MK19 Bluetooth Module Datasheet # **Revision History** | Version | Description | Contributor(s) | Date | |---------|------------------|----------------|-------------------| | V1.0 | Initial release | YK Huang | December 25, 2024 | | V1.1 | Updated pictures | YK Huang | June 13, 2025 | # Datasheet # **Contents** | Revision History | | |---|----| | 1 Instructions | 3 | | 1.1 Features and Benefits | 4 | | 1.2 Applications | 5 | | 1.3 Product Options | 6 | | 1.3.1 Hardware Options | 6 | | 1.3.2 Firmware Options | 6 | | 1.3.3 Ordering Information | 6 | | 2 Specifications | 7 | | 3 Hardware Design | 8 | | 3.1 Block Diagram | 8 | | 3.2 Pin-out and Pin Assignments | 8 | | 4 Mechanical Details | 13 | | 4.1 PCBA Mechanical Dimensions | 13 | | 4.2 PCB Land Pads Dimensions | 14 | | 4.3 u.FL Connector Dimensions | 15 | | 5. Mounting Design Suggestions | 16 | | 5.1 Recommended Mounting and PCB Layout | 16 | | 5.2 Mechanical Enclosure | 17 | | 6. Cautions | 18 | | 6.1 Reflow Soldering | 18 | | 6.2 Usage Condition Notes | 19 | | 6.3 Storage Notes | 20 | | Contact | 21 | **Datasheet** ## 1 Instructions MK19 is powerful, highly flexible and cost-effective Bluetooth module based on world-leading **Nordic® Semiconductor nRF54L15** SoC solution, which integrates an ultra-low power multi-protocol 2.4GHz radio and MCU functionality featuring a 128 MHz Arm® CortexTM-M33 processor, comprehensive peripheral set, and scalable memory configurations to 1.5 MB NVM and 256 KB RAM. MK19 is suited to enable a broad range of applications. The multi-protocol 2.4 GHz radio supports the latest **Bluetooth® 6.0** features including Bluetooth Channel Sounding, as well as 802.15.4-2020 for standards such as Thread, Matter, and Zigbee, and a proprietary 2.4 GHz mode supporting up to 4 Mbps for higher throughput. MK19 module brings out all nRF54L15 hardware features and capabilities like RISC-V Coprocessor, high-speed SPI, SPIM, UART, Global RTC, NFC, and up to +8dBm Tx Power and more. MK19 module follows the size and package of most MOKO Bluetooth modules such as the MK02 (nRF52832 SoC), MK07 (nRF52833 SoC), MK08 (nRF52840 SoC) and MK13 (nRF5340 SoC), allowing you to easily and quickly upgrade your hardware to the latest and powerful nRF54L15 Bluetooth solution without re-designing hardware. MK19 module will be programmed using the default MOKO MKBN series firmware and client's own firmware can be programmed for mass production. After you choose MK19 series module, MOKO Smart will provide technical support for your development. We can power demanding applications, while simplifying designs and reducing BOM costs. # MOKO SMART # **MK19 Bluetooth Module** **Datasheet** #### 1.1 Features and Benefits #### Multi-protocol radio supporting - o Bluetooth 6.0 2 Mbps, 1 Mbps, 500 kbps, and 125 kbps - o IEEE 802.15.4-2020 (Thread, Matter, Zigbee) - Proprietary 2.4 GHz (up to 4 Mbps data rates) #### MCU - o Arm® Cortex™-M33, 128 MHz - o 1524 KB non-volatile memory (RRAM) and 256 KB RAM - 505 EEMBC CoreMark® score running from non-volatile memory, 3.95 CoreMark per MHz - Single-precision floating-point unit (FPU) - Memory protection unit (MPU) - Digital signal processing (DSP) instructions #### Peripherals - 128 Mhz RISC-V Coprocessor - Two realtime counters (RTC), and one global RTC (GRTC) that can run in System OFF mode and implement a shared system timer. - Five fully featured serial interfaces with EasyDMA, supporting I²C, SPI controller/peripheral, and UART - o 14-bit ADC - o Three pulse width modulator (PWM) units with EasyDMA - I²S two channel Inter-IC sound interface - Pulse density modulation (PDM) interface - Near field communication (NFC) - Two quadrature decoders (QDEC) - Embedded inductors for DC/DC converter - 32.768 kHz crystal oscillator - 34 half-hole pins and 4 debug pads - o 28 GPIOs - 1.7V to 3.6V supply voltage **Datasheet** # **1.2 Applications** #### • Internet of things (IOT) - Smart home sensors and controllers - o Industrial IoT sensors and controllers #### Advanced wearables - Health/fitness sensor and monitor devices - Wireless payment enabled devices #### Advanced computer peripherals and I/O devices - Mouse - Keyboard - o Multi-touch trackpad #### • Interactive entertainment devices - Remote controls - Gaming controllers **Datasheet** ### **1.3 Product Options** #### 1.3.1 Hardware Options There are two different models (**MK19A** and **MK19B**) of **MK19** series Bluetooth modules. Both models have same dimensions and pin assignments. The difference is in the antenna design. **MK19A** embeds a high-performance PCB antenna. MK19B uses a u.FL connector (receptacle) and requires an external 2.4Ghz antenna. MOKO smart development team can assist you in selecting high-performance antennas that suit your needs. Figure 1: MK19A and MK19B #### 1.3.2 Firmware Options For customers to use, MK19 series modules will be programmed default MOKO MKBN-L01 series firmware, which has the functions of UART Wireless Transparent Transmission. MOKO Smart can help you develop the firmware and can also program your own firmware to modules when manufacture. | Firmware Version | Firmware Features | |------------------|--| | MKBN-L01 | UART wireless transparent transmission | **Note:** This document is a Hardware Datasheet only – it does not cover the software aspects of the MK19 If you want to get more information about firmware or SDKs of MK19, please contact sales of MOKO Smart. ### 1.3.3 Ordering Information | Product Model | Antenna | 32.768kHz XTAL | Firmware Version | Remark | |----------------------|----------------|----------------|------------------|---------------| | MK19A | PCB | Yes | MKBN-L01 | Default model | | MK19B | u.FL connector | Yes | MKBN-L01 | Default model | MOKO Smart can provide the default model modules as samples to you to test or develop without MOQ. But if you want the custom models, there will be a MOQ requirement. **Datasheet** Please contact sales team of MOKO Smart to get more ordering information. # 2 Specifications | Detail | Description | | |-----------------------|--|--| | Chip | nRF54L15 | | | Bluetooth Version | Bluetooth 6.0 | | | MCU | ARM® Cortex®-M33, 128 MHz | | | RAM | 256 KB | | | Flash | 1524 KB non-volatile memory (RRAM) | | | Tx Power | -46 dBm to +8 dBm, 1 dB step size from -10 dBm to +8 dBm | | | Receiver Sensitivity | -96 dBm sensitivity in 1 Mbps Bluetooth® LE mode -104 dBm sensitivity in 125 kbps Bluetooth® LE mode -101 dBm sensitivity in IEEE 802.15.4 with a 37 bytes packet length | | | Clock Control | On-chip 128 MHz phase-locked loop (PLL) with internal oscillator 32MHz crystal oscillator Embedded 32.768 kHz RC oscillator and external 32.768kHz crystal oscillator | | | Power Supply | 1.7V to 3.6V DC | | | Power Regulator | Switching regulator for DC/DC buck setup | | | Power Consumption | Peak current 10.0 mA (BLE TX 1 Mbps @ +8 dBm and 3.0V) 3.0 uA (System ON IDLE with GRTC (XOSC) and 256 KB RAM) 0.6 uA (System OFF) | | | Antenna | MK19A – PCB trace antenna
MK19B – u.FL connector | | | Quantity of Pin | 34 half-hole pins and 4 round debug pad pins | | | GPIO | 28 | | | Operating Temperature | -40 to 85°C Extended Industrial temperature -40 to +105°C can be customized | | | Module Dimensions | Length: 21mm±0.2mm Width: 13.8mm±0.2mm Height: 2.3mm+0.1mm/-0.15mm | | **Datasheet** # 3 Hardware Design # 3.1 Block Diagram Figure 2: MK19 Block Diagram # 3.2 Pin-out and Pin Assignments Figure 3: MK19 pin diagram (Rear View) | MOKO SMAR | | | | | Datasneet | |-----------|----------------|---------------------------------------|--|---|----------------| | Module | nRF54L15 | nRF54L15 | Function | Description | Dedicated | | Pin No. | Pin No. | Pin Name | Function | Description | function | | 1 | 28 | P0.03
GRTCPWM | Digital I/O
Digital I/O | General purpose I/O
GRTC PWM output | GRTC | | 2 | 29 | P0.04
GRTCLFCLKOUT | Digital I/O
Digital I/O | General purpose I/O
GRTC LF clock output | GRTC | | 3 | 37 | P1.09
ASO [2]
RADIO [0] | Digital I/O
Digital I/O
Digital I/O | General purpose I/O TAMPC active shield 2 output RADIO DFEGPIO | TAMPC
RADIO | | 4 | 38 | P1.10
ASI [2]
RADIO [1] | Digital I/O
Digital I/O
Digital I/O | General purpose I/O
TAMPC active shield 2 input
RADIO DFEGPIO | TAMPC
RADIO | | 5 | 39 | P1.11
ASO [3]
RADIO [2]
AIN4 | Digital I/O Digital I/O Digital I/O Analog input | General purpose I/O TAMPC active shield 3 output RADIO DFEGPIO Analog input | TAMPC
RADIO | | 6 | 40 | P1.12
ASI [3]
RADIO [3]
AIN5 | Digital I/O Digital I/O Digital I/O Analog input | General purpose I/O TAMPC active shield 3 input RADIO DFEGPIO Analog input | TAMPC
RADIO | | 7 | 41 | P1.13
RADIO [4]
AIN6 | Digital I/O
Digital I/O
Analog input | General purpose I/O
RADIO DFEGPIO
Analog input | RADIO | | 8 | 42 | P1.14
RADIO [5]
AIN7 | Digital I/O
Digital I/O
Analog input | General purpose I/O
RADIO DFEGPIO
Analog input | RADIO | | 9 | 10,22,36,47,48 | VDD | Power | Power supply | | | 10 | 44 | VSS, Die pad | Power | Ground | | | 11 | 3 | P1.02
NFC1 | Digital I/O
NFC input | General purpose I/O
NFC antenna connection | | | 12 | 4 | P1.03
NFC2 | Digital I/O
NFC input | General purpose I/O
NFC antenna connection | | | 13 | 5 | P1.04
ASO [0]
AIN0 | Digital I/O
Digital I/O
Analog input | General purpose I/O TAMPC active shield 0 output Analog input | TAMPC | | 14 | 6 | P1.05
ASI [0]
RADIO [6]
AIN1 | Digital I/O Digital I/O Digital I/O Analog input | General purpose I/O
TAMPC active shield 0 input
RADIO DFEGPIO
Analog input | TAMPC
RADIO | | | | | | | Datasneet | |---------|----------|---------------------------|---|---|---| | Module | nRF54L15 | nRF54L15 | Francisco | Description | Dedicated | | Pin No. | Pin No. | Pin Name | Function | Description | function | | 15 | 7 | P1.06
ASO [1]
AIN2 | Digital I/O
Digital I/O
Analog input | General purpose I/O TAMPC active shield 1 output Analog input | TAMPC | | 16 | 8 | P1.07
ASI [1]
AIN3 | Digital I/O
Digital I/O
Analog input | General purpose I/O TAMPC active shield 1 output Analog input | TAMPC | | 17 | 9 | P1.08
CLK16M
EXTREF | Digital I/O Digital I/O Analog input | General purpose I/O GRTC HF clock output External reference for SAADC | | | 18 | 11 | P2.00 | Digital I/O
Digital I/O
Digital I/O
Digital I/O | General purpose I/O
SPIM DCX
UARTE RXD
QSPI D3 | SPIM00/20
UARTE00/20
FLPR (QSPI) | | 19 | 26 | SWDCLK | Debug | Serial wire clock. Input with onchip pull-up. | | | 20 | 25 | SWDIO | Debug | Serial wire data. Bidirectional with standard-drive and on-chip pull-down. | | | 21 | 12 | P2.01 | Digital I/O
Digital I/O
Digital I/O
Digital I/O | General purpose I/O
SPIM SCK
SPIS SCK
QSPI SCK | SPIM00/20
SPIS00/S20
FLPR | | 22 | 13 | P2.02 | Digital I/O Digital I/O Digital I/O Digital I/O Digital I/O Digital I/O | General purpose I/O
SPIM SDO
SPIS SDO
UARTE TXD
QSPI D0
Serial wire output (SWO) | SPIM00/20
SPIS00/20
UARTE00/20
FLPR
Trace | | 23 | 14 | P2.03 | Digital I/O
Digital I/O | General purpose I/O
QSPI D2 | FLPR | | 24 | 15 | P2.04 | Digital I/O Digital I/O Digital I/O Digital I/O Digital I/O | General purpose I/O
SPIM SDI
SPIS SDI
UARTE CTS
QSPI D1 | SPIM00/20
SPIS00/20
UARTE00/20
FLPR | | 25 | 16 | P2.05 | Digital I/O
Digital I/O
Digital I/O
Digital I/O | General purpose I/O
SPIM CS
UARTE RTS
QSPI CS | SPIM00/20
UARTE00/20
FLPR | | 26 | 17 | P2.06 | Digital I/O | General purpose I/O | | | | | | | | | | | | | | | Datasneet | |-----------------------|----------------|-------------------------------|---|--|---| | Module | nRF54L15 | nRF54L15 | Eupotion | Description | Dedicated | | Pin No. | Pin No. | Pin Name | Function | Description | function | | | | TRACECLK | Digital I/O
Digital I/O
Digital I/O | SPIM SCK
SPIS SCK
Trace clock | SPIM00/21
SPIS20/21
Trace | | 27 | 18 | P2.07
TRACEDATA [0]
SWO | Digital I/O Digital I/O Digital I/O Digital I/O Digital I/O | General purpose I/O Trace data Serial wire output (SWO) SPIM DCX UARTE RXD | Trace
Trace
SPIM00/21
UARTE00/21 | | 28 | 19 | P2.08 | Digital I/O Digital I/O Digital I/O Digital I/O Digital I/O | General purpose I/O Trace data SPIM SDO SPIS SDO UARTE TXD | Trace
SPIM00/21
SPIS00/21
UARTE00/21 | | 29 | 20 | P2.09 | Digital I/O Digital I/O Digital I/O Digital I/O Digital I/O | General purpose I/O Trace data SPIM SDI SPIS SDI UARTE CTS | Trace
SPIM00/21
SPIS00/21
UARTE00/21 | | 30 | 21 | P2.10 | Digital I/O
Digital I/O
Digital I/O
Digital I/O | General purpose I/O
Trace data
SPIM CS
UARTE RTS | Trace
SPIM00/21
UARTE00/21 | | 31 | 23 | P0.00 | Digital I/O | General purpose I/O | | | 32 | 24 | P0.01 | Digital I/O | General purpose I/O | | | 33 | 30 | nRESET | Reset | Pin reset with on-chip pull-up | | | 34 | 27 | P0.02 | Digital I/O | General purpose I/O | | | VCC
(round
pad) | 10,22,36,47,48 | VDD | Power | Power supply | | | GND
(round
pad) | 44 | VSS, Die pad | Power | Ground | | | DIO
(round
pad) | 25 | SWDIO | Debug | Serial wire data. Bidirectional with standard-drive and on-chip pull-down. | | | CLK
(round
pad) | 26 | SWDCLK | Debug | Serial wire clock. Input with onchip pull-up. | | **Datasheet** #### Note: - 1. Please refer to Nordic nRF54L15 / nRF54L10 / nRF54L05 Datasheet for detailed descriptions and features supported about the SoC pin assignments. - 2. Package of nRF54L15 SoC embedded on MK19 Bluetooth module is QFN48 6.0x6.0 mm. # **4 Mechanical Details** ## **4.1 PCBA Mechanical Dimensions** MK19A and MK19B Bluetooth modules have the same dimensions. Figure 4: MK19 PCBA dimensions | Symbol | Min. | Тур. | Max. | |----------------------|---------|--------|---------| | Length | -0.2mm | 21mm | +0.2mm | | Width | -0.2mm | 13.8mm | +0.2mm | | Height (PCB only) | -0.08mm | 0.8mm | +0.08mm | | Height (with shield) | -0.15mm | 2.3mm | +0.1mm | **Datasheet** # **4.2 PCB Land Pads Dimensions** Figure 5: MK19 PCB land pads dimensions (TOP View) | Symbol | Тур. | |-------------------------------|---------------| | Half-hole Pad (Bottom) | 0.8mm x 0.8mm | | Diameter of Half-hole | 0.55mm | | Diameter of Central Round pad | 1mm | **Datasheet** #### 4.3 u.FL Connector Dimensions MK19B has mounted a micro SMT u.FL series connector (receptacle), which needs an external 2.4Ghz antenna to connect. The model of the connector is *u.FL-R-SMT-1(80)*. According to the dimensions of the connector to choose an antenna with a right plug which can connect to the receptacle appropriately. Figure 6: u.FL-R-SMT-1(80) Dimensions Manufacturer: shenzhen Ante Communication Technology Co., LTD M/N: MK19B Type: FPC Maxi mum gain: 3.28dbi **Datasheet** # 5. Mounting Design Suggestions ## 5.1 Recommended Mounting and PCB Layout You can refer to the following references for the mounting design and PCB layout of the MK19 module, especially for the MK19A model which has PCB on-board antenna. For external antenna modules (MK19B needs to connect an external antenna to the u.FL connector), you also need to refer to the external antenna design requirements. #### The recommended mounting and PCB layout suggestion: - Locate MK19 series module close to the edge of the host PCB (mandatory for MK19A for on-board PCB trace antenna to radiate properly). - Ensure there is no copper in the antenna keep-out area on any layers of the host PCB. Keep all mounting hardware and metal clear of the area to allow proper antenna radiation. - Keep the antenna area as far away as possible from the power supply and metal components. - Ensure no exposed copper is on the underside of the module. - A different host PCB thickness dielectric will have small effect on antenna. - Use solid GND plane on inner layer (for best EMC and RF performance). - All module GND pins must be connected to the host PCB GND. - Place GND vias close to module GND pads as possible. - Unused PCB area on surface layer can flooded with copper but place GND vias regularly to connect the copper flood to the inner GND plane. If GND flood copper is on the bottom of the module, then connect it with GND vias to the inner GND plane. - Use a good layout method to avoid excessive noise coupling with signal lines or supply voltage lines. Figure 7: Recommended Module Mounting Examples **Datasheet** #### 5.2 Mechanical Enclosure Care should be taken when designing and placing the MK19 series module into an enclosure. Metal should be kept clear from the antenna area, both above and below. Any metal around the module can negatively impact RF performance. The module is designed and tuned for the antenna and RF components to be in free air. Any potting, epoxy fill, plastic over-molding, or conformal coating can negatively impact RF performance and must be evaluated by the customer. #### Placement of metal/plastic enclosure: - Minimum safe distance for metal parts without seriously compromising the antenna (tuning) is 40 mm top/bottom and 30 mm left or right. - Metal close to the series module antenna (bottom, top, left, right, any direction) will have degradation on the antenna performance. The amount of that degradation is entirely system dependent, meaning you will need to perform some testing with your host application. - Any metal closer than 20 mm will begin to significantly degrade performance (S11, gain, radiation efficiency). - It is best that you test the range with a mock-up (or actual prototype) of the product to assess effects of enclosure height (and materials, whether metal or plastic). ### 6. Cautions ### 6.1 Reflow Soldering Reflow soldering is a vitally important step in the SMT process. The temperature curve associated with the reflow is an essential parameter to control to ensure the correct connection of parts. The parameters of certain components will also directly impact the temperature curve selected for this step in the process. - The standard reflow profile has four zones: **①preheat**, **②soak**, **③reflow**, **④cooling**. The profile describes the ideal temperature curve of the top layer of the PCB. - During reflow, modules should not be above 260°C and not for more than 30 seconds. Figure 8: Temperature-Time Profile for Reflow Soldering | Specification | Value | |---------------------------|------------------| | Temperature Increase Rate | <2.5°C/s | | Temperature Decrease Rate | Free air cooling | | Preheat Temperature | 0-150°C | | Preheat Period (Typical) | 40-90s | | Soak Temp Increase Rate | 0.4-1°C/s | | Soak Temperature | 150-200°C | | Soak Period | 60-120s | | Liquidus Temperature | 220°C | | Time Above Liquidous | 45-90s | | Reflow Temperature | 230-250°C | | Absolute Peak Temperature | 260°C | **Datasheet** TCS 242.23 311 B.42 110 0.65 42 135 Link 236.35 200 140 1.06 0.E 842 118 mit 44 1.34 119 288.25 **A33** 122 0.76 28 200.75 534 136 118 21 233 321 103 1.10 641 122 0.98 45 #d 1.44 Line 297,25 6.40 159 4.34 Figure 9: Example of MOKO Smart SMT reflow soldering ### **6.2 Usage Condition Notes** - Follow the conditions written in this specification, especially the recommended condition ratings about the power supply applied to this product. - The supply voltage has to be free of AC ripple voltage (for example from a battery or a low noise regulator output). For noisy supply voltages, provide a decoupling circuit (for example a ferrite in series connection and a bypass capacitor to ground of at least 47Uf directly at the module). - Take measures to protect the unit against static electricity. If pulses or other transient loads (a large load applied in a short time) are applied to the products, check and evaluate their operation before assembly on the final products. - The supply voltage should not be exceedingly high or reversed. It should not carry noise and/or spikes. - This product away from other high frequency circuits. - Keep this product away from heat. Heat is the major cause of decreasing the life of these products. - Avoid assembly and use of the target equipment in conditions where the products' temperature may exceed the maximum tolerance. - This product should not be mechanically stressed when installed. **Datasheet** - Do not use dropped products. - Do not touch, damage or soil the pins. - Pressing on parts of the metal shield or fastening objects to the metal shield will cause damage. ### **6.3 Storage Notes** - The module should not be stressed mechanically during storage. - Do not store these products in the following conditions or the performance characteristics of the product, such as RF performance will be adversely affected: - Storage in salty air or in an environment with a high concentration of corrosive gas. - Storage in direct sunlight - Storage in an environment where the temperature may be outside the range specified. - Storage of the products for more than one year after the date of delivery storage period. - Keep this product away from water, poisonous gas and corrosive gas. - This product should not be stressed or shocked when transported. **Datasheet** © Copyright 2024 MOKO TECHNOLOGY. All Rights Reserved. Any information furnished by MOKO TECHNOLOGY LTD. is believed to be accurate and reliable. All specifications are subject to change without notice. Responsibility for the use and application of MOKO TECHNOLOGY LTD. materials or products rests with the end user since MOKO TECHNOLOGY LTD. cannot be aware of all potential uses. MOKO TECHNOLOGY LTD. makes no warranties as to non-infringement nor as to the fitness, merchantability, or sustainability of any MOKO TECHNOLOGY LTD. materials or products for any specific or general uses. MOKO TECHNOLOGY LTD. or any of its affiliates shall not be liable for incidental or consequential damages of any kind. All MOKO TECHNOLOGY LTD. products are sold pursuant to the MOKO TECHNOLOGY LTD. Terms and Conditions of Sale in effect from time to time, a copy of which will be furnished upon request. Other marks may be the property of third parties. Nothing herein provides a license under any MOKO TECHNOLOGY LTD. or any third-party intellectual property right. #### **FCC Statements** This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: - (1) This device may not cause harmful interference, and - (2) this device must accept any interference received, including interference that may cause undesired operation. Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. #### FCC Radiation Exposure Statement This modular complies with FCC RF radiation exposure limits set forth for an uncontrolled environment. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter. The device has been evaluated to meet general RF exposure requirement. The device can be used in portable exposure condition without restriction. If the FCC identification number is not visible when the module is installed inside another device, then the outside of the device into which the module is installed must also display a label referring to the enclosed module. This exterior label can use wording such as the following: "Contains Transmitter Module FCC ID: 2AO94-MK19" When the module is installed inside another device, the user manual of this device must contain below warning statements: 1. This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) This device must accept any interference received, including interference that may cause undesired operation. 2. Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. The devices must be installed and used in strict accordance with the manufacturer's instructions as described in the user documentation that comes with the product. The host product manufacturer is responsible for compliance to any other FCC rules that apply to the host not covered by the modular transmitter grant of certification. The final host product still requires Part 15 Subpart B compliance testing with the modular transmitter installed. # Contact #### MOKO TECHNOLOGY LTD. An original manufacturer for IoT smart devices Address: 4F, Building 2, Guanghui Technology Park, MinQing Rd, Longhua, Shenzhen, Guangdong, China E-mail: Support BLE@mokotechnology.com Website: www.mokosmart.com