
 2022 Microchip Technology Inc. and its subsidiaries DS50003222A

ZLS30390 IEEE 1588-2008
Protocol Engine Software API

User’s Guide

DS50003222A-page 2  2022 Microchip Technology Inc. and its subsidiaries

This publication and the information herein may be used only
with Microchip products, including to design, test, and integrate
Microchip products with your application. Use of this informa-
tion in any other manner violates these terms. Information
regarding device applications is provided only for your conve-
nience and may be superseded by updates. It is your responsi-
bility to ensure that your application meets with your
specifications. Contact your local Microchip sales office for
additional support or, obtain additional support at https://
www.microchip.com/en-us/support/design-help/client-support-
services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS".
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,
RELATED TO THE INFORMATION INCLUDING BUT NOT
LIMITED TO ANY IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE, OR WARRANTIES RELATED TO
ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDI-
RECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSE-
QUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY
KIND WHATSOEVER RELATED TO THE INFORMATION OR
ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS
BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES
ARE FORESEEABLE. TO THE FULLEST EXTENT
ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON
ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION
OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF
ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP
FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applica-
tions is entirely at the buyer's risk, and the buyer agrees to
defend, indemnify and hold harmless Microchip from any and
all damages, claims, suits, or expenses resulting from such
use. No licenses are conveyed, implicitly or otherwise, under
any Microchip intellectual property rights unless otherwise
stated.

Note the following details of the code protection feature on Microchip products:
• Microchip products meet the specifications contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and
under normal conditions.

• Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of
Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
mean that we are guaranteeing the product is “unbreakable”. Code protection is constantly evolving. Microchip is committed to
continuously improving the code protection features of our products.

Trademarks
The Microchip name and logo, the Microchip logo, Adaptec,
AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud,
CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO,
JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus,
maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo,
MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower,
PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch,
SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash,
Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O,
Vectron, and XMEGA are registered trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions
Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight
Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3,
Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-
Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub,
TimePictra, TimeProvider, TrueTime, WinPath, and ZL are
registered trademarks of Microchip Technology Incorporated in the
U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any
Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky,
BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive,
CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net,
Dynamic Average Matching, DAM, ECAN, Espresso T1S,
EtherGREEN, GridTime, IdealBridge, In-Circuit Serial
Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip
Connectivity, JitterBlocker, Knob-on-Display, maxCrypto, maxView,
memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo,
MPLIB, MPLINK, MultiTRAK, NetDetach, NVM Express, NVMe,
Omniscient Code Generation, PICDEM, PICDEM.net, PICkit,
PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple
Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP,
SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI,
SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total
Endurance, TSHARC, USBCheck, VariSense, VectorBlox,
VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are
trademarks of Microchip Technology Incorporated in the U.S.A. and
other countries.

SQTP is a service mark of Microchip Technology Incorporated in
the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage
Technology, Symmcom, and Trusted Time are registered
trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany
II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in
other countries.

All other trademarks mentioned herein are property of their
respective companies.

© 2022, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 978-1-5224-9804-9For information regarding Microchip’s Quality Management Systems,
please visit www.microchip.com/quality.

https://www.microchip.com/en-us/support/design-help/client-support-services
https://www.microchip.com/en-us/support/design-help/client-support-services
https://www.microchip.com/en-us/support/design-help/client-support-services
www.microchip.com/quality
www.microchip.com/quality

ZLS30390 SOFTWARE API
USER’S GUIDE

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 3

Preface

Features
• IEEE 1588-2008 Protocol Engine

- Version 2.0 operation supported
- Version 2.1 operation in development

• Profiles
- Annex J.3 (Delay Request-Response)

Default
- Annex J.4 (Peer-to-Peer) Default
- ITU-T G.8265.1 Telecom Profile for Fre-

quency
- ITU-T G.8275.1 Telecom Profile for Phase

with Full Timing Support Networks (Ed 1)
- ITU-T G.8275.1 Telecom Profile for Phase

with Full Timing Support Networks (Ed 2)
- ITU-T G.8275.2 Telecom Profile for Phase

with Partial Timing Support Networks
- CableLabs CM-SP-RDTI Remote DTI Profile
- IEEE C37.238-2011 Power Profile
- IEEE C37.238-2017 Power Profile
- IEC/IEEE 61850-9-3 2016 Power Utility Auto-

mation Profile
- IEC 62439-3 Annex C profile for High-

Availability Automation Networks (Ed 3)
- AES 67 Standard for Audio Applications of

Networks – High-Performance Streaming
Audio-over-IP interoperability: PTP Profile for
Media Applications

- SMPTE 2059-2 Profile for Use of IEEE-1588
Precision Time Protocol in Professional
Broadcast Applications

- AES R16 Project Report – PTP parameters
for AES67 and SMPTE 2059-2 interoperabil-
ity

- IEEE 802.1as PTP profile for transport of tim-
ing over full-duplex, point-to-point links
(alpha)

• Device Types
- Ordinary Clock (Grandmaster, Slave)
- Boundary Clock

• Path Delay
- Delay-Request-Response
- Peer-to-Peer

• Message Types
- Announce, Signaling, Management
- Sync, Follow_Up
- Delay_Req, Delay_Resp
- Pdelay_Req, Pdelay_Resp, Pdelay_Resp_-

Follow_Up
• Transport Mappings

- Annex D (IPv4)
- Annex E (IPv6)
- Annex F (Ethernet)

• Messaging Model
- Unicast Negotiation
- Unicast Static (non-negotiated)
- Multicast

• Supports Transparent Clock correctionField
• Supports default BMCA, profile-specific Alternate

BMCA and user-specified BMCA
• Interfaces to Microchip’s Time Synchronization

Algorithm and Microchip’s Network Synchronizer
PLLs

• Interfaces to IEEE 1588-capable PHY and
switches with integrated timestamping

• Interfaces to variety of Transport Layers
• Independent of OS and CPU, from embedded

SoC to home-grown

FIGURE 1-1: IEEE 1588-2008 Protocol Engine System Environment.

Host Processor

Transport

Layer

Protocols

Microchip

ZLS30390

IEEE 1588-2008

Protocol Engine

Time Sync

Algorithm

PLL

SyncE/

Stratum 3/

GNSS/

IEEE 1588

Ethernet

MAC & PHY
(Timestamp)

Operating System

Application Layer
Control, Configuration, Stats & Alarms

Packet

Network

Clock

PPS

Timestamp Reference Clock

Microchip

Microchip

Microchip

Software Release Version 5.5.0
ZLS30390

Preface

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 4

CONVENTIONS USED IN THIS GUIDE
This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS
Description Represents Examples

Arial font:
Italic characters Referenced books MPLAB® IDE User’s Guide

Emphasized text ...is the only compiler...
Initial caps A window the Output window

A dialog the Settings dialog
A menu selection select Enable Programmer

Quotes A field name in a window or
dialog

“Save project before build”

Underlined, italic text with
right angle bracket

A menu path File>Save

Bold characters A dialog button Click OK
A tab Click the Power tab

N‘Rnnnn A number in verilog format,
where N is the total number of
digits, R is the radix and n is a
digit.

4‘b0010, 2‘hF1

Text in angle brackets < > A key on the keyboard Press <Enter>, <F1>
Courier New font:
Plain Courier New Sample source code #define START

Filenames autoexec.bat

File paths c:\mcc18\h

Keywords _asm, _endasm, static

Command-line options -Opa+, -Opa-

Bit values 0, 1

Constants 0xFF, ‘A’

Italic Courier New A variable argument file.o, where file can be
any valid filename

Square brackets [] Optional arguments mcc18 [options] file
[options]

Curly brackets and pipe
character: { | }

Choice of mutually exclusive
arguments; an OR selection

errorlevel {0|1}

Ellipses... Replaces repeated text var_name [,
var_name...]

Represents code supplied by
user

void main (void)
{ ...
}

Preface

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 5

WARNINGS, CAUTIONS, RECOMMENDATIONS, AND NOTES
Warnings, Cautions, Recommendations, and Notes attract attention to essential or crit-
ical information in this guide. The types of information included in each are displayed
in a style consistent with the examples below.

THE MICROCHIP WEBSITE
Microchip provides online support via our website at www.microchip.com. This website
is used as a means to make files and information easily available to customers.
Accessible by using your favorite Internet browser, the website contains the following
information:
• Product Support – Data sheets and errata, application notes and sample

programs, design resources, user’s guides and hardware support documents,
latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical
support requests, online discussion groups, Microchip consultant program
member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip
press releases, listing of seminars and events, listings of Microchip sales offices,
distributors and factory representatives

WARNING

To avoid serious personal injury or death, do not disregard warnings. All warnings use
this style. Warnings are installation, operation, or maintenance procedures, practices,
or statements, that if not strictly observed, may result in serious personal injury or even
death.

CAUTION

To avoid personal injury, do not disregard cautions. All cautions use this style. Cau-
tions are installation, operation, or maintenance procedures, practices, conditions, or
statements, that if not strictly observed, may result in damage to, or destruction of, the
equipment. Cautions are also used to indicate a long-term health hazard.

Note: All notes use this style. Notes contain installation, operation, or mainte-
nance procedures, practices, conditions, or statements that alert you to
important information, which may make your task easier or increase your
understanding.

Preface

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 6

CUSTOMER SUPPORT
Users of Microchip products can receive assistance through several channels:
• Distributor or Representative
• Local Sales Office
• Field Application Engineer (FAE)
• Technical Support
Customers should contact their distributor, representative or field application engineer
(FAE) for support. Local sales offices are also available to help customers. A listing of
sales offices and locations is included in the back of this document.
Technical support is available through the website at:
http://www.microchip.com/support.

DOCUMENT REVISION HISTORY

Revision A (February 2022)
• Initial release of this document as Microchip DS50003222A.

http://www.microchip.com/support

http://www.microchip.com/support

Preface

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 7

NOTES:

ZLS30390 SOFTWARE API
USER’S GUIDE

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 8

Table of Contents

Chapter 1. Products ... 18
1.1 Status on Profiles in Development ... 18

Chapter 2. Companion Documentation.. 20
Chapter 3. Software Architecture ... 22

3.1 System Level Software Architecture .. 22
3.2 Protocol Engine Software Architecture... 23

3.2.1 PTP Headers... 23
3.2.2 Structure Initialization .. 24
3.2.3 Object Handles.. 24
3.2.4 Time Stamp Format... 24

Chapter 4. General Flow and Application References.. 26
4.1 PTP Concepts .. 26

4.1.1 Node.. 26
4.1.2 Clock ... 26
4.1.3 Port .. 26
4.1.4 Stream... 26

4.2 Sequence of Operations... 26
4.3 Example Routines .. 27
4.4 Closing and Shutdown ... 27
4.5 Other Software Initialization and Configuration .. 29

Chapter 5. Configuration ... 30
5.1 Configuration of a PTP Application Instantiation: zl303xx_PtpInit() 30

5.1.1 PTP Init: Initializing a PTP Application .. 30
5.1.2 PTP Init: Tasks .. 31

5.2 Configuration of a PTP Clock: zl303xx_PtpClockCreate() 31
5.2.1 PTP Clock: Task, General, and Miscellaneous ... 32
5.2.2 PTP Clock: Local defaultDS .. 33
5.2.3 PTP Clock: Local timePropertiesDS.. 34
5.2.4 PTP Clock: Profile-Specific and BMCA ... 35

5.2.4.1 PTP Clock: Profiles ITU-T G.8275.x.. 36
5.2.4.2 PTP Clock: Profiles ITU-T G.8265.1.. 36
5.2.4.3 PTP Clock: Profile IEEE C37.238.. 37
5.2.4.4 PTP Clock: Profile IEEE 802.1as .. 37

5.2.5 PTP Clock: Unicast Negotiation Capacity ... 38
5.2.6 PTP Clock: User Overrides ... 38

5.3 Configuration of a PTP Port: zl303xx_PtpPortCreate() 38
5.3.1 PTP Port: General and Miscellaneous .. 39
5.3.2 PTP Port: Profile-Specific .. 39

5.3.2.1 PTP Port: Profiles ITU-T G.8275.x .. 40
5.3.2.2 PTP Port: Profile IEEE C37.238.. 40
5.3.2.3 PTP Port: Profile IEEE 802.1as... 41

ZLS30390 Software API User’s Guide

DS50003222A-page 9  2022 Microchip Technology Inc. and its subsidiaries

5.3.2.4 PTP Port: Default Profile Edition 3 (v2.1)...................................41
5.3.3 PTP Port: Acceptable Master and Acceptable Slave Tables42
5.3.4 PTP Port: Unicast Negotiation ...43

5.4 Configuration of a PTP Stream: zl303xx_PtpStreamCreate() 44
5.4.1 PTP Stream: General and Miscellaneous..44
5.4.2 PTP Stream: Message Rates, Timeouts, and Intervals45
5.4.3 PTP Stream: Profile-Specific ...45

5.4.3.1 PTP Stream: Profiles ITU-T G.8275.x..46
5.4.3.2 PTP Stream: Profile IEEE C37.238 ...46

5.4.4 PTP Stream: Unicast and Negotiation ...47
5.4.5 PTP Stream: User Overrides ...47

5.5 Configuration of Virtual PTP Port (Optional) .. 48
5.6 Configuration of External User Data (Optional).. 49

5.6.1 How to Associate External User Data with a PTP Component..................49
5.6.1.1 External Data Associated with PTP Objects49
5.6.1.2 External Data Associated with Received Packets49

5.7 Configuration for Shutdown (Stopping) PTP Service 49
5.7.1 Terminating a PTP Application or its Components49

Chapter 6. Modify Configuration...52
6.1 Modify PTP Clock Configuration .. 52

6.1.1 Modify PTP Clock: Description Configuration ..52
6.1.2 Modify PTP Clock: System Integration Parameters...................................52
6.1.3 Modify PTP Clock: Data Sets...53
6.1.4 Modify PTP Clock: ClockQuality (or ClockClass) Value53
6.1.5 Modify PTP Clock: Priority Value ...54
6.1.6 Modify PTP Clock: Two-Step Flag ...54
6.1.7 Modify PTP Clock: Domain Number ..54
6.1.8 Modify PTP Clock: Maximum stepsRemoved Value..................................55
6.1.9 Modify PTP Clock: Maximum Packet Rate Service Limit...........................55
6.1.10 Modify PTP Clock: PATH_TRACE TLV Operation55

6.1.10.1 Memory Considerations ...56
6.1.10.2 Use in Distributed Systems..56
6.1.10.3 API Interface ..56

6.1.11 Modify PTP Clock: Synchronization Uncertain Flag Operation................57
6.1.12 Modify PTP Clock: Slave-Only Operation ..57
6.1.13 Modify PTP Clock: Profiles ITU-T ..58
6.1.14 Modify PTP Clock: Profile IEEE C37.238 ..58
6.1.15 Modify PTP Clock: Timestamp Interface Rate TLV59
6.1.16 Modify PTP Clock: SMPTE Sync Metadata TLV60
6.1.17 Modify PTP Clock: IEEE 802.1as Followup Information TLV Data..........61
6.1.18 Modify PTP Clock: Alternate Time Offset Indicator ATOI TLV Data62

6.2 Modify PTP Port Configuration... 63
6.2.1 Modify PTP Port: Maximum Packet Rate Service Limit63
6.2.2 Modify PTP Port: Grant or Deny Unicast Service Requests63
6.2.3 Modify PTP Port: Profiles ITU-T...64
6.2.4 Modify PTP Port: Peer-Delay One-Step or Two-Step................................64
6.2.5 Modify PTP Port: FAULTY State..64

6.2.5.1 Force a PTP Port into FAULTY State ..65
6.2.5.2 Force a PTP Port out of FAULTY State65
6.2.5.3 Change Default Port Behavior in FAULTY State65

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 10

6.2.6 Modify PTP Port: IEEE 802.1as Neighbor Prop Delay Threshold 65
6.3 Modify PTP Stream Configuration.. 66

6.3.1 Modify PTP Stream: Override Mode.. 66
6.3.2 Modify PTP Stream: Message Packet Rates .. 67

6.3.2.1 Pre-Compile Option ... 67
6.3.2.2 Stream Creation Options ... 67
6.3.2.3 Run-Time Options ... 67
6.3.2.4 Additional Unicast Negotiated Message Options 68

6.3.3 Modify PTP Stream: UNCALIBRATED State Operation 69
6.3.4 Modify PTP Stream: Unicast Negotiation Packet Rate.............................. 69
6.3.5 Modify PTP Stream: Unicast Negotiation Contract Duration 70
6.3.6 Modify PTP Stream: Asymmetry Correction.. 70
6.3.7 Modify PTP Stream: Override Ingress and Egress clockClass 72
6.3.8 Modify PTP Stream: Override Egress ANNOUNCE Message Fields........ 72
6.3.9 Modify PTP Stream: Maximum clockClass to Qualify 73
6.3.10 Modify PTP Stream: IEEE 802.1as Message Interval Request TLV....... 73

Chapter 7. Dynamic Operation.. 74
7.1 Handling Leap Second Events ... 74

7.1.1 Available APIs ... 74
7.1.2 Grandmaster ... 74
7.1.3 Client (including Boundary Clocks).. 75

Chapter 8. Reporting.. 76
8.1 Event Interface ... 76

8.1.1 Event Handler.. 76
8.1.2 Event Details ... 76

8.1.2.1 PTP Event Notifications (General)... 77
8.1.2.2 PTP Event Notifications (Time Sync Algorithm and Time of Day) ...77
8.1.2.3 PTP Event Notifications (BMCA and Parent Updates) 77
8.1.2.4 PTP Event Notifications (Create/Delete) 78
8.1.2.5 PTP Event Notifications (Unicast Negotiation) 78
8.1.2.6 PTP Event Notifications (FAULTY State) 79
8.1.2.7 PTP Event Notifications (802.1as Profile) 80

8.2 Polling Statistics and Counters... 80
8.2.1 PTP Port State Reporting.. 80

8.2.1.1 PTP Port State FAULTY Get Last Fault Type 80
8.2.1.2 PTP Port State FAULTY Get Fault Counter 81
8.2.1.3 PTP Port State FAULTY Get Last Transmit Error 81

8.2.2 PTP Stream State Reporting... 82
8.2.3 PTP Stream Packet Count Reporting.. 83

Chapter 9. Trace and Logs .. 84
9.1 Tracing Facilities .. 84

9.1.1 Trace Macros .. 84
9.1.2 Trace Example .. 84
9.1.3 Logging Modules ... 85
9.1.4 Log Levels ... 85

Chapter 10. External PTP Interfaces .. 86
10.1 Interface Introduction (Config, Events, Transmit and Receive) 86

10.1.1 Interface for Configuration, Control, and Monitoring................................ 86
10.1.2 Interface for Packet Transmit Bindings.. 86

ZLS30390 Software API User’s Guide

DS50003222A-page 11  2022 Microchip Technology Inc. and its subsidiaries

10.1.3 Interface for Packet Receive Bindings ...86
10.1.4 Interface for Events..87
10.1.5 Interface for System Commands ...87

10.1.5.1 Command Handler...87
10.1.5.2 Command Details ..87

10.2 Interface to Time Synchronization Algorithm.. 88
10.2.1 Interface Event: Timing Packet Timestamps (Egress).............................88
10.2.2 Interface Event: Timing Packet Rate Change Notification (Egress)89

10.3 Interface to System Synchronization Info... 89
10.3.1 Interface Command: Sync Lock Status (Ingress)89
10.3.2 Interface Command: Sync Stability Status (Ingress)90
10.3.3 Interface Command: Sync Performance Data (Ingress)90

10.3.3.1 Egress Announce using the ‘settlingTimeActive’ Parameter ...91
10.4 Interface to Time of Day ... 92

10.4.1 Interface Event: Leap Seconds Flag (Egress) ...92
10.4.2 Interface Event: UTC Offset Change (Egress)...92
10.4.3 Interface Command: Time of Day Get (Ingress)93
10.4.4 Interface Command: Time of Day Set (Egress)93
10.4.5 Interface Command: Time of Day Set Status (Ingress)94

10.5 Interface to Transport Layer (Transmit and Receive)................................. 94
10.5.1 Host Processor and Real-Time OS Dependencies..................................94
10.5.2 Interface Command: Ethernet Physical Address (Ingress)94
10.5.3 Interface Binding: Transport for Transmit Packets (Egress)95

10.5.3.1 Transmit Function Binding ...95
10.5.3.2 Transmit Data Type Description ..95
10.5.3.3 Transmit Time Stamps...96

10.5.4 Interface Binding: Transport for Receive Packets (Ingress)96
10.5.4.1 Primary Receive Function Binding...96
10.5.4.2 Alternate Receive Function Bindings97
10.5.4.3 Receive Time Stamps..98

Chapter 11. Test Interfaces..100
Chapter 12. Example Reference Selection Application ..102

12.1 Introduction... 102
12.1.1 Code Inclusion and Modules..102

12.2 Architecture .. 103
12.2.1 Application API...104

12.2.1.1 Application Initialization..104
12.2.1.2 Application Configuration ...104
12.2.1.3 Server Entry Configuration...105

12.2.2 Message Interfaces..105
12.2.2.1 From Protocol Clocks...105
12.2.2.2 From Protocol Streams ..105
12.2.2.3 From Time-Sync Algorithm ..106
12.2.2.4 From Packet Timing Signal Fail (PTSF)106

12.2.3 Backplane Interface ...106
12.2.4 Debug Routines ...106
12.2.5 Typical Operating Sequence..107

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 12

Chapter 13. Redundant Timing Card Application for Chassis Systems............... 108
13.1 How to Create a Node in a Redundant System 109

13.1.1 Active Node ... 109
13.1.2 Standby Node.. 109

13.2 How to Manage a Redundant Node ... 109
13.2.1 Active Master Node ... 109

13.2.1.1 Multicast .. 109
13.2.1.2 Unicast Negotiation ... 109

13.2.2 Active Slave Node ... 109
13.2.2.1 Multicast .. 109
13.2.2.2 Unicast Negotiation ... 109

13.3 How to Switch the Redundant Mode .. 109
13.3.1 Active Master to Standby .. 109

13.3.1.1 Multicast .. 109
13.3.1.2 Unicast Negotiation ... 110

13.3.2 Standby Master to Active .. 110
13.3.2.1 Multicast .. 110
13.3.2.2 Unicast Negotiation ... 110

13.3.3 Active Slave to Standby .. 110
13.3.3.1 Multicast .. 110
13.3.3.2 Unicast Negotiation ... 110

13.3.4 Standby Slave to Active .. 111
13.3.4.1 Multicast .. 111
13.3.4.2 Unicast Negotiation ... 111

Chapter 14. Acronyms ... 112
Chapter 15. Change History .. 114

15.1 Release 5.3.8 ... 114
15.2 Release 5.3.6 ... 114
15.3 Release 5.3.4 ... 114
15.4 Release 5.3.0 ... 114
15.5 Release 5.2.6 ... 114
15.6 Release 5.2.4 ... 115
15.7 Release 5.1.0 ... 115
15.8 Release 5.0.6 ... 115
15.9 Release 5.0.5 ... 115
15.10 Release 5.0.3 ... 115
15.11 Release 5.0.0 ... 115
15.12 Release 4.10.1 ... 115
15.13 Release 4.10.0 ... 116
15.14 Release 4.9.0 ... 116
15.15 Release 4.8.5 ... 116
15.16 Release 4.7.2 ... 116
15.17 Release 4.7.0 ... 116
15.18 Release 4.6.3 ... 116
15.19 Release 4.6.0 ... 116
15.20 Release 4.5.0 ... 117

ZLS30390 Software API User’s Guide

DS50003222A-page 13  2022 Microchip Technology Inc. and its subsidiaries

15.21 Release 4.4.0 ... 117
Appendix A. Configuration of T-BC using the G.8275.1 Profile118

A.1 High Level System View .. 118
A.1.1 Component Overview ..118

A.2 Operation ... 119
A.3 Monitoring Connections ... 120
A.4 State Evaluation... 121

A.4.1 Clock State Evaluation Logic...121
A.4.2 PLL Status Evaluation ...122

A.5 Debugging.. 122

 

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 14

List of Figures
Figure 1-1: IEEE 1588-2008 Protocol Engine System Environment. 3
Figure 3-1: System Software Architecture... 22
Figure 3-2: System Software Module Interaction. ... 23
Figure 6-1: Stream Override Affect on State Decision. 66
Figure 6-2: Overview of Delay Asymmetry in Client-Server Configuration.......... 70
Figure 6-3: Example Delay Asymmetry Configuration in Client. 71
Figure 10-1: PTP Overview. .. 86
Figure 12-1: Reference Selection Overview.. 103
Figure A-1: General G.8275.1 System Operation. .. 118
Figure A-2: G.8275.1 Clock State Evaluation.. 121
Figure A-3: G.8275.1 PLL Status and clockClass Values. 122

 

ZLS30390 Software API User’s Guide

DS50003222A-page 15  2022 Microchip Technology Inc. and its subsidiaries

List of Tables
Table 3-1: PTP Header Files... 23
Table 5-1: Tasks Created by the PTP Application .. 31
Table 5-2: PTP Clock Creation Routines .. 31
Table 5-3: PTP Clock Create Parameters (Task and Misc) 32
Table 5-4: PTP Clock Create Parameters (Local defaultDS) 33
Table 5-5: PTP Clock Create Parameters (Local timePropertiesDS).................. 34
Table 5-6: PTP Clock Create Parameters (Profile and BMCA)........................... 35
Table 5-7: Clock Settings related to ITU-T G.8275.x .. 36
Table 5-8: Clock Settings Related to ITU-T G.8265.1... 36
Table 5-9: Clock Settings Related to IEEE C37.238 ... 37
Table 5-10: Clock Settings Related to IEEE 802.1as.. 37
Table 5-11: PTP Clock Create Parameters (Unicast Negotiation Capacity) 38
Table 5-12: PTP Clock Create Parameters (User Overrides) 38
Table 5-13: PTP Port Create Routines.. 38
Table 5-14: PTP Port Create Parameters (General and Miscellaneous) 39
Table 5-15: PTP Port Create Parameters (Profile-Specific)................................ 39
Table 5-16: Port Settings Related to ITU-T G.8275.x ... 40
Table 5-17: Settings Related to Interface Rate TLV of the G.8275.2.................. 40
Table 5-18: Port Settings Related to IEEE C37.238 ... 40
Table 5-19: Port Settings Related to IEEE 802.1as .. 41
Table 5-20: Port Settings Related to Default Profile Edition 3 (v2.1) 41
Table 5-21: PTP Port Create Parameters (Acceptable Master) 42
Table 5-22: PTP Port Create Parameters (Unicast Negotiation)......................... 43
Table 5-23: PTP Stream Creation Routines.. 44
Table 5-24: PTP Stream Create parameters (General and Miscellaneous)........ 44
Table 5-25: PTP Stream Create Parameters (Message Rates, Timeouts, and Inter-

vals) ... 45
Table 5-26: PTP Stream Create Parameters (Profile-Specific)........................... 45
Table 5-27: Stream Settings Related to ITU-T G.8275.x 46
Table 5-28: Stream Settings Related to IEEE C37.238 46
Table 5-29: PTP Stream Create Parameters (Unicast Negotiation).................... 47
Table 5-30: PTP Stream Create Parameters (User Overrides)........................... 47
Table 5-31: PTP Clock Virtual Port API Routines ... 48
Table 5-32: PTP Virtual Port Configuration Parameters (zl303xx_PtpVirtualPort-

ConfigS)... 48
Table 5-33: PTP Node Deletion Routines ... 50
Table 5-34: PTP Clock Deletion Routines... 50
Table 5-35: PTP Port Deletion Routines ... 50
Table 5-36: PTP Stream Creation and Deletion Routines................................... 50
Table 6-1: PTP Clock Description Update Routines ... 52
Table 6-2: PTP Clock Integration Routines ... 52
Table 6-3: PTP Clock Data Set Update Routines ... 53
Table 6-4: PTP Clock Quality Update Routines .. 53
Table 6-5: PTP Clock Priority Update Routine .. 54

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 16

Table 6-6: PTP Clock Two-Step Update Routine.. 54
Table 6-7: PTP Clock Domain Update Routine... 54
Table 6-8: PTP Clock maxStepsRemoved Routine .. 55
Table 6-9: PTP Clock Packet Rate Service Limit Routine................................... 55
Table 6-10: PTP Clock PATH TRACE Routines ... 56
Table 6-11: PTP Synchronization-Uncertain Flag API Commands..................... 57
Table 6-12: PTP Clock Slave-Only Update Routine.. 57
Table 6-13: PTP Clock and Port API Routines for ITU-G.8275.x Parameters 58
Table 6-14: PTP Clock API Routines for IEEE C37.238 Parameters.................. 58
Table 6-15: PTP Timestamp Interface Rate TLV API Routines 59
Table 6-16: PTP zl303xx_PtpG8275TimestampIfRateTlvS Fields...................... 59
Table 6-17: PTP SMPTE Sync Metadata TLV API Routines 60
Table 6-18: zl303xx_PtpTlvSyncMetadataS Fields... 60
Table 6-19: PTP IEEE 802.1as Followup Information TLV API Routines 61
Table 6-20: zl303xx_Ptp802p1FollowUpInfoTlvS Fields..................................... 61
Table 6-21: Alternate Time Offset Indicator ATOI TLV API Routines 62
Table 6-22: zl303xx_PtpTlvAltTimeOffsetS Fields .. 62
Table 6-23: PTP Port Packet Rate Service Limit Routine 63
Table 6-24: PTP Port Grant Table Routines ... 63
Table 6-25: PTP Port API Routines for ITU-G.8275.x Parameters 64
Table 6-26: PTP Port Telecom Profile Attribute Update Routines 64
Table 6-27: Possible Values of passThroughEn and Description 65
Table 6-28: PTP Port IEEE 802.1as Update Routines.. 65
Table 6-29: API Routines for Setting the Stream Override Mode 66
Table 6-30: zl303xx_PtpSetup.h MACROS for Default PTP Message Rates..... 67
Table 6-31: Setting Stream Creation Message Rates on Non-Negotiated and Mul-

ticast PTP Streams.. 67
Table 6-32: API Routines for Managing the UNCALIBRATED Port State 69
Table 6-33: PTP Stream Packet Rate Reset Routines 69
Table 6-34: PTP Stream Negotiated Contract... 70
Table 6-35: Application of Asymmetry Correction Values 70
Table 6-36: PTP Stream clockClass Override Routines 72
Table 6-37: API Routines for Managing the per-Stream Announce Override Values 72
Table 6-38: PTP Stream Maximum clockClass Routines.................................... 73
Table 6-39: PTP Stream IEEE 802.1as Message Interval Request TLV Routines 73
Table 7-1: API Calls for Leap Seconds and UTC Management.......................... 74
Table 8-1: PTP Event Notifications (General and Miscellaneous) 77
Table 8-2: PTP Event Notifications (Time Sync Algorithm and Time of Day) 77
Table 8-3: PTP Event Notifications (BMCA and Parent Updates)....................... 77
Table 8-4: PTP Event Notifications (Create/Delete).. 78
Table 8-5: PTP Event Notifications (Unicast Negotiation)................................... 78
Table 8-6: zl303xx_PtpEventPortFaultS structure for ZL303XX_PT-

P_EVENT_PORT_FAULTY Event .. 79
Table 8-7: zl303xx_PtpEventFollowupInfoTlvChangeS structure for ZL303XX_PT-

P_EVENT_FOLLOWUP_INFO_TLV_CHANGE Event 80

ZLS30390 Software API User’s Guide

DS50003222A-page 17  2022 Microchip Technology Inc. and its subsidiaries

Table 8-8: zl303xx_PtpPortFaultTypeE Fault Types and Description................. 80
Table 8-9: zl303xx _PtpTxStatusE Default Transmit Status Types and Description81
Table 8-10: zl303xx _PtpTxStatusE Optional Transmit Status Types and Descrip-

tion... 81
Table 8-11: API Calls for PTP Stream State Reporting....................................... 82
Table 8-12: Stream Sub-State Transition Reason Strings 82
Table 8-13: API Calls for PTP Stream Packet Count Reporting 83
Table 8-14: zl303xx_PtpStreamCounterS Fields .. 83
Table 9-1: Available PTP Logging Modules and Descriptions 85
Table 10-1: PTP Command Interface Definitions.. 87
Table 10-2: zl303xx_PtpEventServoDataS structure for ZL303XX_PT-

P_EVENT_SERVO_DATA Event.. 88
Table 10-3: zl303xx_PtpEventMsgIntvlChangeS structure for ZL303XX_PT-

P_EVENT_MSG_INTVL_CHANGE Event .. 89
Table 10-4: zl303xx_PtpHwLockStatusGetS structure for ZL303XX_PTP_HW_C-

MD_LOCK_STATUS_GET Command.. 89
Table 10-5: zl303xx_PtpHwClockStabilityGetS structure for ZL303XX_PT-

P_HW_CMD_CLOCK_STABILITY_GET Command............................... 90
Table 10-6: zl303xx_ PtpHwPllPerformanceGetS structure for ZL303XX_PT-

P_HW_CMD_PLL_PERF_DATA_GET Command 90
Table 10-7: zl303xx_PtpEventLeapSecondsFlagChangeS structure for ZL303XX-

_PTP_EVENT_LEAP_SECONDS_FLAG_CHANGE Event.................... 92
Table 10-8: zl303xx_PtpEventUtcOffsetChangeS structure for ZL303XX_PT-

P_EVENT_UTC_OFFSET_CHANGE Event ... 92
Table 10-9: zl303xx_PtpHwClockTimeGetS structure for ZL303XX PTP_HW_CM-

D_CLOCK_TIME_GET Command.. 93
Table 10-10: zl303xx_PtpHwTimeStatusSetS structure for ZL303XX_ PT-

P_HW_CMD_TIMESET_STATUS_SET Command................................ 93
Table 10-11: zl303xx_PtpHwTimeStatusGetS structure for ZL303XX_ PT-

P_HW_CMD_TIMESET_STATUS_GET Command 94
Table 10-12: zl303xx_PtpHwPhysAddrGetS structure for ZL303XX_PTP_HW_C-

MD_PHYS_ADDR_GET Command.. 94
Table 10-13: PTP Transmit Interface Definitions .. 95
Table 10-14: PTP Receive Interface Definitions ... 97
Table 10-15: zl303xx_PtpPortRxMsgDataS Definition.. 97
Table 10-16: zl303xx_PtpStreamRxMsgDataS Definition................................... 98
Table 11-1: API Routines for Testing .. 100
Table 13-1: PTP Redundancy Routines.. 108
Table A-1: G.8275.1 Debug and Troubleshooting Routines 122

ZLS30390 SOFTWARE API
USER’S GUIDE

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 18

Chapter 1. Products

For information about Microchip’s Time Synchronization Algorithm, refer to:
• ZLS30380 data sheet
For information about Microchip’s Network Synchronization PLLs with IEEE 1588 and
SyncE capability, refer to:
• ZL3034x data sheet (ZL30342, ZL30343, ZL30347)
• ZL3036x data sheet (ZL30361, ZL30362, ZL30363, ZL30364, ZL30365, ZL30367)
• ZL3070x data sheet (ZL30701, ZL30702, ZL30703, ZL30704)
• ZL3072x data sheet (ZL30721, ZL30722, ZL30723)
• ZL3075x data sheet (ZL30752, ZL30753, ZL30754)
• ZL3077x data sheet (ZL30771, ZL30772, ZL30773)
• ZL3079x data sheet (ZL30791, ZL30793, ZL30795)

1.1 STATUS ON PROFILES IN DEVELOPMENT
IEEE 802.1as-2011 is in alpha release stage and some functionality is not available.
Referring to standard section 11.1.3 “Transport of time-synchronization information”,
we do not transport SYNC from ingress PTP ports to egress PTP port, rather we gen-
erate new SYNC messages from local timebase and datasets. As a result, the local
PTP clock must be synchronized (unsyntonized operation is not supported).

ZLS30390 Software API User’s Guide

DS50003222A-page 19  2022 Microchip Technology Inc. and its subsidiaries

NOTES:

ZLS30390 SOFTWARE API
USER’S GUIDE

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 20

Chapter 2. Companion Documentation

This guide introduces the IEEE 1588-2008 Protocol Engine features & functionality.
For information about the software architecture, porting, bring-up and individual func-
tion calls, refer to:
• ZLS30390 data sheet
• ZLS30390 API Reference Manual (HTML)
• IEEE 1588-2008 Architecture, Porting & Integration Guide
For information about changes made in each software release version, refer to the fol-
lowing text files contained in the ZLS30390 zip file:
• Software Release Note.
• Static Analysis Summary.
• Compiler Warning Summary.
• Software Migration Notes.
For more detailed information about standards compliance, refer to:
• AN4024 (formerly ZLAN-255) IEEE 1588-2008 Edition 2 Conformance Informa-

tion
• AN4026 (formerly ZLAN-661) IEEE 1588 Industry PTP Profiles Conformance

Information
Microchip provides a number of application notes which detail various aspects regard-
ing system configuration, management, integration, and debugging. The following list
shows some key publications that may assist users:
• ZLAN-628: Understanding Distributed Structure for IEEE 1588
• ZLAN-525: Handling UTC Leap Second Events in IEEE 1588 Deployments
• ZLAN-473: Timing Card Redundancy - Use Case
• ZLAN-429: Applications of ZLS30390 - Debug Steps

ZLS30390 Software API User’s Guide

DS50003222A-page 21  2022 Microchip Technology Inc. and its subsidiaries

NOTES:

ZLS30390 SOFTWARE API
USER’S GUIDE

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 22

Chapter 3. Software Architecture

3.1 SYSTEM LEVEL SOFTWARE ARCHITECTURE
A high-level view of the complete IEEE 1588-2008 system software architecture is
shown in Figure 3-1.

FIGURE 3-1: System Software Architecture.

The following modules are noted:
• Example User Application. This module is provided within the API package to pro-

vide as an example implementation to the user, to see how to use the API soft-
ware.

• ZLS30390 IEEE 1588-2008 Protocol Engine. The core of the IEEE 1588-2008
operation, including the various supported profiles.

• ZLS30380 Time Synchronization Algorithm. Responsible to synchronize the local
Microchip PLL to the selected GrandMaster.

• Reference Selection BMCA/ABMCA. Responsible to select the local PTP port
state(s) and the best synchronization source for the system. Provided as example
in the API package, and is expected to be modified by the user.

• Clock Generation API: Conversion of the synchronization commands into Micro-
chip PLL register accesses.

User Application
(Init, Open/Close Connections,

Shutdown)

Example
User Application

ZLS30390
IEEE 1588-2008

Engine

ZLS30380
Time Synchronization

Algorithm

Clock Generation API

Transport Layer
(e.g. UDP/IP Stack)

User Application
(Stats, Alarms)

Abstraction Layer

User Supplied

Microsemi
Supplied

Packet Transmit & Receive
Operating
System

R
TO

S
AbstractionIRQ Routines

SPI/I2C Driver

Read/Write Interrupt Handler

Interrupt Interface
Ethernet

Driver

Ethernet MAC/PHY
(with IEEE 1588-2008 timestamping)

Microsemi DPLL
SyncE/Stratum 3/IEEE1588/GNSS

SP
I/I

2C

IR
Q

Et
he

rn
et

(x
M

II)

Reference
Selection

G.781/BMCA

User Application
(Init, Open/Close Connections,

Shutdown)

Example
User Application

Microchip
ZLS30390

IEEE 1588-2008
Protocol Engine

ZLS30380
Time Synchronization

Algorithm

Clock Generation API

Transport Layer
(e.g. UDP/IP Stack)

User Application
(Stats, Alarms)

Abstraction Layer

User Supplied

Microchip
Supplied

Packet Transmit & Receive
Operating
System

R
TO

S
AbstractionIRQ Routines

SPI/I2C Driver

Read/Write Interrupt Handler

Interrupt Interface
Ethernet

Driver

Ethernet MAC/PHY
(with IEEE 1588-2008 timestamping)

PLL
SyncE/Stratum 3/IEEE1588/GNSS

SP
I/I

2C

IR
Q

Et
he

rn
et

(x
M

II)

Reference
Selection

BMCA/ABMCA

Microchip

Microchip

Microchip

MicrochipMicrochip

ZLS30390 Software API User’s Guide

DS50003222A-page 23  2022 Microchip Technology Inc. and its subsidiaries

The interaction between the various IEEE 1588-2008 modules within the system is
shown in Figure 3-2: System Software Module Interaction.

FIGURE 3-2: System Software Module Interaction.

3.2 PROTOCOL ENGINE SOFTWARE ARCHITECTURE

3.2.1 PTP Headers
The following PTP header files, found in zlPtp/include, contain the user-exposed
functions. Other headers are for internal use and should not be used directly.

User Application

ZLS30390
IEEE 1588-2008 Protocol Engine

ZLS30380
Time Synchronization Algorithm

Reference
Selection

G.781/BMCA

Transport Layer
(e.g. UDP/IP Stack)

Ethernet
Driver

IEEE 1588-2008 Timestamping Unit
Microchip

IEEE 1588-2008 PLL

Add/Remove PTP Clock(s)
Add/Remove PTP Port(s)
Add/Remove PTP Stream(s)

PTP Data Sets
PTP Events Notification

Initialization
Add Connections
Close Connections
Shutdown

Statistic(s)
State(s)
Alarm(s)

Transmit PTP Datagrams
Recevie PTP Datagrams

SyncE PLLEthernet PHY

IEEE1588 Clock & 1PPS

SyncE Reference(s)

Filtered SyncE Clock

Change Frequency
Change Phase
Lock to SyncE Ref
Lock to IEEE1588 Ref

IEEE1588 Driver

Get local PTP
Timestamps
- t2 & t3 if client
- t1 & t4 if server

Get ToD
Set ToD

Timestamps

PTSF-1588

PTSF-Algorithm

SF-SyncE
SF-PHY

QL-1588

Local Priority

Stats-Algorithm

QL-Overall

PTSF-Overall

Best Reference

User Supplied

Microchip Supplied

MicrochipMicrochip

Microchip

Microchip Microchip

Microchip

TABLE 3-1: PTP HEADER FILES
Filename Description

zl303xx_PtpApi.h
Contains all configuration and utility functions required
to start and close the PTP application.

zl303xx_PtpApiTypes.h
Contains implementation-specific data types required
by zl303xx_PtpApi.h functions and additional data
types passed to user function bindings.

zl303xx_PtpStdTypes.h
Contains data types and enums defined by the PTP
standard.

zl303xx_PtpConstants.h Contains PTP constants.
zl303xx_PtpConstants_dep.h Contains PTP constants.

zl303xx_PtpDeprecated.h

Contains deprecated data types and functions that
should not be referenced by a user’s application. They
are no longer supported and may be deleted in future
software versions.

Software Architecture

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 24

3.2.2 Structure Initialization
Configuration structures must be initialized prior to modification or passing to another
function. This is done by calling the relevant *StructInit() or *Get() function
(e.g., use zl303xx_PtpClockCreateStructInit() to initialize a zl303xx_Ptp-
ClockCreateS structure). This ensures that members added to structures in future
API versions can be initialized such that backward compatibility is preserved.

3.2.3 Object Handles
The functions used to create a clock, port, and stream return a handle to that object
that must be saved by the user application. This handle is a required input for other
functions used to manipulate that object.

3.2.4 Time Stamp Format
All time stamp values passed into the PTP application and all values passed out via
function bindings will be in PTP time stamp format: 6 bytes of seconds, 4 bytes of nano-
seconds. If the time stamping hardware device or timing recovery block does not
natively use this format, a conversion function must be called before passing time
stamps across these layers. See the zl303xx_TimeStamp structure defined in
zlPtp/include/zl303xx_PtpStdTypes.h.

ZLS30390 Software API User’s Guide

DS50003222A-page 25  2022 Microchip Technology Inc. and its subsidiaries

NOTES:

ZLS30390 SOFTWARE API
USER’S GUIDE

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 26

Chapter 4. General Flow and Application References

4.1 PTP CONCEPTS
The following elements are listed from most general to least and each shares a 1-to-N
relationship with the next element. That is, one clock may have many ports associated
with it and one port may have many streams.
Understanding of this division is important since the majority of the ZLS30390 API
functions relate to a PTP clock, port, or stream.

4.1.1 Node
A PTP node is any device that can send or receive PTP messages across a network.
Each node involved in timing synchronization will generally contain a single clock.

4.1.2 Clock
A PTP clock is a collection of data about a hardware device that can measure the
passage of time. In many scenarios, the “clock” may actually be the combination of two
devices: one that generates a physical clocking signal, and a time stamp counter being
driven by this signal. Each clock has its own task/thread (depending on implementation
in the OS porting layer).

4.1.3 Port
A PTP port is a collection of data about a logical point of access to the network. There
may be multiple PTP ports per PTP clock. Multiple PTP ports can be configured behind
a single physical interface. Typical use with G.8275.1 is on PTP port per Ethernet
interface.

4.1.4 Stream
A PTP stream is a Microchip-designed abstraction used to represent the flow of PTP
messages between two endpoints. For unicast communication, this is the connection
from one PTP node to another. For multicast, it is the connection from a PTP node to
a multicast group. There may be multiple PTP streams per PTP port. Typical use with
G.8275.1 is one PTP stream per PTP port.

4.2 SEQUENCE OF OPERATIONS
The following is a summary of steps to bring-up the target application:
• Open PTP Instantiation

- Call zl303xx_PtpInit() to start the PTP application (or Node)
- This routine takes no parameters.

• Add one or more PTP Clocks to the PTP Instantiation
- Call zl303xx_PtpClockCreateStructInit() to get default initialization

values
- Modify any of the initialization values as required
- Call zl303xx_PtpClockCreate() to start the PTP Clock

ZLS30390 Software API User’s Guide

DS50003222A-page 27  2022 Microchip Technology Inc. and its subsidiaries

• Add one or more PTP Ports to a PTP Clock
- Call zl303xx_PtpPortCreateStructInit() to get default initialization

values
- Modify any of the initialization values as required
- Call zl303xx_PtpPortCreate() to start the PTP Port

• Add one or more PTP Streams to a PTP Port
- Call zl303xx_PtpStreamCreateStructInit() to get default initializa-

tion values
- Modify any of the initialization values as required
- Call zl303xx_PtpStreamCreate() to start the PTP Stream

4.3 EXAMPLE ROUTINES
The following example routines for starting a PTP application can be found in
zl303xx_ExampleMain.c:
• exampleEnvInit()
• exampleAppStart()

In this example code, the following example routines (in zl303xx_ExamplePtp.c)
are called to complete the steps described above:
• examplePtpEnvInit():Creates the PTP application
• examplePtpClockCreate():Creates and registers a PTP Clock with the appli-

cation
• examplePtpPortCreate():Creates and registers a PTP Port with a specified

PTP Clock
• examplePtpStreamCreate(): Creates and registers a PTP Stream with a

specified PTP Port

4.4 CLOSING AND SHUTDOWN
Subsequently, the following example routine in zl303xx_ExampleMain.c can be
referred to when shutting down (or removing) an application:
• exampleAppStop()

In this example code, the following example routine (in zl303xx_ExamplePtp.c) are
called:
• examplePtpStop():Stops the PTP application and removes all PTP Objects:

- Removes all PTP Streams on each PTP Port
- Removes all PTP Ports on each PTP Clock
- Removes all PTP Clocks on the application

General Flow and Application References

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 28

4.5 OTHER SOFTWARE INITIALIZATION AND CONFIGURATION
The following system resources and/or dependencies should be made available
(where applicable).

• Initialize the CPU standard IO (for APR Logging)
• Initialize the target processor's SPI or I2C interface or drivers
• Initialize the target processor's interrupt handlers
• Initialize any required timers (POSIX or OS timers)
• Initialize any necessary network interfaces (LAN, MII, etc.).
• Initialize any other platform specific sub-systems
• Initialize any hardware clock devices. This initialization may include some (or all)

of the following tasks:
- Start any Clock controller software associated with the device and synchro-

nize any internal signals
- Read the initial settings via the SPI for the Clock Controller
- Initialize any device interrupt configurations
- Initialize any necessary clock outputs for PLL-type devices

• Start any Time-of-Day Manager associated with the platform and synchronize it to
the hardware or other controls

• Configure any necessary Timestamp Hardware to:
- Filter or identify timing packets and accurately timestamp them
- Synchronize the timestamp signals with the local hardware
- Configure any necessary interrupts

• Configure the local Timing Recovery Algorithm:
- Initialize the Timing Recovery Algorithm application
- Configure any objects associated with the Timing Recovery Algorithm (CGU,

servers)

Note: The following list represents a general order. Some steps may not be
required or will need to be performed in another order specific to the target
platform and/or its architecture.

ZLS30390 Software API User’s Guide

DS50003222A-page 29  2022 Microchip Technology Inc. and its subsidiaries

NOTES:

ZLS30390 SOFTWARE API
USER’S GUIDE

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 30

Chapter 5. Configuration

5.1 CONFIGURATION OF A PTP APPLICATION INSTANTIATION:
ZL303XX_PTPINIT()

5.1.1 PTP Init: Initializing a PTP Application
To initialize the PTP Application, execute the following command:
• zl303xx_PtpInit()

This command takes no arguments, but must be run prior to adding any PTP Clocks
(or other objects).

Launching a PTP application will perform the following actions:
• Create PTP tasks (1 or more)

- PTP Clock Task (one per PTP clock as each clock is created)
 ▪ Driven by a message queue.
 ▪ Executes PTP state machines.
 ▪ Handles received packets and generates packets to transmit.

- PTP Timer Task (one per PTP node, if enabled):
 ▪ Increments all PTP timers, some of which are used to periodically send packets.
 ▪ Sends the PTP Clock Task a message when a timer expires.
 ▪ Periodic events driven by either:
 • a task delay (VxWorks/ZL303XX_PTP_TIMER_TASK_USE_TICKDELAY) or
 • a POSIX timer (Linux/ZL303XX_PTP_TIMER_USE_HWTIMER).
 Recommended.
 ▪ Runs approximately every 8 ms (125 Hz).
 • See ZL303XX_PTP_TIMER_TASK_INTVL_MS.
 ▪ Alternatively, the compile-time option
 “ZL303XX_PTP_TIMER_TASK_DISABLED” may be used to disable the
 separate Timer Task altogether (i.e. timer task is not started).
 • In this mode, the Protocol Clock Task will directly receive hardware timer ticks
 for processing via event API zl303xx_PtpSendHwTimerTick().
 • This is a CPU optimization option to reduce the overhead of timer tick
 processing and reduce mutex contention.
 • Note when using this optimization the
 “ZL303XX_PTP_TIMER_TASK_USE_TICKDELAY” option is not available
 and if not using “ZL303XX_PTP_TIMER_USE_HWTIMER” then user must
 periodically call zl303xx_PtpSendHwTimerTick() at the configured
 hardware timer tick interval (ZL303XX_PTP_TIMER_TASK_INTVL_MS).

Note: A single application instantiation should be created per CPU.

ZLS30390 Software API User’s Guide

DS50003222A-page 31  2022 Microchip Technology Inc. and its subsidiaries

5.1.2 PTP Init: Tasks
The following table lists the relative priority of these tasks. The priority numbers are
based on:
• VxWorks system where 0 is the highest and 255 is the lowest possible priority
• Linux system where 99 is the highest and 0 is the lowest possible priority

5.2 CONFIGURATION OF A PTP CLOCK: ZL303XX_PTPCLOCKCREATE()
Creating a PTP clock will allocate memory and create the OS task, mutex, and
message queue objects by calling the appropriate OS functions.
The following API routines are used to Add a PTP Clock Task (refer to the PTP API
Reference Manual for complete interface, data type, and syntax details).

Example code for creating a PTP Clock is provided in the module,
zlUserExamples/src/zl303xx_ExamplePtp.c. This provides examples to:
• Initialize the creation structure with default values in examplePtpClockCreat-
eStructInit()

• Create the actual clock in examplePtpClockCreate()
Full details about all members of the zl303xx_PtpClockCreateS structure can be
found in the API reference manual.
The members of the zl303xx_PtpClockCreateS are listed in the following tables.
These may be modified by a user when creating an application. (Complete details of
the zl303xx_PtpClockCreateS structure can be found in the
zlPtp/include/zl303xx_PtpApiTypes.h module).

TABLE 5-1: TASKS CREATED BY THE PTP APPLICATION
Task Name Comments Task Priority Constant Stack Size

tPtpClock0zl303xx
...
tPtpClockNzl303xx

PTP Clock Task
(One or more where
N is clock handle)

ZL303XX_PTP_DEFAULT_CLOCK_TASK_PRI-
ORITY:
• Linux Value: 96
• VxWorks Value: 64

16384
(16 KB)

tPtpTimerzl303xx PTP Timer Task
(one, if enabled)

ZL303XX_PTP_TIMER_TASK_PRIORITY:
• Linux Value: 96
• VxWorks Value: 65

9000

TABLE 5-2: PTP CLOCK CREATION ROUTINES
API Routine Description

zl303xx_PtpClockCreateStructInit Data fills the zl303xx_PtpClockCreateS data structure with a set of default clock
creation parameters. The user may modify individual members prior to creating
the PTP clock.

zl303xx_PtpClockCreate Creates a new PTP Clock based on the zl303xx_PtpClockCreateS data struc-
ture.

Configuration

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 32

5.2.1 PTP Clock: Task, General, and Miscellaneous

TABLE 5-3: PTP CLOCK CREATE PARAMETERS (TASK AND MISC)
Sub-Structure Parameter Type Description

— taskName String
The task name for this PTP clock. It will be auto-
matically appended with a unique clock ID and
part number.

— taskPriority Sint32T Priority of the clock task.
— taskStackSize Sint32T Stack size of the clock task.
— msgQLength Sint32T Length of the message queue used by the clock.

— eventCallback zl303xx_PtpEventFnT
Function to be called when a PTP event (see
zl303xx_PtpEventE) occurs. This binding is not
required (may be NULL).

— hwCmdFn zl303xx_PtpHwCmdFnT
Function to be called when PTP needs to query or
set some information in the hardware. This bind-
ing is required (must NOT be NULL).

— extData void * Pointer to some external user data. Memory man-
agement must be handled externally to PTP.

— clockType Uint16T

Value that will be placed in the clockType field of a
CLOCK_DESCRIPTION management TLV. Set to
0 to have this parameter automatically filled
based on the number of ports attached to the
clock.

— requestedHandle zl303xx_PtpClockHandleT
Request clock to be created with a specific han-
dle. Set to ZL303XX_PTP_INVALID to auto-gen-
erate a handle.

— maxForeignRecords Uint16T

The maximum number of foreign records that can
be handled by this Clock. This should be deter-
mined by the number of remote master clocks
that are expected to be discovered at any time on
all associated Ports. This value must be at least 5
(see IEEE-1588-2008 section 9.3.2.4.5).

bmca updateTrigger zl303xx_PtpClockBmcaTriggerE Determines the event that will trigger an upload to
the BMCA engine.

bmca updateEventSec Uint32T BMCA upload interval in seconds

— autoUpdateStreamStates zl303xx_Boolean

Flag indicating whether the Clock will automati-
cally update the state of each local stream when a
ParentDS update occurs or if the Clock will oper-
ate in a manual mode.

ZLS30390 Software API User’s Guide

DS50003222A-page 33  2022 Microchip Technology Inc. and its subsidiaries

5.2.2 PTP Clock: Local defaultDS

TABLE 5-4: PTP CLOCK CREATE PARAMETERS (LOCAL DEFAULTDS)
Sub-Structure Parameter Type Description

defaultDS twoStepFlag zl303xx_Boolean
Indicates whether this clock provides timing information using
event and subsequent general messages (i.e., SYNC and then
a FOLLOW_UP message).

defaultDS clockIdentity zl303xx_ClockIdentity Defines the identity of the local clock. Must be unique for all
clocks.

defaultDS numberPorts Uint16T
Defines the maximum number of PTP ports on the clock. Set to
0 to automatically fill with the greatest value of zl303xx-
_PortDS::portIdentity::portNumber on the clock.

defaultDS clockQuality zl303xx_ClockQuality

A dynamic member defining the quality of the local clock. This
includes:
• clockClass
• clockAccuracy
• offsetScaledLogVariance
Refer to the zl303xx_ClockQuality structure definition for
sub-member descriptions.

defaultDS priority1 Uint8T
Configurable member defining the priority1 attribute of the local
clock, used in the Best Master Clock Algorithm.
Values: 0 (highest priority) to 255 (lowest priority).

defaultDS priority2 Uint8T
Configurable member defining the priority2 attribute of the local
clock, used in the Best Master Clock Algorithm.
Values: 0 (highest priority) to 255 (lowest priority).

defaultDS domainNumber Uint8T
Configurable member defining the domain attribute of the local
clock. Messages from other domains will be ignored.
Values: 0 to 127

defaultDS slaveOnly zl303xx_Boolean Configurable member that defines if the clock can ever enter the
MASTER state.

optionalDefaultDS maxStepsRemoved Uint16T
Parameter to determine the maximum value of the stepsRe-
moved member of a received ANNOUNCE message that the
local clock will accept.

defaultDS sdoId Uint12T

Added for IEEE 1588-2019 v2.1 support and replaces clock
transportSpecific configuraton (v2.0). It is used along with the
domainNumber for PTP Instance isolation over shared networks
(see IEEE 1588-2019 Table 2).
The full 12-bits must be specified where:
• most significant 4-bit nibble: transportSpecific/majorSdoId

(v2.1)
• least significant 8-bit byte: reserved/minorSdoId (v2.1)
For v2.0 the least significant 8-bit byte should always be 0x00.
Default value is 0x000.
For 802.1as profile the value should be 0x100 (i.e. transportSpe-
cific 1).
Other values may be used by newer profiles defined for PTP
v2.1.
Note: This member replaces the deprecated zl303xx_PtpClockS
transportSpecific configuration.

Configuration

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 34

5.2.3 PTP Clock: Local timePropertiesDS

TABLE 5-5: PTP CLOCK CREATE PARAMETERS (LOCAL TIMEPROPERTIESDS)
Sub-Structure Parameter Type Description

localTimeProperties currentUtcOffset Sint16T
The offset between TAI and UTC. This value is only mean-
ingful in PTP systems whose epoch is the PTP epoch. This
value is in units of seconds.

localTimeProperties currentUtcOffsetValid zl303xx_Boolean This member is ZL303XX_TRUE if currentUtcOffset is
known to be correct.

localTimeProperties leap59 zl303xx_Boolean
This member is ZL303XX_TRUE if the epoch is the PTP
epoch, and the last minute of the current UTC day contains
59 seconds.

localTimeProperties leap61 zl303xx_Boolean
This member is ZL303XX_TRUE if the epoch is the PTP
epoch, and the last minute of the current UTC day contains
61 seconds.

localTimeProperties timeTraceable zl303xx_Boolean
This member is ZL303XX_TRUE if the timescale and the
value of currentUtcOffset are traceable to a primary refer-
ence.

localTimeProperties frequencyTraceable zl303xx_Boolean This member is ZL303XX_TRUE if the frequency determin-
ing the timescale is traceable to a primary reference.

localTimeProperties ptpTimescale zl303xx_Boolean This member is ZL303XX_TRUE if the clock timescale of the
grandmaster clock is PTP.

localTimeProperties timeSource zl303xx_TimeSourceE The source of time used by the grandmaster clock. Refer to
the data type for values.

localTimeProperties synchronization
Uncertain zl303xx_Boolean

This is an optional member and is ZL303XX_TRUE if the
clock is in the process of synchronizing to the time source. If
the synchronization is complete or the parameter is not
used, this value is ZL303XX_FALSE.

ZLS30390 Software API User’s Guide

DS50003222A-page 35  2022 Microchip Technology Inc. and its subsidiaries

5.2.4 PTP Clock: Profile-Specific and BMCA

TABLE 5-6: PTP CLOCK CREATE PARAMETERS (PROFILE AND BMCA)
Sub-Structure Parameter Type Description

— profile zl303xx_PtpProfileE The PTP profile that will be used on this
clock.

— profileStrict zl303xx_Boolean Strictly adhere to parameter ranges speci-
fied in the profile.

profileCfg power zl303xx_PtpC37p238ClockConfigS Power Profile-specific clock creation mem-
bers.

profileCfg g8275p1 zl303xx_PtpG8275ClockConfigS Telecom Phase Profile-specific clock cre-
ation members.

— telecom zl303xx_PtpTelecomClockCreateS Telecom Profile-specific members.

uncalibrated usePreviousClass zl303xx_Boolean

Flag indicating if the clock will advertise the
parentDS clockClass or the previously
active clockClass while in the UNCALI-
BRATED state.

— egressClassUpdateTrigger zl303xx_PtpClockEgressQlUpdateE
Indicates whether update the Clock's egress
class as soon as a server is selected or wait
until the algorithm reaches a LOCK state.

pathTrace enabled zl303xx_Boolean
Flag indicating whether the Clock has
enabled the optional PATH_TRACE func-
tionality.

— propagateEnabled zl303xx_Boolean

Flag controlling whether the Clock should
forward/propagate PATH_TRACE TLV when
main functionality is disabled (path-
Trace.enabled FALSE). Should be set TRUE
when using PTPv2.1 Edition3 to comply with
IEEE 1588-2019 14.2. Default is TRUE.

synchronization
Uncertain enabled zl303xx_Boolean

Flag indicating whether the Clock has
enabled the optional Synchroniza-
tion-Uncertain functionality

bmca revertiveEn zl303xx_Boolean
Applicable to Telecom Profile only: indicates
if the G.8265 revertive functionality is
enabled.

Configuration

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 36

5.2.4.1 PTP CLOCK: PROFILES ITU-T G.8275.X

For a list of the PTP Clock attributes, refer to the following data structure:
zl303xx_PtpG8275ClockConfigS.

5.2.4.2 PTP CLOCK: PROFILES ITU-T G.8265.1

For a list of the PTP Clock attributes, refer to the following data structure:
zl303xx_PtpTelecomClockCreateS.

TABLE 5-7: CLOCK SETTINGS RELATED TO ITU-T G.8275.X
Structure Parameter Options/Type Description

zl303xx_PtpG8275ClockConfigS bypassEnabled zl303xx_BooleanE

A configurable member allowing the implementa-
tion to bypass the G.8275 restrictions on adver-
tised Announce parameters and allows the user to
set the advertised values via the ParentDS.

zl303xx_PtpG8275ClockConfigS localPriority Uint8T

Configurable member defining the localPriority
attribute of the local clock. Used in the Best Mas-
ter Clock Algorithm of the G.8275.1 profile when
comparing the local clock data set (D0) to that of a
received potential grandmasters.

zl303xx_PtpG8275ClockConfigS classEvalMethod zl303xx_PtpG8275p1
ClassEvalMethodE

Configurable member defining which method is
used to evaluate the clockClass that is advertised
from the Clock. Refer to the zl303xx_Pt-
pG8275p1ClassEvalMethodE enumeration for
descriptions.

zl303xx_PtpG8275ClockConfigS equipmentClass Uint8T
Configurable member defining the alternate equip-
ment class to use for T-GM clocks in holdover
(Out-of-spec) for Table 6.4 of G.8275.1.

zl303xx_PtpG8275ClockConfigS holdoverSupported zl303xx_BooleanE

Configurable member applicable to T-TSC clocks
only.
• TRUE: Allows the T-TSC clock to use HOLD-

OVER Classes (135/165) in BMCA selection.
(Like a T-BC).

• FALSE: The T-TSC clock always uses class
255 in BMCA selection.

TABLE 5-8: CLOCK SETTINGS RELATED TO ITU-T G.8265.1
Structure Parameter Options/Type Description

zl303xx_PtpTelecomClockCreateS waitToRestoreSec Uint32T

Wait to restore time prevents a master from being
selected by the BMCA. When a master fails and is
later requalified, this timer starts. Set to 0 to disable
this functionality.

zl303xx_PtpTelecomClockCreateS qlHoldOffSec Uint32T
If no masters are qualified, this determines how long
the previous QL value will be retained before report-
ing QL-DNU/QL-DUS.

zl303xx_PtpTelecomClockCreateS evtSquelchEn zl303xx_Boolean

Determines if the ZL303XX_PT-
P_EVENT_SQUELCH is generated. Should not be
set to ZL303XX_TRUE if qlHoldOffSec is greater
than 0 (a warning message will be logged).

ZLS30390 Software API User’s Guide

DS50003222A-page 37  2022 Microchip Technology Inc. and its subsidiaries

5.2.4.3 PTP CLOCK: PROFILE IEEE C37.238

For a list of the PTP Clock attributes, refer to the following data structure:
zl303xx_PtpC37p238ClockConfigS.

5.2.4.4 PTP CLOCK: PROFILE IEEE 802.1AS

For a list of the PTP Clock attributes, refer to the following data structure:
zl303xx_Ptp802p1ClockConfigS.

TABLE 5-9: CLOCK SETTINGS RELATED TO IEEE C37.238
Structure Parameter Options/Type Description

zl303xx_PtpC37p238ClockConfigS grandMasterId Uint16T
Clock ID: Range 0x0003 - 0x00FE for 2011 ver-
sion (else assume unconfigured).
Full range allowed for 2017 version.

zl303xx_PtpC37p238ClockConfigS localTimeInaccuracy Uint32T

Local Time Inaccuracy (ns) of this clock. On mas-
ter clocks, this value is written to the grandmaster-
TimeInaccuracy field of the 2011 IEEE_C37_238
TLV (0xFFFFFFFF indicates overflow value).
When operating as grandmaster, the local time
inaccuracy should include the source time inaccu-
racy from chosen source and updated as condi-
tions change. For 2017 version of the TLV this
value is added to the totalTimeInaccuracy field.

zl303xx_PtpC37p238ClockConfigS networkTimeInaccuracy Uint32T

Network Time Inaccuracy (ns). This value is calcu-
lated by the system designer by summing the indi-
vidual localTimeInaccuracy values for each TC in
the cascade from the grandmaster clock. This
value is set at either:
a) The grandmaster clock and transmitted in the
IEEE_C37_238 TLV as the networkTimeInaccu-
racy field.
b) The end device clock and added to received
grandmasterTimeInaccuracy value in the
IEEE_C37_238 TLV to compute the TimeInaccu-
racy value.
Note: This is only valid in 2011 profile version.

TABLE 5-10: CLOCK SETTINGS RELATED TO IEEE 802.1AS
Structure Parameter Options/Type Description

zl303xx_Ptp802p1ClockConfigS gmCapable zl303xx_BooleanE

Indicates if the time-aware system is capable of being a
grandmaster and dictates the value of clockClass in
defaultDs. If the value is TRUE the time-aware system is
capable of being a grandmaster and if FALSE the
timeaware system is not capable of being a grandmas-
ter.

Configuration

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 38

5.2.5 PTP Clock: Unicast Negotiation Capacity

5.2.6 PTP Clock: User Overrides

5.3 CONFIGURATION OF A PTP PORT: ZL303XX_PTPPORTCREATE()
The following API routines are used to Add a PTP Port (refer to the PTP API Reference
Manual for complete interface, data type, and syntax details).

In the example code supplied in zlUserExamples/src/zl303xx_ExamplePtp.c,
the structure initialization and port creation calls are found in functions
examplePtpPortCreateStructInit() and examplePtpPortCreate(),
respectively.
The members of the zl303xx_PtpPortCreateS are listed in the following table.
These may be modified by a user when creating an application. (Complete details of
the zl303xx_PtpPortCreateS structure can be found in the
zlPtp/include/zl303xx_PtpApiTypes.h module).

TABLE 5-11: PTP CLOCK CREATE PARAMETERS (UNICAST NEGOTIATION CAPACITY)
Sub-Structure Parameter Type Description

unicastNegotiation maxAnnounceCount Uint32T The maximum number of ANNOUNCE contracts supported.
unicastNegotiation maxSyncCount Uint32T The maximum number of SYNC contracts supported.
unicastNegotiation maxDelayRespCount Uint32T The maximum number of DELAY RESPONSE contracts supported.

unicastNegotiation maxPdelayRespCount Uint32T The maximum number of PEER DELAY RESPONSE contracts sup-
ported.

unicastNegotiation totalPpsMax Uint32T The combined Maximum PPS of all contracts of a single message type
allowed on this Clock

TABLE 5-12: PTP CLOCK CREATE PARAMETERS (USER OVERRIDES)
Sub-Structure Parameter Type Description

override enabled zl303xx_Boolean Boolean flag indicating if an egress Override is configured for
a particular parameter.

override defaultDS zl303xx_DefaultDS The override values for certain default Data Set members.
(Clock Quality, priority1/2 and domain).

override timePropertiesDS zl303xx_TimePropertiesDS
The override values for certain Time Properties Data Set
members. (UTC Offset & Offset Valid, Time & Frequency
Traceable, Synchronization Uncertain and Time Source).

override currentDS zl303xx_CurrentDS The override values for certain Current Data Set members.
(Steps Removed).

TABLE 5-13: PTP PORT CREATE ROUTINES
API Routine Description

zl303xx_PtpPortCreateStructInit
Data fills the zl303xx_PtpPortCreateS data structure with a set of default port cre-
ation parameters. The user may modify individual members prior to creating the
PTP port.

zl303xx_PtpPortCreate Creates a new PTP Port based on the zl303xx_PtpPortCreateS data structure.

ZLS30390 Software API User’s Guide

DS50003222A-page 39  2022 Microchip Technology Inc. and its subsidiaries

5.3.1 PTP Port: General and Miscellaneous

5.3.2 PTP Port: Profile-Specific

TABLE 5-14: PTP PORT CREATE PARAMETERS (GENERAL AND MISCELLANEOUS)
Sub-Structure Parameter Type Description

— clockHandle zl303xx_PtpClockHandleT The handle to the clock that this port is attached to.

— portNumber Uint16T
Value that will be placed in the sourcePortIdentity field
of egress PTP messages. Set to 0 to automatically gen-
erate a unique portNumber during port initialization.

— ptpVersion Uint16T The PTP version in use on this port.

— localAddr zl303xx_PortAddress
The local address of this port. All messages are trans-
mitted from this address, and unicast messages des-
tined to this address will be processed.

— extData void *
Pointer to some external user data. This is passed to
the packet-send porting functions. Memory manage-
ment must be handled externally to PTP.

— txMsgFn zl303xx_PtpTxMsgFnT Function used to transmit PTP messages.

— requestedHandle zl303xx_PtpPortHandleT Request port to be created with a specific handle. Set to
ZL303XX_PTP_INVALID to auto-generate a handle.

— faultPassThroughEn zl303xx_BooleanE

Configurable member.
• TRUE: Allow the port to go to init after a fault
• FALSE: The port will stay in faulty state unless

explicitly forced to go to init.

— alternateMaster zl303xx_Boolean

Controls the behavior of alternateMasterFlag in some
transmitted messages.
• If FALSE, does NOT set alternateMasterFlag in

transmitted messages.
• If TRUE, sets the alternateMasterFlag in transmit-

ted messages if the transmitting port is a
non-MASTER state.

Default TRUE for IEEE 1588-2008 standard behavior
(see Table 5-19).

TABLE 5-15: PTP PORT CREATE PARAMETERS (PROFILE-SPECIFIC)
Sub-Structure Parameter Type Description

— delayMechanism zl303xx_DelayMechanismE
Propagation delay measuring option. May be
End-to-End or Peer-to-Peer depending on the
Profile used.

— pdRespTxMethod zl303xx_PtpPdelayRespMethodE

The method of issuing a Peer-Delay
Response. Refer to the data type definition of
Clause 11.4.3.b of IEEE-1588-2008 for
details.

— logMinPdelayReqInterval Sint8T
The minimum permitted mean time interval
between successive PDELAY_REQ mes-
sages.

— masterOnly zl303xx_Boolean

Added by ITU G.8275.2: Optional parameter
to prohibit a Port from entering the SLAVE or
PASSIVE state. Any ANNOUNCE messages
received on a masterOnly Port are not used in
the Best Master Clock Algorithm of the profile.

profileCfg power zl303xx_PtpC37p238PortConfigS Power Profile-specific port creation members.

profileCfg g8275p1 zl303xx_PtpG8275PortConfigS Telecom Phase Profile-specific port creation
members.

Configuration

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 40

5.3.2.1 PTP PORT: PROFILES ITU-T G.8275.x

For a list of the PTP Port attributes, refer to the following data structure:
zl303xx_PtpG8275PortConfigS.

5.3.2.2 PTP PORT: PROFILE IEEE C37.238

For a list of the PTP Port attributes, refer to the following data structure:
zl303xx_PtpC37p238PortConfigS.

TABLE 5-16: PORT SETTINGS RELATED TO ITU-T G.8275.x
Structure Parameter Option/Type Description

zl303xx_PtpG8275PortConfigS localPriority Uint8T
Configurable member defining the localPriority attribute
of the local port. Used in the Best Master Clock Algo-
rithm of the G.8275.1 profile.

zl303xx_PtpG8275PortConfigS tsIfRate zl303xx_PtpG8275
TimestampIfRateTlvS

Configurable member defining the Timestamp Interface
attributes associated with this local PTP port. This data
is used to issue the Timestamp Interface Rate TLV of the
G.8275.2 profile. Refer to Table 5-17.

zl303xx_PtpG8275PortConfigS notSlave zl303xx_BooleanE Deprecated: The following member value is ignored in
favor of the optionalPortDS::masterOnly definition.

TABLE 5-17: SETTINGS RELATED TO INTERFACE RATE TLV OF THE G.8275.2

Structure Parameter Options/
Type Description

zl303xx_PtpG8275TimestampIfRateTlvS interfaceBitPeriod Uint64S

The period of 1-bit of the transmitting PTP
timestamp interface, excluding line encod-
ing. The value is encoded as an unsigned
integer in units of attoseconds (10^-18) to
accommodate interface bit periods less
than 1 ns.

zl303xx_PtpG8275TimestampIfRateTlvS numberBitsBeforeTimestamp Uint16T The length of the packet prior to the time-
stamp point, in bits.

zl303xx_PtpG8275TimestampIfRateTlvS numberBitsAfterTimestamp Uint16T The length of the packet after the time-
stamp point, in bits.

TABLE 5-18: PORT SETTINGS RELATED TO IEEE C37.238

Structure Parameter Options/
Type Description

zl303xx_PtpC37p238PortConfigS empty Uint32T This structure is currently not used by the profile.
It exists for the purpose of possible future expansion.

ZLS30390 Software API User’s Guide

DS50003222A-page 41  2022 Microchip Technology Inc. and its subsidiaries

5.3.2.3 PTP PORT: PROFILE IEEE 802.1as

For a list of the PTP Port attributes, refer to the following data structure:
zl303xx_Ptp802p1PortConfigS.

5.3.2.4 PTP PORT: DEFAULT PROFILE EDITION 3 (v2.1)

For a list of all the PTP Port attributes refer to the following data structure:
zl303xx_PtpPortConfigS.

TABLE 5-19: PORT SETTINGS RELATED TO IEEE 802.1as
Structure Parameter Options/Type Description

zl303xx_Ptp802p1PortConfigS msgIntvlReq zl303xx_Ptp802p1MsgIntvlReqTlvS

Defining the Message Inter-
val attributes associated with
this local PTP port. This data
is used to issue the Message
Interval Request TLV of the
IEEE802.1AS profile.

zl303xx_Ptp802p1PortConfigS neighborPropDelayThreshold zl303xx_TimeInterval

Defining the neighbor propa-
gation delay threshold for
this port. This will be used to
decide if the port is capable
of running IEEE802.1AS pro-
file (asCapable).

zl303xx_Ptp802p1PortConfigS allowedLostResponses Uint8T

Indicates the allowed num-
ber of Peer-Delay response
packets dropped before
PTSF-asCapable is
declared.

TABLE 5-20: PORT SETTINGS RELATED TO DEFAULT PROFILE EDITION 3 (v2.1)
Structure Parameter Options/Type Description

zl303xx_PtpPortConfigS ptpMinorVersion Uint4T

The PTP minor version in use on this port.
This value is stored in the zl303xx-
_PortDS::minorVersionNumber field and
used in egress header minorVersionPTP
field for all message types sent on this port.
Set to 1 for PTP v2.1 (Edition 3) operation
on this port.
See filterMinorVersionPtp for ingress filter
options.
Default: ZL303XX_PTP_DE-
FAULT_PORT_PTP_MINOR_VERSION (0)
See zl303xx_PtpStreamEgressOverrideAn-
ncFieldSet() and ZL303XX_PT-
P_STREAM_OVERRIDE_MINOR_VERSIO
N_PTP for stream-level egress header field
override.

zl303xx_PtpPortConfigS filterMinorVersionPtp zl303xx_PtpMinorVersionPtpFilterE

For PTPv2.1, optionally discard ingress
received packets based on minorVersionPtp
header field value. This can be used to limit
a port to work with only a particular minor-
VersionPtp. For example: accept only v2.1
packets, or accept only v2.0 packets, or
accept any packet).
Default ZL303XX_PTP_MINOR_VER-
SION_PTP_ACCEPT_ANY (do not filter
ingress packets).

Configuration

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 42

5.3.3 PTP Port: Acceptable Master and Acceptable Slave Tables
The Acceptable Master Table (AMT) and Acceptable Slave Tables (AST) provide
access control on a port. Access is restricted based on received packet source network
address as provided by the user (zl303xx_PortAddress type). Note the source
address of a packet is provided by user as obtained from transport layer (e.g. socket)
or similar means as it is not available in the PTP header or payload.
When enabled, the Acceptable Master Table (AMT):
• Drops ingress messages (all types) if the source address of a packet does not

match an entry in AMT.
• If AMT entry is found, and message is ANNOUNCE and the AMT entry has

non-zero alternatePriority1 configuration then the ANNOUNCE data grandmaster-
Priority1 field is replaced with configured value.

When enabled, the Acceptable Slave Table (AST):
• Rejects unicast negotiation contract requests (SIGNALLING) if the source

address of a packet does not match an entry in AST (i.e. replies with grant dura-
tion 0).

• Drops ingress DELAY_REQ messages if the source address of a packet does not
match an entry in AST.

• Note when changing AST entries dynamically at runtime existing unicast negotia-
tion contracts remain active until the granted contract term has expired. However,
existing DELAY_RESP contract may not be honored due to above.

Related dynamic APIs:
• zl303xx_PtpAcceptableMasterTableEnSet
• zl303xx_PtpAcceptableMasterAdd
• zl303xx_PtpAcceptableMasterRemove
• zl303xx_PtpAcceptableSlaveTableEnSet
• zl303xx_PtpAcceptableSlaveAdd
• zl303xx_PtpAcceptableSlaveRemove

Configurable port parameters are presented in Table 5-21.

TABLE 5-21: PTP PORT CREATE PARAMETERS (ACCEPTABLE MASTER)
Sub-Structure Parameter Type Description

— acceptableMasterTableEnabled zl303xx_Boolean Enables the use of an acceptable master table.
— acceptableSlaveTableEnabled zl303xx_Boolean Enables the use of an acceptable slave table.

— acceptableMasterTableLength Uint16T
The number of acceptable master table entries or accept-
able slave table entries to allocate. Note same number of
entries for AST and AMT.

ZLS30390 Software API User’s Guide

DS50003222A-page 43  2022 Microchip Technology Inc. and its subsidiaries

5.3.4 PTP Port: Unicast Negotiation

TABLE 5-22: PTP PORT CREATE PARAMETERS (UNICAST NEGOTIATION)
Sub-Structure Parameter Type Description

unicastNegotiation enabled zl303xx_Boolean Indicates unicast negotiation is used on this
port.

unicastNegotiation stackedTlvEn zl303xx_Boolean Enables sending of stacked unicast negoti-
ation TLVs in a single Signaling Message.

unicastNegotiation maxAnnounceRate Sint8T Maximum packet rate per negotiated
ANNOUNCE Contract on this Port

unicastNegotiation maxAnnounceGrantSecs Uint32T The maximum duration per negotiated
ANNOUNCE contract on this Port

unicastNegotiation maxAnnounceCount Uint32T The maximum number of ANNOUNCE
contracts to support on this Port.

unicastNegotiation maxSyncRate Sint8T Maximum packet rate per negotiated SYNC
Contract on this Port

unicastNegotiation maxSyncGrantSecs Uint32T The maximum duration per negotiated
SYNC contract on this Port

unicastNegotiation maxSyncCount Uint32T The maximum number of SYNC contracts
to support on this Port.

unicastNegotiation maxDelayRespRate Sint8T Maximum packet rate per negotiated
DELAY-RESP Contract on this Port

unicastNegotiation maxDelayRespGrantSecs Uint32T The maximum duration per negotiated
DELAY-RESP contract on this Port

unicastNegotiation maxDelayRespCount Uint32T The maximum number of DELAY-RESP
contracts to support on this Port.

unicastNegotiation maxPdelayRespRate Sint8T Maximum packet rate per negotiated
PEER-DELAY-RESP Contract on this Port

unicastNegotiation maxPdelayRespGrantSecs Uint32T The maximum duration per negotiated
PEER-DELAY-RESP contract on this Port

unicastNegotiation maxPdelayRespCount Uint32T
The maximum number of
PEER-DELAY-RESP contracts to support
on this Port.

unicastNegotiation totalPpsMax Uint32T
The combined Maximum PPS of all con-
tracts of a single message type allowed on
this Port.

unicastNegotiation denyServiceRequests zl303xx_Boolean

Added by ITU G.8275.2: Set to ZL303XX_-
FALSE to grant a contract request by
default unless explicitly set otherwise using
zl303xx_PtpPortDenyServiceRequests().
Set to ZL303XX_TRUE to deny requests
by default.
Also used to prevent a PTP Port from
entering MASTER mode in ITU-T G.8275.1
operation. This is done to enable moritoring
of multicast masters when unicastMonitor-
Timing is enabled (refer to “Monitoring Con-
nections” & “PTP Stream: Unicast and
Negotiation”)

unicastNegotiation grantTableLength Uint16T

Maximum number of far-end PortAd-
dresses that can be configured using
zl303xx_PtpGrantConfigSet(). Must be set
to a non-zero value if defaultGrant is set to
ZL303XX_FALSE.

unicastMasterTable maxTableSize Uint16T The maximum number of permitted entries
in the Unicast Master Table.

unicastMasterTable logQueryInterval Sint8T
The log2 of the mean interval, in seconds,
between requests from a node for a unicast
ANNOUNCE message contract.

Configuration

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 44

5.4 CONFIGURATION OF A PTP STREAM: ZL303XX_PTPSTREAMCREATE()
The following API routines are used to Add a PTP Stream (refer to the PTP API
Reference Manual for complete interface, data type, and syntax details).

In the example code supplied in zlUserExamples/src/zl303xx_ExamplePtp.c,
the structure initialization and stream creation calls are found in functions
examplePtpStreamCreateStructInit() and examplePtpStreamCreate(),
respectively.
The members of the zl303xx_PtpStreamCreateS are listed in the following table.
These may be modified by a user when creating an application. Complete details of the
zl303xx_PtpStreamCreateS structure can be found in the
zlPtp/include/zl303xx_PtpApiTypes.h module.

5.4.1 PTP Stream: General and Miscellaneous

TABLE 5-23: PTP STREAM CREATION ROUTINES
API Routine Description

zl303xx_PtpStreamCreateStructInit Data fills the zl303xx_PtpStreamCreateS data structure with a set of default stream creation
parameters. The user may modify individual members prior to creating the PTP stream.

zl303xx_PtpStreamCreate Creates a new PTP Stream based on the zl303xx_PtpStreamCreateS data structure.

TABLE 5-24: PTP STREAM CREATE PARAMETERS (GENERAL AND MISCELLANEOUS)
Sub-Structure Parameter Type Description

— portHandle zl303xx_PtpPortHandleT The handle to the port that this stream is attached to.
— destAddr zl303xx_PortAddress The destination port address of this connection.

— requestedHandle zl303xx_PtpStreamHandleT
Request stream to be created with a specific handle.
Set to ZL303XX_PTP_INVALID to auto-generate a
handle.

— extData void * Pointer to some external user data. Memory man-
agement must be handled externally to PTP.

— numTsRecords Uint16T

The length of the time stamp record queue for this
stream. The queue is used to store egress SYNC
and DELAY_REQ time stamps, depending on the
stream state (which determines what type of mes-
sages will be transmitted). Must be a power of 2.

— numTwoStepRecords Uint16T

The length of the two-step record queue for this
stream. This queue is used to match time stamps for
Sync and Follow_Up messages. Must be a power of
2.

— createFlags Uint32T Boolean flags for various stream options.

— delayReqTimeSetRequired zl303xx_Boolean

According to the 1588-2008 Std., a SYNC message
must be received before issuing a Delay Request.
This parameter enforces a stricter condition that the
Time (ToD) also needs to be set on the local hard-
ware before a Delay Request message can be sent.

— nextTxSequenceId Uint16T
Initial values for the next transmitted sequenceId.
Used for warm start operation to prevent jumps in
sequenceId.

delayAsymmetry ingress zl303xx_TimeInterval Specifies the delay asymmetry of a stream (if
known). These are added to, or subtracted from cor-
rectionField values of received or transmitted event
messages as per Clause 11 of the IEEE-1588-2008
Std.

delayAsymmetry egress zl303xx_TimeInterval

ZLS30390 Software API User’s Guide

DS50003222A-page 45  2022 Microchip Technology Inc. and its subsidiaries

5.4.2 PTP Stream: Message Rates, Timeouts, and Intervals

5.4.3 PTP Stream: Profile-Specific

TABLE 5-25: PTP STREAM CREATE PARAMETERS (MESSAGE RATES, TIMEOUTS, AND
INTERVALS)

Sub-Structure Parameter Type Description

— logAnnounceInterval Sint8T The log2 of the mean time interval between successive ANNOUNCE
messages sent from this stream.

— announceReceiptTimeout Uint8T
The number of announceIntervals that have to pass without receipt of an
ANNOUNCE message before the occurrence of the event
ANNOUNCE_RECEIPT_TIMEOUT_EXPIRES.

— logSyncInterval Sint8T The mean time interval between successive SYNC messages.

— logMinDelayReqInterval Sint8T The mean time interval between successive DELAY-REQUEST mes-
sages.

— logMinPdelayReqInterval Sint8T The mean time interval between successive PEER_DELAY_REQUEST
messages.

TABLE 5-26: PTP STREAM CREATE PARAMETERS (PROFILE-SPECIFIC)
Sub-Structure Parameter Type Description

— mode zl303xx_PtpStreamModeE
How this stream will determine if it is master or slave.
This can be forced or automatically determined using
BMCA.

profileCfg power zl303xx_PtpC37p238StreamConfigS Power Profile-specific stream creation members.

profileCfg g8275p1 zl303xx_PtpG8275StreamConfigS Telecom Phase Profile-specific stream creation
members.

— padTlvLen Uint16T

The number of bytes to pad at the end of each
EVENT messageType in the PAD TLV (Clause 16.13
of IEEE-2017). The length includes the TYPE and
LENGTH fields so therefore must have a minimum
pad length of 4. Relates to IEC Power Profile.

— maxClockClass Uint8T The maximum acceptable clock class that will allow a
master to be qualified. Set to 0 to disable.

uncalibrated anncIntervals Uint8T

The number of Announce Intervals that have to pass
before a stream in the UNCALIBRATED state can
transition to the SLAVE state.
Range: 0-255. A value of 0 disables this restriction.

uncalibrated lockRequired zl303xx_Boolean
Flag indicating if the clock must be in a LOCKED
state before a stream can transition to the SLAVE
State.

— keepAliveSec Uint32T

The duration in seconds for which to issue a
'keep-alive' event for the stream if no other related
event has been issued (i.e. BMCA UPDATE, STATE
CHANGE, CONFIG CHANGE all count as a stream
event).

smpteSmTlvConfig tlvAppend zl303xx_Boolean

Flag indicating if SMPTE 2059-2 Sync Metadata TLV
should be appended to outgoing management mes-
sages. If this is set to TRUE, the TLV shall be
appended every one second on ports in MASTER
state on Grandmaster clocks. zl303xx_PtpSmpt-
eStreamSyncMetadataTlvSend (Table 6-17) can also
be used to manually send the TLV on a given stream.

smpteSmTlvConfig tlvProcess zl303xx_Boolean Flag indicating if incoming SMPTE 2059-2 Sync
Metadata TLV should be processed.

Configuration

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 46

5.4.3.1 PTP STREAM: PROFILES ITU-T G.8275.x

For a list of the PTP Port attributes, refer to the following data structure:
zl303xx_PtpG8275StreamConfigS.

5.4.3.2 PTP STREAM: PROFILE IEEE C37.238

For a list of the PTP Stream attributes, refer to the following data structure:
zl303xx_PtpC37p238StreamConfigS.

TABLE 5-27: STREAM SETTINGS RELATED TO ITU-T G.8275.x
Structure Parameter Options/Type Description

zl303xx_PtpG8275StreamConfigS localPriority Uint8T

Configurable member defining the localPriority attribute of
the local stream. Takes priority over the associated Port
localPriority. Used in the Best Master Clock Algorithm of
the G.8275.1 profile.

zl303xx_PtpG8275StreamConfigS notSlave zl303xx_BooleanE
Deprecated: The following member value is ignored in
favour of the optionalPortDS::masterOnly and stream::con-
fig::operMode definitions.

TABLE 5-28: STREAM SETTINGS RELATED TO IEEE C37.238
Structure Parameter Options/Type Description

zl303xx_PtpC37p238StreamConfigS profileTlvRequired zl303xx_BooleanE

Determines if the Profile TLV is required
to be appended to received Announce
messages.
TRUE: any received Announce message
with the TLV missing is discarded. Also,
all transmitted Announce messages will
append the TLV regardless of the
'append' setting.

zl303xx_PtpC37p238StreamConfigS profileTlvAppend zl303xx_BooleanE

Determines if the Profile TLV will be
appended to transmitted Announce mes-
sages.
Even if the ‘required’ field is FALSE, an
application may still choose to append
the TLV.

zl303xx_PtpC37p238StreamConfigS profileTlvVersion Uint32T Profile TLV version (2011 or 2017)

zl303xx_PtpC37p238StreamConfigS altTimeOffsetTlvRequired zl303xx_BooleanE

Determines if the Alternate Time TLV is
required to be appended to received
Announce messages.
TRUE: any received Announce message
with the TLV missing is discarded. Also,
all transmitted Announce messages will
append the TLV regardless of the
'append' setting.

zl303xx_PtpC37p238StreamConfigS altTimeOffsetTlvAppend zl303xx_BooleanE

Determines if the Alternate Time TLV will
be appended to transmitted Announce
messages.
Even if the ‘required’ field is FALSE, an
application may still choose to append
the TLV.

zl303xx_PtpC37p238StreamConfigS networkTimeInaccuracyMax Uint32T

Network Time Inaccuracy Max for this
Stream (ns). When ingress networkTi-
meInaccuracy (or totalTimeInaccurcy
2017) exceeds this threshold the stream
will raise ZL303XX_PTSF_NETWORK_-
TIME_INACC_EXCEEDED and stream
will be disqualified from foreign master
table (FMT) such that it will not take part
in BMCA for selection.

ZLS30390 Software API User’s Guide

DS50003222A-page 47  2022 Microchip Technology Inc. and its subsidiaries

5.4.4 PTP Stream: Unicast and Negotiation

5.4.5 PTP Stream: User Overrides

TABLE 5-29: PTP STREAM CREATE PARAMETERS (UNICAST NEGOTIATION)
Sub-Structure Parameter Type Description

— unicast zl303xx_Boolean

Indicates that destAddr corresponds to a unicast
transport layer protocol address (not multicast or
broadcast). This member also sets unicastFlag in
the flagField of the common PTP message
header.

— unicastNegotiationDuration Uint32T Duration in seconds for which to request unicast
contracts.

— unicastMonitorTiming zl303xx_Boolean

Flag indicating that a stream in the MASTER state
that also has a UMT entry to a far-end-server will
continue to request both ANNOUNCE and Timing
service (contracts) with that server:
• FALSE (default): request only ANNOUNCE

service as long as the UMT entry exists,
• TRUE: request ANNOUNCE, SYNC and

DELAY services as configured by the UMT
(even in MASTER mode).

Also used to send Delay_Req messages from a
PTP port in PASSIVE state with ITU-T G.8275.1
(refer to “Monitoring Connections”).

— unicastNegotiationRenew Uint32T
The time in seconds before unicastNegotiationDu-
ration expires that the unicast negotiation contract
will be renewed.

unicastNegotiation:: bestEffort enabled zl303xx_Boolean
Enables a requester of a unicast contract to
request a lower rate if its original request was
denied.

unicastNegotiation:: bestEffort intervalMax Sint8T

The minimum packet interval to accept (interval-
Max corresponds to a minimum PPS).
Default = -128 (PTP_MESSAGE_INTER-
VAL_MIN); (so enabling this feature without
changing intervalMax will inhibit negotiation).

TABLE 5-30: PTP STREAM CREATE PARAMETERS (USER OVERRIDES)
Sub-Structure Parameter Type Description

override anncOvrdEn zl303xx_Boolean
Boolean flags indicating if an Override is configured for the
egress data set parameter (Refer to the zl303xx_PtpStream-
OverrideAnncEgressE Type for a list of parameters).

override ptpHeader zl303xx_PtpV2MsgHeaderS PTP Header egress override values (if enabled by ann-
cOvrdEn)

override timeProperties zl303xx_TimePropertiesDS Time Property egress override values (if enabled by ann-
cOvrdEn)

override anncData zl303xx_PtpV2MsgAnnounceS ANNOUNCE egress override values (if enabled by ann-
cOvrdEn)

Configuration

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 48

5.5 CONFIGURATION OF VIRTUAL PTP PORT (OPTIONAL)
A Virtual PTP Port is intended to model a physical clock signal as a PTP packet input.
The PTP software was originally developed to only manage packet interfaces. The
Virtual Port contains a number of configuration parameters that can be mapped to
typical PTP attributes. Each time the BMC Algorithm is executed on the clock, the
Virtual Port data is converted to equivalent comparison data and evaluated as if it were
a regular packet interface.
An example of creating and managing a Virtual Port can be found in the sample routine,
examplePtpTelecomPhaseG8275p1Master.
A summary of the API routines used to manage a Virtual Port is listed in the following
table:

TABLE 5-31: PTP CLOCK VIRTUAL PORT API ROUTINES
API Routine Description

zl303xx_PtpVirtualPortCreateStructInit Initializes a zl303xx_PtpVirtualPortConfigS structure with default values.
zl303xx_PtpVirtualPortCreate Creates a Virtual Port with the zl303xx_PtpVirtualPortConfigS parameters provided and

reserves a portHandle value that may be used for future management of the port.
zl303xx_PtpVirtualPortDelete Deletes the Virtual Port for the specified portHandle.
zl303xx_PtpVirtualPortGet Gets the zl303xx_PtpVirtualPortConfigS configuration of a Virtual Port (for the specified

portHandle).
zl303xx_PtpVirtualPortSet Sets the zl303xx_PtpVirtualPortConfigS configuration of a Virtual Port (for the specified

portHandle).
zl303xx_PtpVirtualPortPtsfSet Enables or Disables a Virtual Port (for the specified portHandle). When enabled, the Virtual

Port configuration is included in the BMCA selection.

TABLE 5-32: PTP VIRTUAL PORT CONFIGURATION PARAMETERS
(ZL303XX_PTPVIRTUALPORTCONFIGS)

Sub-Structure Parameter Type Description
— clockHandle zl303xx_PtpClockHandleT The handle to the clock that this port is attached to.

— portNumber Uint16T

The identity of this port. This value is stored in the port's
zl303xx_PortDS::portIdentity::portNumber field. Setting to
INVALID (-1) will automatically generate a unique portNum-
ber during initialization.

— ptsf zl303xx_BooleanE Flag indicating whether the Virtual Port is Failed.

— anncData zl303xx_PtpV2MsgAnnounceS ANNOUNCE egress override values (if enabled by ann-
cOvrdEn)

— prtcConnected zl303xx_PtpPrtcLevelE

Flag indicating if this port is connected to a PRTC source.
Options are:
• ZL303XX_PTP_PRTC_NOT_CONNECTED,
• ZL303XX_PTP_PRTC_CONNECTED,
• ZL303XX_PTP_PRTC_ENHANCED

— clockIdentity zl303xx_ClockIdentity Clock Identity of the GM being virtually received on this port.
— clockQuality zl303xx_ClockQuality Clock Quality values of the GM being modeled on this port.
— priority1 Uint8T priority1 value of the GM being modeled on this port.
— priority2 Uint8T priority2 value of the GM being modeled on this port.
— stepsRemoved Uint16T Steps removed to the GM being modeled on this port.
— timeProperties zl303xx_TimePropertiesDS Time Property values of the GM being modeled on this port.
— localPriority Uint8T Local Priority of the port (used by various profiles).

— extData void *
Pointer to some external user data. This is passed to the
packet-send porting functions. Memory management must
be handled externally to PTP.

ZLS30390 Software API User’s Guide

DS50003222A-page 49  2022 Microchip Technology Inc. and its subsidiaries

5.6 CONFIGURATION OF EXTERNAL USER DATA (OPTIONAL)

5.6.1 How to Associate External User Data with a PTP Component
A user-defined data structure can be associated with certain PTP objects through the
use of a generic (void*). Although not used by the PTP objects directly, it allows the user
to associate proprietary data with each object so that when a PTP Event occurs, the
pointer to the user data is supplied to allow quick access by the management system.
Typically this functionality is not used.

5.6.1.1 EXTERNAL DATA ASSOCIATED WITH PTP OBJECTS

As seen from the previous sections, this pointer can be set in the following structures
(see member ‘void *extData’ in each associated data structure):
• zl303xx_PtpClockCreateS
• zl303xx_PtpPortCreateS
• zl303xx_PtpStreamCreateS

It is possible to change the extData associated with a previously created Stream using
the following routine (changes are not currently allowed to the Clock & Port extData
configuration):
• zl303xx_PtpStreamExtDataSet()

The extData pointer for any created PTP object can be retrieved later by calling one of
the following API commands (as appropriate for the object):
• zl303xx_PtpClockExtDataGet()
• zl303xx_PtpPortExtDataGet()
• zl303xx_PtpStreamExtDataGet()

It is the user’s responsibility to manage the allocation and freeing of any external
structure memory. This includes freeing the memory after manually calling a delete
function and freeing it inside of a delete event handler.

5.6.1.2 EXTERNAL DATA ASSOCIATED WITH RECEIVED PACKETS

In rare situations, it may be necessary to pass some extra low level data about a
received packet through the PTP application. This data can be written into the following
8-byte buffer; zl303xx_PtpRxMsgDataS::extData. This data is only available in
the stream creation event, as structure member
zl303xx_PtpEventStreamCreateS::extData.

5.7 CONFIGURATION FOR SHUTDOWN (STOPPING) PTP SERVICE

5.7.1 Terminating a PTP Application or its Components
The most straight-forward way of shutting down the PTP application is to call either
following PTP Node API:
• zl303xx_PtpShutdownWithOptions(), or
• zl303xx_PtpShutdown() legacy interface
By default, this will delete all stream, port, and clock objects that are currently running
(see forceDelete option) and events are generated (see fireEvent option) to notify the
management system so that any other user resources associated with the objects can
be freed. For more information on event handling, see “EVENT INTERFACE”.
To prevent deleting existing objects, use zl303xx_PtpShutdownWithOptions()
with forceDelete ZL303XX_FALSE which will return a failure status if there are objects
still created.

Configuration

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 50

The PTP timer task and the PTSF module will also be deleted by PTP shutdown
function call.
An alternative sequence of closure is to first delete the PTP stream, then the PTP port
then the PTP clock.
The individual clock, port, and stream objects can be deleted directly by calling the
following functions:
• zl303xx_PtpClockDelete()
• zl303xx_PtpPortDelete()
• zl303xx_PtpStreamDelete()

The following API routines are used to Delete a PTP Clock, Port, or Stream (refer to the
PTP API Reference Manual for complete interface, data type, and syntax details).

Note: Calling these functions directly does not generate a corresponding event by
default (see fireEvent options in the delete API parameters). Any user
resources associated with the deleted object must be cleaned up by the
management system after the direct call to these functions.

TABLE 5-33: PTP NODE DELETION ROUTINES
API Routine Description

zl303xx_PtpShutdownOptionsStructInit Data fills the zl303xx_PtpShutdownOptionsS data structure with a set of default node
deletion parameters.

zl303xx_PtpShutdownWithOptions Deletes the PTP Node. Alternatively, see legacy zl303xx_PtpShutdown() interface.

TABLE 5-34: PTP CLOCK DELETION ROUTINES
API Routine Description

zl303xx_PtpClockDeleteStructInit Data fills the zl303xx_PtpClockDeleteS data structure with a set of default clock deletion
parameters.

zl303xx_PtpClockDelete Deletes the specified PTP Clock.

TABLE 5-35: PTP PORT DELETION ROUTINES
API Routine Description

zl303xx_PtpPortDeleteStructInit Data fills the zl303xx_PtpPortDeleteS data structure with a set of default port deletion
parameters.

zl303xx_PtpPortDelete Deletes the specified PTP Port.

TABLE 5-36: PTP STREAM CREATION AND DELETION ROUTINES
API Routine Description

zl303xx_PtpStreamDeleteStructInit Data fills the zl303xx_PtpStreamDeleteS data structure with a set of default stream dele-
tion parameters.

zl303xx_PtpStreamDelete Deletes the specified PTP Stream.

ZLS30390 Software API User’s Guide

DS50003222A-page 51  2022 Microchip Technology Inc. and its subsidiaries

NOTES:

ZLS30390 SOFTWARE API
USER’S GUIDE

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 52

Chapter 6. Modify Configuration

6.1 MODIFY PTP CLOCK CONFIGURATION

6.1.1 Modify PTP Clock: Description Configuration
The following API routines are used to update a PTP Clock’s Description settings.
These are outlined in the ‘CLOCK_DESCRIPTION’ management TLV section of the
IEEE-1588 standard (Section 15.5.3.1.2 at the time of this writing).

6.1.2 Modify PTP Clock: System Integration Parameters
When a PTP Clock is created, several parameters are configured in order to allow it to
interface with the user platform. These include:
• An interface to the user management system (event notification).
• An interface to retrieve system specific hardware data (ex: Time-of-Day)
• Addition of user specific external data.
The following API routines can be used to modify these routines at run-time:

TABLE 6-1: PTP CLOCK DESCRIPTION UPDATE ROUTINES
API Routine Description

zl303xx_PtpNodeProductDescriptionStructInit Retrieves the default value of the ‘Product Description’ (from the zl303xx_Ptp-
Setup.h file).

zl303xx_PtpNodeProductDescriptionSet Sets the value of the PTP Clock’s ‘Product Description’. Use zl303xx_PtpNo-
deProductDescriptionGet() to retrieve the current setting

zl303xx_PtpNodeManufacturerIdentitySet Sets the value of the PTP Clock’s ‘Manufacturer Identity’. Use zl303xx_Ptp-
NodeManufacturerIdentityGet() to retrieve the current setting.

zl303xx_PtpNodeUserDescriptionStructInit Retrieves the default value of the ‘User Description’ (from the zl303xx_Ptp-
Setup.h file).

zl303xx_PtpNodeUserDescriptionSet Sets the value of the PTP Clock’s ‘User Description’.

zl303xx_PtpNodeRevisionDataStructInit Retrieves the default value of the ‘Revision Data’ (from the zl303xx_Ptp-
Setup.h file).

zl303xx_PtpNodeRevisionDataSet Sets the value of the PTP Clock’s ‘Revision Data’. Use zl303xx_PtpNodeRe-
visionDataGet() to retrieve the current setting

TABLE 6-2: PTP CLOCK INTEGRATION ROUTINES
API Routine Description

zl303xx_PtpClockEventCallbackSet Sets the PTP Event Call-back routine: all management and timing data are exported via
this user provided binding

zl303xx_PtpClockHardwareCmdFnSet Sets the local Hardware Command Interface: this is required for the software to access
such things as the local time-of-day, etc.

zl303xx_PtpClockExtDataSet User Specific External Clock Data: this user specific data is included any time a clock
event is produced (allows quick access for external management processing).

ZLS30390 Software API User’s Guide

DS50003222A-page 53  2022 Microchip Technology Inc. and its subsidiaries

6.1.3 Modify PTP Clock: Data Sets
The routines outlined in the table below are used to update the parameters of the fol-
lowing IEEE-1588 data sets:
• Default Data Set
• Time Properties Data Set
Updating of these parameters automatically triggers a re-evaluation of all known ports
and local dynamic data related to the BMC algorithm.
Refer to the IEEE-1588 standard and the zl303xx_PtpStdTypes.h header for fur-
ther details.

6.1.4 Modify PTP Clock: ClockQuality (or ClockClass) Value
The routines outlined in the table below can be used to update the IEEE-1588 clock
quality settings of a PTP Clock. These include the following:
• Clock class
• Clock accuracy
• Offset scaled variance
Updating of these parameters automatically triggers a re-evaluation of all known ports
and local dynamic data related to the BMC algorithm. Refer to the IEEE-1588 standard
and the zl303xx_PtpStdTypes.h header for further details.

TABLE 6-3: PTP CLOCK DATA SET UPDATE ROUTINES
API Routine Description

zl303xx_PtpClockDefaultDSDefaultParams Data fills the zl303xx_DefaultDS data structure with a set of default parameters for the
associated data set.

zl303xx_PtpClockDefaultDSSet Updates the PTP Clock Default Data Set with the supplied values in the zl303xx_De-
faultDS data structure.

zl303xx_PtpTimePropertiesDefaultParams Data fills the zl303xx_TimePropertiesDS data structure with a set of default parame-
ters for the associated data set.

zl303xx_PtpTimePropertiesSetLocal
Updates the Time Properties configuration of the local hardware. This may be propa-
gated to the PTP Clock Time Properties Data Set depending on the state of the local
PTP Clock and the BMC re-evaluation.

TABLE 6-4: PTP CLOCK QUALITY UPDATE ROUTINES
API Routine Description

zl303xx_PtpClockQualityDefaultParams Data fills the zl303xx_ClockQuality data structure with a set of default parameters.

zl303xx_PtpClockQualitySet Updates the PTP Clock Quality with the supplied values in the zl303xx_ClockQuality
data structure.

zl303xx_PtpClockClassSet Updates the PTP Clock Class with the supplied class value.

Modify Configuration

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 54

6.1.5 Modify PTP Clock: Priority Value
This routine outlines how to update the IEEE-1588 clock priority values (P1 & P2) of a
PTP Clock.
Updating either of these priority values automatically triggers a re-evaluation of all
known ports and local dynamic data related to the BMC algorithm. Refer to the
IEEE-1588 standard and the zl303xx_PtpStdTypes.h header for further details.

6.1.6 Modify PTP Clock: Two-Step Flag
Ordinarily, the two-step flag of a PTP Clock is a static attribute. However, an API has
been provided to update this parameter at run-time. (It is assumed that the user plat-
form has the ability to detect the flag from the PTP message header and take appropri-
ate action). Refer to the IEEE-1588 standard and the zl303xx_PtpStdTypes.h
header for further details.

6.1.7 Modify PTP Clock: Domain Number
Changing the Clock domain value at run-time will cause all existing foreign server data
to be flushed because it was collected under the previous domain setting.

TABLE 6-5: PTP CLOCK PRIORITY UPDATE ROUTINE
API Routine Description

zl303xx_PtpClockPrioritySet
Updates the Clock::priority1 and/or Clock::priority2 value(s) of the specified PTP Clock.
If either the priority1 or priority2 arguments are set to NULL, then that parameter remains
unchanged.

TABLE 6-6: PTP CLOCK TWO-STEP UPDATE ROUTINE
API Routine Description

zl303xx_PtpClockTwoStepFlagSet Updates the Clock::twoStep flag of the specified PTP Clock.

TABLE 6-7: PTP CLOCK DOMAIN UPDATE ROUTINE
API Routine Description

zl303xx_PtpClockDomainNumberSet Updates the Clock::domainNumber of the specified PTP Clock.

ZLS30390 Software API User’s Guide

DS50003222A-page 55  2022 Microchip Technology Inc. and its subsidiaries

6.1.8 Modify PTP Clock: Maximum stepsRemoved Value
This parameter allows a clock to discard ANNOUNCE messages if the stepsRemoved
value in the ingress message is above (or equal to) a configured level. By default, this
limit is set to 255.
Additionally, the following PTP Event Notification is issued when the limit condition is
detected:
• ZL303XX_PTP_EVENT_RX_STEPS_REMOVED_EXCEEDED: Packages the

event data into a zl303xx_PtpEventRxStepsRemovedExceededS message
and calls the routine, examplePtpEventRxStepsRemovedExceeded() (sam-
ple code provided).

To integrate this event, calls to the routines listed above would need to be executed at
the event notification output of the PTP stack contained in zl303xx_ExamplePtp.c.

6.1.9 Modify PTP Clock: Maximum Packet Rate Service Limit
A PTP clock may have multiple ports, each of which may have multiple clients con-
nected. It is possible to set a maximum packet rate Service Limit for a clock. This pro-
hibits the clock from granting too high of a transmit rate even though each individual
client is within the port and stream packet rate limits.
If a lower rate than that of the current active contracts is provisioned, the existing con-
tracts will not be canceled, but rather the new limit will be applied to any renewals.
(Refer to the PTP API Reference Manual for complete interface, data type, and syntax
details).

6.1.10 Modify PTP Clock: PATH_TRACE TLV Operation
Refer also to IEEE-1588-2008: Clause 16.2 for a full description.
This functionality allows a clock to determine if a timing loop exists in its network. In
general, the feature functions in the following manner:
• A Master clock issues an ANNOUNCE message with a PATH TRACE TLV con-

taining its own clock identity appended.
• Each subsequent node receives the ANNOUNCE message and (assuming they

select that Master as the best clock) issue their own ANNOUNCE messages with
the received PATH-TRACE List and append their own clock identity.

• If a clock ever receives a PATH TRACE TLV containing its own clock identity, it will
discard that message.

TABLE 6-8: PTP CLOCK MAXSTEPSREMOVED ROUTINE
API Routine Description

zl303xx_PtpClockMaxStepsRemovedSet Sets the stepsRemoved limit (MAX) for a clock. If the stepsRemoved field of a received
ANNOUNCE Message is below the limit, it will be accepted. Otherwise, it is discarded.

TABLE 6-9: PTP CLOCK PACKET RATE SERVICE LIMIT ROUTINE
API Routine Description

zl303xx_PtpClockTotalPpsMaxSet Sets the packet rate service limit for the specified PTP clock.

zl303xx_PtpClockTotalPpsGet Returns the total PPS counters for all unicast negotiated message types (Announce, Sync,
and Delay_Resp) on a specified clock.

Modify Configuration

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 56

6.1.10.1 MEMORY CONSIDERATIONS

The number of hops in the PATH TRACE TLV may vary with each Master clock
selected. The list itself is an array of clockIdentity structures (8 bytes each) and is
stored at the clock level. By default the number of entries in the list is 0 and no memory
is allocated.
When the first PATH TRACE TLV is received:
• The clock dynamically allocates enough memory for the list and updates the max-

imum and current size of the memory allocated with this value.
• If the next PATH TRACE TLV has fewer entries, then the current size of the mem-

ory allocated is updated but the maximum size remains the same (because the
smaller list could fit into the larger buffer.

• If the next PATH TRACE TLV has more entries, then a new larger block of mem-
ory is allocated to store the larger list and the currently allocated block is freed.

• All memory is freed when the clock is deleted.

6.1.10.2 USE IN DISTRIBUTED SYSTEMS

In distributed systems (Line cards (LCs) and Timing card (TC) combinations) some
things have to be considered:
• PATH TRACE information is stored on each Line Card;
• Other LCs that are a part of the clock may need to issue ANNOUNCE messages

with the selected PATH TRACE information.
• The following sequence should be followed in that case:

- All LCs send BMCA information to the Timing Card
- The TC selects the best server from the data provided and prepares a

ParentDS to load to each LC.
- Prior to loading the ParentDS to each LC, the TC queries the PATH TRACE

List from the selected LC.
- The TC first loads this PATH TRACE List to each LC (using the command

below).
- The TC then loads the ParentDS to each LC.

6.1.10.3 API INTERFACE

The following commands may be used to manage the PATH TRACE functionality:

TABLE 6-10: PTP CLOCK PATH TRACE ROUTINES
API Routine Description

zl303xx_PtpClockPathTraceEnable Enables/Disables the PATH TRACE functionality on a target clock.

zl303xx_PtpClockPathTraceListGet Retrieves the current PATH TRACE List from a target clock. (Typically used in distrib-
uted architectures)

zl303xx_PtpClockPathTraceForExtParent Sets the active PATH TRACE List for a target clock that has selected an external
ParentDS. (Typically used in distributed architectures)

ZLS30390 Software API User’s Guide

DS50003222A-page 57  2022 Microchip Technology Inc. and its subsidiaries

6.1.11 Modify PTP Clock: Synchronization Uncertain Flag Operation
In some applications, a clock may begin to advertise the attributes of its parent data set
before its local timing circuitry has achieved an acceptable level of stability (e.g. Default
Profile advertises immediately after BMCA selects a server). In some cases, it may be
desirable to advertise to downstream nodes that the local clock is unsynchronized and
allow custom BMCAs to ignore that server until stability is achieved.
This mechanism is implemented using the optional Synchronization-Uncertain flag
(included in the next revision of the IEEE-1588 Standard). In general:
• If the optional functionality is disabled, the flag (at Octet 1:Bit-6 of the

ANNOUNCE flagField) is set to 0.
• If the optional functionality is enabled, the flag (in the ANNOUNCE messages) is

set based on the following:
- If the Synchronization-Uncertain flag of the ParentDS is TRUE then the adver-

tised value from the local node will be TRUE.
- If the state of the ingress Port/Stream is UNCALIBRATED then the advertised

value from the local node will be TRUE.
- If a PTP Profile specifies a performance condition that is not met (e.g. ITU

G.8275) then the advertised value from the local node will be TRUE.
- Otherwise, the advertised value from the local node will be FALSE.

6.1.12 Modify PTP Clock: Slave-Only Operation
Changing the Clock slave-only configuration may be prohibited depending on the
clockClass value. For example, if the current clockClass is less than 128, then attempt-
ing to set the slaveOnly setting to TRUE would fail.
Use the following API command to set the slave-only flag for valid clockClass configu-
rations:

TABLE 6-11: PTP SYNCHRONIZATION-UNCERTAIN FLAG API COMMANDS
API Routine Description

zl303xx_PtpClockSynchronizationUncertainEn Enables or Disables the Synchronization-Uncertain flag for a specified Clock.

zl303xx_DebugClockDataSet Displays the configuration for the specified clock, including the Synchroniza-
tion-Uncertain flag.

TABLE 6-12: PTP CLOCK SLAVE-ONLY UPDATE ROUTINE
API Routine Description

zl303xx_PtpClockSlaveOnlySet Updates the Clock::slaveOnly of the specified PTP Clock.

Modify Configuration

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 58

6.1.13 Modify PTP Clock: Profiles ITU-T
The following table outlines additional API routines available to manage these config-
uration parameters:

6.1.14 Modify PTP Clock: Profile IEEE C37.238
The following table outlines additional API routines available to manage these config-
uration parameters:

TABLE 6-13: PTP CLOCK AND PORT API ROUTINES FOR ITU-G.8275.X PARAMETERS
API Routine Description

zl303xx_PtpG8275ClockStateGet Evaluates (and returns) the current G.8275.1 clock state (refer to the zl303xx_Pt-
pG8275p1ClockStateE definition).

zl303xx_PtpG8275ClockLocalPrioritySet Sets the localPriority value of the G.8275.1 clock (used in BMCA selection).

zl303xx_PtpG8275p1ClockClassEvalMethodSet
Sets the classEvalMethod value of the G.8275.1 clock. This determines which
G.8275.1 scheme is used to determine advertised clock class (refer to the
zl303xx_PtpG8275p1ClassEvalMethodE definition).

zl303xx_PtpG8275p1ClockEquipmentClassSet
Sets the equipmentClass value of the G.8275.1 clock. This value is only adver-
tised when the clock uses METHOD[2] to determine its advertised clock class
(refer to the zl303xx_PtpG8275p1ClassEvalMethodE definition).

zl303xx_PtpG8275ClockHoldoverSupportedSet T-TSC clocks only; determines if the T-TSC uses a holdover clock-class value in
BMCA selection or its default 255 class.

TABLE 6-14: PTP CLOCK API ROUTINES FOR IEEE C37.238 PARAMETERS
API Routine Description

zl303xx_PtpC37p238GrandmasterIdSet Updates a clock's grandmasterId parameter.
zl303xx_PtpC37p238GrandmasterIdGet Retrieves a clock's grandmasterId parameter.
zl303xx_PtpC37p238LocalTimeInaccSet Sets a clock's Local Time Inaccuracy value.
zl303xx_PtpC37p238LocalTimeInaccGet Retrieves a clock’s Local Time Inaccuracy value.
zl303xx_PtpC37p238NetworkTimeInaccSet Sets a clock’s Network Time Inaccuracy value.
zl303xx_PtpC37p238NetworkTimeInaccGet Retrieves a clock's Network Time Inaccuracy value.

ZLS30390 Software API User’s Guide

DS50003222A-page 59  2022 Microchip Technology Inc. and its subsidiaries

6.1.15 Modify PTP Clock: Timestamp Interface Rate TLV
The Timestamp Interface Rate TLV is used by ITU-T G.8275.2 Profile to correct for path
asymmetry due to different bit rates of the transmitting and receiving interfaces.
The following is the general procedure:
• Configure the PTP server with parameters required by the TLV
• Enable sending of the TLV on the server
• Retrieve the learned data on the client
• Set the Asymmetry Correction values on the client to offset the timestamp inter-

face rate difference.
The following API commands are available:

The following structure is used to configure the TLV fields (zl303xx_PtpG8275-
TimestampIfRateTlvS):

TABLE 6-15: PTP TIMESTAMP INTERFACE RATE TLV API ROUTINES
API Routine Description

zl303xx_PtpG8275ClockTimestampIfRateTlvEn Enables or Disables appending the timestamp interface rate TLV on egress
GRANT messages.

zl303xx_PtpG8275PortTimestampIfRateSet
(zl303xx_PtpG8275TimestampIfRateTlvS)

Sets the characteristics of the timestamp interface TLV to be sent on egress
GRANT messages.

zl303xx_PtpG8275StreamTimestampIfRateGet
(zl303xx_PtpG8275TimestampIfRateTlvS)

Retrieves the timestamp interface rate characteristics learned on a stream con-
nection.

TABLE 6-16: PTP ZL303XX_PTPG8275TIMESTAMPIFRATETLVS FIELDS

Structure Parameter Options/
Type Description

zl303xx_PtpG8275TimestampIfRateTlvS interfaceBitPeriod Uint64S

The period of 1-bit of the transmitting PTP
timestamp interface, excluding line encod-
ing. The value is encoded as an unsigned
integer in units of attoseconds (10^-18) to
accommodate interface bit periods less than
1 ns.

zl303xx_PtpG8275TimestampIfRateTlvS numberBitsBeforeTimestamp Uint16T The length of the packet prior to the time-
stamp point, in bits.

zl303xx_PtpG8275TimestampIfRateTlvS numberBitsAfterTimestamp Uint16T The length of the packet after the timestamp
point, in bits.

Modify Configuration

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 60

6.1.16 Modify PTP Clock: SMPTE Sync Metadata TLV
The Sync Metadata TLV is used by SMPTE 2059-2 and AES-R16 profiles to convey
video frame rate and other information related to a broadcast environment.
The following is the general procedure:
• Configure the values in zl303xx_PtpClockCreateS::profileCfg::
smpte:: syncMetadata

• Call zl303xx_PtpClockCreate() to create the clock with the required param-
eters

• Modify the data being sent on the server
• Retrieve the learned data on the client
The following API commands are available:

The following structure is used to configure the TLV fields (zl303xx_PtpTlvSync-
MetadataS):

TABLE 6-17: PTP SMPTE SYNC METADATA TLV API ROUTINES
API Routine Description

zl303xx_PtpSmpteClockConfigSet Sets the characteristics of the SMPTE Sync Metadata TLV to be sent on egress
management messages.

zl303xx_PtpSmpteClockConfigGet Gets the characteristics of the SMPTE Sync Metadata TLV to be sent on egress
management messages.

zl303xx_ PtpSmpteStreamSyncMetadataTlvSend Sends a SMPTE Sync Metadata TLV on a particular stream connection.
zl303xx_PtpSmpteStreamSyncMetadataGet
(zl303xx_PtpTlvSyncMetadataS)

Retrieves the SMPTE Sync Metadata characteristics learned on a stream con-
nection.

zl303xx_PtpStreamSmpteSmTlvCfgSet Configures whether to append or process SMPTE Sync Metadata TLV on a
given stream.

TABLE 6-18: ZL303XX_PTPTLVSYNCMETADATAS FIELDS
Parameter Options/Type Description

defaultSystemFrameRate Uint64S Default video frame rate of the slave system as a lowest term rational.

masterLockingStatus Uint8T Complementary information to clockClass to convey the current locking status. 0
means unavailable

timeAddressFlags Uint8T

Indicates the intended SMPTE ST 12-1 flags.
 Bit 0: Drop frame
 Bit 1: Color Frame Identification
 Bits 2-7: Reserved.

currentLocalOffset Sint32T Offset in seconds of Local Time from grandmaster PTP time.
jumpSeconds Sint32T The size of the next discontinuity, in seconds, of Local Time.

timeOfNextJump Uint48T The value of the seconds portion of the grandmaster PTP time at the time that the
next jump will occur.

timeOfNextJam Uint48T The value of the seconds portion of the PTP time when the next Daily Jam will
occur.

timeOfPreviousJam Uint48T The value of the seconds portion of the PTP time when the last Daily Jam occurred.
previousJamLocalOffset Sint32T The value of currentLocalOffset when the last Daily Jam happened.

daylightSaving Uint8T

Bit 0: Current Daylight Saving
Bit 1: Daylight Saving at next discontinuity
Bit 2: Daylight Saving at previous Daily Jam event
Bits 3-7: Reserved

leapSecondJump Uint8T The reason for the next jump in currentLocalOffset indicated by timeOfNextJump.

ZLS30390 Software API User’s Guide

DS50003222A-page 61  2022 Microchip Technology Inc. and its subsidiaries

6.1.17 Modify PTP Clock: IEEE 802.1as Followup Information TLV Data
The Follow_Up Information TLV is used by IEEE 802.1as profiles to convey GM clock
source information and the cumulative rate offset information of the path to the GM.
When the received information changes, a PTP_EVENT_FOLLOWUP_IN-
FO_TLV_CHANGE event message is generated locally (see Section 8.1.2.7).
The following API commands are available:

The following structure is used to configure the TLV fields (zl303xx_Ptp802p1Fol-
lowUpInfoTlvS):

TABLE 6-19: PTP IEEE 802.1AS FOLLOWUP INFORMATION TLV API ROUTINES
API Routine Description

zl303xx_PtpClock802p1FollowupInfoTlvLocalSet API to configure local Followup Information TLV data. This data is used when
the local clock becomes grandmaster.

zl303xx_PtpClock802p1FollowupInfoTlvLocalGet API to retrieve local Followup Information TLV data. This data is used when the
local clock becomes grandmaster.

zl303xx_PtpClock802p1FollowupInfoTlvGet

API to retrieve Followup Information TLV data as sent in Followup packets orig-
inating from this clock. When operating as grandmaster this matches the local
configuration. When operating as bridge (BC), this combines data received from
upstream grandmaster with the neighbor rate ratio of the BMCA best
stream/port.

zl303xx_PtpStream802p1FollowupInfoTlvGet API to retrieve raw Followup Information TLV data received on a stream (for
debugging).

TABLE 6-20: ZL303XX_PTP802P1FOLLOWUPINFOTLVS FIELDS
Parameter Options/Type Description

cumulativeScaledRateOffset Sint32T
Equal to (rateRatio - 1.0) x (2^41) truncated to the next smaller signed integer,
where rateRatio is the ratio of the frequency of the grandmaster to the frequency of
the LocalClock entity in the time-aware system that sends the message.

gmTimeBaseIndicator Uint16T The timeBaseIndicator of the current grandmaster.

lastGmPhaseChange ScaledNs96T Value of the clock's lastGmFreqChange multiplied by 2^41 truncated to the next
smaller signed integer.

scaledLastGmFreqChange Sint32T

The fractional frequency offset of the current grandmaster relative to the previous
grandmaster, at the time that the current grandmaster became grandmaster, or rel-
ative to itself prior to the last change in gmTimeBaseIndicator, multiplied by 2^41
and truncated to the next smaller signed integer.

Modify Configuration

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 62

6.1.18 Modify PTP Clock: Alternate Time Offset Indicator ATOI TLV
Data

IEEE 1588-2008 Optional Feature in Section 16.3 specifies feature for propagating
alternate timescale information to PTP instances using the Alternate Time Offset Indi-
cator (ATOI) TLV appended to Announce messages sent by a grandmaster and prop-
agated by boundary clocks.
The following APIs can be used on PTP grandmaster to configure the ATOI TLV.

The following structure is used to configure the ATOI TLV fields (zl303xx_PtpTl-
vAltTimeOffsetS):

TABLE 6-21: ALTERNATE TIME OFFSET INDICATOR ATOI TLV API ROUTINES
API Routine Description

zl303xx_PtpClockAltTimeOffsetEntryAdd Adds (or replaces) the specified entry in the Alternate Time Offset Table of
the specified clock.

zl303xx_PtpClockAltTimeOffsetEntryDel Removes the specified entry from the Alternate Time Offset Table of the
specified clock.

zl303xx_PtpClockAltTimeOffsetEntryEnable Enables/Disables the specified entry in the Alternate Time Offset Table of
the specified clock.

zl303xx_PtpClockAltTimeOffsetEntryGet Retrieves the configured entry in the Alternate Time Offset Table of the
specified clock.

zl303xx_PtpClockAltTimeOffsetLearnedGet
Retrieves the learned (received) entry in the Alternate Time Offset Table of
the specified clock. Also supports clearing the received data. Used on the
boundary clock or client nodes.

ZL303XX_PTP_ALT_TIME_OFFSET_TBL_ENTRIES
Compile-time define for maximum number of supported local ATOI TLV
entries configured or learned (default 5). Used as maxKey. This limit does
not affect BC forwarding.

TABLE 6-22: ZL303XX_PTPTLVALTTIMEOFFSETS FIELDS
Parameter Options/Type Description

keyField Uint8T Key Field for the alternate timescale reported in this TLV entity. Supported values 0 to
maxKey (ZL303XX_PTP_ALT_TIME_OFFSET_TBL_ENTRIES)

enabled zl303xx_BooleanE Indicates if the alternate timescale is enabled (or valid when learned/received).

currentOffset Sint32T Offset of the alternate time, in seconds, from the node’s time. The alternate time is the
sum of this value and the node’s time.

jumpSeconds Sint32T
The size of the next discontinuity, in seconds, of the alternate time. A value of zero indi-
cates that no discontinuity is expected. A positive value indicates that the discontinuity
will cause the currentOffset of the alternate time to increase.

timeOfNextJump Uint64S
The value of the seconds portion of the transmitting node’s time at the time that the next
discontinuity will occur. The discontinuity occurs at the start of the second indicated by the
value of timeOfNextJump.

displayName char [10] The text name of the alternate timescale. Maximum 10 bytes.

ZLS30390 Software API User’s Guide

DS50003222A-page 63  2022 Microchip Technology Inc. and its subsidiaries

6.2 MODIFY PTP PORT CONFIGURATION

6.2.1 Modify PTP Port: Maximum Packet Rate Service Limit
As each PTP Port of a timing server may have multiple clients, it is possible to set a
maximum packet rate Service Limit for a port. This prohibits the port from granting too
high of a transmit rate even though each individual client is within the stream packet
rate limit.
If a lower rate than that of the current active contracts is provisioned, the existing con-
tracts will not be canceled, but rather the new limit will be applied to any renewals.
(Refer to the PTP API Reference Manual for complete interface, data type, and syntax
details).

6.2.2 Modify PTP Port: Grant or Deny Unicast Service Requests
The ability to manage which clients and which PTP message types will be granted uni-
cast service is done at the port level. A port’s “grant table” can be configured to:
• Deny all requests in general, except for those clients and/or message types that

have been enabled via a separate API interface and stored by the port table.
• Grant all requests in general, except for those clients and/or message types that

have been disabled via a separate API interface and stored by the Port table.
• Set special Grant and/or Deny rules for specific Client nodes.
• Set special Grant and/or Deny rules for specific message types.
• Set special Grant and/or Deny rules for combinations of Client node and message

type.

TABLE 6-23: PTP PORT PACKET RATE SERVICE LIMIT ROUTINE
API Routine Description

zl303xx_PtpPortTotalPpsMaxSet Sets the packet rate service limit for the specified PTP port.

zl303xx_PtpPortTotalPpsGet Returns the total PPS counters for all unicast negotiated message types (Announce, Sync, and
Delay_Resp) on a specified port.

TABLE 6-24: PTP PORT GRANT TABLE ROUTINES
API Routine Description

zl303xx_PtpGrantDefaultSet Sets the default behavior for unicast negotiation requests. If an entry does not exist for
the client node, this setting will be used.

zl303xx_PtpGrantConfigStructInit Initializes a zl303xx_PtpGrantConfigS structure, which is used as a parameter to
zl303xx_PtpGrantConfigSet().

zl303xx_PtpGrantConfigSet Sets a bit-mask of message types that will be granted for a specific client. Requests for
message types not set in the bit-mask will be rejected.

zl303xx_PtpGrantConfigGet Returns the bit-mask of granted message types for a specific client.
zl303xx_PtpGrantConfigDelete Removes an entry from a port’s grant table.
zl303xx_PtpGrantConfigDeleteAll Removes all entries from a port’s grant table.

Zl303xx_PtpPortDenyServiceRequestsSet Prohibits any stream on the associated port from granting service of any message-
Type.

Modify Configuration

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 64

6.2.3 Modify PTP Port: Profiles ITU-T
The following table outlines additional API routines available to manage these config-
uration parameters:

6.2.4 Modify PTP Port: Peer-Delay One-Step or Two-Step
Clocks using the Peer-Delay mechanism have a separate configuration option for set-
ting the 1-step or 2-step operation. The available options are:
• 1-Step:

- DROP: The Peer-Delay_Req is dropped. In this case, it is assumed that the
hardware or some other mechanism (FPGA, etc.) will issue the appropriate
Peer-Delay_Resp and no further action is need at the software level.

- CORR: The correctionField of the Peer-Delay_Resp in 1-Step mode should
be:

 • correctionField[rx] + (T3 - T2)
 Therefore the software layer seeds the correctionField of the Peer-Delay_Resp
 with:
 • correctionField[rx] - T2
 and assumes the hardware/firmware layer will add the appropriate T3 value during
 transmission.
• 2-Step

- RAW: follows Clause 11.4.3.c.8 of the IEEE-1588-2008 Std.
- DELTA: follows Clause 11.4.3.c.7 of the IEEE-1588-2008 Std.

By default, TWO-STEP-DELTA operation is set at clock creation unless otherwise
changed by setting the <port::pdRespTxMethod> member (refer to the zl303xx-
_PortCreateS and zl303xx_PtpPdelayRespMethodE type for further details).
To change the configuration at run-time, refer to the following API routine:

6.2.5 Modify PTP Port: FAULTY State
A user can specify port behavior in case a fault occurs causing entry into the FAULTY
PTP port state.
• Default behavior is to immediately reset the PTP engine and re-start through the

INITIALIZING PTP port state
• Optional behavior is to stay in the FAULTY state

TABLE 6-25: PTP PORT API ROUTINES FOR ITU-G.8275.X PARAMETERS
API Routine Description

zl303xx_PtpG8275PortLocalPrioritySet Sets the localPriority value of the G.8275.1 port (used in BMCA selection).

zl303xx_PtpPortMasterOnlySet Sets the masterOnly flag of the port (indicating that the port cannot be used as a refer-
ence).

TABLE 6-26: PTP PORT TELECOM PROFILE ATTRIBUTE UPDATE ROUTINES
API Routine Description

zl303xx_PtpPortPdelayRespHandleMethodSet Sets the method by which Peer-Delay Response messages are handled by a PTP
Port (refer also to the zl303xx_PtpPdelayRespMethodE type).

ZLS30390 Software API User’s Guide

DS50003222A-page 65  2022 Microchip Technology Inc. and its subsidiaries

6.2.5.1 FORCE A PTP PORT INTO FAULTY STATE

A user can force a PTP port to go into the FAULTY state with the following command
• zlStatusE zl303xx_PtpPortForceFaultySet (zl303xx_PtpPortHandleT

portHandle)

6.2.5.2 FORCE A PTP PORT OUT OF FAULTY STATE

A user can force a PTP port to come out of the FAULTY state with the following com-
mand
• zlStatusE zl303xx_PtpPortForceFaultyClear (zl303xx_PtpPortHan-
dleT portHandle)

6.2.5.3 CHANGE DEFAULT PORT BEHAVIOR IN FAULTY STATE

The default behavior for a port which goes into faulty state is to immediately re-initialize
the port and all associated streams. The user can change this behavior by calling the
routine
• zlStatusE zl303xx_ PtpPortFaultPassThroughEnSet (zl303xx_Ptp-
PortHandleT portHandle, zl303xx_BooleanE passThroughEn)

The argument passThroughEn is used to set the port behavior in case of a fault. The
following table describes the possible values for this parameter and the actions which
will be taken for a certain value.

6.2.6 Modify PTP Port: IEEE 802.1as Neighbor Prop Delay Threshold
The IEEE 802.1as Neighbor Propagation Delay threshold is configurable. This thresh-
old is used to determine if a PTP port is capable of running the 802.1as profile (i.e.
asCapable).

TABLE 6-27: POSSIBLE VALUES OF PASSTHROUGHEN AND DESCRIPTION
Value Description
TRUE The port will only use faulty as a transition state. The port and all it’s streams will be re-initialized. An event and error

log will be generated. Fault counter will be updated.
FALSE The port will stay in faulty state. All of the associated streams will be moved to IDLE state and stay there. An event

and error log will be generated. Fault counter will be updated.

TABLE 6-28: PTP PORT IEEE 802.1AS UPDATE ROUTINES
API Routine Description

zl303xx_PtpPortNeighborPropDelayThresholdSet Sets a port's threshold for neighbor propagation delay (nanoseconds)
zl303xx_PtpPortNeighborPropDelayThresholdGet Gets a port's threshold for neighbor propagation delay (nanoseconds)

Modify Configuration

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 66

6.3 MODIFY PTP STREAM CONFIGURATION

6.3.1 Modify PTP Stream: Override Mode
Generally, a Stream on a PTP Clock will have its state (MASTER, SLAVE, etc.) con-
trolled by the associated clock based on the condition of the overall clock and all other
associated ports and streams. However, it is possible to manipulate the state of a PTP
Stream by setting a preferred mode of operation using the following command:

The following diagram illustrates the BMCA stream states for each of the Stream Over-
ride conditions. Each of the shaded areas illustrate that the stream override setting is
affecting the final state decision for the stream.

FIGURE 6-1: Stream Override Affect on State Decision.

TABLE 6-29: API ROUTINES FOR SETTING THE STREAM OVERRIDE MODE
API Routine Parameter Type Description

zl303xx_PtpStreamOverrideModeSet overrideMode zl303xx_PtpStreamModeE

Sets (over-rides) the stream mode configura-
tion to one of the following:
• USE_BMC: Allows the Clock to change

the Stream's State based on external ref-
erence selection (Default and Recom-
mended setting).

• SLAVE_ONLY: Forces the Stream into
SLAVE state (can go to LISTENING or
UNCALIBRATED as well depending on
reference selection).

• MASTER_ONLY: Forces the Stream into
MASTER mode (Never PASSIVE).

D0 Class

Stream State Update

D0 is Best

1 - 127

Yes

(M1)

No

(Passive)

Stream::Mode
== SlaveOnlyUNCALIBRATED Yes

Stream::Mode
== MasterOnly

PRE_MASTER /

MASTER

No

PASSIVE

Yes

No

(BMC Mode)

D0 is Best

128 - 255

Yes

(M2)

D0 is Not BestNo

Yes

(S1)

Yes

(Slave)
No

Stream::Mode
== SlaveOnly UNCALIBRATEDYes

No

(MasterOnly or

BMC Mode)

Yes

(Passive)

PASSIVE

Stream::Mode
== MasterOnly Yes

No

(BMC Mode)

No

(Master)

PRE_MASTER/

MASTER

Stream::Mode
== SlaveOnly Yes

No

(MasterOnly or

BMC Mode)

PRE_MASTER/

MASTER

Stream::Mode
== SlaveOnly

UNCALIBRATED

Yes

No

PRE_MASTER/

MASTER

Stream::Mode
== MasterOnly

PRE_MASTER /

MASTER

Yes

No

(SlaveOnly or

BMC Mode)

SLAVE

PRE_MASTER /

MASTER

Stream is

Best

parentSource

Better by

Topology

than Stream
D0 Class

== 255

No

(Master)

LISTENING

Yes

D0 Class

== 255

No

(MasterOnly or

BMC Mode)

Yes

Stream::Mode
== MasterOnly

No

Yes

Stream::Mode
== MasterOnly Yes

LISTENING

No

(BMC Mode)

ZLS30390 Software API User’s Guide

DS50003222A-page 67  2022 Microchip Technology Inc. and its subsidiaries

6.3.2 Modify PTP Stream: Message Packet Rates

6.3.2.1 PRE-COMPILE OPTION

The default packet intervals for each of the message types are defined by a group of
MACROS in zl303xx_PtpSetup.h. By changing the value of these MACROS prior
to compiling, the default rate for each message type can be changed so that whenever
a stream is created, the new rate will take effect.

Affects both Multicast and Unicast configuration options.

6.3.2.2 STREAM CREATION OPTIONS

When creating streams, it is possible to set the desired packet rates the stream should
use.
After issuing the zl303xx_PtpStreamCreateStructInit() command, the
default values from the zl303xx_PtpSetup.h file are used. Before calling
zl303xx_PtpStreamCreate() to create the new stream, the following structure
members may be updated to set the desired rates.

In the multicast and non-negotiated unicast scenarios, there are no contracts (and
therefore no contract limits). However, the master can change “logMinDelayReqInter-
val” in the Delay_Response messages to inform the slave to change its Delay_Re-
quest.
Negotiated clients negotiates message contracts with master for each message type
sent by master (Sync, Dresp, and Announce).

6.3.2.3 RUN-TIME OPTIONS

The rate of an active stream can be changed using the zl303xx_PtpStreamLogMs-
gIntvlSet() command. In this case, the user can specify the messageType and new
message interval.
For Unicast Negotiated streams, a new request is sent immediately and the existing
contract rate is updated once the master accepts the request.

TABLE 6-30: ZL303XX_PTPSETUP.H MACROS FOR DEFAULT PTP MESSAGE RATES

MACRO Default
Interval Packet Rate Description

ZL303XX_PTP_DEFAULT_STREAM_LOG_ANNC_INTVL 1 1 message per 2 seconds Default ANNOUNCE
Interval

ZL303XX_PTP_DEFAULT_STREAM_LOG_SYNC_INTVL 0 1 message per second Default SYNC Interval

ZL303XX_PTP_DEFAULT_STREAM_LOG_DELAY_INTVL 0 1 message per second Default DELAY_RE-
QUEST Interval

ZL303XX_PTP_DEFAULT_STREAM_LOG_PEER_DELAY_INTVL 0 1 message per second
Default PEER_DE-
LAY_REQUEST Inter-
val

TABLE 6-31: SETTING STREAM CREATION MESSAGE RATES ON NON-NEGOTIATED AND
MULTICAST PTP STREAMS

MACRO Description
::config.logAnnounceInterval ANNOUNCE Interval
::config.logSyncInterval SYNC Interval
::config. logMinDelayReqInterval DELAY_REQUEST Interval
::config. logMinPDelayReqInterval PEER_DELAY_REQUEST Interval

Modify Configuration

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 68

6.3.2.4 ADDITIONAL UNICAST NEGOTIATED MESSAGE OPTIONS

6.3.2.4.1 Slave’s Acceptable Rate (Best-effort contract negotiation option)
Because master nodes can only accept or reject contract requests (it does not propose
a rate to the slave in its reply), best-effort negotiation can be used by slave to
auto-negotiate with the master using slower rates until it reaches its acceptable mini-
mum.
By default, the functionality is disabled.
It may be enabled and configured when the stream is created or during runtime.
At creation-time by modifying the following parameters:
• stream.config.unicastNegotiation.bestEffort[ZL303XX_MSG_ID_AN-

NOUNCE].enabled
• stream.config.unicastNegotiation.bestEffort[ZL303XX_MSG_ID_AN-

NOUNCE].intervalMax
• stream.config.unicastNegotiation.bestEffort[ZL303XX_MSG_ID_SYNC].enabled
• stream.config.unicastNegotiation.bestEffort[ZL303XX_MSG_ID_SYNC].interval-

Max
• stream.config.unicastNegotiation.bestEffort[ZL303XX_MSG_ID_DE-

LAY_RESP].enabled
• stream.config.unicastNegotiation.bestEffort[ZL303XX_MSG_ID_DE-

LAY_RESP].intervalMax
At run-time by calling the following routines:
• zl303xx_PtpStreamBestEffortEn()
• zl303xx_PtpStreamBestEffortIntervalSet()

6.3.2.4.2 Master Contract Limits
On the unicast negotiated master, streams are not created until requested by the slave
and granted by the master. It is possible to configure the master to limit the contract
parameters for each new request.
1. Port, Per-Contract MessageType Limits: Allows a Master Port to limit the individ-

ual contract request parameters.
• Max packet rate per contract messageType
• Used to control maximum packet rate per-client per message type.
• Creation-time configuration:

- port.config.unicastNegotiation.maxAnnounceRate
- port.config.unicastNegotiation.maxSyncRate
- port.config.unicastNegotiation.maxDelayRespRate

• Run-time:
- zl303xx_PtpPortContractIntervalMinSet()

2. Port, Total (sum) packet per second limit for all clients on the port (per message
type):

• Maximum packet rate for all combined contracts on the port.
• Used to control the maximum throughput of the port. May affect the number of cli-

ents supported (e.g. 2048 pps max sync = 32 clients at 64 sync/sec)
• Creation-time configuration:

- port.config.unicastNegotiation.totalPpsMax[ZL303XX_MSG_ID_*]
• Run-time:
- zl303xx_PtpPortTotalPpsMaxSet()

ZLS30390 Software API User’s Guide

DS50003222A-page 69  2022 Microchip Technology Inc. and its subsidiaries

If these limits are changed at run-time, the change will not affect existing, granted con-
tracts for the duration that was negotiated. Once renewed however, the new limits will
take effect.

6.3.3 Modify PTP Stream: UNCALIBRATED State Operation
When a Port is selected as the reference source, it will transition through the UNCAL-
IBRATED state prior to entering the SLAVE state. Prior to Release 4.6.0 this transition
was not implemented, making the UNCALIBRATED period effectively zero (0).
The UNCALIBRATED phase can now be enabled in one of 2 ways (or both):
• Configuring the UNCALIBRATED timer: determines the number of Announce

Intervals that a Port will remain in the UNCALIBRATED state before transitioning
to the SLAVE state. This waits the required number of intervals regardless of
whether Announce messages are actually received.

• Forcing the Port to wait for an external indication that a desired level of perfor-
mance has been achieved (i.e. LOCKED) before transitioning to the SLAVE state.

If both a timer and external LOCK condition are configured then both conditions must
be met before transitioning to the SLAVE state. The following table lists the API com-
mands provided:

6.3.4 Modify PTP Stream: Unicast Negotiation Packet Rate
The following API routines are used to change a PTP Stream’s Packet Rates for each
message type of a unicast negotiated connection.
The new rate is immediately re-negotiated regardless of the remaining duration of any
existing contract. Refer to the PTP API Reference Manual for complete interface, data
type, and syntax details.

TABLE 6-32: API ROUTINES FOR MANAGING THE UNCALIBRATED PORT STATE
API Routine Description

zl303xx_PtpStreamUncalibratedIntervalSet Sets the number of ANNOUNCE intervals that a Port will remain in the UNCAL-
IBRATED state before transitioning to the SLAVE state.

zl303xx_PtpStreamUncalibratedLockRequiredSet

API to set whether a user define level of performance is required prior to transi-
tioning to the SLAVE state.
This is an external user implemented routine so that the level of acceptable
performance is determined by the user application (refer to ZL303XX_PT-
P_HW_CMD_LOCK_STATUS_GET definition for details.

TABLE 6-33: PTP STREAM PACKET RATE RESET ROUTINES
API Routine Description

zl303xx_PtpStreamLogSyncIntvlSet Resets the SYNC message rate of the specified PTP Stream.
zl303xx_PtpStreamLogDelayIntvlSet Resets the DELAY_REQUEST message rate of the specified PTP Stream.
zl303xx_PtpStreamLogAnnounceIntvlSet Resets the ANNOUNCE message rate of the specified PTP Stream.

Modify Configuration

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 70

6.3.5 Modify PTP Stream: Unicast Negotiation Contract Duration
The following API routine is used to change a PTP Stream’s Negotiated Contract Dura-
tion.
The new value applies to all message types and will not be applied until the next con-
tract renewal. (Refer to the PTP API Reference Manual for complete interface, data
type, and syntax details).

6.3.6 Modify PTP Stream: Asymmetry Correction
Clause 11.6 of the IEEE-1588-2008 Standard specifies the following asymmetry cor-
rections that may be made to PTP V2 event messages:

The following diagram illustrates the implications of these corrections in a typical OC
client-server system:

FIGURE 6-2: Overview of Delay Asymmetry in Client-Server Configuration.

Configuring the Asymmetry Correction values for a stream may be done in two ways:
1. Setting default values to be applied during stream creation by editing the follow-

ing #define values in the zl303xx_PtpSetup.h module:
• ZL303XX_PTP_DEFAULT_STREAM_DELAY_ASYM_INGRESS
• ZL303XX_PTP_DEFAULT_STREAM_DELAY_ASYM_EGRESS

TABLE 6-34: PTP STREAM NEGOTIATED CONTRACT
API Routine Description

zl303xx_PtpStreamUniNegDurationSet Resets the contract duration of the specified PTP Stream.

TABLE 6-35: APPLICATION OF ASYMMETRY CORRECTION VALUES
messageType Transmit Correction Receive Correction

Sync no correction
(Per 11.6.2.a of the Standard)

Add the value of the ingress path delayAsymmetry to the cor-
rectionField
(Per 11.6.2.b of the Standard)

Delay Request
Subtract the value of the egress path
delayAsymmetry from the correctionField
(Per 11.6.3.b of the Standard)

no correction
(Per 11.6.3.a of the Standard)

Peer Delay Request
Subtract the value of the egress path
delayAsymmetry from the correctionField
(Per 11.6.4.b of the Standard)

no correction
(Per 11.6.4.a of the Standard)

Peer Delay Response no correction
(Per 11.6.5.a of the Standard)

Add the value of the ingress path delayAsymmetry to the cor-
rectionField
(Per 11.6.5.b of the Standard)

ANNOUNCE

SYNC

DELAY_RESP

DELAY_REQ

EGRESS
(No Correction)

EGRESS
(Subtract Egress
Correction)

INGRESS
(No Correction)

INGRESS
(Add Ingress
Correction)

SERVER
CLIENT

ZLS30390 Software API User’s Guide

DS50003222A-page 71  2022 Microchip Technology Inc. and its subsidiaries

2. Using either of the Run-Time API calls to modify the correction values dynami-
cally:

• Set one or both using the zl303xx_TimeInterval structure:
zlStatusE zl303xx_PtpStreamDelayAsymmetrySet(

 zl303xx_PtpStreamHandleT streamHandle,

 zl303xx_TimeInterval *ingressDelay,

 zl303xx_TimeInterval *egressDelay);

Where:

• Set a single direction using only a nanoseconds value:
zlStatusE zl303xx_PtpStreamDelayAsymmetryNsSet(

 zl303xx_PtpStreamHandleT streamHandle,

 zl303xx_BooleanE isIngress,

 Sint32T delayNs);

Where:

Referring back to the diagram in Figure 6-2, a positive value at the Egress has the
same effect as the same positive value at Ingress (this is because the Egress value is
subtracted instead of added)
If the server and client are phase aligned, the following Figure 6-3 illustrates how set-
ting correction values will affect the client signal relative to the server signal on an oscil-
loscope:

FIGURE 6-3: Example Delay Asymmetry Configuration in Client.

streamHandle: Handle to an existing stream.
ingressDelay: The ingress delay asymmetry value of type zl303xx_TimeInterval (nSec * (2^16)). If

NULL, the current value is maintained.
egressDelay: The egress delay asymmetry value of type zl303xx_TimeInterval (nSec * (2^16)). If

NULL, the current value is maintained.

streamHandle: Handle to an existing stream.
isIngress: Boolean indicating the direction on which to apply the correction.

• TRUE => ingress
• FALSE => egress

delayNs: The delay, in nanoseconds, to apply to the direction specified.

Applying a Positive 100ns correction at Ingress or Egress Applying a Negative 100ns correction at Ingress or Egress

Server

Client

50ns

Server

Client

50ns

Modify Configuration

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 72

6.3.7 Modify PTP Stream: Override Ingress and Egress clockClass

This allows a system to:
• Override the clockClass contained in a received PTP message on a per stream

basis.
• Override the clockClass transmitted on a per stream basis.
The stream override values can be set when creating a stream. By default, no override
is configured to maintain backward compatibility. Refer to the API User’s Guide for
parameter and usage details of the routines listed below.

6.3.8 Modify PTP Stream: Override Egress ANNOUNCE Message
Fields

The values that a clock advertises in transmitted ANNOUNCE messages are generally
determined by the IEEE-1588-2008 Standard and the Profile that is in operation. The
current software allows the user to configure over-ride values that will be sent instead
of the expected value (on a per-Stream basis).
The values advertised in ANNOUNCE messages are applied in the following order:
1. Values determined by the IEEE-1588-2008 Standard
2. Values applicable for the operating profile replace the values from step (1).
3. Any configured stream override values replace the values from steps (1) & (2)

above.

The list of advertised ANNOUNCE values that may be over-written is defined in the
enumeration, zl303xx_PtpStreamOverrideAnncEgressE.
The API routines used to manage this functionality is listed in the following table:

Note: a) It is recommended when overriding the Egress clockClass value of a
stream to refer to Section 6.3.8 instead of using the egress routine provided
in this section.
b) It is fine to use the Ingress override routine provided here.

TABLE 6-36: PTP STREAM CLOCKCLASS OVERRIDE ROUTINES
API Routine Description

zl303xx_PtpStreamIngressClockClassSet Sets the ingress override clock class value for the specified stream.
zl303xx_PtpStreamEgressClockClassSet Sets the egress override clock class value for the specified stream.

WARNING

The software DOES NOT verify override parameters. It is expected that if an override
value is configured, the user is aware of its implications.

TABLE 6-37: API ROUTINES FOR MANAGING THE PER-STREAM ANNOUNCE OVERRIDE
VALUES

API Routine Description

zl303xx_PtpStreamEgressOverrideAnncFieldSet

API to set individual egress ANNOUNCE fields. Parameters are:
• streamHandle
• parameterId (refer to the enum definition from above).
• Void * (pointer to the over-ride data value).

zl303xx_PtpStreamEgressAnncDataGet Data fills an ANNOUNCE message structure with the values that will be adver-
tised for this stream.

ZLS30390 Software API User’s Guide

DS50003222A-page 73  2022 Microchip Technology Inc. and its subsidiaries

6.3.9 Modify PTP Stream: Maximum clockClass to Qualify
If the clockClass received by a stream is above the configured level, then the server
will be disqualified. Additionally, the PTSF-QLTooLow flag will be raised. When this is
configured to ‘0’, this extra qualification action is not performed.

6.3.10 Modify PTP Stream: IEEE 802.1as Message Interval Request
TLV

An IEEE 802.1as Message Interval Request TLV can be sent on a PTP stream to the
remote peer on the other end of the link using functions in table below.

TABLE 6-38: PTP STREAM MAXIMUM CLOCKCLASS ROUTINES
API Routine Description

zl303xx_PtpStreamMaxClockClassSet Sets the maximum received clockClass at which this stream will be considered qualified.

TABLE 6-39: PTP STREAM IEEE 802.1AS MESSAGE INTERVAL REQUEST TLV ROUTINES
API Routine Description

zl303xx_PtpStream802p1MsgIntvlReqTlvSend Sends a Message Interval Request TLV to the remote peer on a specified
stream.

zl303xx_PtpStream802p1MsgIntvlReqTlvGetTotal Debug utility to diagnose total (cumulative) received or sent Message Interval
Request TLV states.

ZLS30390 SOFTWARE API
USER’S GUIDE

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 74

Chapter 7. Dynamic Operation

7.1 HANDLING LEAP SECOND EVENTS
For detailed information on handling leap seconds events in the ZL30390 software,
refer to the application note:
• ZLAN-525: Handling UTC Leap Second Events in IEEE 1588 Deployments

7.1.1 Available APIs
The following APIs and steps may be taken to handle leap seconds events in Release
4.x.x and above.

7.1.2 Grandmaster
The following describes the sequence of steps a grandmaster should perform to update
the timePropertiesDS on the day of a UTC leap second event.
1. Within the 12 hours prior to midnight (UTC) on the day of the leap seconds event,

use the zl303xx_PtpTimePropertiesGetLocal() and zl303xx_PtpTi-
mePropertiesSetLocal() functions to update the grandmaster local time-
PropertiesDS.leap59 or leap61 flags depending on the type of event.

This change immediately triggers a BMCA update and the new timeProper-
tiesDS will be advertised to clients in all subsequent ANNOUNCE messages.

[v4.6.0+ only] The PTP event ZL303XX_PTP_EVENT_LEAP_SECONDS_-
FLAG_CHANGE will be generated at the grandmaster.

2. Configure a system timer to execute the next step at midnight (UTC).
3. At midnight (UTC), update the local time properties of the grandmaster using the

zl303xx_PtpTimePropertiesGetLocal() and zl303xx_PtpTimeProp-
ertiesSetLocal() command with the following values:

• leap59 = FALSE
• leap61 = FALSE
• currentUtcOffset ±1 (based on previous leap seconds flags)
• all other values unchanged

TABLE 7-1: API CALLS FOR LEAP SECONDS AND UTC MANAGEMENT
API Function Description

zl303xx_PtpClockUtcGet()
Get the current UTC time.
Uses currentUtcOffset from the active timePropertiesDS. Use zl303xx-
_PtpClockTimePropertiesDSGet() to check currentUtcOffsetValid.

zl303xx_PtpTimePropertiesGetLocal() Get the local timePropertiesDS.
zl303xx_PtpTimePropertiesSetLocal() Set the local timePropertiesDS.

zl303xx_PtpTimePropertiesDefaultParams() Initialize given timePropertiesDS to hard-coded default values.

zl303xx_PtpClockTimePropertiesDSGet() Get the active timePropertiesDS (connected grandmaster’s DS or local DS when dis-
connected)

ZLS30390 Software API User’s Guide

DS50003222A-page 75  2022 Microchip Technology Inc. and its subsidiaries

This change immediately triggers a BMCA update and the new timePropertiesDS
will be advertised to clients in all subsequent ANNOUNCE messages. It is recom-
mended to store these updated properties to non-volatile memory for next reboot.
[v4.6.0+ only] The PTP events ZL303XX_PTP_EVENT_LEAP_SECONDS_-
FLAG_CHANGE and ZL303XX_PTP_EVENT_UTC_OFFSET_CHANGE will be generated
at the grandmaster for confirmation purposes (no further action required).

7.1.3 Client (including Boundary Clocks)
The following describes the sequence of steps a client performs automatically to
receive the updated timePropertiesDS on the day of a UTC leap second event.
1. Up to 12 hours before the UTC leap second event the client receives the grand-

master’s ANNOUNCE messages with the timePropertiesDS.leap59 or
leap61 flags set specifying the type of event.

[v4.6.0+ only] The PTP event ZL303XX_PTP_EVENT_LEAP_SECONDS_-
FLAG_CHANGE will be generated at the client for confirmation purposes (no fur-
ther action required).

2. Optional. Configure a system timer to execute the next step at midnight (UTC) to
safeguard against the possibility that the client loses connectivity to the grand-
master and accurate UTC time is still required.

3. At midnight (UTC), or a few seconds after, the client will receive an ANNOUNCE
message from the grandmaster with the new timePropertiesDS.curren-
tUtcOffset value and the leap59 and leap61 flags cleared.

Internally, the PTP clock’s active dataset is updated with the grandmaster’s
timePropertiesDS and the zl303xx_PtpClockUtcGet() function reports
accurate, leap-second adjusted UTC time.

[v4.6.0+ only] The PTP events ZL303XX_PTP_EVENT_LEAP_SECONDS_-
FLAG_CHANGE and ZL303XX_PTP_EVENT_UTC_OFFSET_CHANGE will be gen-
erated at the client for confirmation purposes (no further action required).

Note: Although the dynamic or active timePropertiesDS has been updated,
the local timePropertiesDS values have not changed. Therefore, if con-
nection to the grandmaster is lost, the client will revert to its own local data
which may be incorrect. It is recommended to update the local time proper-
ties with zl303xx_PtpTimePropertiesSetLocal() and storing these
properties to non-volatile memory for next reboot.

ZLS30390 SOFTWARE API
USER’S GUIDE

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 76

Chapter 8. Reporting

8.1 EVENT INTERFACE

8.1.1 Event Handler
The PTP application generates events by calling a function binding that can be option-
ally set by a user application. The user function is bound to zl303xx_PtpClockCre-
ateS::eventCallback, which is configured when calling the
zl303xx_PtpClockCreate() routine. This eventCallback function will be called for
every event generated on the PTP clock. Inside the event handler, a switch() statement
should be used to handle only the desired events.
The prototype for the event handler function is defined as:
void (* zl303xx_PtpEventFnT)(zl303xx_PtpEventE event, void
*pEventData)

For every event generated, the event handler is passed the event type and a data struc-
ture with additional information about that event. The data structure is passed as a (void
*) and must be cast to the proper type.
Note that the PTP event handler runs within the PTP Clock task context with the PTP
Clock mutex held (taken). User event handler implementations should be careful to
avoid below:
• Do not call PTP APIs that take the PTP clock mutex inside an event handler. This

would cause a double mutex take request which may not be supported by the OS
(reentrant mutex support would be required). Refer to examples for APIs that are
usable from within event handlers (e.g. BMCA event calling zl303xx_Ptp-
ClockApplyCompareData).

• Do not block the event handler for long time periods. Generally should not block
for more than the fastest packet rate being processed in the system (e.g. 64 pps
max block time of 1/64 sec is approximately 16 milliseconds).

To satisfy above requirements it is recommended to process PTP events asynchro-
nously in a separate custom task using a non-blocking message queue implementa-
tion.

8.1.2 Event Details
Refer to Table 8-1 for information about how/when each event is generated and which
data type the supplied pointer should be cast.
For additional information about the members of each event structure, refer to the
ZLS30390 API Reference Manual.
An example event handler function, called examplePtpEventHandler(), that illus-
trates the required interface details can be found in module zlUserExam-
ples/src/zl303xx_ExamplePtp.c.

ZLS30390 Software API User’s Guide

DS50003222A-page 77  2022 Microchip Technology Inc. and its subsidiaries

8.1.2.1 PTP EVENT NOTIFICATIONS (GENERAL)

8.1.2.2 PTP EVENT NOTIFICATIONS (TIME SYNC ALGORITHM AND TIME OF
DAY)

8.1.2.3 PTP EVENT NOTIFICATIONS (BMCA AND PARENT UPDATES)

TABLE 8-1: PTP EVENT NOTIFICATIONS (GENERAL AND MISCELLANEOUS)
EVENT ID and Data Structure Description

ZL303XX_PTP_EVENT_MULTIPLE_PEER_RESP
(zl303xx_PtpEventMultiplePeerRespS)

Occurs when multiple PEER_DELAY_RESP messages are
received to a single PEER_DELAY_REQ message.

ZL303XX_PTP_EVENT_UNKNOWN_TLV
(zl303xx_PtpEventUnknownTlvS)

Occurs when a TLV is received that is non-standard and for
which no customTLV handler has been configured. This can be
for a non-standard tlvType, managementId or unhandled ORGA-
NIZATION_EXTENSION tlvType.

ZL303XX_PTP_EVENT_RX_STEPS_REMOVED_EXCEEDED
(zl303xx_PtpEventRxStepsRemovedExceededS)

Occurs when the local node receives an ANNOUNCE message
in which the stepsRemoved field exceeds the local stepsRe-
moved limit configured.

ZL303XX_PTP_EVENT_PORT_FAULTY
(zl303xx_PtpEventPortFaultS) Occurs when a port goes into faulty state.

TABLE 8-2: PTP EVENT NOTIFICATIONS (TIME SYNC ALGORITHM AND TIME OF DAY)
EVENT ID and Data Structure Description

ZL303XX_PTP_EVENT_SERVO_DATA
(zl303xx_PtpEventServoDataS)

A transmit/receive time stamp pair is available to be processed by
a clock recovery algorithm.

ZL303XX_PTP_EVENT_MSG_INTVL_CHANGE
(zl303xx_PtpEventMsgIntvlChangeS)

A message interval change has been detected. This is used to
change the parameters of a clock recovery algorithm.

ZL303XX_PTP_EVENT_LEAP_SECONDS_FLAG_CHANGE
(zl303xx_PtpEventLeapSecondsFlagChangeS)

Occurs when there is a change in either of the leap51 or leap61
flags of the clock's dynamic Time Properties Data Set.

ZL303XX_PTP_EVENT_UTC_OFFSET_CHANGE
(zl303xx_PtpEventUtcOffsetChangeS)

Occurs when there is a change in UTC Offset value of the clock's
dynamic Time Properties Data Set.

TABLE 8-3: PTP EVENT NOTIFICATIONS (BMCA AND PARENT UPDATES)
EVENT ID and Data Structure Description

ZL303XX_PTP_EVENT_STREAM_STATE_CHANGE
(zl303xx_PtpEventStreamStateChangeS)

Occurs when the operating state of a stream changes as a result of a
ParentDS update on the associated Clock.

ZL303XX_PTP_EVENT_STREAM_KEEP_ALIVE
(zl303xx_PtpEventStreamKeepAliveS)

Occurs when no Stream related Event has been issued for the stream
for an extended period of time.

ZL303XX_PTP_EVENT_CLOCK_BMCA_UPDATE
(zl303xx_PtpEventClockBmcaUpdateS)

Occurs when there is a change in a clock's ordered list of best servers
(evaluated by BMCA) or at periodic intervals (2 seconds).

ZL303XX_PTP_EVENT_COUNTER_ALARM
(zl303xx_PtpEventCounterAlarmS)

An alarm generated when the rate of received messages drops below
50% of the expected rate.

ZL303XX_PTP_EVENT_SQUELCH
(zl303xx_PtpEventSquelchS)

Will only be generated when using ZL303XX_PTP_PROFILE_TELE-
COM. Occurs when all grandmasters are in failure conditions.

ZL303XX_PTP_EVENT_PARENT_DATA_SET_CHANGE
(zl303xx_PtpEventParentDsChangeS)

A message indicating that the Parent Data Set (ParentDS) of the PTP
Clock generating the event has been updated. (This update might have
also triggered ZL303XX_PTP_EVENT_STREAM_STATE_CHANGE
events).
By default this event fires whenever ParentDS is updated regardless of
whether data changed or not. See zl303xx_PtpClockCreateS::fire-
ParentDsChangeOnlyDelta to modify this behavior.

Reporting

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 78

8.1.2.4 PTP EVENT NOTIFICATIONS (CREATE/DELETE)

8.1.2.5 PTP EVENT NOTIFICATIONS (UNICAST NEGOTIATION)

TABLE 8-4: PTP EVENT NOTIFICATIONS (CREATE/DELETE)
EVENT ID and Data Structure Description

ZL303XX_PTP_EVENT_CLOCK_CREATE
(zl303xx_PtpEventClockCreateS) Occurs when a PTP clock is created.

ZL303XX_PTP_EVENT_CLOCK_DELETE
(zl303xx_PtpEventClockDeleteS)

Occurs when a PTP clock is automatically deleted. When zl303xx_Ptp-
Shutdown() is called, this event will be generated for each existing
clock. This event is not triggered when calling zl303xx_PtpClockDe-
lete() directly by default (see fireEvent option).

ZL303XX_PTP_EVENT_PORT_CREATE
(zl303xx_PtpEventPortCreateS)

Occurs when a PTP port is created, see zl303xx_PtpPortCre-
ateS.fireEvent or zl303xx_PtpVirtualPortConfigS.fireCreateEvent. Not
triggered by default.

ZL303XX_PTP_EVENT_PORT_DELETE
(zl303xx_PtpEventPortDeleteS)

Occurs when a PTP port is automatically deleted. When zl303xx_Ptp-
ClockDelete() (or zl303xx_PtpShutdown()) is called, this event will be
generated for every port associated with the clock. Calling zl303xx-
_PtpPortDelete() directly will not trigger this event by default (see
fireEvent option).

ZL303XX_PTP_EVENT_STREAM_CREATE
(zl303xx_PtpEventStreamCreateS)

Occurs when a PTP stream is automatically created. This happens
when a unicast negotiation server receives a valid transmission
request signaling message from a client node. Calling zl303xx_Ptp-
StreamCreate() directly will not trigger this event by default (see cre-
ateFlags option).

ZL303XX_PTP_EVENT_STREAM_DELETE
(zl303xx_PtpEventStreamDeleteS)

Occurs when a PTP stream is automatically deleted. This can happen
when a clock or port is deleted when streams are still associated with it.
Directly calling zl303xx_PtpStreamDelete() will not trigger this event by
default (see fireEvent option).

TABLE 8-5: PTP EVENT NOTIFICATIONS (UNICAST NEGOTIATION)
EVENT ID and Data Structure Description

ZL303XX_PTP_EVENT_CONTRACT_REJECTED
(zl303xx_PtpEventContractRejectedS)

Occurs when a clock is configured with ZL303XX_PTP_PRO-
FILE_TELECOM, and a slave stream is not granted the requested con-
tract (rate or duration) for a message type.

ZL303XX_PTP_EVENT_CONTRACT_GRANTED
(zl303xx_PtpEventContractGrantedS) Occurs when a unicast negotiation contract is granted.

ZL303XX_PTP_EVENT_CONTRACT_EXPIRED
(zl303xx_PtpEventContractExpiredS)

Occurs when a unicast negotiation contract expires (does not get
renewed).

ZLS30390 Software API User’s Guide

DS50003222A-page 79  2022 Microchip Technology Inc. and its subsidiaries

8.1.2.6 PTP EVENT NOTIFICATIONS (FAULTY STATE)

If at any time the PTP engine determines a port has gone into FAULTY state it will issue
a ZL303XX_PTP_EVENT_PORT_FAULTY Event Message to inform the application.
This message uses the zl303xx_PtpEventPortFaultS structure.

A PTP port can go into faulty state for the following reasons:
• Unable to transmit one of the following packet types as there is no transmit func-

tion bound to zl303xx_PtpPortCreateS::txMsgFn (See Table 5-14 and
Section 10.5.3.1).
- Announce Packet
- Sync Packet
- Follow_Up Packet
- Delay_Req Packet
- Delay_Resp Packet
- Pdelay_Req Packet
- Pdelay_Resp Packet
- Signaling Packet
- Management Packet

Additionally a PTP port can go into faulty state if strict transmit checks are enabled.
These checks can be enabled at compile time. Please refer to ZLS303XX_Architec-
ture_Porting_And_Integration_Guide for a list of compile time options for port faulty
state. Below is a list of all the optional reasons a port can go into faulty state.
• If internal stream state is out of defined range (e.g. memory corruption).
• If there is a NULL pointer.
• Network Protocol is not IPv4, IPv6 or IEEE 802.3.
• Message to be transmitted is too long.
• There is a problem sending data on the socket.

TABLE 8-6: ZL303XX_PTPEVENTPORTFAULTS STRUCTURE FOR
ZL303XX_PTP_EVENT_PORT_FAULTY EVENT

zl303xx_PtpEventPortFaultS Type Description
portHandle zl303xx_PtpPortHandleT Handle to the port which went into faulty state.

portExtData void * Pointer to the port’s external data (which may contain a mapping
to the socket this port is bound to).

portFaultType zl303xx_PtpPortFaultTypeE The fault type which occurred on the port. Refer to
Section 8.2.1 for a description of all the fault types.

txError zl303xx _PtpTxStatusE The transmit error which caused the port to go into faulty. Refer
to Section 8.2.1.3 for a description of all transmit errors.

Reporting

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 80

8.1.2.7 PTP EVENT NOTIFICATIONS (802.1AS PROFILE)

When PTP engine detects a change in the Followup Information TLV from the best
grandmaster it will issue a ZL303XX_PTP_EVENT_FOLLOWUP_IN-
FO_TLV_CHANGE event message to inform the application. This message uses the
zl303xx_PtpEventFollowupInfoTlvChangeS structure. This conforms to the
IEEE 802.1as-2011 Section 9.6 “ClockTargetPhaseDiscontinuity” interface require-
ments. Note this event does not fire from changes in the dynamic cumulativeScaledRa-
teOffset field.

8.2 POLLING STATISTICS AND COUNTERS

8.2.1 PTP Port State Reporting
The PTP port state when the port is active is dynamically computed based on the state
of PTP streams attached to the port.
In some cases the port state may be FAULTY as described in next sections.

8.2.1.1 PTP PORT STATE FAULTY GET LAST FAULT TYPE

The following command can be used to poll the PTP engine for the last fault type which
occurred on a specific port
• zlStatusE zl303xx_PtpPortGetLastFaultType (zl303xx_PtpPortHan-
dleT portHandle, zl303xx_PtpPortFaultTypeE *lastFaultType)

The returned lastFaultType is a zl303xx_PtpPortFaultTypeE with the following
fault types.

TABLE 8-7: ZL303XX_PTPEVENTFOLLOWUPINFOTLVCHANGES STRUCTURE FOR
ZL303XX_PTP_EVENT_FOLLOWUP_INFO_TLV_CHANGE EVENT

zl303xx_PtpEventFollowupInfoTlvChangeS Type Description

streamHandle zl303xx_PtpStreamHandleT
Handle to the best stream which
received Followup Info TLV triggering
the change, or -1 if best is local clock.

gmIdentity zl303xx_ClockIdentity ClockIdentity of the current grandmas-
ter, or all 0 if best is local clock.

followupInfoTlvOld zl303xx_Ptp802p1FollowupInfoTlvS Old Followup Information TLV data
(previous best ingress).

followupInfoTlvNew zl303xx_Ptp802p1FollowupInfoTlvS New Followup Informaton TLV data
(current best ingress).

TABLE 8-8: ZL303XX_PTPPORTFAULTTYPEE FAULT TYPES AND DESCRIPTION
zl303xx_PtpPortFaultTypeE Types Description

ZL303XX_PTP_PORT_FAULT_ANNC_SEND There was a fault while sending an announce message.
ZL303XX_PTP_PORT_FAULT_SYNC_SEND There was a fault while sending a sync message.

ZL303XX_PTP_PORT_FAULT_FOLLOW_UP_SEND There was a fault while sending a follow up message.
ZL303XX_PTP_PORT_FAULT_DELAY_REQ_SEND There was a fault while sending a delay request message.
ZL303XX_PTP_PORT_FAULT_DELAY_RESP_SEND There was a fault while sending a delay response message.
ZL303XX_PTP_PORT_FAULT_PDELAY_REQ_SEND There was a fault while sending a peer delay message.
ZL303XX_PTP_PORT_FAULT_PDELAY_RESP_SEND There was a fault while sending a peer delay response message.

ZL303XX_PTP_PORT_FAULT_SIGNALING_SEND There was a fault while sending a signaling message.
ZL303XX_PTP_PORT_FAULT_MGMT_SEND There was a fault while sending a management message.

ZL303XX_PTP_PORT_FAULT_USER_ENFORCED User forced the port to go into faulty.

ZLS30390 Software API User’s Guide

DS50003222A-page 81  2022 Microchip Technology Inc. and its subsidiaries

8.2.1.2 PTP PORT STATE FAULTY GET FAULT COUNTER

Every time a port goes into faulty state it updates the fault counter associated with it.
The following routine can be used to get the counter.
• zlStatusE zl303xx_PtpPortFaultCounterGet (zl303xx_PtpPortHan-
dleT portHandle, Uint32T *pFaultCounter)

8.2.1.3 PTP PORT STATE FAULTY GET LAST TRANSMIT ERROR

The following command can be used to get the last transmit error which occurred on a
specific port
• zlStatusE zl303xx_PtpPortGetLastTxError(zl303xx_PtpPortHandleT

portHandle, zl303xx_PtpTxStatusE *pLastTxError)
The returned pLastTxError is a zl303xx _PtpTxStatusE type with the following
default transmit status types.

Users can turn on optional checks on egress packet path for debugging purposes.
These checks might affect peak packet rates so they are off by default. Please refer to
ZLS303XX_Architecture_Porting_And_Integration_Guide for a list of compile time
options to turn on these checks. Below is a description of all transmit status types which
can be returned if extra compile time flags are used.

TABLE 8-9: ZL303XX _PTPTXSTATUSE DEFAULT TRANSMIT STATUS TYPES AND
DESCRIPTION

zl303xx _PtpTxStatusE Default Types Description
ZL303XX_PTP_TX_OK There was no transmit error.

ZL303XX_PTP_TX_USER_ENFORCED_ERROR User forced the port to go into a faulty state resulting in a transmit error.
ZL303XX_TX_MSG_BINDING_NULL There is no transmit function (see 10.5.3.1) bound to the stack.

TABLE 8-10: ZL303XX _PTPTXSTATUSE OPTIONAL TRANSMIT STATUS TYPES AND
DESCRIPTION

zl303xx _PtpTxStatusE Optional Types Description
ZL303XX_PTP_TX_MSG_BUFFER_DATA_NULL The transmit buffer passed to transmit routine is null.

ZL303XX_PTP_TX_PORT_NULL Port data passed to transmit routine is null.
ZL303XX_PTP_TX_MSG_TOO_BIG Length of the message to be transmitted is more than allowed.

ZL303XX_PTP_TX_STREAM_STATE_OUT_OF_RANGE The transmit stream is not in a valid state.

ZL303XX_PTP_TX_SOCKET_UNSUPPORTED_OPERATION Destination address of the packet is neither of IPv4, IPv6 or
IEEE 802.3 type.

ZL303XX_PTP_TX_SOCKET_ERROR There was a problem connecting to the socket.

Reporting

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 82

8.2.2 PTP Stream State Reporting
PTP stream states can be obtained with the APIs described in Table 8-11.

TABLE 8-11: API CALLS FOR PTP STREAM STATE REPORTING
API Function Description

zl303xx_PtpStreamStateGet

Returns PTP stream “operating” state (zl303xx_PtpStreamOperatingStateE). It is pro-
vided for information/debugging purposes.

The operating state is an internal representation of the behavior of the stream and is not
related to IEEE 1588-2008 “portState” (Table 10).

zl303xx_PtpStreamSubStateHistoryGet

Returns PTP stream “sub-state” (zl303xx_PtpStreamSubStateE) current and historical
values including state transition reasons, time, and trigger source to aid debugging.

The stream sub-state is related to IEEE 1588-2008 “portState” (Table 10) except for
FAULTY and DISABLED (see PTP port states).

Note a maximum of ZL303XX_PTP_STREAM_SUBSTATE_HISTORY_SIZE (default 20)
elements are stored per-stream in a FIFO buffer (i.e. the oldest entries are removed as
new transition events occur). A count of the total transition events that have occurred can
be obtained as an optional argument.

This API returns the most recent transition event first and can be used to obtain the cur-
rent stream sub-state.

See Table 8-12 for stream sub-state transition reason strings.

TABLE 8-12: STREAM SUB-STATE TRANSITION REASON STRINGS
String Description (Reason for State Transition)

PORT_INIT Port initializing.
PORT_DISABLED Port disabled.

PORT_FAULTY Port faulty.
INIT Stream initializing.

IDLE_LISTEN Stream idle.
S0_MO BMCA slave on slave-only clock with master-only stream mode override.

S0_NOT_BEST BMCA slave on slave-only clock BMCA inferior stream.
S0_NOT_BEST_NOT_QUAL BMCA slave on slave-only clock BMCA inferior FMT unqualified stream.

S0_BEST BMCA slave on slave-only clock BMCA best stream.
M1_SO BMCA master on master-only clock with slave-only stream mode override.

M1_LOCAL BMCA master on master-only clock with local best source.
M1_OTHER BMCA master on master-only clock with other best source.

M2_SO_OR_UNG BMCA master with slave-only stream mode override OR contractless unicast negotiated
stream.

M2_DENY_SERVICE BMCA master with denyServiceRequests set true.
M2_LOOPBACK BMCA master with loopback condition.

M2_MASTER BMCA master.
S1M3_SO_MONITOR BMCA slave with slave-only stream mode override BMCA inferior stream.

S1M3_SO_BEST BMCA slave with slave-only stream mode override BMCA best stream.
S1M3_DENY_SERVICE_PASSIVE BMCA slave with denyServiceRequests set true for BMCA inferior stream.

S1M3_G8275_PASSIVE BMCA slave with G.8275.1 or G.8275.2 worse by topology for BMCA inferior stream.
S1M3_PASSIVE BMCA slave worse by topology for BMCA inferior stream.

S1M3_LOOP_PASSIVE BMCA slave with loopback condition for BMCA inferior stream.
S1M3_MASTER BMCA slave for BMCA inferior stream.
S1M3_SLAVE BMCA slave for BMCA best stream.

ZLS30390 Software API User’s Guide

DS50003222A-page 83  2022 Microchip Technology Inc. and its subsidiaries

8.2.3 PTP Stream Packet Count Reporting
PTP streams maintain counters of events for debugging and reporting available
through the APIs in Table 8-13. The counts available are provided in zl303xx_Ptp-
StreamCounterS data structure described in Table 8-14. A maximum of 4,294,967,295
(232 - 1) events can be counted before the counter rolls over (51 years at typical max
rate of 64 pps).

PRE_MASTER_EXPIRED PRE_MASTER state timer has expired.
M1M2_PRE_MASTER_SKIP PRE_MASTER timer skipped.
M3_PRE_MASTER_FAILED PRE_MASTER timer failed to start.

UNCAL_EXPIRE Uncalibrated timer expired.
SLAVE_LOST_LOCK Slave with uncalibrated lockRequired lost lock.
PASSIVE_UNINEG Passive stream with a unicast negotiated expired announce contract.

UMT_START Unicast negotiated stream initializing.
MASTER_SO Master state requested on stream with slave-only mode override.

LISTENING_MO Listening state requested on stream with master-only mode override.

TABLE 8-12: STREAM SUB-STATE TRANSITION REASON STRINGS (CONTINUED)
String Description (Reason for State Transition)

TABLE 8-13: API CALLS FOR PTP STREAM PACKET COUNT REPORTING
API Function Description

zl303xx_PtpStreamCountersGet Returns the message counter data collected by a stream into a user allocated data structure
(zl303xx_PtpStreamCountersS).

zl303xx_PtpStreamCountersReset Initializes all stream message counters to 0.

TABLE 8-14: ZL303XX_PTPSTREAMCOUNTERS FIELDS
Member Sub-Member Description

msg[id]

tx Number of ingress packets on this stream (received packets).
rxPorcessed Number of ingress packets successfully processed on this stream (received packets not dropped).

lost
Estimated number of lost packets on this stream (based on gaps in sequenceId). Note it may not
accurately detect large outage periods where losses may exceed the size of sequenceId field
(Uint16T, 65535).

tx Number of egress packets on this stream (transmitted packets)

tlv

rx Number of ingress TLVs received on this stream.

rxProp Number of ingress TLVs received on this stream that had propagate requirements from IEEE
1588-2019 clause 14.2.

tx Number of egress TLVs sent on this stream.

txProp Number of egress TLVs sent on this stream due to propagate requirements from IEEE 1588-2019
clause 14.2.

ZLS30390 SOFTWARE API
USER’S GUIDE

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 84

Chapter 9. Trace and Logs

9.1 TRACING FACILITIES
The API includes tracing facilities to allow users to gain visibility of what is going in
inside its functions. Microchip Support may ask a user to turn on tracing to troubleshoot
a problem. The key operations available are listed in the following sections:

9.1.1 Trace Macros
Trace messages can help immensely with the debug process. Each major software
module has one or more trace identifiers associated with it. A complete list of trace
identifiers are defined in the enum zl303xx_ModuleIdE found in the file:
zlUserPorting\include\zl303xx_Trace.h.
Trace numbers are incremental, that is, trace level 5 will include all trace messages
from level 5 through 1. To turn off tracing, set the level back to 0.
The trace invocation macros are as follows:
• ZL303XX_TRACE(Uint16T modId, Uint8T level, char *fmtStr, arg0, arg1, arg2,

arg3, arg4, arg5)
• ZL303XX_TRACE_ALWAYS(char *fmtStr, arg0, arg1, arg2, arg3, arg4, arg5)
• ZL303XX_TRACE_ERROR(char *fmtStr, arg0, arg1, arg2, arg3, arg4, arg5)
These macros take six parameters after the format string which are formatted at
run-time. They may be set to zero if they are not required.
To ensure the trace message is displayed correctly the following rules must be
followed:
• The fmtStr must be a constant pointer to a constant string
• The optional parameters must be either integers or constant pointers to constant

strings cast as Uint32T.

9.1.2 Trace Example
Timestamp Packet Stream Trace

-> zl303xx_TraceSetLevel 10,3

Output:

0x1b9eb48 (zlPtpTask): zl303xxPtpGetTimestampRx:

0x1b9eb48 (zlPtpTask): Matched record with Rx: sysTs=
B3CE9C8D,

insertTs= 479B1AEC.007D6B9A, ptpTs= 479B1AEC.007D7736, Seq-
Num= 59450

0x1b9eb48 (zlPtpTask): zl303xxPtpGetTimestampRx:

0x1b9eb48 (zlPtpTask): Matched record with Rx: sysTs=
B3DAD39E,

insertTs= 479B1AEC.01161C85, ptpTs= 479B1AEC.01162785, Seq-
Num= 59451

-> zl303xx_TraceSetLevel 10,0

ZLS30390 Software API User’s Guide

DS50003222A-page 85  2022 Microchip Technology Inc. and its subsidiaries

Look for anything that does not make sense:
• Timestamp values of 0 (or seconds portion that is 0)
• Sequence numbers that don’t increment or skip numbers.
• Timestamp values that don’t changes or increase at a normal rate.

9.1.3 Logging Modules
The following table outlines the module IDs available:

9.1.4 Log Levels
Each of the modules specified in the previous table may have a different log level
associated with it. In general, the following behavior applied:
• A log level of ‘0’ disables logging for the module.
• Error messages are generally triggered at level ‘1’ (although more detailed error

logs may also be produced at higher levels as well).
• Enabling log messages at one level enables all messages at the lower levels as

well (for example, setting the log level at ‘2’ for a PTP module will generate all
level ‘2’ and ‘1’ messages).

• Generally, logs get more detailed as the log level is increased.

TABLE 9-1: AVAILABLE PTP LOGGING MODULES AND DESCRIPTIONS
Module Name Description

ZL303XX_MOD_ID_PTP_ENGINE Generic PTP messages.

ZL303XX_MOD_ID_PTP_BMC Displays logs relates to the Best-Master-Clock process that determines the pre-
ferred server in a network.

ZL303XX_MOD_ID_PTP_UNICAST Displays logs relates to Unicast Negotiation Signal Messages that are exchanged
between servers & clients.

ZL303XX_MOD_ID_PTP_UNI_DISC Deprecated.
ZL303XX_MOD_ID_PTP_STATE_UPD Displays logs relates to State changes of the PTP Streams.

ZL303XX_MOD_ID_PTP_FMT Displays logs related to PTP Foreign Master Table.
ZL303XX _MOD_ID_PTP_TIMER Displays logs related to PTP Timers.

ZL303XX _MOD_ID_PTP_TLV Displays logs related to PTP TLV processing.
ZL303XX_MOD_ID_TRACK_PKT_PROCESS Displays logs related to PTP packet processing.

ZL303XX_MOD_ID_TS_RECORD_MGR Displays logs related to PTP timestamp pair management.
ZL303XX_MOD_ID_PTSF Displays logs related to the PTSF module.

ZLS30390 SOFTWARE API
USER’S GUIDE

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 86

Chapter 10. External PTP Interfaces

10.1 INTERFACE INTRODUCTION (CONFIG, EVENTS, TRANSMIT AND RECEIVE)
The following figure illustrates the interfaces of the PTP application that must be
integrated by the user:

FIGURE 10-1: PTP Overview.

10.1.1 Interface for Configuration, Control, and Monitoring
The configuration interface is the set of API functions used to create and delete various
PTP objects. These are listed and described in
• Section 5.1 “Configuration of a PTP Application Instantiation: zl303xx_Pt-

pInit()”,
• Section 5.2 “Configuration of a PTP Clock: zl303xx_PtpClockCreate()”,
• Section 5.3 “Configuration of a PTP Port: zl303xx_PtpPortCreate()”,
• Section 5.4 “Configuration of a PTP Stream: zl303xx_PtpStreamCreate()”,
• Chapter 8. “Reporting”,
and the code-level API descriptions are found in the ZL30390 API Reference Manual.

10.1.2 Interface for Packet Transmit Bindings
The transmit interface is implemented using a function binding. This process and the
data available to the function binding are described in Section 10.5.3 “Interface
Binding: Transport for Transmit Packets (Egress)”.

10.1.3 Interface for Packet Receive Bindings
The receive interface is the set of API functions used to pass the PTP datagram and
receive time stamp (if applicable) to the PTP application. These are listed and
described in Section 10.5.4 “Interface Binding: Transport for Receive Packets
(Ingress)”.

ZLS30390 Software API User’s Guide

DS50003222A-page 87  2022 Microchip Technology Inc. and its subsidiaries

10.1.4 Interface for Events
The event interface is implemented as a function binding that is called for every event
generated by the PTP application. More information is available in Section 8.1 “Event
Interface”.

10.1.5 Interface for System Commands
The system command interface is used by the PTP application to access or control an
underlying platform resource or associated device. This is achieved with the
implementation of a Command Handler Interface for a list of well-defined actions.

10.1.5.1 COMMAND HANDLER

The command handler is a required user function binding (cannot be NULL) set in
zl303xx_PtpClockCreateS::hwCmdFn prior to calling
zl303xx_PtpClockCreate(). This function will be called for every command
requested by the PTP application. Inside the command handler, a switch() statement
should be used to handle only the applicable commands.
The prototype for the command handler is defined as:
Sint32T (* zl303xx_PtpHwCmdFnT)(zl303xx_PtpHwCmdE cmdType, void
*pCmdParams)
For every command issued by the PTP application, the handler is passed the
command type and a data structure with command inputs and outputs. The data
structure is passed as a (void *) and must be cast to the proper type.

10.1.5.2 COMMAND DETAILS

For additional information about the members of each command structure, refer to the
ZLS30390 API Reference Manual.
An example command handler function that illustrates the required interface details can
be found in the zlUserExamples/src/zl303xx_ExamplePtp.c function,
examplePtpHwCmdHandler().
Refer to the following table for information about how/when each command is issued
and which data type the supplied pointer should be cast.

TABLE 10-1: PTP COMMAND INTERFACE DEFINITIONS
COMMAND ID and

Data Structure Description

ZL303XX_PTP_HW_CMD_CLOCK_TIME_GET
(zl303xx_PtpHwClockTimeGetS)

A command to get the estimated time of a hardware clock. This time is
used to fill the originTimestamp field of general packets and SYNC pack-
ets transmitted from a two-step clock. The returned time must be accurate
to within ±1 second or set to zero (as per the IEEE-1588 standard).

ZL303XX_PTP_HW_CMD_CLOCK_TIME_SET
(zl303xx_PtpHwClockTimeSetS)

A command to set the time of a hardware clock. Generally, this function is
called to set the seconds portion of a time-of-day hardware register.

ZL303XX_PTP_HW_CMD_PHYS_ADDR_GET
(zl303xx_PtpHwPhysAddrGetS)

A command to gather data when a GET is requested for the CLOCK_DE-
SCRIPTION management TLV.

ZL303XX_PTP_HW_CMD_LOCK_STATUS_GET
(zl303xx_PtpHwLockStatusGetS)

A command to get the hardware clock LOCK status (may be from the
actual hardware or timing algorithm).

 ZL303XX_PTP_HW_CMD_CLOCK_STABILITY_GET
(zl303xx_PtpHwClockStabilityGetS)

A command to get the hardware clock STABILITY status (may be from the
actual hardware or timing algorithm).

ZL303XX_PTP_HW_CMD_TIMESET_STATUS_GET
(zl303xx_PtpHwTimeStatusGetS)

A command to get information from the hardware clock about whether the
Time has been set (may be from the actual hardware or timing algorithm).

ZL303XX_PTP_HW_CMD_PLL_PERF_DATA_GET
(zl303xx_PtpHwPllPerformanceGetS)

A command to get information from the hardware clock about the current
operating status of the PLL (may be from the actual hardware or timing
algorithm).

External PTP Interfaces

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 88

10.2 INTERFACE TO TIME SYNCHRONIZATION ALGORITHM

10.2.1 Interface Event: Timing Packet Timestamps (Egress)
The IEEE 1588-2008 Protocol Engine passes timestamp information to the Time
Synchronization Algorithm. The raw timestamp information itself is provided for either
the forward path (Sync, Follow_Up), the reverse path (Delay_Req, Delay_Resp), the
path delay (Pdelay_Req, Pdelay_Resp, Pdelay_Resp_Follow_Up), or some
combination thereof. For the forward path the timestamp information is the arrival
timestamp (as recorded by the client when the Sync packet arrived) and the departure
timestamp (as inserted by the server in the Sync or Follow_Up message). For the
reverse path the timestamp information is the arrival timestamp (as recorded by the
server when the Delay_Req packet arrived and inserted into the return Delay_Resp
message) and the departure timestamp (as recorded by the client when the Delay_Req
packet was sent).
In addition to the raw timestamp information the connection identifier associated with
the connection is provided to allow the Time Synchronization Algorithm to track multiple
servers. A correction field is also provided when the network supports transparent clock
nodes. A full timestamp field is 48-bits seconds and 32-bits nanoseconds, however not
all Ethernet MAC/PHYs support this full timestamp field. The timestamp size is
configured when opening a PTP connection by the application.
Each time the protocol determines a set of timing data (timing packet pairs, etc.); the
data is exported through the Event interface using the
ZL303XX_PTP_EVENT_SERVO_DATA message that uses the
zl303xx_PtpEventServoDataS structure:

TABLE 10-2: ZL303XX_PTPEVENTSERVODATAS STRUCTURE FOR
ZL303XX_PTP_EVENT_SERVO_DATA EVENT

zl303xx_PtpEventServoDataS Type Description
streamHandle zl303xx_PtpStreamHandleT Handle to the stream the time stamp pair is associated with.

streamExtData void * Pointer to the stream's external data (which may contain a
mapping to a Timing Server ID).

txTs zl303xx_TimeStamp The transmit time stamp of the event message in PTP format
rxTs zl303xx_TimeStamp The receive time stamp of the event message in PTP format

correctionField Uint64S The value of the correctionField in the PTP message

peerMeanPathDelay Uint64S

The value of the peerMeanPathDelay calculated at the current
node (i.e. An estimate of the one-way propagation delay to its
Peer Node).
If the value of zl303xx_PortDS::delayMechanism is DELAY_-
MECHANISM_P2P. Otherwise, this is 0.

tsPairType zl303xx_PtpTsPairE Whether this time stamp pair is from a SYNC or
DELAY_REQ/DELAY_RESP.

sequenceId Uint16T SequenceId of the PTP message associated with these time
stamps.

offsetFromMaster Valid zl303xx_Boolean

Flag indicating if the offsetFromMaster value provided is valid.
It may be invalid if there was a correctionField overflow or the
source of the SYNC and Delay-Request messages are differ-
ent.

offsetFromMaster zl303xx_TimeStamp

The offsetFromMaster value calculated from the last SYNC
and Delay-Request messages received. The offsetFromMas-
terValid flag should be checked to determine if this value is
accurate or may contain error.

meanPathDelayValid zl303xx_Boolean

Flag indicating if the meanPathDelay value provided is valid. It
may be invalid if there was a correctionField overflow or the
source of the SYNC and Delay-Request messages are differ-
ent.

ZLS30390 Software API User’s Guide

DS50003222A-page 89  2022 Microchip Technology Inc. and its subsidiaries

A sample of a timestamp integration is provided in the ZL30390 package. Refer to the
following example function in zl303xx_ExamplePtpBinding.c if the ZL30380
package is available.
• examplePtpEventServoData()

10.2.2 Interface Event: Timing Packet Rate Change Notification
(Egress)

If at any time, the timing protocol determines the timing packet rate has changed, it will
issue the ZL303XX_PTP_EVENT_MSG_INTVL_CHANGE Event Message to inform
the Timing Algorithm. This message uses the
zl303xx_PtpEventMsgIntvlChangeS structure.

A sample of the timing packet rate change notification integration is provided in the
ZL30390 package. Refer to the examplePtpEventMsgIntvlChange() example function
if the ZLS30380 package is available.

10.3 INTERFACE TO SYSTEM SYNCHRONIZATION INFO

10.3.1 Interface Command: Sync Lock Status (Ingress)
At certain times the timing protocol software may need to determine the LOCK status
of the current recovered clock or hardware PLL. This may be done using the
zl303xx_PtpHwLockStatusGetS structure to issue the
ZL303XX_PTP_HW_CMD_LOCK_STATUS_GET command.

meanPathDelay zl303xx_TimeStamp

The meanPathDelay value calculated from the last SYNC and
Delay-Request messages received. The meanPathDelayValid
flag should be checked to determine if this value is accurate or
may contain error.

TABLE 10-2: ZL303XX_PTPEVENTSERVODATAS STRUCTURE FOR
ZL303XX_PTP_EVENT_SERVO_DATA EVENT (CONTINUED)

zl303xx_PtpEventServoDataS Type Description

TABLE 10-3: ZL303XX_PTPEVENTMSGINTVLCHANGES STRUCTURE FOR
ZL303XX_PTP_EVENT_MSG_INTVL_CHANGE EVENT

zl303xx_PtpEventMsgIntvlChangeS Type Description

streamHandle zl303xx_PtpStreamHandleT Handle to the stream the interval change was detected
on.

streamExtData void * Pointer to the stream's external data (which may contain
a mapping to a Timing Server ID).

messageType zl303xx_MessageTypeE The message type that changed interval.
prevIntvl Sint8T Previous message interval.
currIntvl Sint8T New message interval.

TABLE 10-4: ZL303XX_PTPHWLOCKSTATUSGETS STRUCTURE FOR
ZL303XX_PTP_HW_CMD_LOCK_STATUS_GET COMMAND

Sub-Structure Parameter Type Description
input streamHandle zl303xx_PtpStreamHandleT Handle to the stream the interval change was detected on.

input streamExtData void * Pointer to the stream's external data (which may contain a map-
ping to a Timing Server ID).

input phaseRequired Uint32T
A minimum of FREQUENCY lock is expected. However, some
profile require PHASE lock as well. Provide this criteria so the
driver can reply.

input profile zl303xx_PtpProfileE For compatibility purposes, provide the PTP profile in case
future profiles are added.

External PTP Interfaces

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 90

A sample of the LOCK Status command integration is provided in the ZL30390
package. Refer to the following example function in
zl303xx_ExamplePtpBinding.c if the ZL30380 package is available.
• examplePtpHwLockStatusGet()

10.3.2 Interface Command: Sync Stability Status (Ingress)
At certain times the timing protocol software may need to determine the Stability of the
hardware clock. This may be done using the
zl303xx_PtpHwClockStabilityGetS structure to issue the
ZL303XX_PTP_HW_CMD_CLOCK_STABILITY_GET command.

A sample of the Stability Status command integration is provided in the ZL30390
package. Refer to the following example function in
zl303xx_ExamplePtpBinding.c if the ZL30380 package is available.
• examplePtpHwClockStabilityGet()

10.3.3 Interface Command: Sync Performance Data (Ingress)
At times, the timing protocol software will require PLL status information in order to
make certain state decisions. This is queried using the
zl303xx_PtpHwPllPerformanceGetS structure to issue the
ZL303XX_PTP_HW_CMD_PLL_PERF_DATA_GET command.

output lockStatus Uint32T Return the clock Lock Status (TRUE or FALSE).

TABLE 10-4: ZL303XX_PTPHWLOCKSTATUSGETS STRUCTURE FOR
ZL303XX_PTP_HW_CMD_LOCK_STATUS_GET COMMAND (CONTINUED)

Sub-Structure Parameter Type Description

TABLE 10-5: ZL303XX_PTPHWCLOCKSTABILITYGETS STRUCTURE FOR
ZL303XX_PTP_HW_CMD_CLOCK_STABILITY_GET COMMAND

Sub-Structure Parameter Type Description
input clockHandle zl303xx_PtpClockHandleT Handle to the clock being queried.

input clockExtData void * Pointer to the clock’s external data (which may contain a map-
ping to a Timing Device ID).

output freqStability Uint32T Frequency Stability value.
output phaseStability Sint32T Phase Stability value.

TABLE 10-6: ZL303XX_ PTPHWPLLPERFORMANCEGETS STRUCTURE FOR
ZL303XX_PTP_HW_CMD_PLL_PERF_DATA_GET COMMAND

Sub-Structure Parameter Type Description
input clockHandle zl303xx_PtpClockHandleT Handle to the clock being queried.

input clockExtData void * Pointer to the clocks’ external data (which may
contain a mapping to a Timing Device ID).

output pllOperatingMode zl303xx_PtpPllOperatingModeE PLL Operating mode (ELEC, PKT, HYBRID, etc.).

output hwPllOperatingState zl303xx_PtpPllOperatingStateE
Hardware PLL/Algorithm lock status (Freerun,
Holdover, Acquiring, Locked, etc.). Valid when
pllOperatingMode = ELECTRIC or HYBRID.

output swPllOperatingState zl303xx_PtpPllOperatingStateE
Software PLL/Algorithm lock status (Freerun,
Holdover, Acquiring, Locked, etc.). Valid when
pllOperatingMode = PACKET_MODE.

output pllHoldoverQuality zl303xx_PtpPllFreqHoldoverQualityE Holdover quality category (Category 1,2,or 3).
output bHoldoverInSpec zl303xx_BooleanE Holdover IN/OUT of Specification.

output synceTraceable zl303xx_BooleanE Flag indicating if the SyncE is frequency traceable
(for HYBRID mode).

ZLS30390 Software API User’s Guide

DS50003222A-page 91  2022 Microchip Technology Inc. and its subsidiaries

A sample of the PLL Performance Status command integration is provided in the
ZL30390 package. Refer to the following example function in
zl303xx_ExamplePtpBinding.c if ZL30380 package is available.
• examplePtpHwPllPerformanceGet()

10.3.3.1 EGRESS ANNOUNCE USING THE ‘SETTLINGTIMEACTIVE’
PARAMETER

In the G.8275 Profiles, priority is given to settling the topology of the network as fast as
possible. When switching from one source to another, the PLL may enter a Holdover
and/or Acquiring state and begin advertising a HOLDOVER-Class other than the class
provided by the new parent reference. In turn, this may trigger switches on downstream
nodes.
To avoid this, the ‘settlingTimeActive’ Parameter has been added to the
zl303xx_PtpPllPerformanceDataS data structure (refer to previous section).
When active, the G.8275 engine ignores the computed Holdover output values and
uses the selected ParentDS value directly.
It is recommended that the ‘settlingTimeActive’ flag be set for a finite time period. If the
new reference is unable to LOCK within that time then the output should revert to the
Holdover values calculated by the G.8275 engine.
A possible procedure would be to:
1. Set ‘settlingTimeActive’ = TRUE when the BMCA makes a new selection (prior

to applying the new ParentDS).
2. Start a Timer to limit how long the PLL has to LOCK.
3. If the Timer expires or the new reference LOCKs, set ‘settlingTimeActive’ =

FALSE (allowing the G.8275 engine to take back output control).

output settlingTimeActive zl303xx_BooleanE

Flag indicating that a reference switch or other
event may have recently occurred and that the
current reference should be viewed as LOCKED.
Once this flag goes to FALSE, the actual state of
the PLL will be used internally.
Refer to the next sub-section.

TABLE 10-6: ZL303XX_ PTPHWPLLPERFORMANCEGETS STRUCTURE FOR
ZL303XX_PTP_HW_CMD_PLL_PERF_DATA_GET COMMAND (CONTINUED)

Sub-Structure Parameter Type Description

External PTP Interfaces

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 92

10.4 INTERFACE TO TIME OF DAY

10.4.1 Interface Event: Leap Seconds Flag (Egress)
Refer to Section 7.1 “Handling Leap Second Events” for additional information.
When the timing protocol software detects an upcoming Leap Seconds event, it uses
the zl303xx_PtpEventLeapSecondsFlagChangeS structure to issue the
ZL303XX_PTP_EVENT_LEAP_SECONDS_FLAG_CHANGE event in order to allow
the user application to manage the event.

A sample of the information from the Leap Seconds Event is provided in the ZL30390
package. Refer to the following example function in zl303xx_ExamplePtp.c.
• examplePtpEventLeapSecondsFlagChange()

10.4.2 Interface Event: UTC Offset Change (Egress)
When the timing protocol software detects a change in the UTC offset or status, it uses
the zl303xx_PtpEventUtcOffsetChangeS structure to issue the
ZL303XX_PTP_EVENT_UTC_OFFSET_CHANGE event in order to allow the user
application to manage the event.

A sample of the information from the UTC Change Event is provided in the ZL30390
package. Refer to the following example function in zl303xx_ExamplePtp.c.
• examplePtpEventUtcOffsetChange()

TABLE 10-7: ZL303XX_PTPEVENTLEAPSECONDSFLAGCHANGES STRUCTURE FOR
ZL303XX_PTP_EVENT_LEAP_SECONDS_FLAG_CHANGE EVENT

Sub-Structure Parameter Type Description
— clockHandle zl303xx_PtpClockHandleT Handle to the clock for which the event occurred.

— clockExtData void * Pointer to the clocks’ external data (which may contain a
mapping to a Timing Device ID).

— localTimeProperties zl303xx_TimePropertiesDS The configured TimePropertiesDS of the exporting clock.

— currentTimeProperties zl303xx_TimePropertiesDS The current, dynamic TimePropertiesDS of the exporting
clock which includes the current leap59 & leap 61 values.

— previousLeap59 zl303xx_BooleanE The previous values of the leap59 flag.
— previousLeap61 zl303xx_BooleanE The previous values of the leap61 flags.
— currentPtpTime zl303xx_TimeStamp The current PTP Time on the clock.

TABLE 10-8: ZL303XX_PTPEVENTUTCOFFSETCHANGES STRUCTURE FOR
ZL303XX_PTP_EVENT_UTC_OFFSET_CHANGE EVENT

Sub-Structure Parameter Type Description
— clockHandle zl303xx_PtpClockHandleT Handle to the clock for which the event occurred.

— clockExtData void * Pointer to the clocks’ external data (which may contain a
mapping to a Timing Device ID).

— localTimeProperties zl303xx_TimePropertiesDS The configured TimePropertiesDS of the exporting clock.

— currentTimeProperties zl303xx_TimePropertiesDS
The current, dynamic TimePropertiesDS of the exporting
clock which includes the current leap59 & leap 61 val-
ues.

— previousUtcOffset Sint32T The previous values of the UTC Offset
— previousUtcOffsetValid zl303xx_BooleanE The previous values of the UTC Offset Valid flag.
— currentPtpTime zl303xx_TimeStamp The current PTP Time on the clock.

ZLS30390 Software API User’s Guide

DS50003222A-page 93  2022 Microchip Technology Inc. and its subsidiaries

10.4.3 Interface Command: Time of Day Get (Ingress)
Periodically the timing protocol requires the estimated time of a hardware clock for such
things as filling the originTimestamp field of general messages (e.g., Announce), the
originTimestamp field of Sync messages transmitted from a two-step clock, and the
currentTime field of a TIME Management TLV. It is also used when the
zl303xx_PtpClockTaiGet() and zl303xx_PtpClockUtcGet() functions are
called. The returned time must be accurate to within ±1 second or set to all zeros (as
per IEEE Std 1588-2008).
If you require an even more accurate timer then you require a H/W Real-Time Clock
with a custom interface to the PTP servo.
The timing protocol software uses the zl303xx_PtpHwClockTimeGetS structure to
issue the ZL303XX_PTP_HW_CMD_CLOCK_TIME_GET command in order to get the
current time.

A sample of the information from the Time query command is provided in the ZL30390
package. Refer to the following example function in zl303xx_ExamplePtp.c.
• examplePtpHwClockTimeGet()

10.4.4 Interface Command: Time of Day Set (Egress)
The timing protocol provides an interface to set the Time-of-Day on the local system.
Since PTP may not be aware of the Timing Algorithm or PLL specifics that control the
Time locally, it is the user responsibility to ensure that the controls in setting the time
on the system are implemented properly.
The timing protocol software can set the local Time-of-Day using the
zl303xx_PtpHwTimeStatusSetS structure to issue the ZL303XX_
PTP_HW_CMD_TIMESET_STATUS_SET command.

A sample of the command information and steps required to set a local Time-of-Day is
provided in the ZL30390 package. Refer to the following example function in
zl303xx_ExamplePtp.c.
• examplePtpHwClockTimeSet()

TABLE 10-9: ZL303XX_PTPHWCLOCKTIMEGETS STRUCTURE FOR ZL303XX
PTP_HW_CMD_CLOCK_TIME_GET COMMAND

Sub-Structure Parameter Type Description
input clockHandle zl303xx_PtpClockHandleT Handle to the clock for which the event occurred.

input clockExtData void * Pointer to the clocks’s external data (which may contain a mapping
to a Timing Device ID).

input twoStepFlag zl303xx_BooleanE

Two-step clock flag. If this is false (egress timestamps can be
inserted on the fly), it may still be necessary to return part of the
time stamp. E.g., a hardware device cannot write the top 16 bits of
the time stamp.

input interface zl303xx_PtpInterfaceE Interface that the message will be sent on.
output ptpTime zl303xx_TimeStamp Return the current time of the clock in PTP format here.

TABLE 10-10: ZL303XX_PTPHWTIMESTATUSSETS STRUCTURE FOR ZL303XX_
PTP_HW_CMD_TIMESET_STATUS_SET COMMAND

Sub-Structure Parameter Type Description
input clockHandle zl303xx_PtpClockHandleT Handle to the clock for which the time is being set.

input clockExtData void * Pointer to the clocks’s external data (which may contain a mapping
to a Timing Device ID).

input ptpTime zl303xx_Timestamp Time to set in PTP format.

External PTP Interfaces

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 94

10.4.5 Interface Command: Time of Day Set Status (Ingress)
Some PTP profiles limit the data sent downstream in Announce messages until a local
Time-of-Day has been set. This avoids the situation where a downstream node starts
to acquire to a master clock but then the master jumps its own Time-of-Day and affects
the client’s ability to LOCK properly (or causes the client to lose LOCK, etc).
The timing protocol software can query the local Time-of-Day status using the
zl303xx_PtpHwTimeStatusGetS structure to issue the ZL303XX_
PTP_HW_CMD_TIMESET_STATUS_GET command.

A sample of the information from the Time status query command is provided in the
ZL30390 package. Refer to the following example function in
zl303xx_ExamplePtp.c if ZL30380.
• examplePtpHwTimeSetStatusGet()

10.5 INTERFACE TO TRANSPORT LAYER (TRANSMIT AND RECEIVE)

10.5.1 Host Processor and Real-Time OS Dependencies
To achieve the IEEE1588-2008 requirements of packet rates within –30% with 90%
confidence for Delay_Req and PDelay_Req messages, and ±30% with 90%
confidence for Sync messages, it is required that the software timers run at minimum
125 Hz (8 milliseconds) which would usually require the kernel to tick at twice that rate
(250 Hz).
The OS adaptation layer in PTP provides a set of OS independent functions to allow
PTP to manipulate OS resources and task operations. These functions should be
implemented by the user based on the individual OS.

10.5.2 Interface Command: Ethernet Physical Address (Ingress)
The timing protocol software can query the local MAC Address using the
zl303xx_PtpHwPhysAddrGetS structure to issue the
ZL303XX_PTP_HW_CMD_PHYS_ADDR_GET command. This is used for supporting
the PTP2_MGMT_ID_CLOCK_DESCRIPTION management TLV GET (see IEEE
1588-2008 section 15.5.3.1.2 and Table 41).

TABLE 10-11: ZL303XX_PTPHWTIMESTATUSGETS STRUCTURE FOR ZL303XX_
PTP_HW_CMD_TIMESET_STATUS_GET COMMAND

Sub-Structure Parameter Type Description
input clockHandle zl303xx_PtpClockHandleT Handle to the clock for which the event occurred.

input clockExtData void * Pointer to the clocks’ external data (which may contain a mapping to
a Timing Device ID).

output bTimeSet zl303xx_BooleanE Return the Time-of-Day Set Status.

TABLE 10-12: ZL303XX_PTPHWPHYSADDRGETS STRUCTURE FOR
ZL303XX_PTP_HW_CMD_PHYS_ADDR_GET COMMAND

Sub-Structure Parameter Type Description
input portHandle zl303xx_PtpPortHandleT Handle to the port being queried.
input portExtData void * Pointer to the port’s external data.

output physicalLayerProtocol char[32] Return the physical layer protocol string.
output physicalAddressLength Uint16T Return the length of the physical address string.
output physicalAddress Uint8T[16] Return the physical address string.

ZLS30390 Software API User’s Guide

DS50003222A-page 95  2022 Microchip Technology Inc. and its subsidiaries

10.5.3 Interface Binding: Transport for Transmit Packets (Egress)

10.5.3.1 TRANSMIT FUNCTION BINDING

PTP message transmission is handled by a function callout that must be setup by a
user application. The user function is bound to
zl303xx_PtpPortCreateS::txMsgFn, which must be set prior to calling
zl303xx_PtpPortCreate().
This function will be called for every packet that needs to be sent from this port.
The prototype for the message transmit function is defined as:
• Sint32T (* zl303xx_PtpTxMsgFnT)(Uint8T *buffer, Uint16T bufLen, zl303xx-
_PtpTxMsgDataS *msgData);

where buffer and bufLen contain the PTP message and message length, respectively.
A Sint32T value can be returned by the user function where 0 indicates success. By
default this return value is only used for logging purposes; it has no effect on state
machine operation. However, if the optional compile-time option
ENABLE_EXT_TX_API_CHECKS is defined then an error return value (non zero) may
cause the PTP Port to enter FAULTY state (see Section 6.2.5 for more details about
FAULTY state).

10.5.3.2 TRANSMIT DATA TYPE DESCRIPTION

The following table details the members of the zl303xx_PtpTxMsgDataS data
structure used for this interface.

TABLE 10-13: PTP TRANSMIT INTERFACE DEFINITIONS
Structure
Member Description

portHandle Handle of the port this message is being transmitted from.

streamHandle Handle of the stream this message is associated with. Must be used along with sequenceId to register trans-
mit time stamp information back to the PTP application.

clockExtData Pointer to external clock data.
portExtData Pointer to external port data.

streamExtData Pointer to external stream data.

srcAddr Source port address of this message. This will be the value set during port creation, in zl303xx_PtpPortCre-
ateS:localAddr.

destAddr Destination port address of this message.

interface Which PTP “interface” this message should be sent on. If UDP transport is being used, event messages are
sent on port 319, and general messages are sent on port 320.

messageId Value of the messageType field in the PTP header. Can be used to determine if this message should have its
transmit time stamp recorded.

sequenceId Value of the sequenceId field in the PTP header. Must be used along with streamHandle to register transmit
time stamp information back to the PTP application.

External PTP Interfaces

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 96

10.5.3.3 TRANSMIT TIME STAMPS

The transmit time stamp of a PTP packet will need to be retrieved from hardware for
the following cases:
• A Sync message is transmitted from a two-step clock.
• A Delay_Req message is transmitted.
• A PDelay_Req message is transmitted.
• A PDelay_Resp message is transmitted from a two-step clock.
When the transmit time stamp is available from hardware, it must passed to the PTP
application with the following data from zl303xx_PtpTxMsgDataS:
• streamHandle
• messageId
• sequenceId
It is the responsibility of the user transport layer to associate and recombine this data
with transmit time stamps.
Transmit time stamps are registered with the PTP application by calling
zl303xx_PtpTsRecordProcess(). In the case of registering the transmit time of a
PDelay_Resp or Sync message from a two-step clock, calling this triggers the PTP
application to generate a PDelay_Resp_Follow_Up or Sync Follow_Up message.
The messageType field of the zl303xx_PtpTsRecordS data structure must be set
properly when calling the zl303xx_PtpTsRecordProcess() routine. Prior to the
addition of the PDelay mechanism (Release 4.5.0) this was not required since there
were enough other flags available to determine whether the time stamp was for a Sync
or Delay_Request message.
The internal table of collected timestamps can be copied to a local memory for
debugging via API function zl303xx_PtpStreamTsRecordTableCopy. See
example in zlUserUtils folder.

10.5.4 Interface Binding: Transport for Receive Packets (Ingress)

10.5.4.1 PRIMARY RECEIVE FUNCTION BINDING

PTP message reception is handled by API function calls. The most common way to
register a received packet with PTP is by calling (prototyped in
zlPtp/include/zl303xx_PtpApi.h):
• zlStatusE zl303xx_PtpRxMsgProcess(

Uint8T *buffer,

Uint16T bufferLen,

zl303xx_PtpRxMsgDataS *pMsgData);

where buffer and bufferLen contain the PTP message and message length,
respectively. The zl303xx_PtpRxMsgDataS is used to store implementation-specific
data that is not available in the PTP message itself.

The following table details the members of the zl303xx_PtpRxMsgDataS data
structure used for this interface.

Note: It is recommended to use the more efficient interface zl303xx_PtpPor-
tRxMsgProcess() when the receiving port handle is known (see
Section 10.5.4.2).

ZLS30390 Software API User’s Guide

DS50003222A-page 97  2022 Microchip Technology Inc. and its subsidiaries

This function uses the srcAddr and destAddr pair to resolve which PTP stream the
message is intended for. It assumes that the address pair is sufficient to uniquely
identify each stream.

If the address pair is insufficient to uniquely identify a stream, it is possible for a user
application to specify the handle to the stream the message is intended for. In this case,
it is the user’s responsibility to maintain a table or other data structure that maps each
received packet to a specific stream handle. The following alternative APIs may also
be used.

10.5.4.2 ALTERNATE RECEIVE FUNCTION BINDINGS

The following routine is used to send a received message to the PTP task for
processing on a specific PTP Port. It searches a single PTP Port for the first Stream
that either:
a) Has the same destination address as the received message source address.
b) Has the same destination address as the received message destination address

(in the case of multicast)
• zlStatusE zl303xx_PtpPortRxMsgProcess(

Uint8T *buffer,

Uint16T bufferLen,

zl303xx_PtpPortRxMsgDataS *pMsgData);

The buffer and bufferLen contain the PTP message and message length, respectively
as above. The zl303xx_PtpPortRxMsgDataS is described below:

TABLE 10-14: PTP RECEIVE INTERFACE DEFINITIONS
Structure
Member Description

srcAddr Source port address of the PTP message.
destAddr Destination port address of the PTP message.

rxTs Receive PTP time stamp. Only applies to event packets.
extData Small buffer for additional implementation specific data.

Note: A stream may not exist in the case of a master node running unicast nego-
tiation. In this case, only the destAddr is used to look up which port the mes-
sage is intended for.

TABLE 10-15: ZL303XX_PTPPORTRXMSGDATAS DEFINITION
Structure
Member Description

portHandle Handle to a previously created port that this message was received on.
srcAddr Source port address of the PTP message.

destAddr Destination port address of the PTP message.
rxTs Receive PTP time stamp. Only applies to event packets.

extData Small buffer for additional implementation specific data.

External PTP Interfaces

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 98

The following routine is used to send a received message to the PTP task for
processing on a specific PTP Stream.
• zlStatusE zl303xx_ PtpStreamRxMsgProcess (

Uint8T *buffer,

Uint16T bufferLen,

zl303xx_PtpStreamRxMsgDataS *pMsgData);

The buffer and bufferLen contain the PTP message and message length, respectively
as above. The zl303xx_PtpStreamRxMsgDataS is described below:

10.5.4.3 RECEIVE TIME STAMPS

It is the responsibility of the user’s transport layer to associate the receive time stamp
with the correct packet. The time stamp may be stored in a hardware queue or
appended to the end of the packet. It must also be converted to PTP format. If the time
stamp is stripped from the end of the packet, ensure the value of bufferLen passed to
zl303xx_PtpRxMsgProcess() is updated to “remove” the time stamp. Processing
of certain PTP signaling TLVs require the buffer length to be correct.

TABLE 10-16: ZL303XX_PTPSTREAMRXMSGDATAS DEFINITION
Structure
Member Description

streamHandle Handle to a previously created stream that this message was received on.
rxTs Receive PTP time stamp. Only applies to event packets.

extData Small buffer for additional implementation specific data.

ZLS30390 Software API User’s Guide

DS50003222A-page 99  2022 Microchip Technology Inc. and its subsidiaries

NOTES:

ZLS30390 SOFTWARE API
USER’S GUIDE

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 100

Chapter 11. Test Interfaces

The following table lists some APIs that are available for testing purposes.

TABLE 11-1: API ROUTINES FOR TESTING
API Routine Description

zl303xx_PtpClockAnnounceTlvEnqueue
API to send a single custom TLV on the next announce packet sent by all streams
that are currently sending ANNOUNCE packets. This can be used to test PTP Edition
3 Announce TLV Propagation Requirements (Clause 14.2)

zl303xx_PtpStreamAnnounceTlvEnqueue
API to send a single custom TLV on the next announce packet sent by this stream.
This can be used to test PTP Edition 3 Announce TLV Propagation Requirements
(Clause 14.2)

ZLS30390 Software API User’s Guide

DS50003222A-page 101  2022 Microchip Technology Inc. and its subsidiaries

NOTES:

ZLS30390 SOFTWARE API
USER’S GUIDE

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 102

Chapter 12. Example Reference Selection Application

12.1 INTRODUCTION
A sample Reference Selection Application is provided with the ZLS30390. The purpose
of this application is to collect data from multiple sources within the user system, per-
form necessary comparisons and re-distribute system control messages to the various
components. These components may include:
• Multiple line-card units executing a timing protocol (such as the ZLS30390)
• A Time-Sync Algorithm module to process protocol timing data.
• Local PLL modules.
• Other proprietary modules specific to the user system.

12.1.1 Code Inclusion and Modules
To enable the new content, compile the ZLS30390 with the following compile-time defi-
nition:
• ZL303XX_REFERENCE_SELECTION
The code for the application is contained within the following modules:
• zl303xx_ExampleRefSelectApi.h
• zl303xx_ExampleRefSelectSetup.h
• zl303xx_ExampleRefSelectInternal.h
• zl303xx_ExampleRefSelectApp.c
• zl303xx_ExampleRefSelectData.c
• zl303xx_ExampleRefSelectTask.c

ZLS30390 Software API User’s Guide

DS50003222A-page 103  2022 Microchip Technology Inc. and its subsidiaries

12.2 ARCHITECTURE
The following diagram illustrates the general architecture of the Reference Selection
Application:

FIGURE 12-1: Reference Selection Overview.

As shown in the diagram:
1. All data is collected in a centralized table managed by the Application Task.
2. Data Entries may contain:
a) Local Protocol Clock information: in this case no protocol stream or Time-Sync

connection Id is required.
b) Remote server information: in this case, the protocol clock of the protocol stream

must be specified along with the associated Time-Sync connection Id. The fol-
lowing routines are provided to cross-reference these paired-Ids:
 • exampleRefSelectGetConnIdFromProtocolId()
 • exampleRefSelectGetProtocolIdFromConnId()

3. The Reference Selection Task is responsible for:
a) Controlling the configuration API of the Application.
b) Receiving data from the various system modules, verifying the content and

updating the data table accordingly.
c) Running the Reference Selection Algorithm (as configured).
d) Sending the selected server data to the various modules.
4. The Messaging Backplane is an exchange interface on the local system. The fol-

lowing routine is provided as a sample to translate and exchange message
between the Reference Selection Application and the individual system modules:
 • exampleRefSelectSendMsgToBackplane()

Example Reference Selection Application

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 104

12.2.1 Application API

12.2.1.1 APPLICATION INITIALIZATION

The following routines are provided to start, configure and stop the Reference Selection
Application:
• exampleRefSelectAppStructInit(): retrieves default, start-up values for

the application as defined in the zl303xx_ExampleRefSelectSetup.h
header.

• exampleRefSelectAppStart(): starts the application with parameters pro-
vided. This includes creating the application task and initializing the server table. If
no configuration is provided, the default values are used automatically.

• exampleRefSelectAppStop(): terminates the application.
Refer to the provided sample code for examples of how to use these routines.

12.2.1.2 APPLICATION CONFIGURATION

The following routines are provided to manage and configure the Reference Selection
Application. Refer to each function description for appropriate data types, return val-
ues, and usage.
General Application Management
• exampleRefSelectAppConfigGet(): retrieves the configuration of an active

application (may be used for Non-Volatile Storage (NVS) or other functionality).
• exampleRefSelectAppConfigSet(): changes the configuration of an active

application.
Server Selection Management
• exampleRefSelectRefreshTimerSet(): set the interval in which the applica-

tion executes default processing (such as server selection if enabled).
• exampleRefSelectAutoSelectEn(): enables automatic selection of the best

know server. When enabled, the application refresh period should be set so that
updates occur at an acceptable interval.

• exampleRefSelectBmcAlgorithmSet(): set the server selection algorithm
used to evaluate the best server (expected algorithms are Default 1588, Telecom
Profile for Frequency, Power Profile).

• exampleRefSelectManualServerSet(): force a particular server to be
selected. This overrides the evaluation of the algorithm.

• exampleRefSelectActiveServerGet(): receives the data for the current
active server last selected by the application.

• exampleRefSelectExecuteBmca(): executes the currently configured selec-
tion algorithm on the latest data collected and returns the best server (if any). This
does not execute internal routines or transmit the data to other system compo-
nents.

Time Sync Algorithm Interface
• exampleRefSelectCguDeviceSet(): sets the Time-Sync data parameter

associated with the Time-Sync module.
General Telecom Profile Parameters
The following parameters apply only when the Telecom Profile for Frequency selection
algorithm is used.
• exampleRefSelectRevertiveEn(): enables revertive switching.
• exampleRefSelectQlHoldoffTimeSet(): sets a QL Hold-Off time for drops

in received QL.

ZLS30390 Software API User’s Guide

DS50003222A-page 105  2022 Microchip Technology Inc. and its subsidiaries

• exampleRefSelectSquelchEn(): enables squelch protection.

12.2.1.3 SERVER ENTRY CONFIGURATION

• exampleRefSelectEntryLockoutSet(): prohibits a server from being
selected.

• exampleRefSelectEntryWtrSet(): sets the time period that a server is pro-
hibited from being re-selected after it has been removed as the selected server.

12.2.2 Message Interfaces

12.2.2.1 FROM PROTOCOL CLOCKS

The following routines provide updates to the Reference Selection Application regard-
ing Protocol Clocks in the system:
• exampleRefSelectProtocolClockUpdate(): provides data from a Protocol

Clock when it is created or changed.
• exampleRefSelectProtocolClockDelete(): indicates that a Protocol

Clock has been deleted and its entry should be removed from the data table.
To integrate these items, calls to the routines listed above would need to be executed
at the event notification output of the PTP stack contained in zl303xx_Exam-
plePtp.c. Specifically for the following events:
• ZL303XX_PTP_EVENT_CLOCK_CREATE: Package the event data into an
exampleProtocolClockUpdateMsgS message and call exampleRefSe-
lectProtocolClockUpdate() (sample code provided).

• ZL303XX_PTP_EVENT_CLOCK_DELETE: Package the event data into an
exampleProtocolClockDeleteMsgS message and call exampleRefSe-
lectProtocolClockDelete() (sample code provided).

• ZL303XX_PTP_EVENT_CLOCK_BMCA_UPDATE: This event contains all of the
collected server data for a particular line-card including the Default data set of the
line-card itself. Package the Default data set of the line-card into an example-
ProtocolClockUpdateMsgS message and call exampleRefSelectProto-
colClockUpdate() (sample code provided).

12.2.2.2 FROM PROTOCOL STREAMS

The following routines provide updates to the Reference Selection Application regard-
ing Protocol Streams in the system:
• exampleRefSelectProtocolStreamAdd(): indicates a Protocol Stream has

been added to the system.
• exampleRefSelectProtocolStreamUpdate(): data for a known Protocol

Stream has been updated that may affect the evaluation of the server selection
algorithm.

• exampleRefSelectProtocolStreamDelete(): indicates that a Protocol
Stream has been deleted and its entry should be removed from the data table.

To integrate these items, calls to the routines listed above would need to be executed
at the event notification output of the PTP stack contained in zl303xx_Exam-
plePtp.c. Specifically for the following events:
• ZL303XX_PTP_EVENT_STREAM_CREATE: Package the event data into an
exampleProtocolStreamAddMsgS message and call exampleRefSelect-
ProtocolStreamAdd() (sample code provided).

• ZL303XX_PTP_EVENT_STREAM_KEEP_ALIVE: Package the event data into
an exampleProtocolStreamUpdateMsgS message and call exampleRefSe-
lectProtocolStreamUpdate() (sample code provided).

Example Reference Selection Application

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 106

• ZL303XX_PTP_EVENT_CLOCK_BMCA_UPDATE: This event contains all of the
collected server data for a particular line-card including the Default data set of the
line-card itself. Package the updated data of each server contained in the event
into an exampleProtocolStreamUpdateMsgS message and call exam-
pleRefSelectProtocolStreamUpdate() (sample code provided).

• ZL303XX_PTP_EVENT_STREAM_DELETE: Package the event data into an
exampleProtocolStreamDeleteMsgS message and call exampleRefSe-
lectProtocolStreamDelete() (sample code provided).

12.2.2.3 FROM TIME-SYNC ALGORITHM

The Reference Selection Application expects to receive LOCK status and other status
flags from the Time-Sync Algorithm using the following routine:
• exampleRefSelectAlgorithmUpdate():
One recommendation for this data is the list of status flags contained in the zl303xx-
_AprServerNotifyS type (provided with Microchip products that contain the APR
Time-Sync Algorithm). In this case, the call to send the APR status flags to the Refer-
ence Selection Application would be integrated in the exampleAprServerNotify()
routine contained with the APR software.

12.2.2.4 FROM PACKET TIMING SIGNAL FAIL (PTSF)

The Reference Selection Application expects to receive PTSF status flags from the var-
ious modules in the system. In the current implementation, the Reference Selection
Application starts a PTSF collector locally and Protocol Line-Cards, the Time-Sync
module and other custom blocks (user, for example) perform PTSF updates using the
PTSF API routines (refer to zl303xx_Ptsf.h)
The Reference Selection Application listens for updates via the PTSF notification rou-
tine and applies these same changes to the server data (use zl303xx_PtsfCall-
backSet() to intercept updates to the PTSF module). Each PTSF update is then
repackaged into an examplePtsfUpdateMsgS type and forwarded to the application
using the following routine:
• exampleRefSelectPtsfUpdate(): indicates that a PTSF status bit for a con-

nection has changed.

12.2.3 Backplane Interface
As mentioned above, all messages from system modules to the Reference Selection
Application (and vice versa) are assumed to traverse a Message Backplane. In the
sample code provided, this is modeled in a single routine:
• exampleRefSelectSendMsgToBackplane()

However, in actual implementations this is most likely implemented as a socket, mes-
sage queue, or some other data transfer interface (or there may be no interface, in
which case function calls are made directly).
Because the details of this interface are proprietary to the user system, it is expected
that extensive rework of this particular routine may be required for application integra-
tion.

12.2.4 Debug Routines
The following routines are provided in order to help monitor and/or debug the applica-
tion:
• exampleRefSelectShow(): Shows all VALID entries in the table.
• exampleRefSelectShowAll(): Dumps the entire table (including empty rows).
• exampleRefSelectShowBest(): Shows only the BEST entry from the table (if

ZLS30390 Software API User’s Guide

DS50003222A-page 107  2022 Microchip Technology Inc. and its subsidiaries

it exists).

12.2.5 Typical Operating Sequence
The following outlines the steps that would typically be carried out in using the applica-
tion:
1. Application Initialization:
a) Executed during system initialization.
b) Call exampleRefSelectAppStructInit() to retrieve default configuration

values.
c) Modify the configuration as required.
d) Call exampleRefSelectAppStart() to initialize the application
2. Add clock and/or server entries to the list of available references. There are two

approaches here:
a) The User Control Software may fill the table with a list of known acceptable

entries using the routines:
 • exampleRefSelectProtocolClockUpdate()
 • exampleRefSelectProtocolStreamAdd()

b) Entries may be automatically added as they are created by other modules and
notification is received by the application. For example, when Line-Card Clocks
and Streams are created, the subsequent event messages (ZL303XX_PT-
P_EVENT_CLOCK_CREATE and ZL303XX_PTP_EVENT_STREAM_CRE-
ATE) may be translated to appropriate Reference Selection Application
messages and the server database updated accordingly.

3. Status flags from the Time-Sync Algorithm or PTSF Alarms are monitored and
may affect server selection.

4. The Application evaluates all entries and provided data related to the best selec-
tion available.

5. The following updates regarding reference entries or configuration changes are
constantly evaluated for a change in selection:

a) Addition or Deletion of entries
b) Change in application configuration
c) Updates to local clock configuration
d) Updates to connection data (or re-configuration)

ZLS30390 SOFTWARE API
USER’S GUIDE

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 108

Chapter 13. Redundant Timing Card Application for Chassis Systems

The ZLS30390 API provides functions to support systems that require switching control
between an active and standby node. The following parameters determine what
actions should be taken when performing a redundant switchover:
• Protocol type: multicast or unicast negotiation
• Operating state: server or client
• Node type: active or standby
For an active node, there are following events to consider:
• Starting a node in active mode
• Controlled switch from active to standby
• Node fails unexpectedly
In the case of an unexpected failure, it may not be possible to perform cleanup or trans-
fer data to the standby node. So, functions and event callbacks are provided to allow a
user application to periodically save the state of the active node’s streams. Note that it
is assumed that there is no internal dynamic clock or port data that needs to be trans-
ferred during a switchover. Any runtime configuration changes should be applied to
both the active and standby nodes.
For the standby node, there are the following events to consider:
• Starting a node in standby mode
• Controlled switch from standby to active
The following API routines can be used to implement redundant switching and are ref-
erenced in the following sections (refer to the PTP API Reference Manual for complete
interface, data type, and syntax details).

In addition, the following PTP events can be used to save data about the state of
streams in unicast negotiation mode (see Table 8-1):
• ZL303XX_PTP_EVENT_CONTRACT_REJECTED
• ZL303XX_PTP_EVENT_CONTRACT_GRANTED
• ZL303XX_PTP_EVENT_CONTRACT_EXPIRED

TABLE 13-1: PTP REDUNDANCY ROUTINES
API Routine Description

zl303xx_PtpContractManualCancel
Manually send a CANCEL TLV to a destination address. If a stream matching the destina-
tion address already exists, the function reverts to calling zl303xx_PtpContractCancel(). If
no stream exists, only a single CANCEL TLV will be sent.

zl303xx_PtpTxContractStop Silently stops unicast message service. No CANCEL TLV will be sent to inform the grantee
that the service is being stopped.

zl303xx_PtpContractStatusGet Returns the status of the most recent unicast negotiation contract (active or inactive).

zl303xx_PtpContractTxStatusSet Function to manually create TX unicast service without receiving a REQUEST TLV or mod-
ify an existing contract. This function will create a new stream if required.

zl303xx_PtpClockMessagingEnabled If clock messaging is enabled, all RX and TX PTP message processing happens normally. If
it's disabled, no TX messages will be sent and all RX messages will be blocked.

zl303xx_PtpStreamConfigGet Returns the zl303xx_PtpStreamCreateS structure used to initialize a PTP stream. Note that
this can be used to retrieve sequenceId.

ZLS30390 Software API User’s Guide

DS50003222A-page 109  2022 Microchip Technology Inc. and its subsidiaries

13.1 HOW TO CREATE A NODE IN A REDUNDANT SYSTEM

13.1.1 Active Node
No changes are necessary from the included example code for a master or slave node.

13.1.2 Standby Node
These steps can be used for a master or slave node.
1. Create a PTP clock. See “Configuration of a PTP Clock: zl303xx_PtpClockCre-

ate()” for details.
2. Disable clock messaging, so no packets will be sent until the node becomes the

active node. See function zl303xx_PtpClockMessagingEnabled().
3. Create the PTP port(s). See “Configuration of a PTP Port: zl303xx_PtpPortCre-

ate()” for details.
No streams should be created until this node becomes the active one.

13.2 HOW TO MANAGE A REDUNDANT NODE

13.2.1 Active Master Node

13.2.1.1 MULTICAST

The user application can optionally save the sequenceId of all messageType using
zl303xx_PtpStreamConfigGet(), and transfer this data to the standby node.

13.2.1.2 UNICAST NEGOTIATION

Use the ZL303XX_PTP_EVENT_CONTRACT_GRANTED and ZL303XX_PT-
P_EVENT_CONTRACT_EXPIRED events to transfer contract data to the standby
node. This data can be used on the standby card to manually create contracts when it
becomes the active.
Refer to “PTP Event Notifications (Unicast Negotiation)” for Event details.

13.2.2 Active Slave Node

13.2.2.1 MULTICAST

The user application can optionally save the sequenceId of all messageType using
zl303xx_PtpStreamConfigGet(), and transfer this data to the standby node.

13.2.2.2 UNICAST NEGOTIATION

Use the ZL303XX_PTP_EVENT_CONTRACT_GRANTED and ZL303XX_PT-
P_EVENT_CONTRACT_EXPIRED events to transfer contract data to the standby
node. This data can be used on the standby card to request new contracts when it
becomes the active.
Refer to “PTP Event Notifications (Unicast Negotiation)” for Event details.

13.3 HOW TO SWITCH THE REDUNDANT MODE

13.3.1 Active Master to Standby

13.3.1.1 MULTICAST

Disable clock messaging, so no packets will be sent while this node is in standby. See
function zl303xx_PtpClockMessagingEnabled().

Redundant Timing Card Application for Chassis Systems

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 110

13.3.1.2 UNICAST NEGOTIATION

The active master may optionally cancel all contracts it has by calling zl303xx_Ptp-
ContractCancel(), but this is not recommended. The slave may choose to not
negotiate a new contract with this port address.
Instead, the following steps should be executed:
1. Disable clock messaging, so no packets will be sent while this node is in standby.

See function zl303xx_PtpClockMessagingEnabled().
2. Call zl303xx_PtpTxContractStop() for all streams and messageType.
3. Call zl303xx_PtpContractStatusGet() for all streams and messageType.
4. Transfer all contract information to the standby node.
5. Optionally, delete all streams. See “Terminating a PTP Application or its Compo-

nents” for details.

13.3.2 Standby Master to Active

13.3.2.1 MULTICAST

Add all streams that existed on the active master. Streams are not created dynamically
in multicast mode, and there may only be a single multicast stream per PTP port. See
“Configuration of a PTP Stream: zl303xx_PtpStreamCreate()” for details.

13.3.2.2 UNICAST NEGOTIATION

The active master may optionally cancel all contracts it has by calling zl303xx_Ptp-
ContractManualCancel(), but this is not recommended. The slave may choose to
not negotiate a new contract with this port address.
Instead, the following steps should be executed:
1. Call zl303xx_PtpContractTxStatusSet() for all saved contracts
2. Enable clock messaging to allow packet transmit and receive. See function

zl303xx_PtpClockMessagingEnabled().

13.3.3 Active Slave to Standby

13.3.3.1 MULTICAST

1. Disable clock messaging, so no packets will be sent while this node is in standby.
See function zl303xx_PtpClockMessagingEnabled().

2. Delete all PTP streams. See “Terminating a PTP Application or its Components”
for details.

13.3.3.2 UNICAST NEGOTIATION

1. Optionally, cancel all contracts with zl303xx_PtpContractCancel().
2. Disable clock messaging, so no packets will be sent while this node is in standby.

See function zl303xx_PtpClockMessagingEnabled().
3. Call zl303xx_PtpContractStatusGet() for all streams and messageType.
4. Transfer all contract information to the standby node.
5. Optionally, delete all streams. See “Terminating a PTP Application or its Compo-

nents” for details.

ZLS30390 Software API User’s Guide

DS50003222A-page 111  2022 Microchip Technology Inc. and its subsidiaries

13.3.4 Standby Slave to Active

13.3.4.1 MULTICAST

Add all streams that existed on the active slave. Streams are not created dynamically
in multicast mode, and there may only be a single multicast stream per PTP port. See
“Configuration of a PTP Stream: zl303xx_PtpStreamCreate()” for details.

13.3.4.2 UNICAST NEGOTIATION

1. Optionally, call zl303xx_PtpContractManualCancel() to clear out con-
tract data on the master.

2. Add all streams.
3. Enable clock messaging to allow packet transmit and receive. See function

zl303xx_PtpClockMessagingEnabled().

ZLS30390 SOFTWARE API
USER’S GUIDE

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 112

Chapter 14. Acronyms

• ABMCA: Alternate Best Master Clock Algorithm
• APR: Advanced Phase Recovery
• BC: Boundary Clock
• BMCA: Best Master Clock Algorithm
• CGU: Clock Generation Unit
• DCO: Digitally Controlled Oscillator
• DPLL: Digital Phase Lock Loop
• E2E: End-to-end
• FCL: Frequency Change Limit
• FDD: Frequency Division Duplex
• FPE: Flexible Protocol Engine
• GM: Grandmaster
• NCO: Numerically Controlled Oscillator
• NTP: Network Time Protocol
• OC: Ordinary Clock
• OS: Operating System
• P2P: Peer-to-peer
• PEC-M: Packet Equipment Clock Master
• PEC-S: Packet Equipment Clock Slave
• PLL: Phase Lock Loop
• ppb: Parts per billion (10E-9)
• ppt: Parts per trillion (10E-12)
• PSL: Phase Slope Limit
• PSN: Packet Switched Network
• PTP: Precision Time Protocol
• PTSF: Packet Timing Signal Fail
• QL: Quality Level
• SDK: Software Development Kit
• SF: Signal Fail
• SOOC: Slave-Only Ordinary Clock
• SPLL: Software Phase Lock Loop
• SyncE: Synchronous Ethernet
• RTP: Real-Time Protocol
• T-BC: Telecom Boundary Clock
• T-BC-P: Partial Support Telecom Boundary Clock
• T-GM: Telecom Grandmaster
• T-TSC: Telecom Time Slave Clock
• T-TSC-A: Assisted Partial Support Telecom Time Slave Clock
• T-TSC-P: Partial Support Telecom Time Slave Clock
• TC: Transparent Clock

ZLS30390 Software API User’s Guide

DS50003222A-page 113  2022 Microchip Technology Inc. and its subsidiaries

• TDD: Time Division Duplex
• ToD: Time of Day
• ToP: Timing over Packet
• TSU: Timestamp Unit
• ZL: Zarlink
• ZLE: Zarlink Evaluation Board
• ZLS: Zarlink Software

ZLS30390 SOFTWARE API
USER’S GUIDE

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 114

Chapter 15. Change History

The following is a list of changes and improvements made to the ZLS30390 User’s
Guide for each of the software versions indicated.

15.1 RELEASE 5.3.8
• TS-4144 TS-4217 Updated Section 5.1.1 “PTP Init: Initializing a PTP Application”

with new compile-time options:
- ZL303XX_PTP_TIMER_TASK_DISABLE
- ZL303XX_PTP_TIMER_TASK_USE_TICKDELAY
- ZL303XX_PTP_TIMER_USE_HWTIMER

• TS-4144 TS-4258 Corrected Section 5.1.2 “PTP Init: Tasks” default task priorities
and stack size.

• TS-4217 Updated
- Table 9-1: Available PTP Logging Modules and Descriptions.
- Section 10.5.3.1 “Transmit Function Binding” details for FAULTY state option.
- Section 10.5.4.1 “Primary Receive Function Binding” for recommended alter-

native option.

15.2 RELEASE 5.3.6
• TS-4000 Updated PTP Port config alternateMaster definition and moved to

Table 5-14.

15.3 RELEASE 5.3.4
• TS-2022 Updated PTP node deletion Section 5.7 “Configuration for Shutdown

(Stopping) PTP Service”.

15.4 RELEASE 5.3.0
• TS-2794 Added PTP stream state reporting APIs to Section 8.2.2 “PTP Stream

State Reporting” and Table 8-11.
• TS-2053 Updated Acceptable Master Table and Acceptable Slave Table

Section 5.3.3 “PTP Port: Acceptable Master and Acceptable Slave Tables”.
• TS-2186 Fixed figure captions in Asymmetry correction Section 6.3.6 “Modify PTP

Stream: Asymmetry Correction”.
• TS-2330 Added PTP stream message counter Section 8.2.3 “PTP Stream Packet

Count Reporting”.
• TS-2152 Updated PTP event handler Section 8.1.1 “Event Handler” with imple-

mentation guidelines.

15.5 RELEASE 5.2.6
• TS-3083 Added pathTrace.propagateEnabled to Section 5.2.4 “PTP Clock: Pro-

file-Specific and BMCA” in Table 5-6.
• TS-3082 Added Alternate Time Offset Indicator ATOI TLV configuration to

ZLS30390 Software API User’s Guide

DS50003222A-page 115  2022 Microchip Technology Inc. and its subsidiaries

Section 6.1.18 “Modify PTP Clock: Alternate Time Offset Indicator ATOI TLV
Data”.

15.6 RELEASE 5.2.4
• TS-3080 Added Section Chapter 11. “Test Interfaces” and Table 11-1: API Rou-

tines for Testing.
• TS-3179 Added sdoId configuration for PTPv2.1 to Section 5.2.2 “PTP Clock:

Local defaultDS” and Table 5-4.

15.7 RELEASE 5.1.0
• Added Section 5.3.2.4 “PTP Port: Default Profile Edition 3 (v2.1)” and Table 5-20.

15.8 RELEASE 5.0.6
• Added Section 1.1 “Status on Profiles in Development”.
• Added configuration parameters for IEEE 802.1as in Section 5.2.4.4 “PTP Clock:

Profile IEEE 802.1as” and Section 5.3.2.3 “PTP Port: Profile IEEE 802.1as”.
• Added APIs for IEEE 802.1as Followup Information TLV in Section 6.1.17 “Modify

PTP Clock: IEEE 802.1as Followup Information TLV Data”, Section 6.2.6 “Modify
PTP Port: IEEE 802.1as Neighbor Prop Delay Threshold”, and
Section 6.3.10 “Modify PTP Stream: IEEE 802.1as Message Interval Request
TLV”.

• Added ZL303XX_PTP_EVENT_FOLLOWUP_INFO_TLV_CHANGE event docu-
mentation in Section 8.1.2.7 “PTP Event Notifications (802.1as Profile)”.

15.9 RELEASE 5.0.5
• Media Profiles additions

- Added support for AES67 2016 Profile
- Added support for SMPTE 2059-2 2019 Profile
- Added support for AES R16 2016 Profile
- Added support for SMPTE 2059-2 Sync Metadata TLV in

Section 6.1.6 “Modify PTP Clock: Two-Step Flag”
• Updated delete APIs with fireEvent option (Section 5.7.1 “Terminating a PTP

Application or its Components” and Section 8.1.2.4 “PTP Event Notifications (Cre-
ate/Delete)”)

• Updated ZL303XX_PTP_EVENT_PARENT_DATA_SET_CHANGE event docu-
mentation for new option fireParentDsChangeOnlyDelta (Section 8.1.2.3 “PTP
Event Notifications (BMCA and Parent Updates)”)

• Added ZL303XX_PTP_EVENT_PORT_CREATE event documentation
(Section 8.1.2.4 “PTP Event Notifications (Create/Delete)”)

15.10 RELEASE 5.0.3
• Renamed clockId attribute in zl303xx_PtpC37p238ClockConfigS to grandmas-

terId.
• Added set and get APIs for grandmasterId attribute in zl303xx_PtpC37p238Clock-

ConfigS.
• Added set and get APIs for localTimeInaccuracy attribute in zl303xx_Pt-

pC37p238ClockConfigS.
• Added set and get APIs for networkTimeInaccuracy attribute in zl303xx_Pt-

pC37p238ClockConfigS.

Change History

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 116

15.11 RELEASE 5.0.0
• Added debug API zl303xx_PtpStreamTsRecordTableCopy
• Updated zl303xx_PtpC37p238ClockConfigS table and removed deprecated PTP

Clock parameter localTimeZoneInfo.
• Updated zl303xx_PtpC37p238StreamConfigS table and removed deprecated

PTP Stream parameter localTimeInaccuracyMax.

15.12 RELEASE 4.10.1
• Added optional checks for PTP port state FAULTY

15.13 RELEASE 4.10.0
• Added handling of PTP port state FAULTY

15.14 RELEASE 4.9.0
• Updated format, structure & template of the document

15.15 RELEASE 4.8.5
• Mux PTP streams to APR slots

15.16 RELEASE 4.7.2
• ITU-T G.8275.1 additions

- Added support for ITU-T G.8275.1 Edition 2 profile
- Updated support of offsetScaledLogVariance for ITU-T G.8275.1 edition 2 and

G.8275.2
- Added holdoverSupported Boolean for T-TSC clocks in ITU G.8275 to allow

use of local holdover capability (i.e. use holdover clockClass in BMCA).
- Updated handling of PTSF TRUE to treat Erbest as the empty set (as per

ITU-T G.8275.1 Edition 2).
• ITU-T G.8275.2

- Added support for ITU-T G.8275.2 Profile
- Added support for ITU-T G.8275.2 Annex D TLV for PTP interface rate
- Added a user option, 'settlingTimeActive', to enable a settling time after a ref-

erence switch or mode switch, during which time the egress Announce mes-
sages will assume PLL is in PHASE_LOCK.

- Added enum for CableLabs R-DTI Profile, based on ITU-T G.8275.2
• Added support for Synchronization Uncertain flag (based on ITU-T G.8275 but

available for all profiles).
• Added support for Acceptable Slave Table for all Unicast Negotiated profiles (pre-

viously supported only for ITU-T G.8265.1)

15.17 RELEASE 4.7.0
• Addition of PATH TRACE functionality (Refer to IEEE-1588-2008: Clause 16.2).
• Virtual Port configuration enhancements (including all Time Properties parame-

ters, configurable clockIdentity and stepsRemoved).
• Inclusion of ITU G.8275.1 – Edition 2
• Enhancements to ITU G.8275.2 (Alternate Master Flag, Signal Fail)

ZLS30390 Software API User’s Guide

DS50003222A-page 117  2022 Microchip Technology Inc. and its subsidiaries

15.18 RELEASE 4.6.3
• Ability to configure the stepsRemoved parameter for the ZLS30390 application.
• Addition of Acceptable Master Table ‘dropped message’ statistics.
• Enhancements in the G.8275.1 state machine including BMCA logging.

15.19 RELEASE 4.6.0
• Support for ITU-G.8275.1 (Telecom Profile for Phase)
• Addition of the UNCALIBRATED port state:

- Refer also to IEEE-1588-2008: Clause 9.2.5, Clause 9.2.6.11 and Clause
9.2.6.13.

- In past releases, ports went directly to the SLAVE state without entering the
UNCALIBRATED state. In this release, ports may be kept in the UNCALI-
BRATED state to allow the local system to achieve a desired performance
condition.

- This mechanism is OFF by default but can be activated via the provided API.
• Addition of PTP Events to notify users when Leap-Seconds flags and/or UTC Off-

set (including UTC offset valid flag) change.
• Ability of users to over-ride field values in transmitted Announce messages.

15.20 RELEASE 4.5.0
• Addition of the Peer-Delay mechanism for path delay measurements:
• Asymmetry correction capability at the PTP Stream layer:
• Support for C37.238 (Power Profile):
• Addition of the PRE_MASTER port state:

- Activated only when a PTP Clock is entering the M3 state (according to
IEEE-1588-2008: Figure 26) and the recommended state of the associated
port is MASTER (according to IEEE-1588-2008: Figure 23).

- Refer also to IEEE-1588-2008: Clause 9.2.6.10
- This mechanism is always ON. There is no API to enable/disable use of this

state.

15.21 RELEASE 4.4.0
• Improvements to the logging for improved diagnosis
• Improvements to the OS_SIGNAL_HANDLER

ZLS30390 SOFTWARE API
USER’S GUIDE

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 118

Appendix A. Configuration of T-BC using the G.8275.1 Profile

A.1 HIGH LEVEL SYSTEM VIEW
The following diagram outlines the general logical flow for G.8275.1 operation:

FIGURE A-1: General G.8275.1 System Operation.

A.1.1 Component Overview
• Local Data Sets (DefaultDS, TimePropertiesDS and CurrentDS):

- These are standard data sets available on all configurations.
- Refer to Configuration of a PTP Clock: zl303xx_PtpClockCreate() and Modify

PTP Clock: Data Sets for configuration details.
• Input PTP Packet Ports:

- These provide input ANNOUNCE messages to the T-BC from upstream mas-
ter clocks.

- This diagram shows a single instance but more may be added as required.
• Input Virtual Port (Optional):

- Refer to Configuration of Virtual PTP Port (Optional) for structure and param-
eter descriptions.

- This is an optional input interface intended to model the PLL electrical input as
a PTP input to the G.8275 state machine (for example, the PLL may have a
GPS reference and sync signal as its primary input).

- The configured VP parameters are mapped to appropriate ANNOUNCE fields
and provided to the BMCA module as if an ANNOUNCE message was

T-BC

Port[3]

Data Sets
DefaultDS
- ClockQuality (class,
accuracy, log2Variance)
- Priority2
- Clock Identity

CurrentDS
- StepsRemoved
C DSC tDS

TimePropertiesDS
- timeTraceable
- frequencyTraceable

ZL303XX_PTP_HW_CMD_PLL_PERF_DATA_GETZL303XX_PTP_HW_CMD_TIMESET_STATUS_GET

Port[2]VirtualPort
- PTSF
- PRTC Connected
- ClockQuality (class,
accuracy, log2Variance)
- Priority2
- Time Set Flag
- localPriority

BMCA ParentDS

G.8275.1 State
Decision

Configured Egress
Announce

Override values

Bypass Hw Perf

PLL Performance

Hardware Layer

User Application
- Link between actual PLL
and Virtual Port Model

Port[1]PTP Packet Connection
- Announce Messages (RX)

HW
PTP Packet Connection
- Announce Messages (TX)

ZLS30390 Software API User’s Guide

DS50003222A-page 119  2022 Microchip Technology Inc. and its subsidiaries

received on that port.
• User Application:

- This monitors the status of the PLL electrical input and updates the Virtual
Port configuration to accurately reflect the Electrical signal(s).

- For example, should the input fail, the PTSF of the Virtual Port should be set
to TRUE to invalidate the input so that a packet reference is selected instead.

• Hardware Layer Interface:
- Whether or not the system has selected a PTP packet input or a Virtual Port

input for a modeled electrical source, the profile state machine requires infor-
mation about the status of the PLL.

- Two key items are:
 ▪ Time-of-Day status:
 • The profile waits for the local ToD to be set in order to avoid doing a
 Step-Time and impacting downstream clients.
 ▪ PLL Performance status:
 • Refer to Interface Command: Sync Performance Data (Ingress) for
 parameter details.
 • The data from this input may be ignored by enabling the “bypass” mode.
 In this case, the PLL status is assumed to be PHASE LOCKED.

- These inputs impact what values are advertised in ANNOUNCE messages to
T-TSC nodes.

• BMCA Selection:
- As with other profiles, this takes inputs from the local clock (DefaultDS) and

PTP Masters (ANNOUNCE Messages) but also from the Virtual Port.
- This selects the best input according to the profile selection algorithm and

updates the ParentDS.
• G.8275 Engine:

- This component decided what information to advertise to downstream clients.
- It takes as inputs:

 ▪ The best server source from the ParentDS.
 ▪ The ToD input from the system.
 ▪ The PLL performance status from the hardware.

• Egress ANNOUNCE Override:
- Refer to Modify PTP Stream: Override Egress ANNOUNCE Message Fields

for parameter details.
- This layer is available to all profiles and allows the user to force the value of

an egress ANNOUNCE field.
- It is not recommended typically as settings are not validated by the software.

A.2 OPERATION
The typical operation for the G.8275 system above is:
• Create a T-BC clock using the G.8275 profile:

- Refer to examplePtpTelecomPhaseG8275p1Bc() for details.
- profile = ZL303XX_PTP_PROFILE_TELECOM_G8275_1
- clockType = ZL303XX_PTP_G8275p1_CLOCK_TYPE_T_BC

• Add any PTP Packet Ports as required:
- Refer to Configuration of a PTP Port: zl303xx_PtpPortCreate() for creating

Configuration of T-BC using the G.8275.1 Profile

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 120

PTP Ports and Streams.
• Add a Virtual Port to model any electrical reference + sync to the PLL

- Refer to Configuration of Virtual PTP Port (Optional) for creating Virtual Ports
(zl303xx_PtpVirtualPortCreate()).

• Update Virtual Port configuration to reflect the electrical input as changes are
detected.
- Individual parameters associated with the VP may be updated as follows:

 ▪ Read the current VP configuration (zl303xx_PtpVirtualPortGet()).
 ▪ Change the required members of the structure.
 ▪ Write this new configuration back to the VP (zl303xx_PtpVirtualPort-
Set()).

- To indicate that the VP input has experienced a Reference Failure, the PTSF
flag may be updated individually.
 ▪ Use the zl303xx_PtpVirtualPortPtsfSet() command to toggle the
flag.

- Key parameters include:
 ▪ ptsf
 ▪ prtcConnected
 ▪ clockQuality (class, accuracy, variance).
 ▪ localPriority
 ▪ timeSetFlag
 ▪ timeTraceable
 ▪ frequencyTraceable

The BMCA will select the best master (electrical or packet) while the G.8275 engine will
monitor the PLL performance and set the egress ANNOUNCE fields as required.
• When the PLL is in a PHASE LOCKED state, the egress ANNOUNCE messages

will reflect the ParentDS data provided by the BMCA selection.
• When the PLL is anything less than PHASE LOCKED, the egress ANNOUNCE

message fields will be updated by the G.8275 engine as per the ITU-T G.8275
Standard. Refer to the following Tables in particular:
- ITU-T G.8275.1: Table 2 – Applicable clockClass values.
- ITU-T G.8275.1: Table V.3 – T-BC Announce message contents

• If egress ANOUNCE overrides are configured, they will be applied after the
G.8275 engine.

A.3 MONITORING CONNECTIONS
In some cases it may be required that a port is dedicated to the upstream (master)
direction and that the node should never send ANNOUNCE or SYNC messages on a
port. For example, in the diagram above Port[1] may be dedicated to a PTP master and
even when the Virtual Port is selected (Port[2] becomes the SLAVE port), it is desired
that Port[1] enters the PASSIVE mode rather than MASTER (as it might normally).
At the same time it may also be desirable to continue to monitor the timing packets
(SYNC and DELAY) on the packet port so that the PLL can acquire faster if a switch to
the port occurs.
To configure this scenario, use the following two steps:
1. Block the target port from entering the MASTER state when another port is the

SLAVE:

ZLS30390 Software API User’s Guide

DS50003222A-page 121  2022 Microchip Technology Inc. and its subsidiaries

- Issue the following command:
 zlStatusE zl303xx_PtpPortDenyServiceRequestsSet(
 zl303xx_PtpPortHandleT portHandle,

 zl303xx_BooleanE bDenyServiceRequest)

- This will signal the state machine that the port cannot be a MASTER and
therefore set it to PASSIVE.

2. Inform the port to continue collecting timing data:
- Because the local port is forced to PASSIVE it will not issue ANNOUNCE

messages. The consequence is that the far-end port will determine itself to be
better and maintain MASTER state.

- Because the far-end is MASTER, it will issue ANNOUNCE and SYNC mes-
sages that will be received by the local port.

- Typically in this state, the local port will not issue DELAY_REQUESTS. How-
ever, this can be enabled by issuing the following command:
 zlStatusE zl303xx_PtpStreamUniNegMonitorTimingSet(
 zl303xx_PtpStreamHandleT streamHandle,

 zl303xx_BooleanE bUniNegMonitorTiming)

- Even though the command was originally intended for unicast negotiation
monitoring, it has now been extended for G.8275.1 monitoring as well.

A.4 STATE EVALUATION

A.4.1 Clock State Evaluation Logic

FIGURE A-2: G.8275.1 Clock State Evaluation.

Yes

HW STATE

Clock State Evaluate

Virtual Port
Configured PLL Mode

ELEC

ELSE

PHASE ACQUIRED

PHASE ACQUIRING
FREQ ACQUIRED
FREQ ACQUIRING

HOLDOVER

ELSE

LOCKED

ACQUIRING

IN SPEC

HOLDOVER (IN SPEC)

HOLDOVER (OUT SPEC)

FREERUN

NO

MASTER
Ports == 0

PASSIVE
Ports == 0

UNCAL Ports
== 0

SLAVE Ports
== 0

FREERUN

NO

ACQUIRING

LOCKED

IN SPEC

HOLDOVER (IN SPEC)

HOLDOVER (OUT SPEC)

NO

NO

NO

Configuration of T-BC using the G.8275.1 Profile

 2022 Microchip Technology Inc. and its subsidiaries DS50003222A-page 122

A.4.2 PLL Status Evaluation

FIGURE A-3: G.8275.1 PLL Status and clockClass Values.

A.5 DEBUGGING
The following debug routines may be used to troubleshoot G.8275.1 system operation.

Freerun
(248)

Holdover OOSpec
(Cat1/2/3 = 140/150/160)

Time-of-Day
Gets SET

Freerun
(248)

Holdover OOSpec
(165)

Time-of-Day
Gets SET

Holdover InSpec
(135)

Holdover InSpec
(7)

In-Spec

Locked to PRTC Source
(6)

Phase Locked

Locked to PRTC Source
(Rx GM class value)

Phase Locked

T-GM Edition 2 T-BC Edition 2

In-Spec

TABLE A-1: G.8275.1 DEBUG AND TROUBLESHOOTING ROUTINES
API Routine Description

zl303xx_ DebugClockDataSet

To display the local configured Clock data including:
• DefaultDS
• TimePropertiesDS).
Also displays the ParentDS as selected by the BMCA engine. This may reflect either a
packet source ANNOUNCE data or a VP data.

zl303xx_ DebugPortDataSet To display the local configured Port data. If the port corresponds to a Virtual Port, then
all of the parameters of the zl303xx_PtpVirtualPortConfigS will be displayed.

zl303xx_DebugStreamEgressAnncShow Displays the fields of the output ANNOUNCE message for the stream specified. This
includes the values inserted by the G.8275.1 engine as well as any override values.

ZLS30390 Software API User’s Guide

DS50003222A-page 123  2022 Microchip Technology Inc. and its subsidiaries

NOTES:

DS50003222A-page 124  2022 Microchip Technology Inc. and its subsidiaries

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-7288-4388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

09/14/21

http://support.microchip.com
http://www.microchip.com

	Chapter 1. Products
	1.1 Status on Profiles in Development
	Chapter 2. Companion Documentation
	Chapter 3. Software Architecture
	3.1 System Level Software Architecture
	3.2 Protocol Engine Software Architecture
	3.2.1 PTP Headers
	3.2.2 Structure Initialization
	3.2.3 Object Handles
	3.2.4 Time Stamp Format

	Chapter 4. General Flow and Application References
	4.1 PTP Concepts
	4.1.1 Node
	4.1.2 Clock
	4.1.3 Port
	4.1.4 Stream

	4.2 Sequence of Operations
	4.3 Example Routines
	4.4 Closing and Shutdown
	4.5 Other Software Initialization and Configuration
	Chapter 5. Configuration
	5.1 Configuration of a PTP Application Instantiation: zl303xx_PtpInit()
	5.1.1 PTP Init: Initializing a PTP Application
	5.1.2 PTP Init: Tasks

	5.2 Configuration of a PTP Clock: zl303xx_PtpClockCreate()
	5.2.1 PTP Clock: Task, General, and Miscellaneous
	5.2.2 PTP Clock: Local defaultDS
	5.2.3 PTP Clock: Local timePropertiesDS
	5.2.4 PTP Clock: Profile-Specific and BMCA
	5.2.4.1 PTP Clock: Profiles ITU-T G.8275.x
	5.2.4.2 PTP Clock: Profiles ITU-T G.8265.1
	5.2.4.3 PTP Clock: Profile IEEE C37.238
	5.2.4.4 PTP Clock: Profile IEEE 802.1as

	5.2.5 PTP Clock: Unicast Negotiation Capacity
	5.2.6 PTP Clock: User Overrides

	5.3 Configuration of a PTP Port: zl303xx_PtpPortCreate()
	5.3.1 PTP Port: General and Miscellaneous
	5.3.2 PTP Port: Profile-Specific
	5.3.2.1 PTP Port: Profiles ITU-T G.8275.x
	5.3.2.2 PTP Port: Profile IEEE C37.238
	5.3.2.3 PTP Port: Profile IEEE 802.1as
	5.3.2.4 PTP Port: Default Profile Edition 3 (v2.1)

	5.3.3 PTP Port: Acceptable Master and Acceptable Slave Tables
	5.3.4 PTP Port: Unicast Negotiation

	5.4 Configuration of a PTP Stream: zl303xx_PtpStreamCreate()
	5.4.1 PTP Stream: General and Miscellaneous
	5.4.2 PTP Stream: Message Rates, Timeouts, and Intervals
	5.4.3 PTP Stream: Profile-Specific
	5.4.3.1 PTP Stream: Profiles ITU-T G.8275.x
	5.4.3.2 PTP Stream: Profile IEEE C37.238

	5.4.4 PTP Stream: Unicast and Negotiation
	5.4.5 PTP Stream: User Overrides

	5.5 Configuration of Virtual PTP Port (Optional)
	5.6 Configuration of External User Data (Optional)
	5.6.1 How to Associate External User Data with a PTP Component
	5.6.1.1 External Data Associated with PTP Objects
	5.6.1.2 External Data Associated with Received Packets

	5.7 Configuration for Shutdown (Stopping) PTP Service
	5.7.1 Terminating a PTP Application or its Components

	Chapter 6. Modify Configuration
	6.1 Modify PTP Clock Configuration
	6.1.1 Modify PTP Clock: Description Configuration
	6.1.2 Modify PTP Clock: System Integration Parameters
	6.1.3 Modify PTP Clock: Data Sets
	6.1.4 Modify PTP Clock: ClockQuality (or ClockClass) Value
	6.1.5 Modify PTP Clock: Priority Value
	6.1.6 Modify PTP Clock: Two-Step Flag
	6.1.7 Modify PTP Clock: Domain Number
	6.1.8 Modify PTP Clock: Maximum stepsRemoved Value
	6.1.9 Modify PTP Clock: Maximum Packet Rate Service Limit
	6.1.10 Modify PTP Clock: PATH_TRACE TLV Operation
	6.1.10.1 Memory Considerations
	6.1.10.2 Use in Distributed Systems
	6.1.10.3 API Interface

	6.1.11 Modify PTP Clock: Synchronization Uncertain Flag Operation
	6.1.12 Modify PTP Clock: Slave-Only Operation
	6.1.13 Modify PTP Clock: Profiles ITU-T
	6.1.14 Modify PTP Clock: Profile IEEE C37.238
	6.1.15 Modify PTP Clock: Timestamp Interface Rate TLV
	6.1.16 Modify PTP Clock: SMPTE Sync Metadata TLV
	6.1.17 Modify PTP Clock: IEEE 802.1as Followup Information TLV Data
	6.1.18 Modify PTP Clock: Alternate Time Offset Indicator ATOI TLV Data

	6.2 Modify PTP Port Configuration
	6.2.1 Modify PTP Port: Maximum Packet Rate Service Limit
	6.2.2 Modify PTP Port: Grant or Deny Unicast Service Requests
	6.2.3 Modify PTP Port: Profiles ITU-T
	6.2.4 Modify PTP Port: Peer-Delay One-Step or Two-Step
	6.2.5 Modify PTP Port: FAULTY State
	6.2.5.1 Force a PTP Port into FAULTY State
	6.2.5.2 Force a PTP Port out of FAULTY State
	6.2.5.3 Change Default Port Behavior in FAULTY State

	6.2.6 Modify PTP Port: IEEE 802.1as Neighbor Prop Delay Threshold

	6.3 Modify PTP Stream Configuration
	6.3.1 Modify PTP Stream: Override Mode
	6.3.2 Modify PTP Stream: Message Packet Rates
	6.3.2.1 Pre-Compile Option
	6.3.2.2 Stream Creation Options
	6.3.2.3 Run-Time Options
	6.3.2.4 Additional Unicast Negotiated Message Options

	6.3.3 Modify PTP Stream: UNCALIBRATED State Operation
	6.3.4 Modify PTP Stream: Unicast Negotiation Packet Rate
	6.3.5 Modify PTP Stream: Unicast Negotiation Contract Duration
	6.3.6 Modify PTP Stream: Asymmetry Correction
	6.3.7 Modify PTP Stream: Override Ingress and Egress clockClass
	6.3.8 Modify PTP Stream: Override Egress ANNOUNCE Message Fields
	6.3.9 Modify PTP Stream: Maximum clockClass to Qualify
	6.3.10 Modify PTP Stream: IEEE 802.1as Message Interval Request TLV

	Chapter 7. Dynamic Operation
	7.1 Handling Leap Second Events
	7.1.1 Available APIs
	7.1.2 Grandmaster
	7.1.3 Client (including Boundary Clocks)

	Chapter 8. Reporting
	8.1 Event Interface
	8.1.1 Event Handler
	8.1.2 Event Details
	8.1.2.1 PTP Event Notifications (General)
	8.1.2.2 PTP Event Notifications (Time Sync Algorithm and Time of Day)
	8.1.2.3 PTP Event Notifications (BMCA and Parent Updates)
	8.1.2.4 PTP Event Notifications (Create/Delete)
	8.1.2.5 PTP Event Notifications (Unicast Negotiation)
	8.1.2.6 PTP Event Notifications (FAULTY State)
	8.1.2.7 PTP Event Notifications (802.1as Profile)

	8.2 Polling Statistics and Counters
	8.2.1 PTP Port State Reporting
	8.2.1.1 PTP Port State FAULTY Get Last Fault Type
	8.2.1.2 PTP Port State FAULTY Get Fault Counter
	8.2.1.3 PTP Port State FAULTY Get Last Transmit Error

	8.2.2 PTP Stream State Reporting
	8.2.3 PTP Stream Packet Count Reporting

	Chapter 9. Trace and Logs
	9.1 Tracing Facilities
	9.1.1 Trace Macros
	9.1.2 Trace Example
	9.1.3 Logging Modules
	9.1.4 Log Levels

	Chapter 10. External PTP Interfaces
	10.1 Interface Introduction (Config, Events, Transmit and Receive)
	10.1.1 Interface for Configuration, Control, and Monitoring
	10.1.2 Interface for Packet Transmit Bindings
	10.1.3 Interface for Packet Receive Bindings
	10.1.4 Interface for Events
	10.1.5 Interface for System Commands
	10.1.5.1 Command Handler
	10.1.5.2 Command Details

	10.2 Interface to Time Synchronization Algorithm
	10.2.1 Interface Event: Timing Packet Timestamps (Egress)
	10.2.2 Interface Event: Timing Packet Rate Change Notification (Egress)

	10.3 Interface to System Synchronization Info
	10.3.1 Interface Command: Sync Lock Status (Ingress)
	10.3.2 Interface Command: Sync Stability Status (Ingress)
	10.3.3 Interface Command: Sync Performance Data (Ingress)
	10.3.3.1 Egress Announce using the ‘settlingTimeActive’ Parameter

	10.4 Interface to Time of Day
	10.4.1 Interface Event: Leap Seconds Flag (Egress)
	10.4.2 Interface Event: UTC Offset Change (Egress)
	10.4.3 Interface Command: Time of Day Get (Ingress)
	10.4.4 Interface Command: Time of Day Set (Egress)
	10.4.5 Interface Command: Time of Day Set Status (Ingress)

	10.5 Interface to Transport Layer (Transmit and Receive)
	10.5.1 Host Processor and Real-Time OS Dependencies
	10.5.2 Interface Command: Ethernet Physical Address (Ingress)
	10.5.3 Interface Binding: Transport for Transmit Packets (Egress)
	10.5.3.1 Transmit Function Binding
	10.5.3.2 Transmit Data Type Description
	10.5.3.3 Transmit Time Stamps

	10.5.4 Interface Binding: Transport for Receive Packets (Ingress)
	10.5.4.1 Primary Receive Function Binding
	10.5.4.2 Alternate Receive Function Bindings
	10.5.4.3 Receive Time Stamps

	Chapter 11. Test Interfaces
	Chapter 12. Example Reference Selection Application
	12.1 Introduction
	12.1.1 Code Inclusion and Modules

	12.2 Architecture
	12.2.1 Application API
	12.2.1.1 Application Initialization
	12.2.1.2 Application Configuration
	12.2.1.3 Server Entry Configuration

	12.2.2 Message Interfaces
	12.2.2.1 From Protocol Clocks
	12.2.2.2 From Protocol Streams
	12.2.2.3 From Time-Sync Algorithm
	12.2.2.4 From Packet Timing Signal Fail (PTSF)

	12.2.3 Backplane Interface
	12.2.4 Debug Routines
	12.2.5 Typical Operating Sequence

	Chapter 13. Redundant Timing Card Application for Chassis Systems
	13.1 How to Create a Node in a Redundant System
	13.1.1 Active Node
	13.1.2 Standby Node

	13.2 How to Manage a Redundant Node
	13.2.1 Active Master Node
	13.2.1.1 Multicast
	13.2.1.2 Unicast Negotiation

	13.2.2 Active Slave Node
	13.2.2.1 Multicast
	13.2.2.2 Unicast Negotiation

	13.3 How to Switch the Redundant Mode
	13.3.1 Active Master to Standby
	13.3.1.1 Multicast
	13.3.1.2 Unicast Negotiation

	13.3.2 Standby Master to Active
	13.3.2.1 Multicast
	13.3.2.2 Unicast Negotiation

	13.3.3 Active Slave to Standby
	13.3.3.1 Multicast
	13.3.3.2 Unicast Negotiation

	13.3.4 Standby Slave to Active
	13.3.4.1 Multicast
	13.3.4.2 Unicast Negotiation

	Chapter 14. Acronyms
	Chapter 15. Change History
	15.1 Release 5.3.8
	15.2 Release 5.3.6
	15.3 Release 5.3.4
	15.4 Release 5.3.0
	15.5 Release 5.2.6
	15.6 Release 5.2.4
	15.7 Release 5.1.0
	15.8 Release 5.0.6
	15.9 Release 5.0.5
	15.10 Release 5.0.3
	15.11 Release 5.0.0
	15.12 Release 4.10.1
	15.13 Release 4.10.0
	15.14 Release 4.9.0
	15.15 Release 4.8.5
	15.16 Release 4.7.2
	15.17 Release 4.7.0
	15.18 Release 4.6.3
	15.19 Release 4.6.0
	15.20 Release 4.5.0
	15.21 Release 4.4.0
	Appendix A. Configuration of T-BC using the G.8275.1 Profile
	A.1 High Level System View
	A.1.1 Component Overview

	A.2 Operation
	A.3 Monitoring Connections
	A.4 State Evaluation
	A.4.1 Clock State Evaluation Logic
	A.4.2 PLL Status Evaluation

	A.5 Debugging
	Worldwide Sales and Service

