
Boost efficiency, enhance security,

and deliver value faster

AI-powered DevOps

with GitHub

https://manuals.plus/m/e032c3380993e57924a151b8f499deedbd0950b96f62785174684f82c480c605

What’s inside

3 What is DevOps?

4 DevOps defined

6 DevOps + generative AI: Using AI for

efficiency

6 Automating the mundane

10 DevOps + security: Protecting code from

the inside out

10 Protect every line of code

12 Demystifying the dependency graph

17 Powering the DevOps pipeline with

GitHub Enterprise

17 Enabling cloud-native applications

19 End-to-end software lifecycle

management

22 Conclusion

22 Next steps

PAGE — 3WRIT TEN BY GITHUB WITH

What is DevOps?

When implemented effectively, DevOps

can transform the way your organization

delivers software—accelerating

release cycles, improving reliability, and

driving innovation.

The real opportunity lies in how DevOps

enables you to stay agile in a rapidly

evolving market. By establishing a culture

of collaboration, continuous improvement,

and strategic technology adoption, you

can outpace the competition with faster

time to market and a stronger ability to

adapt to change.

DevOps is shaped by diverse experiences,

technical skills, and cultural perspectives.

This diversity brings about multiple

interpretations and evolving practices,

making DevOps a dynamic and

interdisciplinary field. A DevOps team is

cross functional and involves key players

from teams that are part of the software

delivery lifecycle (SDLC).

In this ebook, we will explore the value

of building a strong DevOps team

and practice, and how to apply AI to

automate routine tasks, protect code,

and achieve optimal end-to-end

lifecycle management.

Figure 1: Continuous DevOps lifecycle

R
ele

ase
Dep

lo
y

C
o

d
e

Plan

B

uild

Test

M
onitor

Opera
te

WRIT TEN BY GITHUB WITH

WHAT IS DE vOP S?

PAGE — 4

CONT.

DevOps defined
Donovan Brown, a trusted voice in the DevOps community,

shared a definition of DevOps that has been widely recognized

by DevOps practitioners:

DevOps is the union of people, process, and products to enable continuous

delivery of value to your end users.”

Donovan Brown

Partner Program Manager // Microsoft1

In many tech environments, teams are siloed by their technical

skill sets, with each focusing on their own metrics, KPIs, and

deliverables. This fragmentation often slows down delivery,

causes inefficiencies, and leads to conflicting priorities,

ultimately hindering progress.

To overcome these challenges, organizations should work to

foster collaboration, encourage constructive feedback, automate

workflows, and embrace continuous improvement. This helps

ensure faster software delivery, greater efficiency, improved

decision making, cost savings, and a stronger competitive edge.

How can teams begin adopting new DevOps practices

effectively? They can start by addressing the most significant

pain points first, such as manual deployment processes, long

feedback cycles, inefficient test automation, and delays caused

by manual interventions in release pipelines.

1: https://www.donovanbrown.com/post/what-is-devops

WRIT TEN BY GITHUB WITH

WHAT IS DE vOP S?

PAGE — 5

CONT.

Eliminating friction points can feel overwhelming, but

the rapid rise of AI in recent years has created new

opportunities for developers to increase the speed and

quality of their work. Our research found that the quality

of the code authored and reviewed was better across the

board with GitHub Copilot Chat enabled, even though

none of the developers had used the feature before.

Figure 2: Impacts of AI adoption on developers2

2: https://github.blog/news-insights/research/research-quantifying-github-copilots-impact-on-code-quality/

15%

Code reviews were more ac�onable

and completed 15% faster than

without GitHub Copilot Chat

85%

85% of developers felt more confident in

their code quality when authoring code with

GitHub Copilot and GitHub Copilot Chat

PAGE — 6WRIT TEN BY GITHUB WITH

DevOps + generative AI:
Using AI for efficiency

Conflicting

priorities

Unknown

dependencies

Low

bandwidth

Unplanned

work

Neglected

work

By promoting a culture of shared responsibility, DevOps

encourages collaboration and breaks down silos. AI

takes this even further by automating repetitive tasks,

streamlining workflows, and enabling faster feedback

cycles, allowing teams to focus on high-value work.

A key challenge in software delivery is inefficiency and

inaccuracy—issues that AI helps address by optimizing

resource management and delivering consistent, more

accurate outcomes. AI-driven efficiencies can not only

enhance application performance and infrastructure

optimization but also bolster security and reduce costs.

High-performing teams can identify and automate

the repetitive tasks that hinder productivity and extend

delivery cycles. The ultimate goal is to deliver what

matters most to customers and end users while driving

organizational growth, accelerating time to market, and

bolstering developer productivity and satisfaction.

Automating the mundane
Developers often handle daily tasks that are repetitive.

These are commonly referred to as “time thieves” and

include things such as manual system checks, setting

up new code environments or identifying and addressing

bugs. These tasks take time away from a developer’s core

responsibility: delivering new features.

DevOps is equal parts team alignment and automation.

The overarching goal is to remove burdens and

roadblocks from the SDLC and to help developers reduce

manual and mundane tasks. Let’s look at how you can

utilize AI to resolve these issues.

Figure 3: Activities that diminish

developer efficiency

WRIT TEN BY GITHUB WITH

DE vOP S + GENER ATIvE AI: USING AI FOR EFFICIENCY

PAGE — 7

CONT.

Streamline development
lifecycles with GitHub

Let’s combine DevOps, AI, and the

power of GitHub to see how your teams

can deliver end-to-end value. GitHub

is widely recognized as the home of

open-source software, but it also offers

enterprise-level features through its

GitHub Enterprise solution.

GitHub Enterprise streamlines the DevOps

lifecycle by providing a unified platform

for version control, issue tracking, code

review, and more. This reduces toolchain

sprawl, minimizes inefficiencies, and

mitigates security risks by cutting down

on the number of surfaces your teams are

working across.

With access to GitHub Copilot, a leading

AI development tool, development cycles

can be accelerated by reducing time

spent on repetitive tasks and mitigating

errors. This can lead to faster delivery and

shorter time to market.

Built-in automation and CI/CD workflows

on GitHub also help simplify code

reviews, testing, and deployment. This

reduces the number of manual tasks,

while shortening approval times and

accelerating development. These tools

enable seamless collaboration, breaking

down silos and allowing teams to manage

every aspect of their projects efficiently—

from planning to delivery.

Work smarter, not harder

Automation is at the heart of DevOps,

making it possible to eliminate the time

thieves and focus on delivering value

faster. Automation is a very broad term

that includes various items from the SDLC.

Automation can include things such as

configuring CI/CD to allow for the seamless

integration of code changes into your

production environment. This can also

include automating your infrastructure as

code (IaC), testing, monitoring and alerting,

and security.

While most DevOps tools provide CI/CD

capabilities, GitHub goes a step further

with GitHub Actions, a solution that

delivers enterprise-grade software to

your environment—whether in the cloud,

on-premises, or elsewhere. With GitHub

Actions, you can not only host your CI/

CD pipelines but also automate virtually

anything within your workflows.

This seamless integration with the GitHub

platform eliminates the need for extra

tools, streamlining workflows and boosting

productivity. Here’s how GitHub Actions can

transform your workflows:

• Faster CI/CD: Automate build,

test, and deployment pipelines for

quicker releases.

• Improved code quality: Enforce code

formatting standards and catch

security issues early.

WRIT TEN BY GITHUB WITH

DE vOP S + GENER ATIvE AI: USING AI FOR EFFICIENCY

PAGE — 8

CONT.

• Enhanced collaboration: Automate

notifications and communication

around development processes.

• Simplified compliance: Helps

align repositories with

organizational standards.

• Increased efficiency: Automate

repetitive tasks to free up

developers’ time.

GitHub Copilot can be used to make

code suggestions and suggest which

Actions to use to create better workflows.

It can also suggest coding best practices

tailored to your organization that your

teams can quickly implement to help

enforce governance and conventions.

GitHub Copilot also works with various

programming languages and can be

used to build Actions and workflows to

easily automate tasks.

To learn more about GitHub Copilot, see:

• Getting code suggestions in your IDE

with GitHub Copilot

• Using GitHub Copilot in your IDE: tips,

tricks, and best practices

• 10 unexpected ways to use GitHub

Copilot

Reduce repetitive tasks

Focus on automating routine processes

and using tools such as GitHub Copilot

to streamline your workflow. For example,

Copilot can assist with generating unit

tests—a time-consuming but essential

part of software development. By crafting

precise prompts, developers can guide

Copilot to create comprehensive testing

suites, covering both basic scenarios and

more complex edge cases. This reduces

manual effort while maintaining high

code quality.

It is essential to trust, but verify, the results

that Copilot provides—much like with any

generative AI-powered tool. Your teams

can rely on Copilot for simple and complex

tasks, but it’s important to always validate

its output through thorough testing

before deploying any code. This not only

helps ensure reliability but also prevents

errors that could otherwise slow down

your workflow.

As you continue using Copilot, refining

your prompts will help you make the

most of its capabilities, enabling smarter

automation while further minimizing

repetitive tasks.

For more information on creating unit

tests with GitHub Copilot, see:

• Develop unit tests using GitHub

Copilot tools

• Writing tests with GitHub Copilot

WRIT TEN BY GITHUB WITH

DE vOP S + GENER ATIvE AI: USING AI FOR EFFICIENCY

PAGE — 9

CONT.

Prompt engineering and
context

Integrating GitHub Copilot into your

DevOps practice can revolutionize the

way your team works. Crafting precise,

context-rich prompts for Copilot can help

your team unlock new levels of efficiency

and streamline processes.

These benefits can translate into

measurable outcomes for your

organization, such as:

• Increased efficiency: Automate

repetitive tasks, minimize manual

intervention, and enable faster,

smarter decision-making with

actionable insights.

• Cost savings: Streamline workflows,

reduce errors, and lower development

costs by integrating AI into repetitive

and error-prone processes.

• Drive results: Utilize Copilot to

support strategic goals, improve

customer experiences, and maintain a

competitive edge in the market.

By learning how to write precise and

detailed prompts, teams can significantly

improve the relevance and accuracy

of Copilot’s suggestions. Like any new

tool, proper onboarding and training are

essential to help your team maximize

Copilot’s benefits at scale.

Here’s how you can foster a culture of

effective prompt engineering within

your team:

• Build an internal community: Set up

chat channels for sharing insights,

attend or host events, and create

learning opportunities to create a

space for your teams to learn.

• Share surprising moments: Use

tools such as Copilot to create

documentation that guides others on

their journey.

• Share tips and tricks that you have

picked up: Host knowledge sharing

sessions and use your internal

communications (newsletters, Teams,

Slack, etc.) to share insights.

Effective prompts help align AI with your

team’s objectives, which can lead to

better decision making, more reliable

outputs, and higher performance. By

implementing these prompt engineering

methods, you can not only save costs

but enable faster delivery, enhanced

product offerings, and superior customer

experiences.

PAGE — 10WRIT TEN BY GITHUB WITH

DevOps + security:
Protecting code
from the inside out
A unified strategy for managing your SDLC

is far more effective when it’s supported by

a streamlined toolset. While tool sprawl is a

common challenge across many DevOps

disciplines, application security often feels

its impact most. Teams frequently add new

tools to address gaps, but this approach

often overlooks the core issues related

to people and processes. As a result,

security landscapes can become cluttered

with everything from single-application

scanners to complex enterprise

risk platforms.

By simplifying your toolset, you help

developers stay focused, reduce context

switching, and maintain their coding flow.

A platform where security is integrated

at every step—ranging from dependency

management and vulnerability alerts to

preventive measures that protect sensitive

information—brings stability to your

organization’s software security posture.

Additionally, extensibility is crucial, enabling

you to utilize your existing tools alongside

the platform’s built-in capabilities.

Protect every line
of code
When you think about software

development, languages such as Python,

C#, Java, and Rust likely come to mind.

However, code takes many forms, and

professionals across various fields—data

scientists, security analysts, and business

intelligence analysts—also engage with

coding in their own ways. By extension, your

potential risk for security vulnerabilities

increases—sometimes unknowingly.

Providing a comprehensive set of

standards and methodologies to all

developers, regardless of their role or title,

enables them to integrate security into

every step of the cycle.

Static analysis and
secret scanning

Using application security testing (AST)

tools has become more common when

it comes to build-time integration. One

minimally invasive technique is to scan

the source code as is, looking for points

of complexity, potential exploits, and

adherence to standards. The use of

software composition analysis (SCA)

on every commit and every push helps

developers focus on the task at hand

while providing a mechanism for pull

requests and code reviews to be more

productive and meaningful.

Secret scanning is a secret weapon

against potentially committing

compromising secrets or keys to source

control. When configured, secret scanning

pulls from a list of over 120 different

software and platform vendors, including

AWS, Azure, and GCP. This allows for

the identification of specific secrets

that would match with those software

applications or platforms. You can also

test whether a secret or key is active

directly from the GitHub UI, making

remediation simple.

WRIT TEN BY GITHUB WITH

DE vOP S + SECURIT Y: PROTECTING CODE FROM THE INSIDE OU T

PAGE — 11

CONT.

Advanced code analysis with CodeQL

CodeQL is a powerful utility in GitHub that analyzes

code to identify vulnerabilities, bugs, and other quality

issues. It builds a database from your codebase through

compilation or interpretation and then employs a query

language to search for vulnerable patterns. CodeQL

also lets you create custom variant databases tailored

to specific cases or proprietary use cases relevant to

your business. This flexibility enables the development of

reusable vulnerability databases that can be used during

scans for other applications within your enterprise.

In addition to its robust capabilities, CodeQL delivers scan

and vulnerability results quickly for supported languages,

allowing developers to address issues efficiently without

compromising on quality. This combination of power and

speed makes CodeQL a valuable asset in maintaining

code integrity and security across various projects. It also

provides leaders with a scalable approach to improving

organizational resilience and implementing secure

software development practices.

From vulnerability

detection to successful

remediation3

Finds leaked secrets with

fewer false positives4

Copilot Autofix provides

code suggestions for

nearly 90% of alert types in

all supported languages5

minutes

more precise

coverage

28

2.4x

90%
3: Overall, the median time for developers to use Copilot Autofix to automatically

commit the fix for a PR-time alert was 28 minutes, compared to 1.5 hours to

resolve the same alerts manually (3x faster). For SQL injection vulnerabilities:

18 minutes compared to 3.7 hours (12x faster). Based on new code scanning

alerts found by CodeQL in pull requests (PRs) on repositories with GitHub

Advanced Security enabled. These are examples; your results will vary.

4: A Comparative Study of Software Secrets Reporting by Secret Detection Tools,

Setu Kumar Basak et al., North Carolina State University, 2023

5: https://github.com/enterprise/advanced-security

WRIT TEN BY GITHUB WITH

DE vOP S + SECURIT Y: PROTECTING CODE FROM THE INSIDE OU T

PAGE — 12

CONT.

Demystifying the
dependency graph
Modern applications can have dozens of directly

referenced packages, which can in turn have dozens

of more packages as dependencies. This challenge

is amplified as enterprises are faced with managing

hundreds of repositories with varying levels of

dependencies. This makes security a daunting task, as

understanding which dependencies are in use across the

organization becomes difficult. Adopting a dependency

management strategy that tracks repository dependencies,

vulnerabilities, and OSS license types reduces risks and

helps detect issues before they reach production.

GitHub Enterprise gives users and admins immediate

insights into dependency graphs, along with use alerts from

Dependabot that flag out-of-date libraries posing potential

security risks.

WRIT TEN BY GITHUB WITH

DE vOP S + SECURIT Y: PROTECTING CODE FROM THE INSIDE OU T

PAGE — 13

CONT.

Figure 4: Dependency graph

The repository dependency graph consists of:

• Dependencies: A complete list of dependencies

identified in the repository

• Dependents: Any projects or repositories that have a

dependency on the repository

• Dependabot: Any findings from Dependabot

regarding updated versions of your dependencies

WRIT TEN BY GITHUB WITH

DE vOP S + SECURIT Y: PROTECTING CODE FROM THE INSIDE OU T

PAGE — 14

CONT.

Figure 5: vulnerability alerts

For repository-level vulnerabilities, the Security tab in the

navigation bar shows results for identified vulnerabilities

that may be associated with dependencies related to

your codebase. The Dependabot view lists alerts related

to identified vulnerabilities and allows you to view any

rulesets that may help automatically triage certain alerts

for public repositories.

WRIT TEN BY GITHUB WITH

DE vOP S + SECURIT Y: PROTECTING CODE FROM THE INSIDE OU T

PAGE — 15

CONT.

GitHub Enterprise and
organizational views

With GitHub Enterprise, you can view and manage

dependencies, vulnerabilities, and OSS licenses across

all repositories in your organization and enterprise. The

dependency graph allows you to see a comprehensive

view of dependencies across all registered repositories.

Figure 6: viewing and managing dependencies, vulnerabilities, and OSS licenses

This at-a-glance dashboard provides an excellent

snapshot not only of identified security advisories but also

of the distribution of licenses related to dependencies

in use across your enterprise. OSS license usage can be

particularly risky, especially if you manage proprietary

code. Some more restrictive open source licenses, such

as GPL and LGPL, can potentially leave your source

code vulnerable to forced publication. Open source

components require finding a unified way to determine

where you may be out of compliance and may wish to find

other alternatives for the packages being pulled in with

those licenses.

WRIT TEN BY GITHUB WITH

DE vOP S + SECURIT Y: PROTECTING CODE FROM THE INSIDE OU T

PAGE — 16

CONT.

Safeguarding your
security posture

Many enterprise-grade source control

management systems give you options

to safeguard your code using policies,

pre-commit hooks, and platform-specific

functionality. The following measures

can be used to plan out a well-rounded

security stance:

• Preventive measures: GitHub allows

for the configuration and use of

different types of rulesets to enforce

behaviors and protect against

unwanted changes in specific

branches. For example:

 › Rules requiring pull requests prior

to merging changes

 › Rules protecting specific

branches from having changes

pushed directly

An additional client-side check can

be performed by using pre-commit

hooks. Git, as a source control

management system, supports

pre-commit hooks to perform various

tasks, such as formatting commit

messages or running formatting and

validation routines before committing

changes. These hooks can utilize

advanced utilities to help ensure

code consistency and quality at the

local level.

• Protective measures: GitHub allows

for configuring protective measures

as well, including the use of checks

that can be established during a pull

request or CI build. These include:

 › Dependency checks

 › Testing checks

 › Code quality checks

 › Quality gates

 › Manual intervention/human

approval gates

GitHub Enterprise enables software

development teams to identify and act on

vulnerabilities very quickly, from outdated

dependencies and checked-in secrets

to known language exploits. With the

additional capabilities of viewing the

dependency graph, team leaders and

admins are armed with the tools they need

to stay ahead of the curve when it comes

to security advisories. Loop in visibility of

the license types in use and you are left

with a comprehensive security-first risk

management platform.

PAGE — 17WRIT TEN BY GITHUB WITH

Powering the
DevOps pipeline with
GitHub Enterprise
By now, it’s fair to say that the concept of DevOps is widely

familiar to those in the technology industry. However, as new

tools and methodologies for deploying applications continue

to emerge, it can put strain on an ever-growing organization to

effectively manage and measure their results.

Meeting the market demands for applications that are resilient,

scalable, and cost-effective can be challenging. Utilizing

cloud-based resources can help improve time to market, speed

up the inner loop for developers, and allow for scaled testing

and deployment to occur with cost-conscious controls.

Enabling cloud-native
applications
Much like the paradigm of shifting left has brought security,

testing, and feedback closer to the development inner loop,

the same can be said for developing applications for the

cloud. Adopting cloud-centric development practices helps

developers bridge the gap between traditional approaches

and modern cloud solutions. This shift enables teams to move

beyond simply creating cloud-first applications to building truly

cloud-native ones.

Develop in the cloud, deploy to the cloud

An IDE that facilitates seamless development is now a standard

expectation. However, the idea of portability within that

environment is relatively novel, especially considering recent

advancements in cloud-based IDEs. With the launch of GitHub

Codespaces and the underlying DevContainers technology,

developers are now able to develop code in a portable online

environment. This setup allows them to utilize configuration

files, enabling their development environment to be tailored to

meet specific team requirements.

WRIT TEN BY GITHUB WITH

P OWERING THE DE vOP S PIPELINE WITH GITHUB ENTERPRISE

PAGE — 18

CONT.

Figure 7: Portable online environment

Git repository

Application

code

Application

code

GitHub Codespaces GitHub Copilot Cloud provider

Deployed

resources

devcontainer.json

build.yml,

deploy.yml

build.yml,

deploy.yml

Push

Push

Commit
Create a CI/CD workflow

for using GitHub Actions

Build + deploy (via trigger)

The combination of reusability and portability offers

organizations significant advantages. Teams can

now centralize their configuration and environment

specifications, enabling every developer—whether new

or experienced—to work within the same setup. Having

these centralized configurations allows team members to

contribute to those configurations. As needs evolve, the

environment can be updated and kept in a steady state

for all developers.

WRIT TEN BY GITHUB WITH

P OWERING THE DE vOP S PIPELINE WITH GITHUB ENTERPRISE

PAGE — 19

CONT.

Managing workflows
at scale

It’s the developer workflow and time to

market that really drive the metrics on

productivity. Managing this at scale,

however, can be a challenge, especially

when many different teams of developers

are using workflows and deployment to

various clouds, cloud services, or even

on-premises installations. Here are a few

ways GitHub Enterprise takes the burden

of managing workflows at scale:

• Simplify with reusable Actions

and workflows

• Employ governance using

Actions policies

• Use Actions published by

verified publishers

• Use branch policies and rulesets to

help ensure consistency and protect

the mainline code

• Configure what makes sense at the

enterprise and organization levels

End-to-end
software lifecycle
management
Managing both planned and in-flight

work is an essential cornerstone of

agile software development. GitHub

Enterprise provides a lightweight project

management construct that allows users

to create projects, associate one or more

teams and repositories with that project,

and then use issues that are opened on

linked repositories to track work items

overall within the project. Labels can be

used to differentiate between different

types of issues.

For example, some of the default

labels that can be used with issues are

enhancement, bug, and feature. For any

item that has an associated list of tasks

related to the issue, it is possible to use

Markdown to define that list of tasks as

a checklist and include that in the body

of the issue. This allows the tracking of

completion based on that checklist and

helps align it with project milestones,

if defined.

WRIT TEN BY GITHUB WITH

P OWERING THE DE vOP S PIPELINE WITH GITHUB ENTERPRISE

PAGE — 20

CONT.

Managing the feedback
loop

It’s no secret that the sooner a developer

receives feedback about a specific

functionality, the easier it is to fix potential

issues and release updates compared to

validating changes. Every organization

has its own preferred method of

communication, whether that’s through

instant messaging, email, comments on

tickets or issues, or even phone calls. One

additional GitHub Enterprise feature is

Discussions, which offers developers and

users the ability to interact in a forum-

based environment, communicating

changes, any types of issues with respect

to functionality, or suggestions for new

functionality that could then be translated

into work items.

The feature set around Discussions has

been popular with open source projects

for quite some time. Some organizations

may struggle to see the benefit of using

Discussions when there are enterprise-

level communication tools already in

place. As organizations mature, being

able to segregate communications that

are relevant to specific software features

and functionality, and then relaying those

through Discussions that are associated

with a specific repository, may give

developers, product owners, and end

users the ability to tightly interact in an

environment that is specific to the features

they are interested in seeing implemented.

Artifact lifecycles

Artifact management is one thing that

is central to all software development

lifecycles. Whether it’s in the form of

executables, binaries, dynamically linked

libraries, static web code, or even through

Docker container images or Helm charts,

having a central place where all artifacts

can be cataloged and retrieved for

deployment is essential. GitHub Packages

allows developers to store standardized

package formats for distribution within an

organization or an enterprise.

GitHub Packages supports the following:

• Maven

• Gradle

• npm

• Ruby

• .NET

• Docker images

Should you have artifacts that do not

fall into those categories, you can still

store them using the Releases feature in

the repository. This allows you to attach

required binaries or other files as needed.

WRIT TEN BY GITHUB WITH

P OWERING THE DE vOP S PIPELINE WITH GITHUB ENTERPRISE

PAGE — 2 1

CONT.

Managing quality

Testing is an integral part of software

development, whether that’s executing

unit or functional tests during a

continuous integration build or having

quality assurance analysts run through

test scenarios to validate functionality

within a web application. GitHub Actions

allows you to integrate a variety of different

testing types into your pipelines to help

ensure that quality is being evaluated.

In addition, GitHub Copilot can offer

suggestions on how best to author unit

tests, taking the burden of creating unit

or other types of tests off the developers

and allowing them to focus more on the

business problem at hand.

Being able to easily integrate various

testing utilities helps ensure quality

is evaluated across the development

lifecycle. As mentioned previously, you

can use checks within GitHub Actions

workflows to validate certain scenarios.

This includes being able to successfully

run a full suite of tests before allowing a

request to be merged. Depending on the

stage of deployment, you can also specify

checks that include integration tests, load

and stress tests, and even chaos tests

to help ensure that applications going

through the deployment pipeline are

appropriately tested and validated before

making it to production.

WRIT TEN BY GITHUB WITH

Next steps

To learn more about GitHub

Enterprise or to start your free trial,

visit https://github.com/enterprise

Conclusion

As you plan the next steps in your journey, it’s important to think

about continuing to bring benefits of AI and security to your

DevOps process in order to deliver high-quality code that is

secure from the start. By addressing productivity bottlenecks

and eliminating time thieves, you can empower your engineers

to work more efficiently. GitHub is ready to help you get started,

no matter what solutions you’re building or which phase of

exploration you’re in. Whether it’s using GitHub Copilot to

enhance the developer experience, safeguarding your security

posture, or scaling with cloud-native development, GitHub is

ready to help you every step of the way.

	DevOps_+_security:_Protecting_code_from_
	Protect_every_line_of_code
	_bookmark3
	Next steps
	Powering the
DevOps pipeline with GitHub Enterprise
	Enabling cloud-native applications
	End-to-end software lifecycle management

	DevOps + security: Protecting code from the inside out
	Protect every line of code
	Demystifying the dependency graph

	DevOps + generative AI: Using AI for efficiency
	Automating the mundane

	What is DevOps?
	DevOps defined

	Conclusion

