VECTOR >

Concept Manual
vTESTstudio

Imprint

Vector Informatik GmbH
Ingersheimer Stral3e 24

D-70499 Stuttgart

The information and data given in this user manual can be changed without prior notice. No part of this manual may be reproduced in
any form or by any means without the written permission of the publisher, regardless of which method or which instruments, electronic
or mechanical, are used. All technical information, drafts, etc. are liable to law of copyright protection.

© Copyright 2017, Vector Informatik GmbH. Printed in Germany.

All rights reserved.

Concept Manual VTESTstudio

Table of Contents

21
2.2
2.3
2.4

2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3

6.2
6.3

Introduction

About this User Manual

111 Access Helps and Conventions
11.2 Certification

1.1.3 Warranty

1.14 Support

1.15 Registered Trademarks

Overview

General
VTESTstudio and CANoe
Function Overview

Structure of a Project

24.1 Project Tree

2.4.2 File-Based Storage

243 Re-Use of Files

24.4 Home Directory and Libraries

2.45 Storage Location of Files on the File System
2.4.6 Structuring Using (Shareable) Folders

Concepts for High Test Coverage
Traceability by the Connection of REQM/TDM Tools
Test Design Documentation

Test Design Editors
CAPL Editor

C# Editor

Test Table Editor

Test Diagram Editor
State Diagram Editor

Interaction with CANoe

CANoe System Environment
Execution in CANoe
Reporting

Language Interaction

Interface Functions

Parameters, Curves and Variants

Parameters
6.1.1 Concept
6.1.2 Find Test Case Data by the Classification Tree Method

Curves
Variants

© Vector Informatik GmbH Version 5.0

Table of Contents

oo ph W

\l

10
10

11
11
11
12
12
13
13

13
17
20

23

24
25
26
27
28

29
30
32
34

35
36

39

40
40
42

43
44

Concept Manual VTESTstudio Table of Contents

7 Use Cases 47
7.1 Generating Two Similar Test Units for Different OEMs 48

© Vector Informatik GmbH Version 5.0 -1l -

Concept Manual VTESTstudio Introduction

1 Introduction

In this chapter you find the following information:

1.1 About this User Manual page 4
Access Helps and Conventions
Certification
Warranty
Support
Registered Trademarks

© Vector Informatik GmbH Version 5.0 -3-

Concept Manual VTESTstudio

Introduction

1.1 About this User Manual

1.1.1 Access Helps and Conventions

To find information The user manual provides you the following access helps:
quickly > at the beginning of each chapter you will find a summary of its contents,

> in the header you see the current chapter and section,

> in the footer you see to which program version the user manual replies,

> at the end of the user manual you will find an index.
= Reference: Please refer to the online help for detailed information on all topics.

Conventions In the two following charts you will find the conventions used in the user manual
regarding utilized spellings and symbols.

Utilization

Blocks, surface elements, window- and dialog names of the
software. Accentuation of warnings and advices.

[OK] Push buttons in brackets
File|Save Notation for menus and menu entries

Legally protected proper names and side notes.

Source code

File name and source code.

Hyperlink

Hyperlinks and references.

<CTRL>+<S>

Notation for shortcuts.

Utilization

Here you can obtain supplemental information.

This symbol calls your attention to warnings.

Here you can find additional information.

Here is an example that has been prepared for you.

Step-by-step instructions provide assistance at these points.

Instructions on editing files are found at these points.

This symbol warns you not to edit the specified file.

ENNEONER:

This symbol indicates multimedia files like e.g. video clips.

© Vector Informatik GmbH

Version 5.0 -4 -

Concept Manual VTESTstudio Introduction

Utilization

This symbol indicates an introduction into a specific topic.

This symbol indicates text areas containing basic knowledge.

This symbol indicates text areas containing expert knowledge.

This symbol indicates that something has changed.

3
o
=k

1.1.2 Certification

Certified Quality Vector Informatik GmbH has ISO 9001:2008 certification.
Management System The ISO standard is a globally recognized quality standard.

1.1.3 Warranty

Restriction of We reserve the right to change the contents of the documentation and the software

warranty without notice. Vector Informatik GmbH assumes no liability for correct contents or
damages which are resulted from the usage of the user manual. We are grateful for
references to mistakes or for suggestions for improvement to be able to offer you
even more efficient products in the future.

1.1.4 Support

You need support? You can get through to our hotline at the phone number
+49 (711) 80670-200

or you send a problem report to the CANoe Support.

© Vector Informatik GmbH Version 5.0 -5-

http://vector.com/support/

Concept Manual VTESTstudio Introduction

1.1.5 Registered Trademarks

Registered All trademarks mentioned in this user manual and if necessary third party registered

trademarks are absolutely subject to the conditions of each valid label right and the rights of
particular registered proprietor. All trademarks, trade names or company names are
or can be trademarks or registered trademarks of their particular proprietors. All rights
which are not expressly allowed are reserved. If an explicit label of trademarks, which
are used in this user manual, fails, this should not mean that a name is free of third
party rights.

> Windows, Windows Vista, Windows 7 and Windows 8 are trademarks of the
Microsoft Corporation.

> VTESTstudio is a trademark of Vector Informatik GmbH.

© Vector Informatik GmbH Version 5.0 -6 -

Concept Manual VTESTstudio Overview
2 Overview
This chapter contains the following information:
2.1 General page 8
2.2 VTESTstudio and CANoe page 10
2.3 Function Overview page 10
2.4 Structure of a Project page 11

Project Tree

File-Based Storage

Re-Use of Files

Home Directory and Libraries

Storage Location of Files on the File System

Structuring Using (Shareable) Folders
2.5 Concepts for High Test Coverage page 13
2.6 Traceability by the Connection of REQM/TDM Tools page 17
2.7 Test Design Documentation page 20
© Vector Informatik GmbH Version 5.0 -7-

Concept Manual VTESTstudio Overview

2.1 General

Overview

Test design editors

Re-use concept
Structured test
creation
Parameterization

Stimulation curves

Variants

VTESTstudio is a multifaceted and integrated work environment for developing tests
for embedded systems.

You can use different test design languages to write tests in vTESTstudio. The
following editors are supported:

> CAPL Editor:
CAPL is an event-oriented programming language of CANoe that can also be
used for programming test sequences, test cases, and functions.

> C# Editor:
C#is a .NET programming language that CANoe expands with libraries especially
designed for testing and for accessing control units.

> Test Table Editor:
This editor enables writing of tests in tabular form and can be used without the
need for programming expertise.

> Test Diagram Editor:
Editor for modeling of test sequences in a graphic notation. This editor is
contained in the Graphical Test Design product option.

> State Diagram Editor:
Editor for modeling the expected behavior of the SUT as state model for automatic
test case generation. This editor is contained in the Graphical Test Design
product option.

Through the use of libraries and a clear and easy to understand re-use concept,
whole files as well as individual test cases can easily be re-used in various tests.

For a structured test creation tests are supported that can contain several files.

Due to an integrated parameter concept, ECU configuration parameters and test
vectors can be administrated comfortable in separated files. From these files they can
be re-used in different tests.

By the use of the Waveform Editor you can define curves to be used in the test as
stimulation curves for the system under test.

A continuous variant support for test logic, test implementation and parameter values
allows an implementation of variant-dependent tests.

© Vector Informatik GmbH Version 5.0 -8-

Concept Manual VTESTstudio

Overview

User interface B G- @ @ C AN TestTavle Tools | CentrallockingSystem.visopro] - TE
Home Traceability & Documentation Environment Tools Layout Test Table
= E j [Configuration [S) Validate Curent Document =) Fing ~
[EE = Output Publish Symbols of All Files = . Replace = L
Paste Test Case Build Test _ Build All User o
Attributes © Unit= Test Units ~ Fundtions &% Find Results
Clipboard Test Case Properties Build Function Library
7} Project View - X
(T T | e Excauton Tree Command Caption
E-E} FunctionalTests = F, TestTree » | =[] Test Case Lock statically
i [=+E=) Test static requirements of the do... £} = preparation Preparation

£ Parametertibrary
IEE DoorLockData. vt
@, TestParameters.vpa...
P @, VariantSpedficPara...
L[LockingSystemTester.vtt
& LockingTestlibrary.cs
L. Utiities.can
[FailureTests
{2 Diagnostics
£, Shareable Folders
=FT ParameterLibrary
I DoorlockData.vct
I_;::] TestParameters.vpa...
I_;::] VariantSpedficPara...

1% Home Directory

4y VTESTstudio_Project <D:\WTES. .
[Diagnostics

F= FailureTests

F=r FunctionalTests

[shareable Folders

£ Libraries 1y Home Directory

&= Output M Find Results

2| Lock statically
-] Unlock statically
/g Crash detection while engine i...
4 calls
a Test velocity dependent requirem...
| Lock by increasing velocity

= Set

LR e yWait
L..5p0 State Change
»=p@ State Change
=@ State Change

Initialize all signals
500 ms
Ensure initial state 'Unlocked'

Request to lock the car (engine running).

1
+ x| No unleck when slowing down [+ =l Completion Completion
b} Apply crash with different vel... | | e Sat Reset al signals
Crash detection when car is
Lepo

/7] Lock deperdent on velodiy ... et s00me
-1 4 Lock with car moving/not moving ~ [7] Test Case Unlock statically

=1 = Preparation Preparation

Utilities.can

<summary>
Tests the locking behavior on crash detection.
</summary>
<param name="en
<param name:
[Export]
[TeatCase ("Crash detection™)]
public static void CrashDetection(int engineCn, double welocity)
{

// Initialize =signals

Report.TestStep("Initialize all s

ResetLockingTestcSignals();

">The velocity of the engine</param>

E

// Set lock state to locked

Request to lock the car (engine off). Check if the car is locked,

cn">Indicates whether the engine is running or not</param>

STstudio —] X
~ @
Comment Out
1] mment
Edit
-
&
Fl
=3
- =

m

. Checkif the car is locked.

suonIuUNg 14wD g suonouny iasn

m

Figure 1: vTESTstudio user interface

rl"j G- b @ & Eﬁ ﬁs B - Test Sequence Diagram Tools CentrallockingSystem.visopro... — a x
Home Traceability & Documentation Environment Tools Layout Test Sequence Diagram v @
[} Project View LockingSystemTester.vtt ~ | @ symbols -~ 1%
[Central.ockingSystem ~ | E e
-5 FunctionalTests o p -
=1 Parametertibrary -
g DoorlockData.vet G e ——— e) [“ > Sig.. b Crash..
TestParameters.vpa. .. - Name
: %V N P T e (=)
ariantSpedificPara... s e = O comfort
(B LockingSystemTester. vt = [~ Signals
2 @ LockingTestLibrary.cs i b " AntTheftSystemAc
i vsites.can - o=
=i
512 FaiureTests 2;._._.__:."..‘......., EngineRunning
fiyd ParameterLibrary Gaee e — KeyDown
[3 FunctionLibrary.vtt] KeyUp
£ LockingSystemTester.visd LockRequest
fin LockvelocityTester.visd b) S (R W— LockState
.[7% VelocityWaveform.vwf E
a Di i (Faem arm imizna | { & Velocity
lagnostics WindowMation
13} Sharesble Folders WindowPosition
=F5 ParameterLibrary Mmentickociet e eS— o [F— = Frames
& DoorLockData.vet e ((zweaan s) [-5 Nodes
I__é TestParameters.vpa...
@]Varianﬁpadﬁdﬁara . [—
(e ot
{4 Home Directory
1y vTESTstudio_Project <D:\TES... Output
g D‘a‘g”"sm Description
F; Tests
a\ur.s Esl‘r @ Compiling file 'DoorlockData.vct' in test unit 'FailureTests' Sl »
= FunctionalTests e Compilation succeeded (17:29:5@) -- @ errors, @ warnings
= shareable Folders @ Test unit created 'D:\wTESTstudie\Screenshets\ConceptManualiDoorContrelUnit\wTESTs| Frame name: VehicleMotion
Build succeeded (17:29:51) -- @ errors, 1 warnings ~ | | Start bit: 16
< m | 3 Comment:
€5 Libraries ‘ﬂj Home Directory = Qutput & Find Results G Symbols B User Func...

Build succeeded (17:29:51) -- O errors, 1

warnings

Figure 2: vTESTstudio user interface — Test Diagram Editor

© Vector Informatik GmbH

Version 5.0

Concept Manual VTESTstudio

Overview

2.2 VTESTstudio and CANoe

Hand in hand

The interaction with CANoe enables easy access to the system under test in all

languages. Database symbols, system variables, and diagnostic descriptions can be
easily accessed in all languages. The bus systems and protocols CAN, LIN, FlexRay,
Ethernet, WLAN and J1939 are supported.

Independent of their notation the tests are configured and loaded in CANoe, executed
in real time, and documented in a detailed test report.

Schema

VTESTstudio

Design & Implementation

CANoe + VT Modules + Bus
Interfaces

Execution & Reporting

Build . ‘Load

Test programming | e Test Units: » Real-time
(CAPL, C#) . - Code ﬁ execution of tests
Table based test j E— - Parameter
design - Traceability » Access to SUT via
Information
. . » I0s 9
Sraphlcal test - - » bus systems P
H - -
esign T » protocols -9
(diagnostics,
Parameters and e XCP, ...) o
variants = » debug interfaces
T
Classification tree mmm mm N
method et Symbol A > ,rALI;\r?Iysm of test //\J
databases: —
Stimulation curves N
- DBC
_ v
ARXML » Automatic detailed v
Traceability : - CDD reporting %
- v

Figure 3: Schematic Overview — vTESTstudio and CANoe

2.3 Function Overview

Important features
>

© Vector Informatik GmbH

Among the things that vTESTstudio provides for a successful test environment are:

Integration of graphical test design editors, programming editors, parameter
editors and curve editors in one tool

Comfortable capabilities for reviews by clear modeling of the test logic in the Test
Diagram Editor or the expected behavior of the SUT in the State Diagram Editor

Easy re-use through possible separation of test logic, implementation, parameter
values, and test vectors

Possible pre-processing of events in CAPL and C# for access and evaluation in
test sequences

Integrated variant support for test structure, implementation, and parameters
Concepts for high test coverage

Universal traceability of externally defined requirements and test descriptions in
the test implementation and in the test report

Automatically generated test design documentation for documentation purposes
as well as internal and external reviews

Version 5.0 -10 -

Concept Manual VTESTstudio Overview

2.4 Structure of a Project

2.4.1 Project Tree

Terms project and A VTESTstudio project consists of any number of test units. A test unit represents

test unit the configurable and executable unit in CANoe. It consists of a set of files that contain
the test implementation (CAPL files, C# files, test tables, test diagrams and parameter
files).

While a vTESTstudio project, for example, covers an ECU to be tested, a test unit
could have implemented the tests for a particular functionality of the system under
test.

Examples Example 1
> Project for tests of the overall functionality of an ECU
> Test units for core features, error detection, diagnostics, ...
Example 2
> Project for tests of the entire product line of an ECU
> Test units for tests of a variant of an ECU

Project View]
FocoConrolint |

g--El,, LockingTests_OEM1

: i Locking OEM1.cs

@ Main. vt

E;, Tolerances. vparam

=% LockingTests_OEM2

‘@ Locking_OEM2.cs

@ Main. vt

@, Tolerances. vparam

Figure 4: Project view

2.4.2 File-Based Storage

Storage of project All vTESTstudio project components are stored using file-based storing. A
components VTESTSstudio project consists of a project file and any number of source code and
parameter files that are referenced in the project file.

Files relevant for the test (CAPL files, C# files, test table files, parameter files, etc.)
are created in the context of a test unit. Within a test unit, for example, test cases and
test functions can be accessed across file- and language boundaries. Similarly, the
parameters of a parameter file are known (only) in the context of the corresponding
test unit.

© Vector Informatik GmbH Version 5.0 -11-

Concept Manual VTESTstudio

2.4.3 Re-Use of Files

Linking of files

Overview

Files can easily be re-used by linking them to other test units. This is done by moving
them from the source to the destination using a drag & drop operation. Thus, for
example, the same test sequence can be re-used in multiple test units, e.g. with only

using different parameter files for parameterizing the test sequence.

Project View]
Foooconrome
=% LockingTests_OEM1

% Main. wtt

E;, Tolerances_OEM1.vparam

= LockingTests_OEM2

@ Main. vt

----- E;, Tolerances_QEM2. vparam

Figure 5: Project view with re-used file Main.vtt

2.4.4 Home Directory and Libraries

Home directory

Libraries

© Vector Informatik GmbH

The directory where the project file is located is called the Home Directory. Files
from the root directory and files from specially defined Libraries can be used in the

project.

The Libraries view provides a filtered view of the file system. A library represents only
a folder on the file system that is made known in the project. Files from libraries can

also be linked to test units using a drag & drop operation.

If a library folder is moved on the file system, in vTESTstudio only the link to the
library has to be updated. The paths of the linked files in the test units are updated

automatically.

Version 5.0

-12 -

Concept Manual VTESTstudio Overview

2.4.5 Storage Location of Files on the File System

Storage of files

If a file is created in the context of a test unit, it is automatically created on the file
system under the path <Home Directory>\<Test Unit Name>.

If the files are to be organized differently on the file system, this can be done using
the Home Directory view. This view shows the file system located underneath the
project directory. If a file is moved in this view, possible links to this file in the test
units will be automatically updated.

2.4.6 Structuring Using (Shareable) Folders

Re-use of folders

In order to structure the contents of test units more clearly, folders can be created
within a test unit (as many folders, including nested folders, as required). This has no
effect on the content of the test and is only used to organize files.

In addition to re-use individual files, the re-use of whole folders is also possible. For
example, if a folder contains a test sequence description and an associated
parameter file, these two files can be re-used together by linking the whole folder to
another test unit.

If a folder with files is created underneath a test unit and then linked to another test
unit, the folder with the original files is located on the file system underneath the first
test unit. If such a "master test unit" is not desired, the folder can be created as a
shareable folder instead. This is done by the project's shortcut menu command New
Shareable Folder. Folders and files created by this are created on the file system
under the path <Home directory>\<Shareable Folders>. From there they can
also be linked to the test units using a drag & drop operation.

2.5 Concepts for High Test Coverage

Parameterized test
case lists

For high test coverage without significant programming effort, so-called
parameterized test case and test sequence lists are supported.

To defined a test case list, a test case with input parameters must be defined, for
example, in C#:

[Export] [TestCase]
public static void CheckMotor (int temperature, double voltage)
{
//
}

The test case list for this can be defined in the Test Table Editor, for example. The
command selection contains a CheckMotor [list] entry for this purpose. If this entry
is chosen, an editor appears that can be used to assign multiple values for each test
case parameter:

© Vector Informatik GmbH Version 5.0 -13-

Concept Manual VTESTstudio

Combinatorics:
Mame:

Type of Values:
Value Source:

Values:

Sequential
temperature

Single Values

&

(53
I
h

T
[5

Overview

voltage
Value Range
[min=1, max=11, inc=0.5]

1

L rJ rJ
o

(5}
o

11

Figure 6: Parameterized test case list in the Test Table Editor

In addition to the input of individual values or a range, the use of list parameters and
struct list parameters from parameter files is supported as well (also see section

Parameters):

Combinatorics:
Mame:

Type of Values:
Value Source:

Values:

Sequential

temperature

List from Parameter File

o=

-20

Temperaturelist

voltage
Value Range
[min=1, max=11, inc=0. 5]

1

L ra [
(9]

La
(%2}

11

Figure 7: Using list parameters in test case lists

By a sequential combination, a number of test case calls are now generated
automatically so that each parameter values is used at least once:

© Vector Informatik GmbH

Version 5.0

-14 -

Concept Manual VTESTstudio

[=RIFSE Ched: motor under different conditions

-
- et Cheddator (temperature=40,voltage=3)

t

;

;

t

et

et ChedkMotor (temperature=-20,voltage=3.5)
- e CheckMotor (temperature=-15,voltage=4)
eS|

- et Cheddator (temperature=10,voltage="5)
et ChedkMotor (temperature=40,voltage=5.5)
- e} ChedkMotor (temperature=-20,voltage =8)
eS|

- et Cheddator (temperature=0,voltage=7)

- et CheckMotor (temperature=10,valtage=7.5)
- et CheckMotor (temperature=40,voltage=38)

- et ChedkMotor (temperature=-20,valtage=8.5)
- et Cheddotor (temperature=-15 voltage =9)

- et CheddMotor (temperature=0,voltage=9.5)

- et CheckMotor (temperature=10,voltage=10)
- et ChedkMotor (temperature=40,veoltage=10.5)
-yt Cheddotor (temperature=-20, voltage=11)

21 calls

- et CheddMotor (temperature=-20,voltage=1)
- et CheckMotor (temperature=-15,valtage=1.5)
- et CheddMotor (temperature=0,voltage=2)

=+ Cheddator (temperature=10,voltage=2.5)

-+ ChediMator (temperature=0,voltage=4.5)

-+ ChediMator (temperature=-15,voltage=6.5)

Figure 8: Generated test case list using Sequential

Overview

If a higher test coverage is to be achieved by testing pairwise or every combination of
parameter values, the Combinatorics property must be changed from Sequential to
Pairwise or Combinatorial:

© Vector Informatik GmbH

Version 5.0

-15 -

Concept Manual VTESTstudio

=R Ched: motor under different conditions

105 calls

- et Cheddotor (temperature=-20,voltage=1)
et CheckMotor (temperature=-20,voltage=1.5)
| 4ie) ChedkMotor (temperature=-20,voltage=2)
et Cheddotor (temperature=-20,voltage=2.5)
- et Cheddotor (temperature=-20,voltage =3)
et CheckMotor (temperature=-20,voltage=3.5)
- et CheckMotor (temperature=-20,voltage=4)
et Cheddotor (temperature=-20,voltage=4.5)
- et Cheddotor (temperature=-20,voltage =5)
et CheckMotor (temperature=-20,voltage=5.5)
- et CheckMotor (temperature=-20,voltage =)
et Cheddator (temperature=-20,voltage=6.5)
- et Cheddotor (temperature=-20,voltage =7)
et CheckMotor (temperature=-20,voltage=7.5)
- et CheckMotor (temperature=-20,voltage=8)

- et ChedkMotor (temperature=-20,voltage=8.5)
- et Cheddotor (temperature=-20,voltage =9)
et Cheddotor (temperature=-20,voltage=9.5)
et CheckMotor (temperature=-20,voltage =10}
- et ChedkMotor (temperature=-20,voltage=10.5)
- et Cheddotor (temperature=-20, voltage=11)
- et Cheddotor (temperature=-15,voltage=1)
et CheckMotor (temperature=-15,voltage=1.5)
- et CheckMotor (temperature=-15,voltage=2)
et Cheddator (temperature=-15,voltage=2.5)

Figure 9: Generated test case list using Combinatorial

Overview

For the definition of a test case list in the Test Table Editor or in C#, all language

combinations or crossovers listed in Language Interaction are supported.

© Vector Informatik GmbH

Version 5.0

-16 -

Concept Manual VTESTstudio Overview

2.6 Traceability by the Connection of REQM/TDM Tools

Concept You can use VTESTstudio to trace externally defined requirements and test
descriptions during test implementation and in the test report (traceability). This is
done using exchange files in an open XML format. As a result, any REQM/TDM
system can be used coupled with vTESTstudio.

Schema REQM/TDM Tool VTESTstudio

Export
items for

Requirement 1 traceability
Requirement 2

Trace Items
=] IE Requirements

Trace Items| Import

@ Requirement 1
& Requirement 2

Create test cases, link
trace items

Test Execution Tree
Sh=R
vy | Test Case A

v

Import Traceability
design Matrix

traceability Export {3 Tem Eme D
Test Case A Sl W 0T R L [<TalofeC
7 HEE
Test Case B) gl
Test =lels
Test Case C e . N. R
Export list Execution !mﬁ‘é cequrements AT
of test Plan 4 Requrement 1
cases to be| (XML) _-[2a Requirement 2
executed 7

Build executable test
Exec. unit and configure it

Test Uni I in CANoe

— CANoe

Import

Test Case Result A.1 execution CANoe
results

Test Case Result A.2 8 | Report

Vo] TestCase A @
(— L[] Test Case B @
Test Case Result B (XML) L.[J]7] TestCaseC €

Figure 10: Traceability workflow

© Vector Informatik GmbH Version 5.0 -17 -

Concept Manual VTESTstudio

Import of
requirements or test
descriptions in
VTESTstudio

Trace Iltem Explorer

Traceability Matrix

Import of design
traceability in
REQM/TDM system

Planning of test
execution

Test report

Import of test results

© Vector Informatik GmbH

Overview

The information exported from the REQM/TDM system is imported into vVTESTstudio
and can be linked there to test cases. The linked elements can be requirements or
test descriptions. Because these elements are used to achieve traceability, they are
designated as trace items.

All trace items imported into a VTESTstudio project are available via the Trace ltem
Explorer. From there, they can be easily linked to test cases using drag & drop.

In the REQM/TDM system, requirements and test descriptions might be structured in
hierarchical folders or comparable elements. These folders are displayed in the Trace
Item Explorer in the same hierarchy. However, folders cannot be directly linked to test
cases.

The Traceability Matrix in VTESTstudio gives an overview over all trace items of the
project and their test case links. By this overview of test design coverage you can
easily see, for example which trace items are not covered yet by any test case
implementation. Furthermore, from within the traceability matrix comfortable
navigation from a trace item to linked test cases is possible. For documentation
purposes the traceability matrix can be exported to Excel.

Door Control Unit &]

- M
e ENEY

= =
= m| =2 = —
5 E|E|E z 2 15 S|=
5 AHHEEEIBE HE
o B8|8|=|2|E|s @ =| 5
5 HE Y EI I B R 2 5|5
=] A R R EE = =|.E
=3 Z|I5=|2|F|E|a| 3 = |3
E |3 =z Z|d|d| 2|3]|= R} z| =
2823|222 (8|12|3|3|<|=2]|8 g|e
- |=|S|2|8|2|5|5|<|g|=|8|8
Elu|o|lz|2(2|E]|2 w28 Blom|lo
csl2|=|(S|s|lg|l8|lc|e|=|E|ZE|T|=]E|=|=2
SEHEEFIEMEHEFEEEEEEEE
ol BN IFA =H B0 B0 el bl B B o ot B B B = B
HAEAEIEEE A= B E
al=|8|S|S|S|E|8|E6 |2 5|2 |8|o|a|<|=
Name || E | =B | | BB B |)|~
= [@ Test Specifications
=+ HIL test
—E@ static requirements
i i-[Pa lock statically i . E
i [unlock statically 1 .
=@ velocity dependent requirements
i-[Za crash detection when car is moving
: @i lock by increasing velocity 2 . .|
{24 no unlock by slowing down 2 | .J .J -
= =
Trace Items total: 5 -
Design Coverage of Trace Items:
Trace Items linked: 4

Trace Items not linked: 1 80 %

Figure 11: Traceability

For synchronization with the REQM/TDM system an export of the traceability matrix
to XML is supported. This enables importing the information about implemented test
cases and linked requirements or test descriptions to the REQM/TDM system.

Based on this information test case execution can be planned, i.e. which test cases
shall be executed. With the help of a so-called “test execution plan” the selection and
execution of test cases in CANoe can be automated.

For each trace item linked to a test case, the test report contains a corresponding
reference at the test case. This enables traceability from the test case result back to
the requirement or test description.

The test report can be played back to the REQM/TDM system to be able to analyze

Version 5.0 -18 -

Concept Manual VTESTstudio Overview

in REQM/TDM test results within this system.
system
Supported The connection of the following systems is supported out-of-the-box:

REQM/TDM systems 5 |gm DOORS (classic)

IBM DOOR NG und Rational Quality Manager
Siemens Polarion ALM

PTC Integrity Lifecycle Manager

Jama Connect

> Intland codeBeamer ALM

vV V. V V V

So-called “Connection Utilities” are available for free. By a command line interface,
they can be used for continuous integration and continuous testing as well (e.g. with
Jenkins).

Further REQM/TDM systems can be connected by the use of the open interfaces.

© Vector Informatik GmbH Version 5.0 -19 -

Concept Manual VTESTstudio

2.7 Test Design Documentation

Concept For a test unit in vTESTstudio a test design documentation in PDF format can be

Overview

generated automatically. This test design documentation provides an overview of all
implemented test cases and test steps. Beyond the documentation it can be used for
internal and external reviews of the test design.

3 Test Execution Tree Elements

31 [Test static requirements of the door control unit
3141 < Lock statically

Preparation

Initialize all signals
Set EngineRunning=0, Velocity=0, CrashDelected=0, LockRequest=idle

Wait for 500 ms

Main Part

Ensure initial state ‘Unlocked’

Set LockRequest=Request_unlock, wait for 200 ms and check LockState==Unlocked
Request to lock the car (engine off). Check if the car is locked,

Set EngineRunning=0, Velocity=0, CrashDetected=0, LockRequest=Request_lock, wait for
LockRequestWaitTime ms and check LockSlate==Locked

Request to lock the car (engine running). Check if the car is locked.

Set EngineRunning=1, Velocity=0, CrashDetecled=0, LockRequest=Request_lock, wait for
LockRequestWaitTime ms and check LockState==Locked

Completion

Reset all signals
Set EngineRunning=0, Velocity=0, CrashDetecled=0, LockRequest=idle

Wait for 500 ms

31.2 <! Crash detection while engine is moving

Preparation

Initialize all input signals (page 11)
Call ResetSignals ()

Main Part

Set lock state to be locked

Set LockRequest=Request_lock
Wait for 200 ms

Apply a crash. Check if the car is opened.
Set CrashDetected=1, wail for 500 ms and check LockState==Locked

Completion

Reset the crash signal
Set CrashDetected=0

Reset all signals [page 11)

Call ResetSignals ()

-B-

Figure 12: Automatically generated test design documentation as PDF

© Vector Informatik GmbH

Version 5.0

-20 -

Concept Manual VTESTstudio

© Vector Informatik GmbH

Version 5.0

Overview

-21-

Concept Manual VTESTstudio Test Design Editors

3 Test Design Editors

In this chapter you find the following information:

3.1 CAPL Editor page 24
3.2 C# Editor page 25
3.3 Test Table Editor page 26
3.4 Test Diagram Editor page 27
3.5 State Diagram Editor page 28

© Vector Informatik GmbH Version 5.0 -23-

Concept Manual VTESTstudio

3.1

Features

User interface

Access to symbols

Event procedures

Test Design Editors

CAPL Editor

The CAPL Editor integrated in VTESTstudio provides the functions of a modern
development environment such as

> Code completion and syntax checking while writing
> Configurable syntax highlighting

> Syntax-sensitive indentation
>

Expandable function blocks and function reference in a tree structure for faster
navigation

Hierarchical function list with search function for direct transfer to the source text

> Direct transfer of network symbols, environment data, diagnostic symbols, and
parameters from the Symbol Explorer

| CAPLTestCaseLibrary.can* + % || CAPL Functions R X
; —
+[Bh Incudes = Y

i Variables =7 Event Handler

: fx Event Handlers . % Bustypes and Options
b Functions :

) . [=l+#% System

a = 'I"EstFun(h‘uns float currentSpeed; L onkey <newkey>
% TF_AccelerateDecelerate.... b+ on preStart

testfunction IF_RccelerateDecelerate (float targetSpeed)

é Test Cases i :

T 10, RequestRessonseTiming(c * Simulates increasing/decreasing velocity slowly §=# on preStop

: e T q‘ P gle * as if controlled by driver (= from SUT panel) §-#% on start

-5, Test Control " i on stopMeasurement

-5 on timer <newTimer >

TestStep("Speed Change", "Reguested speed is 3£", target % Yalue Objects

currentSpeed = £VehicleMotion::Velocity: =-f< CAPL Functions
if (targetSpeed > currentSpeed) fi Additional Categories
{ ¢ All Functions
/[accelerate Fx Bustypes and Options
TeatStep ("Speed Change™, "Accelerating...™); =S¢ General
PutValue (EnvAccelerate, 1): L. cancelTimer
PutValue (EnvDecelerate, 0); ke output
d H
ot . . £ jfe setTimer
testWaitForTimeout (20) 7 i P te
Lo
currentSpeed = $VehicleMotion::Velocity: o
fic Testsupport

} while (targetSpeed > currentSpeed):;
PutValue (Env

Filtered -
Fe call AIOnEnvVar

& EnvAccelerate
A EnvDecelerste
J 1 ‘s EnvEmorCrash SensorOnVelocity

EnvVar::comfort::EnvAccelerate

m

setTimer
[f

(timer t, long duration): void
Set a timer

Output

Configuring compiler..

= Output | & Find Results

Start compiling 'Di\TestData\TestCases\CAPLTestCasel | ‘% EnvEmorKeyUpAndDownEmor
Successfully compiled 'D:\TestData\TestCases\CAPLTest =L envvar

< [

. EnvEmorinCrashSensorllsage
. EnvEmorinWindowApplication

& envvarData -

-1 X -

fx i (timert, long durationSec, long
durationNanoSec): void

fi: (msTimer t, long duration): void

@ symbals | %, CAPL Functions

Figure 13: CAPL Editor

Direct access to signals, frames and environment data is possible by the CAPL API.

This enables e.g. read and write access to signal values in the CANoe runtime
environment. Example:

SVelocity =

100;

In addition to the programming of sequential test sequences, test cases, and
functions, the programming of event procedures is possible. In order to react to
events (e.g., a signal change) in CANoe, event handlers can be defined. The
methods are then called as soon as the event occurs during the test.

© Vector Informatik GmbH

Version 5.0

=24 -

Concept Manual VTESTstudio

3.2 C# Editor

Test Design Editors

Features Similar to the CAPL Editor, the C# Editor integrated in vVTESTstudio provides the
functions of a modern development environment such as
> Code completion and syntax checking while writing
> Configurable syntax highlighting
> Syntax-sensitive indentation
> Expandable function blocks
> Hierarchical function list with search function for direct transfer to the source text
> Direct transfer of network symbols, environment data, diagnostic symbols, and
parameters from the Symbol Explorer
User interface LockingTestLibrary.cs* | + x ||Symbols 1 X
11 f Filtered by:
1z [TestClass] [NetworkSymboIs ']
1 public class LockingTestLibrary
125 ¢ - &
ISE S A R R R AR AR R R A A AR AR AR AR AR AR AR AR AR R R A A I RR R IR R I T IR [Display details
1 /# Test=s the locking behavior on crash detection. 50 comfort
:_- R R R R R R R R R R R R R R R R R R AR A R R AR AR R AR AR AR AR AR AR AR AR R AR R A RARRRRA ARG g Signals
- [Export] AntiTheftSystemAct...
15 [TestCase ("Crash detection™)] CrashDetected
2 pubklic =static void CrashDetection(int engine(mn) EngineRunning
21 { KeyDown
22 S/ Initialize signals KeyUp
2 Report.TestStep ("Initialize all signals..."): LockRequest
24 ResetLockingTestSignals () : LockState
2 E Velocity
2 // Set lock state to locked 1 WindowMation
27 Report.TestStep ("Set initial lock state to locked..."); WindowPosition
2 EngineRunning.Value = engineCn; =[] Messages)
23 Velocity.Value = &0;: = Cn_arrtmILocklngSwtem
LockRequest.Value = LockRequest.Request lock; — D!agRequest
a1 Exel - [i=] DiagResponse
. [LockingRemoteContro
ff Filtered =1 VehicleMotion
= Rt Execution class Vector.CANoe.Threading.Execution 4 [WindowCortrol
0[3 ExecutionEngineException Provides access to execution control in CAMNoe. [WindowState
% Insufficient Execution Stack Exception L Nodes

37 // Check lock state is unlocked
Report.TestStep ("Check expected lock state to be unlocked.™)

if (LockState.Value '= LockState.Unlocked)
{

Report.TestStepFail ("Lock state is 'locked'. Expected lock

else
{

Message Name: VehideMotion

Start bit:
Comment:

Report.TestStepPass ("Lock state is 'unlocked' as expected. ™

s

1

3

@ Interface Functions G;l Symbols

16

Figure 14: C# Editor

Access to symbols Automatically generated .NET classes are available for accessing signals and
environment data as well as CAN frames. These enable access to the values in the
CANoe runtime environment. Example:

Velocity.Value = 100;

Event procedures In addition to the programming of sequential test sequences, test cases, and
functions, the programming of event procedures is also possible with the C# Editor. In
order to react to events (e.g., a signal change) in CANoe, event handlers can be
defined by the use of a special C# attribute. The methods are then called as soon as
the event occurs during the test (exactly the same as in CAPL).

Connection to MS By an integrated connection it’s also possible to use Microsoft Visual Studio for the
Visual Studio development of tests in C# as an alternative to the C# editor in vTESTstudio.

© Vector Informatik GmbH

Version 5.0

- 25

Concept Manual VTESTstudio

3.3 Test Table Editor

Overview

Features

User interface

Test Design Editors

The Test Table Editor allows users to easily define test sequences in tabular form
without the need for programming expertise. Special commands are available for
stimulating and testing the system under test.

To make work easy, the following features are available:

> Command and symbol completion while writing

> Direct transfer of network symbols, environment data, diagnostic symbols, and
parameters from the Symbol Explorer

> Symbol and value type checks while editing

Access to user-defined functions and test cases in other languages

> Ease of operation using both the keyboard and the mouse

T - x
Test Execution Tree Command Caption o
2, TestTree TestTree
2 Testtatic requrements of the... | Test static requirements of the SUT
1] Lock stabialy] Testcase Lock statically
£} StaticopenClose (open=1, .. e~
L7 SotcOpenCiose (apenco, set Initizize signals of Central locking system = Crashoetected - Te
i o wait 100ms
] Unlock statically Set: LodkRequest = [ide
{44 Check request/response . o wait LodkRequestivaitTime ms
-/} Crash detection whie engn... 0 Set Iniidize signals of Windows system St Engnefunning L
3, Test velocity dependent requr. 5o Wait S0ms set:
=z Lid(d‘:“ naees ;E'”““‘f = State Change Request to lock the car. Lets see if the car will be locked (engine not run Caption: | Recently Used - |sustem
71 Checkno unlock when sowi.. R | —
i e State Change Request to lock the car. Let's see if the car will be locked (engine running) Lzies CAN:SUT Driver:VehicleMotion:Velocity
1 Apply crash i engine s . Symbols CAN sign3l (comfort.dbe)
1-1.7) Apply crash when engine .. =bejset Resetal signals = Velociy
L. Apply crach nith different . i Test Cases fopen=1, ArtTheSystemfcive |£
Crash whie engne s on e Test Case: StaticOpent taticOpenClose (open=D, L 1500) NM_CndAive
2, Adgtonalregurements ofthe . | T ok satealy NM_CrdAlve
=0 set Initiglize all signals NM_CmdReceiver
| a NM_CmdReceiver
] e wa saoms A\ ReversePolarty
4 | Lo state Change Reauest to unlock the car, Lets see f the car il be urlocked (engine no... A M5_Out1:Adtive -
4

% State Change
e set

=0 Wit

Request to unlock the car. Let's see if the car will be unlocked (engine ru. ..

Resetal signals

500ms

i, Test Case:

ek Test Case: CrashDetecti

Check tming

1 Test Case:
— -
%o
Functons ==t
0 wait

| Test Sequence Definitons
=] Test Case Definitions
] StaticOpenClose

¢ Test Function Definitions

=0 State Change
=9 State Change

= Wait
=9 Check

= Wait

% Check

i AccelerateDecelerateToTargetSpeed

4 AccelerateDecslerateToTargetspeed

Testvelocity dependent requiremens of Central Locking System

Lock by increasing velocity

Initisize al signals

s00ms

Tnitilize all input signals

Start Engine:

Accelerate to velocity lower than the lock-velocity
s00ms

Try with veloaty lower than the lock-velocity
Accelerate to lock-velodity

500ms

Try if the Central Locking System reacts on the velodity change

Figure 15: Test Table Editor

© Vector Informatik GmbH

Version 5.0

-26-

Concept Manual VTESTstudio Test Design Editors

3.4 Test Diagram Editor

Overview The Test Diagram Editor can be used to define tests in a graphical way. The
graphical notation is particularly suitable for reviews. Test code in tabular notation is
located behind each graphical element. By default one test case is generated for
each path through the diagram; a more fine-grained test case definition is possible as
well.

Features To make work easy, the following features are available:

> Easy configuration through the insertion of graphic elements into the graphic
interface using a drag & drop operation

> Command and symbol completion while writing

Direct transfer of network symbols, environment data, diagnostic symbols, and
parameters from the Symbol Explorer

> Symbol and value type checks while editing
> Access to user-defined functions and test cases in other languages
> Usage and re-use of sub-diagrams possible
> Display and preview of generated test cases and their content in table form
User interface o e ‘ =

{® Stat

o zheck @

*, Transition Initialize signals:

e Ca g e

H o doin * Velocity control

o (Gres ez Gt -) - - - - - - e

@ Decision Variart be unlocked

& Finalize

T Setp

& Ceanup EN-On EN-OR Velocity i]

fE Whie Loop mﬂ;gﬁ;’m?&ﬁ% Ljﬁ’gfgf;ﬁ‘;“:“““ Set: 0 < velocity < LockVelocity

- e

Documentation uLm Unlock manually uA

LA ™

a - Urlocked No manual urlock Lock manualy
No manual lock
(" locked)

. Lock manually vi 2
; Increase velocity (v > LockVelocity) | Increase velocity (v == L
Locked
1 e

[LA - Gl

Caption: [Initislize signals:. . [=]] sex Velodity I
Command Caption set: CrashDetected - 0
= Set Velocity=0, CrashDetected=0, LockReque... | set: LodRequest = [ide
e = wn=
e sat KeyUp=0, KeyDonn=0 set JE— _
-=b0 Set Accelerate=0, Decelerate =0
Set: £ - =
=0 Wait 500 ms
N Caption: | Recently Used -
EngineRunning [CAN:SUT_Driver:VehicleMotion:EngineRunning
Symbols || cAN signal (comfort)
EngineRunning

A EmorCrashSensorOnVelocty

A ErorinCrashSensorlsage

A ErorinWindowApplication

A, EmorkeyUpAndDownEror

X CAN1:ErorframeRate

" CAN1:Erorframes

" CAN1:ExData -

Figure 16: Test Diagram Editor

Note: The Test Diagram Editor is only available with the option Graphical Test
Design.

© Vector Informatik GmbH Version 5.0 -27 -

Concept Manual VTESTstudio

3.5 State Diagram Editor

Test Design Editors

Overview The State Diagram Editor can be used to model the expected behavior of the system
under test as state model. Test code in tabular notation is located behind each
graphical element. Based on transition coverage test cases are automatically
generated out of the model. Different generation algorithms are supported, e.g.

Chinese Postman algorithm and a breadth search based algorithm.

Features To make work easy, the following features are available:

> Easy configuration through the insertion of graphic elements into the graphic
interface using a drag & drop operation

Command and symbol completion while writing

Direct transfer of network symbols, environment data, diagnostic symbols, and

parameters from the Symbol Explorer

Symbol and value type checks while editing

Access to user-defined functions and test cases in other languages

Display and preview of generated test cases and their content in table form

User interface | LightControLvsd | o
Test Tools :
@® Initial)
O State ambient light > threshold switch on g
" Transition
@® Final
® Junction _ L)
& Setwp switch off - light
= Cleanup h
ambient light <= threshold
Documentation
. 1
N
116% @, E|-
m 2
Caption: |Off w|J Ched: % LightState == [b-oOff
Command Caption g Chedk: by
o T conn
Figure 17: State Diagram Editor
Note: The State Diagram Editor is only available with the option Graphical Test
Design.
© Vector Informatik GmbH Version 5.0 -28 -

Concept Manual VTESTstudio Interaction with CANoe

4 Interaction with CANoe

In this chapter you find the following information:

4.1 CANoe System Environment page 30
4.2 Execution in CANoe page 32
4.3 Reporting page 34

© Vector Informatik GmbH Version 5.0 -29 -

Concept Manual VTESTstudio Interaction with CANoe

4.1 CANoe System Environment

Access The integration of description files for the system environment (databases, diagnostic
descriptions...) enables easy direct access to symbols of the CANoe system
environment. The database symbols, system variables, etc., contained in the system
environment are available for use in the test coding. The symbols can be inserted into
the test sequences in two different ways: via text completion in the individual editors
or using a drag & drop operation from the Symbol Explorer.

EVelocity = 0;
ECrashDetected = 0O;
S
Recently Used
CrashDetected
Filtered
[CentralLocking System State
CrashDetected
[=] DiagRequest
[DiagResponse i
[CAM::SUT_Driver::VehideMotion: :EngineR.unning
[LockingRemoteControlRequest
LockRequest
MM_CmdReceiver -

*

m

Figure 18: Symbol completion in the programming editors

Set: Velocity = 0
Set: CrashDetected =]
Set: LockRequest = [P-ide
Set: g v =
Capﬁun: F‘{EDE“‘HY USE{I :
ErG Il CAN:SUT_Driver:VehicleMotion:EngineRunning
Symbsols CAN signal (comfort.dbe)

“% RelayBusBarE

“% RelaySwapBusBar

“%% ReversePolarity

“% M1_Ch1::RelayBusBar1A

“% M1_Ch1::RelayBusBar1B

“% M1_Ch1::RelayBusBar2A

“% M1_Ch1::RelayBusBar?B

“w M1_Ch1:RelaylntLoadA =

Figure 19: Symbol completion in the Test Table Editor

© Vector Informatik GmbH Version 5.0 -30 -

Concept Manual VTESTstudio

Symbols
Filtered by:
[Netwnrk Symbaols -]
Enter a search term 44
[Display details
=4 comfort
=~ Signals
----- Artti Theft System Active

----- EngineRunning
..... KeyDown
..... Keyp
----- LockRequest
----- Lock State
..... Velocity
----- WindowMation
----- WindowPosttion
== Messages
G- [CentrallockingSystemState
-3 LockingRemateControlRequest
(= VehicleMotion
- WindowControl
G- [WindowState
-5 Nodes
4| Tl | b

Message Name: VehideMotion
Start bit:
Comment:

15

Figure 20: Symbol Explorer for inserting symbols using drag & drop

© Vector Informatik GmbH

Version 5.0

Interaction with CANoe

-31-

Concept Manual VTESTstudio

4.2 Execution in CANoe

Interaction with CANoe

Creating a test unit In vTESTstudio an executable test unit can be created. An executable test unit has
the extension *. VTUEXE and contains all necessary data for the test (source files,
parameter files...).

Configuring and The executable test unit can be configured and executed in CANoe.

executing a test unit
in CANoe

For the execution in CANoe in the CANoe configuration any number of test

configurations can be created. A test configuration can again contain any number of
executable test units that will be executed in sequential order.

% Door Control Unit

By | <search> xv &8 B

[o o s
B x BFE-8B-

Caption Verdict Runtime Test Unit
|¥1EZ, Door Cartrol Unit 254" » |1 {3, Functional Tests
B | B
= [WE=, Test static requirements of the door control unit 0 12417 & Error Handling
[¥]] Lock statically (] 21635 | =
| Unlock statically (] 2.198s
/| Crash detection while engine is moving [x] 8053 | |
| Crash detection while engine is moving (engine0On=0,velocity=40) @ 1.958s
| Crash detection while engine is moving (engineCn=0,velocity=60} 9 1558
| Crash detection while engine is moving (engineOn=1,velocity=40) 0 2.004s
| Crash detection while engine is moving (engine0On=1,velocity=60) 0 1.9585s
E—]E‘] Test velocity dependent requirements of the door control unit 0 55.358s
| Lock by increasing velocity (] 11.3%5
'v| No unlock when slowing down (] 7698
[¥1%=| Apply crash with different velocities @ 12.000s
v | Lock dependent on velocity and crash detection o 17.453s
| Lock with car moving/not moving 0 6.800s
v | Forengine = 0, moving = 0 and applied crash = 1, check lock state == 0 1,659
[#]] For engine = 0. moving = 1and applied crash = 1, check lock state == @ 1,659
| Forengine = 1, maving = 0 and applied crash = [, check lock state == 9 1.702s i
Name 7 Value Data Type Test Units Dependendes
[#- Coverage Full Integer [Low, Medium, Full, ... Functional Tests none
- Region us Integer [US, Europe, Asia, ...] Functional Tests none

[¥] Show variant properties for selected test units only

S 1.5 otpesc:

Figure 21: Test execution in CANoe

© Vector Informatik GmbH

Version 5.0

-32-

Concept Manual VTESTstudio

Interaction with CANoe

Test Trace Window Details of the test run are visualized in the Test Trace Window already during the test
execution.

s

E"n Test Trace

© # | V(%[

Time

0:00:00:03

-
onnnn'&*??{*nnnnunnnn

-]

o

-]

& & & & & 0

14.753354
15.253354
15.253354
15.253354
15.253354
15.253354
15.753354
15.753354
15.753354
15.753354
15.753354
15.753354
15.753354
15.753354
15.753354
15.753354
15.753354
15.753354
15.753354
15.753354
15.753354
15.753354
15.753354
15.753354
15.753354
15.753354
16.253354
15.253354
16.253354
16.253354
16.253354
16.453354
15.453354
16.453354

[E=N EeR 5
dt | <Search> gy = & &

Action Verdict @

Start wait for 500ms

Check expected lock state to be unlocked.

Lock state is 'unlocked' as expected. pass (M
Check if the car remains opened, even if the velocity increases to ...
Increase velodty: Set velodty to 70

Start wait for 500ms

Check expected lock state to be unlocked.

Lock state is locked', Expected lock state is 'unlocked' fail
Rest all signals...

Test case failed: Crash detection while engine is moving (enagine... fail
Test case list finished: Crash detection while engine is moving

Test group finished: Test static requirements of the door control unit
Test group started: Test velocty dependent requirements of the ...
Test case started: Lock by increasing velocity

Reset all signals [Set]

Stimulation of values

CAN signal ‘EngineFunning = 0
CAN signal 'Velodty' = 0
CAM signal 'CrashDetected’ = 0

CANM signal LockRequest’ = 0 (idle)
Mo acceleration/deceleration [Set]
Stimulation of values

System variable 'Accelerate’ =
System variable 'Decelerate’
[Wait]

Start wait for 500ms
Waited for 500,000 ms
Ensure initial state Unlocked' [State Chanae]

Stimulation of values

CANM signal LockRequest’ = 2 (Reguest_unlock)

Start wait for 200ms

Waited for 200,000 ms

Check of expected values pass -
CAM signal 'LockState' == 0 (Unlocked) 0O pass [E]

|
o O

Figure 22: Test Trace Window in CANoe

Debugging CANoe also supports debugging of CAPL and C# code that is part of a test unit.

© Vector Informatik GmbH

Version 5.0 -33-

Concept Manual VTESTstudio

4.3 Reporting

CANoe Test Report
Viewer

Interaction with CANoe

During the execution of a test unit in CANoe a detailed test report is created
automatically. The CANoe Test Report Viewer supports a lot of filter and grouping

functionality as well as user defined queries for a comfortable and comprehensive
analysis of the test report.

‘.

QR Report_Door_Control_Unit_Tests - Vector CANoe Test Report Viewer =]
= 1—9 = s -
== F Acthvity Result > @ ﬂ L,[: 5.[: ZgFsiled Cycle Time Checks -
2 Test Tree Element Verdict 2 @ - -
Overview Tableof | Back Forward New | TestCase Traceltems gZglnvalid Messured Voltage -
Contents = - by Verdict ~ related... -
Navigation Filter Query
Explorer -1 = Overview x 1] hd
Title Verdict |
B
= Central locking system test [1...23] (<]
g 5y
e [E= Test static requirements of the door control unit [1..6] Q Test Case Results
< 11. Lock staticall
11 Lock statically ° Mone o |n%
£12. Unlock statically []
25) Crash detection whie engine s moving [- €] o pess = [-+
213, Crash detection while engine is moving (engineOn=Oelocity=40) & Inconclusive o |o%
Elf 14, Crash detection while engine is moving (engineOn=Oyelocity=60) @ Fai - I - =
215, Crash detection while engine is moving (engineCn=1velocity=40) € E——
716, Crash detection while engine is moving (engineOn=1velocity=60)
2 g g (eng| ty:
2T B Test velocity dependent requirements ofthe door control urit [7.15 o | ™ = |, oo
217. Lock by increasing velocity [] .
1718, No unlock when slowing down) General Information
» & Apply crash with different velocities 2. 14] @ Test begin' 3252017 6:32 +02:00 L
115, Lock dependent on velocity and crash detection (%] Testend: 3282017 6:33 +02:00
» [Lock with car moving/not moving [16.. 19] (2]
= Comfort close (20] o System Under Test
2120, Open snd comiort close o Herdware revision: ~ Evaluation board 1.3
Software revision: 1.02
E= Diagnostics [21.23] [x]
7121 Ambiguous request KeyUp/KeyDown with engine off [x] Tester
122, Ambiguous request KeyUp/KeyDown with engine running [x] Windows Login Neme: Mextiuster
123, Varient coding (] Test Setup
Version: ‘CANoe ISO11783.J1938 CANaero CANopen LIN MOST. FlexRay J1

587 Ethemet Car2 AFDX 4429 XGP.AMD Scope. Sensor 10.0 -

5

Ready.

Figure 23:

© Vector Informatik GmbH

CANoe Test Report Viewer

Version 5.0

-34-

Concept Manual VTESTstudio Language Interaction

5 Language Interaction

In this chapter you find the following information:

5.1 Interface Functions page 36

© Vector Informatik GmbH Version 5.0 -35-

Concept Manual VTESTstudio

5.1 Interface Functions

Language Interaction

Overview Interface functions allow for functions of one language to be used in another one. An
interface function can be a test case, a test sequence, a test function, or a simple
function. Other than the test function the simple function is not represented as a block
in the report.

Definitions An interface function can be defined as follows in the respective languages:

>

C#:

Attribute [Export] on test cases, test sequences, test functions or simple

functions.
CAPL:

Keyword export ahead of test cases, test sequences, test functions or functions.

Test Table Editor:

Export setting on test cases, test sequences or functions which are defined in the

functions view.

All interface functions which are available within a test unit are displayed in an

explorer.
Explorer .
P User Functions =]
Group by
Marne
=l Test Cases

wnt Cheddotor
et LockByVelodty

v LockStatically

m REquestResponseTiming
wet SimpleWindowTest

wn StaticOpenClose

= Test Functions
f= AccelerateDecelerate

fo CydeTimeCalc

CrashDetection
wet (int32 engineOn): void -

m

Class: LockingTests

File: C:\...\METTestCaseLibrary.cs :

Figure 24: Explorer for interface functions

Out of the explorer, the functions can be added to the respective editors using drag &
drop. Alternatively the functions can be added to the editors by the use of the text
input completion feature.

© Vector Informatik GmbH

Version 5.0

-36 -

Concept Manual VTESTstudio Language Interaction

Language interaction The following language interaction is supported:

Defining Language
Calling Language CAPL C# Test Table Test Sequence State
Diagram Diagram
CAPL — | = — — —
C# ° ° — — —
Test Table ° ° ° — —
Test Sequence Diagram ° ° ° — —
State Diagram ° ° ° — —

© Vector Informatik GmbH Version 5.0 -37 -

Concept Manual VTESTstudio Parameters, Curves and Variants

6 Parameters, Curves and Variants

In this chapter you find the following information:

6.1 Parameters page 40
Concept
Find Test Case Data by the Classification Tree Method
6.2 Curves page 43
6.3 Variants page 44

© Vector Informatik GmbH Version 5.0 -39 -

Concept Manual VTESTstudio Parameters, Curves and Variants

6.1 Parameters

6.1.1 Concept

Definition The term "parameter" refers to any constant value that can be accessed within the
test sequence from all implementation languages.
Examples of parameters: Configuration parameters for a control unit, test vectors,
tolerances, etc.

Parameters are defined and maintained in separate files. Available parameters are
displayed in the Symbol Explorer within the tab Parameters.

Kinds There are several kinds of parameters:
> (Scalar) Parameter:

© Vector Informatik GmbH

A scalar parameter represents exactly one constant value that can be accessed in
the test sequence.

Example:
Name Value
CycleTimeTolerance 50

(Scalar) List Parameter:

A list parameter has 1...n values for the same variable. In the test sequence,
iteration over all values of the list can be performed in order, for example, to
perform a test under different temperature values.

Example:
Name Value
OutsideTemperature -40, -10, 0, 15, 30, 50

Struct Parameter:

A struct parameter represents a set of associated (scalar) values. In the test
sequence, the individual values of a struct can be accessed in order, for example,
to apply a test vector (stimulating and expected values) to the test system.

Example:

Struct Member Value

LockingTestVector Velocity 60
CrashDetected 0
Wait 500
LockState 1

Struct List Parameter:

A struct list parameter corresponds to a list of value tuples for a struct. In the test
sequence, iteration over all list elements can be performed in order, for example,
to apply various definitions of a test vector onto the system.

Example:

Struct Member / Value

LockingTestVectorList Velocity | CrashDetected | Wait LockState
60 0 500 1
40 0 500 0
60 1 250 0

Version 5.0 - 40 -

Concept Manual VTESTstudio Parameters, Curves and Variants

Hierarchical structure Parameter definitions can be structured hierarchically using namespaces.

© Vector Informatik GmbH Version 5.0 -41 -

Concept Manual VTESTstudio

6.1.2 Find Test Case Data by the Classification Tree Method

Parameters, Curves and Variants

Classification tree By an integrated editor for the classification tree method test case data - in terms of

method test vectors - can be defined. The graphical user interface supports finding the
relevant input data for a test. Automatic or manual combination of all crucial input
values allows to efficiently defining the minimum number of required test vectors.

Boundary value

A dedicated support of boundary values enables the targeted testing in critical value

analysis ranges of the input data.
User interface
DoorLockData.vct | v X
Jree Homorss &5 DoorLockData
E Composition
E=1 Classification
Class P i]
& b
u —0
Documentation
e ot o o
Classification Properties (V] (1)
Name: CrashDetected
T
e [Integer T won 0w =< LockVelocity ~ =s=LockVelocity === > LockVelocity
Infe (M] [0.49] (20) (50) [51.200] (75)
100% @, =]
Test Case Data EngineRunning Velocity CrashDetected Expected Values
On Off < LockVelocity LockVelocity > LockVelocity NoCrash Crash ExplockState
o & * o
m & X 1
[2 £ [0
3 ® = 3 1
) = B 0
5 - - o
@ * C)]) a & a Gl

Figure 25: Definition of test vectors by the editor for the classification tree method

Parameterization of ~ The test vectors can be used in implemented test cases, e.g. for the parameterization
test case lists with of test case lists in the Test Table Editor (see section Concepts for High Test

test vectors Coverage).

Signature:
Parameter Values
Struct List:
Combinatorics:
MName:
Type of Values:
Value Source:

Values:

Test Case Caplion:
Lse Property...

Caption:

1 ChedkAutomaticLock(into4 engineRunning, double velodty, intd4 crash, int64 lodkState) : void

% DoorLockData

sequential

engineRunning

Member of Struct List

wvelocity

Member of Struct List

% DoorLockData.EngineRunning % DoorLockData. Velocity

1

20

50

50

73

50

75

crash

lockState

Member of Struct List Member of Struct List

% DoorLockData.CrashDetected

CheckAutomaticLock engineRunning = {engineRunning}, velodty = {velodty}, crash = {crash}, lockState = {ockState})

Trace Items, Variant Dependendies, External References

Check locking behavior

Figure 26: Usage of test vectors for the parameterization of a test case list in the Test Table Editor

© Vector Informatik GmbH

Version 5.0

% DoorLockData.LockState

- 42 -

Concept Manual VTESTstudio Parameters, Curves and Variants

6.2 Curves

Stimulation curves By the use of the so-called Waveform Editor curves for the stimulation of the system
under test can be defined. Predefined segment types (sinus, pulse ...) enable easy
definition of e.g. voltage curves defined by ECU test standards like LV124.

Multiple curves can be synchronized easily within the same editor.

11.39-

11-

10

9-|

n

Start_| mpulse [V]

KL_50 [trushalse]

False
| ' | . ' . I . I . ' ' '
0.00 1.00 200 300 400 5.00 £.00

tls]

<[i

Figure 27: Definition of stimulation curves with the Waveform Editor

Synchronized check By the definition of check points for a stimulation curve the reaction of the system

points under test triggered by the stimulation can be verified.
e Iig}htuﬁ
I
8000 L |
T_ _T light off /.‘
7500 Caption: |Iightuf‘F |v‘
= Command Caption
= Check Automaticlight == Off
7000- Lo
B
= 6500
én 6000-
5500-
5000-
light on
4500-
'\ i I ' I ' I ' I I i I ' 1
a 500 1000 1500 2000 2500 3000 2440
t[ms]
© Vector Informatik GmbH Version 5.0 - 43 -

Concept Manual VTESTstudio Parameters, Curves and Variants

6.3 Variants

Variant properties

Access

Access to variant
property in CAPL

Parameter value
dependent on a
variant property

Variant-dependent
test cases

ECU variants and test variants can be realized using so-called variant properties.

Examples:

Variant Property Possible Values
Region US, Europe, Asia
Coverage full, low, medium
Model OEM1, OEM2

Variant properties can be used for conditional test coding as well as for access to
variant-dependent parameter values and for defining variant-dependent test cases or
test groups.

if (varprop::Region == varprop::Region::US)
{
//
}
= Model
Mame

B OEM1 DEM2 qr
%o Tolerance 50 65

Figure 28: Parameter value dependent on a variant property

Test Execution Tree

EI--E':, Test Tree
EIE"I Basic Function Tests
: « | Test Case 1
: « | Test Case 2
=R 7} Extended Function Tests
v | Test Case 3
L.l7] Test Case 4

D Coverage == [~ medium

D Coverage == [ful

Figure 29: Variant-dependent test cases

© Vector Informatik GmbH Version 5.0 -44 -

Concept Manual VTESTstudio Parameters, Curves and Variants

Transfer

Variant properties in
the Symbol Explorer

Variant properties can be easily transferred to the test code from the Symbol Explorer
or using text completion.

Symbols =]

Filtered by:

[F‘arameters -]
> #4

[Display details

{at Parameters
- {s Variant Properties

= Region

= Coverage

° [EEN
1 | 1] [b

Figure 30: Variant properties in the Symbol Explorer

The value of a variant property is either already defined at design time in
VTESTSstudio or can be set in CANoe up until just before the start of the test.

Variant properties can be dependent on one other, i.e., the value of one variant
property (e.g., Region) can determine the value of another variant property (e.g.,
Model).

© Vector Informatik GmbH Version 5.0 -45 -

Concept Manual VTESTstudio Use Cases

7 Use Cases

In this chapter you find the following information:

7.1 Generating Two Similar Test Units for Different OEMs page 48

© Vector Informatik GmbH Version 5.0 - 47 -

Concept Manual VTESTstudio Use Cases

7.1 Generating Two Similar Test Units for Different OEMs

Setup There is a VTESTstudio project for the test of the door control unit. It consists of two
test units — one for OEM1 and one for OEM2. The actual sequence logic is the same
for both OEMs. It is implemented in a test table Main.vtt and is used in both test units
by a file link. For information on linking files to test units, also see Re-Use of Files.

Project View =]
Focecomotnt
=% LockingTests_OEM1

% Main. wtt
=% LockingTests_OEM2

@ Main, vt

Figure 31: Using test logic in both test units

Various tolerance values are accessed during the test. These are dependent on the
OEM. An OEM variant property is declared for this purpose with two possible values:
OEM1 and OEM2.

-

Edit Variant Property @
Mame
Mame: QOEM
Info:
Datatype
Data Type: [Irrte.-ger v]
Value Table
Value Description

0 QOEM1

Add new value... Add new descripfion...

[List of valid values are taken from value table. Use this option f valus

table describes all values.
OK || Cancel

Figure 32: Definition of the variant property OEM

© Vector Informatik GmbH Version 5.0 -48 -

Concept Manual VTESTstudio

Use Cases

The tolerances themselves are defined in a parameter file. The specific tolerance
values are defined according to the OEM variant property.

=, Name

140 MaxReactionTime
110 Tolerancel

110 Tolerance?

& Variant

QOEM1 OEM2
500 500
10.2 15.1
79.9 30.0

Figure 33: Parameters with variant-dependent values

The parameter file is also used in both test units.

Project View

- LockingTests_OEM1
% Main.vtt

-2 LockingTests_OEM2

@ Main, vt

I} DoorControlUnit

----- @, Tolerances, vparam

i Tolerances.vparam

Figure 34: Using same parameter files in both test units

To ensure that the correct parameter value is used during the test execution, the user
only has to set the correct value of the OEM variable property in each case in the
configuration dialog of the test units.

& LockingTests_OEM1 | - X
Variant Property Values Variant Property Values
Editable in CAMoe Mame Value Type Depends on
______________________ [N o |0e1 [integer [OEM1, .. [none

Figure 35: Defining the variant property value for the LockingTests_OEM1 test unit

In addition to the OEM-dependent parameter values, an OEM-dependent test function

is also to be used. For this, a C# function is called in the test table:

[=Hlv| Test Case
L EpE Cat
- Wait
-5 ® Check

2o Wait
B Gt

Lock by increasing velodity
Stimulate input signals
MaxReactionTime ms

Check expected output signals

LS Teot odByVelodty Do OEM spedific locking test

500 ms

Reset signals

Figure 36: Calling a C# function in the test table

© Vector Informatik GmbH

Version 5.0

- 49 -

Concept Manual VTESTstudio Use Cases

The implementation of the function takes place in two C# files, one of which contains
the implementation for OEM1 and the other the implementation for OEM2:

Locking_QEM1.cs* | - X

[TestFunction]
pubklic =static volid TestLockByVelocity (doukle initialSpeed)
= f

-

m

S OEM1 szpecific test coding...
- 1

4

1

Figure 37: C# file with OEM1-specific implementation for TestLockByVelocity

Locking_OEM2.cs* | - X

[TestFunction]

public =ztatic void TestLockByVelocity (double initialSpeed)
= {

L3

m

ff CEMZ2 specific test coding...
-}

4

1

Figure 38: C# file with OEM2-specific implementation for TestLockByVelocity

The file for OEML1 is added to the first test unit and the file for OEM 2 is added to the
second test unit:

Project View

E} DoorControlUnit

E| 5 LockingTests_OEM1
- Locking_OEM1.cs
% Main.vtt

E_Z] Talerances., vparam
E| 5 LockingTests_OEM2
- Locking_OEM2.cz

@ Main. vt

1% Tolerances, vparam

© Vector Informatik GmbH

Figure 39: Using different C# files for variant-dependent implementations

Version 5.0 - 50 -

VECTOR >

More Information

News

Products

Demo Software
Support
Training Classes
Addresses

vV V. V V V V

www.vector.com

http://www.vector-worldwide.com/
http://www.vector-worldwide.com/

	Table of Contents
	1 Introduction
	1.1 About this User Manual
	1.1.1 Access Helps and Conventions
	1.1.2 Certification
	1.1.3 Warranty
	1.1.4 Support
	1.1.5 Registered Trademarks

	2 Overview
	2.1 General
	2.2 vTESTstudio and CANoe
	2.2 vTESTstudio and CANoe
	2.3 Function Overview
	2.4 Structure of a Project
	2.4 Structure of a Project
	2.4.1 Project Tree
	2.4.2 File-Based Storage
	2.4.3 Re-Use of Files
	2.4.3 Re-Use of Files
	2.4.4 Home Directory and Libraries
	2.4.5 Storage Location of Files on the File System
	2.4.6 Structuring Using (Shareable) Folders

	2.5 Concepts for High Test Coverage
	2.6 Traceability by the Connection of REQM/TDM Tools
	2.6 Traceability by the Connection of REQM/TDM Tools
	2.7 Test Design Documentation
	2.7 Test Design Documentation

	3 Test Design Editors
	3.1 CAPL Editor
	3.2 C# Editor
	3.3 Test Table Editor
	3.4 Test Diagram Editor
	3.5 State Diagram Editor

	4 Interaction with CANoe
	4.1 CANoe System Environment
	4.2 Execution in CANoe
	4.2 Execution in CANoe
	4.3 Reporting
	4.3 Reporting

	5 Language Interaction
	5.1 Interface Functions

	6 Parameters, Curves and Variants
	6.1 Parameters
	6.1.1 Concept
	6.1.2 Find Test Case Data by the Classification Tree Method
	6.1.2 Find Test Case Data by the Classification Tree Method

	6.2 Curves
	6.2 Curves
	6.3 Variants
	6.3 Variants

	7 Use Cases
	7.1 Generating Two Similar Test Units for Different OEMs

