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Project abstract: Wearable technology is gaining popularity, with people wearing everything “smart” 
from clothing to glasses and watches. Present-day wearables are typically battery-powered, and their 
limited lifetime has become a critical issue. Most devices need recharging every few days or even 
hours, falling short of expectations for a truly satisfactory user experience. This project presents the 
design, implementation and in-field evaluation of a novel sensor-rich smart bracelet powered by en-
ergy harvesting. It is designed to achieve self-sustainability using solar cells with only modest indoor 
light levels and thermoelectric generators (TEGs) with small temperature gradients from body heat. 
The wearable device is equipped with an ultra-low power camera and a microphone, in addition to 
accelerometer and temperature sensors commonly used in commercial devices. Experimental char-
acterization of the fully operational prototype demonstrates a wide range of energy optimization tech-
niques used to achieve self-sustainability with harvested energy only. Our experiments in real-world 
scenarios show an average of up to 550µW for solar cells indoors and 98 µW for TEG with only 3 
degree temperature gradient and up to 250 µW for 5 degrees gradient. Simulations using energy 
intake measurements from solar and TEG modules confirm that the smartwatch achieves self-sus-
tainability with indoor lighting levels and body heat for several realistic applications featuring data ac-
quisition from the on-board camera and multiple sensors, as well as visualization and wireless con-
nectivity. The highly optimized low-power architecture of the presented prototype features image ac-
quisitions at one frame every 1.15 seconds, powered only from the energy harvesters. 
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1. Introduction & Motivation 

Wearable electronics has become a trend in recent years and they are becoming ubiq-

uitous in our daily life. These devices range from smartwatches over smart glasses to 

medical patches. Common for these devices is their small form factor to make them as 

imperceptible as possible. Users shall only notice them, when they provide smart func-

tionalities, like e.g. situational reminders. 

The major challenge with this category of devices is their autonomy. Even the latest 

generation of smart watches (e.g. Pebble Watch, Moto 360, Apple Watch) requires 

users to periodically recharge their batteries (i.e. once a day or every few days), forcing 

the user to stop wearing it and thus interrupting the normal usage of the device. While 

ultra-low power hardware and software co-design, together with new energy storage 

technologies can extend lifetimes, the ultimate goal of a self-sustainable system can 

only be achieved using energy harvesting. 

The smartwatch presented here is combi-

nation of analog (temperature, audio, im-

age) and digital sensor (acceleration) de-

sign together with digital data processing 

to achieve ultra-low power consumption. 

The energy for the device is provided by 

the harvesting circuit that is integrated 

into the same system. Combining simul-

taneous harvesting for two different har-

vesting sources, namely solar and ther-

mal, the self-sustainable sensing and pro-

cessing can be achieved. 

The software for sensor data acquisition was developed in parallel to the hardware to 

guarantee the best possible energy efficiency. Additionally, on top of the sensor data, 

also context recognition algorithms were tested and their energy efficiency as well as 

recognition accuracy for an on-device implementation was evaluated. Besides the 

commonly used accelerometer, our smartwatch also includes a microphone and an 

image sensor, enabling the device to distinguish between different events with a fine-

grained resolution. 

The small form factor of the developed hardware, shown in Fig. 1, and the correspond-

ing sensing and context recognition software layers make this smartwatch ready to 

easily prototype smart wearable applications, while always being energy neutral, due 

to the use of energy harvesters. 

To summarize, this project presents novel smartwatch with special focus on: 

 Self-sustainability to avoid recharging or exchange of batteries (in contrast to com-

mercial products), 

 System design with combination analog and digital parts for ultra-low power con-

sumption, e.g. the analog part includes camera, microphone and harvesting, 

 Low power sensing, data acquisition and data analysis, i.e. context recognition to 

increase the lifetime of our smartwatch. 

 

Fig. 1: The developed core board with microcon-

troller, sensors, peripherals connectors and en-

ergy harvester (left: top, right: bottom view). 



 

2. System Architecture 

The watch-like system, consisting of different 

embedded components, is able to acquire, 

process and wirelessly transmit sensor data. It 

features a 3-axis accelerometer, an analog mi-

crophone, an analog 112×112 pixels camera, 

and a temperature sensor. The communica-

tion subsystem is based on a NFC radio to 

transmit/receive data. To visualize data on the 

device itself an e-paper display is used. The 

system is supplied only by energy harvesters: solar panels and thermoelectric gener-

ator (TEG) modules deployed on a wrist band achieve perpetual operation using only 

indoor light and body heat. The block diagram of hardware is shown in Fig. 2. 

The architecture is stand alone with each subsystem implemented on one board to 

facilitate wearability. Only the camera is left out of the main board to have a more 

flexible field of view choice depending of the final packaging and the application (e.g. 

face vs. lateral mounting). The hardware itself can be divided into five distinct subsys-

tems: 

 A microcontroller subsystem built around a Texas Instruments MSP430FR5969 

 A multi-sensor subsystem consisting of a nano-power accelerometer, a temperature 

sensor, an analog microphone and all the conditioning circuitry for the analog parts 

and connectors for the external analog camera board 

 A communication module consisting of a NFC/RFID tag IC transceiver 

 An ultra-low power e-paper display for a zero idle power graphical user interface 

 An energy harvester subsystem, with solar and thermal energy sources to charge 

the Li-Ion battery or supercapacitors which supply the entire device 

2.1. Microcontroller Subsystem 

The core of the smartwatch is a microcontroller, which is used to collect and process 

the sensor data. Additionally, it is responsible for power management to reduce the 

energy consumption of the while device. For this purpose a Texas Instruments 

MSP430FR5969 MCU was used due to its low active power consumption of only 

103µA/MHz and fast, non-volatile and highly energy efficient 64KB Ferroelectric Ran-

dom Access Memory (FRAM). The various Low Power Modes (LPM) allow to turn off 

the CPU if only a peripheral is working or to shut down the MCU to ultra-low power 

saving mode with only 20nA current consumption. Finally, this MCU features a broad 

range of peripherals like: internal oscillator, analog-to-digital converters (ADCs), timers, 

PWM, Universal Serial Communication Interfaces (USCI), and brownout reset circuitry. 

This allow the acquisition and processing of data from three analog sensors (camera, 

microphone and temperature) via analog-to-digital converter ADC input and digital out-

put of the accelerometer sensor is via SPI serial port. Also the digital interfaces allow 

to communicate with the NFC communication chip and to update the contents of the 

e-paper display. 

 

Fig. 2: Block diagram of the smartwatch 



 

2.2. Multi Sensor Subsystem 

This subsection presents the sensor subsys-

tem and the low power mechanisms to increase 

the energy efficiency of the sensor data acqui-

sition. As shown in the block diagram in Fig. 3, 

the microphone and the accelerometer MEMS 

sensors and the temperature sensor are inte-

grated on the core board of the device. The im-

age sensor is attached to the core board with a 

connector. 

ACCELEROMETER. The accelerometer ADXL362 from Analog Devices, was selected as 

it is the lowest power consumption on the market, especially in sleep mode 

(40nW@2V). Its motion triggered wake up feature allows the implementation of ag-

gressive power management, which is of special importance in an energy harvesting 

supplied system. In fact, this sensor is an ultra-low power, 3-axis accelerometer that 

consumes less than 2μA at a 100Hz output data rate and 270nA when in motion trig-

gered wake-up mode, which allows entering a lower LPM of the microcontroller, which 

is woken up again when a new event happens that triggers a motion wakeup. The 

internal data buffer and interrupt generation also allow fast and energy efficient burst 

transfers of sensor data. 

MICROPHONE. The second on-board sen-

sor is an INMP801 MEMS microphone by 

InvenSense, which was selected for its 

low power current consumption of only 

17µA at 1V. Due to the low output swing, 

an operational amplifier (Op-Amp) is 

used to adjust the swing and offset of the 

microphone output signal to obtain high 

quality data when sampling the signal 

with the ADC of the microcontroller. A 

Texas Instruments OPA344 Op-Amp was 

selected for this task, because it features 

good performance for audio signal at a 

very low power consumption. As the design has been driven with low power consump-

tion as the primary constraint, a DC-DC converter (LTC2406) and a Texas Instruments 

TPS22960 load switch controlled by the microcontroller can switch on/off the micro-

phone circuit, the MEMS sensor, the DC-DC and the Op-Amp. This results in only the 

small quiescent current of 250nA of the load switch when the microphone system is 

not used for audio data acquisition. The schematic of this subsystem is shown in Fig. 

4. 

IMAGE SENSOR. This sensor is place on a separate breakout board that is directly con-

nected to the core board, which controls the sensor and supplies it with power. This 

allows the power management to stay on the core board, since a controllable DC-DC 

converter is used to convert the voltage from 3V to the 3.3V supplied to the image 

 

Fig. 3: Block diagram of the sensor con-

nections to the microcontroller. 

 

Fig. 4: Schematic of the microphone subsystem. 



 

sensor. The Texas Instruments TPS61097-33 converter was chosen not only because 

of high conversion efficiency but especially to be used as switch for the peripherals 

with only 5nA in shut down, and the presence of the enable pin on the DC-DC. The 

selected camera is the ultra-low power Centeye Stonyman sensor. With less than 2mW 

at 3V, the power consumption of this image sensor is a few orders of magnitude less 

than a digital camera and perfectly fits in our power-constrained, wearable scenario. 

The chip features a 112×112 pixel, grayscale image using a simple interface with 5 

digital inputs and one analog output. The digital input allows to configure the image 

sensor and to select the pixel which is connected to the analog output for analog-to-

digital conversion with the microcontroller. The image acquisition was optimized using 

hardware peripherals of the microcontroller: PWM for digital control pulse generation, 

ADC for analog output sampling, and DMA for transferring the data to FRAM. Exploiting 

the hardware modules allows turning off the CPU core during the image data acquisi-

tion and speeds up the image acquisition process. The image acquisition time and 

energy of 468ms and 2.22mJ for a software implementation is reduced down to only 

47ms and 226µJ for a single image acquisition. This results in an energy saving of 

89.9% for the acquisition of one image. 

TEMPERATURE SENSOR. A Negative Temperature Coefficient (NTC) thermistor with re-

sistance that decreases while temperature increases has been integrated directly in 

the smart watch. We used a Vishay 10kΩ 1% thermistor connected to the ADC of the 

microcontroller to monitor the ambient temperature. 

2.3. Energy Harvesting Subsystem 

The design includes both a solar and a thermal harvester subsystem to exploit the 

combination for the two sources. Both are used to supply a single battery, thus it is 

important to manage them to do not waste energy when one of the two sources is not 

harvesting.  

SOLAR ENERGY. The solar energy harvesting subsystem is based on the bq25570 ultra-

low power IC from Texas Instruments. It exploits a high efficiency boost converter to 

harvest energy from sub-milliwatt low-voltage sources such as small solar cells under 

indoor lighting and integrates a configurable battery management circuit to recharge 

all battery chemistries or supercapacitors. For high efficient energy harvesting, the 

bq25570 features maximum power point tracking (MPPT) capabilities. Moreover, it in-

tegrates an ultra-low power buck converter with 

programmable output voltage. The bq25570 

consumes less than 500nA in active mode and 

about 5nA when it is switched off using its chip 

enable pin. The power source of our smartwatch 

a wrist strap, which embeds one flexible solar 

cell, MP3-25 from PowerFilm. The bq25570 al-

ways adapts itself to work at the maximum 

power point (configured at 80% of the open-cir-

cuit voltage) providing a maximum power of 

126µW @ 2.2V under low office light conditions 

(250lx) and 4.45mW @ 3.0V under sunlight 

 

Fig. 4: Application scenario of the pro-

posed smartwatch 



 

(10000lx). The adopted storage element is a 40mAh – 3.7V lithium-polymer (LiPo) re-

chargeable battery. To reduce the energy consumption of the bq25570 when no solar 

input power is available, we use a Texas Instruments nano-power TLV3691 compara-

tor and disable the bq25570 harvester chip if the solar input voltage drops below 

300mV. This reduces the power consumption of the solar harvester from 500nA to 5nA 

when no input energy is available. Even if the comparator circuit consumes 110 nA, it 

reduces to overall power consumption of the harvesting circuit by 28% when consider-

ing an average day to night cycle with 50% solar energy unavailability. To still supply 

the smartwatch under solar energy unavailability, this shutdown circuit features an 

override capability that allows the microcontroller to enable the chip once its buffer 

capacitance runs out of energy. For this feature, the microcontroller uses it supply volt-

age supervisor, to wake up and re-enable the bq25570 output voltage before running 

out of energy. 

THERMAL ENERGY. The thermal energy harvesting subsystem is built around the 

LTC3108 from Linear Technology. This DC-DC converter can start conversion from 

only 20mV and boosts the voltage using a fly back converter with a 1:100 transformer 

at the input and was optimized to work with input between 20mV and 150mV. Because 

our TEGs should be wearable around the wrist, we are severely constrained in size. 

The Quick-Cool QC-32-0.6-1.2 has a size of only 8×10mm and a thickness of 2.6mm, 

allowing to fit them on the bottom of the wrist together with a heat sink of 14×14mm 

and a height of 6 mm glued on top of each of them. We found that using 7 TEGs in 

series was a good compromise, requiring a temperature difference of only 1.75K to 

obtain the required startup voltage for the step-up converter and being still wearable. 

The solar panel and TEG modules are 

combined together in one wristband 

as illustrated in Fig. 4. To combine the 

harvested power of both harvesting 

circuits in one storage, we user power 

OR-ing at the output of both harvest-

ing sub circuits, as power OR-ing be-

fore the harvesting stage does not 

work because of the highly internal resistances of the used sources. Both passive 

power OR-ing using a diode and active power OR-ing using a controlled MOSFET 

circuit were evaluated. An active solution requires additional power for control and is 

only useful if, on average, the losses in the diodes exceed that power. In our setup, 

this is not the case. Only adding a diode to the output of the LTC3108 is sufficient, 

since the bq25570 already has such a diode built-in at the battery charging output. The 

power harvesting circuit is shown in Fig. 5. 

2.4. User Interface 

DISPLAY MODULE. The graphical interface of the smartwatch is an e-paper display 

(EPD). This technology is thought to emulate the behavior of the ink on a paper sheet 

and, unlike LCD or OLED technologies, does not need any background illumination 

because they reflect light similar to traditional paper. This makes them not only reada-

ble under direct sunlight, but they also consume power only during the display update 

 

Fig. 5: Schematic of the multi-harvesting circuit. 



 

and can hold the image for days without a power supply. For this project, a 1.44’’ TFT 

EPD EK014AS015 from Pervasive Displays was used. It features a matrix of 96x128 

pixels and can display images in bitmap one-bit black/white format. It communicates 

with the microcontroller by means of SPI protocol, the supply voltage is within the range 

3-3.6V. A display update operation requires a maximum time interval of 1.2s, consum-

ing only 12mJ of energy. At the end of each update the EPD is switched-off to save 

power. 

COMMUNICATION MODULE. The wireless connectivity is provided by the M24LR16E-R 

NFC-EEPROM from ST Microelectronics. It is a NFC/RFID tag IC with 16 kbit 

EEPROM and I2C bus interface. The M24LR16E-R is characterized by a maximum 

write time of 5ms in I2C mode and 5.75ms in wireless mode. The I2C mode supports 

a 400 kHz communication frequency while in RF mode the maximum data rate is 6.6 

kbit/s to 26 kbit/s. A power supply of 1.8-5.5V is needed only for I2C operations be-

cause this chip behaves as a passive tag, thus the wireless communication is powered 

by the initiator device, namely a smartphone or other devices with NFC capabilities. 

3. Software Stack for Application Support 

To reduce the power consumption to the lowest 

possible level, the software has to be optimized 

for the used low power hardware. Fig. 6 gives an 

overview of the software stack for our smart-

watch. The different layers are discussed in the 

following sections. 

3.1. Low-Power Sensor Data Acquisition 

In the previous section we have already high-

lighted some of the software optimizations that 

go together with the low power hardware design. 

To speed up the image acquisition and lower the power consumption, PWM, continu-

ous ADC conversion and automatic DMA transfer to FRAM was used. This implemen-

tation is not only 90% faster due to hardware support, it also allows to turn of the CPU 

during acquisition, which results in a reduction of the power consumption by 19%. Sim-

ilar to the image acquisition, the microphone recording also use continuous ADC con-

version and DMA to store the data in FRAM. Here again, this allows to shut down the 

CPU of the microcontroller. Because of external analog circuitry, the data stored in 

FRAM can directly be used later for processing, because the external circuit already 

takes care to properly scale the audio signal and apply the necessary offset. 

For the digital sensors and interfaces, the SPI and I²C communication interfaces are 

already implemented as hardware peripherals. This means that these data transfers 

only need to be initiated by the CPU, which then can be turned off for the rest of the 

transfer. The data for transmission and reception can then simply be read or written to 

the FRAM using the DMA module. For sensors with a local data buffer, like the 

ADXL362 accelerometer, we exploit this feature to send the microcontroller to deep 

sleep mode and only wake up to transfer the buffered data in larger blocks. 

 

Fig. 6: Overview of our software stack 



 

3.2. Power-Aware Context Recognition 

Context awareness provides completely new use cases for a smart watch and makes 

it much more user-friendly. Our context awareness system tries to classify the action 

that is being performed by the wearer of the smart watch. It does so based on the data 

available from the many different sensors.  

In order to train a classifier we need to collect and label a dataset. We chose 5 classes: 

relaxing, walking, public transport, office and cafeteria, and acquired data from the 

temperature sensor, accelerometer, camera and microphone. Each data item lasts 5s 

and contains 8kHz audio data, 100Hz 3-axis accelerometer measurements, one tem-

perature read-out and one image of 112x112 pixel. Each of the classes has several 

hours of labeled data. 

We perform the classification using a decision tree which is constructed using the con-

tinuous C4.5 algorithm and our acquired dataset. This algorithm was chosen because 

of its energy efficiency and low computational complexity during classification (as op-

posed to during learning). For performing the classification, there is only the decision 

tree, which has to be descended until arriving at a leaf.  

Performing the classification on the acquired samples directly yields very poor results, 

because they usually represent the information in an unfavorable way, e.g. such that 

very little noise or small variations of the environment yield completely different results. 

This is overcome by extracting features from this data. For the different types of sen-

sors, there are different suitable features:  

 For the audio data, we use the number of zero crossing with a 1% hysteresis, the 

average energy of the signal, the maximum absolute value and dispersion. We also 

use features from the frequency domain, such as the spectral centroid, the band-

width, and the well-known Mel-frequency cepstral coefficients (MFCCs).  

 For the accelerometer data, we compute mean, variance, energy, covariance be-

tween the axes, the dynamic range and the frequency-domain entropy.  

 For the temperature we calculate the average rate of change, mean, variance, and 

dynamic range.  

 For the camera data we computed the mean (avg. brightness), variance and con-

trast.  

Many of these features have an intuitive meaning, like the energy of a segment of the 

audio stream, which provides an indication of the loudness. However, to make use of 

the large number of features we obtain this way, we would need an immense amount 

of labelled training data to prevent overfitting the classifier. Instead, we chose to per-

form feature selection, selecting only a fixed number of features. We chose those which 

jointly have most information relevant for classification, i.e. those which maximize the 

mutual information with the classification. Among the most important features there 

were the mean of the temperature, the mean of the camera image, the spectral energy 

and entropy of the accelerometer axes, followed by a long list of audio features. 



 

Experimental Evaluation 

In this section, the energy consumption of the smartwatch’s components is analysed 

for different acquisition and processing scenarios and the accuracy of the selected 

context recognition algorithm is evaluated. 

3.3. Feature Extraction Cost 

Due to the limited energy budget in our 

wearable device, it is important to under-

stand how energy is consumed in the sen-

sor data extraction and processing and clas-

sification process. Fig. 7 shows the estima-

tion for the time needed and energy consumed to acquire and extract features from 

different sensors. It should be noted that these values were calculated after performing 

our system wide optimizations, both in the hardware and software.  

3.4. Context Recognition Accuracy Analysis 

With the low-complexity classi-

fication system presented here, 

we were able to achieve a 

mean accuracy of 65.24%. To 

give more insight into the limi-

tations, we present the confu-

sion matrix in Fig. 8. While 

some classes can be distin-

guished very well, some are often confused. This is the case for ‘relaxing’ and ‘office’, 

which is not surprising since the test subject were often in front of the computer at work 

as well as at home.   

 

The various sensors require a 

substantial amount of power, 

considering the targeted energy 

neutrality. Clearly there is a 

trade-off between which sensors 

are used and what accuracy can 

be achieved. We visualize this 

trade-off in Fig. 9, considering 

only the data of some of the 

mentioned sensors.  

  
 

Fig. 9: Classification accuracy v. energy 
 

Ø 65.24% 
Predicted 

Relax. Walk. PT Office Cafet. 

A
c
tu

a
l 

Relaxing 50.23 11.23 2.85 34.30 1.40 

Walking 4.19 73.05 11.69 8.15 2.92 

Publ. Transp. 2.38 39.65 55.22 2.32 0.43 

Office 17.98 3.04 0.46 76.89 1.63 

Cafeteria 8.43 7.71 0.45 13.06 70.34 

Fig. 8: Confusion matrix 

Sensor  time (ms) Energy (µJ) 

Temperature 0.163 0.186 

Accelerom. 103 336.9 

Camera 65.8 288.7 

Fig. 7: Energy Estimation for Sensor Features 



 

4. Lifetime Estimation 

This section gives an overview of life time and 

self-sustainability estimations. The acquisition 

and feature calculation for one second needs 

2.28 mJ. For this analysis, the presented multi-

harvester and a battery with 40mAh capacity is 

used. For the harvester, we assume that an av-

erage power of 40.8 µW is available, from both 

the solar panel and thermoelectric generators. 

Under the assumption that the buck converter is 

off and deep-sleep mode is exploited during 

sleep phases, a power consumption 37.8 µW was determined. Fig. 10 shows scenarios 

analyzed under this conditions, assuming an initially charged battery. If the device 

needs do classifications every 10 seconds, the device’s lifetime will be approx. 37 days. 

Self-sustainability, or avoiding power outage, is reached when a classification is per-

formed every 745 seconds. It is possible to see the drastic impact of our power man-

agement and energy harvesting, since performing continuous classification without any 

energy harvesting will lead to a lifetime of less than 4 days. 

5. Conclusion and Future Work 

We have presented a multi-sensor smartwatch that is supplied by only energy harvest-

ing. This guarantees that our smartwatch is self-sustainable and the user does not 

need to worry anymore about recharging or exchanging batteries. For ultra-low power 

design the system consists of a combination of analog parts, like camera, microphone 

and harvesting, and digital parts for accelerometer, communication and e-paper dis-

play. On top we provide a software that is optimized for ultra-low power sensor data 

acquisition as well as energy optimized context recognition using the various sensor 

available in our design. 

The lifetime simulation of the smartwatch showed that the complete system can ac-

quire data and run the context recognition every 745 seconds while still being self-

sustainable. 

With the software stack that includes context recognition, the presented smartwatch 

allows easy integration and testing of context aware application in a wearable real-

world context. In future the device will feature even more sensors, like gyroscope and 

integrate the camera module directly on the device itself to reduce its size. 

  

Activity Days 

Every 745 seconds ∞  
Every 5 minutes 1872.51 
Every minute 243.30 
Every 10 seconds 37.79 
Permanently 3.73 
Permanently (with-
out harvesting) 

3.67 

 

Fig. 10: Self-sustainability analysis. 



 

6. Bill of materials 
# Designator Description Value 

1 BT1 Battery connector  

2 C1, C44 Capacitor 100p 

1 C10 Capacitor 22u 

2 C13, C14 Capacitor 15p 

1 C15 Capacitor 1n 

8 C17, C21, 
C27, C28, 
C31, C34, 
C35, C41 

Capacitor 1u 

4 C2, C4, C6, 
C8 

Capacitor 4.7u 

2 C3, C43 Capacitor 1u 

3 C5, C11, C12 Capacitor 10u 

11 C7, C19, C20, 
C22, C23, 
C25, C26, 
C16, C18, 
C30, C32 

Capacitor 100n 

2 C9, C29 Capacitor 10n 

1 C40 Capacitor  220uF 

1 C42 Capacitor 330pF 

3 D1, D2, D3 TLMS1000-GS08 
LED, 0603 RED 

 

1 E1 Trace Antenna  

2 J1, J2 Socket Solar Cell  

1 J10 SOCKET, 1X9  

1 J11 Micro SD Card 
holder, push-push 

 

1 J3 Header, 6 way  

1 J6 Header, Board-to-
Board, 11 way 

 

1 J9 Header, Board-to-
Board, 13 way 

 

2 L1, L4 LPS3314-
222MRB Inductor 

2.2uH 

1 L2 Inductor 22u 

1 L3 Inductor 10u 

2 M1, M2 FDN339AN. 
MOSFET N type. 

 

2 R1, R11 Resistor 100k 

1 R10, R13 Resistor 715k 

2 R14, R12 Resistor 7.32M 

1 R15 Resistor 7.87M 

2 R16, R17 Resistor 5.49M 

1 R18 Resistor 4.32M 

3 R19, R29 Resistor 15Meg 

3 R21, R22,R23 Resistor 560R 

3 R24, R28 Resistor 0R 

4 R26, R32, 
R33, R34 

Resistor 47k 

1 R3 Resistor 3k9 

2 R30, R31 Resistor 15k 

1 R35 Resistor 10k 

9 R4, R8, R24, 
R27, R28, 
R36, R37, 
R38, R41 

Resistor, 0R, 1%, 
100mW, 0603 

0R 

 

# Designator Description Value 

2 R5, R6 Resistor 10k 

 R7, R2, 
R40,R27,R20 

Left out 0R re-
sistance 

inf 

1 R9 Resistor 4.32M 

3 R51, R52, 
R53 

Resistor 100M 

1 R54 Resistor 3.83M 

1 R55 Resistor 499k 

1 RT1 EPCOS 
B57861S103F40 
THERMISTOR, 
10K, 1%, NTC, 
RADIAL 

10k  

2 SW1, SW2 SWITCH TAC-
TILE SPST-NO 
0.02A 15V 

 

1 U1 OPA344 OPAMP 
GP 2.8MHZ RRO 
6SOT 

 

1 U10 RFID/NFC tran-
sponder, 16kB 
EEPROM, I2C in-
terface 

 

1 U11 ADXL362 Accele-
rometer, digital, 3-
axes, TFLGA16 

 

1 U2 INMP801 ULP Mi-
crophone 

 

1 U3 LTC3406: REG 
BUCK SYNC 1.2V 

 

1 U4 bq25570: Energy 
harvesting IC, 
VQFN20 

 

1 U5 TPS61097-33 
Low power DC-
DC converter 

 

1 U6 MSP430FR5969 
Microcontroller, 
16bit, VQFN48 

 

3 U7, U8, U9 TPS22960 IC 
LOAD SWITCH 

 

1 U10 TLV3691 Na-
noPower Compar-
ator 

 

1 U11 LTC3108 Ultralow 
Voltage Step-Up 
Converter and 
Power Manager 

 

1 D5 Schottky Diode 
BAT43W 

 

1 Y1 Crystal 32kHz 

1 T1 LPS6535 Trans-
former (Coupled 
Inductor) 

 

1 LC1 EK014AS015 
1.44'' e-paper 
LCD 

 

 


