

 Concept Manual

vTESTstudio

 Version 5.0

English

Imprint

Vector Informatik GmbH
Ingersheimer Straße 24

D-70499 Stuttgart

The information and data given in this user manual can be changed without prior notice. No part of this manual may be reproduced in
any form or by any means without the written permission of the publisher, regardless of which method or which instruments, electronic
or mechanical, are used. All technical information, drafts, etc. are liable to law of copyright protection.

© Copyright 2017, Vector Informatik GmbH. Printed in Germany.
All rights reserved.

Concept Manual vTESTstudio Table of Contents

© Vector Informatik GmbH Version 5.0 - I -

Table of Contents

1 Introduction 3

1.1 About this User Manual 4
1.1.1 Access Helps and Conventions 4
1.1.2 Certification 5
1.1.3 Warranty 5
1.1.4 Support 5
1.1.5 Registered Trademarks 6

2 Overview 7

2.1 General 8

2.2 vTESTstudio and CANoe 10

2.3 Function Overview 10

2.4 Structure of a Project 11
2.4.1 Project Tree 11
2.4.2 File-Based Storage 11
2.4.3 Re-Use of Files 12
2.4.4 Home Directory and Libraries 12
2.4.5 Storage Location of Files on the File System 13
2.4.6 Structuring Using (Shareable) Folders 13

2.5 Concepts for High Test Coverage 13

2.6 Traceability by the Connection of REQM/TDM Tools 17

2.7 Test Design Documentation 20

3 Test Design Editors 23

3.1 CAPL Editor 24

3.2 C# Editor 25

3.3 Test Table Editor 26

3.4 Test Diagram Editor 27

3.5 State Diagram Editor 28

4 Interaction with CANoe 29

4.1 CANoe System Environment 30

4.2 Execution in CANoe 32

4.3 Reporting 34

5 Language Interaction 35

5.1 Interface Functions 36

6 Parameters, Curves and Variants 39

6.1 Parameters 40
6.1.1 Concept 40
6.1.2 Find Test Case Data by the Classification Tree Method 42

6.2 Curves 43

6.3 Variants 44

Concept Manual vTESTstudio Table of Contents

© Vector Informatik GmbH Version 5.0 - II -

7 Use Cases 47

7.1 Generating Two Similar Test Units for Different OEMs 48

Concept Manual vTESTstudio Introduction

© Vector Informatik GmbH Version 5.0 - 3 -

1 Introduction

In this chapter you find the following information:

1.1 About this User Manual page 4

 Access Helps and Conventions

 Certification

 Warranty

 Support

 Registered Trademarks

Concept Manual vTESTstudio Introduction

© Vector Informatik GmbH Version 5.0 - 4 -

1.1 About this User Manual

1.1.1 Access Helps and Conventions

To find information
quickly

The user manual provides you the following access helps:

> at the beginning of each chapter you will find a summary of its contents,

> in the header you see the current chapter and section,

> in the footer you see to which program version the user manual replies,

> at the end of the user manual you will find an index.

Reference: Please refer to the online help for detailed information on all topics.

Conventions In the two following charts you will find the conventions used in the user manual
regarding utilized spellings and symbols.

 Style Utilization

 bold Blocks, surface elements, window- and dialog names of the
software. Accentuation of warnings and advices.

[OK] Push buttons in brackets

File|Save Notation for menus and menu entries

 CANoe Legally protected proper names and side notes.

 Source code File name and source code.

 Hyperlink Hyperlinks and references.

 <CTRL>+<S> Notation for shortcuts.

 Symbol Utilization

Here you can obtain supplemental information.

This symbol calls your attention to warnings.

Here you can find additional information.

Here is an example that has been prepared for you.

Step-by-step instructions provide assistance at these points.

Instructions on editing files are found at these points.

This symbol warns you not to edit the specified file.

This symbol indicates multimedia files like e.g. video clips.

Concept Manual vTESTstudio Introduction

© Vector Informatik GmbH Version 5.0 - 5 -

 Symbol Utilization

This symbol indicates an introduction into a specific topic.

This symbol indicates text areas containing basic knowledge.

This symbol indicates text areas containing expert knowledge.

This symbol indicates that something has changed.

1.1.2 Certification

Certified Quality
Management System

Vector Informatik GmbH has ISO 9001:2008 certification.
The ISO standard is a globally recognized quality standard.

1.1.3 Warranty

Restriction of
warranty

We reserve the right to change the contents of the documentation and the software
without notice. Vector Informatik GmbH assumes no liability for correct contents or
damages which are resulted from the usage of the user manual. We are grateful for
references to mistakes or for suggestions for improvement to be able to offer you
even more efficient products in the future.

1.1.4 Support

You need support? You can get through to our hotline at the phone number

+49 (711) 80670-200

or you send a problem report to the CANoe Support.

http://vector.com/support/

Concept Manual vTESTstudio Introduction

© Vector Informatik GmbH Version 5.0 - 6 -

1.1.5 Registered Trademarks

Registered
trademarks

All trademarks mentioned in this user manual and if necessary third party registered
are absolutely subject to the conditions of each valid label right and the rights of
particular registered proprietor. All trademarks, trade names or company names are
or can be trademarks or registered trademarks of their particular proprietors. All rights
which are not expressly allowed are reserved. If an explicit label of trademarks, which
are used in this user manual, fails, this should not mean that a name is free of third
party rights.

 > Windows, Windows Vista, Windows 7 and Windows 8 are trademarks of the
Microsoft Corporation.

> vTESTstudio is a trademark of Vector Informatik GmbH.

Concept Manual vTESTstudio Overview

© Vector Informatik GmbH Version 5.0 - 7 -

2 Overview

This chapter contains the following information:

2.1 General page 8

2.2 vTESTstudio and CANoe page 10

2.3 Function Overview page 10

2.4 Structure of a Project page 11

 Project Tree

 File-Based Storage

 Re-Use of Files

 Home Directory and Libraries

 Storage Location of Files on the File System

 Structuring Using (Shareable) Folders

2.5 Concepts for High Test Coverage page 13

2.6 Traceability by the Connection of REQM/TDM Tools page 17

2.7 Test Design Documentation page 20

Concept Manual vTESTstudio Overview

© Vector Informatik GmbH Version 5.0 - 8 -

2.1 General

Overview vTESTstudio is a multifaceted and integrated work environment for developing tests
for embedded systems.

 You can use different test design languages to write tests in vTESTstudio. The
following editors are supported:

Test design editors > CAPL Editor:
CAPL is an event-oriented programming language of CANoe that can also be
used for programming test sequences, test cases, and functions.

> C# Editor:
C# is a .NET programming language that CANoe expands with libraries especially
designed for testing and for accessing control units.

> Test Table Editor:
This editor enables writing of tests in tabular form and can be used without the
need for programming expertise.

> Test Diagram Editor:
Editor for modeling of test sequences in a graphic notation. This editor is
contained in the Graphical Test Design product option.

> State Diagram Editor:
Editor for modeling the expected behavior of the SUT as state model for automatic
test case generation. This editor is contained in the Graphical Test Design
product option.

Re-use concept Through the use of libraries and a clear and easy to understand re-use concept,
whole files as well as individual test cases can easily be re-used in various tests.

Structured test
creation

For a structured test creation tests are supported that can contain several files.

Parameterization Due to an integrated parameter concept, ECU configuration parameters and test
vectors can be administrated comfortable in separated files. From these files they can
be re-used in different tests.

Stimulation curves By the use of the Waveform Editor you can define curves to be used in the test as
stimulation curves for the system under test.

Variants A continuous variant support for test logic, test implementation and parameter values
allows an implementation of variant-dependent tests.

Concept Manual vTESTstudio Overview

© Vector Informatik GmbH Version 5.0 - 9 -

User interface

Figure 1: vTESTstudio user interface

Figure 2: vTESTstudio user interface – Test Diagram Editor

Concept Manual vTESTstudio Overview

© Vector Informatik GmbH Version 5.0 - 10 -

2.2 vTESTstudio and CANoe

Hand in hand The interaction with CANoe enables easy access to the system under test in all
languages. Database symbols, system variables, and diagnostic descriptions can be
easily accessed in all languages. The bus systems and protocols CAN, LIN, FlexRay,
Ethernet, WLAN and J1939 are supported.

 Independent of their notation the tests are configured and loaded in CANoe, executed
in real time, and documented in a detailed test report.

Schema

Figure 3: Schematic Overview – vTESTstudio and CANoe

2.3 Function Overview

Important features Among the things that vTESTstudio provides for a successful test environment are:

 > Integration of graphical test design editors, programming editors, parameter
editors and curve editors in one tool

> Comfortable capabilities for reviews by clear modeling of the test logic in the Test
Diagram Editor or the expected behavior of the SUT in the State Diagram Editor

> Easy re-use through possible separation of test logic, implementation, parameter
values, and test vectors

> Possible pre-processing of events in CAPL and C# for access and evaluation in
test sequences

> Integrated variant support for test structure, implementation, and parameters

> Concepts for high test coverage

> Universal traceability of externally defined requirements and test descriptions in
the test implementation and in the test report

> Automatically generated test design documentation for documentation purposes
as well as internal and external reviews

Concept Manual vTESTstudio Overview

© Vector Informatik GmbH Version 5.0 - 11 -

2.4 Structure of a Project

2.4.1 Project Tree

Terms project and
test unit

A vTESTstudio project consists of any number of test units. A test unit represents
the configurable and executable unit in CANoe. It consists of a set of files that contain
the test implementation (CAPL files, C# files, test tables, test diagrams and parameter
files).

 While a vTESTstudio project, for example, covers an ECU to be tested, a test unit
could have implemented the tests for a particular functionality of the system under
test.

Examples Example 1

> Project for tests of the overall functionality of an ECU

> Test units for core features, error detection, diagnostics, …

 Example 2

> Project for tests of the entire product line of an ECU

> Test units for tests of a variant of an ECU

Figure 4: Project view

2.4.2 File-Based Storage

Storage of project
components

All vTESTstudio project components are stored using file-based storing. A
vTESTstudio project consists of a project file and any number of source code and
parameter files that are referenced in the project file.

 Files relevant for the test (CAPL files, C# files, test table files, parameter files, etc.)
are created in the context of a test unit. Within a test unit, for example, test cases and
test functions can be accessed across file- and language boundaries. Similarly, the
parameters of a parameter file are known (only) in the context of the corresponding
test unit.

Concept Manual vTESTstudio Overview

© Vector Informatik GmbH Version 5.0 - 12 -

2.4.3 Re-Use of Files

Linking of files Files can easily be re-used by linking them to other test units. This is done by moving
them from the source to the destination using a drag & drop operation. Thus, for
example, the same test sequence can be re-used in multiple test units, e.g. with only
using different parameter files for parameterizing the test sequence.

Figure 5: Project view with re-used file Main.vtt

2.4.4 Home Directory and Libraries

Home directory The directory where the project file is located is called the Home Directory. Files
from the root directory and files from specially defined Libraries can be used in the
project.

Libraries The Libraries view provides a filtered view of the file system. A library represents only
a folder on the file system that is made known in the project. Files from libraries can
also be linked to test units using a drag & drop operation.

 If a library folder is moved on the file system, in vTESTstudio only the link to the
library has to be updated. The paths of the linked files in the test units are updated
automatically.

Concept Manual vTESTstudio Overview

© Vector Informatik GmbH Version 5.0 - 13 -

2.4.5 Storage Location of Files on the File System

Storage of files If a file is created in the context of a test unit, it is automatically created on the file
system under the path <Home Directory>\<Test Unit Name>.

 If the files are to be organized differently on the file system, this can be done using
the Home Directory view. This view shows the file system located underneath the
project directory. If a file is moved in this view, possible links to this file in the test
units will be automatically updated.

2.4.6 Structuring Using (Shareable) Folders

Re-use of folders In order to structure the contents of test units more clearly, folders can be created
within a test unit (as many folders, including nested folders, as required). This has no
effect on the content of the test and is only used to organize files.

 In addition to re-use individual files, the re-use of whole folders is also possible. For
example, if a folder contains a test sequence description and an associated
parameter file, these two files can be re-used together by linking the whole folder to
another test unit.

 If a folder with files is created underneath a test unit and then linked to another test
unit, the folder with the original files is located on the file system underneath the first
test unit. If such a "master test unit" is not desired, the folder can be created as a
shareable folder instead. This is done by the project's shortcut menu command New
Shareable Folder. Folders and files created by this are created on the file system
under the path <Home directory>\<Shareable Folders>. From there they can

also be linked to the test units using a drag & drop operation.

2.5 Concepts for High Test Coverage

Parameterized test
case lists

For high test coverage without significant programming effort, so-called
parameterized test case and test sequence lists are supported.

 To defined a test case list, a test case with input parameters must be defined, for
example, in C#:

 [Export][TestCase]

public static void CheckMotor(int temperature, double voltage)

{

 // ...

}

 The test case list for this can be defined in the Test Table Editor, for example. The
command selection contains a CheckMotor [list] entry for this purpose. If this entry
is chosen, an editor appears that can be used to assign multiple values for each test
case parameter:

Concept Manual vTESTstudio Overview

© Vector Informatik GmbH Version 5.0 - 14 -

Figure 6: Parameterized test case list in the Test Table Editor

 In addition to the input of individual values or a range, the use of list parameters and
struct list parameters from parameter files is supported as well (also see section
Parameters):

Figure 7: Using list parameters in test case lists

 By a sequential combination, a number of test case calls are now generated
automatically so that each parameter values is used at least once:

Concept Manual vTESTstudio Overview

© Vector Informatik GmbH Version 5.0 - 15 -

Figure 8: Generated test case list using Sequential

 If a higher test coverage is to be achieved by testing pairwise or every combination of
parameter values, the Combinatorics property must be changed from Sequential to
Pairwise or Combinatorial:

Concept Manual vTESTstudio Overview

© Vector Informatik GmbH Version 5.0 - 16 -

Figure 9: Generated test case list using Combinatorial

 For the definition of a test case list in the Test Table Editor or in C#, all language
combinations or crossovers listed in Language Interaction are supported.

Concept Manual vTESTstudio Overview

© Vector Informatik GmbH Version 5.0 - 17 -

2.6 Traceability by the Connection of REQM/TDM Tools

Concept You can use vTESTstudio to trace externally defined requirements and test
descriptions during test implementation and in the test report (traceability). This is
done using exchange files in an open XML format. As a result, any REQM/TDM
system can be used coupled with vTESTstudio.

Schema

Figure 10: Traceability workflow

Concept Manual vTESTstudio Overview

© Vector Informatik GmbH Version 5.0 - 18 -

Trace Item Explorer All trace items imported into a vTESTstudio project are available via the Trace Item
Explorer. From there, they can be easily linked to test cases using drag & drop.

 In the REQM/TDM system, requirements and test descriptions might be structured in
hierarchical folders or comparable elements. These folders are displayed in the Trace
Item Explorer in the same hierarchy. However, folders cannot be directly linked to test
cases.

Traceability Matrix The Traceability Matrix in vTESTstudio gives an overview over all trace items of the
project and their test case links. By this overview of test design coverage you can
easily see, for example which trace items are not covered yet by any test case
implementation. Furthermore, from within the traceability matrix comfortable
navigation from a trace item to linked test cases is possible. For documentation
purposes the traceability matrix can be exported to Excel.

Figure 11: Traceability

Import of design
traceability in
REQM/TDM system

For synchronization with the REQM/TDM system an export of the traceability matrix
to XML is supported. This enables importing the information about implemented test
cases and linked requirements or test descriptions to the REQM/TDM system.

Planning of test
execution

Based on this information test case execution can be planned, i.e. which test cases
shall be executed. With the help of a so-called “test execution plan” the selection and
execution of test cases in CANoe can be automated.

Test report For each trace item linked to a test case, the test report contains a corresponding
reference at the test case. This enables traceability from the test case result back to
the requirement or test description.

Import of test results The test report can be played back to the REQM/TDM system to be able to analyze

Import of
requirements or test
descriptions in
vTESTstudio

The information exported from the REQM/TDM system is imported into vTESTstudio
and can be linked there to test cases. The linked elements can be requirements or
test descriptions. Because these elements are used to achieve traceability, they are
designated as trace items.

Concept Manual vTESTstudio Overview

© Vector Informatik GmbH Version 5.0 - 19 -

in REQM/TDM
system

test results within this system.

Supported
REQM/TDM systems

The connection of the following systems is supported out-of-the-box:

> IBM DOORS (classic)

> IBM DOOR NG und Rational Quality Manager

> Siemens Polarion ALM

> PTC Integrity Lifecycle Manager

> Jama Connect

> Intland codeBeamer ALM

So-called “Connection Utilities” are available for free. By a command line interface,
they can be used for continuous integration and continuous testing as well (e.g. with
Jenkins).

Further REQM/TDM systems can be connected by the use of the open interfaces.

Concept Manual vTESTstudio Overview

© Vector Informatik GmbH Version 5.0 - 20 -

2.7 Test Design Documentation

Concept For a test unit in vTESTstudio a test design documentation in PDF format can be
generated automatically. This test design documentation provides an overview of all
implemented test cases and test steps. Beyond the documentation it can be used for
internal and external reviews of the test design.

Figure 12: Automatically generated test design documentation as PDF

Concept Manual vTESTstudio Overview

© Vector Informatik GmbH Version 5.0 - 21 -

Concept Manual vTESTstudio Test Design Editors

© Vector Informatik GmbH Version 5.0 - 23 -

3 Test Design Editors

In this chapter you find the following information:

3.1 CAPL Editor page 24

3.2 C# Editor page 25

3.3 Test Table Editor page 26

3.4 Test Diagram Editor page 27

3.5 State Diagram Editor page 28

Concept Manual vTESTstudio Test Design Editors

© Vector Informatik GmbH Version 5.0 - 24 -

3.1 CAPL Editor

Features The CAPL Editor integrated in vTESTstudio provides the functions of a modern
development environment such as

 > Code completion and syntax checking while writing

> Configurable syntax highlighting

> Syntax-sensitive indentation

> Expandable function blocks and function reference in a tree structure for faster
navigation

> Hierarchical function list with search function for direct transfer to the source text

> Direct transfer of network symbols, environment data, diagnostic symbols, and
parameters from the Symbol Explorer

User interface

Figure 13: CAPL Editor

Access to symbols Direct access to signals, frames and environment data is possible by the CAPL API.
This enables e.g. read and write access to signal values in the CANoe runtime
environment. Example:

 $Velocity = 100;

Event procedures In addition to the programming of sequential test sequences, test cases, and
functions, the programming of event procedures is possible. In order to react to
events (e.g., a signal change) in CANoe, event handlers can be defined. The
methods are then called as soon as the event occurs during the test.

Concept Manual vTESTstudio Test Design Editors

© Vector Informatik GmbH Version 5.0 - 25 -

3.2 C# Editor

Features Similar to the CAPL Editor, the C# Editor integrated in vTESTstudio provides the
functions of a modern development environment such as

 > Code completion and syntax checking while writing

> Configurable syntax highlighting

> Syntax-sensitive indentation

> Expandable function blocks

> Hierarchical function list with search function for direct transfer to the source text

> Direct transfer of network symbols, environment data, diagnostic symbols, and
parameters from the Symbol Explorer

User interface

Figure 14: C# Editor

Access to symbols Automatically generated .NET classes are available for accessing signals and
environment data as well as CAN frames. These enable access to the values in the
CANoe runtime environment. Example:

 Velocity.Value = 100;

Event procedures In addition to the programming of sequential test sequences, test cases, and
functions, the programming of event procedures is also possible with the C# Editor. In
order to react to events (e.g., a signal change) in CANoe, event handlers can be
defined by the use of a special C# attribute. The methods are then called as soon as
the event occurs during the test (exactly the same as in CAPL).

Connection to MS
Visual Studio

By an integrated connection it’s also possible to use Microsoft Visual Studio for the
development of tests in C# as an alternative to the C# editor in vTESTstudio.

Concept Manual vTESTstudio Test Design Editors

© Vector Informatik GmbH Version 5.0 - 26 -

3.3 Test Table Editor

Overview The Test Table Editor allows users to easily define test sequences in tabular form
without the need for programming expertise. Special commands are available for
stimulating and testing the system under test.

Features To make work easy, the following features are available:

 > Command and symbol completion while writing

> Direct transfer of network symbols, environment data, diagnostic symbols, and
parameters from the Symbol Explorer

> Symbol and value type checks while editing

> Access to user-defined functions and test cases in other languages

> Ease of operation using both the keyboard and the mouse

User interface

Figure 15: Test Table Editor

Concept Manual vTESTstudio Test Design Editors

© Vector Informatik GmbH Version 5.0 - 27 -

3.4 Test Diagram Editor

Overview The Test Diagram Editor can be used to define tests in a graphical way. The
graphical notation is particularly suitable for reviews. Test code in tabular notation is
located behind each graphical element. By default one test case is generated for
each path through the diagram; a more fine-grained test case definition is possible as
well.

Features To make work easy, the following features are available:

 > Easy configuration through the insertion of graphic elements into the graphic
interface using a drag & drop operation

> Command and symbol completion while writing

> Direct transfer of network symbols, environment data, diagnostic symbols, and
parameters from the Symbol Explorer

> Symbol and value type checks while editing

> Access to user-defined functions and test cases in other languages

> Usage and re-use of sub-diagrams possible

> Display and preview of generated test cases and their content in table form

User interface

Figure 16: Test Diagram Editor

Note: The Test Diagram Editor is only available with the option Graphical Test
Design.

Concept Manual vTESTstudio Test Design Editors

© Vector Informatik GmbH Version 5.0 - 28 -

3.5 State Diagram Editor

Overview The State Diagram Editor can be used to model the expected behavior of the system
under test as state model. Test code in tabular notation is located behind each
graphical element. Based on transition coverage test cases are automatically
generated out of the model. Different generation algorithms are supported, e.g.
Chinese Postman algorithm and a breadth search based algorithm.

Features To make work easy, the following features are available:

 > Easy configuration through the insertion of graphic elements into the graphic
interface using a drag & drop operation

> Command and symbol completion while writing

> Direct transfer of network symbols, environment data, diagnostic symbols, and
parameters from the Symbol Explorer

> Symbol and value type checks while editing

> Access to user-defined functions and test cases in other languages

> Display and preview of generated test cases and their content in table form

User interface

Figure 17: State Diagram Editor

Note: The State Diagram Editor is only available with the option Graphical Test
Design.

Concept Manual vTESTstudio Interaction with CANoe

© Vector Informatik GmbH Version 5.0 - 29 -

4 Interaction with CANoe

In this chapter you find the following information:

4.1 CANoe System Environment page 30

4.2 Execution in CANoe page 32

4.3 Reporting page 34

Concept Manual vTESTstudio Interaction with CANoe

© Vector Informatik GmbH Version 5.0 - 30 -

4.1 CANoe System Environment

Access The integration of description files for the system environment (databases, diagnostic
descriptions…) enables easy direct access to symbols of the CANoe system
environment. The database symbols, system variables, etc., contained in the system
environment are available for use in the test coding. The symbols can be inserted into
the test sequences in two different ways: via text completion in the individual editors
or using a drag & drop operation from the Symbol Explorer.

Figure 18: Symbol completion in the programming editors

Figure 19: Symbol completion in the Test Table Editor

Concept Manual vTESTstudio Interaction with CANoe

© Vector Informatik GmbH Version 5.0 - 31 -

Figure 20: Symbol Explorer for inserting symbols using drag & drop

Concept Manual vTESTstudio Interaction with CANoe

© Vector Informatik GmbH Version 5.0 - 32 -

4.2 Execution in CANoe

Creating a test unit In vTESTstudio an executable test unit can be created. An executable test unit has
the extension *. VTUEXE and contains all necessary data for the test (source files,
parameter files…).

Configuring and
executing a test unit
in CANoe

The executable test unit can be configured and executed in CANoe.

For the execution in CANoe in the CANoe configuration any number of test
configurations can be created. A test configuration can again contain any number of
executable test units that will be executed in sequential order.

Figure 21: Test execution in CANoe

Concept Manual vTESTstudio Interaction with CANoe

© Vector Informatik GmbH Version 5.0 - 33 -

Test Trace Window Details of the test run are visualized in the Test Trace Window already during the test
execution.

Figure 22: Test Trace Window in CANoe

Debugging CANoe also supports debugging of CAPL and C# code that is part of a test unit.

Concept Manual vTESTstudio Interaction with CANoe

© Vector Informatik GmbH Version 5.0 - 34 -

4.3 Reporting

CANoe Test Report
Viewer

During the execution of a test unit in CANoe a detailed test report is created
automatically. The CANoe Test Report Viewer supports a lot of filter and grouping
functionality as well as user defined queries for a comfortable and comprehensive
analysis of the test report.

Figure 23: CANoe Test Report Viewer

Concept Manual vTESTstudio Language Interaction

© Vector Informatik GmbH Version 5.0 - 35 -

5 Language Interaction

In this chapter you find the following information:

5.1 Interface Functions page 36

Concept Manual vTESTstudio Language Interaction

© Vector Informatik GmbH Version 5.0 - 36 -

5.1 Interface Functions

Overview Interface functions allow for functions of one language to be used in another one. An
interface function can be a test case, a test sequence, a test function, or a simple
function. Other than the test function the simple function is not represented as a block
in the report.

Definitions An interface function can be defined as follows in the respective languages:

 > C#:
Attribute [Export] on test cases, test sequences, test functions or simple
functions.

> CAPL:
Keyword export ahead of test cases, test sequences, test functions or functions.

> Test Table Editor:
Export setting on test cases, test sequences or functions which are defined in the
functions view.

 All interface functions which are available within a test unit are displayed in an
explorer.

Explorer

Figure 24: Explorer for interface functions

 Out of the explorer, the functions can be added to the respective editors using drag &
drop. Alternatively the functions can be added to the editors by the use of the text
input completion feature.

Concept Manual vTESTstudio Language Interaction

© Vector Informatik GmbH Version 5.0 - 37 -

Language interaction The following language interaction is supported:

Calling Language

Defining Language

CAPL C# Test Table Test Sequence

Diagram
State

Diagram

 CAPL — — — — —

 C# ● ● — — —

 Test Table ● ● ● — —

 Test Sequence Diagram ● ● ● — —

 State Diagram ● ● ● — —

Concept Manual vTESTstudio Parameters, Curves and Variants

© Vector Informatik GmbH Version 5.0 - 39 -

6 Parameters, Curves and Variants

In this chapter you find the following information:

6.1 Parameters page 40

 Concept

 Find Test Case Data by the Classification Tree Method

6.2 Curves page 43

6.3 Variants page 44

Concept Manual vTESTstudio Parameters, Curves and Variants

© Vector Informatik GmbH Version 5.0 - 40 -

6.1 Parameters

6.1.1 Concept

Definition The term "parameter" refers to any constant value that can be accessed within the
test sequence from all implementation languages.
Examples of parameters: Configuration parameters for a control unit, test vectors,
tolerances, etc.

 Parameters are defined and maintained in separate files. Available parameters are
displayed in the Symbol Explorer within the tab Parameters.

Kinds There are several kinds of parameters:

 > (Scalar) Parameter:
A scalar parameter represents exactly one constant value that can be accessed in
the test sequence.

Example:

 Name Value

 CycleTimeTolerance 50

 > (Scalar) List Parameter:
A list parameter has 1…n values for the same variable. In the test sequence,
iteration over all values of the list can be performed in order, for example, to
perform a test under different temperature values.

Example:

 Name Value

 OutsideTemperature -40, -10, 0, 15, 30, 50

 > Struct Parameter:
A struct parameter represents a set of associated (scalar) values. In the test
sequence, the individual values of a struct can be accessed in order, for example,
to apply a test vector (stimulating and expected values) to the test system.

Example:

 Struct Member Value

 LockingTestVector Velocity

CrashDetected

Wait

LockState

60

0

500

1

 > Struct List Parameter:
A struct list parameter corresponds to a list of value tuples for a struct. In the test
sequence, iteration over all list elements can be performed in order, for example,
to apply various definitions of a test vector onto the system.

Example:

 Struct Member / Value

 LockingTestVectorList Velocity CrashDetected Wait LockState

 60 0 500 1

 40 0 500 0

 60 1 250 0

Concept Manual vTESTstudio Parameters, Curves and Variants

© Vector Informatik GmbH Version 5.0 - 41 -

Hierarchical structure Parameter definitions can be structured hierarchically using namespaces.

Concept Manual vTESTstudio Parameters, Curves and Variants

© Vector Informatik GmbH Version 5.0 - 42 -

6.1.2 Find Test Case Data by the Classification Tree Method

Classification tree
method

By an integrated editor for the classification tree method test case data - in terms of
test vectors - can be defined. The graphical user interface supports finding the
relevant input data for a test. Automatic or manual combination of all crucial input
values allows to efficiently defining the minimum number of required test vectors.

Boundary value
analysis

A dedicated support of boundary values enables the targeted testing in critical value
ranges of the input data.

User interface

Figure 25: Definition of test vectors by the editor for the classification tree method

Parameterization of
test case lists with
test vectors

The test vectors can be used in implemented test cases, e.g. for the parameterization
of test case lists in the Test Table Editor (see section Concepts for High Test
Coverage).

Figure 26: Usage of test vectors for the parameterization of a test case list in the Test Table Editor

Concept Manual vTESTstudio Parameters, Curves and Variants

© Vector Informatik GmbH Version 5.0 - 43 -

6.2 Curves

Stimulation curves By the use of the so-called Waveform Editor curves for the stimulation of the system
under test can be defined. Predefined segment types (sinus, pulse …) enable easy
definition of e.g. voltage curves defined by ECU test standards like LV124.

Multiple curves can be synchronized easily within the same editor.

Figure 27: Definition of stimulation curves with the Waveform Editor

Synchronized check
points

By the definition of check points for a stimulation curve the reaction of the system
under test triggered by the stimulation can be verified.

Concept Manual vTESTstudio Parameters, Curves and Variants

© Vector Informatik GmbH Version 5.0 - 44 -

6.3 Variants

Variant properties ECU variants and test variants can be realized using so-called variant properties.

Examples:

 Variant Property Possible Values

 Region US, Europe, Asia

 Coverage full, low, medium

 Model OEM1, OEM2

Access Variant properties can be used for conditional test coding as well as for access to
variant-dependent parameter values and for defining variant-dependent test cases or
test groups.

Access to variant
property in CAPL

if (varprop::Region == varprop::Region::US)

{

 // ...

}

Parameter value
dependent on a
variant property

Figure 28: Parameter value dependent on a variant property

Variant-dependent
test cases

Figure 29: Variant-dependent test cases

Concept Manual vTESTstudio Parameters, Curves and Variants

© Vector Informatik GmbH Version 5.0 - 45 -

Transfer Variant properties can be easily transferred to the test code from the Symbol Explorer
or using text completion.

Variant properties in
the Symbol Explorer

Figure 30: Variant properties in the Symbol Explorer

 The value of a variant property is either already defined at design time in
vTESTstudio or can be set in CANoe up until just before the start of the test.

 Variant properties can be dependent on one other, i.e., the value of one variant
property (e.g., Region) can determine the value of another variant property (e.g.,

Model).

Concept Manual vTESTstudio Use Cases

© Vector Informatik GmbH Version 5.0 - 47 -

7 Use Cases

In this chapter you find the following information:

7.1 Generating Two Similar Test Units for Different OEMs page 48

Concept Manual vTESTstudio Use Cases

© Vector Informatik GmbH Version 5.0 - 48 -

7.1 Generating Two Similar Test Units for Different OEMs

Setup There is a vTESTstudio project for the test of the door control unit. It consists of two
test units – one for OEM1 and one for OEM2. The actual sequence logic is the same
for both OEMs. It is implemented in a test table Main.vtt and is used in both test units
by a file link. For information on linking files to test units, also see Re-Use of Files.

Figure 31: Using test logic in both test units

 Various tolerance values are accessed during the test. These are dependent on the
OEM. An OEM variant property is declared for this purpose with two possible values:
OEM1 and OEM2.

Figure 32: Definition of the variant property OEM

Concept Manual vTESTstudio Use Cases

© Vector Informatik GmbH Version 5.0 - 49 -

 The tolerances themselves are defined in a parameter file. The specific tolerance
values are defined according to the OEM variant property.

Figure 33: Parameters with variant-dependent values

 The parameter file is also used in both test units.

Figure 34: Using same parameter files in both test units

 To ensure that the correct parameter value is used during the test execution, the user
only has to set the correct value of the OEM variable property in each case in the
configuration dialog of the test units.

Figure 35: Defining the variant property value for the LockingTests_OEM1 test unit

 In addition to the OEM-dependent parameter values, an OEM-dependent test function
is also to be used. For this, a C# function is called in the test table:

Figure 36: Calling a C# function in the test table

Concept Manual vTESTstudio Use Cases

© Vector Informatik GmbH Version 5.0 - 50 -

 The implementation of the function takes place in two C# files, one of which contains
the implementation for OEM1 and the other the implementation for OEM2:

Figure 37: C# file with OEM1-specific implementation for TestLockByVelocity

Figure 38: C# file with OEM2-specific implementation for TestLockByVelocity

 The file for OEM1 is added to the first test unit and the file for OEM 2 is added to the
second test unit:

Figure 39: Using different C# files for variant-dependent implementations

More Information

> News

> Products

> Demo Software

> Support

> Training Classes

> Addresses

www.vector.com

http://www.vector-worldwide.com/
http://www.vector-worldwide.com/

	Table of Contents
	1 Introduction
	1.1 About this User Manual
	1.1.1 Access Helps and Conventions
	1.1.2 Certification
	1.1.3 Warranty
	1.1.4 Support
	1.1.5 Registered Trademarks

	2 Overview
	2.1 General
	2.2 vTESTstudio and CANoe
	2.2 vTESTstudio and CANoe
	2.3 Function Overview
	2.4 Structure of a Project
	2.4 Structure of a Project
	2.4.1 Project Tree
	2.4.2 File-Based Storage
	2.4.3 Re-Use of Files
	2.4.3 Re-Use of Files
	2.4.4 Home Directory and Libraries
	2.4.5 Storage Location of Files on the File System
	2.4.6 Structuring Using (Shareable) Folders

	2.5 Concepts for High Test Coverage
	2.6 Traceability by the Connection of REQM/TDM Tools
	2.6 Traceability by the Connection of REQM/TDM Tools
	2.7 Test Design Documentation
	2.7 Test Design Documentation

	3 Test Design Editors
	3.1 CAPL Editor
	3.2 C# Editor
	3.3 Test Table Editor
	3.4 Test Diagram Editor
	3.5 State Diagram Editor

	4 Interaction with CANoe
	4.1 CANoe System Environment
	4.2 Execution in CANoe
	4.2 Execution in CANoe
	4.3 Reporting
	4.3 Reporting

	5 Language Interaction
	5.1 Interface Functions

	6 Parameters, Curves and Variants
	6.1 Parameters
	6.1.1 Concept
	6.1.2 Find Test Case Data by the Classification Tree Method
	6.1.2 Find Test Case Data by the Classification Tree Method

	6.2 Curves
	6.2 Curves
	6.3 Variants
	6.3 Variants

	7 Use Cases
	7.1 Generating Two Similar Test Units for Different OEMs

