x00\x00\x1a\xca\xff\xff\x03" >
/sys/firmware/efi/efivars/OobMacAddr-8be4df61-93ca-11d2-aa0d-
00e098032b8c

dmpstore -d OobMacAddr

mount -t efivarfs none /sys/firmware/efi/efivars

chattr -i /sys/firmware/efi/efivars/OobMacAddr-8be4df61-93ca-
11d2-aa0d-00e098032b8c

Initial Configuration 43

7. Reconfigure the original MAC address burned by the manufacturer in the format
aa\bb\cc\dd\ee\ff . Run:

8. Reboot the device for the change to take effect.

Supported ethtool Options for OOB Interface

The Linux driver for the OOB port supports the handling of some basic ethtool requests:
get driver info, get/set ring parameters, get registers, and get statistics.

To use the ethtool options available, use the following format:

Where <option> may be:

<no-argument> – display interface link information

-i – display driver general information

-S – display driver statistics

-d – dump driver register set

-g – display driver ring information

-G – configure driver ring(s)

-k – display driver offload information

printf "\x07\x00\x00\x00\x00\<original-MAC-address>" >
/sys/firmware/efi/efivars/OobMacAddr-8be4df61-93ca-11d2-aa0d-
00e098032b8c

$ ethtool [<option>] <interface>

Initial Configuration 44

-a – query the specified Ethernet device for pause parameter information

-r – restart auto-negotiation on the specified Ethernet device if auto-negotiation is
enabled

For example:

$ ethtool oob_net0
Settings for oob_net0:
 Supported ports: [TP]
 Supported link modes: 1000baseT/Full
 Supported pause frame use: Symmetric
 Supports auto-negotiation: Yes
 Supported FEC modes: Not reported
 Advertised link modes: 1000baseT/Full
 Advertised pause frame use: Symmetric
 Advertised auto-negotiation: Yes
 Advertised FEC modes: Not reported
 Link partner advertised link modes: 1000baseT/Full
 Link partner advertised pause frame use: Symmetric
 Link partner advertised auto-negotiation: Yes
 Link partner advertised FEC modes: Not reported
 Speed: 1000Mb/s
 Duplex: Full
 Port: Twisted Pair
 PHYAD: 3
 Transceiver: internal
 Auto-negotiation: on
 MDI-X: Unknown
 Link detected: yes

$ ethtool -i oob_net0
driver: mlxbf_gige
version:

Initial Configuration 45

IP Address Configuration for OOB Interface

The files that control IP interface configuration are specific to the Linux distribution. The
udev rules file (/etc/udev/rules.d/92-oob_net.rules) that renames the OOB

interface to oob_net0 and is the same for Yocto, CentOS, and Ubuntu:

firmware-version:
expansion-rom-version:
bus-info: MLNXBF17:00
supports-statistics: yes
supports-test: no
supports-eeprom-access: no
supports-register-dump: yes
supports-priv-flags: no

Display statistics specific to BlueField-2 design (i.e.
statistics that are not shown in the output of "ifconfig
oob0_net")
$ ethtool -S oob_net0
NIC statistics:
 hw_access_errors: 0
 tx_invalid_checksums: 0
 tx_small_frames: 1
 tx_index_errors: 0
 sw_config_errors: 0
 sw_access_errors: 0
 rx_truncate_errors: 0
 rx_mac_errors: 0
 rx_din_dropped_pkts: 0
 tx_fifo_full: 0
 rx_filter_passed_pkts: 5549
 rx_filter_discard_pkts: 4

Initial Configuration 46

The files that control IP interface configuration are slightly different for CentOS and
Ubuntu:

CentOS configuration of IP interface:

Configuration file for oob_net0 :

/etc/sysconfig/network-scripts/ifcfg-oob_net0

For example, use the following to enable DHCP:

For example, to configure static IP use the following:

SUBSYSTEM=="net", ACTION=="add",
DEVPATH=="/devices/platform/MLNXBF17:00/net/eth[0-9]",
NAME="oob_net0"

NAME="oob_net0"
DEVICE="oob_net0"
NM_CONTROLLED="yes"
PEERDNS="yes"
ONBOOT="yes"
BOOTPROTO="dhcp"
TYPE=Ethernet

NAME="oob_net0"
DEVICE="oob_net0"
IPV6INIT="no"
NM_CONTROLLED="no"
PEERDNS="yes"
ONBOOT="yes"
BOOTPROTO="static"
IPADDR="192.168.200.2"
PREFIX=30

Initial Configuration 47

For Ubuntu configuration of IP interface, refer to section "Default Network Interface
Configuration".

GATEWAY="192.168.200.1"
DNS1="192.168.200.1"
TYPE=Ethernet

https://docs.nvidia.com/networking/display/bluefieldbsp490/Deploying+BlueField+Software+Using+BFB+from+Host
https://docs.nvidia.com/networking/display/bluefieldbsp490/Deploying+BlueField+Software+Using+BFB+from+Host

Initial Configuration 48

Secure Boot
These pages provide guidelines on how to operate secured NVIDIA® BlueField® DPUs. They
provide UEFI secure boot references for the UEFI portion of the secure boot process.

Secure boot is a process which verifies each element in the boot process prior to
execution, and halts or enters a special state if a verification step fails at any point during
the boot. It is based on an unmodifiable ROM code which acts as the root-of-trust (RoT)
and uses an off-chip public key, to authenticate the initial code which is loaded from an
external non-volatile storage. The off-chip public key integrity is verified by the ROM code
against an on-chip public key hash value stored in E-FUSEs. Then the authenticated code
and each element in the boot process cryptographically verify the next element prior to
passing execution to it. This extends the chain-of-trust (CoT) by verifying elements that
have their RoT in hardware. In addition, no external intervention in the authentication
process is permitted to prevent unauthorized software and firmware from being loaded.
There should be no way to interrupt or bypass the RoT with runtime changes.

Note

This section provides directions for illustration purposes, it does not
intend to enforce or mandate any procedure about managing keys
and/or production guidelines. Platform users are solely responsible of
implementing secure strategies and safe approaches to manage their
boot images and their associated keys and certificates.

Note

Security aspects such as key generation, key management, key
protection, and certificate generation are out of the scope of this
section.

Initial Configuration 49

Supported BlueField DPUs

Secured BlueField devices have pre-installed software and firmware signed with NVIDIA
signing keys. The on-chip public key hash is programmed into E-FUSEs.

To verify whether the DPU in your possession supports secure boot, run the following
command:

“GA SECURED” indicates that the BlueField device has secure boot enabled.

To verify whether the BlueField Arm has secure boot enabled, run the following command
from the BlueField console:

UEFI Secure Boot

UEFI Secure Boot is a feature of the Unified Extensible Firmware Interface (UEFI)
specification. The feature defines a new interface between the operating system and
firmware/BIOS.

sudo mst start
sudo flint -d /dev/mst/mt41686_pciconf0 q full | grep "Life
cycle"
Life cycle: GA SECURED

ubuntu@localhost:~$ sudo mlxbf-bootctl | grep lifecycle
lifecycle state: GA Secured

Note

This feature is available in the NVIDIA® BlueField®-2 and above.

Initial Configuration 50

When enabled and fully configured on the DPU, UEFI Secure Boot helps the Arm=based
software running on top of UEFI resist attacks and infection from malware. UEFI Secure
Boot detects tampering with boot loaders, key operating system files, and unauthorized
option ROMs by validating their digital signatures. Malicious actions are blocked from
running before they can attack or infect the system.

UEFI Secure Boot works as a security gate. Code signed with valid keys (whose public
key/certificates exist in the DPU) gets through the gate and executes while blocking and
rejecting code that has either a bad or no signature.

The DPU enables UEFI secure boot with the Ubuntu OS included in the platform's
software.

Verifying UEFI Secure Boot on DPU

To verify whether UEFI secure boot is enabled, run the following command from the
BlueField console:

As UEFI secure boot is not specific to BlueField platforms, please refer to the Canonical
documentation online for further information on UEFI secure boot:

https://wiki.ubuntu.com/UEFI/SecureBoot

https://wiki.ubuntu.com/UEFI/SecureBoot/Signing

Main Use Cases for UEFI Secure Boot

UEFI secure boot can be used in 2 main cases for the DPU:

Method Pros Cons

Using the default enabled
UEFI secure boot (with
Ubuntu OS or any Microsoft-
signed boot loader)
See "Using Default Enabled
UEFI Secure Boot" for more.

Relatively easy

Limited flexibility; only
allows executing NVIDIA
binary files

Dependency on
Microsoft or NVIDIA as
signing entities

ubuntu@localhost:~$ sudo mokutil --sb-state
SecureBoot enabled

https://wiki.ubuntu.com/UEFI/SecureBoot
https://wiki.ubuntu.com/UEFI/SecureBoot/Signing

Initial Configuration 51

Method Pros Cons

Enabling UEFI Secure Boot
with a custom OS (other than
the default Ubuntu)
See "Enabling UEFI Secure
Boot with Custom OS" for
more.

Autonomy, as you control your
own keys (no dependency on
Microsoft or NVIDIA as
signing entities)

You must create your
own capsule files to
enroll and customize
UEFI secure boot

Signing binaries is complex as you must create X.509 certificates and enroll them in UEFI
or shim which requires a fair amount of prior knowledge of how secure boot works. For
that reason, BlueField secured platforms are shipped with all the needed certificates and
signed binaries (which allows working seamlessly with the first use case in the table
above).

NVIDIA strongly recommends utilizing UEFI secure boot in any case due the increased
security it enables.

Verifying UEFI Secure Boot on DPU

To verify whether UEFI secure boot is enabled, run the following command from the
BlueField console:

As UEFI secure boot is not specific to BlueField platforms, refer to the Canonical
documentation online for further information on UEFI secure boot to familiarize yourself
with the UEFI secure boot concept:

https://wiki.ubuntu.com/UEFI/SecureBoot

https://wiki.ubuntu.com/UEFI/SecureBoot/Signing

Using Default Enabled UEFI Secure Boot

As part of the default settings of the DPU, UEFI secure boot is enabled and requires no
special configuration from the user to use it with the bundled Ubuntu OS.

ubuntu@localhost:~$ sudo mokutil --sb-state
SecureBoot enabled

https://wiki.ubuntu.com/UEFI/SecureBoot
https://wiki.ubuntu.com/UEFI/SecureBoot/Signing

Initial Configuration 52

Disabling UEFI Secure Boot

UEFI secure boot can be disabled per device from the UEFI menu as part of the DPU boot
process which requires access to the BlueField console.

To disable UEFI secure boot, reboot the platform and stop at the UEFI menu.

From the UEFI menu screen, select "Device Manager" then "Secure Boot Configuration". If
"Attempt Secure Boot" is checked, then uncheck it and reboot.

Note

On BlueField devices with UEFI secure boot enabled, the UEFI menu is
password-protected to prevent unwanted changes to the UEFI
settings. The default password is bluefield .

Warning

Initial Configuration 53

It is also possible to disable UEFI secure boot using Redfish API for BlueField devices with
an on-board BMC:

After running this command, the BlueField Arm OS must be rebooted twice. The first
reboot is for the UEFI redfish client to read the request from the BMC and apply it; the
second reboot is for the setting to take effect.

From the BlueField BMC using Redfish:

Disabling secure boot permanently is not recommended in production
environments.

curl -k -u root:<password> -H "Content-Type: application/octet-
stream" -X GET https://<BF-BMC-
IP>/redfish/v1/Systems/Bluefield/SecureBoot
{
 "@odata.id": "/redfish/v1/Systems/Bluefield/SecureBoot",
 "@odata.type": "#SecureBoot.v1_1_0.SecureBoot",
 "Description": "The UEFI Secure Boot associated with this
system.",
 "Id": "SecureBoot",
 "Name": "UEFI Secure Boot",
 "SecureBootCurrentBoot": "Enabled",
 "SecureBootEnable": true,
 "SecureBootMode": "SetupMode"
}
curl -k -u root:<BF-BMC-PASSWORD> -X PATCH https://<BF-BMC-
IP>/redfish/v1/Systems/Bluefield/SecureBoot -H 'Content-Type:
application/json' -d '{"SecureBootEnable": false}'

curl -k -u root:<BF-BMC-PASSWORD> -X POST https://<BF-BMC-
IP>/redfish/v1/Systems/Bluefield/Actions/ComputerSystem.Reset

Initial Configuration 54

From RShim:

From the BlueField Arm OS:

Existing DPU Certificates

As part of having UEFI secure boot enabled, the UEFI databases are populated with NVIDIA
self-signed X.509 certificates. The Microsoft certificate is also installed into the UEFI
database to ensure that the Ubuntu distribution can boot while UEFI secure boot is
enabled (and generally any suitable OS loader signed by Microsoft).

The pre-installed certificate files are:

NVIDIA PK key certificate

NVIDIA KEK key certificate

NVIDIA db certificate

Microsoft db certificate

Enabling UEFI Secure Boot with Custom OS

This section lists the required steps to enable using UEFI secure boot with a custom OS
(other than the default Ubuntu).

-H 'Content-Type: application/json' -d
'{"ResetType":"ForceRestart"}'

echo 'SW_RESET 1' > /dev/rshim0/misc

reboot

Initial Configuration 55

Options for Enabling UEFI Secure Boot

There are 3 main ways for signing custom binaries and running them on the DPU with
UEFI secure boot enabled:

Method Pros Cons

1

Sign OS loader (e.g.,
Shim) by Microsoft.
See "Signing OS
Loader by Microsoft"
for more.

Does not require
access to the
BlueField console

Dependency on Microsoft as signing
entity

2

Shim – enroll a
machine owner key
(MOK) certificate in
the shim and use the
private part to sign
your files.
See "Enrolling MOK
Key" for more.

Easy

Limited flexibility: Only allows
executing a custom kernel or
load a custom module. It does
not allow executing UEFI
applications, UEFI drivers, or OS
loaders.
Dependency on Microsoft or
NVIDIA as signing entities
Not scalable: Requires access to
BlueField console per device (i.e.,
UART console required)

3

UEFI – enroll your own
key certificate in the
UEFI database and use
the private part to sign
your files.
See "Enrolling Your
Own Key to UEFI DB"
for more.

Autonomy, as you
control your keys
(not dependent on
Microsoft or NVIDIA
as signing entities)

Requires adding your key
certificate to database manually
Requires access to BlueField
console per device (i.e., UART
console required)
Not scalable: Requires access to
BlueField console per device (i.e.,
UART console required)

Note

All processes described in the following subsections require some
level of testing and knowledge in how operating system boot flows
and bootloaders work.

Initial Configuration 56

For generation of custom keys and certificates, see section "Generation of Custom Keys
and Certificates".

Signing binaries for UEFI secure boot is complex as you must create X.509 certificates and
enroll them in UEFI or shim which requires a fair amount of prior knowledge of how secure
boot works. See the processes used to enroll keys and to sign UEFI binaries in the rest of
this document.

Secure booting binaries for executing a UEFI application, UEFI driver, OS loader, custom
kernel, or loading a custom module depends on the certificates and public keys available
in the UEFI database and the shim's MOK list.

Signing OS Loader by Microsoft

Custom Kernel Images

One option to boot custom binaries on a DPU is to sign the OS loader (shim) by Microsoft
following the Microsoft guidelines which are updated and maintained by Microsoft. The
certificates/keys must be embedded within the shim OS loader so it may boot, in addition
the custom Kernel binary image and the custom Kernel modules must be signed
accordingly.

NVIDIA Kernel Modules

In this option, the NVIDIA db certificates should remain enrolled. This is due to the out-of-
tree kernel modules and drivers (e.g., OFED) provided by NVIDIA which are signed by
NVIDIA and authenticated by this NVIDIA certificate in the UEFI.

Note

Signing binaries with Microsoft is a process the involves lead time
which must be taken into consideration. This course of action requires
testing to making sure the complied BFB image including the signed
Microsoft bootloader works properly.

https://techcommunity.microsoft.com/t5/hardware-dev-center/updated-uefi-signing-requirements/ba-p/1062916

Initial Configuration 57

Enrolling MOK Key

To boot a custom kernel or load a custom module, you must create a MOK key pair. The
newly created MOK key must be an RSA 2048-bit. The private part is used for signing
operations and must be kept safe. The public X.509 key certificate in DER format must be
enrolled within the shim MOK list.

Once the public key certificate is enrolled within the shim, the MOK key is accepted as a
valid signing key.

Note that kernel module signing requires a special configuration. For example, the
extendedKeyUsage field must show an OID of 1.3.6.1.4.1.2312.16.1.2. That OID informs

shim that this is meant to be a module signing certificate.

The following is an example of OpenSSL configuration file for illustration purposes:

HOME = .
RANDFILE = $ENV::HOME/.rnd
[req]
distinguished_name = req_distinguished_name
x509_extensions = v3
string_mask = utf8only
prompt = no

[req_distinguished_name]
countryName = US
stateOrProvinceName = Westborough
localityName = Massachusetts
0.organizationName = CampanyX
commonName = Secure Boot Signing
emailAddress = example@example.com

[v3]
subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid:always,issuer

Initial Configuration 58

To enroll the MOK key certificate, download the associated key certificate to the BlueField
file system and run the following command:

You must follow the prompts to enter a password to be used to make sure you really do
want to enroll the key certificate.

Note that the key certificate is not enrolled yet. It will be enrolled by the shim upon the
next reboot. To list the imported certificate file to enroll:

A reboot must be performed.

Just before loading GRUB, shim displays a blue screen which is actually another piece of
the shim project called "MokManager". You may ignore the blue screen showing the error
message. Press "OK" to enter the "Shim UEFI key management" screen.

basicConstraints = critical,CA:FALSE
extendedKeyUsage =
codeSigning,1.3.6.1.4.1.311.10.3.6,1.3.6.1.4.1.2312.16.1.2
nsComment = "OpenSSL Generated Certificate"

ubuntu@localhost:~$ sudo mokutil --import mok.der
input password:
input password again:

ubuntu@localhost:~$ sudo mokutil --list-new

Initial Configuration 59

Select "Enroll MOK" and follow the menus to finish the enrolling process.

You may look at the properties of the key you are adding to make sure it is indeed correct
using "View key". MokManager will ask for the same password you typed in earlier when

Initial Configuration 60

running mokutil before reboot. MokManager will save the key and you will need to reboot
again.

To list the enrolled certificate files, run the following command:

Generation of Custom Keys and Certificates

To boot binaries not signed with the existing public keys and certificates in the UEFI
database (like the Microsoft certificate and key described in "Signing OS Loader by
Microsoft"), create an X.509 certificate (which includes the public key part of the public–
private key pair) that can be imported either directly though the UEFI or, more easily, via
shim.

Creating a certificate and public key for use in the UEFI secure boot is relatively simple.
OpenSSL can do it by running the command req .

For illustration purposes only, this example shows how to create a 2048-bit RSA MOK key
and its associated certificate file in DER format:

An OpenSSL configuration file may be used for key generation. It may be specified using
--config path/to/openssl.cnf .

ubuntu@localhost:~$ sudo mokutil --list-enrolled

$ openssl req -new -x509 -newkey rsa:2048 -nodes -days 36500 -
outform DER -keyout "mok.priv" -out "mok.der"

Note

Detailed key and certificate generation are beyond the scope of this
document. Any organization should choose the proper way to
generate keys and certificates based on their security policy.

https://confluence.nvidia.com/display/BlueFieldUEFISecBootUGDEV/Signing+OS+Loader+by+Microsoft
https://confluence.nvidia.com/display/BlueFieldUEFISecBootUGDEV/Signing+OS+Loader+by+Microsoft

Initial Configuration 61

The following sections refer to the db private key as key.priv and its DER certificate as

cert.der . Similarly, the MOK private key is referred to as mok.priv and its DER

certificate as mok.der .

Enrolling Your Own Key to UEFI DB

Some users may need to generate their own keys. For convenience, the processes used to
enroll keys into UEFI db as well as to sign UEFI binaries are provided in this document.

To execute your binaries while UEFI secure boot is enabled, you need your own pair of
private and public key certificates. The supported keys are RSA 2048-bit and ECDSA 384-
bit.

The private part is used for signing operations and must be kept safe. The public part
X.509 key certificate in DER format must be enrolled within the UEFI db.

A prerequisite for the following steps is having UEFI secure boot temporarily disabled on
the DPU. After temporarily disabling UEFI secure boot per device as in section "Existing
DPU Certificates", it is possible to override all the key certificate files of the UEFI database.
This allows you to enroll your PK key certificate, KEK key certificate, and db certificates.

The following subsections detail how enrolling can be done.

Using a Capsule

To enroll your key certificates, create a capsule file by way of tools and scripts provided
along with the BlueField software.

To create the capsule files, execute the mlx-mkcap script. After BlueField software
installation, the script can be found under
/lib/firmware/mellanox/boot/capsule/scripts . This script generates a capsule

file to supply the key certificates to UEFI and enables UEFI secure boot:

$./mlx-mkcap --pk-key pk.cer --kek-key kek.cer --db-key db.cer
EnrollYourKeysCap

Initial Configuration 62

Note that you may specify as many db certificates as needed using the --db-key flag.
In this example, only a single db certificate is specified.

To set the UEFI password, you may specify the --uefi-passwd flag. For example, to set

the UEFI password to bluefield , run:

The resulting capsule file, EnrollYourKeysCap , can be downloaded to the BlueField file
system to initiate the key enrollment process. From the the BlueField console execute the
following command then reboot:

On the next reboot, the capsule file is processed and the UEFI database is populated with
the keys extracted from the capsule file.

Enroll Certificate into UEFI DB

As mentioned, the public part of the X.509 key certificate in DER format must be enrolled
within the UEFI db. The X.509 DER certificate file must be installed into the EFI system
partition (ESP).

Download the certificate file to BlueField file system and place it into the ESP:

$./mlx-mkcap --pk-key pk.cer --kek-key kek.cer --db-key db.cer -
-uefi-passwd "bluefield" EnrollYourKeysCap

ubuntu@localhost:~$ bfrec --capsule EnrollYourKeysCap

Note

Enrolling the PK key certificate file enables the UEFI secure boot.

Initial Configuration 63

To enroll the certificate into the UEFI db:

1. Reboot and log into the UEFI menu.

2. From the "UEFI menu", select "Device Manager" entry then "Secure Boot
Configuration".

3. Navigate to "Secure Boot Mode" and select "Custom Mode" setup which allows a
physically present user to modify the UEFI database.

4. Once the platform is in "Custom Mode", a "Custom Secure Boot Options" menu entry
appears which allows you to manipulate the UEFI database keys and certificates.

ubuntu@localhost:~$ sudo cp path/to/cert.der /boot/efi/

Initial Configuration 64

5. To enroll your DER certificate file, select "DB Options" and enter the "Enroll
Signature" menu.

6. Select "Enroll Signature Using File" and navigate within the EFI System Partition (ESP)
to the db DER certificate file.

Initial Configuration 65

7. Commit the changes and exit.

Signing Binaries

Signing Custom Kernel and UEFI Binaries

To sign a custom kernel or any other EFI binary (UEFI application, UEFI driver or OS loader)
you want to have loaded by shim, you need the private part of the key and the certificate
in PEM format.

To convert the certificate into PEM, run:

Info

The ESP path is shown below as "system-boot, [VenHw(*)/HD(*)]".

Note

The GUID is the platform's way of identifying the key. It serves
no purpose other than distinguishing which key is which when
users delete it (it is not used at all in signature verification). This
value must be in the following format: 11111111-2222-3333-
4444-1234567890ab . If nothing is entered, a GUID of
00000000-0000-0000-0000-000000000000 is created.

Note

You may be asked to reboot.

Initial Configuration 66

Now, to sign your EFI binary, run:

If you are using your db key, use the private part of the key and its associated certificate
converted into PEM format for binary signing.

If the X.509 key certificate is enrolled in UEFI db or by way of shim, the binary should be
loaded without an issue.

Signing Kernel Modules

The X.509 certificate you added must be visible to the kernel. To verify the keys visible to
the kernel, run:

For a straightforward result, run:

$ openssl x509 -in mok.der -inform DER -outform PEM -out mok.pem

$ sbsign --key mok.priv --cert mok.pem binary.efi --output
binary.efi.signed

ubuntu@localhost:~$ sudo cat /proc/keys

ubuntu@localhost:~$ dmesg | grep -i "X.509"
[1.869521] Loading compiled-in X.509 certificates
[1.875441] Loaded X.509 cert 'Build time autogenerated kernel
key: b1a3fbd0178bdb7190387a4187e8e4b0eb476cdc'
[1.941752] integrity: Loading X.509 certificate: UEFI:db
[1.947636] integrity: Loaded X.509 cert 'YourSigningDbKey:
a109f01707ba6769c4d546530ba1592c7daedc3b'
[1.958736] integrity: Loading X.509 certificate: UEFI:db

Initial Configuration 67

If the X.509 certificate attributes (commonName , etc.) are configured properly, you should
see your key certificate information in the result output. In this example, two custom keys
are visible to the kernel:

YourSigningMokKey – registered with the shim as a MOK

YourSigningDbKey – registered with UEFI as db

You may sign kernel modules using either of these approaches:

kmodsign command

[1.964170] integrity: Loaded X.509 cert 'Microsoft
Corporation UEFI CA 2011:
13adbf4309bd82709c8cd54f316ed522988a1bd4'
[2.023740] integrity: Loading X.509 certificate:
UEFI:MokListRT
[2.030090] integrity: Loaded X.509 cert 'YourSingingMokKey:
2012e5122669ffc0cc28827c6134329a6bec0b88'
[2.040796] integrity: Loading X.509 certificate:
UEFI:MokListRT
[2.046830] integrity: Loaded X.509 cert 'SomeOrg: shim:
331c1c8963538e327d6e39346f4f53b200987015'
[2.055796] integrity: Loading X.509 certificate:
UEFI:MokListRT
[2.062114] integrity: Loaded X.509 cert 'Canonical Ltd.
Master Certificate Authority:
ad91990bc22ab1f517048c23b6655a268e345a63'

Note

This example is for illustration purposes only. The actual output might
differ from the output shown in this example depending on what key
was previously enrolled and how it was enrolled.

Initial Configuration 68

Linux kernel script sign-file

Signing Kernel Modules Using kmodsign

If you are using the kmodsign command to sign kernel modules, run:

The signature is appended to the kernel module by kmodsign .

But if you rather keep the original kernel module unchanged, run:

Refer to kmosign --help for more information.

Signing Kernel Modules Using Sign File

To sign the kernel module using the Linux kernel script sign-file, please refer to Linux
kernel documentation.

If you are using your db key, use the private part of the key and its associated certificate
for binary signing.

To validate that the module is signed, check that it includes the string
~Module signature appended~ :

ubuntu@localhost:~$ sudo cat /proc/keys

ubuntu@localhost:~$ kmodsign sha512 mok.priv mok.der module.ko
module-signed.ko

ubuntu@localhost:~$ hexdump -Cv module.ko | tail -n 5
00002c20 10 14 08 cd eb 67 a8 3d ac 82 e1 1d 46 b5 5c 91
|.....g.=....F.\.|
00002c30 9c cb 47 f7 c9 77 00 00 02 00 00 00 00 00 00 00
|..G..w..........|

https://www.kernel.org/doc/html/v5.4/admin-guide/module-signing.html#manually-signing-modules
https://www.kernel.org/doc/html/v5.4/admin-guide/module-signing.html#manually-signing-modules

Initial Configuration 69

Ongoing Updates

Update Key Certificates

While UEFI secure boot is enabled, it is possible to update your keys using a capsule file.

To create a capsule intended to update the UEFI secure boot keys, generate a new set of
keys and then run:

Note that --signer-key and --signer-cert are set so the capsule is signed. When
UEFI secure boot is enabled, the capsule is verified using the key certificates previously
enrolled in the UEFI database. It is important to use the old signing keys associated with
the certificates in the UEFI database to sign the capsule. The new key certificates are
intended to replace the existing key certificates after capsule processing. Once the UEFI
database is updated, the new keys must be used to sign the newly created capsule files.

00002c40 02 9e 7e 4d 6f 64 75 6c 65 20 73 69 67 6e 61 74
|..~Module signat|
00002c50 75 72 65 20 61 70 70 65 6e 64 65 64 7e 0a |ure
appended~.|
00002c5e

Note

This requires UEFI secure boot to have been enabled using your own
keys, which means that you own the signing keys.

$./mlx-mkcap --pk-key new_pk.cer --kek-key new_kek.cer --db-key
new_db1.cer --db-key new_db2.cer --db-key new_db3.cer --signer-
key db.key --signer-cert db.pem EnrollYourNewKeysCap

Initial Configuration 70

To enroll the new set of keys, download the capsule file to the BlueField console and use
bfrec to initiate the capsule update.

Disable UEFI Secure Boot Using a Capsule

It is possible to disable UEFI secure boot through a capsule update. This requires an empty
PK key when creating the capsule file.

To create a capsule intended to disable UEFI secure boot:

1. Create a dummy empty PK certificate:

2. Create the capsule file:

--signer-key and --signer-cert must be specified with the appropriate private
keys and certificates associated with the actual key certificates in the UEFI database.

To enroll the empty PK certificate, download the capsule file to the BlueField console and
use bfrec to initiate the capsule update.

Note

This requires UEFI secure boot to have been enabled using your own
keys, which means that you own the signing keys.

$ touch null_pk.cer

$./mlx-mkcap --pk-key null_pk.cer --signer-key db.key --
signer-cert db.pem DeletePkCap

Initial Configuration 71

Updating Platform Firmware
To update the platform firmware on secured devices, download the latest NVIDIA®
BlueField® software images from NVIDIA.com.

Updating eMMC Boot Partitions Image

The capsule file /lib/firmware/mellanox/boot/capsule/MmcBootCap is used to
update the eMMC boot partition and update the Arm pre-boot code (i.e., Arm trusted
firmware and UEFI).

The capsule file is signed with NVIDIA keys. If UEFI secure boot is enabled, make sure the
NVIDIA certificate files are enrolled into the UEFI database. Please refer to "UEFI Secure
Boot" for more information on how to update the UEFI database key certificates.

To initiate the update of the eMMC boot partitions, run the following command:

After the command completes, reboot the system to process the capsule file. On the next
reboot, UEFI will verify the capsule signature. If verified, UEFI will process the capsule file,
extract the pre-boot image and burn it into the eMMC boot partitions.

Note that the pre-boot code is signed with the NVIDIA key. The bootloader images are
installed into the eMMC with their associated certificate files. The public key is derived
from the certificate file and its integrity is verified by the ROM code against an on-chip

Warning

Deleting the PK certificate will result in UEFI secure boot to be
disabled which is not recommended in a production environment.

ubuntu@localhost:~$ sudo bfrec --capsule
/lib/firmware/mellanox/boot/capsule/MmcBootCap

https://developer.nvidia.com/networking/doca

Initial Configuration 72

public key hash value stored in E-FUSEs. If the verification fails, then the pre-boot code
will not be allowed to execute.

Recovering eMMC Boot Partition

If the system cannot boot from the eMMC boot partitions for any reason, it is
recommended to download a valid BFB image and boot it over the BlueField platform.

The recovery path relies on the platform to be configured to boot solely from the RShim
interface (either RShim USB or RShim PCIe). With this configuration there must not be a
way to interrupt or bypass the RoT when secure booting.

You will need to append a capsule file to the BFB prior to booting. Run:

Then boot the recovery_install.bfb using the RShim interface. Run:

The capsule file will be processed by UEFI upon boot.

Updating SPI Flash FS4 Image

The SPI flash contains the firmware image of the DPU firmware in FS4 format. The
firmware image is provided along with the software.

There are two different ways to install the firmware image:

From the BlueField console, using the following command:

$ mlx-mkbfb --capsule MmcBootCap install.bfb recovery_install.bfb

$ cat recovery_install.bfb > /dev/rshim0/boot

ubuntu@localhost:~$ /opt/mellanox/mlnx-fw-

Initial Configuration 73

From the PCIe host console, using the following command:

updater/firmware/mlxfwmanager_sriov_dis_aarch64_<bf-dev>

flint -d /dev/mst/mt<bf-dev>_pciconf0 -i firmware.bin b

Info

bf-dev is 41686 for BlueField-2 or 41692 for BlueField-3.

Initial Configuration 74

Default Passwords and
Policies
BMC Passwords

The BMC password must comply with the following policy parameters:

Using ASCII and Unicode characters is permitted

Minimum length: 12

Maximum length: 20

Maximum number of consecutive character pairs: 4

The following is a valid example password:

HelloNvidia3D!

Info

Two characters are consecutive if
|hex(char_1)-hex(char_2)|=1 .

Examples of passwords with 5 consecutive character pairs
(invalid): DcB a123456AbCd! ; ab1XbcYcdZdeGef! ;

Testing_123abcgh! .

Note

Initial Configuration 75

UEFI Menu Password

A password is required to enter the UEFI menu during BlueField bootup. The UEFI menu
contains various settings which impact BlueField behavior. Therefore, it is very important
to keep that password secure.

Default Password

1. A first-time user accessing the UEFI menu must enter the default password for the
UEFI menu, bluefield :

2. The user is prompted to provide a new password:

A user account is locked for 10 minutes after 10 consecutive failed
attempts.

Note

The new password entered above must be in compliance with
the password policy:

The password must be between 12 and 64 characters
(inclusive)

There are no requirements for upper/lower case, or special
characters. Spaces are allowed.

Initial Configuration 76

3. The user is prompted to confirm the new password:

Default Password Policy

The user can enable/disable the UEFI password policy. The default password policy is
enabled by default using a checkbox in the UEFI menu.

The user can browse the UEFI menu and disable as follows:

1. Navigate to "Device Configuration" > "System Configuration" > "Password Settings":

2. The "Default Password Policy" checkbox controls whether the more secure password
policy is enabled:

Initial Configuration 77

3. The user must hit ESC ESC and answer "Y" to save the configuration change.

Info

To disable the Default Password Policy, hit the spacebar to clear
the checkbox.

Initial Configuration 78

Disabling Default Password Policy

To disable the Default Password Policy, hit the spacebar to clear the checkbox.

Initial Configuration 79

Software Downgrade

The UEFI's password policy is not backward compatible. Although downgrade is not
recommended, users are allowed to downgrade their software while their password is set.
But , if and only if the password is set, users must configure the legacy password prior to
performing any downgrade.

For BSP 4.6.0 (DOCA 2.6.0) or higher, users must change the UEFI password saved to the
older "Legacy" format.

In the UEFI menu:

1. Navigate to "Device Manager" > "System Configuration" >"Password Settings" >" Set
Legacy Password".

2. Select " Set Legacy Password ".

3. Enter your current password:

Info

If the Default Password Policy is disabled, the password entered must
be between 1 and 64 characters.

Warning

If this procedure is not followed before performing a software
downgrade, users would not be able to enter the UEFI menu.

Initial Configuration 80

4. Type in a new legacy password between 1 and 20 characters:

Note

The password format allows up to 64 characters but anything
greater than 20 characters is not backward compatible.

Initial Configuration 81

5. Confirm the new password:

Now, you may downgrade your BlueField image.

Password Reset

Initial Configuration 82

To reset the UEFI menu password, users may use the ready to use capsule file
EnrollKeysCap installed under

/lib/firmware/mellanox/boot/capsule/EnrollKeysCap on the BlueField DPU
file system. From the BlueField console, execute the following command, then reboot:

On the next reboot, the capsule file is processed, and the UEFI password is reset to
bluefield .

GRUB Password

GRUB menu entries are protected by a username and password to prevent unwanted
changes to the default boot options or parameters.

The default credentials are as follows:

Username admin

Password BlueField

The password can be changed during BFB installation by providing a new
grub_admin_PASSWORD parameter in bf.cfg :

To get a new encrypted password value use the command grub-mkpasswd-pbkdf2 .

After the installation, the password can be updated by editing the file
/etc/grub.d/40_custom and then running the command update-grub which

ubuntu@localhost:~$ bfrec --
capsule /lib/firmware/mellanox/boot/capsule/EnrollKeysCap

vim bf.cfg
grub_admin_PASSWORD='
grub.pbkdf2.sha512.10000.5EB1FF92FDD89BDAF3395174282C77430656A6DBEC

Initial Configuration 83

updates the file /boot/grub/grub.cfg .

Ubuntu Password Policy

Upon first login, the username ubuntu must enter the default password ubuntu if this
was not changed during the OS installation process. Users are then required to change
the default password according to the following password policy:

The following table details the password policy parameters:

Config File Path
Paramete
r

Value Description

/etc/security/p
wquality.conf minlen 12 Minimum password length

/etc/pam.d/comm
on-password

rememb
er

3
The number of previous passwords which
cannot be reused

/etc/security/f
aillock.conf

silent
Uncom
mented

Prevents printing informative messages to
the user

deny 10
The number of authentication attempts
permitted before the user is locked out

unlock
_time

600
The duration of the lockout period, in
seconds

Info

Each of these parameters is configurable in its respective config file
indicated in the "Config File Path" column.

Initial Configuration 84

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain
functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no representations or warranties,
expressed or implied, as to the accuracy or completeness of the information contained in this document and assumes
no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such
information or for any infringement of patents or other rights of third parties that may result from its use. This
document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to
this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is
current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order
acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of
NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any customer general terms and
conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations
are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or
life support equipment, nor in applications where failure or malfunction of the NVIDIA product can reasonably be
expected to result in personal injury, death, or property or environmental damage. NVIDIA accepts no liability for
inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at
customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified
use. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility
to evaluate and determine the applicability of any information contained in this document, ensure the product is
suitable and fit for the application planned by customer, and perform the necessary testing for the application in order
to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality
and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements beyond
those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem which
may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or
(ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual
property right under this document. Information published by NVIDIA regarding third-party products or services does
not constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of
such information may require a license from a third party under the patents or other intellectual property rights of the
third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing,
reproduced without alteration and in full compliance with all applicable export laws and regulations, and accompanied by
all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS,
LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY
DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF

Initial Configuration 85

ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and
cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms of
Sale for the product.

Trademarks

NVIDIA and the NVIDIA logo are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other
countries. Other company and product names may be trademarks of the respective companies with which they are
associated.

Copyright 2024. PDF Generated on 12/10/2024

	UEFI Menu
	System Configuration and Services
	Host-side Interface Configuration
	Secure Boot
	UEFI Secure Boot
	Updating Platform Firmware

	Default Passwords and Policies

