
Amazon Sidewalk

Amazon Sidewalk

Developing with Amazon Sidewalk

Release Notes

Amazon Sidewalk

Out-of-the-Box Demo

Overview

Kit Preparation

Sidewalk Network Access

Run the Demo

Going Further

Getting Started

Overview

Prerequisites

Create and Compile an Application

Provision your Device

Interacting with the Cloud

Protocol Overview

Overview

Frustration Free Networking

FSK Configuration

CSS Configuration

Multi-link and Auto Connect

Developer's Guide

Overview

Stack Structure

Application Development Walkthrough

Amazon Sidewalk API

Testing and Debugging

Power Consumption Analysis

Performance

Multiprotocol with Sidewalk

Troubleshooting

PAL API Reference

Interfaces

SAL

Common Interface

Type definitions

platform_parameters_t

Critical Region Interface

Copyright © 2025 Silicon Laboratories. All rights reserved. 1/297

Amazon Sidewalk

Logging Interface

sid_pal_log_buffer

Type definitions

Peripheral Interfaces

GPIO

Type definitions

Serial Bus Interface

Type definitions

sid_pal_serial_bus_client

sid_pal_serial_bus_iface

sid_pal_serial_bus_factory

Serial Client Interface

Type definitions

sid_pal_serial_callbacks_t

sid_pal_serial_params_t

sid_pal_serial_ifc_s

sid_pal_serial_client_factory_t

Temperature

Radio Interfaces

FSK Interface

Type definitions

sid_pal_radio_fsk_cad_params_t

sid_pal_radio_fsk_modulation_params_t

sid_pal_radio_fsk_packet_params_t

sid_pal_radio_fsk_phy_hdr_t

sid_pal_radio_fsk_pkt_cfg_t

sid_pal_radio_fsk_rx_packet_status_t

sid_pal_radio_fsk_phy_settings_t

LoRa Interface

Type definitions

sid_pal_radio_lora_modulation_params_t

sid_pal_radio_lora_packet_params_t

sid_pal_radio_lora_rx_packet_status_t

sid_pal_radio_lora_cad_params_t

sid_pal_radio_lora_phy_settings_t

Sub-GHz Interface

Type definitions

sid_pal_radio_rx_packet_t

sid_pal_radio_packet_cfg_t

sid_pal_radio_tx_packet_t

sid_pal_radio_state_transition_timings_t

SWI Interface

Security and Crypto

Type definitions

Copyright © 2025 Silicon Laboratories. All rights reserved. 2/297

Amazon Sidewalk

sid_pal_hash_params_t

sid_pal_hmac_params_t

sid_pal_aes_params_t

sid_pal_aead_params_t

sid_pal_dsa_params_t

sid_pal_ecdh_params_t

sid_pal_ecc_key_gen_params_t

Storage Interface

KV Storage

Manufacturing Page

Type definitions

sid_pal_mfg_store_region_t

Timer Interfaces

Delay

Timer

Type definitions

Uptime

Sidewalk PAL

BLE Adaptation

BLE adapter

Type definitions

sid_pal_ble_profile_config_t

sid_pal_ble_adapter_ctx_t

GPIO

Type definitions

GPIO_PinConfig

GPIO_LookupItem

NVM3 Manager

Type definitions

Timer Types

Type definitions

sid_pal_timer_impl_t

Overview

Sidewalk Sample Applications

Platform Resources

Overview

Bootloading

Overview

Bootloader Fundamentals �PDF�

Silicon Labs Gecko Bootloader User's Guide �PDF�

Non-Volatile Memory Use

Overview

Non-Volatile Data Storage Fundamentals �PDF�

Using NVM3 Data Storage �PDF�

Copyright © 2025 Silicon Laboratories. All rights reserved. 3/297

https://www.silabs.com/documents/public/user-guides/ug103-06-fundamentals-bootloading.pdf
https://www.silabs.com/documents/public/user-guides/ug489-gecko-bootloader-user-guide-gsdk-4.pdf
https://www.silabs.com/documents/public/user-guides/ug103-07-non-volatile-data-storage-fundamentals.pdf
https://www.silabs.com/documents/public/application-notes/an1135-using-third-generation-nonvolatile-memory.pdf

Amazon Sidewalk

Security

Overview

IoT Security Fundamentals �PDF�

Integrating Crypto Functionality with PSA Crypto vs. Mbed TLS �PDF�

Manufacturing a Product

Copyright © 2025 Silicon Laboratories. All rights reserved. 4/297

https://www.silabs.com/documents/public/user-guides/ug103-05-fundamentals-security.pdf
https://www.silabs.com/documents/public/application-notes/an1311-mbedtls-psa-crypto-porting-guide.pdf

Developing with Amazon Sidewalk

Developing with Amazon Sidewalk

Developing with Amazon Sidewalk
Amazon S idewalk is a shared wireless network that uses Amazon S idewalk Bridges, such as compatible Amazon Echo and

Ring devices, to enable communication among devices operating on the network. Amazon S idewalk enables reliable, low-

bandwidth, and long-range connectivity at home and beyond. It connects IoT devices and applications such as outdoor

lights, motion sensors, and location-based devices. It uses Bluetooth Low Energy for short-distance communication and

CSS (Chirp Spread Spectrum) and FSK (Frequency-Shift Keying) radio protocols at 900 MHz frequencies to cover longer

distances.

In an Amazon S idewalk product, the provisioning takes place at the factory with keys created specifically for Amazon

S idewalk. Upon its first boot, the device will automatically join the network as long as there is an Amazon gateway within

range. Registration can occur either via BLE or FSK, depending on the configuration and radios supported by your hardware.

While S idewalk supports BLE, FSK, and CSS radio links, registration cannot occur on CSS. Registration happens only once in

the device's lifetime and allows it to join the S idewalk network, rather than a specific user network. S idewalk is a

collaborative and shared network that does not facilitate device-to-device communication. Instead, all communications are

routed to the cloud and then sent back to the appropriate destination, with network routing managed in the cloud.

These pages are intended for those who are actively exploring or already developing an application using the S ilicon Labs

integrated solution for Amazon S idewalk. These pages focus on application development using S ilicon Labs integrated

solution for Amazon S idewalk. For a high-level overview of the entire process, from buying parts to manufacturing and

deployment, see the Amazon S idewalk Developer Journey with S ilicon Labs.

For details about this release: S idewalk extension release notes are available on G ithub along with the known issues list.

For our recommended Amazon Sidewalk development platform: See the S ilicon Labs Pro K it for Amazon S idewalk.

Copyright © 2025 Silicon Laboratories. All rights reserved. 5/297

https://www.silabs.com/ecosystems/extend-iot-device-range-with-amazon-sidewalk?guide-tab=start_purchase
https://github.com/SiliconLabs/amazon-sidewalk/blob/sisdk-2024.6/CHANGES.md
https://www.silabs.com/development-tools/wireless/proprietary/amazon-sidewalk-pro-kit?tab=overview

Developing with Amazon Sidewalk

To see the Silicon Labs Amazon Sidewalk integrated solution in action: Follow the Pro K it out-of-the-box demo

instructions.

For background about the protocol: The Amazon S idewalk Protocol Overview discusses important elements of the

specification.

To start your Amazon Sidewalk development using Simplicity Studio example applications: See the Getting Started Guide.

If you are already in development: See the Developer's Guide for resources to support crucial aspects of your

development effort. You can also refer to the Amazon S idewalk S id API Developer Guide.

Copyright © 2025 Silicon Laboratories. All rights reserved. 6/297

https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-demo
https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-protocol-overview
https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-getting-started
https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-developers-guide
https://docs.sidewalk.amazon/assets/pdf/Amazon_Sidewalk_Sid_API_Developer_Guide-1.0-rev-A-032623.pdf

Amazon Sidewalk

Amazon Sidewalk

Amazon Sidewalk Version 2.5.0 �June 30 2025� -
Release Notes

Simplicity SDK Version 2025.6.0

Amazon S idewalk is a secure, low-bandwidth, long-range wireless protocol designed to connect smart devices and extend

their range beyond standard Wi-Fi or Bluetooth. It enables seamless connectivity for IoT devices in homes and

neighborhoods, supporting features like device tracking, smart lighting, and sensor networks. For information about previous

releases, see the release notes archive.

Release Summary

Key Features | API Changes | Bug Fixes | Chip Enablement

Key Features

Supporting S iSDK 2025.6.0.

Supporting Semtech's LR1110.

RAIL, sx1262, and lr1110 as a SW component.

API Changes

None.

Bug Fixes

Fixed a bug where the RAIL calibration error was not handled correctly on xG28 with DMP using FSK link.

Fixed a bug where warning log messages about TX power were displayed when using RAIL radio.

Chip Enablement

xGM260P support.

Key Features

New Features | Enhancements | Removed Features | Deprecated Features

New Features

None.

Enhancements

SLCP files are merged for every sample application.

BLE-only mode can be selected for chips which support BLE. SubGHz component can be disabled.

Out of the Box demo binaries are updated, now using latest S idewalk stack and S iSDK version.

Removed Features

None.

Deprecated Features

Copyright © 2025 Silicon Laboratories. All rights reserved. 7/297

https://github.com/SiliconLabs/amazon-sidewalk/blob/sisdk-2024.12/CHANGES.md

Amazon Sidewalk

None.

API Changes

New APIs | Modified APIs | Removed APIs | Deprecated APIs

New APIs

None.

Modified APIs

None.

Removed APIs

None.

Deprecated APIs

None.

Bug Fixes

ID Issue Description
GitHub / Salesforce
Reference (if any)

Affected Software Variants,
Hardware, Modes, Host
Interfaces

1410675 RAIL calibration error on xG28 with DMP using FSK link. None.
Amazon Sidewalk - SoC
Dynamic Multiprotocol
Light
BRD4401C, BRD4400C
SoC

1452596 Warning log messages about TX power when using
RAIL radio.

None.
Amazon Sidewalk - SoC
Hello Neighbor, Amazon
Sidewalk - SoC CLI
All the xg28, xg23 radio
boards
SoC
PAL

Chip Enablement

Chip
Family

OPNs / Boards / OPN Combinations
Supported Software
Variants (if applicable)

Supported
Modes

Supported Host
Interfaces

MGM260P
OPN� EFR32MG26B420F3200IM48�B,
EFR32MG26B410F3200IM48�B,
EFR32MG26B421F3200IM48�B,
EFR32MG26B411F3200IM48�B,
EFR32BG26B411F3200IM48�B,
EFR32BG26B421F3200IM48�B
Boards: BRD4350A, BRD4351A, BRD2713A

N/A SoC UART, RTT

Application Example Changes

New Examples | Modified Examples | Removed Examples | Deprecated Examples

New Examples

Copyright © 2025 Silicon Laboratories. All rights reserved. 8/297

Amazon Sidewalk

None.

Modified Examples

None.

Removed Examples

None.

Deprecated Examples

None.

Known Issues and Limitations

ID Issue or Limitation Description

GitHub /
Salesforce
Reference (if
any)

Workaround (if any)
Affected Software Variants,
Hardware, Modes, Host
Interfaces

1469745 Wrong RSSI value on xG28 when using
FSK.

N/A No workaround is
possible. EFR32ZG28B322F1024,

EFR32ZG28B320F1024,
EFR32ZG28B312F1024
BRD4401C, BRD4400C,
BRD4401B, BRD2705A
SoC

Impact of Release Changes

Impact Statements | Migration Guide

Impact Statements

None.

Migration Guide

None.

Using This Release

What's in the Release? | Compatible Software | Installation and Use | Help and Feedback

What's in the Release?

The S idewalk MCU SDK v2.5.0 release introduces several new capabilities and platform expansions. This release includes

updated Out-of-the-Box (OOB) binaries, support for the Semtech LR1110 chip, and enables Semtech-based solutions on

EFR32xG28 SoCs. It also adds compatibility with the latest S ilicon Labs Series 3 devices, including the xG301 family.

Developers benefit from an easier configuration flow allowing seamless switching between Sub-GHz driver configurations

and BLE-only solutions. Additionally, the SDK now supports the latest S ilicon Labs SDK version 2025.6.0. This release

includes S idewalk SDK version 1.18.

Compatible Software

Software Compatible Version or Variant

Simplicity SDK SiSDK 2025.6.0

Amazon Sidewalk SDK 1.18

Copyright © 2025 Silicon Laboratories. All rights reserved. 9/297

Amazon Sidewalk

Installation and Use

To run your first demo, see our Getting Started Guides.

To kick start your development, see our Developer's Guide.

For information about Secure Vault Integration, see Secure Vault.

To review Security and Software Advisory notifications and manage your notification preferences:

ò Go to https://community.silabs.com/.

ó Log in with your account credentials.

ô Click your profile icon in the upper-right corner of the page.

õ Select Notifications from the dropdown menu.

ö In the Notifications section, go to the My Product Notifications tab to review historical Security and Software Advisory

notifications

÷ To manage your preferences, use the Manage Notifications tab to customize which product updates and advisories you

receive.

For recommended settings, configurations, and usage guidelines, see our Developer's Guide.

To learn more about the software in this release, dive into our online documentation.

Help and Feedback

Contact S ilicon Labs Support.

To use our Ask AI tool to get answers, see the search field at the top of this page.

Note: Ask AI is experimental.

Get help from our developer community.

Feature Matrix

Unsupported Features

S idewalk Bulk Data Transfer (SBDT): S idewalk BLE integrated OTA mechanism is available in our S idewalk alpha repository as

it is not publicly accessible on Amazon AWS side.

Switched Multiprotocol (SMP): S idewalk, BLE, Z-Wave SMP PoC is available in our alpha repository.

SDK Release and Maintenance Policy

See our SDK Release and Maintenance Policy.

Copyright © 2025 Silicon Laboratories. All rights reserved. 10/297

https://docs.silabs.com/amazon-sidewalk/latest/sidewalk-getting-started/
https://docs.silabs.com/amazon-sidewalk/latest/sidewalk-app-development/
https://www.silabs.com/security/secure-vault
https://community.silabs.com/
https://docs.silabs.com/amazon-sidewalk/2.4.0/sidewalk-developers-guide/
https://docs.silabs.com/amazon-sidewalk/2.4.0/sidewalk-start/
https://www.silabs.com/support
https://docs.silabs.com/
https://community.silabs.com/s/topic/0TO8Y000000eHD9WAM/amazon-sidewalk?language=en_US
https://www.silabs.com/developer-tools/sdk-release-and-maintenance-policy

Out-of-the-Box Demo

Out-of-the-Box Demo

Running the "Out-of-the-Box" Demo with Silicon
Labs Pro Kit for Amazon Sidewalk

Congratulations on your purchase of the S ilicon Labs Pro K it for Amazon S idewalk! This guide will help you get the most

from the "out-of-the-box" demo application that is pre-installed on the radio boards in your new kit.

Prepare the Kit Hardware: Describes your options with the Pro K it and Explorer K it hardware, and explains how to prepare

your kit to run the demo.

Ensure Access to the Amazon Sidewalk Network: Provides details on connecting the endpoint created by the demo

application with the Amazon S idewalk network through an in-range S idewalk gateway.

Run the Demo: Describes how, with the endpoint ready and a S idewalk gateway nearby, you can establish your S idewalk

endpoint and access the associated AWS application from your mobile device.

Going Further: Includes "next steps" to explore once you've witnessed the ease with which the S idewalk network allows you

to interact between an endpoint and the cloud, along with helpful tips if your demo did not operate smoothly.

Copyright © 2025 Silicon Laboratories. All rights reserved. 11/297

Kit Preparation

Kit Preparation

Prepare the Kit Hardware
S ilicon Labs offers two kits for Amazon S idewalk: the Pro K it and the Explorer K it. These kits allow users to utilize the "out-

of-the-box" demo application, which demonstrates the use of S idewalk.

Ⓘ INFO Ⓘ : A USB-C cable, required to power the device, is not included in the kit. You must use a cable that

is appropriate for your power source.

Mainboards and Radio Boards

In case of the Pro K it, required kit items for the "out-of-the-box" demo are:

Wireless Pro K it Mainboard (BRD4002A), which provides power and peripherals to the radio boards

Either of the two radio boards:

EFR32xG24 2.4 GHz 20 dBm Radio Board (BRD4187C)

KG100S S idewalk Module Radio Board (BRD4332A) + 915Mhz antenna

Demo firmware is pre-flashed on both the EFR32xG24 and the KG100S Module radio boards. S ilicon Labs recommends

using the EFR32xG24 when you first run the demo, as this version presents a more complete experience. The differences

are:

ò EFR32xG24 Radio Board: This demo app drives the LCD on the Mainboard to display a QR code for your mobile device to

scan. This application uses only Bluetooth Low Energy (BLE) to communicate with the gateway.

ó KG100S Radio Board: The QR code is printed on a sticker on the KG100S radio board. Make sure to power up the board first

before scanning the QR code. This application communicates with the gateway over both BLE and the sub-GHz FSK radios.

In case of the Explorer K it, required kit items for the "out-of-the-box" demo are:

EFR32xG28 Explorer K it (BRD2705A)

Demo firmware is pre-flashed on the EFR32xG28.

As an alternative to scanning the QR code, the radio board serial number can be entered in S ilicon Labs' "out-of-the-box"

demo Web interface at silabssidewalkdemo.com. The radio board serial number is located behind the board as shown in the

following picture.

Copyright © 2025 Silicon Laboratories. All rights reserved. 12/297

https://silabssidewalkdemo.com/

Kit Preparation

Assembling the Demo Hardware

Ⓘ INFO Ⓘ : This step is only necessary in case of the Pro K it.

Install the radio board on the Mainboard. Take care to align the contact points between the radio and Mainboard. For

reference, the EFR32xG24 is shown mounted on a Mainboard.

Ensure that the power switch is in the AEM position, which supports supplying power to the Mainboard as described in the

next section. The additional S idewalk Adaptation Board shown in the image above is not needed for this demo.

If you are using the KG100S Module, you must also connect the 915 MHz antenna onto that radio board.

Copyright © 2025 Silicon Laboratories. All rights reserved. 13/297

Kit Preparation

Powering the Demo Hardware

With the power switch in the AEM position, the kit hardware is powered through the Mainboard's USB-C connector.

Connecting the Mainboard to a USB power source starts the demo, so first check for network availability as described in

the next step.

There is no AEM switch for the Explorer K it. Directly connect the board to a USB power source.

For the purposes of the "out-of-the-box" demo, only bus power is required. Enumeration with a USB host is not necessary.

Next Step: Sidewalk Network Access

With your kit assembled and a USB-C power source available, next confirm Amazon S idewalk Network Availability at your

location.

Copyright © 2025 Silicon Laboratories. All rights reserved. 14/297

Sidewalk Network Access

Sidewalk Network Access

Ensure Access to the Amazon Sidewalk Network
When it executes, the "out-of-the-box" demo firmware on the S ilicon Labs K it forms a S idewalk endpoint. To reach the

cloud, this device must be in range of a suitable Amazon S idewalk gateway.

Sidewalk Network Coverage

Amazon currently supports the Amazon S idewalk network only on gateways that communicate with AWS from US-based IP

addresses.

⚠ WARNING ⚠: Regional regulations may also restrict unauthorized usage of the S idewalk-supported sub-GHz

bands outside of the United States. Consult local laws and ensure compliance (radio isolation by RF chamber,

etc.) as needed. See Using S idewalk Gateways Outside the USA for more information.

You may already have access to the Amazon S idewalk network at your location. Amazon provides a S idewalk Network

Coverage map you can use to see if this is likely: https://coverage.sidewalk.amazon.

Set up a Gateway

If you aren't already in range of a S idewalk gateway, you can easily create your own.

The list of Amazon S idewalk gateways and their supported capabilities is available at the following link:

https://docs.sidewalk.amazon/introduction/sidewalk-gateways.html

The Amazon Echo 4th generation is the recommended Amazon S idewalk gateway for development purposes. S ilicon Labs

validates the Amazon S idewalk software development kit against this product.

Copyright © 2025 Silicon Laboratories. All rights reserved. 15/297

https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-getting-started/prerequisites#amazon-sidewalk-gateway
https://coverage.sidewalk.amazon/
https://docs.sidewalk.amazon/introduction/sidewalk-gateways.html

Sidewalk Network Access

Follow the standard Echo product configuration procedures, and make sure to enable S idewalk support on your gateway so

it will access the S idewalk network.

Ⓘ INFO Ⓘ : To enable S idewalk support, visit Enable or Disable Amazon S idewalk for Your Account for more

help.

For more information on this topic, see the Getting Started Prerequisites page.

Next Step: Run the Demo

After you have access to the Amazon S idewalk network, you are ready to Run the Demo.

Copyright © 2025 Silicon Laboratories. All rights reserved. 16/297

https://www.amazon.com/gp/help/customer/display.html?nodeId=GZ4VSNFMBDHLRJUK
https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-getting-started/prerequisites#amazon-sidewalk-gateway

Run the Demo

Run the Demo

Running the Out-of-the-Box Demo
With your chosen radio board mounted and an Amazon S idewalk gateway in BLE range of your device, you can run the

demo by simply connecting USB-C power to the Mainboard.

At power on, the pre-installed demo application forms a S idewalk endpoint that automatically registers with the network

through the nearest gateway. Amber LED(s) on the Mainboard then blink periodically to indicate that the endpoint is

awaiting time sync with the S idewalk network. Once properly synchronized, the LED(s) stop blinking and the endpoint

associates with a web application in the cloud, allowing you to interact with the endpoint over the S idewalk network.

This entire process occurs within about a minute (or less) of powering on your device. If you are using the EFR32xG24

radio board, you will see a QR code displayed on the LCD. If you do not see a QR code (or if, when using the KG100S or

xG28, LED1 continues to blink) after a minute or two, see Troubleshooting the OOB Demo.

Accessing the Demo Application in the Cloud

The method for accessing the cloud application varies depending on the radio board. Each approach is detailed in the

following sections.

When Using the EFR32xG24

In this version of the demo, the EFR32xG24 drives the LCD on the Mainboard. Once the web application is prepared, a QR

code is displayed on the LCD.

Use your mobile device or webcam to read this QR code and access the embedded URL in a browser. This page loads the

demo web application already associated with your S idewalk end device.

When Using the KG100S Sidewalk Module or xG28 Explorer Kit

Copyright © 2025 Silicon Laboratories. All rights reserved. 17/297

Run the Demo

A QR code sticker was applied to the device during manufacturing that already encodes the web application URL. After

powering on the device, once LED1 stops blinking, you can read the embedded URL and access the web application in your

browser.

How to use the Cloud Demo Application

The cloud application is divided into two main sections, each providing a different way to interact over the S idewalk

network. These features are described below.

Downlink Section

These elements send data from the cloud down to the end device. For each board, you have access to a set of

capabilities:

Display: If your demo is using the onboard LCD, type a message in this field and click Send. Your message is sent to the

endpoint and appears on the LCD.

LED 0: Tap to flip this toggle on or off. For the EFR32xG24 and EFR32xG28, LED0 on the Mainboard updates to your desired

state. The KG100S radio board does not use this LED.

LED 1: Tap to flip this toggle on or off. For the EFR32xG24 and KG100S, LED1 on the Mainboard updates to your desired

state. The EFR32xG28 explorer kit does not use this LED.

Capability Description xG24 KG100S xG28

Display Type a message in the field on the web application and

click Send. Your message is sent to the endpoint and

appears on the LCD.

X

LED0 Tap to flip this toggle on or off. X X

LED1 Tap to flip this toggle on or off. X X

Copyright © 2025 Silicon Laboratories. All rights reserved. 18/297

Run the Demo

Uplink Section

These elements display data sent from the end device up to the cloud. For each board, you have access to a set of

capabilities:

Push Button 1: Press the associated button on your Mainboard. The graphic toggles between 0 and 1 with each button press.

Room Temperature: Ambient temperature is sampled by the endpoint, sent through the S idewalk network to the cloud, and

plotted over time on this Room Temperature chart. The temperature sensor is the S i7021 mounted on the Mainboard.

Capability Description xG24 KG100S xG28

Push Button 1 Press the associated button on your Mainboard. The

graphic toggles between 0 and 1 with each button press.

X X X

Push Button 0 Press the associated button on your Mainboard. The

graphic increments the message counter

X

Room Temperature Ambient temperature is sampled by the endpoint, sent

through the S idewalk network to the cloud, and plotted

over time on this Room Temperature chart. The

temperature sensor is the S i7021 mounted on the

Mainboard.

X X X

For the EFR32xG28 and KG100S radio boards, dummy temperature data is sampled by the endpoint.

Next Step: Going Further

When you're ready to move beyond the out-of-the-box demo and more fully explore the Amazon S idewalk developer

experience provided by S ilicon Labs, visit the Going Further page. You'll find resources to help you move beyond the demo,

along with guidance to troubleshoot any issues you may have.

Copyright © 2025 Silicon Laboratories. All rights reserved. 19/297

Going Further

Going Further

Going Beyond the Demo
The S ilicon Labs K its for Amazon S idewalk demo were designed to provide users with effortless access to the kind of

streamlined experience that Amazon S idewalk can provide for your customers.

S ilicon Labs supports Amazon S idewalk with a set of tools, capability, and documentation that similarly lowers the barriers

of entry to Amazon S idewalk application development.

The following resources are great places to start if you're ready to learn more.

Developer Resources

Getting Started Guide: Step-by-step journey through AWS (deploying application, profile and device creation) and building an

example Amazon S idewalk application in S implicity Studio.

Developer's Guide: Goes beyond the "Getting Started" introduction to deep-dive into the most important aspects of

embedded development for Amazon S idewalk with S ilicon Labs.

Amazon S idewalk Protocol Overview: Review of many relevant technical elements of the Amazon S idewalk network.

A Note on Preserving the Demo Functionality

The out-of-the-box demo relies on device-specific credentials pre-flashed to the USERDATA page on your device. This

page is not affected by mass-erase operations, but can be explicitly erased by a targeted page erase.

Typical erase/flash cycles as you repurpose the kit radio boards during development are of no concern. In fact, Credentials

Backup/Restore Feature describes a process by which you can restore a working out-of-the-box demo application after a

mass-erase. However, care should be taken to NOT perform a page erase of USERDATA, or the out-of-the-box demo

cannot be restored.

The backup/restore feature from OOB demo performs as follows:

ò If you erase the main flash: The device should recover the credentials on first boot after flashing the application binary.

ó If you erase the user data partition: The device should recover by itself on first boot.

ô If you erase both the main flash and user data partition: Your device credentials are not recoverable.

This is especially important if you have one of S ilicon Labs Pro K its for Amazon S idewalk. If you wish to use the radio

boards with an application other than the demo, you can erase the main flash and use any application you like with your

own manufacturing page. As long as you have not erased the user data partition, your device will recover the demo when

you flash the out-of-the-box application binary back on your device. You should never erase the user data partition of your

Pro K it's radio boards.

Troubleshooting the Out-of-the-Box Demo

If you encountered problems running the demo, the following guidance may help get things back on track:

K it Setup

Ensure the Mainboard power switch is in the AEM position.

Disconnect USB-C power, then re-seat the radio board.

Board-Specific

If not already, try using the EFR32xG24 radio board. This demo version relies only on BLE, and provides feedback at

various stages on the LCD.

If using the KG100S radio board, install the 915 MHz antenna found in your kit.

Network-Specific

If relying on ambient S idewalk network coverage, obtain your own gateway to ensure network access.

Copyright © 2025 Silicon Laboratories. All rights reserved. 20/297

https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-getting-started
https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-developers-guide
https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-protocol-overview
https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-stack-structure#credentials-backuprestore-feature

Going Further

If using your own gateway, confirm that S idewalk is enabled, and verify the gateway has access to the internet (try asking

"Alexa, are you online?") from a US-based IP address.

If these all fail, review the Getting Started Guide. This will incrementally build what should become a known-good baseline

(verifying kit hardware integrity and S idewalk network access along the way).

For S ilicon Labs Technical Support, contact us on our Support Platform.

Copyright © 2025 Silicon Laboratories. All rights reserved. 21/297

https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-getting-started
https://siliconlabs.force.com/s/contactsupport

Getting Started

Getting Started

Getting Started with Amazon Sidewalk
Development in Simplicity Studio

Prerequisites: Describes the hardware and software prerequisites for starting your development.

Create and Compile your Sidewalk Application: Once S idewalk is added to your S implicity SDK, you can choose a sample

S idewalk application to compile and flash on your device.

Provision your Amazon Sidewalk Device: Now your application is running on your endpoint, and you can create the

application server on AWS and add the corresponding certificates to your device.

Interacting with the Cloud: As the last step, you can send and receive messages between your endpoint and the server

application in AWS.

For S ilicon Labs Technical Support, contact us on our Support Platform.

Copyright © 2025 Silicon Laboratories. All rights reserved. 22/297

https://siliconlabs.force.com/s/contactsupport

Prerequisites

Prerequisites

Prerequisites
To develop for Amazon S idewalk on S ilicon Labs SoCs and modules, you need the hardware and software resources

detailed on this page.

Hardware

Silicon Labs Wireless Development Hardware

S ilicon Labs produces many different kits to support development for a broad range of wireless technologies. New users

can jump-start their journey with a S ilicon Labs Pro K it for Amazon S idewalk. While experienced users may have much of

the required hardware on hand already, S ilicon Labs recommends they too start with S ilicon Labs Pro K it for Amazon

S idewalk.

For Amazon S idewalk solutions, the typical S ilicon Labs development hardware is a wireless main board paired with a radio

board that supports S idewalk. The S idewalk-specific wireless technologies supported in this configuration (Bluetooth Low

Energy (BLE), sub-GHz FSK, and sub-GHz CSS) depend on the radio board, as shown in the following table. Note that for

sub-GHz support, some devices will require both an EFR32 radio board and an additional Semtech LoRa shield with the

appropriate adapter board. Advanced users who have already bought a Pro K it or have a WSTK/WPK can augment their

existing hardware with additional radio boards as needed.

The following list and table summarizes these requirements. You can also read our hardware selector guide to help choose

appropriate hardware for your use case.

A S idewalk-supported Radio board:

EFR32xG21B Radio Board (BRD4181C)

EFR32xG23B Radio Board (BRD4204D, BRD4210A, BRD4264C, BRD4263C, BRD4204C)

EFR32FG23 868-915 MHz +14 dBm Dev K it (BRD2600A)

EFR32MG24B Radio Board (BRD4186B, BRD4186C, BRD4187B, or BRD4187C - included in the S ilicon Labs Pro K it for

Amazon S idewalk)

EFR32xG26B Radio Board (BRD2608A, BRD4118A, BRD4121A, BRD41201, BRD4117A, BRD4116A)

EFR32xG28B Radio Board (BRD2705A, BRD4400A, BRD4400B, BRD4400C, BRD4401A, BRD4401B, BRD4401C)

KG100S Module Radio Board (BRD4332A, included in the S ilicon Labs Pro K it for Amazon S idewalk)

A Wireless Starter K it Main board (BRD4001x), or a Wireless Pro K it Main Board (BRD4002x) included in the S ilicon Labs Pro

K it for Amazon S idewalk. (Note: a main board is NOT required when using a Dev Kit from the list above)
For sub-GHz applications: A 915MHz antenna (included in most sub-GHz kits) should be installed on the appropriate

connector. If using EFR32xG21, EFR32xG24 or EFR32xG26, a Semtech SX1262MB2CAS LoRa shield and S idewalk

Adaptation Board (BRD8042A, included in the S ilicon Labs Pro K it for Amazon S idewalk) are required. With EFR32xG24, the

Semtech LR1110MB1LCKS LoRa shield and Semtech S idewalk Adaptation Board (BRD8102A) can be used to enable location

services.

Radio Board Model BLE FSK CSS

EFR32xG21 x

EFR32xG21 + Semtech SX1262 shield x x x

EFR32xG23 x

EFR32xG24 x

EFR32xG24 + Semtech SX1262 shield x x x

EFR32xG24 + Semtech LR1110 shield x x x

EFR32xG26 x

Copyright © 2025 Silicon Laboratories. All rights reserved. 23/297

https://www.silabs.com/development-tools/wireless/proprietary/amazon-sidewalk-pro-kit
https://www.silabs.com/development-tools/wireless/proprietary/amazon-sidewalk-pro-kit
https://www.silabs.com/wireless/amazon-sidewalk/hardware-selector-guide
https://www.silabs.com/development-tools/wireless/slwrb4181c-efr32xg21-wireless-gecko-radio-board
https://www.silabs.com/development-tools/wireless/xg23-rb4210a-efr32xg23-868-915-mhz-20-dbm-radio-board
https://www.silabs.com/development-tools/wireless/proprietary/efr32fg23-868-915-mhz-14-dbm-dev-kit
https://www.silabs.com/development-tools/wireless/xg24-rb4187c-efr32xg24-wireless-gecko-radio-board
https://www.silabs.com/development-tools/wireless/proprietary/amazon-sidewalk-pro-kit
https://www.silabs.com/wireless/bluetooth/efr32bg26-series-2-socs
https://www.silabs.com/development-tools/wireless/xg28-rb4401c-efr32xg28-2-4-ghz-ble-and-20-dbm-radio-board
https://www.silabs.com/development-tools/wireless/proprietary/kg100s-rb4332a-radio-board
https://www.silabs.com/development-tools/wireless/proprietary/amazon-sidewalk-pro-kit
https://www.silabs.com/development-tools/wireless/proprietary/amazon-sidewalk-pro-kit
https://www.semtech.com/products/wireless-rf/lora-core/sx1262mb2cas
https://www.silabs.com/development-tools/wireless/proprietary/amazon-sidewalk-pro-kit
https://www.semtech.fr/products/wireless-rf/lora-edge/lr1110mb1lcks
https://www.semtech.com/products/wireless-rf/lora-edge/lrdvk17interface

Prerequisites

Radio Board Model BLE FSK CSS

EFR32xG26 + Semtech SX1262 shield x x x

EFR32xG28 x x

KG100S x x x

Ⓘ INFO Ⓘ : Amazon S idewalk support requires that target hardware have Secure Element (SE) firmware

versions of at least v1.2.9 for xG21 SoCs, v2.1.7 for xG24 SoCs, and v1.2.9 for KG100S Modules. Follow

instructions in Section 4.4 of AN1222: Production Programming of Series 2 Devices to update the SE firmware.

xG28 and xG23 should come with an appropriate SE firmware version.

⚠ WARNING ⚠: EFR32xG21B and EFR32xG28 radio boards are available with devices of various flash sizes.

Minimum flash size to run the Hello Neighbor example applications is 768 kB. This restriction does not apply to

EFR32xG23 devices, which do not support BLE.

For simplicity, this Getting Started Guide focuses on the EFR32MG24 and demonstrates how to use the Amazon Sidewalk

- SoC Hello Neighbor example application provided in the SDK for Amazon S idewalk.

Amazon Sidewalk Gateway

The S idewalk protocol requires a gateway to provide endpoints access to the AWS cloud. Several Amazon products can

act as a gateway. These products have different functions and varying support for Amazon S idewalk network features. The

list of Amazon S idewalk gateways and their supported radio capabilities is available at the following link:

https://docs.sidewalk.amazon/introduction/sidewalk-gateways.html.

The Amazon Echo 4th generation is the recommended Amazon S idewalk gateway for development purposes. S ilicon Labs

validates the Amazon S idewalk software development kit against this product.

⚠ WARNING ⚠: Beware of the difference between Amazon Echo 4th gen and Amazon Echo Dot. The Echo 4th

generation supports all 3 radios and is the reference hardware used for testing. The Echo Dot supports only

BLE radio.

Developers are advised to use their own gateway, as this affords the greatest control over providing consistent network

access during the development phase. However, you may already have access to the Amazon S idewalk network at your

location. Amazon provides a S idewalk Network Coverage map you can use to see if this is likely:

https://coverage.sidewalk.amazon.

Sidewalk Gateway Setup

Follow the standard product installation procedures to set up a new gateway. Configuring your gateway with S idewalk

support depends on a few additional requirements:

The gateway must be set up using a US-based Amazon account (see Change your Amazon Account Country to adjust the

Country setting for an existing account)

Amazon S idewalk must be enabled on the Amazon account (see Enable or Disable Amazon S idewalk for Your Account for

more help)

The gateway must have a US-localized IP address, and be configured with a US-based location (see Change Your Alexa

Device Location if needed)

Using Sidewalk Gateways Outside the USA

Copyright © 2025 Silicon Laboratories. All rights reserved. 24/297

https://www.silabs.com/documents/public/application-notes/an1222-efr32xg2x-production-programming.pdf
https://docs.sidewalk.amazon/introduction/sidewalk-gateways.html
https://coverage.sidewalk.amazon/
https://www.amazon.com/gp/help/customer/display.html?nodeId=201248840
https://www.amazon.com/gp/help/customer/display.html?nodeId=GZ4VSNFMBDHLRJUK
https://www.amazon.com/gp/help/customer/display.html?nodeId=GVBCTNK6EC45CKBE

Prerequisites

⚠ WARNING ⚠: Amazon S idewalk is available only in the United States of America. To the extent that any

S idewalk gateway functionality might be used outside of the U.S., it should be used ONLY for Amazon S idewalk

endpoint development purposes. In addition, S ilicon Labs recommends that you consult with your local

regulatory bodies and check if the gateway is allowed to operate its radio in your locale, as U.S. license-free

band devices, only for development. Developers are solely responsible for ensuring compliance with local

regulations. Additionally, S ilicon Labs recommends a shielded chamber or similar aparatus to capture and contain

wireless signals within your development environment.

To enable operation outside of the US for your development, you need to use a VPN router that supports OpenVPN Client

functionality in conjunction with a cloud VPN service provider. Refer to the following Amazon documentation for more

details. You are also solely responsible for compliance with any local regulations regarding VPN use.

Ⓘ INFO Ⓘ : VPN clients running on a laptop or mobile device or using any other VPN protocol (such as L2TP or

PPTP) are not supported.

Amazon Frustration-Free Setup �FFS�

A fully operational gateway is linked to an Amazon account, usually during initial setup using the Alexa app. However, this

device-account linking can instead be initiated at time of purchase if you buy the gateway from Amazon and check the box

labeled Link device to your Amazon account to simplify setup. This account linking has implications for S idewalk feature

support and gateway setup:

Currently, FSK support is enabled on only one (by default, the first) compatible gateway linked to an account.

If you purchase a gateway device using an Amazon account other than the one you plan to use for testing and in the Alexa

app to configure the gateway, do NOT check the Link device to your Amazon account box. Doing so may prevent the

successful setup of your gateway until you request Amazon Customer Support to remove the original device-account link.

More info: Amazon Frustration-Free Setup Frequently Asked Questions.

The Link device checkbox also enables Amazon Wi-Fi S imple Setup, which can simplify getting your new gateway

connected when powered on. However, if you plan to connect the gateway to a different SSID than you already use with

other devices known to your Amazon account, the FFS-driven automatic selection of Wi-Fi networks can impede your

efforts to connect the gateway to your preferred SSID.

Software

To get started with your Amazon S idewalk development, you need:

S implicity Studio 5, with the SDK extension for Amazon S idewalk installed (see version and installation guidance below)

J-Link RTT Viewer (see version guidance below)

Ⓘ INFO Ⓘ : Amazon S idewalk support requires the Amazon S idewalk SDK extension. The extension version

1.0.0 requires at least S implicity Studio v5, the S implicity Commander version included in that release, GSDK

4.2.2, and JLink version 7.84.

Silicon Labs SDK Extension for Amazon Sidewalk

During the initial install of S implicity Studio, support for Amazon S idewalk can be added by checking both the 32-bit and

Wireless MCUs and the Amazon Sidewalk SDK extension boxes in the Installation Manager as shown in the "step 1" figure

below. Click Next to install the latest 32-bit and Wireless MCU S implicity SDK and the S idewalk SDK extension.

Copyright © 2025 Silicon Laboratories. All rights reserved. 25/297

https://docs.sidewalk.amazon/getting-started/setup-an-amazon-echo-as-a-sidewalk-gateway-in-a-non-us-location.html
https://www.amazon.com/gp/help/customer/display.html/?nodeId=GMPKVYDBR223TRPY
https://www.silabs.com/developers/simplicity-studio
https://www.segger.com/products/debug-probes/j-link/tools/rtt-viewer/

Prerequisites

If S implicity Studio is already installed, follow step 1 below to add S implicity SDK support for the first time. Alternatively, for

installations that have already added at least one S implicity SDK version, jump to step 2 to ensure you install S idewalk

support with the latest S implicity SDK.

ò Add S implicity SDK and SDK extension for Amazon S idewalk to an existing S implicity Studio installation.

Open S implicity Studio 5.

Click the Install icon on the toolbar and select Install by technology type.

A Select Technology Type dialog opens. Select 32-bit and Wireless MCUs, Amazon Sidewalk SDK, and click Next (see

figure below).

In the Package Installation Options dialog, select Auto and click Next.

Wait for the installation to complete, click Finish, and go to step 2 to verify the installed S implicity SDK and S idewalk

support.

ó Add or confirm the SDK extension for Amazon S idewalk when S implicity SDK is already installed.

Open S implicity Studio 5.

Click the Install icon on the toolbar and select Manage installed packages.

In the Installation Manager, go to the SDKs tab.

On the Simplicity SDK - 32-bit and Wireless MCUs card, verify that the latest version is installed.

If a different version is installed, click Add....

On the Versions drop-down, select the latest version.

Note the location of the new S implicity SDK folder, you may want to refer to this in a later step.

If not already selected, check the box next to Amazon Sidewalk SDK.

Click Finish.

Copyright © 2025 Silicon Laboratories. All rights reserved. 26/297

https://www.silabs.com/developers/simplicity-studio
https://www.silabs.com/developers/simplicity-studio

Prerequisites

If needed, S implicity Studio 5 now downloads and installs the S implicity SDK and S idewalk SDK extension.

AWS Command Line Interface �CLI�

To perform the operations that create and manage the cloud-based elements of your Amazon S idewalk applications, your

scripts and the S idewalk Assistant use AWS CLI. With the AWS CLI, these tools can run commands that implement

functionality equivalent to that provided by the browser-based AWS Management Console. Use the resources below to set

up AWS CLI for these purposes.

Ⓘ INFO Ⓘ : Note that Amazon has currently activated S idewalk only for the North Virginia region ("us-east-1").

To support S idewalk development (and operation), your AWS CLI and AWS web interface should be localized

on this us-east-1 region.

Prerequisites to use the AWS CLI. To prepare your system to support AWS CLI, you must create users in your AWS CLI

account. For convenience, S ilicon Labs recommends using long-term IAM credentials (via IAM) to access AWS during your

evaluation:

ò Follow the guidance in Getting set up with IAM to create an AWS account if you do not already have one.

ó Follow steps 1 thru 3 in Authenticate using long-term credentials to create an administrator IAM account (select the

AdministratorAccess policy), get your access keys, and update the shared credentials file. (For additional assistance on

these topics, see Getting started with IAM and Managing access keys for IAM users)

Install AWS CLI. If AWS CLI is not already installed, install it as described here.

Configure AWS CLI. Configure AWS CLI to leverage your IAM administrator account. (S idewalk Assistant supports the

recommended credentials file approach described in prior bullets and environment variables (except on Mac OS where

environment variables are not supported).)

Copyright © 2025 Silicon Laboratories. All rights reserved. 27/297

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-prereqs.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-set-up.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html

Prerequisites

Getting Support

S ilicon Labs supports developers in many ways, including with documentation and active community forums where other

users and S ilicon Labs employees offer guidance to those in need.

Amazon S idewalk at S ilicon Labs is the home page of the site that contains this getting started guide and other helpful

resources

S idewalk Community Forum for all things S idewalk-related

S implicity Studio 5 User's Guide documents the features and usage guidance for S implicity Studio

S implicity Studio Forum for assistance with the development environment and resource management provided through

S implicity Studio

What Do the Lights on Your Echo Device Mean? can help you understand the visual feedback from your Amazon Echo

device

Amazon S idewalk Documentation provides additional details on Amazon S idewalk

Taking the Next Step

Once you have completed the required hardware and software setup tasks, you can begin creating and compiling an

Amazon S idewalk Application.

Copyright © 2025 Silicon Laboratories. All rights reserved. 28/297

https://docs.silabs.com/amazon-sidewalk/latest/
https://community.silabs.com/s/topic/0TO8Y000000eHD9WAM/amazon-sidewalk
https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-overview/
https://community.silabs.com/s/topic/0TO8Y000000eHD4WAM/tools
https://www.amazon.com/gp/help/customer/display.html?nodeId=GKLDRFT7FP4FZE56
https://docs.aws.amazon.com/iot/latest/developerguide/iot-sidewalk.html

Create and Compile an Application

Create and Compile an Application

Create and Compile your Sidewalk Application

Amazon Sidewalk Sample Applications

S ilicon Labs SDK for Amazon S idewalk includes multiple example applications, including:

Amazon S idewalk - SoC Hello Neighbor

Amazon S idewalk - SoC CLI

Amazon S idewalk - SoC Production Device Provisioner

Amazon S idewalk - SoC Dynamic Multiprotocol Light

Amazon S idewalk - SoC Qualification

Amazon S idewalk - SoC OOB Demo (delivered in binary only)

When a S idewalk-supported target device is selected, additional examples are available in the S implicity Studio Launcher

perspective, EXAMPLE PROJECTS & DEMOS tab. Type "sidewalk" into the Filter on Keywords field at top left, and press

enter to view only Amazon S idewalk examples.

For simplicity, this guide walks through the Amazon Sidewalk - SoC Hello Neighbor example on an EFR32xG24 radio board.

You can then repeat this procedure with other examples in the SDK.

Additional sample applications are available in the S ilicon Labs Amazon S idewalk Applications G ithub repository.

Create an Amazon Sidewalk Project

With the S idewalk resources added to your S implicity SDK, reopen S implicity Studio 5. You can now use the graphical

interface to create a S idewalk project.

Mount the EFR32xG24 radio board onto the main board, then connect the assembly to your computer through the USB

connector on the main board.

A new entry should appear in the Debug Adapters view.

Select the board and make sure your S implicity SDK with Amazon S idewalk SDK extension installed is selected in the

"Preferred SDK" section of the General Information card. If the Secure FW version depicted on the card is below the

minimum SE FW for your target device specified by the Prerequisites page, click the nearby link to upgrade the SE FW

before proceeding.

Go to the EXAMPLE PROJECTS & DEMOS tab.

Filter the example list by typing sidewalk in the "Filter on Keywords" field and press Enter.

Click Create next to the Amazon Sidewalk - SoC Hello Neighbor example.

In the New Project Wizard, select the Copy contents radio button, then click Finish.

Ⓘ INFO Ⓘ : S implicity Studio and the S implicity SDK support multiple toolchains in addition to the default GCC.

However, for projects using the Amazon S idewalk SDK extension, GCC is required.

For the examples leveraging a Semtech transceiver, SX1262 is used by default. It can be changed to LR1110 with a few

simple steps:

ò Update the LR1110 firmware:

You will need the LR1110 transceiver firmware version 0x0401 downloadable here.

Using the STM32 Nucleo board (recommended), follow the procedure here.

ó In your S idewalk application, open the the SLCP file and select the Software component panel.

ô Install the LR1110 driver as shown in the picture below. This software component will replace the one for SX1262.

Copyright © 2025 Silicon Laboratories. All rights reserved. 29/297

https://github.com/SiliconLabs/amazon-sidewalk-examples
https://github.com/Lora-net/SWTL001/wiki
https://github.com/Lora-net/SWTL001?tab=readme-ov-file#load

Create and Compile an Application

Compile and Flash the Project

S implicity Studio adds the project to the workspace folder. You can now compile and flash the project on the EFR32xG24

radio board.

In the S implicity IDE perspective, select the S idewalk project (.slcp file).

On the top menu click Run, then select Debug.

Wait for the build and flash operations to succeed.

In the Debug perspective, click Run.

Select Resume.

Ⓘ INFO Ⓘ : It is a "best practice" to erase the main flash before writing new application firmware to your

device. S implicity Studio provides many ways to do so, including S implicity Commander and the Flash

Programmer.

⚠ WARNING ⚠: If using a radio board from the S ilicon Labs Pro K it for Amazon S idewalk, the out-of-the-box

(OOB) demo relies on device-specific credentials pre-flashed to the USERDATA page on your device. This page

is not affected by mass-erase operations, but can be explicitly erased by a targeted page erase. Credentials

Backup/Restore Feature describes a process by which you can restore a working out-of-the-box demo

application after a mass-erase. However, care should be taken to NOT perform a page erase of USERDATA, or

the OOB demo cannot be restored.

View the Application Logs through J�Link RTT

The UART interface is not always available to report traces from S idewalk example applications. Instead, the applications

leverage the J-Link RTT interface. You can easily switch between J-Link RTT and UART interface. A procedure is available

in the Developer's Guide.

Copyright © 2025 Silicon Laboratories. All rights reserved. 30/297

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-building-and-flashing/flashing#flash-programmer
https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-stack-structure#credentials-backuprestore-feature
https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-test-and-debug#switch-logs-from-rtt-to-uart

Create and Compile an Application

⚠ WARNING ⚠: J-Link RTT and S implicity Studio use the same channel to communicate with the board. If you

do not see logs in J-Link RTT, try closing and re-opening S implicity Studio to reset the connection. RTT Viewer

needs to be disconnected from a device to allow flashing again with commander or S implicity Studio.

In the Amazon S idewalk sample application, the RTT interface is split between 3 channels:

Terminal 0 - App: contains the application logs

Terminal 1 - Stack: contains the logs from the Amazon S idewalk precompiled binaries

Terminal 2 - Pal: contains the logs from Physical Abstraction Layer (PAL) available in source in the extension

To set up the communication between your PC and the EFR32, follow these instructions:

ò Install the J-Link RTT Viewer.

ó Open the J-Link RTT Viewer.

ô In the Configuration panel, Connection to J-Link section, select USB.

õ In the Specify Target Device list, select the connected part. For the EFR32xG24 radio board BRD4187C, select

EFR32MG24AxxxF1536.

ö In the Target Interface & Speed panel, select SWD and 4000 kHz.

÷ In the RTT Control Block panel, select Auto Detection.

ø Click OK.

Ⓘ INFO Ⓘ : For the Quectel KG100S module, select EFR32BG21BxxxF1024 as the target device.

A terminal opens and the S idewalk application traces are output as shown (Terminal 2):

[00000006] <I> kvs> kv store opened with 1 object(s)

[00000007] <I> swi> interrupt init ok

[00000008] <I> mfg> mfg store opened with 0 object(s)

The above console log indicates that the example application is running, but found no objects in the device's NVM3 flash

area. For any S idewalk application (including this one) to run properly, S idewalk resources in the cloud must be prepared.

Move on to the next section, Provision your Amazon S idewalk Device, to provision your device and prepare your Amazon

S idewalk cloud resources to interact with it.

If you encounter any issues during this Getting Started procedure, see our troubleshooting page with solutions to common

problems.

Copyright © 2025 Silicon Laboratories. All rights reserved. 31/297

https://www.segger.com/products/debug-probes/j-link/tools/rtt-viewer/
https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-troubleshooting

Provision your Device

Provision your Device

Provision your Amazon Sidewalk Device
Firmware running on an embedded device forms only part of an Amazon S idewalk solution. Cloud resources must be

created to recognize and process data moving through the network between AWS Services and your endpoint. Credentials

must be generated and written to the device so that it is accepted and granted access to the S idewalk network by in-

range gateways.

AWS CloudFormation

AWS CloudFormation is a service that helps you model and set up your AWS resources so that you can spend less time

managing those resources and more time focusing on your applications that run in AWS. You create a template that

describes all the AWS resources that you want (like Amazon EC2 instances or Amazon RDS DB instances), and

CloudFormation takes care of provisioning and configuring those resources for you. You do not need to individually create

and configure AWS resources and figure out dependencies, because CloudFormation handles that on your behalf.

The Hello Neighbor example depends on AWS resources created using AWS CloudFormation. In the graphic below, green

indicates the resources created by the CloudFormation script and yellow indicates the resources strictly associated with a

device. The red arrows show the flow of information before an action can be performed on the cloud side.

Even with helpful task aggregator tools like CloudFormation, many steps are involved with the process to create and

interlink these resources. S ilicon Labs provides S idewalk developers with a tool to rapidly accomplish these tasks for our

example applications.

Sidewalk Assistant

After creating your example project, when your new .slcp project file opens, an additional tab sidewalk.asconf containing

the Sidewalk Assistant tool also appears. If you had closed your project tabs, you can reopen them by going to the root of

the project folder in Project Explorer view, and double-clicking the .slcp and .asconf files.

The S idewalk Assistant tool abstracts multiple underlying scripted interactions via AWS CLI (or manual interactions with the

AWS Management Console) into an intuitive graphical user interface that vastly simplifies these operations. Using this tool

allows you to focus on the high-level results of your development, rather than the details of each step. You can delve

deeper into these details later, when you are ready to move beyond the simplistic AWS constructs of our example

applications.

Copyright © 2025 Silicon Laboratories. All rights reserved. 32/297

Provision your Device

Sidewalk Assistant: AWS Credentials & Selected Device

The sidewalk.asconf file (in /config/sidewalk/ within the project directory) opens in the S idewalk Assistant on project

creation, or you can access the tool by navigating to and opening the .asconf file.

The tool automatically scans your system for appropriate AWS credentials, established when AWS CLI was installed and

AWS accounts created previously, and indicates that no target device is yet selected:

Click Select Device to open the Connection Manager dialog and choose from any of the attached devices (the checkbox

at top right filters the list to those devices with S idewalk support).

The S idewalk Assistant contains two primary pages, the Cloud Infrastructure page and the End Device page.

Sidewalk Assistant: Cloud Infrastructure

Initially, for a new project, the S idewalk Assistant Cloud Infrastructure page may look like this:

Copyright © 2025 Silicon Laboratories. All rights reserved. 33/297

Provision your Device

The CloudFormation Template used by this example is described in the top section. The AWS Stack name defined in the

project is also visible.

Clicking Create Stack triggers the creation of the stack using AWS CloudFormation. The interface displays Creation in
Progress during the process. You may have to click the Refresh Data control multiple times until the results are ready. When

stack creation is successfully completed, the AWS Stack section now displays details about the new stack and a DELETE

STACK control.

Copyright © 2025 Silicon Laboratories. All rights reserved. 34/297

Provision your Device

Sidewalk Assistant: End Device

Ⓘ INFO Ⓘ : Instead of using the S idewalk Assistant, S ilicon Labs also provides scripts to provision a device.

You can find the documentation to use the script here.

The cloud must be provided with a virtual representation of your device, and a "manufacturing page" must be created from

the AWS resources that will equip the endpoint with necessary cryptographic resources to successfully authenticate and

encrypt/decrypt traffic to/from your AWS resources in the S idewalk network.

The manufacturing page is a .s37 binary file containing the keys and certificates for your device that will be flashed to a

specific address. (.s37 files contain the program bytes and the target address.) To let the S idewalk Assistant design your

virtual device in the cloud and generate a manufacturing page for your physical endpoint, click the CREATE AWS DEVICE

AND MANUFACTURING PAGE button.

Copyright © 2025 Silicon Laboratories. All rights reserved. 35/297

https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-app-development#provision-your-device-using-scripts

Provision your Device

When this first step is complete, the Virtual AWS Device section displays details of the newly-created virtual device.

The GUI also now provides a FLASH TO DEVICE control. Click this to flash the manufacturing page to your endpoint. This

complements the application image already flashed to the device in a previous step.

If successful, the End Device page should now display details for both the virtual and physical devices.

Copyright © 2025 Silicon Laboratories. All rights reserved. 36/297

Provision your Device

Check the Device Registration and Time Sync

Recall that in Create and Compile your S idewalk Application, you saw the following log from your device (Terminal 2):

02> [00000006] <I> pal kv-storage: kv store opened with 0 object(s)

02> [00000008] <W> pal mfg: no objects found in mfg store

Now that you used the S idewalk Assistant to flash the manufacturing page, if you return to the RTT Viewer (you may need

to reset the device and/or reconnect the RTT Viewer), you will see the following log from your device (Terminal 2):

02> [00000006] <I> pal kv-storage: kv store opened with 0 object(s)

02> [00000007] <I> pal swi: interrupt init ok

02> [00000008] <I> pal mfg: mfg store opened with 36 object(s)

...

When the application is up an running, the logs in terminal 0 are as follows:

[00000001] <I> hello neighbor application started

[00000001] <I> sidewalk stack version 1.17.1-13

[00000002] <I> silabs sidewalk extension version 2.2.1

[00000004] <I> sidewalk SMSN: DAF0XXEA

[00000005] <I> sidewalk ID:

[00000009] <I> mfg page valid

[00000009] <I> platform initialized

[00000011] <I> main task created

> [00000012] <I> BLE link supported

[00000012] <I> FSK link supported

[00000013] <I> CSS link supported

[00000013] <I> Secure Vault is disabled

[00000055] <I> sidewalk initializated, link mask: 1

[00000056] <I> sidewalk connection policy set, policy: 2

[00000057] <I> sidewalk multi-link policy set, policy: 4

[00000076] <I> sidewalk status not ready

[00000077] <I> registration status: 1, time sync: 1, link: 0

[00000079] <I> sidewalk started, link mask: 1

[00000080] <I> main task started

In this log snippet, we can find several useful information:

The application name: hello neighbor

The Amazon S idewalk stack version: 1.17.1-13

The S idewalk extension version: 2.2.1

The Amazon S idewalk device SMSN:

DAF0XXEA

The Amazon S idewalk ID: BFFFXXXXXX

The supported radio links in Amazon S idewalk context: BLE link supported, FSK link supported and CSS link supported

The status line: registration status: 1, time sync: 1, link: 0

The status line is very important and is used to know about the device status in the Amazon S idewalk network:

Copyright © 2025 Silicon Laboratories. All rights reserved. 37/297

Provision your Device

Registration status

Registration status indicates if the device is registered on Amazon's backend or not.

0: the device is registered

1: the device is not registered

Time sync status

Time sync status indicates if the device has synchronized its current time with the gateway or not. You need to be time-

synchronized in order to send and receive messages.

0: time is synchronized

1: time is not synchronized

Link status

Link status displays the currently active communication channel.

0: No connection

1: BLE

2: FSK

4: CSS

For your device to communicate properly, registration status and time sync must be 0. If the endpoint is in-range of a

S idewalk gateway, this process (registration, if a new device, followed by successful time synchronization) should occur

within a few minutes. Continue to Interacting with the Cloud to see how to fully exercise this example application in both

directions across the S idewalk network.

Copyright © 2025 Silicon Laboratories. All rights reserved. 38/297

Interacting with the Cloud

Interacting with the Cloud

Interacting with the Cloud
The S idewalk solution allows an endpoint to natively exchange data with the AWS cloud. Before trying to send and receive

message, you should verify that your endpoint achieved time sync. You should see the following line in your device logs.

[00482267] <I> registation status: 0, time sync: 0, link: 0

Send Data

First, the endpoint sends data to the AWS cloud platform. An AWS Rule reroutes the data to an MQTT topic.

ò Go to the MQTT test client in AWS.

ó Type <#" in the Topic filter field.

ô Click Subscribe.

õ Press the main board's button (PB1 for KG100S and PB0 for all other boards). It triggers the S idewalk endpoint to send a

counter value to the AWS IoT Core. For more information on button and CLI action, see the readme of the Amazon Sidewalk

- SoC Hello Neighbor sample application.

An MQTT message appears in the AWS MQTT console.

The application logs (Terminal 0) are as follows:

Copyright © 2025 Silicon Laboratories. All rights reserved. 39/297

https://console.aws.amazon.com/iot/home?region=us-east-1#/test
https://github.com/SiliconLabs/amazon-sidewalk/blob/sisdk-2024.6/documentation/example/amazon_sidewalk_soc_hello_neighbor/readme.md

Interacting with the Cloud

[01736985] <I> counter update event

[01736985] <I> sending counter update, counter: 0

[01737009] <I> message queued

[01737009] <I> link type: 7fffffff, msg id: 1, msg size: 10, msg type: 2, ack requested: 1, ttl: 120, max retry: 5, additional attr: 0

[01737011] <I> 30 00 00 00 00 00 00 00

[01737012] <I> 00 00

[01737012] <I> ASCII decoded message: 0

[01745316] <I> uplink message sent

[01745317] <I> link type: 2, msg id: 1, msg type: 2

[01749138] <I> downlink message received

[01749139] <I> link type: 2, msg id: 1, msg size: 0, msg type: 3, ack requested: 0, is ack: 1, is duplicate: 0, rssi: -26, snr: 64

The message is first queued with parameters. The message is sent when the line uplink message sent is displayed and, with

default parameters, an acknowledge message is send back by the cloud as show by downlink message received and the

message being of size 0 (msg size: 0).

Receive Data

The Hello Neighbor applications don't support the MQTT test client publish feature to send message from the cloud to the

endpoint. For this step, you will need AWS CLI configured and associated with your IAM user. Your user should at least have

the following policies: AdministratorAccess and AWSIoTWirelessDataAccess. If your user is Administrator, you don't need to

do anything. You can check your users in the IAM Identity Center.

You are now ready to receive data on your S idewalk endpoint. Run the following command in a terminal:

aws iotwireless send-data-to-wireless-device --id=[Wireless-Device-ID] --transmit-mode 0 --payload-data="SGVsbG8gICBTaWRld2FsayE�" --

wireless-metadata "Sidewalk={Seq=1�"

Where:

Seq=x, x should be unique any time you run the command.

--id should be the <Device ID= of the device in the AWS portal IoT Core -> Wireless Connectivity -> Devices -> S idewalk.

--payload-data is the message to send in binary format (in this case, <Hello S idewalk!=).

You should see <Hello S idewalk!= on the EFR32 log console.

The application logs (Terminal 0) are as follows:

[01957048] <I> downlink message received

[01957049] <I> link type: 2, msg id: 5, msg size: 17, msg type: 2, ack requested: 0, is ack: 0, is duplicate: 0, rssi: -25, snr: 65

[01957051] <I> 48 65 6C 6C 6F 20 20 20

[01957052] <I> 53 69 64 65 77 61 6C 6B

[01957052] <I> 21

[01957052] <I> ASCII decoded message: Hello Sidewalk!

Copyright © 2025 Silicon Laboratories. All rights reserved. 40/297

https://us-east-1.console.aws.amazon.com/iot/home?region=us-east-1#/test
https://us-east-1.console.aws.amazon.com/singlesignon/home?region=us-east-1

Protocol Overview

Protocol Overview

Amazon Sidewalk Protocol Overview
This section presents some of Amazon S idewalk's main concepts, such as registration and sub-GHz configurations.

Reference Amazon documentation is linked at the bottom of this page.

Frustration Free Networking: Explanation of device registration to Amazon S idewalk network.

FSK Configuration: Short introduction of the protocol using FSK radio layer.

CSS Configuration: Short introduction of the protocol using CSS radio layer.

Multi-link and Auto Connect: Short introduction to the multi-link and auto connect features.

Useful links to Amazon documentation:

Introduction to Amazon S idewalk

Protocol Specification

Multi-link Application Note

Sub-GHz Device Profiles Application Note

API Reference (PDF)

Copyright © 2025 Silicon Laboratories. All rights reserved. 41/297

https://docs.sidewalk.amazon/introduction/
https://docs.sidewalk.amazon/specifications/
https://docs.sidewalk.amazon/assets/pdf/Amazon_Sidewalk_Multi-link_App_Note-1.0-rev-A.pdf
https://docs.sidewalk.amazon/assets/pdf/Amazon_Sidewalk_Sub-GHz_Device_Profiles_App_Note-1.0-rev-A-111623.pdf
https://docs.sidewalk.amazon/assets/pdf/Amazon_Sidewalk_Sid_API_Developer_Guide-1.0-rev-A-032623.pdf

Frustration Free Networking

Frustration Free Networking

Frustration Free Networking
For S idewalk, the Frustration Free Networking feature allows a device to register to the network without user action. This

process is called Touchless Registration. It is an automatic process that occurs between the unregistered S idewalk endpoint

and the S idewalk gateway over BLE or FSK. This method does not require associating the endpoint with the user's AWS

account. To ensure your device registers using Touchless Registration, complete the following:

ò Ensure your gateway is S idewalk-enabled and in range (the closer, the better).

ó Ensure your endpoint is up and running and open JLinkRTT Viewer for logs.

ô Registration should begin automatically. You should see some log output.

õ Successful registration will be indicated with the log below:

<info> app: Registration Status = 0, T ime Sync Status = 0 and Link Status = 0

Diagram Flow

The following shows the Automatic Touchless Registration simplified flowchart:

If registration is attempted several times in a row and fails each time, the Gateway will block the device for a period of time.

If that happens, rebooting the Gateway should reset the list of blocked devices. The following shows a full flowchart

including device blocking.

Copyright © 2025 Silicon Laboratories. All rights reserved. 42/297

Frustration Free Networking

Manual Registration Flow

Manual registration over BLE is an alternative registration mechanism to Automatic Touchless registration. Amazon S idewalk

also supports registration using the Amazon S idewalk mobile SDK.

Note that this step requires a Mac, Windows or an Ubuntu PC with Bluetooth capability in order to execute the S idewalk

endpoint registration. As an alternative, a Bluetooth USB dongle can be used. Also note that it is good practice to

disconnect all your other BLE devices connected to your computer (wireless headset, mouse, keyboard...) during

registration.

Create a New Security Profile

ò Go to the Login with Amazon page.

ó Click Create a New Security Profile.

Copyright © 2025 Silicon Laboratories. All rights reserved. 43/297

https://docs.sidewalk.amazon/mobile-sdk
https://developer.amazon.com/loginwithamazon/console/site/lwa/overview.html

Frustration Free Networking

ô Complete the required information: Security Profile Name, Security Profile Description, and Consent Privacy Notice URL.

These values can be anything, for example:

Security Profile Name: S idewalkSecurityProfile

Security Profile Description: S idewalkSecurityProfile

Consent Privacy Notice URL: https://www.silabs.com/

õ Click Save. You should see your new Security profile.

ö Click Show Client ID and Client Secret, and note down the Client ID and Client Secret (or save them as environment

variables).

÷ Click the gear to the right of your security profile ’s row.

ø Click Web Settings.

ù Click Edit, add http://localhost:8000/ to Allowed Origins, and click Save.

Obtain an LWA Token

An LWA (Login with Amazon) token is one of the ways to register your S idewalk endpoint.

In your Amazon S idewalk repository clone, go to /tools/scripts/public/sid_pc_link/apps/device_registration, and install the

module requirements:

pip3 install --user -r requirements.txt

Execute the following commands in a terminal:

python3 main.py -l --client-id <Client ID>

A browser window appears and opens a pop-up if allowed. Allow pop-ups on the page if not. The pop-up asks you for

Amazon developer credentials. When logged in, the initial window displays an LWA token. The Python script automatically

edits the app_config.json file with the LWA token. The standard LWA token is only valid for an hour.

Sidewalk Endpoint Registration

Open the app_config.json file in your Amazon S idewalk repository folder

/tools/scripts/public/sid_pc_link/apps/device_registration and edit it as follows.

ò Set the ENDPOINT_ID attribute equal to the <smsn= value found in the certificate_[SIDEWALK_ID].json file.

ó If you are on Linux, the BLUETOOTH_ADAPTER attribute must be set to the Bluetooth dongle that you purchased as part of

the setup. The hcitoo l command will read out your Bluetooth interfaces, and will likely be in the form hciX (most likely hci0 ,

like the default setting in app_config.json). If you are on macOS, you do not need to touch this field.

Note: You can leave the rest of the attributes to their default values.

ô Save and close the app_config.json file.

õ Run the following command:

python3 main.py -r

Copyright © 2025 Silicon Laboratories. All rights reserved. 44/297

https://www.silabs.com/
http://localhost:8000/

Frustration Free Networking

You then see the logs of a series of exchanges on your terminal and on your EFR32 logging interface. After a minute or so,

you should see "INFO Device registration succeeded". You have successfully registered your EFR32 device onto the

S idewalk network!

If your device is not detected by the script, it may be because your device connected automatically with the touchless

registration using S idewalk FFN.

If you are using the Amazon Sidewalk - SoC Bluetooth Hello Neighbor application, a main board button press is required to

connect with the gateway. No button press is needed with the Amazon Sidewalk - SoC Bluetooth Sub-GHz Hello Neighbor

application.

With the logging console connected, press main board button PB0. You should see the following status message.

[I] App - set connection request

[I] BLE State: CONNECTED

[I] App - sidewalk internal event

...

[I] App - sidewalk status changed: 0

[I] App - registration status: 0, time sync status: 0, link status: 1

[I] Delete rx_buffer :: Gateway [f1 76] :: Stream [7] :: Transaction [11]

Deregistration

You may want to de-register your endpoint for debug purposes.

⚠ WARNING ⚠: Successful de-registration requires a two-way message exchange between the endpoint,

gateway, and cloud. Make sure your device is registered and time-synced with your gateway. You can check

with the log output below:

<info> app: Registration Status = 0, T ime Sync Status = 0 and Link Status = 0

To de-register your device run the command below by replacing YOUR-WIRELESS-DEVICE-ID with the device ID of the device

you want to de-register.

aws iotwireless deregister-wireless-device --identifier "YOUR�WIRELESS�DEVICE�ID" --wireless-device-type "Sidewalk"

Successful de-registration of the device is indicated by the following log output:

<info> app: Registration Status = 1, T ime Sync Status = 1 and Link Status = 1

Wait a few seconds after the de-registration of your device to see Automatic Touchless registration taking place to register

your device.

INFO: When the endpoint is registered but not time-synced and the de-registration API is called, the device is

de-registered on the cloud side. The device does not receive the information because it is not time-synced.

However, on its request message for time sync, the cloud will issue a message to notify the device it is not

registered anymore. Upon receiving this new message, the device will remove its credentials and move to the

deregistered state.

Copyright © 2025 Silicon Laboratories. All rights reserved. 45/297

FSK Configuration

FSK Configuration

FSK Configuration
FSK means Frequency-Shift Keying. For more information about the FSK radio layer and its power profiles, see the "Sub-

GHz Protocol Stack" > "Amazon S idewalk Endpoint connection modes" > "SubG-FSK connection profiles" section in the

Amazon S idewalk specification.

Typical Behavior

FSK is a synchronous protocol, which means the endpoint keeps the connection with the gateway alive using beacons.

Beacons are sent by the gateway every 10 seconds. Messages can be sent and received in between beacons.

By default the connection is kept alive and there are 3 RX opportunities every 10 seconds. Transmissions are preceded by a

Clear Channel Assessment (CCA) and followed by an Acknowledgment message (ACK). See the figure below for an

example:

When the endpoint boots, it connects to the gateway using discovery; the endpoint listens on every channel to detect the

gateway preamble. Upon detection of the preamble, the endpoint retrieves its first beacon and starts communicating with

the gateway (touchless registration, configuration negotiation, and time synchronization).

Power Consumption and Energy Modes

FSK Power Profiles

Two connection profiles are available for FSK referred to as "power profiles" 1 and 2. Power profile 1 consists of smaller

messages exchanged during synchronization with the gateway. Protocol parameters are chosen by the gateway. Power

profile 2 is a full synchronization with parameters chosen by the endpoint and negotiated with the gateway. In both power

profiles it is possible to choose the time separation between two RX windows.

In the Hello Neighbor example application, power profile 2 is the default, with an RX window every 3150 ms.

Possible Parameters

Copyright © 2025 Silicon Laboratories. All rights reserved. 46/297

https://docs.sidewalk.amazon/specifications/

FSK Configuration

The FSK power profile can be modified by the sid_option API call using option SID_OPTION_900MHZ_SET_DEVICE_PROFILE .

Then the structure sid_device_profile_unicast_params can be updated with the following values:

The device profile ID possible values SID_LINK2_PROFILE_1 and SID_LINK2_PROFILE_2 contained in sid_device_profile_id enum.

The number of RX windows is always SID_RX_WINDOW_CNT_INFINITE for both power profiles.

The windows separation can be any of the values of enum sid_link2_rx_window_separation_ms .

The type of event for which the device wakes up values are contained in enum sid_unicast_wakeup_type .

Finally, while Profile 1 has infinite windows, the application can still turn the protocol off shortly after transmitting a packet

to achieve similar operating characteristics of limited number of RX windows. When the protocol is turned off, the wakeups

for beacon and data will not be executed. Whenever uplink data needs to be sent, the application can turn the protocol

back on, re-establish the S idewalk connectivity, transmit its data, and turn it back off. Hence, even though the protocol

does not automate this process for the application, similar operating characteristics are still achievable.

Copyright © 2025 Silicon Laboratories. All rights reserved. 47/297

CSS Configuration

CSS Configuration

CSS Configuration
CSS means Chirp Spread Spectrum. For more information about the CSS radio layer and its power profiles, see the "Sub-

GHz Protocol Stack" > "Amazon S idewalk Endpoint connection modes" > "Asynchronous access mode profiles" section in

the Amazon S idewalk specification.

Typical Behavior

CSS is an asynchronous protocol, which means it does not keep a connection with the gateway. Though transmits are

asynchronous, during an active downlink phase listening windows for reception occur every 5 seconds as shown below.

These windows either repeat indefinitely or after a transmission for a limited time, depending on the active connection

profile (also referred to as "power profiles" A and B).

Power Consumption and Energy Modes

CSS Power Profiles

Power profile A opens a limited number of listening windows after a transmission. Power profile B opens listening windows

periodically while also assuring regular transmission to keep the connection alive. In power profile B, the gateway considers

the endpoint inactive after 5 minutes without transmission and stops sending messages. To prevent this, the S idewalk stack

implements a keep-alive mechanism for power profile B that creates a power consumption overhead not present in power

profile A. There is a trade-off between this additional overhead and lower latency, as in power profile A a device must re-

perform time synchronization before transmission if too much time has elapsed since the last transmit. Power profile B is

the default connection profile in the S idewalk stack.

Possible Parameters

The CSS power profile can be modified by the sid_option API call using option SID_OPTION_900MHZ_SET_DEVICE_PROFILE .

Then the structure sid_device_profile_unicast_params can be updated with the following values:

Copyright © 2025 Silicon Laboratories. All rights reserved. 48/297

https://docs.sidewalk.amazon/specifications/

CSS Configuration

The device profile ID possible values SID_LINK3_PROFILE_A and SID_LINK3_PROFILE_B contained in sid_device_profile_id enum.

The number of RX windows is either SID_RX_WINDOW_CNT_INFINITE for power profile B and any of the other values in enum

sid_rx_window_count for power profile A.

The windows separation can be any of the values of enum sid_link3_rx_window_separation_ms .

Values for the type of event for which the device wakes up are contained in enum sid_unicast_wakeup_type .

Copyright © 2025 Silicon Laboratories. All rights reserved. 49/297

Multi-link and Auto Connect

Multi-link and Auto Connect

Multi-link and Auto Connect
S ince the release of S idewalk SDK 1.16, a feature called Multi-link has been introduced. This feature abstracts the process

of connection establishment and maintenance for the radio links supported by the S idewalk stack, making it easier for

developers. It offers developers varying degrees of flexibility to control not only the connection behavior of the links but

also the transfer of messages over them.

You can find the dedicated application note on Multi-link on the Amazon website.

The multi-link feature introduces a connection policy framework that affects how connections are established and how

messages are sent using the supported radio links. It also impacts the uplink message attributes and the link's connection

timeout parameters. Downlink messages from the S idewalk cloud services always follow the link on which the last uplink

was received from the endpoint. Note that the link connection policy configuration does not persist across reboots.

The Multi-link feature is divided into two policies: multi-link and auto connect. Auto connect provides developers with the

flexibility to configure various link connection attributes, such as link priority and the maximum number of retry attempts for

a link. In contrast, multi-link determines the uplink attributes (like cloud ACK per message, the number of transmission retries

for a message, and the time to live for a message) and the link connection attributes by selecting a mode that enforces a

set of parameters. Developers are expected to choose a mode rather than individual attributes.

Message Uplink Attributes Description

ACK Request Acknowledgment from AWS IoT Wireless managed service

Number of retries Number of times the stack can retry sending this message

Time To Live (TTL) Time before the message expires in the queue

Link Connection Control

Attributes
Description

Link Priority Defines the order of priority to attempt connection on a link range from 0 to 2, 0 being

the highest

Link Timeout Maximum Time to Attempt Connection for a Link in seconds

The feature relies on the connected state mode of a link to determine if a link is available to send a message or not. The

connected state is defined as follows: The link must be started, registered, and time-synced. Additionally, for BLE, it must

be connected to the gateway. FSK is always connected as long as it receives beacons; and CSS is connectionless, so it is

always considered connected.

Multi-link

With multi-link, the system determines the message uplink and link connection attributes, so developers do not need to

configure these parameters when sending a message. The S idewalk stack initiates a connection on a link only when a

message needs to be transmitted.

The algorithm functions as follows: If the S idewalk stack has at least one link in a connected state and the message to be

sent does not exceed the MTU of that link, the message is transmitted.

If multiple links are in a connected state, the message transmission attributes of the link with the higher throughput are

applied to the enqueued message (e.g., if both BLE and FSK are connected, BLE is used).

If no link is in a connected state, the message transmission attributes of the link with the lowest throughput are applied to

the enqueued message (e.g., if BLE, FSK, and CSS are not connected, CSS is used).

If the S idewalk stack has at least one link in a connected state that can send the message, the link auto connection policy

algorithm is not triggered, as the connected link can successfully transmit the message.

Copyright © 2025 Silicon Laboratories. All rights reserved. 50/297

https://docs.sidewalk.amazon/assets/pdf/Amazon_Sidewalk_Multi-link_App_Note-1.0-rev-A.pdf

Multi-link and Auto Connect

However, if the S idewalk stack has no link in a connected state ready to send the message, the multi-link policy will be

activated. This policy will then cycle through the links in the priority order set by the policy table (from lowest to highest

throughput) multiple times until all the messages queued by the user are sent or expired. Once there are no messages in

the endpoint Amazon S idewalk stack’s send queue, the algorithm will stop attempting to establish a connection (time sync)

with the Amazon S idewalk network.

For background connection maintenance, when the stack is configured with multi-link policies for latency or performance,

the multi-link algorithm attempts to maintain a connection (uplink active) with the S idewalk cloud services via the BLE link.

This connection maintenance is achieved by updating the advertisement payload. For other policies, the algorithm maintains

the default behavior of the link connection policy.

The multi-link mode can be set using the sid_option API call using SID_OPTION_SET_LINK_CONNECTION_POLICY or

SID_OPTION_GET_LINK_CONNECTION_POLICY . The values for the Message Uplink Attributes and Link Connection Control

Attributes are determined by the chosen policy mode. You can see details of the policy modes in the dedicated application

note on Multi-link.

Auto Connect

Auto connect policy offers developers the flexibility to configure the link connection control attributes. The S idewalk stack

initiates a connection on a link only when a message needs to be transmitted, with no background connection maintenance.

The algorithm operates as follows: If the S idewalk stack has at least one link in a connected state that can send the

message, the link auto connection policy algorithm will not be triggered, as the connected link can successfully transmit the

message. However, if the S idewalk stack has no link in a connected state ready to send the message, the auto connect

policy will be activated. This policy will then cycle through the links in the priority order set by the developer multiple times

until all the messages queued by the user are sent or expired. Once there are no messages in the endpoint Amazon

S idewalk stack’s send queue, the algorithm will cease attempting to establish a connection (time sync) with the Amazon

S idewalk network.

Copyright © 2025 Silicon Laboratories. All rights reserved. 51/297

https://docs.sidewalk.amazon/assets/pdf/Amazon_Sidewalk_Multi-link_App_Note-1.0-rev-A.pdf

Multi-link and Auto Connect

The auto connect policy can be set using the sid_option API call using SID_OPTION_SET_LINK_CONNECTION_POLICY or

SID_OPTION_GET_LINK_CONNECTION_POLICY and parameters can be chosen using

SID_OPTION_SET_LINK_POLICY_AUTO_CONNECT_PARAMS or SID_OPTION_GET_LINK_POLICY_AUTO_CONNECT_PARAMS . The values for

the Link Connection Control Attributes can be configured with Auto Connect. You can see details of the possible values in

the dedicated application note on Multi-link.

Copyright © 2025 Silicon Laboratories. All rights reserved. 52/297

https://docs.sidewalk.amazon/assets/pdf/Amazon_Sidewalk_Multi-link_App_Note-1.0-rev-A.pdf

Overview

Overview

Silicon Labs Developer's Guide for Amazon
Sidewalk

This developer's guide presents all the concepts needed to develop your own application leveraging Amazon S idewalk.

Stack Structure: Presentation of S ilicon Labs' solution integrating Amazon S idewalk.

Application Development: Instructions and documentation to allow you to develop your own application including automating

device creation, and Secure Element and memory usage.

Amazon S idewalk API: Refer to the Amazon S idewalk S id API Developer Guide.

Testing and Debugging: Solutions for debugging including logging.

Power Consumption Analysis: Introduction to Amazon S idewalk power consumption.

Performance: Details on range testing, power consumption, and latency.

Multiprotocol with Sidewalk: Instructions to add standard BLE advertising alongside your Amazon S idewalk application.

Troubleshooting: Troubleshooting guide with all common issues.

You can find additional more advanced sample applications on the S ilicon Labs Amazon S idewalk Applications G ithub

repository.

Useful links to Amazon documentation:

Amazon S idewalk General Documentation

API Reference (PDF)

AWS API Reference for Amazon S idewalk

Multi-link Application Note

Sub-GHz Device Profiles Application Note

Amazon S idewalk Requirements

S idewalk Qualification

Mobile SDK Developer Guide

Manufacturing

Copyright © 2025 Silicon Laboratories. All rights reserved. 53/297

https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-stack-structure
https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-app-development
https://docs.sidewalk.amazon/assets/pdf/Amazon_Sidewalk_Sid_API_Developer_Guide-1.0-rev-A-032623.pdf
https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-test-and-debug
https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-power-consumption-analysis
https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-performance
https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-multiprotocol
https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-troubleshooting
https://github.com/SiliconLabs/amazon-sidewalk-examples
https://docs.sidewalk.amazon/
https://docs.sidewalk.amazon/assets/pdf/Amazon_Sidewalk_Sid_API_Developer_Guide-1.0-rev-A-032623.pdf
https://docs.aws.amazon.com/iot/latest/developerguide/sidewalk-aws-api-reference.html
https://docs.sidewalk.amazon/assets/pdf/Amazon_Sidewalk_Multi-link_App_Note-1.0-rev-A.pdf
https://docs.sidewalk.amazon/assets/pdf/Amazon_Sidewalk_Sub-GHz_Device_Profiles_App_Note-1.0-rev-A-111623.pdf
https://docs.sidewalk.amazon/sidewalk-terms-and-agreements/
https://docs.sidewalk.amazon/qualification/
https://docs.sidewalk.amazon/mobile-sdk
https://docs.sidewalk.amazon/manufacturing/

Stack Structure

Stack Structure

Stack Structure
The following figure describes the firmware structure that integrates the Amazon S idewalk protocol stack and enables

Amazon S idewalk connectivity for the end device. The Platform Abstraction Layer assures communication between S ilicon

Labs S implicity SDK and the Amazon S idewalk protocol stack. The developer creates applications on top of the stack,

which S ilicon Labs provides as a precompiled library.

The Amazon S idewalk stack contains the following blocks:

Application Layer Library: Contains API call definitions to be used in application development.

BLE Network Interface: Contains Amazon S idewalk-specific configuration for the Bluetooth LE (BLE) link layer.

Sub-GHz Network Interface: Contains Amazon S idewalk-specific configuration for sub-GHz link layer and Semtech drivers.

MAC Layer: Amazon S idewalk implementation of the MAC layer.

Dependencies

The following software components are used by the stack:

FreeRTOS: Used as a base to run the stack.

PSA crypto: Used for all cryptographic operation.

BLE stack: Used to access the BLE stack.

SPI driver: Used only in sub-GHz-enabled applications, for communication with a third-party sub-GHz radio module.

RAIL: Used to access the radio and high-precision timers.

Library Files

Amazon S idewalk extension contains three library files: one for the S idewalk stack, one for the BLE stack and the last one

for the Semtech chip driver. The S ilicon Labs Platform Abstraction Layer is available in source in the extension.

Copyright © 2025 Silicon Laboratories. All rights reserved. 54/297

Stack Structure

Software Components

The Amazon S idewalk extension includes the following software components. Each component can be used in a custom

application. Each is described and documented in the following sections.

S idewalk

Protocol

Amazon S idewalk: the Amazon S idewalk stack base component

S idewalk NVM3 Migrator: a tool to migrate to the new NVM3 architecture starting S idewalk 2.0.0

Utility

Logs: the component that allows to control the logs level and output

S idewalk Application Message Structure: an example of lightweight message structure for S idewalk messages

S idewalk utils: a toolkit with useful functions to retrieve information on the device (extract SMSN from manufacturing page

for example)

Amazon Sidewalk

Sidewalk NVM3 Migrator

This component is responsible for automatically handling the changes in the NVM3 structure around the S idewalk SDK 1.16

release (S idewalk extension 2.0.0). More precisely, it migrates NVM3 data from the previous unversioned S ilabs-specific

structure to a new structure which also got a version number, namely 1.0.0.0. This includes migration of manufacturing page

(MFG) and Key-Value storage data (the KV storage handles the state of the S idewalk stack) and other S ilabs-specific

NVM3 data as well.

The goal is to provide seamless transition to the new structure by simply adding this component, and calling its single API

function.

For more information about the latest NVM3 organization, refer to Non-Volatile Memory Management in S idewalk Context .

You can also refer to the NVM3 Migrator component readme.

The rework of the NVM3 organization has two important advantages:

Reduce the flash usage to store the same information.

The address of the reserved space for the default NVM3 instance can be easily changed, thus changing MFG and KV

storage address seamlessly.

The following schema shows the main stages of the memory migration.

Copyright © 2025 Silicon Laboratories. All rights reserved. 55/297

https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-app-development#non-volatile-memory-use
https://github.com/SiliconLabs/amazon-sidewalk/blob/sisdk-2024.6/component/sidewalk_nvm3_migrator/readme.md

Stack Structure

ò Before migration, we see the assumed original NVM3 structure.

NVM3 data is placed at the end of the flash.

The MFG and KV instances are 0x6000 large.

The size of the original NVM3 Default instance is also 0x6000 by default.

ó When we start migration we expect that the user flashed a new application containing the migrator component, and left the

NVM3 data intact.

The new application shall not overlap with the original NVM3 data.

ô After the migration we see the new NVM3 structure containing MFG and KV storage data.

The full migration process is shown in the following flow diagram:

Copyright © 2025 Silicon Laboratories. All rights reserved. 56/297

Stack Structure

Copyright © 2025 Silicon Laboratories. All rights reserved. 57/297

Stack Structure

Logs

The purpose of this group of software components is to facilitate the redirection of app, stack, or PAL logs to VCOM or

separate RTT terminals. It consists of six components, all dependent on the Log component and available in both RTT and

UART versions: Sidewalk Log: App, Sidewalk Log: PAL, and Sidewalk Log: stack.

There are three distinct layers (app, stack, and PAL) whose log configurations can be managed independently. This per-layer

configuration includes the following three aspects:

Enabling or disabling logs

Changing the severity level

Changing the RTT terminal ID (specific to logs redirected to the RTT interface)

At least one software component (RTT or VCOM) per layer must be selected. To completely disable the logs, the chosen

component can be configured accordingly. By default, all applications use the RTT interface to display logs.

To display logs or switch the log output from RTT to UART, refer to Testing and Debugging documentation.

Sidewalk Application Message Structure

The S idewalk Application Message component is a software module designed to facilitate the transfer of commands and

associated data across the S idewalk network with minimal metadata. It operates on a TLV (tag-length-value) data protocol,

which simplifies the process of sending commands with associated data, making it somewhat analogous to the RPC protocol

in functionality.

This component's role is to package the data intended for transmission with essential metadata (such as protocol version,

command class, command ID, payload length, etc.). The application is then responsible for sending this packaged data as a

S idewalk application message through the S idewalk network. The message structure aims to be as lightweight as possible

and only adds 4 bytes of metadata to the actual message data.

For instance, consider the process of sending a notification to the cloud application when a user presses a button. The

application will invoke the necessary functions to encapsulate the button's state and assign the appropriate metadata for

the button press event. After the application data is wrapped in the data protocol, it is transmitted over the S idewalk

network by the application.

Credentials Backup/Restore Feature

The out-of-the-box (OOB) application provided with the Pro K it has a feature that allows users to erase the flash memory

without losing the device private keys and other device-specific information. The feature relies on the user data partition

that is not affected by mass-erase but it can still be erased. This feature can be used alongside Secure Vault seamlessly.

The manufacturing page needs to persist in order for the application to work in the Amazon S idewalk network. This data can

be divided in two groups, one for device-specific information and the other for information common to all devices created

under the same device profile. As the capacity of the user data partition is quite limited, the common information is stored in

the application code and only the device-specific information is backed up on the user data partition.

The following flow diagram shows the backup/restore feature workflow.

Copyright © 2025 Silicon Laboratories. All rights reserved. 58/297

https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-test-and-debug/

Stack Structure

The Backup feature is used to copy device-specific information from the manufacturing page onto the user data partition.

There is no need to copy common information as it is hard-coded in the application. Backup takes place when the

application cannot detect any backed up data on the user data partition. This implies that, if the user data partition is erased

but not the application, then the application will perform a backup process after each boot.

The Restore feature is used to copy device-specific information from the user data partition and common information from

the OOB application code onto the manufacturing page. Restore takes place when the application cannot detect any valid

manufacturing page. This implies that, if the device is mass-erased, then the application will perform a restore process after

each boot and restore the whole manufacturing page.

Copyright © 2025 Silicon Laboratories. All rights reserved. 59/297

Application Development Walkthrough

Application Development Walkthrough

Application Development Walkthrough
The purpose of this document is to guide you through using and configuring the Amazon S idewalk solution and implementing

an Amazon S idewalk application. Before going through this document, you should go through the Getting Started to

familiarize yourself with the Amazon S idewalk flow.

Amazon Sidewalk - SoC Empty Sample Application

Create and Compile the Application

You can create and compile the Amazon S idewalk Empty sample application just like any other Amazon S idewalk

application. This bare application only initializes the Amazon S idewalk Stack.

Provision your Device using Scripts

To automate device creation for prototyping, scripts are available to create the necessary objects in the cloud and

generate the manufacturing page. These scripts are provided in the S ilicon Labs extension for Amazon S idewalk G ithub

repository. To set up a prototype device and register it to the network, the following steps are necessary:

ò Deploy your application in AWS.

ó Compile and flash an application for your embedded device.

ô Create a device profile in AWS.

õ Create a wireless device in AWS.

ö Generate a manufacturing page.

÷ Flash the manufacturing page to your embedded device.

You can deploy your AWS application automatically using dedicated tools like Amazon CloudFormation. You can compile and

flash your application using S implicity Studio 5. To create the device profile, wireless device, and manufacturing page you

can use S ilicon Labs' prototyping script.

Remember to install the requirements listed in the requirements.txt file under amazon_dependencies with pip3 install -r

requirements.txt .

The script configuration is handled by a JSON file like the following:

{

 "awsAccount": {

 "awsRegion": "us-east-1",

 "awsProfile": "default"

 },

 "commanderPath": "C�\\SiliconLabs\\SimplicityStudio\\v5_4\\developer\\adapter_packs\\commander\\commander.exe",

 "generationRequests": [

 {

 "deviceProfileId": null,

 "deviceName": null,

 "destinationName": "CFSDestination",

 "targetPart": null,

 "quantity": 1

 }

]

}

An example configuration file is provided at the root of the repository.

Copyright © 2025 Silicon Laboratories. All rights reserved. 60/297

https://github.com/SiliconLabs/amazon-sidewalk
https://github.com/SiliconLabs/amazon-sidewalk/tree/sisdk-2024.6/tools/scripts/public/generate_prototype/

Application Development Walkthrough

The first block awsAccount is used to configure the connection to AWS cloud:

awsRegion : The AWS region you would like to add your devices to (Note that only the us-east-1 region is supported at the

moment).

awsProfile : Used to choose the AWS CLI profile linking to the correct credentials. If you do not use profiles, you can leave

the default.

The second block defines the toolchain used to create the manufacturing page:

commanderPath : Should link to the the S implicity Commander executable file.

The third block generationRequests controls the target device details:

deviceProfile Id : If this is your first time running the script, it should be empty. If not, it contains your Device Profile ID (this

field is filled automatically).

deviceName : This is optional, you can choose to give a custom name to your device.

destinationName : Should be the name of the destination used by your AWS cloud application.

targetPart : The OPN of the target part. If empty, manufacturing pages for all supported radio boards will be generated.

quantity : The quantity of devices you want to create (default value is 1).

On the first run, the script creates a prototyping device profile and fills the deviceProfile Id with the resulting device ID. All

subsequent wireless devices will be created using this device profile. Note that during prototyping, a device profile can be

linked to a maximum of 1000 wireless devices.

To start the script, execute the following:

python3 generate_prototype.py --input <.> --output <output_folder> --config example_config.json

The script creates a directory structure as follows in the chosen output folder under mfg_output :

DeviceProfile_7c51bc6b-0556�2083�6f0d-aeb750c94508

├── DeviceProfile.json

└── WirelessDevice_db57b1c9�22ad-c052�07ae-1e1cae9bb384

 ├── SiLabs_MFG.nvm3

 ├── Silabs_xG21.s37

 ├── Silabs_xG23.s37

 ├── Silabs_xG24.s37

 ├── Silabs_xG28.s37

 └── WirelessDevice.json

The first directory is named with the device id of your device profile and contains DeviceProfile .json , which contains your

device profile information. Then a directory is created for every wireless device you created. One wireless device contains

manufacturing pages for all supported platforms and a WirelessDevice .json file containing your device information (including

private keys).

To use the script with command-line arguments instead of a configuration file, simply drop the --config parameter.

Copyright © 2025 Silicon Laboratories. All rights reserved. 61/297

Application Development Walkthrough

usage: generate_prototype.py [-h] -in INPUT -out OUTPUT [-p AWS_PROFILE] [-n NAME] [-d DST_NAME] [-t TARGET] [-c COMMANDER] [-cfg

CONFIG]

optional arguments:

 -h, --help show this help message and exit

 -in INPUT, --input INPUT

 Path of the input directory

 -out OUTPUT, --output OUTPUT

 Path of the output directory

 -p AWS_PROFILE, --aws-profile AWS_PROFILE

 Name of your AWS profile from .aws/credentials (default: default)

 -n NAME, --name NAME Specified name for the newly created device (default: sidewalk_[user]_device)

 -d DST_NAME, --dst-name DST_NAME

 Destination name used for uplink traffic routing (default: CFSDestination)

 -t TARGET, --target TARGET

 Target part number for which the MFG page generation has to be done (default: all)

 -c COMMANDER, --commander COMMANDER

 Path to commander executable, not needed if already in system PATH

 -cfg CONFIG, --config CONFIG

 Configuration file, if provided other arguments are ignored

You can directly flash the generated .s37 file using S implicity Commander.

Provision your Device with Secure Vault

Ⓘ INFO Ⓘ : This is an optional step, you can decide to try this feature or not.

On S ilicon Labs EFR32 Series 2 platforms, you can leverage Secure Vault to store sensitive data (private keys) in a secure

place. Amazon S idewalk can leverage the Secure Vault to store the device private keys. S ilicon Labs provides scripts to

provision a device directly using Secure Vault for the manufacturing and during prototyping phase: Provision your prototyping

device with Secure Vault.

From initializing to Sending a Message Through Sidewalk

Note that in Amazon S idewalk, you can add the support for an external radio for the FSK and CSS modulation. For

instructions on configuring S idewalk stack to use the external radio transceiver, refer to the dedicated section.

Initialize Sidewalk Protocol Stack

You can find an example of S idewalk initialization in the main_thread function in app_process.c .

To initiate a link with Amazon S idewalk, it is essential to first populate the sid_config structure with the necessary

configuration details. This structure is defined as follows:

struct sid_config {

 uint32_t link_mask;

 struct sid_event_callbacks *callbacks;

 const struct sid_ble_link_config *link_config;

 const struct sid_sub_ghz_links_config *sub_ghz_link_config;

};

The link_mask in the sid_config structure specifies which S idewalk radio links the device will set up and use. For instance, to

configure a single link, you would assign SID_LINK_TYPE_1 to link_mask . For multiple links, you would combine them using the

bitwise OR operator, such as SID_LINK_TYPE_1 | SID_LINK_TYPE_2 | SID_LINK_TYPE_3 . The enumeration sid_link_type list possible

values that can be combine for the link_mask .

Copyright © 2025 Silicon Laboratories. All rights reserved. 62/297

https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-manufacture-product#openssl-private-key-provisioning-walkthrough-deprecated

Application Development Walkthrough

enum sid_link_type {

/** Bluetooth Low Energy link */

 SID_LINK_TYPE_1 = 1 << 0,

/** 900 MHz link for FSK */

 SID_LINK_TYPE_2 = 1 << 1,

/** 900 MHz link for LORA */

 SID_LINK_TYPE_3 = 1 << 2,

/** Any Link Type */

 SID_LINK_TYPE_ANY = INT_MAX,

};

The callbacks member holds the event callbacks for the selected link, which must be stored in static const storage since

the S idewalk stack accesses this member without making a copy.

For BLE link-specific configuration, a pointer to struct sid_ble_link_config is passed. S imilarly, the sub_ghz_link_config is used

for configuring the Sub-Ghz link.

Once the sid_config structure is correctly filled out, the sid_init function can be called with this configuration to initiate the

link. The function must be called only once for a given link type unless sid_deinit() is called to deinitialize it.

sid_error_t sid_init(const struct sid_config *config, struct sid_handle **handle);

This initialization process is crucial as it sets up the foundational parameters for the S idewalk stack to operate correctly. It

ensures that the device is ready to start communication over the S idewalk network according to the specified

configurations. Remember, proper initialization must precede any attempt to start a link using sid_start . This structured

approach to initialization and starting links ensures a robust and error-free operation of the Amazon S idewalk stack.

You can find an example code to initialize Amazon S idewalk stack in the main_thread function of app_process.c . Below is

also a small example. the sub_ghz_link_config can be removed if the application should only support BLE radio.

// Set configuration parameters

 struct sid_config config =

{

.link_mask = SID_LINK_TYPE_1 | SID_LINK_TYPE_2, //BLE and FSK

.callbacks = &event_callbacks,

.link_config = &ble_config,

.sub_ghz_link_config = &sub_ghz_link_config,

};

 struct sid_handle *sidewalk_handle = NULL;

 sid_error_t ret = sid_init(&config, &sidewalk_handle);

if (ret !� SID_ERROR_NONE) {

SL_SID_LOG_APP_ERROR("sidewalk initialization failed, link mask: %x, error: %d", (int)config.link_mask, (int)ret);

 goto error;

}

The ble_config parameter controls the configuration of the BLE stack, including the name of your device, the advertising

and connection parameters and the output power. The sub_ghz_link_config field controls the Sub-GHz radio configuration,

including maximum output power and registration over Sub-GHz enablement.

The details for the event_callbacks structure will be elaborated upon in the subsequent sections.

Start and Stop the Sidewalk Protocol Stack

Once the platform for Amazon S idewalk is initialized, the S idewalk stack can be activated using the sid_start API. This

action is contingent upon the prior initialization of the link. Thanks to the multi-link and auto connect features, multiple links

can be initiated simultaneously, but only a single link will be used for uplink and downlink at a given moment. The stack can

be started by the main_thread function in app_process.c of the Amazon S idewalk Empty application.

Copyright © 2025 Silicon Laboratories. All rights reserved. 63/297

Application Development Walkthrough

sid_error_t sid_start(struct sid_handle *handle, uint32_t link_mask);

The sid_start function is versatile, allowing for the initiation of one or multiple links simultaneously. For a single link, you

would set link_mask to the specific link type, such as SID_LINK_TYPE_1 . For multiple links, you would use the bitwise OR

operator to combine them, like SID_LINK_TYPE_1 | SID_LINK_TYPE_3 .

However, it's crucial to remember that you can only start a link type that was previously initialized with sid_init .

In summary, sid_start is the function that activates the S idewalk stack, enabling it to perform its intended tasks and

ensuring that the device is ready for communication over the S idewalk network.

Here is an example code to start the Amazon S idewalk stack:

uint32_t link_mask = SID_LINK_TYPE_1 | SID_LINK_TYPE_2; // BLE and FSK

sid_error_t ret = sid_start(sidewalk_handle, link_mask);

if (ret !� SID_ERROR_NONE) {

SL_SID_LOG_APP_ERROR("sidewalk start failed, link mask: %x, error: %d", (int)config.link_mask, (int)ret);

 goto error;

}

To halt the operations of the S idewalk stack, use the sid_stop function. When this function is called, the stack will cease to

send or receive messages, and all notifications will be suspended. The link status will be updated to reflect a disconnected

state, and the time synchronization status will be preserved for future use.

sid_error_t sid_stop(struct sid_handle *handle, uint32_t link_mask);

The function allows for stopping either a single link or multiple links at once. For example, to stop a single link, set link_mask

to SID_LINK_TYPE_1 . To stop multiple links, combine them using the bitwise OR operator, like SID_LINK_TYPE_1 | SID_LINK_TYPE_3 .

It's important to note that sid_stop can only be used to stop links that were previously initialized with sid_init . This ensures

that the stack is properly configured and that the stop operation is performed on an active link.

In essence, sid_stop is a control function that provides the ability to gracefully shut down the S idewalk stack's operations,

ensuring that the device can safely transition to a non-operational state while preserving essential status information for

future operations.

Here is an example code to stop the Amazon S idewalk stack:

uint32_t link_mask = SID_LINK_TYPE_1 | SID_LINK_TYPE_2;

sid_error_t ret = sid_stop(sidewalk_handle, link_mask);

if(ret !� SID_ERROR_NONE) {

SL_SID_LOG_APP_ERROR("failed to stop the stack: %d", (int)ret);

return false;

}

Amazon Sidewalk and RTOS

The Amazon S idewalk stack operates on a real-time OS (FreeRTOS). To manage events and ensure the stack remains

operational, you need to implement a loop in the main thread. In the main_thread function, there's already a while(1) loop

that can be utilized for this purpose. Essentially, you need to handle events as they occur. The primary event to keep the

stack running is EVENT_TYPE_SIDEWALK , and you must process this event to maintain the stack's operation. Additional events

can be defined as needed for other purposes. A basic structure for the main loop could be as follows:

At the top of app_process.c , initialize a few structures:

Copyright © 2025 Silicon Laboratories. All rights reserved. 64/297

Application Development Walkthrough

static QueueHandle_t g_event_queue;

// Sidewalk Events

enum event_type{

 EVENT_TYPE_SIDEWALK = 0,

 EVENT_TYPE_SEND_MESSAGE,

//Add your custom event types here

 EVENT_TYPE_INVALID

};

#define MSG_QUEUE_LEN (10U)

Then, main_thread will display as follows:

g_event_queue = xQueueCreate(MSG_QUEUE_LEN, sizeof(enum event_type));

app_assert(g_event_queue !� NULL, "app: queue creation failed");

while (1) {

// Add your code

 enum event_type event = EVENT_TYPE_INVALID;

if (xQueueReceive(g_event_queue, &event, portMAX_DELAY) == pdTRUE) {

 switch (event) {

 case EVENT_TYPE_SIDEWALK:

sid_process(sidewalk_handle);

break;

 case EVENT_TYPE_SEND_MESSAGE:

//call to sid_put_msg here

break;

 default:

SL_SID_LOG_APP_ERROR("app: unexpected evt: %d", (int)event);

break;

}

}

}

Finally the on_sidewalk_event callback should be implemented to add the EVENT_TYPE_SIDEWALK to the queue.

static void on_sidewalk_event(bool in_isr,

 void *context)

{

UNUSED(in_isr);

UNUSED(context);

queue_event(g_event_queue, EVENT_TYPE_SIDEWALK);

}

The queue_event function used in this example is the same as the one implemented in Hello Neighbor:

static void queue_event(QueueHandle_t queue,

 enum event_type event)

{

// Check if queue_event was called from ISR

if ((bool)xPortIsInsideInterrupt()) {

 BaseType_t task_woken = pdFALSE;

xQueueSendFromISR(queue, &event, &task_woken);

portYIELD_FROM_ISR(task_woken);

} else {

xQueueSend(queue, &event, 0);

}

}

This consists of the minimum to have the S idewalk stack running.

Check Sidewalk Protocol Status

Copyright © 2025 Silicon Laboratories. All rights reserved. 65/297

Application Development Walkthrough

To check the current status of the Amazon S idewalk stack, use the on_status_changed or the sid_get_status API. Both

return detailed information encapsulated within the sid_status structure.

Here is the on_status_changed callback trace. You can find it in app_process.c file of the Amazon S idewalk Empty sample

application:

void (*on_status_changed)(const struct sid_status *status, void *context);

Here is the sid_get_status function trace:

sid_error_t sid_get_status(struct sid_handle *handle, struct sid_status *current_status);

Here is the sid_status structure definition:

struct sid_status {

/** The current state */

 enum sid_state state;

/** Details of Sidewalk stack status */

 struct sid_status_detail detail;

};

To use the function, pass the handle obtained from sid_init() and a pointer to a sid_status structure where the current

status will be stored. If the function succeeds, the current_status will contain the latest status information from the

S idewalk library.

The sid_state enumeration and the sid_status_detail structure provide a comprehensive overview of the current status and

state of the S idewalk stack. Here's an explanation of their components:

The sid_state enumeration describes the operational state of the S idewalk stack:

SID_STATE_READY : Indicates that the S idewalk stack is operational and ready to send and receive messages.

SID_STATE_NOT_READY : Used when the S idewalk stack cannot send or receive messages, such as when the device is not

registered, the link is disconnected, or time is not synchronized.

SID_STATE_ERROR : S ignifies that the S idewalk stack has encountered an error. In this case, sid_get_error() should be called to

obtain a diagnostic error code.

SID_STATE_SECURE_CHANNEL_READY : This state means that the S idewalk stack can send and receive messages with a secure

channel established, but the device is not registered, and time is not synchronized.

The sid_status_detail structure contains several fields:

registration_status : This indicates the registration status of the S idewalk device.

time_sync_status : This indicates whether the S idewalk device has successfully synchronized its time with the S idewalk

network.

link_status_mask : This is a bitmask used to determine which links are currently active. If the bit corresponding to a link is set,

that link is up; otherwise, it is down. For example, to check if SID_LINK_TYPE_1 is up, the expression !!(link_status_mask &

SID_LINK_TYPE_1) needs to be true.

supported_link_modes : This array holds the supported modes for each link type, where a link type may support more than one

mode simultaneously.

These components are crucial to understand the status and state of the S idewalk stack, as they provide insights into the

device's connectivity, registration, and readiness to function within the S idewalk network.

Here is an example code to check the Amazon S idewalk stack status:

Copyright © 2025 Silicon Laboratories. All rights reserved. 66/297

Application Development Walkthrough

struct sid_status state = {};

sid_error_t ret = sid_get_status(sidewalk_handle, &state);

if(ret !� SID_ERROR_NONE) {

SL_SID_LOG_APP_ERROR("Sidewalk stack is not initialized: %d", (int)ret);

return false;

}

Here is an example of the on_status_changed callback implementation to display the S idewalk status in the logs:

static void on_sidewalk_status_changed(const struct sid_status *status,

 void *context)

{

SL_SID_LOG_APP_INFO("app: REG� %u, TIME� %u, LINK� %lu",

 status->detail.registration_status,

 status->detail.time_sync_status,

 status->detail.link_status_mask);

}

Send a Message Through Sidewalk

The sid_put_msg function is designed to queue a message for transmission in the S idewalk stack.

sid_error_t sid_put_msg(struct sid_handle *handle, const struct sid_msg *msg, struct sid_msg_desc *msg_desc);

Here's an explanation of how it works:

When you call sid_put_msg , you need to provide it with three parameters:

handle : This is a pointer to the handle that you received when you called sid_init() . It's essentially a reference to the

initialized S idewalk stack.

msg : This is the actual message data that you want to send.

msg_desc : This is a message descriptor that the function will fill out. It serves as an identifier for the message you're sending.

In summary, sid_put_msg is a function that queues messages for transmission over the S idewalk network. Here is an

example code to send a message over Amazon S idewalk:

Copyright © 2025 Silicon Laboratories. All rights reserved. 67/297

Application Development Walkthrough

static void send_sidewalk_message(struct sid_handle *app_context)

{

 char message_buff[15] = "Hello Sidewalk!";

 struct sid_msg msg = {

.data = (void *)message_buff,

.size = sizeof(message_buff)

};

 struct sid_status status = {};

 sid_error_t ret = sid_get_status(app_context, &status);

if(ret !� SID_ERROR_NONE) {

SL_SID_LOG_APP_ERROR("Sidewalk stack is not initialized: %d", (int)ret);

return;

}

if (status.state == SID_STATE_READY || status.state == SID_STATE_SECURE_CHANNEL_READY) {

SL_SID_LOG_APP_INFO("sending message through Sidewalk");

 struct sid_msg_desc desc = {

.type = SID_MSG_TYPE_NOTIFY,

.link_type = SID_LINK_TYPE_ANY,

};

 sid_error_t ret = sid_put_msg(app_context, &msg, &desc);

if (ret !� SID_ERROR_NONE) {

SL_SID_LOG_APP_ERROR("queueing data failed: %d", (int)ret);

} else {

SL_SID_LOG_APP_INFO("queued data msg id: %u", desc.id);

}

} else {

SL_SID_LOG_APP_ERROR("sidewalk is not ready yet");

}

}

You can call the send_sidewalk_message function from the previously implemented main loop. Just add the function call to

the EVENT_TYPE_SEND_MESSAGE event type and set up a trigger to queue this event (such as a CLI command, button press,

or timer).

S ilicon Labs also provides a software component that implements a lightweight message format scheme. You can find more

information on this component in the dedicated section.

Receive a Message Through Sidewalk

When a message is received from the S idewalk network, the on_msg_received callback is called. You can find its definition

in app_process.c of the Amazon S idewalk Empty application.

void (*on_msg_received)(const struct sid_msg_desc *msg_desc, const struct sid_msg *msg, void *context);

When a message is received, the S idewalk stack will invoke this callback, passing in the message descriptor and payload.

We can then use these parameters to process the message accordingly. It is crucial to handle the received message within

the callback efficiently to ensure the application responds correctly to incoming data from the S idewalk network.

Here is an example of the on_msg_received callback implementation:

Copyright © 2025 Silicon Laboratories. All rights reserved. 68/297

https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-stack-structure#sidewalk-application-message-structure

Application Development Walkthrough

static void on_sidewalk_msg_received(const struct sid_msg_desc *msg_desc,

 const struct sid_msg *msg,

 void *context)

{

UNUSED(context);

SL_SID_LOG_APP_INFO("downlink message received");

SL_SID_LOG_APP_INFO("msg (type: %d, id: %u, size: %u)", (int)msg_desc->type, msg_desc->id, msg->size);

if (msg->size !� 0) {

SL_SID_LOG_APP_INFO("received message: %.*s", msg->size, (char *)msg->data);

}

}

Amazon Sidewalk Callbacks

The Amazon S idewalk stack operates on an event-driven architecture, which enables applications to respond to events as

they occur in real-time. This architecture relies heavily on the use of callbacks to handle various events. Ensuring that these

callbacks are implemented correctly is crucial for the reliable functioning of devices that utilize the S idewalk network. As

seen above during S idewalk stack initialization, the list of callbacks is defined within the struct sid_event_callbacks as follows:

struct sid_event_callbacks {

 void *context;

 void (*on_event)(bool in_isr, void *context);

 void (*on_msg_received)(const struct sid_msg_desc *msg_desc, const struct sid_msg *msg, void *context);

 void (*on_msg_sent)(const struct sid_msg_desc *msg_desc, void *context);

 void (*on_send_error)(sid_error_t error, const struct sid_msg_desc *msg_desc, void *context);

 void (*on_status_changed)(const struct sid_status *status, void *context);

 void (*on_factory_reset)(void *context);

 void (*on_control_event_notify)(const struct sid_control_event_data *data, void *context);

};

Each callback serves a specific purpose within the S idewalk stack's lifecycle, from handling events and message reception

to dealing with errors and status changes. The .context is a pointer to the application context, which provides a reference

that can be used within the callbacks to access application-specific data. For example, the callback on_status_changed can

be used to update the status of the stack in the context user-defined structure. The callbacks prefixed with on_ represent

the functions that will be called when the corresponding event occurs, ensuring that the application can handle these

events appropriately.

The event_callbacks structure is already present in the Amazon S idewalk Empty example with all function callbacks already

present but not implemented. The callbacks are defined as follows:

on_event : is called for any generic S idewalk event not already handled by another callback.

on_msg_received : is triggered when a message is received by S idewalk.

on_msg_sent : is triggered when a message is effectively sent and corresponding ACK (from the MAC layer) is received.

on_send_error : is triggered for any error during message sending including if message was sent but ACK (from the MAC layer)

was not received.

on_status_changed : when the S idewalk status changes, for example when the stack changes from unregistered to time sync

registered state (SIDEWALK_NOT_READY > SIDEWALK_READY).

on_factory_reset : is triggered when a factory reset command was issued. A factory reset unregisters a S idewalk device.

Amazon Sidewalk Physical Layer and Configuration

Switch Between BLE, FSK, and CSS

When Multi-link or Auto connect is enabled, the system automatically switches between links based on certain criteria,

such as a timeout during time synchronization attempts. For more details on these features, refer to the dedicated section

on the Multi-link feature.

Copyright © 2025 Silicon Laboratories. All rights reserved. 69/297

Application Development Walkthrough

If you prefer to manually switch between radio links, you can stop the S idewalk stack using sid_stop and restart it with

sid_start , specifying a different sid_link_type link_mask parameter.

Additionally, it is possible to run another protocol alongside Amazon S idewalk. The Amazon Sidewalk - SoC Dynamic

Multiprotocol Light application demonstrates Client BLE working alongside S idewalk BLE and Client BLE working alongside

S idewalk FSK. You can also implement double advertising in Amazon S idewalk or perform an OTA using the standard BLE

stack. For implementation details, refer to our Multiprotocol documentation.

Change Radio Configuration

In the Amazon S idewalk Empty sample application, the radio is pre-configured with selected parameters. You can modify

these parameters by editing the parameter of the sid_platform_init function call in app_init.c .

sid_error_t sid_platform_init (const void * platform_init_parameters);

The BLE configuration is managed in the component/ble_subghz/radio/ble/app_ble_config.c file of the S idewalk extension, with

the main configuration structure being sid_ble_config_t ble_cfg . The sub-GHz configuration is divided between different sub-

GHz solutions: one for the native radio for S ilicon Labs parts that support FSK modulation, and one for the external radio

when using an external Semtech radio transceiver. The sub-GHz parameters can be found in the

sidewalk_<extension8version>/component/ble_subghz/radio/subghz/ folder, specifically in rail/app_subghz_config.c for the native

radio, with radio_efr32xgxx_device_config_t radio_efr32xgxx_cfg as the base structure, and in the semtech/app_subghz_config.c

folder for the Semtech radio, with sid_sub_ghz_links_config sub_ghz_link_config as the base structure.

Change Amazon Sidewalk Power Profile

With sub-GHz radio, besides adjusting the radio parameters, you can also select a configuration profile, known as a power

profile. This profile alters the protocol behavior by modifying aspects such as the number of listening windows or their

periodicity.

For FSK, refer to our documentation on FSK Configuration

For CSS, refer to our documentation on CSS Configuration

Modifying the power profile or parameters of the radio link affects the performance of the Amazon S idewalk protocol. For

more details, refer to our study on Amazon S idewalk performance.

Configure an External Module for SubGHz Radio

To support an external radio transceiver like the Semtech SX1262, you need to configure the communication between the

EFR32 and the SX1262. This communication is carried out via SPI. The following section provides examples of the pinout

connections between the EFR32 and the SX1262 and how to configure them.

By default, the Semtech SX1262 driver is added to the S idewalk Empty application for hardware that supports it. To know

which radio board supports the Semtech transceiver, refer to the Hardware Prerequisite page.

If you wish to add support for the Semtech LR1110 radio transceiver, refer to the Semtech documentation here.

Configure Transceiver GPIOs

These instructions explain how to configure the EFR32 to communicate with the Semtech SX1262 for sub-GHz protocol

support. When designing custom hardware, the same procedure can be followed, but the pinout can be adjusted as needed.

It's important to consider that each pin has different availability depending on the sleep level. If you want the EFR to wake

up on a radio event, choose the pinout accordingly.

Some S ilicon Labs devices, like those in the EFR32xG28 family, support the FSK sub-GHz S idewalk protocol natively (see

the Hardware section in Getting Started: Prerequisites for more info). Other devices require an external transceiver for

S idewalk FSK support, which also provides support for the other sub-GHz S idewalk protocol: CSS. For development

purposes, this transceiver is conveniently available on the Semtech SX1262MB2CAS LoRa shield. The Semtech shield can

be connected to a main board using either an adapter board (recommended) or 10 female-to-female jumper wires (if

adapter board is not available). Using this third-party sub-GHz radio module enables sub-GHz S idewalk communication

Copyright © 2025 Silicon Laboratories. All rights reserved. 70/297

https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-multiprotocol
https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-protocol-overview/fsk-configuration
https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-protocol-overview/css-configuration
https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-performance
https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-getting-started/prerequisites#hardware
https://github.com/Lora-net/SWDR007
https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-getting-started/prerequisites
https://www.semtech.com/products/wireless-rf/lora-core/sx1262mb2cas

Application Development Walkthrough

(CSS and FSK) for EFR32xG21, EFR32xG24 and EFR32xG26 radio boards. Note that the Semtech shield is not necessary

with the KG100S, as a Semtech transceiver is already integrated in that module.

Ⓘ INFO Ⓘ : For superior signal integrity, ease of use, and a more robust development platform, S ilicon Labs

recommends the S idewalk Adaptation Board (BRD8042A, included in the S ilicon Labs Pro K it for Amazon

S idewalk) instead of jumpered wire connections with the radio boards.

When using the S idewalk Adaptation Board, connect it to the main board Expansion Header as shown below, and mount the

Semtech shield to the female pin headers on the Adaptation Board.

When using jumper wires, connect the Semtech shield to the main board Expansion Header with the following scheme:

EFR32 Mainboard Exp. Pin Semtech Shield Pin Function

EXP_HEADER 1 J3-6 GND

EXP_HEADER 4 J2-4 SPI MOSI

EXP_HEADER 6 J2-5 SPI MISO

EXP_HEADER 8 J2-6 SPI SCK

EXP_HEADER 10 J1-8 SPI NSS

EXP_HEADER 11 J2-1 ANT_SW

EXP_HEADER 12 J1-6 DIO1

EXP_HEADER 13 J1-4 BUSY

EXP_HEADER 14 J4-1 SX NRESET

EXP_HEADER 2 J3-4 VMCU

The information in the table is also represented in the following image.

Copyright © 2025 Silicon Laboratories. All rights reserved. 71/297

https://www.silabs.com/development-tools/wireless/proprietary/amazon-sidewalk-pro-kit

Application Development Walkthrough

If you wish to customize the wiring between your sub-GHz chip and the EFR32, you can implement such changes in your

application with the Pin Tool (in S implicity Studio).

⚠ WARNING ⚠: In KG100S applications S ilicon Labs recommends not using the SPI peripheral, because the

multi-chip module (MCM) design already leverages it for communication between the EFR32 and the Semtech

radio transceiver. Sharing the SPI bus with additional devices or peripherals can negatively impact time-critical

radio control signals and lead to message failure in sub-GHz protocols.

For the SX1262, you can edit the pinout to define the corresponding GPIO for the busy pin, the antenna, DIO, reset, and

chip select. Here is an example for the EFR32xG24 configuration in config/app_gpio_config.h :

// BUSY on PA07

// Used to indicate the status of internal state machine

#define SL_BUSY_PIN 7

#define SL_BUSY_PORT gpioPortA

// ANT_SW on PA06

// External antenna switch to control antenna switch to RECEIVE or

// TRANSMIT.

#define SL_ANTSW_PIN 6

#define SL_ANTSW_PORT gpioPortA

// DIO1 on PA08

// IRQ line from sx126x chip

// See sx126x datasheet for IRQs list.

#define SL_DIO_PIN 8

#define SL_DIO_PORT gpioPortA

// SX NRESET on PA09

// Factory reset pin. Will be followed by standard calibration procedure

// and previous context will be lost.

#define SL_NRESET_PIN 9

#define SL_NRESET_PORT gpioPortA

#define SL_SX_CS_PIN SL_SPIDRV_EXP_CS_PIN

#define SL_SX_CS_PORT SL_SPIDRV_EXP_CS_PORT

Once you have defined the pinout, you should also update the gpio lookup table in autogen/app_gpio_config.c accordingly.

Copyright © 2025 Silicon Laboratories. All rights reserved. 72/297

Application Development Walkthrough

On supported platforms, you should have the following symbols to your build: SL_FSK_SUPPORTED , SL_CSS_SUPPORTED and

SL_RADIO_EXTERNAL . If you wish to remove the sub-GHz support from your example, remove the three symbols instead as

follows:

ò In the Project Explorer panel, right-click on your project and open Properties.

ó In the left panel, navigate to C/C++ General > Path and Symbols.

ô In the central panel, navigate to Symbols and select GNU C.

õ In the list of symbols create SL_FSK_SUPPORTED , SL_CSS_SUPPORTED and SL_RADIO_EXTERNAL with value 1 to add the

external transceiver support. Or delete them if you wish to remove sub-GHz support.

ö Click Apply and Close.

SPI Configuration

Once the SX1262 GPIOs are mapped, configure the SPI bus to communicate with the SX1262. To do so, open the SLCP file

of your project and go to software components. Search for the SPIDRV component, it should already be installed, and click

Configure. Under SL_SPIDRV_EXP, choose the USART module you want to use for the corresponding mapping. For example,

the EFR32xG24 SPI driver configuration is as follows:

Use the pintool to help you choose available pins in your custom hardware.

Non-Volatile Memory Management in Sidewalk Context

Amazon S idewalk example applications use non-volatile memory to store the application code, registration information, and

manufacturing data. This section describes how this memory is used for each type of data stored.

⚠ WARNING ⚠: Starting S idewalk extension 2.x.x, a change was made to the NVM3 usage in S idewalk. This

change is not backward compatible, you should be careful to use the manufacturing page generation that

corresponds to the S idewalk version that you are using.

In addition to the application code, one other NVM3 instance is used in an Amazon S idewalk project: Default. The default

instance is also used by the S implicity SDK Suite for BLE stack status and cryptographic storage. This is where the wrapped

Copyright © 2025 Silicon Laboratories. All rights reserved. 73/297

Application Development Walkthrough

private keys are stored when using Secure Vault. For more information, see section 2.1 of AN1135: Using Third Generation

Non-Volatile Memory (NVM3) Data Storage .

The default instance consists of the following logical partitions and subpartitions:

Partition Subpartition Key Range Comments

S implicity

SDK

BLE stack

metadata

0x40000 -

0x4FFFF

Used internally by S implicity SDK for BLE stack

PSA crypto

metadata

0x83100 -

0x870FF

Used internally by S implicity SDK for PSA crypto

PSA crypto

wrapped keys

0x83100 -

0x870FF

When using Secure Vault, S idewalk ED25519 and P256R1 device private

keys are wrapped in this subpartition

S idewalk Application

specific

0xA0000 -

0xA1FFF

S idewalk applications can store data on this partition

KV-storage 0xA2000 -

0xA8FFF

Reserved for sidewalk stack usage

Manufacturing

data

0xA9000 -

0xAFFFF

Reserved for sidewalk stack usage

The manufacturing (MFG) partition is used to store the manufacturing page generated for every device. The manufacturing

page contains various information such as device public keys, signatures, and S idewalk Manufacturing Serial Number

(SMSN). This instance is read-only from application code.

The Key-value (KV) storage partition contains information about the Amazon S idewalk stack. The way the key-value pairs

are stored on NVM3 is a bit different from the way the manufacturing information is stored. Objects are stored under

groups, so there is actually one NVM3 object (so-called group) to store different information. The size of this instance

depends on the needs of the stack (depending on the link layer). The values stored in the instance are not part of the

public Amazon S idewalk APIs. This instance is accessible in read-write from application code.

You can see an example of the memory layout in the following picture:

Copyright © 2025 Silicon Laboratories. All rights reserved. 74/297

https://www.silabs.com/documents/public/application-notes/an1135-using-third-generation-nonvolatile-memory.pdf

Application Development Walkthrough

For more information on S ilicon Labs NVM driver, see the dedicated documentation NVM3 - NVM Data Manager. For

background on NVM3, see the Platform Resources section.

Memory Map for EFR32xG21 Series

Region Base Address End Address Size Description

Application 0x00000000 - - Application code - size depends on application

Default NVM3

Instance

0x000EC000 0x000F2000 0x6000 Used for BLE stack. Wrapped keys are stored

here when using Secure Vault.

Those addresses are given as an example for an EFR32xG21 with a flash size of 1024 kB. Base addresses can change to

adapt to smaller flash sizes. You can use S implicity Commander to display the memory layout of your application:

ò With your kit selected, go to Device Info panel.

ó Select Flash Map in Main Flash panel.

Memory Map for EFR32xG24 Series

Region Base Address End Address Size Description

Application 0x08000000 - - Application code - size depends on application

Default NVM3

Instance

0x0816C000 0x08172000 0x6000 Used for BLE stack. Wrapped keys are stored

here when using Secure Vault.

Those addresses are given as an example for an EFR32xG24 with a flash size of 1536 kB. The base addresses can change

to adapt to smaller flash sizes or other radio boards. You can use S implicity Commander to display the memory layout of

your application:

ò With your kit selected, go to Device Info panel.

ó Select Flash Map in Main Flash panel.

Handle Logs Level and Preferred Outputs

A specific set of components were created to handle the S idewalk logs. You can find more information about this

components in the Platform Abstraction Layer documentation.

To display logs or switch the log output from RTT to UART, refer to Testing and Debugging documentation.

Amazon Sidewalk Multi-link and Auto Connect Feature

S ince the release of S idewalk SDK 1.16, a feature called Multi-link has been introduced. This feature abstracts the process

of connection establishment and maintenance for the radio links supported by the S idewalk stack, making it easier for

developers. It offers developers varying degrees of flexibility to control not only the connection behavior of the links but

also the transfer of messages over them.

You can find the dedicated page on Multi-link in our documentation here.

Additional Documentation

Power Consumption Analysis: For more information on power consumption and optimization

S idewalk Performances: For more information on S idewalk performances and how to configure S idewalk for your use case

Amazon S idewalk API: For more details on Amazon S idewalk API

AWS API Reference for Amazon S idewalk: For AWS S idewalk Cloud Documentation

S idewalk and Bluetooth FUOTA: For more information on FUOTA solutions in Amazon S idewalk context

S ilicon Labs Amazon S idewalk Applications G ithub repository: Additional more advanced sample applications for Amazon

S idewalk

What's Next?

Copyright © 2025 Silicon Laboratories. All rights reserved. 75/297

https://docs.silabs.com/gecko-platform/3.1/driver/api/group-nvm3
https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-memory-use-overview/
https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-stack-structure#logs
https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-test-and-debug/
https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-protocol-overview/multi-link-and-auto-connect
https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-power-consumption-analysis
https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-performance
https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-api
https://docs.aws.amazon.com/iot-wireless/latest/developerguide/iot-wireless-api-reference.html
https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-multiprotocol#sidewalk-and-bluetooth-fuota
https://github.com/SiliconLabs/amazon-sidewalk-examples

Application Development Walkthrough

Qualifying a Product

Amazon S idewalk - SoC Qualification sample application that contains all the necessary CLI commands to pass the

qualification with Amazon

Manufacturing a Product

Copyright © 2025 Silicon Laboratories. All rights reserved. 76/297

https://docs.sidewalk.amazon/qualification/
https://github.com/SiliconLabs/amazon-sidewalk/tree/sisdk-2024.6/documentation/example/amazon_sidewalk_soc_qualification
https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-manufacture-product

Amazon Sidewalk API

Amazon Sidewalk API

Amazon Sidewalk API
Refer to the Amazon S idewalk S id API Developer Guide.

Copyright © 2025 Silicon Laboratories. All rights reserved. 77/297

https://docs.sidewalk.amazon/assets/pdf/Amazon_Sidewalk_Sid_API_Developer_Guide-1.0-rev-A-032623.pdf

Testing and Debugging

Testing and Debugging

Testing and Debugging

RTT Logs

The UART interface is not always available to report traces from S idewalk example applications. Instead, reporting

leverages the J-Link RTT interface. To set up the communication between your PC and the EFR32, follow these

instructions.

ò Install the J-Link RTT Viewer.

ó Open the J-Link RTT Viewer.

ô In the Configuration panel, Connection to J-Link section, select USB.

õ In the Specify Target Device list, select the connected part (for example EFR32BG21BxxxF1024 or EFR32MG24AxxxF1536).

ö In the Target Interface & Speed panel, select SWD and 4000 kHz.

÷ In the RTT Control Block panel, select Auto Detection.

ø Click OK.

Ⓘ INFO Ⓘ : For the KG100S module, select EFR32BG21BxxxF1024 as the target device.

A terminal opens and the S idewalk application traces are output as shown below (Bluetooth application).

00> [00000001] <I> hello neighbor application started

00> [00000001] <I> sidewalk stack version 1.17.1-13

00> [00000002] <I> silabs sidewalk extension version 2.2.1

02> [00000006] <I> pal kv-storage: kv store opened with 0 object(s)

02> [00000007] <I> pal swi: interrupt init ok

02> [00000008] <W> pal mfg: no objects found in mfg store

⚠ WARNING ⚠: J-Link RTT and S implicity Studio use the same channel to communicate with the board. If you

do not see logs in J-Link RTT, try closing and re-opening S implicity Studio to reset the connection.

By default, in Amazon S idewalk sample application, the RTT logs are splitted accross 3 terminals:

Terminal 0: Outputs the application logs. They are easy to understand and give basic information on the application status.

Terminal 1: Outputs the S idewalk stack logs. They are more difficult to understand and require a deep knowledge of the

S idewalk stack. Those logs are in the Amazon S idewalk stack, the sources are not available.

Terminal 2: Outputs the S idewalk Platform Abstraction Layer (PAL) logs. They require some knowledge of S idewalk and can

easily be found in the code.

Switch Logs from RTT to UART

The initial step is to verify that VCOM is active. This can be confirmed by ensuring that SL_BOARD_ENABLE_VCOM is set to

1 in the config/sl_board_control_config.h file. If it is not, you should adjust it accordingly.

To configure the log output from RTT to UART, follow these steps:

ò Navigate to Software Components and search for board control.

Copyright © 2025 Silicon Laboratories. All rights reserved. 78/297

https://www.segger.com/products/debug-probes/j-link/tools/rtt-viewer/

Testing and Debugging

ó In the Board Control component, check if Enable Virtual COM UART is enabled.

ô Navigate to Software Components and search for iostream.

õ Install the IO Stream: USART component (or IO Stream: EUSART for xG28 and xG24).

ö Access the configuration settings of the newly created VCOM instance called vcom.

÷ If available, disable Enable High frequency mode and Restrict the energy mode to allow the reception options.

ø In config/sl_cli_config_inst.h change the value of SL_CLI_INST_IOSTREAM_HANDLE to sl_iostream_vcom_handle .

ù Navigate back to Software Components and search for sidewalk.
ú Uninstall the Sidewalk Log: App RTT component and install Sidewalk Log: App VCOM component in its place.

òñ You can also completely remove RTT by replacing Sidewalk Log: PAL RTT and Sidewalk Log: stack RTT by their VCOM

equivalent. Then, remove the IO Stream: RTT component.

Cloud Application Debugging

To debug your cloud application, several AWS objects can be use to monitor the events in your account. See Amazon

CloudWatch for more information.

Copyright © 2025 Silicon Laboratories. All rights reserved. 79/297

https://aws.amazon.com/cloudwatch/

Power Consumption Analysis

Power Consumption Analysis

Power Consumption Analysis
This section provides a comprehensive analysis of power consumption for the Amazon S idewalk protocol, encompassing

the three physical layers: BLE, FSK, and CSS. This section details the testing procedures and methodologies applied to

each radio layer. Every step of the process is thoroughly explained to ensure the ability to replicate the measurements.

Finally, this section culminates in presenting the results for each radio layer, highlighting the average power consumption for

fundamental events such as transmission (TX), reception (RX), registration, time synchronization, and idle power, among

others.

For more information on Energy modes for S ilicon Labs platforms, see the dedicated documentation on Power Manager.

Testing Scenario

In this section are example use cases for each physical layer: BLE (Bluetooth Low Energy), FSK (Frequency-Shift Keying),

and CSS (Chirp Spread Spectrum). In each scenario, for each uplink with payload of 19 bytes sent to the cloud, the cloud

answered with an ACK message (0 bytes payload). Default parameters for each radio layer are provided. Tests were run on

those default configurations to extract Amazon S idewalk performance out of the box.

Hardware

To perform the necessary tests, various platforms were selected for each physical layer (PHY).

Reference platforms include:

For BLE: the EFR32xG24 radio board along with our mainboard

For FSK: the EFR32xG28 radio board along with our mainboard

For CSS: a combination of the EFR32xG24 radio board and the Semtech SX1262 radio module

Creating a Power Optimized Application

This study requires a fundamental application that is optimized for power efficiency while still running the Amazon S idewalk

stack. This application was derived from the Hello Neighbor sample application, with only minor modifications implemented.

By default, the Hello Neighbor application operates in EM2 energy mode when idle. The initial modification involved

switching the log output from RTT to UART.

Create a Hello Neighbor Application

Follow public documentation to create the Hello Neighbor application here.

Switch Log Output and CLI to UART

The initial step was to verify that VCOM is active. This was confirmed by ensuring that SL_BOARD_ENABLE_VCOM is set to

1 in the config/sl_board_contro l_config.h file. If it is not, you should adjust it accordingly.

To configure the log output from RTT to UART, follow these steps:

ò Navigate to Software Components and search for iostream.

ó Install the IO Stream: USART component (or IO Stream: EUSART for xG28 and xG24).

ô Access the configuration settings of the newly created VCOM instance.

õ Deactivate Enable High frequency mode and Restrict the energy mode to allow the reception options. Then, modify the

Baud rate to 9600.

ö In config/sl_cli_config_inst.h , change the value of SL_CLI_INST_IOSTREAM_HANDLE to sl_iostream_vcom_handle .

Copyright © 2025 Silicon Laboratories. All rights reserved. 80/297

https://docs.silabs.com/gecko-platform/latest/service/power_manager/overview
https://www.silabs.com/development-tools/wireless/xg24-rb4187c-efr32xg24-wireless-gecko-radio-board
https://www.silabs.com/development-tools/wireless/xg28-rb4401c-efr32xg28-2-4-ghz-ble-and-20-dbm-radio-board
https://www.silabs.com/development-tools/wireless/xg24-rb4187c-efr32xg24-wireless-gecko-radio-board
https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-getting-started/create-and-compile-application

Power Consumption Analysis

÷ Navigate back to Software Components and search for sidewalk.
ø Uninstall the Sidewalk Log: App RTT component and install Sidewalk Log: App VCOM component in its place.

⚠ WARNING ⚠: Regarding the log output alteration from RTT to UART when using xG24 with the Semtech

module, it is necessary to employ a UART bridge. This requires remapping the UART pins to available GPIOs

where the UART bridge is connected. S ince the Semtech connection occupies the UART pins, the WSTK ’s

VCOM support cannot be utilized in this setup.

Ⓘ INFO Ⓘ : For the xG24 configuration, it is preset to accommodate the Semtech module. However, if your

usage is limited to BLE, you can omit the Semtech-specific parameters, thus leveraging the VCOM capability of

the mainboard.

Power Consumption Setup

For each of the three physical layers, the S implicity Studio Energy Profiler was used to assess power consumption. The

power usage of the Semtech SX1262 was evaluated independently with a DC/DC power Analyzer from Keysight. To

conduct the power analysis on the Semtech radio module, a minor hardware alteration was required to facilitate an external

power source, as the module derives power from the DC/DC power Analyzer's supply.

Semtech SX1262 Radio Module Modification

A 0 ohm resistor needed to be removed and another shifted to redirect power supply from the mainboard to the DC/DC

Power Analyzer, as shown in the following picture.

The final setup with the DC/DC Power Analyzer looks like the picture below.

Copyright © 2025 Silicon Laboratories. All rights reserved. 81/297

Power Consumption Analysis

Once all the necessary tools are in place, review each physical layer power consumption.

BLE

Per Amazon’s guidelines, the process begins with a Fast Advertising phase that lasts for 30 seconds, emitting an advertising

beacon every 160 milliseconds. This phase is succeeded by S low Advertising, during which the beacon is broadcasted

every second. Subsequently, the BLE endpoint and the gateway can establish a connection to exchange messages. This

connected state is maintained for a minimum of 30 seconds, with a default connection interval of 30 milliseconds.

The following picture shows the endpoint power consumption graph during fast advertising.

Copyright © 2025 Silicon Laboratories. All rights reserved. 82/297

Power Consumption Analysis

The following picture shows the endpoint power consumption graph during slow advertising.

The following picture shows the endpoint power consumption graph while connected to the GW.

Copyright © 2025 Silicon Laboratories. All rights reserved. 83/297

Power Consumption Analysis

FSK

As per Amazon’s standards for FSK, the connection with the gateway is sustained by sending beacons at 10-second

intervals. The default configuration permits three opportunities for listening in the time between each beacon. Transmissions

may occur at any point between beacons when the device is not in a listening window.

The following picture shows the endpoint power consumption graph between 2 beacons.

Copyright © 2025 Silicon Laboratories. All rights reserved. 84/297

Power Consumption Analysis

The following picture shows the endpoint power consumption graph between 2 beacons with a transmission and a

reception.

CSS

CSS operates on an asynchronous protocol, aligning its timing with the gateway as needed and executing transmissions

when necessary. Listening windows are set to activate every 5 seconds consistently, or they can be triggered after a

transmission, depending on the selected power profile. The default power profile utilized in the subsequent graphs is profile

B.

The following picture shows the endpoint power consumption of the EFR32xG24 radio board during a transmission and a

reception.

Copyright © 2025 Silicon Laboratories. All rights reserved. 85/297

Power Consumption Analysis

The following picture shows the endpoint power consumption of the SX1262 radio module during a transmission and a

reception.

Power Consumption Results

The results of the average power consumption study on fundamental events are provided in the following tables. These

include:

Registration

Time Synchronization

BLE Advertising

Copyright © 2025 Silicon Laboratories. All rights reserved. 86/297

Power Consumption Analysis

BLE Connected State

TX

RX

Idle State

BLE

BLE Physical Layer Details

Radio Board xG24

Physical Layer BLE

Output Power 20 dBm

TX Payload S ize 19 bytes

RX Payload S ize 0 byte

Fast Advertising Interval 160 ms

S low Advertising Interval 1000 ms

Connected State Minimal Duration 30 s

Fundamental Events Average Power Consumption Results

Registration 2.75 mA

Time Synchronization 1.9 mA

Fast Advertisement 464.67 µA

S low Advertisement 98.31 µA

Connected State with 1 TX Event 743.11 µA

TX 19 bytes 3.51 mA

RX 0 byte 3.39 mA

30 seconds Connected State without TX 713.79 µA

Idle State 4.82 µA

FSK

FSK Physical Layer Details

Radio Board xG28

Radio Layer FSK

Output Power 20 dBm

TX Payload S ize 19 bytes

RX Payload S ize 0 byte

Number of RX Window in-between Beacons 3

Fundamental Events Average Power Consumption Results

Registration 2.66 mA

Time Synchronization 1.03 mA

Beacon Reception 2.44 mA

Idle State 6.12 µA

TX 19 bytes including CCA and ACK 14.21 mA

RX Window 534.11 µA

RX 0 byte 3.84 mA

Copyright © 2025 Silicon Laboratories. All rights reserved. 87/297

Power Consumption Analysis

Fundamental Events Average Power Consumption Results

10 Seconds Loop Average 43.23 µA

CSS

CSS Physical Layer Details

Radio Board xG24 + SX1262

Radio Layer CSS

Output Power 20 dBm

TX Payload S ize 19 bytes

RX Payload S ize 0 byte

Fundamental Events Average Power Consumption EFR32 SX1262 Global Power Consumption

Time Synchronization 400.88 µA 10.11 mA 10.51 mA

Idle State 13.7 µA 547 nA 14.25 µA

TX 19 bytes 1.67 mA 107.94 mA 109.61 mA

RX Window 55.07 µA 1.94 mA 1.99 mA

RX 0 bytes 733.47 µA 3.9 mA 4.63 mA

20 RX windows after TX 15.52 µA 35.686 µA 51.2 µA

Going Further

For each physical layer, several parameters can be tweaked to influence the protocol behavior, thus impacting average

power consumption. Below are the most commonly thought after parameters and where to change them.

BLE

The BLE configuration can be seen in the file sidewalk_<version>/component/ble_subghz/radio/ble/app_ble_config.c of your

sample application. Most enumeration related to S idewalk BLE are defined in

sidewalk_<version>\component\includes\pro jects\sid\sal\common\public\sid_ifc\sid_ble_cfg\sid_ble_config_ifc.h . The default device

BLE name is "SL_SIDEWALK", MTU size is 247 bytes, and MAC address type is random private resolvable. BLE connection

parameters are chosen by the gateway and the connection timeout is 30 seconds.

Advertising is divided into two behaviors:

Fast advertising: transmit beacons every 160 ms for 30 seconds after boot

S low advertising: transmit beacons every 1 s after fast advertising

You can check the following structures in the API Reference:

sid_ble_cfg_adv_param_t : for advertising parameters

sid_ble_cfg_conn_param_t : for the connection parameters

sid_ble_cfg_gatt_profile_t : for the GATT profile parameters

sid_ble_config_t : for more generic configuration parameters

For more information on S ilicon Labs BLE stack and power consumption, see the following pages:

BLE General Overview

Optimizing Current Consumption in Bluetooth Low Energy Devices

Current Consumption Variation with TX Power

FSK

The FSK radio configuration can be seen in the file

sidewalk_<version>/component/ble_subghz/radio/subghz/rail/app_subghz_config.c of your sample application for S ilicon Labs

Copyright © 2025 Silicon Laboratories. All rights reserved. 88/297

https://docs.aws.amazon.com/iot/latest/developerguide/sidewalk-aws-api-reference.html
https://docs.silabs.com/bluetooth/latest/
https://docs.silabs.com/bluetooth/latest/general/system-and-performance/optimizing-current-consumption-in-bluetooth-low-energy-devices
https://docs.silabs.com/bluetooth/latest/general/system-and-performance/current-consumption-variation-with-tx-power

Power Consumption Analysis

hardware and sidewalk_<version>/component/ble_subghz/radio/subghz/semtech/app_subghz_config.c for Semtech hardware. Most

S idewalk FSK enumeration are defined in

sidewalk_<version>\component\includes\pro jects\sid\sal\common\public\sid_ifc\sid_900_cfg\sid_900_cfg.h . While running with FSK,

your EFR32 will be either in EM2 or EM0 energy modes depending on radio events. During radio events like beacons, RX, or

TX, your EFR32 will run in EM0 energy mode and in EM2 outside of those events.

For more power optimization, check Amazon S idewalk power profiles for FSK.

CSS

The CSS radio configuration can be seen in the file

sidewalk_<version>/component/ble_subghz/radio/subghz/rail/app_subghz_config.c of your sample application for S ilicon Labs

hardware and sidewalk_<version>/component/ble_subghz/radio/subghz/semtech/app_subghz_config.c for Semtech hardware. While

running with CSS, your EFR32 will be either in EM2 or EM0 energy modes depending on radio events. During radio events

like RX or TX your EFR32 will run in EM0 energy mode and in EM2 outside of those events.

For more power optimization, check Amazon S idewalk power profiles for CSS.

Copyright © 2025 Silicon Laboratories. All rights reserved. 89/297

https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-protocol-overview/fsk-configuration
https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-protocol-overview/css-configuration

Performance

Performance

Amazon Sidewalk Performance
Amazon S idewalk is a new ecosystem for creating shared wireless networks connecting IoT devices at homes, and beyond

the front door, across the entire neighborhood, and even the city. Amazon S idewalk provides the following benefits:

Offers free collaborative network coverage based on existing products already in end-users' homes

Offers reliable connectivity where it otherwise is not present today

Complements existing IoT protocols

Removes the need for a proprietary gateway

Provides range extension, frustration-free setup, automatic connection, and AWS connectivity

The goal of this section is to provide an analysis of Amazon S idewalk's performance to give an idea of possible use cases

depending on configuration. It discusses the Amazon S idewalk ecosystem, its configurations, protocols, testing methods,

and results on power consumption, network latency, range, and throughput testing. This section aims to provide insights on

how to extract the best performance from Amazon S idewalk.

How to Extract Amazon Sidewalk Best Performances

Testing Scenarios

In this section, S ilicon Labs considered example use cases for each PHY: BLE (Bluetooth Low Energy), FSK (Frequency-

Shift Keying), and CSS (Chirp Spread Spectrum). In each scenario, the setup was to send regular uplinks with payload of 19

bytes to the cloud and wait for an ACK message (0 bytes payload) from the cloud. Default parameters for each radio layer

are provided. Tests were run on those default configurations to extract Amazon S idewalk performance out of the box. For

CSS, an alternate configuration was studied to try both power profiles as it changes a lot on the behavior.

S ilicon Labs provides the analysis for each link in their default configurations, and also describes the level of configurability

for each link. S ilicon Labs recommends that developers review the Summary section and explore how to tune the

performance of your design based on your application.

BLE Scenario

In accordance with Amazon’s specifications, the behavior of BLE is characterized by the use of Bluetooth 5 with a 1 Mbps

PHY. The BLE endpoint was established, with the gateway (Amazon Echo 4 for example) assuming the role of BLE Central.

Initially, there was a Fast Advertising phase lasting 30 seconds, during which an advertising beacon was emitted every

160ms. This was followed by S low Advertising, where the beacon was broadcast every 1 second. With no transmission, the

connection remained active for 30 seconds. The transmission power was set at 20 dBm, and these settings constituted the

default configuration.

FSK Scenario

According to Amazon’s specifications, the FSK behavior includes a 50 Kbps FSK communication speed and a synchronous

protocol that keeps the device always connected to the gateway. The connection was maintained through beacons sent

Copyright © 2025 Silicon Laboratories. All rights reserved. 90/297

Performance

every 10 seconds, with default settings allowing for three listening windows and transmission opportunities between

beacons. The transmission power was set at 20 dBm.

FSK allows for two power profiles 1 and 2. The difference between Power profile 1 and Power profile 2 is in the choice of

configuration and its implications for device performance. Power profile 1, which is chosen by the gateway, was configured

for high power usage, high-throughput, and low-latency. On the other hand, Power profile 2, which is selected by the

endpoint, allows the developer to customize the parameters based on the specific needs of their use case. In the context

of this study, the same parameters were applied to both power profiles, resulting in no variation in average power

consumption and latency outcomes. The default power profile is power profile 1.

CSS Scenarios

CSS is an asynchronous protocol. It synchronizes time with the gateway when necessary and conducts transmissions as

required. The transmission power is set at 20 dBm by default.

CSS Power Profile A

For the CSS power profile A, listening windows were activated only after a transmission, with up to 20 windows available,

one occurring every 5 seconds. A time synchronization was required before any transmission if the last one was more than

5 minutes prior. For the purposes of this study, the default number of RX windows after a transmission was used, which is

20.

CSS Power Profile B

In CSS power profile B, listening windows were scheduled periodically, occurring every 5 seconds indefinitely. Additionally, a

keep-alive signal was sent every 5 minutes.

Copyright © 2025 Silicon Laboratories. All rights reserved. 91/297

Performance

Hardware

To perform the necessary tests, various platforms were selected for each physical layer (PHY).

Reference platforms include:

For BLE: the EFR32xG24 radio board on the mainboard

For FSK: the EFR32xG28 radio board on the mainboard

For CSS: a combination of the EFR32xG24 radio board and the Semtech SX1262 radio module

For CSS range tests: the Amazon S idewalk Test K it

Power Consumption

Testing Method

Power consumption was tested using the S implicity Studio Energy Profiler. The test involved sending 19-byte packets to

the cloud and receive an ACK from the cloud. The average power consumption was simulated on TX periodicity. The

simulation was based on fundamental events such as TX, RX, and protocol-specific events. Based on those events, a loop

was defined.

For more information about the average power consumption of fundamental events, see Power Consumption Analysis.

Results

The graph below illustrates three distinct curves representing the average power consumption of BLE, FSK, and CSS as a

function of transmission periodicity. The green curve represents FSK power consumption, which is notably efficient,

stabilizing at around 44µA. The blue curve depicts BLE power consumption, which levels off at approximately 100µA. This is

attributed to the BLE stack’s continuous advertising within the S idewalk context. To significantly reduce power

consumption, the stack would need to be halted between transmissions. The orange curve corresponds to CSS power

profile B, showing an average power consumption that approaches 200µA. This curve features slight inclines every 5

minutes, reflecting the keep-alive mechanism of CSS power profile B that transmits every 5 minutes. The power

consumption for CSS could be reduced by opting for power profile A, which does not implement this keep-alive feature. In

the three scenarios with each PHY, the reachability of the endpoint by the cloud at any given time was maintained.

This graphical representation provides a clear comparison of the power efficiency of different protocols and configurations,

highlighting the trade-offs between power consumption and communication frequency.

Copyright © 2025 Silicon Laboratories. All rights reserved. 92/297

https://www.silabs.com/development-tools/wireless/xg24-rb4187c-efr32xg24-wireless-gecko-radio-board
https://www.silabs.com/development-tools/wireless/xg28-rb4401c-efr32xg28-2-4-ghz-ble-and-20-dbm-radio-board
https://www.silabs.com/development-tools/wireless/xg24-rb4187c-efr32xg24-wireless-gecko-radio-board
https://sidewalk.amazon/testkit
https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-power-consumption-analysis

Performance

The graph below presents three curves that plot average power consumption against transmission periodicity, with all PHYs

tending towards the ultra-low power consumption of EM4, which is 1µA. This scenario assumes that RX reachability is not

maintained and the S idewalk stack enters sleep mode between messages. The analysis identifies the optimal intervals for

each protocol to enter sleep mode to maximize power efficiency.

The green curve for FSK power consumption quickly approaches the EM4 current, with the optimal sleep interval identified

at 6 minutes. The blue curve for BLE power consumption also rapidly trends towards EM4, with the best time to sleep being

at 2 minutes and 30 seconds. The orange curve represents CSS power profile A, where the ideal point to sleep is at 5

minutes. Notably, the power consumption for CSS power profiles A and B (on the previous graph) remains identical up to

the 5-minute mark. Beyond this point, power profile A requires a time synchronization before each transmission due to the

absence of the keep-alive mechanism found in power profile B. However, the additional power consumed by this time

synchronization is negligible compared to the savings achieved by stopping the stack and entering EM4 sleep mode.

This graph effectively illustrates the power-saving benefits of managing the sleep intervals of communication stacks,

particularly in scenarios where maintaining RX reachability is not a priority.

Copyright © 2025 Silicon Laboratories. All rights reserved. 93/297

Performance

Ⓘ INFO Ⓘ : You can find the Amazon Sidewalk - SoC EM4 Sleep sample application to show EM4 sleep in

Amazon S idewalk context in the S ilicon Labs Amazon S idewalk Applications G ithub repository.

Network Latency

Testing Method

Latency was tested using a custom test application. The test involved sending 19-byte packets to the cloud and receiving

an ACK from the cloud. Average latency was computed on each scenario by sending 500 messages. The message traveled

from the endpoint to the GW and to the cloud and back.

Results

The histograms visually represent the latency testing results for three different physical layers of the Amazon S idewalk

protocol: BLE, FSK, and CSS. Each histogram has latency on the horizontal axis and the number of messages for each

latency value on the vertical axis.

BLE Latency Histogram: Shows an average latency of around 500 ms, indicating a relatively quick response time for the BLE

protocol.

FSK Latency Histogram: Displays an average latency of approximately 8 seconds. This longer latency is attributed to the

protocol’s listening windows, which occur every 3 seconds. Consequently, the reception of messages is possible only at

these intervals, leading to an average latency that aligns with multiples of the listening window periodicity.

CSS Latency Histogram: Reveals an average latency of 5 seconds. S imilar to FSK, this is due to the protocol’s RX windows

being spaced every 5 seconds, which dictates the frequency of reception opportunities.

The latency results for FSK and CSS highlight the significant impact of the protocols’ reception opportunities on

performance. G iven that Amazon S idewalk is an uplink-based protocol, while transmissions to the cloud may be swift, the

response is limited by the scheduled listening opportunities inherent to the protocol’s design.

Copyright © 2025 Silicon Laboratories. All rights reserved. 94/297

https://github.com/SiliconLabs/amazon-sidewalk-examples

Performance

Range Testing

Testing Methods

Range was tested for both FSK and CSS. For FSK, the test environment was an urban area with the gateway on the third

floor. Points were chosen every 50 meters and at each point, messages were sent and the RSSI was retrieved from the

answer. The test stopped when messages failed to send. For CSS, the range test was conducted using an Amazon

S idewalk Tracker.

The range for both FSK and CSS was evaluated. In the case of FSK, the testing environment was an urban setting with the

gateway positioned on the third floor. Measurement points were established at 50-meter intervals, and at each point,

messages were sent and the RSSI was recorded from the response. The testing concluded when message transmission

was unsuccessful. For CSS, the range testing was executed using an Amazon S idewalk Test K it and the coverage map was

retrieved from Amazon tooling. As we are not using one of S ilicon Labs dev kits but the Amazon Test K it instead, the radio

configuration can be different from the S ilicon Labs reference platform used throughout this guide. However, radiating

power should be pretty close so metrics are still relevant and representative of the CSS capabilities for Amazon S idewalk.

The tests were conducted outside of the US to ensure only one gateway was in range of the test device.

Results

For FSK, the result indicated a maximum range of 160 meters or 524 feet.

Copyright © 2025 Silicon Laboratories. All rights reserved. 95/297

https://sidewalk.amazon/testkit

Performance

For CSS, the result indicated a maximum range of 1 km or 0.62 mile.

Copyright © 2025 Silicon Laboratories. All rights reserved. 96/297

Performance

Throughput Testing

This is a test to evaluate the throughput of the file transfer mechanism through the Amazon S idewalk network using the

BLE link only.

Testing Methods

A custom Amazon S idewalk application has been developed to perform this throughput test. This test uses the Amazon

S idewalk bulk data transfer (SBDT) functionality to transfer firmware files from AWS to the end device, and then calculate

the throughput of these transfers over the S idewalk network.

Ⓘ INFO Ⓘ : The SBDT feature is currently in alpha from Amazon and is not publicly available in AWS yet.

Please note that the throughput performances with and without SBDT are comparable.

Once a BLE connection is established between the Gateway and the end device, a random message is sent from the end

device to AWS to trigger a lambda function. This lambda function is implemented to use the Firmware update over-the-air

Copyright © 2025 Silicon Laboratories. All rights reserved. 97/297

Performance

(FUOTA) to send a firmware image to an end device. The transfer file will be divided into smaller chunks of data and then

gradually transferred to the device. The file transmission is complete once all the chunks are successfully received on the

device side. The file size and the current GPS time will be recorded on the end device. Besides, to estimate the transfer

time, the start transfer time is also sent to the device by the lambda function. Finally, after having both the file size and the

file transfer time, the throughput value is calculated.

Refer to the sequence diagram below to understand more about the flow of the custom application for the throughput test.

Results

The throughput is tested with two different file sizes and with each file size, it is repeated two times. Indeed, the

throughput results through the Amazon S idewalk network (using the BLE link) are significantly lower than the throughput

that can be achieved using pure BLE. It is due to the bandwidth and monthly data usage limitation in the S idewalk network

(read more about it in the "Appendix" section - question 7 of the "Amazon Sidewalk Privacy Security" documentation

here). The throughput results over the Amazon S idewalk network using the BLE link along with the comparison with the

pure BLE are recorded in the table below.

Test File size (KB) Throughput (B/s) Transmission time (s)

Amazon Sidewalk Pure BLE Amazon Sidewalk Pure BLE

Test 1 168 113.88 18900 1483 71

Test 2 168 196.61 22700 859 59

Test 3 467 125.63 21500 1483 172

Test 4 467 156.81 20300 859 183

Copyright © 2025 Silicon Laboratories. All rights reserved. 98/297

https://m.media-amazon.com/images/G/01/sidewalk/final_privacy_security_whitepaper.pdf

Performance

Summary

The performance study on the Amazon S idewalk protocol concludes with insightful findings for each physical layer. Each

layer presents unique advantages and trade-offs, making them suitable for different applications within the Amazon

S idewalk ecosystem. BLE is characterized by its indoor range and offers highly customizable latency and power

consumption settings, making it suitable for household appliances. FSK ’s range is optimal just outside the front door and is

extremely power-efficient for battery-powered devices. Notably, the trade-off between latency and power consumption

for FSK is influenced by the selected value for the number of RX windows parameter, allowing for customization based on

the use case, with outdoor smart lighting being a versatile application. CSS supports long-range devices, with Power Profile

B being ideal for long-range applications that require regular downlinks and have fewer concerns for power efficiency, such

as industrial sprinklers. Conversely, Power Profile A is better suited for uplink-based use cases that demand high power

efficiency, like sensors or location trackers. Each layer’s attributes make them uniquely fit for various applications within the

Amazon S idewalk network.

Going Further

To go further in evaluating Amazon S idewalk performances, several things can be tried by changing the configuration or

experimenting with specific features.

For FSK, a fixed message could be sent periodically with an answer from the cloud, and with a change to the number of RX

windows between beacons. This would allow a view of the impact of this parameter on latency and power consumption.

The BLE stack is highly configurable and several parameters can be changed like connection interval and peripheral latency.

This would be especially interesting for CSS, as TX power consumption is very high. In addition to those existing parameters,

Amazon introduced two major features in S idewalk SDK 1.16 (S idewalk extension 2.0.0): multi-link and bulk data transfer. The

multi-link feature allows switching between available radio layers depending on reception quality. The cost of this radio

switch could be evaluated in terms of range, latency, and power consumption. This study does not include throughput

testing, but it would be an interesting angle to add. On BLE, it could be measured by leveraging the bulk data transfer

feature.

On the gateway side, several configurations and corner-cases could be tried to stress-test the performances of the

gateway, especially the impact on the latency depending on the number of devices using and connecting to the gateway.

Copyright © 2025 Silicon Laboratories. All rights reserved. 99/297

Multiprotocol with Sidewalk

Multiprotocol with Sidewalk

Multiprotocol with Sidewalk
You can integrate different protocols with Amazon S idewalk. This page provides a list of tutorials and examples created by

S ilicon Labs to showcase Amazon S idewalk alongside other protocols.

Sidewalk Alongside BLE

In the Amazon S idewalk extension, there is a sample application that demonstrates concurrent operation of Amazon

S idewalk and standard BLE. The sample application is called Amazon Sidewalk - SoC Dynamic Multiprotocol Light and

demonstrates a light bulb that can be switched via Bluetooth or Amazon S idewalk (BLE or FSK radio layer).

Sidewalk and BLE Double Advertising

This page describes how to add standard BLE advertising alongside your Amazon S idewalk application.

Ⓘ INFO Ⓘ : By default, the standard BLE advertising will ONLY be available if your S idewalk application is also

running the BLE link.

Set Up the Project

You can use the Hello Neighbor sample app as a starting point. Make sure your part supports the Bluetooth link. Refer to

Prerequisites to learn which platforms are suitable.

First, modify the number of advertising channels authorized. By default, only one advertising set is allowed. In file

config/sl_bluetooth_advertiser_config.h set SL_BT_CONFIG_USER_ADVERTISERS to 2.

Both BLE attributes (e.g. change the advertising name) can be configured in different places:

BLE Type Configuration

S idewalk BLE In c file : sidewalk_x.x.x/component/ble_subghz/radio/ble/app_ble_config.c

Classic BLE In the GATT configuration : config/btconf/gatt_configuration.btconf

Ⓘ INFO Ⓘ : If the gatt_configuration.btconf is missing, you need to add the Static GATT Database and

Configuration component to generate this file.

Enable Extra Advertising

To enable the standard BLE advertising based on your GATT configuration, the code snippet below should be added to

your application.

// The advertising set handle allocated from Bluetooth stack.

static uint8_t advertising_set_handle = 0xff;

void start_standard_ble_advertising()

{

 sl_status_t sc;

// Create new handle

Copyright © 2025 Silicon Laboratories. All rights reserved. 100/297

https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-getting-started/prerequisites

Multiprotocol with Sidewalk

app_assert_status(sc);// Generate data for advertising

 sc =sl_bt_legacy_advertiser_generate_data(advertising_set_handle,

 sl_bt_advertiser_general_discoverable);app_assert_status(sc);// Start advertising

 sc =sl_bt_legacy_advertiser_start(advertising_set_handle,

 sl_bt_advertiser_connectable_scannable);app_assert_status(sc);app_log_info("Started standard BLE advertising.");}

This function should be called after the S idewalk BLE stack initialization to prevent an error. The S idewalk BLE is initialized

with the sid_start function. In the SoC Hello Neighbor sample application, it can be added in the init_and_start_link() function

after the sid_start call:

#if defined(SL_BLE_SUPPORTED)

// Start advertising over standard ble after Sidewalk BLE is initialized

if (link_type_to_link_mask(SL_SIDEWALK_LINK_BLE) == link_mask) {

start_standard_ble_advertising();

}

#endif

Ⓘ INFO Ⓘ : If sl_bt_advertiser_create_set is failing, make sure that you have enough advertiser sets. S ilicon

Labs recommends only calling this function once after the BLE link have been initialized.

Now that the two BLE channels are initialized, you need to have a way to differentiate the origin of the packet. You can do

that by comparing the advertising handle sent in the BT headers. If you use the sample provided above, you can see that

the advertising handle is stored in the variable advertising_set_handle .

The following snippet shows how to retrieve the handle from an incoming BLE connection and thus know the packet

source:

// sl_bt_on_event callback

include "sl_bluetooth.h"

void sl_bt_on_event(sl_bt_msg_t *evt)

{

 sl_status_t sc;

 bd_addr address;

 uint8_t address_type;

// Handle stack events

 switch (SL_BT_MSG_ID(evt->header)) {

// ...

// -------------------------------

// This event indicates that a new connection was opened.

 case sl_bt_evt_connection_opened_id:

if (evt->data.evt_connection_opened.advertiser == advertising_set_handle) {

app_log_info("BLE Connection opened from side application");

} else {

// If we don't have any info concerning the advertised ID we can assume that it is from sidewalk

app_log_info("BLE Connection opened from sidewalk");

}

break;

// ...

}

}

Sidewalk and Bluetooth FUOTA

Copyright © 2025 Silicon Laboratories. All rights reserved. 101/297

Multiprotocol with Sidewalk

The Bluetooth FUOTA (Firmware Upgrade Over-the-Air) requires a bootloader. Follow this section to install and configure a

bootloader. For more information about bootloaders, see Bootloading.

Ⓘ INFO Ⓘ : S ilicon Labs highly recommends that you perform the OTA in a non-sidewalk BLE channel.

Two methods are available for updating your application. An overview of both OTA methods are available below:

OTA

Method
Pros Cons

Dual

Bank

Resilient to transfer failures Need more storage space in the application flash (we need twice the

size of the application)

In place No backup if OTA fails (retries

until success)

Requires less extra space in the Flash memory

Dual-Bank Application Firmware Upgrade

This OTA method downloads the new firmware in a storage space alongside the application. This ensures that the device

doesn't enter an incorrect state if something goes wrong during the transfer. You can leverage double advertising to use

BLE to download the firmware image.

Ⓘ INFO Ⓘ : If you really want to implement OTA though the S idewalk BLE channel, we recommend you to use

In-Place application to prevent the S idewalk protocol from interfering with the download of the new application.

The complete schema can be found in section 4.2, Bootloader Upgrade on Application Bootloaders with Storage, in UG489:

S ilicon Labs Gecko Bootloader User’s Guide for GSDK 4.0 and Higher.

Enable Dual-Bank Application OTA in your Sidewalk Application

Ⓘ INFO Ⓘ : To install a component in your project, you need to open it with S implicity Studio. Open the .slcp

file and select the SOFTWARE COMPONENT tab. You can search the component you need and click Install.

ò Install the component Application OTA DFU if not already done.

ó Erase the flash memory.

Copyright © 2025 Silicon Laboratories. All rights reserved. 102/297

https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-bootloading-overview
https://www.silabs.com/documents/public/user-guides/ug489-gecko-bootloader-user-guide-gsdk-4.pdf

Multiprotocol with Sidewalk

Flash the bootloader.

Search for the Bootloader - SoC Internal Storage project. Select the project with the correct storage size. The

EFR32xG24B have a storage size of 1536kB.

More information on this bootloader can be found in section 7.3.7, Internal Storage Bootloader, in UG489: S ilicon Labs

Gecko Bootloader User’s Guide for GSDK 4.0 and Higher.

You may need to adapt the storage size to your application size. It should not overlap with the NVM3 section. In the

Hello Neighbor sample, the storage size needs to be set to x094000 (instead of x0B4000). This value can be

configured in the Common storage component in the bootloader project (not the sidewalk project).

õ Flash the sidewalk application.

ö Flash the Virtual AWS device:

Open the following file with S implicity Studio: config/sidewalk/sidewalk.asconf .

Go to End device.

Connect to your device.

Create a new Virtual AWS device if needed and click FLASH TO DEVICE.

You should then be able to flash your new application (e.g. through the EFR application) by connecting to the BLE channel.

Instructions to create a .gbl file containing your new application and flash it through the EFR application can be found in the

bluetooth documentation.

In-Place OTA

This OTA method makes your application restart in a special state and download the new version of the application. You

should leverage double advertising to use BLE to download the firmware image.

Ⓘ INFO Ⓘ : By default, the S idewalk BLE MAC address type is set to

SID_BLE_CFG_MAC_ADDRESS_TYPE_RANDOM_PRIVATE_RESOLVABLE , which is not compatible with this OTA method.

This method needs SID_BLE_CFG_MAC_ADDRESS_TYPE_PUBLIC MAC address type which can be changed in

structure sid_ble_config_t ble_cfg of file component/ble_subghz/radio/ble/app_ble_config.c .

The new version overwrites the original version. If something goes wrong during the transfer, the application is not

functional anymore. If you have space in your Flash memory, consider using the Dual-Bank method.

The complete schema can be found in section 4.1, Bootloader Upgrade on Bootloaders with Communication Interface
(Standalone Bootloaders), in UG489: S ilicon Labs Gecko Bootloader User’s Guide for GSDK 4.0 and Higher.

Enable In Place OTA in your Sidewalk Application

Ⓘ INFO Ⓘ : To install a component in your project, you need to open it with S implicity Studio. Open the .slcp

file and go to SOFTWARE COMPONENT tab. You can search the component you need and click Install.

Copyright © 2025 Silicon Laboratories. All rights reserved. 103/297

https://www.silabs.com/documents/public/user-guides/ug489-gecko-bootloader-user-guide-gsdk-4.pdf
https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-getting-started/provision-your-device#sidewalk-assistant-end-device
https://docs.silabs.com/bluetooth/latest/bluetooth-bootloading-firmware-upgrade/using-efr-connect-for-ota-dfu
https://www.silabs.com/documents/public/user-guides/ug489-gecko-bootloader-user-guide-gsdk-4.pdf

Multiprotocol with Sidewalk

ò Install the component In-Place OTA DFU if not already done.

ó Erase the flash memory.

ô Flash the bootloader / apploader:

Search for the Bootloader - SoC Bluetooth AppLoader OTA DFU project.

õ Flash the S idewalk application.

ö Flash the Virtual AWS device:

Open the following file with simplicity studio : config > sidewalk > sidewalk.asconf.

Go to End device.

Connect to your device.

Create a new Virtual AWS device if needed and click FLASH TO DEVICE.

You should then be able to flash your new application (e.g. through the S iConnect mobile application) by connecting to the

BLE channel. Instructions to create a .gbl file containing your new application and flash it to the S iConnect mobile

application can be found in the bluetooth documentation.

⚠ WARNING ⚠: If you are using S idewalk BLE to perform the OTA (which is not recommended), make sure that

your BLE address is configured to SID_BLE_CFG_MAC_ADDRESS_TYPE_PUBLIC (configuration is done in

sidewalk_x.x.x\component\ble_subghz\radio\ble\app_ble_config.c). Otherwise, the apploader will not be able to find

the device when it restarts in OTA mode.

Troubleshoot

My sidewalk application doesn't start

Make sure that you followed the order described above.

If you still have issues:

ò Erase the flash.

ó Flash your sidewalk application.

ô Using S implicity Commander, you can see the main flash contents. You should see some free space at the beginning of the

main flash:

õ Flash the bootloader.

ö Check that the bootloader is present on the flash.

Ⓘ NOTE Ⓘ : In step 3 if your S idewalk application is flashed at the beginning of the main flash, make sure that

the right OTA component is installed: either In-Place OTA DFU or Application OTA DFU (Double Bank OTA).

The screen shows the reserved space for the Bootloader - SoC Bluetooth AppLoader OTA DFU used in the In-

Place OTA (In-Place OTA DFU component). The reserved space is smaller for the Bootloader - SoC Internal

Storage used in Double Bank OTA (Application OTA DFU component).

Copyright © 2025 Silicon Laboratories. All rights reserved. 104/297

https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-getting-started/provision-your-device#sidewalk-assistant-end-device
https://docs.silabs.com/bluetooth/latest/bluetooth-bootloading-firmware-upgrade/using-efr-connect-for-ota-dfu

Multiprotocol with Sidewalk

Err �8 or no device info found

Make sure that you flash your virtual AWS device info after flashing the bootloader and the S idewalk application.

Copyright © 2025 Silicon Laboratories. All rights reserved. 105/297

Troubleshooting

Troubleshooting

Troubleshooting

J�Link could not connect to the device �EFR32�

When using the Wireless Starter K it main board (WSTK) along with a radio board, you should be able to connect with J-Link

RTT Viewer using the parameters in the dedicated section. Your EFR32 should also be detected by S implicity Studio 5.

If your EFR32 is not detected or you have difficulties connecting with J-Link RTT Viewer, you can check two points:

Your WSTK power switch is on AEM mode.

Your radio board is plugged in correctly (see the following)

CloudFormation Errors

Permission Denied

While executing the CloudFormation command to deploy your stack, you have an error showing missing authorization as

follows:

<your user> is not authorized to perform: cloudformation:<some action> on resource aws:cloudformation:us-east-1�<some resource> because no

identity-based policy allows the cloudformation:<some action> action

It is probably because your IAM user associated to your CLI does not have sufficient permissions. You should ask the

person managing your AWS account to help you on this task.

Failed to Create Stack

CloudFormation stack creates objects and every user inside the same IAM policy has access to those objects. The stack

only needs to be created once, and can be used for all your devices. If you try to deploy the CloudFormation stack but

some objects already exist with the same name, your stack will not deploy with results like the following:

Copyright © 2025 Silicon Laboratories. All rights reserved. 106/297

https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-test-and-debug

Troubleshooting

Waiting for changeset to be created..

Waiting for stack create/update to complete

Failed to create/update the stack. Run the following command

to fetch the list of events leading up to the failure

aws cloudformation describe-stack-events --stack-name NameOfYourStack

To get more details on this error, execute this command: aws cloudformation describe-stack-events --stack-name

NameOfYourStack

This command displays all the actions attempted by CloudFormation. While reading the error messages, if you see an error

log about an object that already exists then you should check what objects are already created inside your AWS account.

As an example you can see in the following log that the creation of CFSRepublishLambdaRo le failed (value of

ResourceStatus field) because it already exists (value of ResourceStatusReason field):

{

"StackId": "arn:aws:cloudformation:us-east-1�78468574544:stack/NameOfYourStack/4a54e4�4583�5435-f548-ad546584dd58",

"EventId": "CFSRepublishLambdaRole-CREATE_FAILED�2022�09�21T14�18�19.899Z",

"StackName": "NameOfYourStack",

"LogicalResourceId": "CFSRepublishLambdaRole",

"PhysicalResourceId": "",

"ResourceType": "AWS��IAM��Role",

"T imestamp": "2022�09�21T14�18�19.899000�00�00",

"ResourceStatus": "CREATE_FAILED",

"ResourceStatusReason": "CFSRepublishLambdaRole already exists in stack arn:aws:cloudformation:us-east-

1�560019425582:stack/SidewalkStack/a58745f-5458�5742�125e-65a8b45a25",

"ResourceProperties": "{\"MaxSessionDuration\":\"3600\",\"RoleName\":\"CFSRepublishLambdaRole\",\"Description\":\"Allows IoT to call AWS services

on your behalf.\",\"Policies\":[{\"PolicyName\":\"CFSRepublishPolicy\",\"PolicyDocument\":{\"Statement\":[{\"Action\":

[\"iot:*\",\"sqs:*\",\"iotwireless:*\",\"logs:*\"],\"Resource\":[\"*\"],\"Effect\":\"Allow\"}]}}],\"AssumeRolePolicyDocument\":{\"Version\":\"2012�10�

17\",\"Statement\":[{\"Action\":[\"sts:AssumeRole\"],\"Effect\":\"Allow\",\"Principal\":{\"Service\":[\"lambda.amazonaws.com\"]},\"Sid\":\"\"}]}}"

}

You should delete the duplicated resources or rename them.

Registration Errors

Failing During Device Registration

Once your device is detected by the registration script, it starts to exchange messages in order to register. During this

message exchange, if you see the following errors on your endpoint logs, then your Secure Element Firmware is probably

outdated.

<error> GET_DEVICE_ECDH_SIG: 3

<error> MASK NOT FOUND

<info> data_send send -8

<error> Dispatcher: Message handler returned unexpected result - -8

<error> MASK NOT FOUND

The Amazon S idewalk examples require that the EFR32 uses a minimal version of Secure Element firmware depending on

the radio board MCUs. See the table below to check your version:

Radio Board MCUs SE minimal version

MG21 1.2.9

MG24 2.1.7

KG100S 1.2.9

You can verify this version in the S implicity Studio 5 Launcher perspective. If the EFR32 is using an older firmware version,

update it. If you do not see Update to 1.2.9 (as shown below), disconnect and re-connect the board until it appears.

Copyright © 2025 Silicon Laboratories. All rights reserved. 107/297

Troubleshooting

Time Synchronization

Once your device is registered, time synchronization between the gateway and the endpoint should take place within a few

minutes. If the device does not attempt to synchronize with the gateway, check that your Amazon Echo device is

connected to the Internet and localized in the US, then try rebooting your gateway and your endpoint.

Amazon Sidewalk - SoC Hello Neighbor Errors

When trying out the Hello Neighbor application with FSK radio layer, you may see logs about failing Disco module that

resemble the following logs (the device is fully registered and attempts to discover the gateway):

Copyright © 2025 Silicon Laboratories. All rights reserved. 108/297

Troubleshooting

<info> [00132619] App - sidewalk status changed: 1

<info> [00132619] App - registration status: 0, time sync status: 1, link status: 0[00132631] <info> RTC compensation is not supported.

[00132632] <info> swi thread created

[00132632] <info> Set region 1, country: US, num cfg: 2

[00132673] <info> P2P chnl loaded: 7

[00132673] <info> PAN ID loaded:

[00132673] <info> B9 80 96 21 00

[00132675] <info> Def mcast retries: 1

[00132675] <info> Pairing state loaded: 0

[00132675] <info> Config version 4

[00132675] <info> init_chnl_seed, chsid:9, seed:FFFFFA610000

[00132676] <info> rnet_mac_disco_init state = 0, req_auth = 0,cur_ev = 00000000

[00132676] <info> min ch symbols ms 151 bcn time ms 167

[00132677] <info> Starting GWD Process in: PASSIVE_SYNC/FFS_MODE

[00132677] <info> rnet_mac_disco_start_sampling state = 1, req_auth = 0, cur_ev = 00000000 f = 00052AC1 r = 0

[00132678] <info> Disco sampling start SUCCESS! state = 2, req_auth = 0, cur_ev = 00000000

[00132679] <info> 900MHz MAC Init: PRB:1 BCN:1 HDR:1, HDR_LORA:0 LDR:0

[00132680] <info> rnet_sec: Loading Setting (key=0xa) not on flash!

[00132682] <error> rnet_sec: File content for 2 mode cannot be trusted!

[00132683] <info> rnet_sec: Loading Setting (key=0�9) not on flash!

[00132685] <error> rnet_sec: File content for 1 mode cannot be trusted!

[00132686] <info> Ring-Net initialized

[00132686] <info> Disco stop sampling success. T ime elapsed = 7 ms

[00132686] <info> [MET] B:0 N:0

[00132687] <info> rnet_mac_disco_init state = 1, req_auth = 0,cur_ev = 00000000

[00132687] <info> Starting GWD Process in: PASSIVE_SYNC/FFS_MODE

[00132688] <info> rnet_mac_disco_start_sampling state = 1, req_auth = 0, cur_ev = 00000000 f = 00052AC1 r = 0

[00132688] <info> Disco sampling start SUCCESS! state = 2, req_auth = 0, cur_ev = 00000000

[00132689] <info> Disco active. LSC=0, symb=7490, rx_to_ms=151

[00132690] <info> [MET] B:0 N:0

[00132857] <warning> Disco submodule ended prematurely! ch = 0

[00133025] <warning> Disco submodule ended prematurely! ch = 1

[00133193] <warning> Disco submodule ended prematurely! ch = 2

[00133362] <warning> Disco submodule ended prematurely! ch = 3

[00133530] <warning> Disco submodule ended prematurely! ch = 4

This error is generally linked to a missing or incorrectly plugged-in Semtech board.

For more troubleshooting advice, check out the FAQ on S ilicon Labs community forum.

Copyright © 2025 Silicon Laboratories. All rights reserved. 109/297

https://community.silabs.com/s/question/0D58Y0000AUUaSOSQ1/amazon-sidewalk-faq?language=en_US

PAL API Reference

PAL API Reference

Overview

PAL API Reference

The S idewalk Platform Abstraction Layer (PAL) API provides a comprehensive set of interfaces and utilities for developing

applications that leverage the Amazon S idewalk network. This documentation covers various modules and components of

the SDK, detailing their functionalities, key features, and usage guidelines. The API is organized into several groups, each

focusing on specific aspects of the SDK, such as BLE adaptation, security, storage, and peripheral interfaces. By following

this reference, developers can effectively integrate and utilize the S idewalk SDK in their projects.

Copyright © 2025 Silicon Laboratories. All rights reserved. 110/297

Interfaces

Interfaces

Interfaces

Interfaces

The Interfaces module provides a set of standardized interfaces that facilitate communication and interaction between

different components of the S idewalk SDK. These interfaces define the methods and structures required for various

functionalities, ensuring consistency and interoperability across the SDK. By customizing interfaces, developers can better

fit their needs according to their use case or the specifics of their custom hardware.

Modules

SAL

Copyright © 2025 Silicon Laboratories. All rights reserved. 111/297

SAL

SAL

SAL

Sidewalk Abstraction Layer

The S idewalk Abstraction Layer (SAL) provides interfaces, such as cryptography, storage, timers, and peripheral interfaces.

Modules

Common Interface

Critical Region Interface

Logging Interface

Peripheral Interfaces

Radio Interfaces

SWI Interface

Security and Crypto

Storage Interface

Timer Interfaces

Copyright © 2025 Silicon Laboratories. All rights reserved. 112/297

Common Interface

Common Interface

Common Interface
Provides common and generic platform interface code not specific to one PAL module.

Modules

Type definitions

Functions

sid_error_t sid_pal_common_init(const platform_specific_init_parameters_t *platform_init_parameters)
Implements a platform generic initialization function.

sid_error_t sid_pal_common_deinit(void)
Implements a platform generic deinitialization function.

Function Documentation

sid_pal_common_init

sid_error_t sid_pal_common_init (const platform_specific_init_parameters_t * platform_init_parameters)

Implements a platform generic initialization function.

Parameters

Type Direction Argument Name Description

const platform_specific_init_parameters_t * [in] platform_init_parameters pointer to platform specific parameters.

This function is only implemented on platforms that require additional vendor specific initialization routines. It provides a

generic entry point to the platform implementation of the sid_pal components and is intended to be called at start of day.

sid_pal_common_deinit

sid_error_t sid_pal_common_deinit (void)

Implements a platform generic deinitialization function.

Parameters

Type Direction Argument Name Description

void N/A

This function is only implemented on platforms that require additional vendor specific deinitialization routines. It provides a

generic entry point to the platform implementation of the sid_pal components.

Copyright © 2025 Silicon Laboratories. All rights reserved. 113/297

Type definitions

Type definitions

Type definitions

Modules

platform_parameters_t

Copyright © 2025 Silicon Laboratories. All rights reserved. 114/297

platform_parameters_t

platform_parameters_t

Platform parameters structure.

This structure defines the platform parameters that are used for initializing the SID PAL (Platform Abstraction Layer).

Public Attributes

sid_pal_mfg_store
_region_t

mfg_store_region

platform_specific_i
nit_parameters_t

platform_init_parameters

Public Attribute Documentation

mfg_store_region

sid_pal_mfg_store_region_t platform_parameters_t::mfg_store_region

Manufacturing store region.

platform_init_parameters

platform_specific_init_parameters_t platform_parameters_t::platform_init_parameters

Platform specific initialization parameters.

Copyright © 2025 Silicon Laboratories. All rights reserved. 115/297

Critical Region Interface

Critical Region Interface

Critical Region Interface
Provides API's used by components of the S idewalk SDK to solve concurrency issues.

Functions

void sid_pal_enter_critical_region()
Code executed between calls of function declared below will be protected from interruption from different thread or

ISR context.

void sid_pal_exit_critical_region()
Implements enabling of all hardware and software interrupts that were previously disabled by enter function Code

executed between calls of function declared below will be protected from interruption from different thread or ISR

context.

Function Documentation

sid_pal_enter_critical_region

void sid_pal_enter_critical_region ()

Code executed between calls of function declared below will be protected from interruption from different thread or ISR

context.

Note

Implementation is actually disabled IRQ's, so remember, amount of code and execution time of code between calls of enter

and exit functions should be as minimal as possible

Implements disabling of all hardware and software interrupts

sid_pal_exit_critical_region

void sid_pal_exit_critical_region ()

Implements enabling of all hardware and software interrupts that were previously disabled by enter function Code executed

between calls of function declared below will be protected from interruption from different thread or ISR context.

Note

Implementation is actually disabled IRQ's, so remember, amount of code and execution time of code between calls of enter

and exit functions should be as minimal as possible

Copyright © 2025 Silicon Laboratories. All rights reserved. 116/297

Logging Interface

Logging Interface

Logging Interface

Logging Interface

Interface for log for sidewalk SDK. For more details, please see Logging Documentation

Modules

sid_pal_log_buffer

Type definitions

Functions

void sid_pal_log(sid_pal_log_severity_t severity, uint32_t num_args, const char *fmt,...)
Printf style logging function.

sid_pal_log_severi
ty_t

sid_log_control_get_current_log_level(void)
The function returns current logging level.

void sid_pal_log_flush(void)
Flush log function.

char const * sid_pal_log_push_str(char *string)
String log pushing operation - in the case of JLink RTT logs since these are deferred, they require that a special

function be used in order to ensure that strings are copied correctly in order for pushing then at a later time .

bool sid_pal_log_get_log_buffer(struct sid_pal_log_buffer *const log_buffer)
Allows for retrival of log buffers from sid_pal_log implementation.

void sid_pal_hexdump(sid_pal_log_severity_t severity, const void *address, int length)
Log raw data bytes.

Macros

#define SID_PAL_HEXDUMP_MAX �8�
Define the maximum number of bytes per single line of sid_pal_hexdump() logging.

#define SID_PAL_VA_NARG (...)
Macro to count the number of arguments in a variadic macro.

#define SID_PAL_VA_NARG_ (...)
Helper macro to count the number of arguments in a variadic macro.

#define SID_PAL_VA_ARG_N (_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, _15, _16, _17, _18, _19, _20, _21, _22, _23,
_24, _25, _26, _27, _28, _29, _30, _31, _32, _33, _34, _35, _36, _37, _38, _39, _40, _41, _42, _43, _44, _45, _46, _47,
_48, _49, _50, _51, _52, _53, _54, _55, _56, _57, _58, _59, _60, _61, _62, _63, N, ...)
Helper macro to extract the number of arguments.

#define SID_PAL_RSEQ_N ()
Macro to define a reverse sequence of numbers from 62 to 0.

Copyright © 2025 Silicon Laboratories. All rights reserved. 117/297

https://docs.silabs.com/amazon-sidewalk/latest/sidewalk-stack-structure/#logs

Logging Interface

#define SID_PAL_LOG_HIGHEST_SEVIRITY (level, fmt_, ...)
Logs a message with the highest severity level.

#define SID_PAL_LOG (level_, fmt_, ...)
Logs a message if the severity level is less than or equal to the configured log level.

#define SID_PAL_HEXDUMP (level_, data_, len_)
Dumps a block of data in hexadecimal format.

#define SID_PAL_LOG_FLUSH ()
Flushes the log buffer.

#define SID_PAL_LOG_PUSH_STR (x)
Pushes a string to the log.

#define SID_PAL_LOG_ERROR (fmt_, ...)
Logs an error message with the highest severity level.

#define SID_PAL_LOG_WARNING (fmt_, ...)
Logs a warning message if the severity level is greater than or equal to the warning level.

#define SID_PAL_LOG_INFO (fmt_, ...)
Logs an informational message if the severity level is greater than or equal to the info level.

#define SID_PAL_LOG_DEBUG (fmt_, ...)
Logs a debug message if the severity level is greater than or equal to the debug level.

#define SID_PAL_LOG_TRACE ()
Logs a trace message with file name , line number, and function name .

#define SID_HAL_LOG (level, fmt_, ...)
Logs a message if the severity level is less than or equal to the configured log level.

#define SID_HAL_LOG_ERROR (fmt_, ...)
Logs an error message with the highest severity level.

#define SID_HAL_LOG_WARNING (fmt_, ...)
Logs a warning message if the severity level is greater than or equal to the warning level.

#define SID_HAL_LOG_INFO (fmt_, ...)
Logs an informational message if the severity level is greater than or equal to the info level.

#define SID_HAL_LOG_DEBUG (fmt_, ...)
Logs a debug message if the severity level is greater than or equal to the debug level.

#define SID_HAL_LOG_FLUSH SID_PAL_LOG_FLUSH
Flushes the log buffer.

#define SID_HAL_LOG_PUSH_STR (x)
Pushes a string to the log.

#define SID_HAL_LOG_HEXDUMP_ERROR (data_, len_)
Dumps a block of data in hexadecimal format with error severity.

#define SID_HAL_LOG_HEXDUMP_WARNING (data_, len_)
Dumps a block of data in hexadecimal format with warning severity.

#define SID_HAL_LOG_HEXDUMP_INFO (data_, len_)
Dumps a block of data in hexadecimal format with info severity.

#define SID_HAL_LOG_HEXDUMP_DEBUG (data_, len_)
Dumps a block of data in hexadecimal format with debug severity.

Copyright © 2025 Silicon Laboratories. All rights reserved. 118/297

Logging Interface

Function Documentation

sid_pal_log

void sid_pal_log (sid_pal_log_severity_t severity, uint32_t num_args, const char * fmt, ...)

Printf style logging function.

Parameters

Type Direction Argument Name Description

sid_pal_log_severity_t [in] severity Severity of the log

uint32_t [in] num_args Number of arguments to be logged

const char * [in] fmt Format string to print with variables

... N/A

sid_log_control_get_current_log_level

sid_pal_log_severity_t sid_log_control_get_current_log_level (void)

The function returns current logging level.

Parameters

Type Direction Argument Name Description

void N/A

Implemented in sid_log_control

sid_pal_log_flush

void sid_pal_log_flush (void)

Flush log function.

Parameters

Type Direction Argument Name Description

void N/A

The function flushes the log buffers to the output interface

sid_pal_log_push_str

char const * sid_pal_log_push_str (char * string)

String log pushing operation - in the case of JLink RTT logs since these are deferred, they require that a special function be

used in order to ensure that strings are copied correctly in order for pushing then at a later time.

Parameters

Copyright © 2025 Silicon Laboratories. All rights reserved. 119/297

Logging Interface

Type Direction Argument Name Description

Type Direction Argument Name Description

char * [in] string Pointer to the string that has to be copied.

For platforms that do not use deferred logging, this can remain unimplemented.

sid_pal_log_get_log_buffer

bool sid_pal_log_get_log_buffer (struct sid_pal_log_buffer *const log_buffer)

Allows for retrival of log buffers from sid_pal_log implementation.

Parameters

Type Direction Argument Name Description

struct sid_pal_log_buffer *const [in] log_buffer Pointer to log buffer descriptor

OPTIONAL If business logic wants to send logs over an external connection they can use this api to pull out logs from

sid_pal_log implementation if implemented. Internally the implementation can use a circular list of buffers to store the logs as

they come.

sid_pal_hexdump

void sid_pal_hexdump (sid_pal_log_severity_t severity, const void * address, int length)

Log raw data bytes.

Parameters

Type Direction Argument Name Description

sid_pal_log_severity_t [in] severity Severity of the log

const void * [in] address Pointer to data to be logged

int [in] length The length of data to be logged (in bytes)

Copyright © 2025 Silicon Laboratories. All rights reserved. 120/297

sid_pal_log_buffer

sid_pal_log_buffer

Describes the log buffer that is retrieved from sid_pal_log_ ifc implementation.

Public Attributes

uint8_t * buf
Raw buffer that the sid_pal_log implementation will copy the log string into.

uint8_t size
Size of the above Raw buffer, sid_pal_log_get_log_buffer will replace the size value with the actual size of the log string

that was copied in bytes.

uint8_t idx
Index of log string.

Public Attribute Documentation

buf

uint8_t* sid_pal_log_buffer::buf

Raw buffer that the sid_pal_log implementation will copy the log string into.

size

uint8_t sid_pal_log_buffer::size

S ize of the above Raw buffer, sid_pal_log_get_log_buffer will replace the size value with the actual size of the log string

that was copied in bytes.

idx

uint8_t sid_pal_log_buffer::idx

Index of log string.

Copyright © 2025 Silicon Laboratories. All rights reserved. 121/297

Type definitions

Type definitions

Type definitions

Enumerations

enum sid_pal_log_severity_t {

SID_PAL_LOG_SEVERITY_ERROR = 0
SID_PAL_LOG_SEVERITY_WARNING = 1
SID_PAL_LOG_SEVERITY_INFO = 2
SID_PAL_LOG_SEVERITY_DEBUG = 3

}
Log severity levels.

Enumeration Documentation

sid_pal_log_severity_t

sid_pal_log_severity_t

Log severity levels.

This enum defines the severity levels for logging messages.

Enumerator

SID_PAL_LOG_SEVERITY_ERROR Error severity level

SID_PAL_LOG_SEVERITY_WARNING Warning severity level

SID_PAL_LOG_SEVERITY_INFO Info severity level

SID_PAL_LOG_SEVERITY_DEBUG Debug severity level

Copyright © 2025 Silicon Laboratories. All rights reserved. 122/297

Peripheral Interfaces

Peripheral Interfaces

Peripheral Interfaces

Peripheral Interfaces

The Peripheral Interfaces module provides interfaces for interacting with various hardware peripherals. These interfaces

ensure consistent and platform-independent access to peripheral functionalities such as GPIO, temperature sensors, and

timers. Developers can create applications that are portable across different hardware platforms while maintaining

consistent behavior and performance.

Modules

GPIO

Serial Bus Interface

Serial Client Interface

Temperature

Copyright © 2025 Silicon Laboratories. All rights reserved. 123/297

GPIO

GPIO

GPIO
The GPIO Interface module provides interfaces for interacting with General-Purpose Input/Output (GPIO) pins within the

S idewalk SDK. These interfaces ensure consistent and platform-independent access to GPIO functionalities, allowing

developers to control and monitor digital signals across different hardware platforms.

Modules

Type definitions

Typedefs

typedef void(* sid_pal_gpio_irq_handler_t)(uint32_t gpio_number, void *callback_arg)
GPIO Pin IRQ handler.

Functions

sid_error_t sid_pal_gpio_set_direction(uint32_t gpio_number, sid_pal_gpio_direction_t direction)
sid_pal_gpio_set_direction is used to set the direction of the GPIO.

sid_error_t sid_pal_gpio_read(uint32_t gpio_number, uint8_t *value)
sid_pal_gpio_read is used to read data from GPIO pin.

sid_error_t sid_pal_gpio_write(uint32_t gpio_number, uint8_t value)
sid_pal_gpio_write is used to write data to the GPIO.

sid_error_t sid_pal_gpio_toggle(uint32_t gpio_number)
sid_pal_gpio_toggle is used to toggle the GPIO.

sid_error_t sid_pal_gpio_set_irq(uint32_t gpio_number, sid_pal_gpio_irq_trigger_t irq_trigger, sid_pal_gpio_irq_handler_t
gpio_irq_handler, void *callback_arg)
sid_pal_gpio_set_irq is used to generate an interrupt based on the configuration and set callbacket function.

sid_error_t sid_pal_gpio_irq_enable(uint32_t gpio_number)
sid_pal_gpio_irq_enable is used to disable an interrupt.

sid_error_t sid_pal_gpio_irq_disable(uint32_t gpio_number)
sid_pal_gpio_irq_disable is used to disable an interrupt.

sid_error_t sid_pal_gpio_input_mode(uint32_t gpio_number, sid_pal_gpio_input_t mode)
sid_pal_gpio_input_mode is used to configure input mode of GPIO.

sid_error_t sid_pal_gpio_output_mode(uint32_t gpio_number, sid_pal_gpio_output_t mode)
sid_pal_gpio_output_mode is used to configure output mode of GPIO.

sid_error_t sid_pal_gpio_pull_mode(uint32_t gpio_number, sid_pal_gpio_pull_t pull)
sid_pal_gpio_pull_mode is used to configure pull type of GPIO.

Typedef Documentation

sid_pal_gpio_irq_handler_t

Copyright © 2025 Silicon Laboratories. All rights reserved. 124/297

GPIO

typedef void(* sid_pal_gpio_irq_handler_t) (uint32_t gpio_number, void *callback_arg))(uint32_t gpio_number, void
*callback_arg)

GPIO Pin IRQ handler.

Parameters

Type Direction Argument Name Description

[in] gpio_number The logical GPIO number.

[in] callback_arg The argument to be passed to the callback function.

Note

The callback to be called when the configured transition occurs.

Function Documentation

sid_pal_gpio_set_direction

sid_error_t sid_pal_gpio_set_direction (uint32_t gpio_number, sid_pal_gpio_direction_t direction)

sid_pal_gpio_set_direction is used to set the direction of the GPIO.

Parameters

Type Direction Argument Name Description

uint32_t [in] gpio_number The logical GPIO number.

sid_pal_gpio_direction_t [in] direction Direction of GPIO.

sid_pal_gpio_read

sid_error_t sid_pal_gpio_read (uint32_t gpio_number, uint8_t * value)

sid_pal_gpio_read is used to read data from GPIO pin.

Parameters

Type Direction Argument Name Description

uint32_t [in] gpio_number The logical GPIO number.

uint8_t * [out] value Value read from the GPIO.

sid_pal_gpio_write

sid_error_t sid_pal_gpio_write (uint32_t gpio_number, uint8_t value)

sid_pal_gpio_write is used to write data to the GPIO.

Parameters

Copyright © 2025 Silicon Laboratories. All rights reserved. 125/297

GPIO

Type Direction Argument Name Description

uint32_t [in] gpio_number The logical GPIO number.

uint8_t [out] value Value to write to GPIO.

sid_pal_gpio_toggle

sid_error_t sid_pal_gpio_toggle (uint32_t gpio_number)

sid_pal_gpio_toggle is used to toggle the GPIO.

Parameters

Type Direction Argument Name Description

uint32_t [in] gpio_number The logical GPIO number.

sid_pal_gpio_set_irq

sid_error_t sid_pal_gpio_set_irq (uint32_t gpio_number, sid_pal_gpio_irq_trigger_t irq_trigger, sid_pal_gpio_irq_handler_t
gpio_irq_handler, void * callback_arg)

sid_pal_gpio_set_ irq is used to generate an interrupt based on the configuration and set callbacket function.

Parameters

Type Direction
Argument
Name

Description

uint32_t [in] gpio_number The logical GPIO number.

sid_pal_gpio_irq_trigger_t [in] irq_trigger The interrupt config types to generate an interrupt based on the

configuration.

sid_pal_gpio_irq_handler_t [in] gpio_irq_handler The callback function to be called on interrupt.

void * [in] callback_arg The argument to be passed to the callback function.

sid_pal_gpio_irq_enable

sid_error_t sid_pal_gpio_irq_enable (uint32_t gpio_number)

sid_pal_gpio_ irq_enable is used to disable an interrupt.

Parameters

Type Direction Argument Name Description

uint32_t [in] gpio_number The logical GPIO number to enable interrupts.

sid_pal_gpio_irq_disable

sid_error_t sid_pal_gpio_irq_disable (uint32_t gpio_number)

Copyright © 2025 Silicon Laboratories. All rights reserved. 126/297

GPIO

sid_pal_gpio_ irq_disable is used to disable an interrupt.

Parameters

Type Direction Argument Name Description

uint32_t [in] gpio_number The logical GPIO number to disable interrupts.

sid_pal_gpio_input_mode

sid_error_t sid_pal_gpio_input_mode (uint32_t gpio_number, sid_pal_gpio_input_t mode)

sid_pal_gpio_ input_mode is used to configure input mode of GPIO.

Parameters

Type Direction Argument Name Description

uint32_t [in] gpio_number The logical GPIO number to operate on.

sid_pal_gpio_input_t [in] mode The input mode to set.

sid_pal_gpio_output_mode

sid_error_t sid_pal_gpio_output_mode (uint32_t gpio_number, sid_pal_gpio_output_t mode)

sid_pal_gpio_output_mode is used to configure output mode of GPIO.

Parameters

Type Direction Argument Name Description

uint32_t [in] gpio_number The logical GPIO number to operate on.

sid_pal_gpio_output_t [in] mode The output mode to set.

sid_pal_gpio_pull_mode

sid_error_t sid_pal_gpio_pull_mode (uint32_t gpio_number, sid_pal_gpio_pull_t pull)

sid_pal_gpio_pull_mode is used to configure pull type of GPIO.

Parameters

Type Direction Argument Name Description

uint32_t [in] gpio_number The logical GPIO number to operate on.

sid_pal_gpio_pull_t [in] pull The pull mode to set.

Copyright © 2025 Silicon Laboratories. All rights reserved. 127/297

Type definitions

Type definitions

Type definitions

Enumerations

enum sid_pal_gpio_pull_t {

SID_PAL_GPIO_PULL_NONE
SID_PAL_GPIO_PULL_UP
SID_PAL_GPIO_PULL_DOWN

}
enum for configuring GPIO pull

enum sid_pal_gpio_output_t {

SID_PAL_GPIO_OUTPUT_PUSH_PULL
SID_PAL_GPIO_OUTPUT_OPEN_DRAIN

}
enum for configuring GPIO output type

enum sid_pal_gpio_input_t {

SID_PAL_GPIO_INPUT_CONNECT
SID_PAL_GPIO_INPUT_DISCONNECT

}
enum for configuring GPIO input buffer connect state

enum sid_pal_gpio_direction_t {

SID_PAL_GPIO_DIRECTION_INPUT
SID_PAL_GPIO_DIRECTION_OUTPUT

}
enum for configuring direction of GPIO.

enum sid_pal_gpio_irq_trigger_t {

SID_PAL_GPIO_IRQ_TRIGGER_NONE
SID_PAL_GPIO_IRQ_TRIGGER_RISING
SID_PAL_GPIO_IRQ_TRIGGER_FALLING
SID_PAL_GPIO_IRQ_TRIGGER_EDGE
SID_PAL_GPIO_IRQ_TRIGGER_LOW
SID_PAL_GPIO_IRQ_TRIGGER_HIGH

}
GPIO pin interrupt config types.

Enumeration Documentation

sid_pal_gpio_pull_t

sid_pal_gpio_pull_t

enum for configuring GPIO pull

Enumerator

SID_PAL_GPIO_PULL_NONE Configure GPIO as no pull

SID_PAL_GPIO_PULL_UP Configure GPIO as pull up

Copyright © 2025 Silicon Laboratories. All rights reserved. 128/297

Type definitions

SID_PAL_GPIO_PULL_DOWN Configure GPIO as pull down

sid_pal_gpio_output_t

sid_pal_gpio_output_t

enum for configuring GPIO output type

Enumerator

SID_PAL_GPIO_OUTPUT_PUSH_PULL Configure GPIO as push pull

SID_PAL_GPIO_OUTPUT_OPEN_DRAIN Configure GPIO as open drain output

sid_pal_gpio_input_t

sid_pal_gpio_input_t

enum for configuring GPIO input buffer connect state

Enumerator

SID_PAL_GPIO_INPUT_CONNECT Configure GPIO as input connected

SID_PAL_GPIO_INPUT_DISCONNECT Configure GPIO as input disconnected

sid_pal_gpio_direction_t

sid_pal_gpio_direction_t

enum for configuring direction of GPIO.

Enumerator

SID_PAL_GPIO_DIRECTION_INPUT Configure GPIO as input

SID_PAL_GPIO_DIRECTION_OUTPUT Configure GPIO as output

sid_pal_gpio_irq_trigger_t

sid_pal_gpio_irq_trigger_t

GPIO pin interrupt config types.

Enumerator

SID_PAL_GPIO_IRQ_TRIGGER_NONE Disable interrupt

SID_PAL_GPIO_IRQ_TRIGGER_RISING Trigger interrupt on rising edge

SID_PAL_GPIO_IRQ_TRIGGER_FALLING Trigger interrupt on falling edge

SID_PAL_GPIO_IRQ_TRIGGER_EDGE Trigger interrupt on both edges

SID_PAL_GPIO_IRQ_TRIGGER_LOW Low level triggered interrupt

SID_PAL_GPIO_IRQ_TRIGGER_HIGH High level triggered interrupt

Copyright © 2025 Silicon Laboratories. All rights reserved. 129/297

Type definitions

Copyright © 2025 Silicon Laboratories. All rights reserved. 130/297

Serial Bus Interface

Serial Bus Interface

Serial Bus Interface
The Serial Bus Interface module provides interfaces for interacting with serial bus communication protocols within the

S idewalk SDK. These interfaces ensure consistent and platform-independent access to serial bus functionalities, allowing

developers to implement communication between different components and peripherals across various hardware platforms.

Modules

Type definitions

Copyright © 2025 Silicon Laboratories. All rights reserved. 131/297

Type definitions

Type definitions

Type definitions

Modules

sid_pal_serial_bus_client

sid_pal_serial_bus_ iface

sid_pal_serial_bus_factory

Enumerations

enum sid_pal_serial_bus_bit_order {

SID_PAL_SERIAL_BUS_BIT_ORDER_MSB_FIRST
SID_PAL_SERIAL_BUS_BIT_ORDER_LSB_FIRST

}
Describes the bit order of messages exchanged on serial bus interface .

enum sid_pal_serial_bus_client_select {

SID_PAL_SERIAL_BUS_CLIENT_DESELECT
SID_PAL_SERIAL_BUS_CLIENT_SELECT

}
Describes the client selection or deselection.

Enumeration Documentation

sid_pal_serial_bus_bit_order

sid_pal_serial_bus_bit_order

Describes the bit order of messages exchanged on serial bus interface.

Enumerator

SID_PAL_SERIAL_BUS_BIT_ORDER_MSB_FIRST Most significant bit first.

SID_PAL_SERIAL_BUS_BIT_ORDER_LSB_FIRST Least significant bit first.

sid_pal_serial_bus_client_select

sid_pal_serial_bus_client_select

Describes the client selection or deselection.

Enumerator

SID_PAL_SERIAL_BUS_CLIENT_DESELECT Deselect the serial bus client

SID_PAL_SERIAL_BUS_CLIENT_SELECT Select the serial bus client

Copyright © 2025 Silicon Laboratories. All rights reserved. 132/297

Type definitions

Copyright © 2025 Silicon Laboratories. All rights reserved. 133/297

sid_pal_serial_bus_client

sid_pal_serial_bus_client

Describes the configuration of the serial bus client.

Public Attributes

uint32_t client_selector

uint32_t speed_hz

enum
sid_pal_serial_bus

_bit_order

bit_order

uint8_t mode

const void * client_selector_extension

bool(* client_selector_cb
Callback to select client on serial bus.

void * client_selector_context

Public Attribute Documentation

client_selector

uint32_t sid_pal_serial_bus_client::client_selector

client id on the serial bus.

speed_hz

uint32_t sid_pal_serial_bus_client::speed_hz

baud rate.

bit_order

enum sid_pal_serial_bus_bit_order sid_pal_serial_bus_client::bit_order

bit order.

mode

uint8_t sid_pal_serial_bus_client::mode

serial bus mode.

Copyright © 2025 Silicon Laboratories. All rights reserved. 134/297

sid_pal_serial_bus_client

client_selector_extension

const void* sid_pal_serial_bus_client::client_selector_extension

pointer to the client selector data.

client_selector_cb

bool(* sid_pal_serial_bus_client::client_selector_cb) (const struct sid_pal_serial_bus_client *const client, enum
sid_pal_serial_bus_client_select select, void *context)

Callback to select client on serial bus.

If this callback if not set, then client_selector will be used.

client_selector_context

void* sid_pal_serial_bus_client::client_selector_context

Context returned back in client_selector_cb

Copyright © 2025 Silicon Laboratories. All rights reserved. 135/297

sid_pal_serial_bus_ iface

sid_pal_serial_bus_iface

The set of callbacks the implementation supports.

Public Attributes

sid_error_t(* xfer
Callback to transfer messages in full duplex mode .

sid_error_t(* xfer_hd
Callback to transfer messages in half duplex mode .

sid_error_t(* destroy
Callback to delete the serial bus interface .

Public Attribute Documentation

xfer

sid_error_t(* sid_pal_serial_bus_iface::xfer) (const struct sid_pal_serial_bus_iface *iface, const struct
sid_pal_serial_bus_client *client, uint8_t *tx, uint8_t *rx, size_t xfer_size)

Callback to transfer messages in full duplex mode.

Returns

sid_error_t error code indicating the result of the operation.

xfer_hd

sid_error_t(* sid_pal_serial_bus_iface::xfer_hd) (const struct sid_pal_serial_bus_iface *iface, const struct
sid_pal_serial_bus_client *client, uint8_t *tx, uint8_t *rx, size_t tx_size, size_t rx_size)

Callback to transfer messages in half duplex mode.

Returns

sid_error_t error code indicating the result of the operation.

destroy

sid_error_t(* sid_pal_serial_bus_iface::destroy) (const struct sid_pal_serial_bus_iface *iface)

Callback to delete the serial bus interface.

Returns

sid_error_t error code indicating the result of the operation.

Copyright © 2025 Silicon Laboratories. All rights reserved. 136/297

sid_pal_serial_bus_factory

sid_pal_serial_bus_factory

Factory for creating serial bus client interfaces.

Public Attributes

sid_error_t(* create
Callback to create serial bus client interface .

const void * config

Public Attribute Documentation

create

sid_error_t(* sid_pal_serial_bus_factory::create) (const struct sid_pal_serial_bus_iface **iface, const void *config)

Callback to create serial bus client interface.

Returns

sid_error_t error code indicating the result of the operation.

config

const void* sid_pal_serial_bus_factory::config

pointer to client config

Copyright © 2025 Silicon Laboratories. All rights reserved. 137/297

Serial Client Interface

Serial Client Interface

Serial Client Interface
The Serial Client Interface module provides interfaces for implementing serial communication clients within the S idewalk

SDK. These interfaces ensure consistent and platform-independent access to serial communication functionalities, allowing

developers to create applications that can communicate with various serial devices and peripherals across different

hardware platforms.

Modules

Type definitions

Copyright © 2025 Silicon Laboratories. All rights reserved. 138/297

Type definitions

Type definitions

Type definitions

Modules

sid_pal_serial_callbacks_t

sid_pal_serial_params_t

sid_pal_serial_ ifc_s

sid_pal_serial_client_factory_t

Typedefs

typedef const
struct

sid_pal_serial_ifc_
s *

sid_pal_serial_ifc_t
Type definition for a constant po inter to a structure representing the serial client interface .

Typedef Documentation

sid_pal_serial_ifc_t

sid_pal_serial_ifc_t

Type definition for a constant pointer to a structure representing the serial client interface.

Copyright © 2025 Silicon Laboratories. All rights reserved. 139/297

sid_pal_serial_callbacks_t

sid_pal_serial_callbacks_t

Defines types of callbacks.

The one of runtime parameters' elements has such type. It is used to get externally defined callbacks which would be used

in interface's methods.

Public Attributes

sid_error_t(* tx_done_cb
Declaration of function type .

sid_error_t(* rx_done_cb
Declaration of po inter to function.

sid_error_t(* new_rx_done_cb
Notifies that some data has been received and can be fetched by method sid_pal_serial_ifc_s::get_frame .

Public Attribute Documentation

tx_done_cb

sid_error_t(* sid_pal_serial_callbacks_t::tx_done_cb) (void *user_ctx)

Declaration of function type.

The function itself is callback which can be called by inteface's methods. This callback should be defined outside a module

which defines implementation for this interface. Most likely it would be defined in the module which uses implementation of

the interface. Callback is called when transmission by means of implementation is finished.

rx_done_cb

sid_error_t(* sid_pal_serial_callbacks_t::rx_done_cb) (void *user_ctx, const uint8_t *buffer_received, size_t buffer_size)

Declaration of pointer to function.

The function itself is callback which can be called by interface's methods. This callback should be defined outside a module

which defines implementation for this interface. Most likely it would be defined in the module which uses implementation of

the interface. Callback is called when implementation has finished reception of data by its means.

new_rx_done_cb

sid_error_t(* sid_pal_serial_callbacks_t::new_rx_done_cb) (void *user_ctx)

Notifies that some data has been received and can be fetched by method sid_pal_serial_ ifc_s::get_frame.

Copyright © 2025 Silicon Laboratories. All rights reserved. 140/297

sid_pal_serial_params_t

sid_pal_serial_params_t

This structure type defines all configurations/values for specific "instance" which could be initialized/derived in runtime.

Note

It will be extended when more functionality is added to implementation.

Public Attributes

void * params_ctx

void * user_ctx

const
sid_pal_serial_call

backs_t *

callbacks

const struct
sid_event_queue

*

queue

Public Attribute Documentation

params_ctx

void* sid_pal_serial_params_t::params_ctx

Runtime parameters for specific implementation. Its type defined in implementation so create function can cast it to that

type.

user_ctx

void* sid_pal_serial_params_t::user_ctx

External parameters to pass in callbacks. The implementation doesn't need to know the type and content of it, since

callbacks defined outside it and most likely in the same module as context.

callbacks

const sid_pal_serial_callbacks_t* sid_pal_serial_params_t::callbacks

Pointer to constant structure with defined callbacks. Callbacks will be used in methods.

queue

const struct sid_event_queue* sid_pal_serial_params_t::queue

Pointer to the event queue structure.

Copyright © 2025 Silicon Laboratories. All rights reserved. 141/297

sid_pal_serial_params_t

Copyright © 2025 Silicon Laboratories. All rights reserved. 142/297

sid_pal_serial_ ifc_s

sid_pal_serial_ifc_s

Declaration of pointers to serial client interface's methods.

Public Attributes

sid_error_t(* send
Po inter to implementation-depended method which send data in "buffer_to_send" with size "buffer_size" over serial

connection to host.

sid_error_t(* get_frame
Fetches frame if one was received.

sid_error_t(* process
Po inter to implementation-depended method which executes routine to sustain connection with the host.

sid_error_t(* get_mtu
Po inter to implementation-depended method.

void(* destroy
Po inter to implementation-depended method which free memory taken by specific instance .

Public Attribute Documentation

send

sid_error_t(* sid_pal_serial_ifc_s::send) (const sid_pal_serial_ifc_t *_this, const uint8_t *frame_to_send, size_t frame_size)

Pointer to implementation-depended method which send data in "buffer_to_send" with size "buffer_size" over serial

connection to host.

Returns

SID_ERROR_NONE - in case method finished with success. In case of error the error's type depend upon implementation.

get_frame

sid_error_t(* sid_pal_serial_ifc_s::get_frame) (const sid_pal_serial_ifc_t *_this, uint8_t **frame_received, size_t *frame_size)

Fetches frame if one was received.

It is advisable to copy it instantaneously, since there is no guaranty that frame won't be corrupted or erased after call of

this function finished.

Returns

Any other error possible if function not succeeded to execute properly.

process

Copyright © 2025 Silicon Laboratories. All rights reserved. 143/297

sid_pal_serial_ ifc_s

sid_error_t(* sid_pal_serial_ifc_s::process) (const sid_pal_serial_ifc_t *_this)

Pointer to implementation-depended method which executes routine to sustain connection with the host.

get_mtu

sid_error_t(* sid_pal_serial_ifc_s::get_mtu) (const sid_pal_serial_ifc_t *_this, uint16_t *mtu)

Pointer to implementation-depended method.

It retrieves mtu (maximum transmit unit).

destroy

void(* sid_pal_serial_ifc_s::destroy) (const sid_pal_serial_ifc_t *_this)

Pointer to implementation-depended method which free memory taken by specific instance.

Copyright © 2025 Silicon Laboratories. All rights reserved. 144/297

sid_pal_serial_client_factory_t

sid_pal_serial_client_factory_t

Generic type for instance factory.

Public Attributes

sid_error_t(* sid_pal_serial_client_create
General type for constructors of this interface .

const void * config

Public Attribute Documentation

sid_pal_serial_client_create

sid_error_t(* sid_pal_serial_client_factory_t::sid_pal_serial_client_create) (sid_pal_serial_ifc_t const **_this, const void
*config, sid_pal_serial_params_t const *params)

General type for constructors of this interface.

It's advised to use it.

config

const void* sid_pal_serial_client_factory_t::config

The configuration to be passed in sid_pal_serial_create.

Copyright © 2025 Silicon Laboratories. All rights reserved. 145/297

Temperature

Temperature

Temperature
The Temperature Interface module provides interfaces for interacting with temperature sensors within the S idewalk SDK.

These interfaces ensure consistent and platform-independent access to temperature measurement functionalities, allowing

developers to create applications that can accurately monitor and respond to temperature changes across different

hardware platforms.

Functions

sid_error_t sid_pal_temperature_init(void)
Init temperature detection.

int16_t sid_pal_temperature_get(void)
Get temperature .

Function Documentation

sid_pal_temperature_init

sid_error_t sid_pal_temperature_init (void)

Init temperature detection.

Parameters

Type Direction Argument Name Description

void N/A

sid_pal_temperature_get

int16_t sid_pal_temperature_get (void)

Get temperature.

Parameters

Type Direction Argument Name Description

void N/A

Copyright © 2025 Silicon Laboratories. All rights reserved. 146/297

Radio Interfaces

Radio Interfaces

Radio Interfaces

Radio Interfaces

The Radio Interfaces module provides interfaces for interacting with radio hardware within the S idewalk SDK. These

interfaces ensure consistent and platform-independent access to radio functionalities, such as transmission, reception, and

configuration of radio parameters. Developers can create applications that are portable across different hardware platforms

while maintaining consistent radio behavior and performance.

The Radio Interfaces module includes support for various radio operations, including:

Transmission and Reception: Interfaces for sending and receiving data over the radio.

Configuration: Interfaces for configuring radio parameters such as data rate, channel, and power settings.

Event Handling: Mechanisms for handling radio events such as transmission completion, reception completion, and errors.

State Management: Interfaces for managing the state of the radio, including transitions between different states such as

sleep, standby, and active modes.

By utilizing the Radio Interfaces module, developers can ensure that their applications can effectively communicate over

the radio within the Amazon S idewalk network, regardless of the underlying hardware platform.

Modules

FSK Interface

LoRa Interface

Sub-GHz Interface

Copyright © 2025 Silicon Laboratories. All rights reserved. 147/297

FSK Interface

FSK Interface

FSK Interface
FSK modulation defines for S idewalk.

Modules

Type definitions

Copyright © 2025 Silicon Laboratories. All rights reserved. 148/297

Type definitions

Type definitions

Type definitions

Modules

sid_pal_radio_fsk_cad_params_t

sid_pal_radio_fsk_modulation_params_t

sid_pal_radio_fsk_packet_params_t

sid_pal_radio_fsk_phy_hdr_t

sid_pal_radio_fsk_pkt_cfg_t

sid_pal_radio_fsk_rx_packet_status_t

sid_pal_radio_fsk_phy_settings_t

Enumerations

enum sid_pal_radio_fsk_header_type {

SID_PAL_RADIO_FSK_SIDEWALK_HEADER = 0
SID_PAL_RADIO_FSK_CUSTOM_HEADER = 1

}
Sidewalk Phy FSK header type .

enum radio_fsk_fcs_t {

RADIO_FSK_FCS_TYPE_0 = 0
RADIO_FSK_FCS_TYPE_1 = 1

}
Radio FSK FCS enumeration definition.

Macros

#define SID_PAL_RADIO_FSK_MOD_SHAPING_OFF 0�00
Radio Mod Shaping parameter.

#define SID_PAL_RADIO_FSK_MOD_SHAPING_G_BT_03 0�08

#define SID_PAL_RADIO_FSK_MOD_SHAPING_G_BT_05 0�09

#define SID_PAL_RADIO_FSK_MOD_SHAPING_G_BT_07 0�0A

#define SID_PAL_RADIO_FSK_MOD_SHAPING_G_BT_1 0�0B

#define SID_PAL_RADIO_FSK_BW_4800 0�1F
Bandwidth.

#define SID_PAL_RADIO_FSK_BW_5800 0�07

#define SID_PAL_RADIO_FSK_BW_7300 0�0F

#define SID_PAL_RADIO_FSK_BW_9700 0�1E

Copyright © 2025 Silicon Laboratories. All rights reserved. 149/297

Type definitions

#define SID_PAL_RADIO_FSK_BW_11700 0�16

#define SID_PAL_RADIO_FSK_BW_14600 0�0E

#define SID_PAL_RADIO_FSK_BW_19500 0�1D

#define SID_PAL_RADIO_FSK_BW_23400 0�15

#define SID_PAL_RADIO_FSK_BW_29300 0�0D

#define SID_PAL_RADIO_FSK_BW_39000 0�1C

#define SID_PAL_RADIO_FSK_BW_46900 0�14

#define SID_PAL_RADIO_FSK_BW_58600 0�0C

#define SID_PAL_RADIO_FSK_BW_78200 0�1B

#define SID_PAL_RADIO_FSK_BW_93800 0�13

#define SID_PAL_RADIO_FSK_BW_117300 0�0B

#define SID_PAL_RADIO_FSK_BW_156200 0�1A

#define SID_PAL_RADIO_FSK_BW_187200 0�12

#define SID_PAL_RADIO_FSK_BW_234300 0�0A

#define SID_PAL_RADIO_FSK_BW_312000 0�19

#define SID_PAL_RADIO_FSK_BW_373600 0�11

#define SID_PAL_RADIO_FSK_BW_467000 0�09

#define SID_PAL_RADIO_FSK_BW_100KHZ SID_PAL_RADIO_FSK_BW_93800

#define SID_PAL_RADIO_FSK_BW_117KHZ SID_PAL_RADIO_FSK_BW_117300

#define SID_PAL_RADIO_FSK_BW_125KHZ SID_PAL_RADIO_FSK_BW_156200

#define SID_PAL_RADIO_FSK_BW_150KHZ SID_PAL_RADIO_FSK_BW_156200

#define SID_PAL_RADIO_FSK_BW_250KHZ SID_PAL_RADIO_FSK_BW_312000

#define SID_PAL_RADIO_FSK_BW_500KHZ SID_PAL_RADIO_FSK_BW_467000

#define SID_PAL_RADIO_FSK_PREAMBLE_DETECTOR_OFF 0�00
Radio Preamble detection.

#define SID_PAL_RADIO_FSK_PREAMBLE_DETECTOR_08_BITS 0�04

#define SID_PAL_RADIO_FSK_PREAMBLE_DETECTOR_16_BITS 0�05

#define SID_PAL_RADIO_FSK_PREAMBLE_DETECTOR_24_BITS 0�06

#define SID_PAL_RADIO_FSK_PREAMBLE_DETECTOR_32_BITS 0�07

#define SID_PAL_RADIO_FSK_ADDRESSCOMP_FILT_OFF 0�00
Radio sync word correlators activated.

#define SID_PAL_RADIO_FSK_ADDRESSCOMP_FILT_NODE 0�01

Copyright © 2025 Silicon Laboratories. All rights reserved. 150/297

Type definitions

#define SID_PAL_RADIO_FSK_ADDRESSCOMP_FILT_NODE_BROAD 0�02

#define SID_PAL_RADIO_FSK_RADIO_PACKET_FIXED_LENGTH 0�00
Radio packet length modes.

#define SID_PAL_RADIO_FSK_RADIO_PACKET_VARIABLE_LENGTH 0�01

#define SID_PAL_RADIO_FSK_CRC_OFF 0�01
packet params crc types

#define SID_PAL_RADIO_FSK_CRC_1_BYTES 0�00

#define SID_PAL_RADIO_FSK_CRC_2_BYTES 0�02

#define SID_PAL_RADIO_FSK_CRC_1_BYTES_INV 0�04

#define SID_PAL_RADIO_FSK_CRC_2_BYTES_INV 0�06

#define SID_PAL_RADIO_FSK_CRC_2_BYTES_IBM 0xF1

#define SID_PAL_RADIO_FSK_CRC_2_BYTES_CCIT 0xF2

#define SID_PAL_RADIO_FSK_DC_FREE_OFF 0�00
packet params Radio whitening mode

#define SID_PAL_RADIO_FSK_DC_FREEWHITENING 0�01

#define SID_PAL_RADIO_FSK_WHITENING_SEED 0�01FF

#define SID_PAL_RADIO_FSK_SYNC_WORD_LENGTH 8

#define SECS_TO_MUS �X�
timeout duration in usec.

#define SID_PAL_RADIO_FSK_DEFAULT_TX_TIMEOUT SECS_TO_MUS�5�
set max radio timeout to 5sec

#define SID_PAL_RADIO_FSK_TIMEOUT_DURATION_1_SEC SECS_TO_MUS�1�
1 sec timeout used by diagnostics code

#define SID_MAX_CUSTOM_PHYHDR_SZ 4

Enumeration Documentation

sid_pal_radio_fsk_header_type

sid_pal_radio_fsk_header_type

S idewalk Phy FSK header type.

Enumerator

SID_PAL_RADIO_FSK_SIDEWALK_HEADER S idewalk-specific header

SID_PAL_RADIO_FSK_CUSTOM_HEADER Custom header

radio_fsk_fcs_t

radio_fsk_fcs_t

Copyright © 2025 Silicon Laboratories. All rights reserved. 151/297

Type definitions

Radio FSK FCS enumeration definition.

Enumerator

RADIO_FSK_FCS_TYPE_0 4-octet FCS

RADIO_FSK_FCS_TYPE_1 2-octet FCS

Copyright © 2025 Silicon Laboratories. All rights reserved. 152/297

sid_pal_radio_fsk_cad_params_t

sid_pal_radio_fsk_cad_params_t

S idewalk Phy FSK CAD (Channel Activity Detection) parameters.

Public Attributes

int16_t fsk_ed_rssi_threshold

uint16_t fsk_ed_duration_mus

uint8_t fsk_cs_min_prm_det

uint32_t fsk_cs_duration_us

uint32_t fsk_cs_lbt_rx_timeout

uint16_t fsk_cs_lbt_preamble_len

Public Attribute Documentation

fsk_ed_rssi_threshold

int16_t sid_pal_radio_fsk_cad_params_t::fsk_ed_rssi_threshold

RSSI threshold for energy detection

fsk_ed_duration_mus

uint16_t sid_pal_radio_fsk_cad_params_t::fsk_ed_duration_mus

Duration for energy detection in microseconds

fsk_cs_min_prm_det

uint8_t sid_pal_radio_fsk_cad_params_t::fsk_cs_min_prm_det

Minimum preamble detection for carrier sense

fsk_cs_duration_us

uint32_t sid_pal_radio_fsk_cad_params_t::fsk_cs_duration_us

Duration for carrier sense in microseconds

fsk_cs_lbt_rx_timeout

Copyright © 2025 Silicon Laboratories. All rights reserved. 153/297

sid_pal_radio_fsk_cad_params_t

uint32_t sid_pal_radio_fsk_cad_params_t::fsk_cs_lbt_rx_timeout

RX timeout for Listen Before Talk (LBT)

fsk_cs_lbt_preamble_len

uint16_t sid_pal_radio_fsk_cad_params_t::fsk_cs_lbt_preamble_len

Preamble length for Listen Before Talk (LBT)

Copyright © 2025 Silicon Laboratories. All rights reserved. 154/297

sid_pal_radio_fsk_modulation_params_t

sid_pal_radio_fsk_modulation_params_t

S idewalk phy fsk modulation parameters.

Public Attributes

uint32_t bit_rate

uint32_t freq_dev

enum
sid_pal_radio_fsk_

header_type

header_type

uint8_t mod_shaping

uint8_t bandwidth

uint8_t custom_rate_idx

Public Attribute Documentation

bit_rate

uint32_t sid_pal_radio_fsk_modulation_params_t::bit_rate

Bit rate for the FSK modulation

freq_dev

uint32_t sid_pal_radio_fsk_modulation_params_t::freq_dev

Frequency deviation for the FSK modulation

header_type

enum sid_pal_radio_fsk_header_type sid_pal_radio_fsk_modulation_params_t::header_type

FSK header type

mod_shaping

uint8_t sid_pal_radio_fsk_modulation_params_t::mod_shaping

Modulation shaping parameter

bandwidth

Copyright © 2025 Silicon Laboratories. All rights reserved. 155/297

sid_pal_radio_fsk_modulation_params_t

uint8_t sid_pal_radio_fsk_modulation_params_t::bandwidth

Bandwidth for the FSK modulation

custom_rate_idx

uint8_t sid_pal_radio_fsk_modulation_params_t::custom_rate_idx

Rate index if the data rate is custom

Copyright © 2025 Silicon Laboratories. All rights reserved. 156/297

sid_pal_radio_fsk_packet_params_t

sid_pal_radio_fsk_packet_params_t

S idewalk phy fsk packet parameters.

Public Attributes

uint16_t preamble_length

uint8_t preamble_min_detect

uint8_t sync_word_length

uint8_t addr_comp

uint8_t header_type

uint8_t payload_length

uint8_t * payload

uint8_t crc_type

uint8_t radio_whitening_mode

Public Attribute Documentation

preamble_length

uint16_t sid_pal_radio_fsk_packet_params_t::preamble_length

Length of the preamble

preamble_min_detect

uint8_t sid_pal_radio_fsk_packet_params_t::preamble_min_detect

Minimum preamble detection

sync_word_length

uint8_t sid_pal_radio_fsk_packet_params_t::sync_word_length

Length of the sync word

addr_comp

uint8_t sid_pal_radio_fsk_packet_params_t::addr_comp

Copyright © 2025 Silicon Laboratories. All rights reserved. 157/297

sid_pal_radio_fsk_packet_params_t

Address comparison mode

header_type

uint8_t sid_pal_radio_fsk_packet_params_t::header_type

Type of the header

payload_length

uint8_t sid_pal_radio_fsk_packet_params_t::payload_length

Length of the payload

payload

uint8_t* sid_pal_radio_fsk_packet_params_t::payload

Pointer to the payload

crc_type

uint8_t sid_pal_radio_fsk_packet_params_t::crc_type

Type of the CRC

radio_whitening_mode

uint8_t sid_pal_radio_fsk_packet_params_t::radio_whitening_mode

Radio whitening mode

Copyright © 2025 Silicon Laboratories. All rights reserved. 158/297

sid_pal_radio_fsk_phy_hdr_t

sid_pal_radio_fsk_phy_hdr_t

Radio FSK PHY HDR structure definition.

Public Attributes

radio_fsk_fcs_t fcs_type

bool is_data_whitening_enabled

bool is_fec_enabled

uint8_t phy_hdr_len

uint8_t phy_header

Public Attribute Documentation

fcs_type

radio_fsk_fcs_t sid_pal_radio_fsk_phy_hdr_t::fcs_type

FCS (Frame Check Sequence) type

is_data_whitening_enabled

bool sid_pal_radio_fsk_phy_hdr_t::is_data_whitening_enabled

Flag to indicate if data whitening is enabled

is_fec_enabled

bool sid_pal_radio_fsk_phy_hdr_t::is_fec_enabled

Flag to indicate if FEC (Forward Error Correction) is enabled

phy_hdr_len

uint8_t sid_pal_radio_fsk_phy_hdr_t::phy_hdr_len

Length of the PHY header

phy_header

uint8_t sid_pal_radio_fsk_phy_hdr_t::phy_header[4]

Copyright © 2025 Silicon Laboratories. All rights reserved. 159/297

sid_pal_radio_fsk_phy_hdr_t

PHY header

Copyright © 2025 Silicon Laboratories. All rights reserved. 160/297

sid_pal_radio_fsk_pkt_cfg_t

sid_pal_radio_fsk_pkt_cfg_t

S idewalk Phy FSK packet configuration.

Public Attributes

sid_pal_radio_fsk_
phy_hdr_t *

phy_hdr

sid_pal_radio_fsk_
packet_params_t

*

packet_params

uint32_t packet_timeout

uint8_t * sync_word

uint8_t * payload

Public Attribute Documentation

phy_hdr

sid_pal_radio_fsk_phy_hdr_t* sid_pal_radio_fsk_pkt_cfg_t::phy_hdr

Pointer to the PHY header for the FSK modulation

packet_params

sid_pal_radio_fsk_packet_params_t* sid_pal_radio_fsk_pkt_cfg_t::packet_params

Pointer to the packet parameters for the FSK modulation

packet_timeout

uint32_t sid_pal_radio_fsk_pkt_cfg_t::packet_timeout

Packet timeout in microseconds

sync_word

uint8_t* sid_pal_radio_fsk_pkt_cfg_t::sync_word

Pointer to the sync word for the FSK modulation

payload

Copyright © 2025 Silicon Laboratories. All rights reserved. 161/297

sid_pal_radio_fsk_pkt_cfg_t

uint8_t* sid_pal_radio_fsk_pkt_cfg_t::payload

Pointer to the payload to be transmitted

Copyright © 2025 Silicon Laboratories. All rights reserved. 162/297

sid_pal_radio_fsk_rx_packet_status_t

sid_pal_radio_fsk_rx_packet_status_t

S idewalk Phy received FSK packet status.

Public Attributes

int8_t rssi_avg

int8_t rssi_sync

int8_t snr

Public Attribute Documentation

rssi_avg

int8_t sid_pal_radio_fsk_rx_packet_status_t::rssi_avg

Average RSSI (Received S ignal Strength Indicator)

rssi_sync

int8_t sid_pal_radio_fsk_rx_packet_status_t::rssi_sync

RSSI during sync word detection

snr

int8_t sid_pal_radio_fsk_rx_packet_status_t::snr

S ignal-to-Noise Ratio

Copyright © 2025 Silicon Laboratories. All rights reserved. 163/297

sid_pal_radio_fsk_phy_settings_t

sid_pal_radio_fsk_phy_settings_t

S idewalk phy fsk configuration handle.

Public Attributes

uint32_t freq

int8_t power

uint8_t sync_word

uint8_t sync_word_len

uint16_t whitening_seed

uint16_t crc_polynomial

uint16_t crc_seed

uint32_t tx_timeout

uint32_t symbol_timeout

sid_pal_radio_fsk_
modulation_param

s_t

fsk_modulation_params

sid_pal_radio_fsk_
packet_params_t

fsk_packet_params

sid_pal_radio_fsk_
cad_params_t

fsk_cad_params

sid_pal_radio_fsk_
phy_hdr_t

fsk_phy_hdr

Public Attribute Documentation

freq

uint32_t sid_pal_radio_fsk_phy_settings_t::freq

Frequency for the FSK modulation

power

int8_t sid_pal_radio_fsk_phy_settings_t::power

Transmission power in dBm

sync_word

Copyright © 2025 Silicon Laboratories. All rights reserved. 164/297

sid_pal_radio_fsk_phy_settings_t

uint8_t sid_pal_radio_fsk_phy_settings_t::sync_word[8]

Sync word for the FSK modulation

sync_word_len

uint8_t sid_pal_radio_fsk_phy_settings_t::sync_word_len

Length of the sync word

whitening_seed

uint16_t sid_pal_radio_fsk_phy_settings_t::whitening_seed

Whitening seed for the FSK modulation

crc_polynomial

uint16_t sid_pal_radio_fsk_phy_settings_t::crc_polynomial

CRC polynomial for the FSK modulation

crc_seed

uint16_t sid_pal_radio_fsk_phy_settings_t::crc_seed

CRC seed for the FSK modulation

tx_timeout

uint32_t sid_pal_radio_fsk_phy_settings_t::tx_timeout

Transmission timeout in microseconds

symbol_timeout

uint32_t sid_pal_radio_fsk_phy_settings_t::symbol_timeout

Symbol timeout in microseconds

Copyright © 2025 Silicon Laboratories. All rights reserved. 165/297

sid_pal_radio_fsk_phy_settings_t

fsk_modulation_params

sid_pal_radio_fsk_modulation_params_t sid_pal_radio_fsk_phy_settings_t::fsk_modulation_params

Modulation parameters for the FSK modulation

fsk_packet_params

sid_pal_radio_fsk_packet_params_t sid_pal_radio_fsk_phy_settings_t::fsk_packet_params

Packet parameters for the FSK modulation

fsk_cad_params

sid_pal_radio_fsk_cad_params_t sid_pal_radio_fsk_phy_settings_t::fsk_cad_params

CAD (Channel Activity Detection) parameters for the FSK modulation

fsk_phy_hdr

sid_pal_radio_fsk_phy_hdr_t sid_pal_radio_fsk_phy_settings_t::fsk_phy_hdr

PHY header for the FSK modulation

Copyright © 2025 Silicon Laboratories. All rights reserved. 166/297

LoRa Interface

LoRa Interface

LoRa Interface
LoRa modulation defines for S idewalk.

Modules

Type definitions

Copyright © 2025 Silicon Laboratories. All rights reserved. 167/297

Type definitions

Type definitions

Type definitions

Modules

sid_pal_radio_lora_modulation_params_t

sid_pal_radio_lora_packet_params_t

sid_pal_radio_lora_rx_packet_status_t

sid_pal_radio_lora_cad_params_t

sid_pal_radio_lora_phy_settings_t

Enumerations

enum sid_pal_radio_lora_crc_present_t {

SID_PAL_RADIO_CRC_PRESENT_INVALID = 0
SID_PAL_RADIO_CRC_PRESENT_OFF = 1
SID_PAL_RADIO_CRC_PRESENT_ON = 2
SID_PAL_RADIO_CRC_PRESENT_MAX_NUM = SID_PAL_RADIO_CRC_PRESENT_ON

}
Sidewalk phy lora crc present.

Macros

#define SID_PAL_RADIO_LORA_SF5 0�05
Spreading Factor.

#define SID_PAL_RADIO_LORA_SF6 0�06

#define SID_PAL_RADIO_LORA_SF7 0�07

#define SID_PAL_RADIO_LORA_SF8 0�08

#define SID_PAL_RADIO_LORA_SF9 0�09

#define SID_PAL_RADIO_LORA_SF10 0�0A

#define SID_PAL_RADIO_LORA_SF11 0�0B

#define SID_PAL_RADIO_LORA_SF12 0�0C

#define SID_PAL_RADIO_LORA_BW_7KHZ 0�00
Bandwidth.

#define SID_PAL_RADIO_LORA_BW_10KHZ 0�08

#define SID_PAL_RADIO_LORA_BW_15KHZ 0�01

#define SID_PAL_RADIO_LORA_BW_20KHZ 0�09

#define SID_PAL_RADIO_LORA_BW_31KHZ 0�02

Copyright © 2025 Silicon Laboratories. All rights reserved. 168/297

Type definitions

#define SID_PAL_RADIO_LORA_BW_41KHZ 0�0A

#define SID_PAL_RADIO_LORA_BW_62KHZ 0�03

#define SID_PAL_RADIO_LORA_BW_125KHZ 0�04

#define SID_PAL_RADIO_LORA_BW_250KHZ 0�05

#define SID_PAL_RADIO_LORA_BW_500KHZ 0�06

#define SID_PAL_RADIO_LORA_CODING_RATE_4_5 0�01
Coding Rate .

#define SID_PAL_RADIO_LORA_CODING_RATE_4_6 0�02

#define SID_PAL_RADIO_LORA_CODING_RATE_4_7 0�03

#define SID_PAL_RADIO_LORA_CODING_RATE_4_8 0�04

#define SID_PAL_RADIO_LORA_CODING_RATE_4_5_LI 0�05

#define SID_PAL_RADIO_LORA_CODING_RATE_4_6_LI 0�06

#define SID_PAL_RADIO_LORA_CODING_RATE_4_8_LI 0�07

#define SID_PAL_RADIO_LORA_HEADER_TYPE_VARIABLE_LENGTH 0�00
packet params header type

#define SID_PAL_RADIO_LORA_HEADER_TYPE_FIXED_LENGTH 0�01

#define SID_PAL_RADIO_LORA_CRC_OFF 0�00
packet params crc modes

#define SID_PAL_RADIO_LORA_CRC_ON 0�01

#define SID_PAL_RADIO_LORA_IQ_NORMAL 0�00
packet params IQ modes

#define SID_PAL_RADIO_LORA_IQ_INVERTED 0�01

#define SID_PAL_RADIO_LORA_LDR_LONG_INTERLEAVER_OFF 0�00
packet params LI modes

#define SID_PAL_RADIO_LORA_LDR_LONG_INTERLEAVER_ON 0�01

#define SID_PAL_RADIO_LORA_CAD_01_SYMBOL 0�00
cad params

#define SID_PAL_RADIO_LORA_CAD_02_SYMBOL 0�01

#define SID_PAL_RADIO_LORA_CAD_04_SYMBOL 0�02

#define SID_PAL_RADIO_LORA_CAD_08_SYMBOL 0�03

#define SID_PAL_RADIO_LORA_CAD_16_SYMBOL 0�04

#define SID_PAL_RADIO_LORA_CAD_EXIT_MODE_CAD_ONLY 0�00

#define SID_PAL_RADIO_LORA_CAD_EXIT_MODE_CAD_RX 0�01

#define SID_PAL_RADIO_LORA_CAD_EXIT_MODE_CAD_LBT 0�10

Copyright © 2025 Silicon Laboratories. All rights reserved. 169/297

Type definitions

#define SID_PAL_RADIO_LORA_SF5_SF6_MIN_PREAMBLE_LEN 12

#define SECS_TO_MUS �X�
timeout duration in usec.

#define SID_PAL_RADIO_LORA_CAD_DEFAULT_TX_TIMEOUT SECS_TO_MUS�5�
set max radio timeout to 5sec

#define SID_PAL_RADIO_LORA_DEFAULT_TX_TIMEOUT SID_PAL_RADIO_LORA_CAD_DEFAULT_TX_TIMEOUT

#define SID_PAL_RADIO_LORA_TIMEOUT_DURATION_1_SEC SECS_TO_MUS�1�
1 sec timeout used by diagnostics code

#define SID_PAL_RADIO_LORA_PRIVATE_NETWORK_SYNC_WORD 0�1424

#define SID_PAL_RADIO_LORA_PUBLIC_NETWORK_SYNC_WORD LORA_MAC_PUBLIC_SYNCWORD

#define SID_PAL_RADIO_LORA_MAX_PAYLOAD_LENGTH 250

#define SID_PAL_RADIO_LORA_ED_PREAMBLE_LENGTH_DEFAULT �250 << 3�

#define SID_PAL_RADIO_LORA_ED_MOD_SHAPING MOD_SHAPING_G_BT_1

#define SID_PAL_RADIO_LORA_ED_PREAMBLE_MIN_DETECT RADIO_PREAMBLE_DETECTOR_08_BITS

#define SID_PAL_RADIO_LORA_ED_SYNCWORD_LENGTH_DEFAULT �3 << 3�

#define SID_PAL_RADIO_LORA_ED_ADDRCOMP_DEFAULT RADIO_ADDRESSCOMP_FILT_OFF

#define SID_PAL_RADIO_LORA_ED_HEADER_TYPE_DEFAULT RADIO_PACKET_VARIABLE_LENGTH

#define SID_PAL_RADIO_LORA_ED_CRC_LENGTH_DEFAULT RADIO_CRC_2_BYTES_CCIT

#define SID_PAL_RADIO_LORA_ED_RADIO_WHITENING_MODE_DEFAULT RADIO_DC_FREEWHITENING

#define SID_PAL_RADIO_LORA_ED_PAYLOAD_LENGTH_DEFAULT 0

#define SID_PAL_RADIO_LORA_ED_DEFAULT_WHITENING_SEED 0�01FF

Enumeration Documentation

sid_pal_radio_lora_crc_present_t

sid_pal_radio_lora_crc_present_t

S idewalk phy lora crc present.

Enumerator

SID_PAL_RADIO_CRC_PRESENT_INVALID Invalid value

SID_PAL_RADIO_CRC_PRESENT_OFF CRC not present

SID_PAL_RADIO_CRC_PRESENT_ON CRC present

SID_PAL_RADIO_CRC_PRESENT_MAX_NUM Maximum number of CRC present

Copyright © 2025 Silicon Laboratories. All rights reserved. 170/297

sid_pal_radio_lora_modulation_params_t

sid_pal_radio_lora_modulation_params_t

S idewalk phy lora modulation parameters.

Public Attributes

uint8_t spreading_factor

uint8_t bandwidth

uint8_t coding_rate

Public Attribute Documentation

spreading_factor

uint8_t sid_pal_radio_lora_modulation_params_t::spreading_factor

Spreading factor

bandwidth

uint8_t sid_pal_radio_lora_modulation_params_t::bandwidth

Bandwidth

coding_rate

uint8_t sid_pal_radio_lora_modulation_params_t::coding_rate

Coding rate

Copyright © 2025 Silicon Laboratories. All rights reserved. 171/297

sid_pal_radio_lora_packet_params_t

sid_pal_radio_lora_packet_params_t

S idewalk phy lora packet parameters.

Public Attributes

uint16_t preamble_length

uint8_t header_type

uint8_t payload_length

uint8_t crc_mode

uint8_t invert_IQ

Public Attribute Documentation

preamble_length

uint16_t sid_pal_radio_lora_packet_params_t::preamble_length

Length of the preamble

header_type

uint8_t sid_pal_radio_lora_packet_params_t::header_type

Type of the header

payload_length

uint8_t sid_pal_radio_lora_packet_params_t::payload_length

Length of the payload

crc_mode

uint8_t sid_pal_radio_lora_packet_params_t::crc_mode

Type of the CRC

invert_IQ

uint8_t sid_pal_radio_lora_packet_params_t::invert_IQ

Copyright © 2025 Silicon Laboratories. All rights reserved. 172/297

sid_pal_radio_lora_packet_params_t

IQ inversion

Copyright © 2025 Silicon Laboratories. All rights reserved. 173/297

sid_pal_radio_lora_rx_packet_status_t

sid_pal_radio_lora_rx_packet_status_t

S idewalk Phy received LORA packet status.

Public Attributes

int16_t rssi

int8_t snr

int8_t signal_rssi

sid_pal_radio_lora_
crc_present_t

is_crc_present

Public Attribute Documentation

rssi

int16_t sid_pal_radio_lora_rx_packet_status_t::rssi

RSSI (Received S ignal Strength Indicator)

snr

int8_t sid_pal_radio_lora_rx_packet_status_t::snr

S ignal-to-Noise Ratio

signal_rssi

int8_t sid_pal_radio_lora_rx_packet_status_t::signal_rssi

S ignal RSSI

is_crc_present

sid_pal_radio_lora_crc_present_t sid_pal_radio_lora_rx_packet_status_t::is_crc_present

Flag to indicate if CRC is present

Copyright © 2025 Silicon Laboratories. All rights reserved. 174/297

sid_pal_radio_lora_cad_params_t

sid_pal_radio_lora_cad_params_t

S idewalk phy lora cad parameters.

Public Attributes

uint8_t cad_symbol_num

uint8_t cad_detect_peak

uint8_t cad_detect_min

uint8_t cad_exit_mode

uint32_t cad_timeout

Public Attribute Documentation

cad_symbol_num

uint8_t sid_pal_radio_lora_cad_params_t::cad_symbol_num

Number of CAD symbols

cad_detect_peak

uint8_t sid_pal_radio_lora_cad_params_t::cad_detect_peak

CAD detection peak

cad_detect_min

uint8_t sid_pal_radio_lora_cad_params_t::cad_detect_min

CAD detection minimum

cad_exit_mode

uint8_t sid_pal_radio_lora_cad_params_t::cad_exit_mode

CAD exit mode

cad_timeout

uint32_t sid_pal_radio_lora_cad_params_t::cad_timeout

Copyright © 2025 Silicon Laboratories. All rights reserved. 175/297

sid_pal_radio_lora_cad_params_t

CAD timeout in microseconds

Copyright © 2025 Silicon Laboratories. All rights reserved. 176/297

sid_pal_radio_lora_phy_settings_t

sid_pal_radio_lora_phy_settings_t

S idewalk phy lora configuation handle.

Public Attributes

uint32_t freq

int8_t power

uint16_t sync_word

uint8_t symbol_timeout

uint32_t tx_timeout

uint8_t lora_ldr_long_interleaved_enable

sid_pal_radio_lora
_modulation_para

ms_t

lora_modulation_params

sid_pal_radio_lora
_packet_params_t

lora_packet_params

sid_pal_radio_lora_
cad_params_t

lora_cad_params

Public Attribute Documentation

freq

uint32_t sid_pal_radio_lora_phy_settings_t::freq

Frequency for the LoRa modulation

power

int8_t sid_pal_radio_lora_phy_settings_t::power

Transmission power in dBm

sync_word

uint16_t sid_pal_radio_lora_phy_settings_t::sync_word

Sync word for the LoRa modulation

symbol_timeout

Copyright © 2025 Silicon Laboratories. All rights reserved. 177/297

sid_pal_radio_lora_phy_settings_t

uint8_t sid_pal_radio_lora_phy_settings_t::symbol_timeout

Symbol timeout value

tx_timeout

uint32_t sid_pal_radio_lora_phy_settings_t::tx_timeout

Transmission timeout in microseconds

lora_ldr_long_interleaved_enable

uint8_t sid_pal_radio_lora_phy_settings_t::lora_ldr_long_interleaved_enable

Flag to enable long interleaved mode

lora_modulation_params

sid_pal_radio_lora_modulation_params_t sid_pal_radio_lora_phy_settings_t::lora_modulation_params

Modulation parameters for the LoRa modulation

lora_packet_params

sid_pal_radio_lora_packet_params_t sid_pal_radio_lora_phy_settings_t::lora_packet_params

Packet parameters for the LoRa modulation

lora_cad_params

sid_pal_radio_lora_cad_params_t sid_pal_radio_lora_phy_settings_t::lora_cad_params

CAD (Channel Activity Detection) parameters for the LoRa modulation

Copyright © 2025 Silicon Laboratories. All rights reserved. 178/297

Sub-GHz Interface

Sub-GHz Interface

Sub-GHz Interface
The Sub-GHz Interface module provides interfaces for interacting with Sub-GHz radio hardware within the S idewalk SDK.

Modules

Type definitions

Functions

int32_t sid_pal_radio_init(sid_pal_radio_event_notify_t notify, sid_pal_radio_irq_handler_t dio_irq_handler,
sid_pal_radio_rx_packet_t *rx_packet)
Initializes the radio.

int32_t sid_pal_radio_deinit(void)
Deinitialize the radio.

sid_pal_radio_irq_
mask_t

sid_pal_radio_configure_irq_mask(sid_pal_radio_irq_mask_t irq_mask)
Configure irq mask.

sid_pal_radio_irq_
mask_t

sid_pal_radio_get_current_config_irq_mask(void)
Get current irq mask settings.

int32_t sid_pal_radio_irq_process(void)
Radio irq processing.

int32_t sid_pal_radio_set_frequency(uint32_t freq)
Set the frequency for the radio.

int32_t sid_pal_radio_set_tx_power(int8_t power)
Set the radio transmit power.

int32_t sid_pal_radio_get_max_tx_power(sid_pal_radio_data_rate_t data_rate, int8_t *tx_power)
Get the radio max transmit power setting for a given data rate .

int32_t sid_pal_radio_set_region(sid_pal_radio_region_code_t region)
Set the radio region.

int32_t sid_pal_radio_sleep(uint32_t sleep_us)
Set the radio to sleep.

int32_t sid_pal_radio_standby(void)
Set the radio to standby.

int32_t sid_pal_set_radio_busy(void)
Set the radio to busy state .

int32_t sid_pal_radio_start_carrier_sense(const sid_pal_radio_fsk_cad_params_t *cad_params,
sid_pal_radio_cad_param_exit_mode_t exit_mode)
Set the radio in preamble detect mode .

int32_t sid_pal_radio_start_rx(uint32_t timeout)
Set the radio in receive mode .

Copyright © 2025 Silicon Laboratories. All rights reserved. 179/297

Sub-GHz Interface

int32_t sid_pal_radio_start_continuous_rx(void)
Set the radio to continuous receive .

int32_t sid_pal_radio_set_rx_duty_cycle(uint32_t rx_time, uint32_t sleep_time)
Set the receive duty cycle .

int32_t sid_pal_radio_set_tx_continuous_wave(uint32_t freq, int8_t power)
Set the transmit continuous wave .

int32_t sid_pal_radio_set_tx_payload(const uint8_t *buffer, uint8_t size)
Set transmit payload for the radio to transmit.

int32_t sid_pal_radio_start_tx(uint32_t timeout)
Start packet transmission.

uint8_t sid_pal_radio_get_status(void)
Get the radio state .

sid_pal_radio_mod
em_mode_t

sid_pal_radio_get_modem_mode(void)
Get the current radio modem mode .

int32_t sid_pal_radio_set_modem_mode(sid_pal_radio_modem_mode_t mode)
Set radio modem mode .

int32_t sid_pal_radio_is_channel_free(uint32_t freq, int16_t threshold, uint32_t delay_us, bool *is_channel_free)
Check the channel no ise level for a given rssi.

int32_t sid_pal_radio_get_chan_noise(uint32_t freq, int16_t *noise)
Compute the no ise sensed by radio at a particular frequency.

int16_t sid_pal_radio_rssi(void)
Get RSSI at radio 's current configured frequency.

int32_t sid_pal_radio_random(uint32_t *random)
Get a random number from radio.

int16_t sid_pal_radio_get_ant_dbi(void)
Get antenna gain in dBi.

int32_t sid_pal_radio_get_cca_level_adjust(sid_pal_radio_data_rate_t data_rate, int8_t *adj_level)
Get the cca adjustment in dB.

int32_t sid_pal_radio_get_radio_state_transition_delays(sid_pal_radio_state_transition_timings_t *state_delay)
Get the delay in microseconds to switch between different radio states.

int32_t sid_pal_radio_is_cad_exit_mode(sid_pal_radio_cad_param_exit_mode_t mode)
Check the CAD exit mode .

int32_t sid_pal_radio_set_lora_symbol_timeout(uint8_t num_of_symbols)
Radio LoRa Modulation specific APIs.

int32_t sid_pal_radio_set_lora_sync_word(uint16_t sync_word)
Set LoRa sync word.

int32_t sid_pal_radio_set_lora_modulation_params(const sid_pal_radio_lora_modulation_params_t *mod_params)
Set LoRa modulation parameters.

int32_t sid_pal_radio_set_lora_packet_params(const sid_pal_radio_lora_packet_params_t *packet_params)
Set LoRa packet parameters.

int32_t sid_pal_radio_set_lora_cad_params(const sid_pal_radio_lora_cad_params_t *cad_params)
Set LoRa CAD parameters.

Copyright © 2025 Silicon Laboratories. All rights reserved. 180/297

Sub-GHz Interface

int32_t sid_pal_radio_lora_start_cad(void)
Set the radio in CAD mode .

sid_pal_radio_data
_rate_t

sid_pal_radio_lora_mod_params_to_data_rate(const sid_pal_radio_lora_modulation_params_t *mod_params)
convert LoRa modulation params to data rate .

int32_t sid_pal_radio_lora_data_rate_to_mod_params(sid_pal_radio_lora_modulation_params_t *mod_params,
sid_pal_radio_data_rate_t data_rate, uint8_t li_enable)
Convert data rate to LoRa modulation parameters.

uint32_t sid_pal_radio_lora_time_on_air(const sid_pal_radio_lora_modulation_params_t *mod_params, const
sid_pal_radio_lora_packet_params_t *packet_params, uint8_t packet_len)
Get time on air for a LoRa packet.

uint32_t sid_pal_radio_lora_cad_duration(uint8_t symbol, const sid_pal_radio_lora_modulation_params_t *mod_params)
get CAD duration for a given number of symbo ls and lora mod_params

uint32_t sid_pal_radio_lora_get_lora_number_of_symbols(const sid_pal_radio_lora_modulation_params_t *mod_params,
uint32_t delay_micro_sec)
Calculates the minimum number of symbo ls that takes more than delay_micro_sec of air time .

uint32_t sid_pal_radio_get_lora_rx_done_delay(const sid_pal_radio_lora_modulation_params_t *mod_params, const
sid_pal_radio_lora_packet_params_t *pkt_params)
Get the time between the last bit sent (on Tx side) and the Rx done event (on Rx side)

uint32_t sid_pal_radio_get_lora_tx_process_delay(void)
Get the time between Tx schedule and the first bit of Tx.

uint32_t sid_pal_radio_get_lora_rx_process_delay(void)
Get the time of LoRa Rx processing delay.

uint32_t sid_pal_radio_get_lora_symbol_timeout_us(sid_pal_radio_lora_modulation_params_t *mod_params, uint8_t
number_of_symbol)
Get LoRa symbo l timeout in us.

int32_t sid_pal_radio_set_fsk_sync_word(const uint8_t *sync_word, uint8_t sync_word_length)
Radio FSK Modulation specific APIs.

int32_t sid_pal_radio_set_fsk_whitening_seed(uint16_t seed)
Set fsk whitening seed.

int32_t sid_pal_radio_set_fsk_modulation_params(const sid_pal_radio_fsk_modulation_params_t *mod_params)
Set fsk modulation parameters.

int32_t sid_pal_radio_set_fsk_packet_params(const sid_pal_radio_fsk_packet_params_t *packet_params)
Set fsk packet parameters.

sid_pal_radio_data
_rate_t

sid_pal_radio_fsk_mod_params_to_data_rate(const sid_pal_radio_fsk_modulation_params_t *mp)
convert fsk modulation params to data rate .

int32_t sid_pal_radio_fsk_data_rate_to_mod_params(sid_pal_radio_fsk_modulation_params_t *mod_params,
sid_pal_radio_data_rate_t data_rate)
Convert data rate to fsk modulation parameters.

uint32_t sid_pal_radio_fsk_time_on_air(const sid_pal_radio_fsk_modulation_params_t *mod_params, const
sid_pal_radio_fsk_packet_params_t *packet_params, uint8_t packet_len)
Get time on air for a fsk packet.

uint32_t sid_pal_radio_fsk_get_fsk_number_of_symbols(const sid_pal_radio_fsk_modulation_params_t *mod_params,
uint32_t delay_micro_secs)
Calculates the minimum number of symbo ls that takes more than delay_micro_secs of air time .

Copyright © 2025 Silicon Laboratories. All rights reserved. 181/297

Sub-GHz Interface

uint32_t sid_pal_radio_get_fsk_tx_process_delay(void)
Get the time between Tx schedule and the first bit of Tx.

uint32_t sid_pal_radio_get_fsk_rx_process_delay(void)
Get the time of FSK Rx processing delay.

int32_t sid_pal_radio_prepare_fsk_for_tx(sid_pal_radio_fsk_pkt_cfg_t *tx_pkt_cfg)
Setup transmit in fsk mode .

int32_t sid_pal_radio_prepare_fsk_for_rx(sid_pal_radio_fsk_pkt_cfg_t *rx_pkt_cfg)
Setup receive in fsk mode .

int32_t sid_pal_radio_set_fsk_crc_polynomial(uint16_t crc_polynomial, uint16_t crc_seed)
Configure crc parameters.

Function Documentation

sid_pal_radio_init

int32_t sid_pal_radio_init (sid_pal_radio_event_notify_t notify, sid_pal_radio_irq_handler_t dio_irq_handler,
sid_pal_radio_rx_packet_t * rx_packet)

Initializes the radio.

Parameters

Type Direction
Argument
Name

Description

sid_pal_radio_event_notify_t [in] notify routine called as part of bottom half processing of the radio

interrupt.

sid_pal_radio_irq_handler_t [in] dio_irq_handler irq handler to notify the protocol that interrupt has occurred. The

protocol switches context to a task or a software interrupt to

continue with the bottom half processing of the interrupt.

sid_pal_radio_rx_packet_t * [in] rx_packet to protocol's receive packet buffer.

Registers the radio event callback, interrupt callback and pointer to the protocol's receive packet buffer. Sets and enables

the radio interrupts.

sid_pal_radio_deinit

int32_t sid_pal_radio_deinit (void)

Deinitialize the radio.

Parameters

Type Direction Argument Name Description

void N/A

Resets the radio and clear all configuration.

sid_pal_radio_configure_irq_mask

sid_pal_radio_irq_mask_t sid_pal_radio_configure_irq_mask (sid_pal_radio_irq_mask_t irq_mask)

Copyright © 2025 Silicon Laboratories. All rights reserved. 182/297

Sub-GHz Interface

Configure irq mask.

Parameters

Type Direction Argument Name Description

sid_pal_radio_irq_mask_t [in] irq_mask

Configure the interrupts that the low level driver has to generate. The protocol configures the interrupts it is interested in

based on modem mode. The radio driver has a default mask that can be retrieved with

sid_pal_radio_get_current_config_ irq_mask.

sid_pal_radio_get_current_config_irq_mask

sid_pal_radio_irq_mask_t sid_pal_radio_get_current_config_irq_mask (void)

Get current irq mask settings.

Parameters

Type Direction Argument Name Description

void N/A

sid_pal_radio_irq_process

int32_t sid_pal_radio_irq_process (void)

Radio irq processing.

Parameters

Type Direction Argument Name Description

void N/A

The function reads the irq status register and reports radio event to the phy layer through the callback routine registered as

part of sid_pal_radio_ init. The protocol after being notified on receiving a radio interrupt switches from hardware isr to

software isr context to continue with bottom half processing of the radio interrupt. sid_pal_radio_ irq_process should

determine the cause of interrupt and notify the protocol of the phy event through the event handler registered as part of

sid_pal_radio_ init. On packet reception, this API has to copy the received packet from radio buffers to the rx packet

registered as part of sid_pal_radio_ init

sid_pal_radio_set_frequency

int32_t sid_pal_radio_set_frequency (uint32_t freq)

Set the frequency for the radio.

Parameters

Type Direction Argument Name Description

uint32_t [in] freq frequency in Hz

Copyright © 2025 Silicon Laboratories. All rights reserved. 183/297

Sub-GHz Interface

sid_pal_radio_set_tx_power

int32_t sid_pal_radio_set_tx_power (int8_t power)

Set the radio transmit power.

Parameters

Type Direction Argument Name Description

int8_t [in] power tx power in dB

sid_pal_radio_get_max_tx_power

int32_t sid_pal_radio_get_max_tx_power (sid_pal_radio_data_rate_t data_rate, int8_t * tx_power)

Get the radio max transmit power setting for a given data rate.

Parameters

Type Direction Argument Name Description

sid_pal_radio_data_rate_t [in] data_rate rate

int8_t * [out] tx_power tx power populated by this API

sid_pal_radio_set_region

int32_t sid_pal_radio_set_region (sid_pal_radio_region_code_t region)

Set the radio region.

Parameters

Type Direction Argument Name Description

sid_pal_radio_region_code_t [in] region region

sid_pal_radio_sleep

int32_t sid_pal_radio_sleep (uint32_t sleep_us)

Set the radio to sleep.

Parameters

Type Direction Argument Name Description

uint32_t [in] sleep_us time period for which the radio should be put in sleep mode

The protocol expects the radio to be set in lowest power consumption state possible.

sid_pal_radio_standby

Copyright © 2025 Silicon Laboratories. All rights reserved. 184/297

Sub-GHz Interface

int32_t sid_pal_radio_standby (void)

Set the radio to standby.

Parameters

Type Direction Argument Name Description

void N/A

The protocol sets the radio to standby mode in the following scenarios: To wake the radio from sleep state To configure

modulation parameters, packet parameters, cad, frequency, power etc

sid_pal_set_radio_busy

int32_t sid_pal_set_radio_busy (void)

Set the radio to busy state.

Parameters

Type Direction Argument Name Description

void N/A

Busy state is used for concurrent stacks operation. Set the state of radio to busy to block another stack from using the

radio peripheral. Calling sid_pal_radio_sleep() replaces SID_PAL_RADIO_BUSY state with SID_PAL_RADIO_SLEEP state.

sid_pal_radio_start_carrier_sense

int32_t sid_pal_radio_start_carrier_sense (const sid_pal_radio_fsk_cad_params_t * cad_params,
sid_pal_radio_cad_param_exit_mode_t exit_mode)

Set the radio in preamble detect mode.

Parameters

Type Direction
Argument
Name

Description

const sid_pal_radio_fsk_cad_params_t
*

[in] cad_params in microseconds for how long radio is in receive mode. The

upper bound of the timeout value is specific to each

vendor's driver implementation.

sid_pal_radio_cad_param_exit_mode_t [in] exit_mode exit mode of carrier sense operation

sid_pal_radio_start_rx

int32_t sid_pal_radio_start_rx (uint32_t timeout)

Set the radio in receive mode.

Parameters

Copyright © 2025 Silicon Laboratories. All rights reserved. 185/297

Sub-GHz Interface

Type Direction
Argument
Name

Description

uint32_t [in] timeout in microseconds for how long radio is in receive mode. The upper bound of the timeout

value is specific to each vendor's driver implementation.

sid_pal_radio_start_continuous_rx

int32_t sid_pal_radio_start_continuous_rx (void)

Set the radio to continuous receive.

Parameters

Type Direction Argument Name Description

void N/A

sid_pal_radio_set_rx_duty_cycle

int32_t sid_pal_radio_set_rx_duty_cycle (uint32_t rx_time, uint32_t sleep_time)

Set the receive duty cycle.

Parameters

Type Direction Argument Name Description

uint32_t [in] rx_time time in milliseconds spent by radio in receive.

uint32_t [in] sleep_time time in milliseconds spent by radio in sleep.

Configures the radio receive duty cycle. The protocol uses this API to set the radio to alternate between receive and sleep

states. The radio in this mode should not interrupt the protocol unless it detects a valid packet.

sid_pal_radio_set_tx_continuous_wave

int32_t sid_pal_radio_set_tx_continuous_wave (uint32_t freq, int8_t power)

Set the transmit continuous wave.

Parameters

Type Direction Argument Name Description

uint32_t [in] freq frequency in Hz on which to transmit a continuous wave.

int8_t [in] power power in dB at which the continuous wave has to be transmitted

Confiure the radio to transmit a continuous wave. This API is used for diagnostics mode only

sid_pal_radio_set_tx_payload

int32_t sid_pal_radio_set_tx_payload (const uint8_t * buffer, uint8_t size)

Copyright © 2025 Silicon Laboratories. All rights reserved. 186/297

Sub-GHz Interface

Set transmit payload for the radio to transmit.

Parameters

Type Direction Argument Name Description

const uint8_t * [in] buffer pointer to the buffer containing the tx packet.

uint8_t [in] size length of the packet that needs to be transmitted.

Writes the payload and payload length to radio buffers but the packet is not transmitted on the air.

sid_pal_radio_start_tx

int32_t sid_pal_radio_start_tx (uint32_t timeout)

Start packet transmission.

Parameters

Type Direction Argument Name Description

uint32_t [in] timeout timeout in microseconds

Starts the packet transmission. This needs to be invoked after all the radio configuration viz modulation params, packet

params, freq, power, payload and payload length are set atleast once. The radio should be able to transmit the packet

within the timeout specfied through this API. If it fails to transmit the packet within the stipulated timeout value, the radio

driver should generate a interrupt with tx timeout as the reason

sid_pal_radio_get_status

uint8_t sid_pal_radio_get_status (void)

Get the radio state.

Parameters

Type Direction Argument Name Description

void N/A

The protocol uses this API to query its current state

sid_pal_radio_get_modem_mode

sid_pal_radio_modem_mode_t sid_pal_radio_get_modem_mode (void)

Get the current radio modem mode.

Parameters

Type Direction Argument Name Description

void N/A

Supported modem modes are LoRa and FSK

Copyright © 2025 Silicon Laboratories. All rights reserved. 187/297

Sub-GHz Interface

sid_pal_radio_set_modem_mode

int32_t sid_pal_radio_set_modem_mode (sid_pal_radio_modem_mode_t mode)

Set radio modem mode.

Parameters

Type Direction Argument Name Description

sid_pal_radio_modem_mode_t [in] mode LoRa = 1 or FSK = 0

The driver should configure all the parameters to operate in the desired mode. Supported modem modes are LoRa and FSK

sid_pal_radio_is_channel_free

int32_t sid_pal_radio_is_channel_free (uint32_t freq, int16_t threshold, uint32_t delay_us, bool * is_channel_free)

Check the channel noise level for a given rssi.

Parameters

Type Direction Argument Name Description

uint32_t [in] freq frequency in Hz to measure noise level.

int16_t [in] threshold rssi threshold in dBm

uint32_t [in] delay_us period in microseconds for radio to sense the medium

bool * [out] is_channel_free boolean to store the result of the operation

The radio should sense the medium in the frequency specified by parameter freq for a period specified by delay_us,

compute the rssi, and compare the computed rssi with the passed threshold specified by the parameter threshold. If the

computed rssi is greater than threshold, the parameter is_channel_free is set to false otherwise it is set to true. If any of

the above operations fail, appropriate error value will be returned.

sid_pal_radio_get_chan_noise

int32_t sid_pal_radio_get_chan_noise (uint32_t freq, int16_t * noise)

Compute the noise sensed by radio at a particular frequency.

Parameters

Type Direction Argument Name Description

uint32_t [in] freq frequency in Hz on which noise level is to be measured.

int16_t * [out] noise pointer to variable to store the avg noise in dBm

sid_pal_radio_rssi

int16_t sid_pal_radio_rssi (void)

Get RSSI at radio's current configured frequency.

Copyright © 2025 Silicon Laboratories. All rights reserved. 188/297

Sub-GHz Interface

Parameters

Type Direction Argument Name Description

void N/A

The frequency on which RSSI needs to be measured needs to be set before calling this API.

sid_pal_radio_random

int32_t sid_pal_radio_random (uint32_t * random)

Get a random number from radio.

Parameters

Type Direction Argument Name Description

uint32_t * [out] random pointer to store the random number

sid_pal_radio_get_ant_dbi

int16_t sid_pal_radio_get_ant_dbi (void)

Get antenna gain in dBi.

Parameters

Type Direction Argument Name Description

void N/A

sid_pal_radio_get_cca_level_adjust

int32_t sid_pal_radio_get_cca_level_adjust (sid_pal_radio_data_rate_t data_rate, int8_t * adj_level)

Get the cca adjustment in dB.

Parameters

Type Direction Argument Name Description

sid_pal_radio_data_rate_t [in] data_rate rate

int8_t * [out] adj_level pointer to CCA level adjustment in dB get by this API

sid_pal_radio_get_radio_state_transition_delays

int32_t sid_pal_radio_get_radio_state_transition_delays (sid_pal_radio_state_transition_timings_t * state_delay)

Get the delay in microseconds to switch between different radio states.

Parameters

Copyright © 2025 Silicon Laboratories. All rights reserved. 189/297

Sub-GHz Interface

Type Direction Argument Name Description

sid_pal_radio_state_transition_timings_t * [out] state_delay of switching delay between different radio states

sid_pal_radio_is_cad_exit_mode

int32_t sid_pal_radio_is_cad_exit_mode (sid_pal_radio_cad_param_exit_mode_t mode)

Check the CAD exit mode.

Parameters

Type Direction Argument Name Description

sid_pal_radio_cad_param_exit_mode_t [in] mode CAD exit mode.

Check with supported CAD exit modes

sid_pal_radio_set_lora_symbol_timeout

int32_t sid_pal_radio_set_lora_symbol_timeout (uint8_t num_of_symbols)

Radio LoRa Modulation specific APIs.

Parameters

Type Direction Argument Name Description

uint8_t [in] num_of_symbols number of symbols the radio has to detect before reporting a rx timeout interrupt

Set LoRa symbol timeout.

sid_pal_radio_set_lora_sync_word

int32_t sid_pal_radio_set_lora_sync_word (uint16_t sync_word)

Set LoRa sync word.

Parameters

Type Direction Argument Name Description

uint16_t [in] sync_word

sid_pal_radio_set_lora_modulation_params

int32_t sid_pal_radio_set_lora_modulation_params (const sid_pal_radio_lora_modulation_params_t * mod_params)

Set LoRa modulation parameters.

Parameters

Copyright © 2025 Silicon Laboratories. All rights reserved. 190/297

Sub-GHz Interface

Type Direction Argument Name Description

const sid_pal_radio_lora_modulation_params_t * [in] mod_params pointer to S idewalk LoRa modulation params.

sid_pal_radio_set_lora_packet_params

int32_t sid_pal_radio_set_lora_packet_params (const sid_pal_radio_lora_packet_params_t * packet_params)

Set LoRa packet parameters.

Parameters

Type Direction Argument Name Description

const sid_pal_radio_lora_packet_params_t * [in] packet_params pointer to S idewalk LoRa packet params.

sid_pal_radio_set_lora_cad_params

int32_t sid_pal_radio_set_lora_cad_params (const sid_pal_radio_lora_cad_params_t * cad_params)

Set LoRa CAD parameters.

Parameters

Type Direction Argument Name Description

const sid_pal_radio_lora_cad_params_t * [in] cad_params pointer to S idewalk CAD params.

sid_pal_radio_lora_start_cad

int32_t sid_pal_radio_lora_start_cad (void)

Set the radio in CAD mode.

Parameters

Type Direction Argument Name Description

void N/A

sid_pal_radio_lora_mod_params_to_data_rate

sid_pal_radio_data_rate_t sid_pal_radio_lora_mod_params_to_data_rate (const sid_pal_radio_lora_modulation_params_t *
mod_params)

convert LoRa modulation params to data rate.

Parameters

Type Direction Argument Name Description

const sid_pal_radio_lora_modulation_params_t * [in] mod_params pointer to LoRa modulation params.

Copyright © 2025 Silicon Laboratories. All rights reserved. 191/297

Sub-GHz Interface

sid_pal_radio_lora_data_rate_to_mod_params

int32_t sid_pal_radio_lora_data_rate_to_mod_params (sid_pal_radio_lora_modulation_params_t * mod_params,
sid_pal_radio_data_rate_t data_rate, uint8_t li_enable)

Convert data rate to LoRa modulation parameters.

Parameters

Type Direction Argument Name Description

sid_pal_radio_lora_modulation_params_t * [out] mod_params pointer to LoRa modulation params.

sid_pal_radio_data_rate_t [in] data_rate rate.

uint8_t [in] li_enable enable/disable long interleaver mode

sid_pal_radio_lora_time_on_air

uint32_t sid_pal_radio_lora_time_on_air (const sid_pal_radio_lora_modulation_params_t * mod_params, const
sid_pal_radio_lora_packet_params_t * packet_params, uint8_t packet_len)

Get time on air for a LoRa packet.

Parameters

Type Direction
Argument
Name

Description

const
sid_pal_radio_lora_modulation_params_t *

[in] mod_params pointer to LoRa modulation params.

const sid_pal_radio_lora_packet_params_t * [in] packet_params pointer to LoRa packet params.

uint8_t [in] packet_len length of the packet that needs to be

transmitted.

sid_pal_radio_lora_cad_duration

uint32_t sid_pal_radio_lora_cad_duration (uint8_t symbol, const sid_pal_radio_lora_modulation_params_t * mod_params)

get CAD duration for a given number of symbols and lora mod_params

Parameters

Type Direction Argument Name Description

uint8_t [in] symbol symbol timeout for the CAD configuration.

const sid_pal_radio_lora_modulation_params_t * [in] mod_params pointer to LoRa modulation params.

sid_pal_radio_lora_get_lora_number_of_symbols

uint32_t sid_pal_radio_lora_get_lora_number_of_symbols (const sid_pal_radio_lora_modulation_params_t * mod_params,
uint32_t delay_micro_sec)

Calculates the minimum number of symbols that takes more than delay_micro_sec of air time.

Copyright © 2025 Silicon Laboratories. All rights reserved. 192/297

Sub-GHz Interface

Parameters

Type Direction
Argument
Name

Description

const
sid_pal_radio_lora_modulation_params_t
*

[in] mod_params Current modulation parameters that phy uses. If null,

zero will be returned.

uint32_t [in] delay_micro_sec Input amount of time that will be translated to

number of symbols.

In the case of a fractional number of symbols, the return value is rounded up to the next integer. Does not affect the radio

state and can be executed without radio ownership. In the case of an error, 0 is returned.

sid_pal_radio_get_lora_rx_done_delay

uint32_t sid_pal_radio_get_lora_rx_done_delay (const sid_pal_radio_lora_modulation_params_t * mod_params, const
sid_pal_radio_lora_packet_params_t * pkt_params)

Get the time between the last bit sent (on Tx side) and the Rx done event (on Rx side)

Parameters

Type Direction
Argument
Name

Description

const
sid_pal_radio_lora_modulation_params_t
*

[in] mod_params Pointer to a structure holding the LoRa modulation

parameters used for the computation

const
sid_pal_radio_lora_packet_params_t *

[in] pkt_params Pointer to a structure holding the LoRa packet

parameters used for the computation

sid_pal_radio_get_lora_tx_process_delay

uint32_t sid_pal_radio_get_lora_tx_process_delay (void)

Get the time between Tx schedule and the first bit of Tx.

Parameters

Type Direction Argument Name Description

void N/A

sid_pal_radio_get_lora_rx_process_delay

uint32_t sid_pal_radio_get_lora_rx_process_delay (void)

Get the time of LoRa Rx processing delay.

Parameters

Type Direction Argument Name Description

void N/A

Copyright © 2025 Silicon Laboratories. All rights reserved. 193/297

Sub-GHz Interface

sid_pal_radio_get_lora_symbol_timeout_us

uint32_t sid_pal_radio_get_lora_symbol_timeout_us (sid_pal_radio_lora_modulation_params_t * mod_params, uint8_t
number_of_symbol)

Get LoRa symbol timeout in us.

Parameters

Type Direction Argument Name Description

sid_pal_radio_lora_modulation_params_t * [in] mod_params pointer to S idewalk LoRa modulation params.

uint8_t [in] number_of_symbol number of symbol

sid_pal_radio_set_fsk_sync_word

int32_t sid_pal_radio_set_fsk_sync_word (const uint8_t * sync_word, uint8_t sync_word_length)

Radio FSK Modulation specific APIs.

Parameters

Type Direction Argument Name Description

const uint8_t * [in] sync_word

uint8_t [in] sync_word_length

Set fsk sync word

sid_pal_radio_set_fsk_whitening_seed

int32_t sid_pal_radio_set_fsk_whitening_seed (uint16_t seed)

Set fsk whitening seed.

Parameters

Type Direction Argument Name Description

uint16_t [in] seed

sid_pal_radio_set_fsk_modulation_params

int32_t sid_pal_radio_set_fsk_modulation_params (const sid_pal_radio_fsk_modulation_params_t * mod_params)

Set fsk modulation parameters.

Parameters

Type Direction Argument Name Description

const sid_pal_radio_fsk_modulation_params_t * [in] mod_params pointer to S idewalk fsk modulation params.

Copyright © 2025 Silicon Laboratories. All rights reserved. 194/297

Sub-GHz Interface

sid_pal_radio_set_fsk_packet_params

int32_t sid_pal_radio_set_fsk_packet_params (const sid_pal_radio_fsk_packet_params_t * packet_params)

Set fsk packet parameters.

Parameters

Type Direction Argument Name Description

const sid_pal_radio_fsk_packet_params_t * [in] packet_params pointer to S idewalk fsk packet params.

sid_pal_radio_fsk_mod_params_to_data_rate

sid_pal_radio_data_rate_t sid_pal_radio_fsk_mod_params_to_data_rate (const sid_pal_radio_fsk_modulation_params_t * mp)

convert fsk modulation params to data rate.

Parameters

Type Direction Argument Name Description

const sid_pal_radio_fsk_modulation_params_t * [in] mp pointer to fsk modulation params.

sid_pal_radio_fsk_data_rate_to_mod_params

int32_t sid_pal_radio_fsk_data_rate_to_mod_params (sid_pal_radio_fsk_modulation_params_t * mod_params,
sid_pal_radio_data_rate_t data_rate)

Convert data rate to fsk modulation parameters.

Parameters

Type Direction Argument Name Description

sid_pal_radio_fsk_modulation_params_t * [out] mod_params pointer to fsk modulation params.

sid_pal_radio_data_rate_t [in] data_rate data rate.

sid_pal_radio_fsk_time_on_air

uint32_t sid_pal_radio_fsk_time_on_air (const sid_pal_radio_fsk_modulation_params_t * mod_params, const
sid_pal_radio_fsk_packet_params_t * packet_params, uint8_t packet_len)

Get time on air for a fsk packet.

Parameters

Type Direction Argument Name Description

const sid_pal_radio_fsk_modulation_params_t * [in] mod_params pointer to fsk modulation params.

const sid_pal_radio_fsk_packet_params_t * [in] packet_params poiner to fsk packet params.

Copyright © 2025 Silicon Laboratories. All rights reserved. 195/297

Sub-GHz Interface

Type Direction Argument Name Description

uint8_t [in] packet_len length of the packet that needs to be transmitted in bytes.

sid_pal_radio_fsk_get_fsk_number_of_symbols

uint32_t sid_pal_radio_fsk_get_fsk_number_of_symbols (const sid_pal_radio_fsk_modulation_params_t * mod_params,
uint32_t delay_micro_secs)

Calculates the minimum number of symbols that takes more than delay_micro_secs of air time.

Parameters

Type Direction Argument Name Description

const
sid_pal_radio_fsk_modulation_params_t
*

[in] mod_params Current modulation parameters that phy uses. If null,

zero will be returned.

uint32_t [in] delay_micro_secs Input amount of time in uS that will be translated to

number of symbols.

In the case of a fractional number of symbols, the return value is rounded up to the next integer. Does not affect the radio

state and can be executed without radio ownership. In the case of an error, 0 is returned.

sid_pal_radio_get_fsk_tx_process_delay

uint32_t sid_pal_radio_get_fsk_tx_process_delay (void)

Get the time between Tx schedule and the first bit of Tx.

Parameters

Type Direction Argument Name Description

void N/A

sid_pal_radio_get_fsk_rx_process_delay

uint32_t sid_pal_radio_get_fsk_rx_process_delay (void)

Get the time of FSK Rx processing delay.

Parameters

Type Direction Argument Name Description

void N/A

sid_pal_radio_prepare_fsk_for_tx

int32_t sid_pal_radio_prepare_fsk_for_tx (sid_pal_radio_fsk_pkt_cfg_t * tx_pkt_cfg)

Setup transmit in fsk mode.

Copyright © 2025 Silicon Laboratories. All rights reserved. 196/297

Sub-GHz Interface

Parameters

Type Direction Argument Name Description

sid_pal_radio_fsk_pkt_cfg_t * [inout] tx_pkt_cfg tx packet config

This API is used to configure the sync word, packet params perform crc, and data whitening on the payload, and determine

the packet length. This API needs to be called before calling sid_pal_radio_set_payload and sid_pal_radio_start_tx in FSK

mode.

sid_pal_radio_prepare_fsk_for_rx

int32_t sid_pal_radio_prepare_fsk_for_rx (sid_pal_radio_fsk_pkt_cfg_t * rx_pkt_cfg)

Setup receive in fsk mode.

Parameters

Type Direction Argument Name Description

sid_pal_radio_fsk_pkt_cfg_t * [in] rx_pkt_cfg pointer to fsk packet config

This API is used to configure the sync word and packet params. This API needs to be called before calling

sid_pal_radio_start_rx in FSK mode.

sid_pal_radio_set_fsk_crc_polynomial

int32_t sid_pal_radio_set_fsk_crc_polynomial (uint16_t crc_polynomial, uint16_t crc_seed)

Configure crc parameters.

Parameters

Type Direction Argument Name Description

uint16_t [in] crc_polynomial polynomial for crc calculation

uint16_t [in] crc_seed seed value for crc calculation

This API is used to configure the crc polynomial and seed. This API needs to be called before tx and rx in FSK mode.

Copyright © 2025 Silicon Laboratories. All rights reserved. 197/297

Type definitions

Type definitions

Type definitions

Modules

sid_pal_radio_rx_packet_t

sid_pal_radio_packet_cfg_t

sid_pal_radio_tx_packet_t

sid_pal_radio_state_transition_timings_t

Enumerations

enum sid_pal_radio_region_code_t {

SID_PAL_RADIO_RC_NONE = 0
SID_PAL_RADIO_RC_NA = 1
SID_PAL_RADIO_RC_EU = 2
SID_PAL_RADIO_RC_JP = 3
SID_PAL_RADIO_RC_MAX

}
Sidewalk Phy Radio Region For Regional Config.

enum sid_pal_radio_modem_mode_t {

SID_PAL_RADIO_MODEM_MODE_FSK = 0
SID_PAL_RADIO_MODEM_MODE_LORA = 1

}
Sidewalk Phy Radio Modem Mode .

enum sid_pal_radio_events_t {

SID_PAL_RADIO_EVENT_UNKNOWN = 0
SID_PAL_RADIO_EVENT_TX_DONE = 1
SID_PAL_RADIO_EVENT_RX_DONE = 2
SID_PAL_RADIO_EVENT_CAD_DONE = 3
SID_PAL_RADIO_EVENT_CAD_TIMEOUT = 4
SID_PAL_RADIO_EVENT_RX_ERROR = 5
SID_PAL_RADIO_EVENT_TX_TIMEOUT = 6
SID_PAL_RADIO_EVENT_RX_TIMEOUT = 7
SID_PAL_RADIO_EVENT_CS_DONE = 8
SID_PAL_RADIO_EVENT_CS_TIMEOUT = 9
SID_PAL_RADIO_EVENT_HEADER_ERROR = 10
SID_PAL_RADIO_EVENT_SYNC_DET = 11

}
Sidewalk Phy Radio Event.

enum sid_pal_radio_data_rate_t {

SID_PAL_RADIO_DATA_RATE_INVALID = 0
SID_PAL_RADIO_DATA_RATE_2KBPS = 1
SID_PAL_RADIO_DATA_RATE_22KBPS = 2
SID_PAL_RADIO_DATA_RATE_50KBPS = 3
SID_PAL_RADIO_DATA_RATE_150KBPS = 4
SID_PAL_RADIO_DATA_RATE_250KBPS = 5
SID_PAL_RADIO_DATA_RATE_12_5KBPS = 6
SID_PAL_RADIO_DATA_RATE_CUSTOM = 7
SID_PAL_RADIO_DATA_RATE_MAX_NUM = SID_PAL_RADIO_DATA_RATE_CUSTOM

Copyright © 2025 Silicon Laboratories. All rights reserved. 198/297

Type definitions

}
Sidewalk Phy Radio

Data Rate .

enum sid_pal_radio_cad_param_exit_mode_t {

SID_PAL_RADIO_CAD_EXIT_MODE_CS_ONLY = 0�00
SID_PAL_RADIO_CAD_EXIT_MODE_CS_RX = 0�01
SID_PAL_RADIO_CAD_EXIT_MODE_CS_LBT = 0�10
SID_PAL_RADIO_CAD_EXIT_MODE_CS_LBT_RX = 0�11
SID_PAL_RADIO_CAD_EXIT_MODE_ED_ONLY = 0�100
SID_PAL_RADIO_CAD_EXIT_MODE_ED_RX = 0�101
SID_PAL_RADIO_CAD_EXIT_MODE_ED_LBT = 0�110
SID_PAL_RADIO_CAD_EXIT_MODE_NONE = 0�10000

}
Sidewalk Phy Radio CAD (Channel Activity Detection) Exit Mode .

enum sid_pal_radio_irq_mask_t {

RADIO_IRQ_NONE = �0 << 0�
RADIO_IRQ_TX_DONE = �1 << 0�
RADIO_IRQ_RX_DONE = �1 << 1�
RADIO_IRQ_PREAMBLE_DETECT = �1 << 2�
RADIO_IRQ_VALID_SYNC_WORD = �1 << 3�
RADIO_IRQ_VALID_HEADER = �1 << 4�
RADIO_IRQ_ERROR_HEADER = �1 << 5�
RADIO_IRQ_ERROR_CRC = �1 << 6�
RADIO_IRQ_CAD_DONE = �1 << 7�
RADIO_IRQ_CAD_DETECT = �1 << 8�
RADIO_IRQ_TXRX_TIMEOUT = �1 << 9�
RADIO_IRQ_ALL = ��1 << 10) - 1�

}
Radio IRQ MASK.

Typedefs

typedef void(* sid_pal_radio_event_notify_t)(sid_pal_radio_events_t events)
Radio event callback.

typedef void(* sid_pal_radio_irq_handler_t)(void)
Radio interrupt callback.

Macros

#define SID_PAL_RADIO_RX_PAYLOAD_MAX_SIZE 255

#define RADIO_ERROR_NONE 0
Radio Error Codes.

#define RADIO_ERROR_NOT_SUPPORTED �1

#define RADIO_ERROR_INVALID_PARAMS �2

#define RADIO_ERROR_IO_ERROR �3

#define RADIO_ERROR_BUSY �4

#define RADIO_ERROR_NOMEM �5

#define RADIO_ERROR_HARDWARE_ERROR �6

Copyright © 2025 Silicon Laboratories. All rights reserved. 199/297

Type definitions

#define RADIO_ERROR_INVALID_STATE �7

#define RADIO_ERROR_GENERIC �8

#define RADIO_ERROR_PKT_CHECK_DCR_LIMIT �9

#define RADIO_ERROR_PKT_CHECK_REG_LIMIT �10

#define RADIO_ERROR_VENDOR_FIRST �64

#define RADIO_ERROR_VENDOR_LAST �255

#define SID_PAL_RADIO_UNKNOWN 0
Sidewalk Phy Radio State .

#define SID_PAL_RADIO_STANDBY 1

#define SID_PAL_RADIO_SLEEP 2

#define SID_PAL_RADIO_RX 3

#define SID_PAL_RADIO_TX 4

#define SID_PAL_RADIO_CAD 5

#define SID_PAL_RADIO_STANDBY_XOSC 6

#define SID_PAL_RADIO_RX_DC 7

#define SID_PAL_RADIO_BUSY 8

Enumeration Documentation

sid_pal_radio_region_code_t

sid_pal_radio_region_code_t

S idewalk Phy Radio Region For Regional Config.

Enumerator

SID_PAL_RADIO_RC_NONE Region none

SID_PAL_RADIO_RC_NA Region North America

SID_PAL_RADIO_RC_EU Region EU

SID_PAL_RADIO_RC_JP Region JP

SID_PAL_RADIO_RC_MAX Region max

sid_pal_radio_modem_mode_t

sid_pal_radio_modem_mode_t

S idewalk Phy Radio Modem Mode.

Enumerator

SID_PAL_RADIO_MODEM_MODE_FSK Frequency Shift Keying (FSK) modem mode

SID_PAL_RADIO_MODEM_MODE_LORA Long Range (LoRa) modem mode

Copyright © 2025 Silicon Laboratories. All rights reserved. 200/297

Type definitions

sid_pal_radio_events_t

sid_pal_radio_events_t

S idewalk Phy Radio Event.

Enumerator

SID_PAL_RADIO_EVENT_UNKNOWN Unknown event

SID_PAL_RADIO_EVENT_TX_DONE Transmission done event

SID_PAL_RADIO_EVENT_RX_DONE Reception done event

SID_PAL_RADIO_EVENT_CAD_DONE Channel Activity Detection (CAD) done event

SID_PAL_RADIO_EVENT_CAD_TIMEOUT CAD timeout event

SID_PAL_RADIO_EVENT_RX_ERROR Reception error event

SID_PAL_RADIO_EVENT_TX_TIMEOUT Transmission timeout event

SID_PAL_RADIO_EVENT_RX_TIMEOUT Reception timeout event

SID_PAL_RADIO_EVENT_CS_DONE Carrier Sense (CS) done event

SID_PAL_RADIO_EVENT_CS_TIMEOUT CS timeout event

SID_PAL_RADIO_EVENT_HEADER_ERROR Header error event

SID_PAL_RADIO_EVENT_SYNC_DET Sync detection event

sid_pal_radio_data_rate_t

sid_pal_radio_data_rate_t

S idewalk Phy Radio Data Rate.

Enumerator

SID_PAL_RADIO_DATA_RATE_INVALID Invalid data rate

SID_PAL_RADIO_DATA_RATE_2KBPS 2 Kbps data rate

SID_PAL_RADIO_DATA_RATE_22KBPS 22 Kbps data rate

SID_PAL_RADIO_DATA_RATE_50KBPS 50 Kbps data rate

SID_PAL_RADIO_DATA_RATE_150KBPS 150 Kbps data rate

SID_PAL_RADIO_DATA_RATE_250KBPS 250 Kbps data rate

SID_PAL_RADIO_DATA_RATE_12_5KBPS 12.5 Kbps data rate

SID_PAL_RADIO_DATA_RATE_CUSTOM Custom data rate

SID_PAL_RADIO_DATA_RATE_MAX_NUM 0 is not a valid data rate

sid_pal_radio_cad_param_exit_mode_t

sid_pal_radio_cad_param_exit_mode_t

S idewalk Phy Radio CAD (Channel Activity Detection) Exit Mode.

Enumerator

SID_PAL_RADIO_CAD_EXIT_MODE_CS_ONLY Carrier sense only

Copyright © 2025 Silicon Laboratories. All rights reserved. 201/297

Type definitions

SID_PAL_RADIO_CAD_EXIT_MODE_CS_RX Carrier sense followed by Rx

SID_PAL_RADIO_CAD_EXIT_MODE_CS_LBT Carrier sense followed by Tx

SID_PAL_RADIO_CAD_EXIT_MODE_CS_LBT_RX Carrier sense followed by Tx then RX

SID_PAL_RADIO_CAD_EXIT_MODE_ED_ONLY Energy detect only

SID_PAL_RADIO_CAD_EXIT_MODE_ED_RX Energy detect followed by Rx

SID_PAL_RADIO_CAD_EXIT_MODE_ED_LBT Energy detect followed by Tx

SID_PAL_RADIO_CAD_EXIT_MODE_NONE No CAD mode set

sid_pal_radio_irq_mask_t

sid_pal_radio_irq_mask_t

Radio IRQ MASK.

Enumerator

RADIO_IRQ_NONE No interrupt

RADIO_IRQ_TX_DONE Transmission done interrupt

RADIO_IRQ_RX_DONE Reception done interrupt

RADIO_IRQ_PREAMBLE_DETECT Preamble detection interrupt

RADIO_IRQ_VALID_SYNC_WORD Valid sync word interrupt

RADIO_IRQ_VALID_HEADER Valid header interrupt

RADIO_IRQ_ERROR_HEADER Header error interrupt

RADIO_IRQ_ERROR_CRC CRC error interrupt

RADIO_IRQ_CAD_DONE Channel Activity Detection (CAD) done interrupt

RADIO_IRQ_CAD_DETECT CAD detection interrupt

RADIO_IRQ_TXRX_TIMEOUT Transmission or reception timeout interrupt

RADIO_IRQ_ALL All interrupts

Typedef Documentation

sid_pal_radio_event_notify_t

typedef void(* sid_pal_radio_event_notify_t) (sid_pal_radio_events_t events))(sid_pal_radio_events_t events)

Radio event callback.

sid_pal_radio_irq_handler_t

typedef void(* sid_pal_radio_irq_handler_t) (void))(void)

Radio interrupt callback.

Copyright © 2025 Silicon Laboratories. All rights reserved. 202/297

sid_pal_radio_rx_packet_t

sid_pal_radio_rx_packet_t

S idewalk Phy received LoRa packet status.

Public Attributes

sid_pal_radio_data
_rate_t

data_rate

sid_pal_radio_lora
_rx_packet_status

_t

lora_rx_packet_status

sid_pal_radio_fsk_
rx_packet_status_

t

fsk_rx_packet_status

struct
sid_timespec

rcv_tm

uint8_t rcv_payload

uint8_t payload_len

Public Attribute Documentation

data_rate

sid_pal_radio_data_rate_t sid_pal_radio_rx_packet_t::data_rate

Data rate at which the packet was received

lora_rx_packet_status

sid_pal_radio_lora_rx_packet_status_t sid_pal_radio_rx_packet_t::lora_rx_packet_status

LoRa-specific packet status

fsk_rx_packet_status

sid_pal_radio_fsk_rx_packet_status_t sid_pal_radio_rx_packet_t::fsk_rx_packet_status

FSK-specific packet status

rcv_tm

struct sid_timespec sid_pal_radio_rx_packet_t::rcv_tm

Timestamp when the packet was received

Copyright © 2025 Silicon Laboratories. All rights reserved. 203/297

sid_pal_radio_rx_packet_t

rcv_payload

uint8_t sid_pal_radio_rx_packet_t::rcv_payload[255]

Buffer to store the received payload

payload_len

uint8_t sid_pal_radio_rx_packet_t::payload_len

Length of the received payload

Copyright © 2025 Silicon Laboratories. All rights reserved. 204/297

sid_pal_radio_packet_cfg_t

sid_pal_radio_packet_cfg_t

S idewalk Phy settings to configure radio prior to transmission and reception.

Public Attributes

sid_pal_radio_data
_rate_t

data_rate

uint8_t channel

uint8_t invert_IQ

uint16_t preamble_len

uint32_t symbol_timeout

bool crc_enabled

Public Attribute Documentation

data_rate

sid_pal_radio_data_rate_t sid_pal_radio_packet_cfg_t::data_rate

Data rate for the packet

channel

uint8_t sid_pal_radio_packet_cfg_t::channel

Channel on which the packet will be transmitted or received

invert_IQ

uint8_t sid_pal_radio_packet_cfg_t::invert_IQ

Flag to indicate if IQ inversion is enabled

preamble_len

uint16_t sid_pal_radio_packet_cfg_t::preamble_len

Length of the preamble

symbol_timeout

Copyright © 2025 Silicon Laboratories. All rights reserved. 205/297

sid_pal_radio_packet_cfg_t

uint32_t sid_pal_radio_packet_cfg_t::symbol_timeout

Symbol timeout value

crc_enabled

bool sid_pal_radio_packet_cfg_t::crc_enabled

Flag to indicate if CRC is enabled

Copyright © 2025 Silicon Laboratories. All rights reserved. 206/297

sid_pal_radio_tx_packet_t

sid_pal_radio_tx_packet_t

S idewalk Phy transmit packet configuration.

Public Attributes

sid_pal_radio_pac
ket_cfg_t

packet_cfg

int8_t tx_power_in_dbm

uint8_t * tx_payload

uint8_t payload_len

uint32_t timeout

Public Attribute Documentation

packet_cfg

sid_pal_radio_packet_cfg_t sid_pal_radio_tx_packet_t::packet_cfg

Configuration for the packet

tx_power_in_dbm

int8_t sid_pal_radio_tx_packet_t::tx_power_in_dbm

Transmit power in dBm

tx_payload

uint8_t* sid_pal_radio_tx_packet_t::tx_payload

Pointer to the payload to be transmitted

payload_len

uint8_t sid_pal_radio_tx_packet_t::payload_len

Length of the payload

timeout

Copyright © 2025 Silicon Laboratories. All rights reserved. 207/297

sid_pal_radio_tx_packet_t

uint32_t sid_pal_radio_tx_packet_t::timeout

Timeout for the transmission

Copyright © 2025 Silicon Laboratories. All rights reserved. 208/297

sid_pal_radio_state_transition_timings_t

sid_pal_radio_state_transition_timings_t

S idewalk radio state transition timings.

Public Attributes

uint32_t sleep_to_full_power_us

uint32_t full_power_to_sleep_us

uint32_t rx_to_tx_us

uint32_t tx_to_rx_us

uint32_t tcxo_delay_us

Public Attribute Documentation

sleep_to_full_power_us

uint32_t sid_pal_radio_state_transition_timings_t::sleep_to_full_power_us

Time to transition from sleep to full power state, in microseconds

full_power_to_sleep_us

uint32_t sid_pal_radio_state_transition_timings_t::full_power_to_sleep_us

Time to transition from full power to sleep state, in microseconds

rx_to_tx_us

uint32_t sid_pal_radio_state_transition_timings_t::rx_to_tx_us

Time to transition from receive to transmit state, in microseconds

tx_to_rx_us

uint32_t sid_pal_radio_state_transition_timings_t::tx_to_rx_us

Time to transition from transmit to receive state, in microseconds

tcxo_delay_us

uint32_t sid_pal_radio_state_transition_timings_t::tcxo_delay_us

Copyright © 2025 Silicon Laboratories. All rights reserved. 209/297

sid_pal_radio_state_transition_timings_t

Time delay for TCXO (Temperature Compensated Crystal Oscillator), in microseconds

Copyright © 2025 Silicon Laboratories. All rights reserved. 210/297

SWI Interface

SWI Interface

SWI Interface
The SWI Interface module provides interfaces for implementing software interrupts (SWI) within the S idewalk SDK. These

interfaces enable developers to handle asynchronous events and improve the responsiveness of their applications by

leveraging platform-specific SWI mechanisms.

⚠ WARNING ⚠: SWI thread priority in RTOS must stay high enough if you don't want to miss radio event

Typedefs

typedef void(* sid_pal_swi_cb_t)(void)
SWI callback.

Functions

sid_error_t sid_pal_swi_init(void)
Init the SWI handler for protoco l processing.

sid_error_t sid_pal_swi_trigger(void)
Trigger the SWI to run.

sid_error_t sid_pal_swi_start(sid_pal_swi_cb_t event_callback)
Start the SWI.

sid_error_t sid_pal_swi_stop(void)
Stop the SWI.

sid_error_t sid_pal_swi_deinit(void)
Init the SWI handler for protoco l processing.

Typedef Documentation

sid_pal_swi_cb_t

typedef void(* sid_pal_swi_cb_t) (void))(void)

SWI callback.

Note

The callback which will be executed in SWI context

Function Documentation

sid_pal_swi_init

sid_error_t sid_pal_swi_init (void)

Init the SWI handler for protocol processing.

Copyright © 2025 Silicon Laboratories. All rights reserved. 211/297

SWI Interface

Parameters

Type Direction Argument Name Description

void N/A

Function initializes SWI for triggering events.

sid_pal_swi_trigger

sid_error_t sid_pal_swi_trigger (void)

Trigger the SWI to run.

Parameters

Type Direction Argument Name Description

void N/A

Function triggers SWI to run.

sid_pal_swi_start

sid_error_t sid_pal_swi_start (sid_pal_swi_cb_t event_callback)

Start the SWI.

Parameters

Type Direction Argument Name Description

sid_pal_swi_cb_t [in] event_callback Pointer to the callback function the SWI will trigger

Function triggers SWI to run.

sid_pal_swi_stop

sid_error_t sid_pal_swi_stop (void)

Stop the SWI.

Parameters

Type Direction Argument Name Description

void N/A

Function triggers SWI to run.

sid_pal_swi_deinit

sid_error_t sid_pal_swi_deinit (void)

Init the SWI handler for protocol processing.

Copyright © 2025 Silicon Laboratories. All rights reserved. 212/297

SWI Interface

Parameters

Type Direction Argument Name Description

void N/A

Function initializes SWI for triggering events.

Copyright © 2025 Silicon Laboratories. All rights reserved. 213/297

Security and Crypto

Security and Crypto

Security and Crypto
The Security and Crypto module provides interfaces for implementing cryptographic operations within the S idewalk SDK.

These interfaces ensure secure data transmission and storage by offering functionalities such as encryption, decryption,

hashing, and key management, enabling developers to protect sensitive information across different hardware platforms.

Modules

Type definitions

Functions

sid_error_t sid_pal_crypto_init(void)
Initialize sid_pal crypto HAL.

sid_error_t sid_pal_crypto_deinit(void)
Deinitialize crypto HAL.

sid_error_t sid_pal_crypto_rand(uint8_t *rand, size_t size)
Generate random number.

sid_error_t sid_pal_crypto_hash(sid_pal_hash_params_t *params)
Generate hash.

sid_error_t sid_pal_crypto_hmac(sid_pal_hmac_params_t *params)
Generate HMAC.

sid_error_t sid_pal_crypto_aes_crypt(sid_pal_aes_params_t *params)
Encrypt or decrypt using fo llowing AES algorithm.

sid_error_t sid_pal_crypto_aead_crypt(sid_pal_aead_params_t *params)
Encrypt or decrypt using AEAD algorithm.

sid_error_t sid_pal_crypto_ecc_dsa(sid_pal_dsa_params_t *params)
Sign or verify elliptic curve digital signature using given algorithm.

sid_error_t sid_pal_crypto_ecc_ecdh(sid_pal_ecdh_params_t *params)
Generate shared secret using private key and public key.

sid_error_t sid_pal_crypto_ecc_key_gen(sid_pal_ecc_key_gen_params_t *params)
Generate ECC key pair using given algorithm.

Function Documentation

sid_pal_crypto_init

sid_error_t sid_pal_crypto_init (void)

Initialize sid_pal crypto HAL.

Parameters

Copyright © 2025 Silicon Laboratories. All rights reserved. 214/297

Security and Crypto

Type Direction Argument Name Description

void N/A

This function initializes the SID PAL crypto HAL and prepares it for cryptographic operations.

sid_pal_crypto_deinit

sid_error_t sid_pal_crypto_deinit (void)

Deinitialize crypto HAL.

Parameters

Type Direction Argument Name Description

void N/A

This function deinitializes the SID PAL crypto HAL and releases any resources that were allocated.

sid_pal_crypto_rand

sid_error_t sid_pal_crypto_rand (uint8_t * rand, size_t size)

Generate random number.

Parameters

Type Direction Argument Name Description

uint8_t * [out] rand Pointer to rand buffer.

size_t [in] size S ize of rand number

This function generates a random number and stores it in the provided buffer.

sid_pal_crypto_hash

sid_error_t sid_pal_crypto_hash (sid_pal_hash_params_t * params)

Generate hash.

Parameters

Type Direction Argument Name Description

sid_pal_hash_params_t * [inout] params Pointer to the hash parameters.

SHA256 and SHA512 is now supported.

This function generates a hash using the specified parameters.

sid_pal_crypto_hmac

sid_error_t sid_pal_crypto_hmac (sid_pal_hmac_params_t * params)

Copyright © 2025 Silicon Laboratories. All rights reserved. 215/297

Security and Crypto

Generate HMAC.

Parameters

Type Direction Argument Name Description

sid_pal_hmac_params_t * [inout] params Pointer to the hash parameters.

HMAC/SHA256 and HMAC/SHA512 is now supported.

This function generates an HMAC using the specified parameters.

sid_pal_crypto_aes_crypt

sid_error_t sid_pal_crypto_aes_crypt (sid_pal_aes_params_t * params)

Encrypt or decrypt using following AES algorithm.

Parameters

Type Direction Argument Name Description

sid_pal_aes_params_t * [inout] params Pointer to AES parameters.

AES-CMAC AES-CTR are supported.

This function encrypts or decrypts data using the specified AES algorithm.

sid_pal_crypto_aead_crypt

sid_error_t sid_pal_crypto_aead_crypt (sid_pal_aead_params_t * params)

Encrypt or decrypt using AEAD algorithm.

Parameters

Type Direction Argument Name Description

sid_pal_aead_params_t * [inout] params Pointer to the AEAD parameters.

This function encrypts or decrypts data using the specified AEAD algorithm.

sid_pal_crypto_ecc_dsa

sid_error_t sid_pal_crypto_ecc_dsa (sid_pal_dsa_params_t * params)

S ign or verify elliptic curve digital signature using given algorithm.

Parameters

Type Direction Argument Name Description

sid_pal_dsa_params_t * [inout] params Pointer to the ECC DSA parameters.

This function signs or verifies an elliptic curve digital signature using the specified parameters.

Copyright © 2025 Silicon Laboratories. All rights reserved. 216/297

Security and Crypto

sid_pal_crypto_ecc_ecdh

sid_error_t sid_pal_crypto_ecc_ecdh (sid_pal_ecdh_params_t * params)

Generate shared secret using private key and public key.

Parameters

Type Direction Argument Name Description

sid_pal_ecdh_params_t * [inout] params Pointer to the ECDH parameters.

This function generates a shared secret using the specified private key and public key.

sid_pal_crypto_ecc_key_gen

sid_error_t sid_pal_crypto_ecc_key_gen (sid_pal_ecc_key_gen_params_t * params)

Generate ECC key pair using given algorithm.

Parameters

Type Direction Argument Name Description

sid_pal_ecc_key_gen_params_t * [inout] params Generate ECC key pair using given algorithm.

This function generates an ECC key pair using the specified algorithm.

Copyright © 2025 Silicon Laboratories. All rights reserved. 217/297

Type definitions

Type definitions

Type definitions

Modules

sid_pal_hash_params_t

sid_pal_hmac_params_t

sid_pal_aes_params_t

sid_pal_aead_params_t

sid_pal_dsa_params_t

sid_pal_ecdh_params_t

sid_pal_ecc_key_gen_params_t

Enumerations

enum sid_pal_hash_algo_t {

SID_PAL_HASH_SHA256 = 1
SID_PAL_HASH_SHA512

}
Enumeration of hash algorithms supported by SID PAL.

enum sid_pal_aes_algo_t {

SID_PAL_AES_CMAC_128 = 1
SID_PAL_AES_CTR_128

}
Enumeration of AES algorithms supported by SID PAL.

enum sid_pal_aead_algo_t {

SID_PAL_AEAD_GCM_128 = 1
SID_PAL_AEAD_CCM_128
SID_PAL_AEAD_CCM_STAR_128

}
Enumeration of AEAD algorithms supported by SID PAL.

enum sid_pal_ecc_algo_t {

SID_PAL_ECDH_CURVE25519 = 1
SID_PAL_ECDH_SECP256R1
SID_PAL_EDDSA_ED25519
SID_PAL_ECDSA_SECP256R1

}
Enumeration of ECC algorithms supported by SID PAL.

enum sid_pal_aes_mode_t {

SID_PAL_CRYPTO_ENCRYPT = 1
SID_PAL_CRYPTO_DECRYPT
SID_PAL_CRYPTO_MAC_CALCULATE

}
Enumeration of AES modes supported by SID PAL.

Copyright © 2025 Silicon Laboratories. All rights reserved. 218/297

Type definitions

enum sid_pal_dsa_mode_t {

SID_PAL_CRYPTO_SIGN = 1
SID_PAL_CRYPTO_VERIFY

}
Enumeration of DSA modes supported by SID PAL.

Enumeration Documentation

sid_pal_hash_algo_t

sid_pal_hash_algo_t

Enumeration of hash algorithms supported by SID PAL.

This enumeration defines the hash algorithms that are supported by the SID PAL (Platform Abstraction Layer) for

cryptographic operations.

Enumerator

SID_PAL_HASH_SHA256 SHA-256 hash algorithm

SID_PAL_HASH_SHA512 SHA-512 hash algorithm

sid_pal_aes_algo_t

sid_pal_aes_algo_t

Enumeration of AES algorithms supported by SID PAL.

This enumeration defines the AES algorithms that are supported by the SID PAL (Platform Abstraction Layer) for

cryptographic operations.

Enumerator

SID_PAL_AES_CMAC_128 AES-CMAC-128 algorithm

SID_PAL_AES_CTR_128 AES-CTR-128 algorithm

sid_pal_aead_algo_t

sid_pal_aead_algo_t

Enumeration of AEAD algorithms supported by SID PAL.

This enumeration defines the AEAD algorithms that are supported by the SID PAL (Platform Abstraction Layer) for

cryptographic operations.

Enumerator

SID_PAL_AEAD_GCM_128 AEAD-GCM-128 algorithm

SID_PAL_AEAD_CCM_128 AEAD-CCM-128 algorithm

SID_PAL_AEAD_CCM_STAR_128 AEAD-CCM-STAR-128 algorithm

sid_pal_ecc_algo_t

Copyright © 2025 Silicon Laboratories. All rights reserved. 219/297

Type definitions

sid_pal_ecc_algo_t

Enumeration of ECC algorithms supported by SID PAL.

This enumeration defines the ECC algorithms that are supported by the SID PAL (Platform Abstraction Layer) for

cryptographic operations.

Enumerator

SID_PAL_ECDH_CURVE25519 ECDH-Curve25519 algorithm

SID_PAL_ECDH_SECP256R1 ECDH-SECP256R1 algorithm

SID_PAL_EDDSA_ED25519 EdDSA-Ed25519 algorithm

SID_PAL_ECDSA_SECP256R1 ECDSA-SECP256R1 algorithm

sid_pal_aes_mode_t

sid_pal_aes_mode_t

Enumeration of AES modes supported by SID PAL.

This enumeration defines the AES modes that are supported by the SID PAL (Platform Abstraction Layer) for cryptographic

operations.

Enumerator

SID_PAL_CRYPTO_ENCRYPT AES encryption mode

SID_PAL_CRYPTO_DECRYPT AES decryption mode

SID_PAL_CRYPTO_MAC_CALCULATE AES MAC calculation mode

sid_pal_dsa_mode_t

sid_pal_dsa_mode_t

Enumeration of DSA modes supported by SID PAL.

This enumeration defines the DSA modes that are supported by the SID PAL (Platform Abstraction Layer) for cryptographic

operations.

Enumerator

SID_PAL_CRYPTO_SIGN DSA signing mode

SID_PAL_CRYPTO_VERIFY DSA verification mode

Copyright © 2025 Silicon Laboratories. All rights reserved. 220/297

sid_pal_hash_params_t

sid_pal_hash_params_t

Parameters for hash operations.

This structure defines the parameters required for hash operations supported by the SID PAL (Platform Abstraction Layer).

Public Attributes

sid_pal_hash_algo
_t

algo

uint8_t const * data

size_t data_size

uint8_t * digest

size_t digest_size

Public Attribute Documentation

algo

sid_pal_hash_algo_t sid_pal_hash_params_t::algo

Hash algorithm to be used

data

uint8_t const* sid_pal_hash_params_t::data

Pointer to the input data

data_size

size_t sid_pal_hash_params_t::data_size

S ize of the input data

digest

uint8_t* sid_pal_hash_params_t::digest

Pointer to the output digest

digest_size

Copyright © 2025 Silicon Laboratories. All rights reserved. 221/297

sid_pal_hash_params_t

size_t sid_pal_hash_params_t::digest_size

S ize of the output digest

Copyright © 2025 Silicon Laboratories. All rights reserved. 222/297

sid_pal_hmac_params_t

sid_pal_hmac_params_t

Parameters for HMAC operations.

This structure defines the parameters required for HMAC operations supported by the SID PAL (Platform Abstraction Layer).

Public Attributes

sid_pal_hash_algo
_t

algo

uint8_t const * key

size_t key_size

uint8_t const * data

size_t data_size

uint8_t * digest

size_t digest_size

Public Attribute Documentation

algo

sid_pal_hash_algo_t sid_pal_hmac_params_t::algo

HMAC algorithm to be used

key

uint8_t const* sid_pal_hmac_params_t::key

Pointer to the key

key_size

size_t sid_pal_hmac_params_t::key_size

S ize of the key

data

uint8_t const* sid_pal_hmac_params_t::data

Pointer to the input data

Copyright © 2025 Silicon Laboratories. All rights reserved. 223/297

sid_pal_hmac_params_t

data_size

size_t sid_pal_hmac_params_t::data_size

S ize of the input data

digest

uint8_t* sid_pal_hmac_params_t::digest

Pointer to the output digest

digest_size

size_t sid_pal_hmac_params_t::digest_size

S ize of the output digest

Copyright © 2025 Silicon Laboratories. All rights reserved. 224/297

sid_pal_aes_params_t

sid_pal_aes_params_t

Parameters for AES cryptographic operations.

This structure defines the parameters required for AES cryptographic operations supported by the SID PAL (Platform

Abstraction Layer).

Public Attributes

sid_pal_aes_algo_t algo

sid_pal_aes_mode
_t

mode

uint8_t const * key

size_t key_size

uint8_t const * iv

size_t iv_size

uint8_t const * in

size_t in_size

uint8_t * out

size_t out_size

Public Attribute Documentation

algo

sid_pal_aes_algo_t sid_pal_aes_params_t::algo

AES algorithm to be used

mode

sid_pal_aes_mode_t sid_pal_aes_params_t::mode

AES mode of operation

key

uint8_t const* sid_pal_aes_params_t::key

Pointer to the key

Copyright © 2025 Silicon Laboratories. All rights reserved. 225/297

sid_pal_aes_params_t

key_size

size_t sid_pal_aes_params_t::key_size

S ize of the key

iv

uint8_t const* sid_pal_aes_params_t::iv

Pointer to the initialization vector

iv_size

size_t sid_pal_aes_params_t::iv_size

S ize of the initialization vector

in

uint8_t const* sid_pal_aes_params_t::in

Pointer to the input data

in_size

size_t sid_pal_aes_params_t::in_size

S ize of the input data

out

uint8_t* sid_pal_aes_params_t::out

Pointer to the output data

out_size

size_t sid_pal_aes_params_t::out_size

S ize of the output data

Copyright © 2025 Silicon Laboratories. All rights reserved. 226/297

sid_pal_aes_params_t

Copyright © 2025 Silicon Laboratories. All rights reserved. 227/297

sid_pal_aead_params_t

sid_pal_aead_params_t

Parameters for AEAD cryptographic operations.

This structure defines the parameters required for AEAD cryptographic operations supported by the SID PAL (Platform

Abstraction Layer).

Public Attributes

sid_pal_aead_algo
_t

algo

sid_pal_aes_mode
_t

mode

uint8_t const * key

size_t key_size

uint8_t const * iv

size_t iv_size

uint8_t const * aad

size_t aad_size

uint8_t const * in

size_t in_size

uint8_t * out

size_t out_size

uint8_t * mac

size_t mac_size

Public Attribute Documentation

algo

sid_pal_aead_algo_t sid_pal_aead_params_t::algo

AEAD algorithm to be used

mode

sid_pal_aes_mode_t sid_pal_aead_params_t::mode

AEAD mode of operation

Copyright © 2025 Silicon Laboratories. All rights reserved. 228/297

sid_pal_aead_params_t

uint8_t const* sid_pal_aead_params_t::key

Pointer to the key

key_size

size_t sid_pal_aead_params_t::key_size

S ize of the key

iv

uint8_t const* sid_pal_aead_params_t::iv

Pointer to the initialization vector

iv_size

size_t sid_pal_aead_params_t::iv_size

S ize of the initialization vector

aad

uint8_t const* sid_pal_aead_params_t::aad

Pointer to the additional authenticated data

aad_size

size_t sid_pal_aead_params_t::aad_size

S ize of the additional authenticated data

in

uint8_t const* sid_pal_aead_params_t::in

Pointer to the input data

in_size

Copyright © 2025 Silicon Laboratories. All rights reserved. 229/297

sid_pal_aead_params_t

size_t sid_pal_aead_params_t::in_size

S ize of the input data

out

uint8_t* sid_pal_aead_params_t::out

Pointer to the output data

out_size

size_t sid_pal_aead_params_t::out_size

S ize of the output data

mac

uint8_t* sid_pal_aead_params_t::mac

Pointer to the message authentication code

mac_size

size_t sid_pal_aead_params_t::mac_size

S ize of the message authentication code

Copyright © 2025 Silicon Laboratories. All rights reserved. 230/297

sid_pal_dsa_params_t

sid_pal_dsa_params_t

Parameters for ECC DSA cryptographic operations.

This structure defines the parameters required for ECC DSA cryptographic operations supported by the SID PAL (Platform

Abstraction Layer).

Public Attributes

sid_pal_ecc_algo_
t

algo

sid_pal_dsa_mode
_t

mode

uint8_t const * key

size_t key_size

uint8_t const * in

size_t in_size

uint8_t * signature

size_t sig_size

Public Attribute Documentation

algo

sid_pal_ecc_algo_t sid_pal_dsa_params_t::algo

ECC algorithm to be used

mode

sid_pal_dsa_mode_t sid_pal_dsa_params_t::mode

DSA mode of operation

key

uint8_t const* sid_pal_dsa_params_t::key

Pointer to the key

key_size

Copyright © 2025 Silicon Laboratories. All rights reserved. 231/297

sid_pal_dsa_params_t

size_t sid_pal_dsa_params_t::key_size

S ize of the key

in

uint8_t const* sid_pal_dsa_params_t::in

Pointer to the input data

in_size

size_t sid_pal_dsa_params_t::in_size

S ize of the input data

signature

uint8_t* sid_pal_dsa_params_t::signature

Pointer to the signature

sig_size

size_t sid_pal_dsa_params_t::sig_size

S ize of the signature

Copyright © 2025 Silicon Laboratories. All rights reserved. 232/297

sid_pal_ecdh_params_t

sid_pal_ecdh_params_t

Parameters for ECDH cryptographic operations.

This structure defines the parameters required for ECDH cryptographic operations supported by the SID PAL (Platform

Abstraction Layer).

Public Attributes

sid_pal_ecc_algo_
t

algo

uint8_t const * prk

size_t prk_size

uint8_t const * puk

size_t puk_size

uint8_t * shared_secret

size_t shared_secret_sz

Public Attribute Documentation

algo

sid_pal_ecc_algo_t sid_pal_ecdh_params_t::algo

ECC algorithm to be used

prk

uint8_t const* sid_pal_ecdh_params_t::prk

Pointer to the private key

prk_size

size_t sid_pal_ecdh_params_t::prk_size

S ize of the private key

puk

uint8_t const* sid_pal_ecdh_params_t::puk

Copyright © 2025 Silicon Laboratories. All rights reserved. 233/297

sid_pal_ecdh_params_t

Pointer to the public key

puk_size

size_t sid_pal_ecdh_params_t::puk_size

S ize of the public key

shared_secret

uint8_t* sid_pal_ecdh_params_t::shared_secret

Pointer to the shared secret

shared_secret_sz

size_t sid_pal_ecdh_params_t::shared_secret_sz

S ize of the shared secret

Copyright © 2025 Silicon Laboratories. All rights reserved. 234/297

sid_pal_ecc_key_gen_params_t

sid_pal_ecc_key_gen_params_t

Parameters for ECC key generation.

This structure defines the parameters required for ECC key generation supported by the SID PAL (Platform Abstraction

Layer).

Public Attributes

sid_pal_ecc_algo_
t

algo

uint8_t * prk

size_t prk_size

uint8_t * puk

size_t puk_size

Public Attribute Documentation

algo

sid_pal_ecc_algo_t sid_pal_ecc_key_gen_params_t::algo

ECC algorithm to be used

prk

uint8_t* sid_pal_ecc_key_gen_params_t::prk

Pointer to the private key

prk_size

size_t sid_pal_ecc_key_gen_params_t::prk_size

S ize of the private key

puk

uint8_t* sid_pal_ecc_key_gen_params_t::puk

Pointer to the public key

puk_size

Copyright © 2025 Silicon Laboratories. All rights reserved. 235/297

sid_pal_ecc_key_gen_params_t

size_t sid_pal_ecc_key_gen_params_t::puk_size

S ize of the public key

Copyright © 2025 Silicon Laboratories. All rights reserved. 236/297

Storage Interface

Storage Interface

Storage Interface

Storage Interface

The Storage Interface module provides interfaces for managing persistent storage within the S idewalk SDK. This module

includes interfaces for key-value storage and manufacturing page storage. Developers can ensure consistent and platform-

independent access to storage functionalities, enabling their applications to store and retrieve data reliably across different

hardware platforms.

Modules

KV Storage

Manufacturing Page

Copyright © 2025 Silicon Laboratories. All rights reserved. 237/297

KV Storage

KV Storage

KV Storage
Provides persistent storage interface for key mapped values.

Functions

sid_error_t sid_pal_storage_kv_init(void)
Initialize the key value storage subsystem.

sid_error_t sid_pal_storage_kv_deinit(void)
Deinitialize the key value storage subsystem.

sid_error_t sid_pal_storage_kv_record_get(uint16_t group, uint16_t key, void *p_data, uint32_t len)
Get a value using its group and key IDs.

sid_error_t sid_pal_storage_kv_record_get_len(uint16_t group, uint16_t key, uint32_t *p_len)
Get the size of a value using its group and key IDs.

sid_error_t sid_pal_storage_kv_record_set(uint16_t group, uint16_t key, void const *p_data, uint32_t len)
Set a value using its group and key IDs.

sid_error_t sid_pal_storage_kv_record_delete(uint16_t group, uint16_t key)
Delete a value using its group and key IDs.

sid_error_t sid_pal_storage_kv_group_delete(uint16_t group)
Delete all values in a group.

Macros

#define SID_PAL_KV_STORE_MAX_LENGTH_BYTES 48
Maximum length in bytes for the Key-Value store .

#define SID_PAL_STORAGE_KV_INTERNAL_PROTOCOL_GROUP_ID 0�2000
Group ID for the internal protoco l of the Key-Value storage .

#define SID_PAL_STORAGE_KV_INTERNAL_CONFIG_GROUP_ID 0�3456
Group ID for the internal configuration of the Key-Value storage .

#define SID_PAL_STORAGE_KV_INTERNAL_BULK_DATA_TRANSFER_GROUP_ID 0�4567
Group ID for the internal bulk data transfer of the Key-Value storage .

Function Documentation

sid_pal_storage_kv_init

sid_error_t sid_pal_storage_kv_init (void)

Initialize the key value storage subsystem.

Parameters

Copyright © 2025 Silicon Laboratories. All rights reserved. 238/297

KV Storage

Type Direction Argument Name Description

void N/A

sid_pal_storage_kv_deinit

sid_error_t sid_pal_storage_kv_deinit (void)

Deinitialize the key value storage subsystem.

Parameters

Type Direction Argument Name Description

void N/A

sid_pal_storage_kv_record_get

sid_error_t sid_pal_storage_kv_record_get (uint16_t group, uint16_t key, void * p_data, uint32_t len)

Get a value using its group and key IDs.

Parameters

Type Direction Argument Name Description

uint16_t [in] group Group

uint16_t [in] key Key

void * [out] p_data Pointer to output buffer to contain the value

uint32_t [in] len Maximum length of buffer pointed to by p_data in bytes

sid_pal_storage_kv_record_get_len

sid_error_t sid_pal_storage_kv_record_get_len (uint16_t group, uint16_t key, uint32_t * p_len)

Get the size of a value using its group and key IDs.

Parameters

Type Direction Argument Name Description

uint16_t [in] group Group

uint16_t [in] key Key

uint32_t * [out] p_len Pointer to integer to contain the size of the value in bytes

sid_pal_storage_kv_record_set

sid_error_t sid_pal_storage_kv_record_set (uint16_t group, uint16_t key, void const * p_data, uint32_t len)

Set a value using its group and key IDs.

Copyright © 2025 Silicon Laboratories. All rights reserved. 239/297

KV Storage

Parameters

Type Direction Argument Name Description

uint16_t [in] group Group

uint16_t [in] key Key

void const * [in] p_data Pointer to input buffer which contains the value

uint32_t [in] len The size of the input value in bytes

sid_pal_storage_kv_record_delete

sid_error_t sid_pal_storage_kv_record_delete (uint16_t group, uint16_t key)

Delete a value using its group and key IDs.

Parameters

Type Direction Argument Name Description

uint16_t [in] group Group

uint16_t [in] key Key

sid_pal_storage_kv_group_delete

sid_error_t sid_pal_storage_kv_group_delete (uint16_t group)

Delete all values in a group.

Parameters

Type Direction Argument Name Description

uint16_t [in] group Group

Copyright © 2025 Silicon Laboratories. All rights reserved. 240/297

Manufacturing Page

Manufacturing Page

Manufacturing Page
Provides manufacturing store interface and implementation to store the manufacturing page into the EFR32 flash.

Modules

Type definitions

Functions

void sid_pal_mfg_store_init(sid_pal_mfg_store_region_t mfg_store_region)
Prepare the manufacturing store for use .

void sid_pal_mfg_store_deinit(void)
Deinitialize previously initialized mfg region.

int32_t sid_pal_mfg_store_erase(void)
Erase the manufacturing store .

bool sid_pal_mfg_store_is_empty(void)
Check if the manufacturing store is empty.

int32_t sid_pal_mfg_store_write(uint16_t value, const uint8_t *buffer, uint16_t length)
Write to mfg store .

void sid_pal_mfg_store_read(uint16_t value, uint8_t *buffer, uint16_t length)
Read from mfg store .

uint16_t sid_pal_mfg_store_get_length_for_value(uint16_t value)
Get length of a tag ID.

bool sid_pal_mfg_store_is_tlv_support(void)
Check if the manufacturing store supports TLV based storage .

uint32_t sid_pal_mfg_store_get_version(void)
Get version of values stored in mfg store .

bool sid_pal_mfg_store_dev_id_get(uint8_t dev_id[SID_PAL_MFG_STORE_DEVID_SIZE��
Get the device ID from the mfg store .

bool sid_pal_mfg_store_serial_num_get(uint8_t serial_num[SID_PAL_MFG_STORE_SERIAL_NUM_SIZE��
Get the device serial number from the mfg store .

void sid_pal_mfg_store_apid_get(uint8_t apid[SID_PAL_MFG_STORE_APID_SIZE��
Get the APID.

void sid_pal_mfg_store_app_pub_key_get(uint8_t app_pub[SID_PAL_MFG_STORE_APP_PUB_ED25519_SIZE��
Get the Application public key.

Function Documentation

sid_pal_mfg_store_init

Copyright © 2025 Silicon Laboratories. All rights reserved. 241/297

Manufacturing Page

void sid_pal_mfg_store_init (sid_pal_mfg_store_region_t mfg_store_region)

Prepare the manufacturing store for use.

Parameters

Type Direction Argument Name Description

sid_pal_mfg_store_region_t [in] mfg_store_region Structure containing start and end addresses of the

manufacturing store.

Must be called before any of the other sid_pal_mfg_store functions.

sid_pal_mfg_store_deinit

void sid_pal_mfg_store_deinit (void)

Deinitialize previously initialized mfg region.

Parameters

Type Direction Argument Name Description

void N/A

sid_pal_mfg_store_erase

int32_t sid_pal_mfg_store_erase (void)

Erase the manufacturing store.

Parameters

Type Direction Argument Name Description

void N/A

Because the manufacturing store is backed by flash memory, and flash memory can only be erased in large chunks (pages),

this interface only supports erasing the entire manufacturing store.

Note

This function is only supported for diagnostic builds.

Returns

0 on success, negative value on failure.

sid_pal_mfg_store_is_empty

bool sid_pal_mfg_store_is_empty (void)

Check if the manufacturing store is empty.

Parameters

Copyright © 2025 Silicon Laboratories. All rights reserved. 242/297

Manufacturing Page

Type Direction Argument Name Description

void N/A

Note

This function is only supported for diagnostic builds.

sid_pal_mfg_store_write

int32_t sid_pal_mfg_store_write (uint16_t value, const uint8_t * buffer, uint16_t length)

Write to mfg store.

Parameters

Type Direction
Argument
Name

Description

uint16_t [in] value Enum constant for the desired value. Use values from sid_pal_mfg_store_value_t or

application defined values here.

const
uint8_t *

[in] buffer Buffer containing the value to be stored.

uint16_t [in] length Length of the value in bytes. Use values from sid_pal_mfg_store_value_size_t here.

sid_pal_mfg_store_read

void sid_pal_mfg_store_read (uint16_t value, uint8_t * buffer, uint16_t length)

Read from mfg store.

Parameters

Type Direction
Argument
Name

Description

uint16_t [in] value Enum constant for the desired value. Use values from sid_pal_mfg_store_value_t or

application defined values here.

uint8_t
*

[out] buffer Buffer to which the value will be copied.

uint16_t [in] length Length of the value in bytes. Use values from sid_pal_mfg_store_value_size_t here.

sid_pal_mfg_store_get_length_for_value

uint16_t sid_pal_mfg_store_get_length_for_value (uint16_t value)

Get length of a tag ID.

Parameters

Type Direction
Argument
Name

Description

uint16_t [in] value Enum constant for the desired value. Use values from sid_pal_mfg_store_value_t or

application defined values here.

Copyright © 2025 Silicon Laboratories. All rights reserved. 243/297

Manufacturing Page

sid_pal_mfg_store_is_tlv_support

bool sid_pal_mfg_store_is_tlv_support (void)

Check if the manufacturing store supports TLV based storage.

Parameters

Type Direction Argument Name Description

void N/A

Note

This function only indicates that the platform supports TLV, but the device may have storage with fixed offsets that was

flashed during production.

sid_pal_mfg_store_get_version

uint32_t sid_pal_mfg_store_get_version (void)

Get version of values stored in mfg store.

Parameters

Type Direction Argument Name Description

void N/A

Note

Functions specific to S idewalk with special handling The version of the mfg values is stored along with all the values in mfg

store. This API retrieves the value by reading the address at which the version is stored.

sid_pal_mfg_store_dev_id_get

bool sid_pal_mfg_store_dev_id_get (uint8_t dev_id)

Get the device ID from the mfg store.

Parameters

Type Direction Argument Name Description

uint8_t [out] dev_id The device ID

sid_pal_mfg_store_serial_num_get

bool sid_pal_mfg_store_serial_num_get (uint8_t serial_num)

Get the device serial number from the mfg store.

Parameters

Copyright © 2025 Silicon Laboratories. All rights reserved. 244/297

Manufacturing Page

Type Direction Argument Name Description

uint8_t [out] serial_num The device serial number

sid_pal_mfg_store_apid_get

void sid_pal_mfg_store_apid_get (uint8_t apid)

Get the APID.

Parameters

Type Direction Argument Name Description

uint8_t [out] apid The apid

Applicable only for products with short form certificate chain.

sid_pal_mfg_store_app_pub_key_get

void sid_pal_mfg_store_app_pub_key_get (uint8_t app_pub)

Get the Application public key.

Parameters

Type Direction Argument Name Description

uint8_t [out] app_pub The Application public key

Applicable only for products with short form certificate chain.

Copyright © 2025 Silicon Laboratories. All rights reserved. 245/297

Type definitions

Type definitions

Type definitions

Modules

sid_pal_mfg_store_region_t

Enumerations

enum �0 {

SID_PAL_MFG_STORE_INVALID_OFFSET = UINT32_MAX

}

enum sid_pal_mfg_store_value_t {

SID_PAL_MFG_STORE_DEVID = 1
SID_PAL_MFG_STORE_VERSION = 2
SID_PAL_MFG_STORE_SERIAL_NUM = 3
SID_PAL_MFG_STORE_SMSN = 4
SID_PAL_MFG_STORE_APP_PUB_ED25519 = 5
SID_PAL_MFG_STORE_DEVICE_PRIV_ED25519 = 6
SID_PAL_MFG_STORE_DEVICE_PUB_ED25519 = 7
SID_PAL_MFG_STORE_DEVICE_PUB_ED25519_SIGNATURE = 8
SID_PAL_MFG_STORE_DEVICE_PRIV_P256R1 = 9
SID_PAL_MFG_STORE_DEVICE_PUB_P256R1 = 10
SID_PAL_MFG_STORE_DEVICE_PUB_P256R1_SIGNATURE = 11
SID_PAL_MFG_STORE_DAK_PUB_ED25519 = 12
SID_PAL_MFG_STORE_DAK_PUB_ED25519_SIGNATURE = 13
SID_PAL_MFG_STORE_DAK_ED25519_SERIAL = 14
SID_PAL_MFG_STORE_DAK_PUB_P256R1 = 15
SID_PAL_MFG_STORE_DAK_PUB_P256R1_SIGNATURE = 16
SID_PAL_MFG_STORE_DAK_P256R1_SERIAL = 17
SID_PAL_MFG_STORE_PRODUCT_PUB_ED25519 = 18
SID_PAL_MFG_STORE_PRODUCT_PUB_ED25519_SIGNATURE = 19
SID_PAL_MFG_STORE_PRODUCT_ED25519_SERIAL = 20
SID_PAL_MFG_STORE_PRODUCT_PUB_P256R1 = 21
SID_PAL_MFG_STORE_PRODUCT_PUB_P256R1_SIGNATURE = 22
SID_PAL_MFG_STORE_PRODUCT_P256R1_SERIAL = 23
SID_PAL_MFG_STORE_MAN_PUB_ED25519 = 24
SID_PAL_MFG_STORE_MAN_PUB_ED25519_SIGNATURE = 25
SID_PAL_MFG_STORE_MAN_ED25519_SERIAL = 26
SID_PAL_MFG_STORE_MAN_PUB_P256R1 = 27
SID_PAL_MFG_STORE_MAN_PUB_P256R1_SIGNATURE = 28
SID_PAL_MFG_STORE_MAN_P256R1_SERIAL = 29
SID_PAL_MFG_STORE_SW_PUB_ED25519 = 30
SID_PAL_MFG_STORE_SW_PUB_ED25519_SIGNATURE = 31
SID_PAL_MFG_STORE_SW_ED25519_SERIAL = 32
SID_PAL_MFG_STORE_SW_PUB_P256R1 = 33
SID_PAL_MFG_STORE_SW_PUB_P256R1_SIGNATURE = 34
SID_PAL_MFG_STORE_SW_P256R1_SERIAL = 35
SID_PAL_MFG_STORE_AMZN_PUB_ED25519 = 36
SID_PAL_MFG_STORE_AMZN_PUB_P256R1 = 37
SID_PAL_MFG_STORE_APID = 38
SID_PAL_MFG_STORE_CORE_VALUE_MAX = 4000
SID_PAL_MFG_STORE_VALUE_MAX = 0�6FFE

}
Values available to all users of the manufacturing store .

Copyright © 2025 Silicon Laboratories. All rights reserved. 246/297

Type definitions

enum sid_pal_mfg_store_value_size_t {

SID_PAL_MFG_STORE_DEVID_SIZE = 5
SID_PAL_MFG_STORE_VERSION_SIZE = 4
SID_PAL_MFG_STORE_SERIAL_NUM_SIZE = 17
SID_PAL_MFG_STORE_SMSN_SIZE = 32
SID_PAL_MFG_STORE_APP_PUB_ED25519_SIZE = 32
SID_PAL_MFG_STORE_DEVICE_PRIV_ED25519_SIZE = 32
SID_PAL_MFG_STORE_DEVICE_PUB_ED25519_SIZE = 32
SID_PAL_MFG_STORE_DEVICE_PUB_ED25519_SIGNATURE_SIZE = 64
SID_PAL_MFG_STORE_DEVICE_PRIV_P256R1_SIZE = 32
SID_PAL_MFG_STORE_DEVICE_PUB_P256R1_SIZE = 64
SID_PAL_MFG_STORE_DEVICE_PUB_P256R1_SIGNATURE_SIZE = 64
SID_PAL_MFG_STORE_DAK_PUB_ED25519_SIZE = 32
SID_PAL_MFG_STORE_DAK_PUB_ED25519_SIGNATURE_SIZE = 64
SID_PAL_MFG_STORE_DAK_ED25519_SERIAL_SIZE = 4
SID_PAL_MFG_STORE_DAK_PUB_P256R1_SIZE = 64
SID_PAL_MFG_STORE_DAK_PUB_P256R1_SIGNATURE_SIZE = 64
SID_PAL_MFG_STORE_DAK_P256R1_SERIAL_SIZE = 4
SID_PAL_MFG_STORE_PRODUCT_PUB_ED25519_SIZE = 32
SID_PAL_MFG_STORE_PRODUCT_PUB_ED25519_SIGNATURE_SIZE = 64
SID_PAL_MFG_STORE_PRODUCT_ED25519_SERIAL_SIZE = 4
SID_PAL_MFG_STORE_PRODUCT_PUB_P256R1_SIZE = 64
SID_PAL_MFG_STORE_PRODUCT_PUB_P256R1_SIGNATURE_SIZE = 64
SID_PAL_MFG_STORE_PRODUCT_P256R1_SERIAL_SIZE = 4
SID_PAL_MFG_STORE_MAN_PUB_ED25519_SIZE = 32
SID_PAL_MFG_STORE_MAN_PUB_ED25519_SIGNATURE_SIZE = 64
SID_PAL_MFG_STORE_MAN_ED25519_SERIAL_SIZE = 4
SID_PAL_MFG_STORE_MAN_PUB_P256R1_SIZE = 64
SID_PAL_MFG_STORE_MAN_PUB_P256R1_SIGNATURE_SIZE = 64
SID_PAL_MFG_STORE_MAN_P256R1_SERIAL_SIZE = 4
SID_PAL_MFG_STORE_SW_PUB_ED25519_SIZE = 32
SID_PAL_MFG_STORE_SW_PUB_ED25519_SIGNATURE_SIZE = 64
SID_PAL_MFG_STORE_SW_ED25519_SERIAL_SIZE = 4
SID_PAL_MFG_STORE_SW_PUB_P256R1_SIZE = 64
SID_PAL_MFG_STORE_SW_PUB_P256R1_SIGNATURE_SIZE = 64
SID_PAL_MFG_STORE_SW_P256R1_SERIAL_SIZE = 4
SID_PAL_MFG_STORE_AMZN_PUB_ED25519_SIZE = 32
SID_PAL_MFG_STORE_AMZN_PUB_P256R1_SIZE = 64
SID_PAL_MFG_STORE_APID_SIZE = 4

}
Value sizes in bytes.

Typedefs

typedef
uint32_t(*

sid_pal_mfg_store_app_value_to_offset_t)(int value)
Function po inter type for converting an application-specific value to an offset.

Macros

#define SID_PAL_MFG_STORE_EMPTY_VERSION_NUMBER 0xFFFFFFFF
The current version of the MFG storage .

#define SID_PAL_MFG_STORE_FIXED_OFFSETS_VERSION 7

#define SID_PAL_MFG_STORE_TLV_VERSION 8

#define SID_PAL_MFG_STORE_MAX_FLASH_WRITE_LEN 64
Maximum length for flash write operations in the manufacturing store .

Enumeration Documentation

Copyright © 2025 Silicon Laboratories. All rights reserved. 247/297

Type definitions

�0

�0

Enumerator

SID_PAL_MFG_STORE_INVALID_OFFSET

sid_pal_mfg_store_value_t

sid_pal_mfg_store_value_t

Values available to all users of the manufacturing store.

Enumerator

SID_PAL_MFG_STORE_DEVID use sid_pal_mfg_store_dev_ id_get

SID_PAL_MFG_STORE_VERSION Note

Version is stored in network order use

sid_pal_mfg_store_get_version

SID_PAL_MFG_STORE_SERIAL_NUM use sid_pal_mfg_store_dev_ id_get

SID_PAL_MFG_STORE_SMSN

SID_PAL_MFG_STORE_APP_PUB_ED25519

SID_PAL_MFG_STORE_DEVICE_PRIV_ED25519

SID_PAL_MFG_STORE_DEVICE_PUB_ED25519

SID_PAL_MFG_STORE_DEVICE_PUB_ED25519_SIGNATURE

SID_PAL_MFG_STORE_DEVICE_PRIV_P256R1

SID_PAL_MFG_STORE_DEVICE_PUB_P256R1

SID_PAL_MFG_STORE_DEVICE_PUB_P256R1_SIGNATURE

SID_PAL_MFG_STORE_DAK_PUB_ED25519

SID_PAL_MFG_STORE_DAK_PUB_ED25519_SIGNATURE

SID_PAL_MFG_STORE_DAK_ED25519_SERIAL

SID_PAL_MFG_STORE_DAK_PUB_P256R1

SID_PAL_MFG_STORE_DAK_PUB_P256R1_SIGNATURE

SID_PAL_MFG_STORE_DAK_P256R1_SERIAL

SID_PAL_MFG_STORE_PRODUCT_PUB_ED25519

SID_PAL_MFG_STORE_PRODUCT_PUB_ED25519_SIGNATURE

SID_PAL_MFG_STORE_PRODUCT_ED25519_SERIAL

SID_PAL_MFG_STORE_PRODUCT_PUB_P256R1

SID_PAL_MFG_STORE_PRODUCT_PUB_P256R1_SIGNATURE

SID_PAL_MFG_STORE_PRODUCT_P256R1_SERIAL

SID_PAL_MFG_STORE_MAN_PUB_ED25519

SID_PAL_MFG_STORE_MAN_PUB_ED25519_SIGNATURE

SID_PAL_MFG_STORE_MAN_ED25519_SERIAL

SID_PAL_MFG_STORE_MAN_PUB_P256R1

SID_PAL_MFG_STORE_MAN_PUB_P256R1_SIGNATURE

SID_PAL_MFG_STORE_MAN_P256R1_SERIAL

SID_PAL_MFG_STORE_SW_PUB_ED25519

SID_PAL_MFG_STORE_SW_PUB_ED25519_SIGNATURE

Copyright © 2025 Silicon Laboratories. All rights reserved. 248/297

Type definitions

SID_PAL_MFG_STORE_SW_ED25519_SERIAL

SID_PAL_MFG_STORE_SW_PUB_P256R1

SID_PAL_MFG_STORE_SW_PUB_P256R1_SIGNATURE

SID_PAL_MFG_STORE_SW_P256R1_SERIAL

SID_PAL_MFG_STORE_AMZN_PUB_ED25519

SID_PAL_MFG_STORE_AMZN_PUB_P256R1

SID_PAL_MFG_STORE_APID

SID_PAL_MFG_STORE_CORE_VALUE_MAX Note

This arbitrary value is the number of value identifiers reserved

by S idewalk. The range of these value identifiers is: [0,

SID_PAL_MFG_STORE_CORE_VALUE_MAX]. Applications may

use identifiers outside of that range.

SID_PAL_MFG_STORE_VALUE_MAX Note

The value 0x6FFF is reserved for internal use

sid_pal_mfg_store_value_size_t

sid_pal_mfg_store_value_size_t

Value sizes in bytes.

This enum defines the sizes of various values stored in the manufacturing store.

Enumerator

SID_PAL_MFG_STORE_DEVID_SIZE

SID_PAL_MFG_STORE_VERSION_SIZE

SID_PAL_MFG_STORE_SERIAL_NUM_SIZE

SID_PAL_MFG_STORE_SMSN_SIZE

SID_PAL_MFG_STORE_APP_PUB_ED25519_SIZE

SID_PAL_MFG_STORE_DEVICE_PRIV_ED25519_SIZE

SID_PAL_MFG_STORE_DEVICE_PUB_ED25519_SIZE

SID_PAL_MFG_STORE_DEVICE_PUB_ED25519_SIGNATURE_SIZE

SID_PAL_MFG_STORE_DEVICE_PRIV_P256R1_SIZE

SID_PAL_MFG_STORE_DEVICE_PUB_P256R1_SIZE

SID_PAL_MFG_STORE_DEVICE_PUB_P256R1_SIGNATURE_SIZE

SID_PAL_MFG_STORE_DAK_PUB_ED25519_SIZE

SID_PAL_MFG_STORE_DAK_PUB_ED25519_SIGNATURE_SIZE

SID_PAL_MFG_STORE_DAK_ED25519_SERIAL_SIZE

SID_PAL_MFG_STORE_DAK_PUB_P256R1_SIZE

SID_PAL_MFG_STORE_DAK_PUB_P256R1_SIGNATURE_SIZE

SID_PAL_MFG_STORE_DAK_P256R1_SERIAL_SIZE

SID_PAL_MFG_STORE_PRODUCT_PUB_ED25519_SIZE

SID_PAL_MFG_STORE_PRODUCT_PUB_ED25519_SIGNATURE_SIZE

SID_PAL_MFG_STORE_PRODUCT_ED25519_SERIAL_SIZE

SID_PAL_MFG_STORE_PRODUCT_PUB_P256R1_SIZE

SID_PAL_MFG_STORE_PRODUCT_PUB_P256R1_SIGNATURE_SIZE

SID_PAL_MFG_STORE_PRODUCT_P256R1_SERIAL_SIZE

SID_PAL_MFG_STORE_MAN_PUB_ED25519_SIZE

Copyright © 2025 Silicon Laboratories. All rights reserved. 249/297

Type definitions

SID_PAL_MFG_STORE_MAN_PUB_ED25519_SIGNATURE_SIZE

SID_PAL_MFG_STORE_MAN_ED25519_SERIAL_SIZE

SID_PAL_MFG_STORE_MAN_PUB_P256R1_SIZE

SID_PAL_MFG_STORE_MAN_PUB_P256R1_SIGNATURE_SIZE

SID_PAL_MFG_STORE_MAN_P256R1_SERIAL_SIZE

SID_PAL_MFG_STORE_SW_PUB_ED25519_SIZE

SID_PAL_MFG_STORE_SW_PUB_ED25519_SIGNATURE_SIZE

SID_PAL_MFG_STORE_SW_ED25519_SERIAL_SIZE

SID_PAL_MFG_STORE_SW_PUB_P256R1_SIZE

SID_PAL_MFG_STORE_SW_PUB_P256R1_SIGNATURE_SIZE

SID_PAL_MFG_STORE_SW_P256R1_SERIAL_SIZE

SID_PAL_MFG_STORE_AMZN_PUB_ED25519_SIZE

SID_PAL_MFG_STORE_AMZN_PUB_P256R1_SIZE

SID_PAL_MFG_STORE_APID_SIZE

Typedef Documentation

sid_pal_mfg_store_app_value_to_offset_t

sid_pal_mfg_store_app_value_to_offset_t)(int value)

Function pointer type for converting an application-specific value to an offset.

Parameters

Type Direction Argument Name Description

N/A value The application-specific value to be converted to an offset.

Returns

A 32-bit unsigned integer representing the offset corresponding to the input value.

Copyright © 2025 Silicon Laboratories. All rights reserved. 250/297

sid_pal_mfg_store_region_t

sid_pal_mfg_store_region_t

Type which holds the start and end addresses of the manufacturing store.

Public Attributes

uintptr_t addr_start

uintptr_t addr_end

sid_pal_mfg_store
_app_value_to_off

set_t

app_value_to_offset
This function allows applications to extend the manufacturing store to be be used for non-Sidewalk values.

Public Attribute Documentation

addr_start

uintptr_t sid_pal_mfg_store_region_t::addr_start

The start address of the manufacturing store region.

addr_end

uintptr_t sid_pal_mfg_store_region_t::addr_end

The end address of the manufacturing store region.

app_value_to_offset

sid_pal_mfg_store_app_value_to_offset_t sid_pal_mfg_store_region_t::app_value_to_offset

This function allows applications to extend the manufacturing store to be be used for non-S idewalk values.

Applications should provide an implementation of this function if they wish to extend the manufacturing store for their own

use. Its responsibility is to convert a value identifier to an offset (in bytes) from the beginning of the manufacturing store.

S idewalk owns the first SID_PAL_MFG_STORE_CORE_VALUE_MAX identifiers, So this function's input should be greater than

SID_PAL_MFG_STORE_CORE_VALUE_MAX and its output should a valid offset below the mfg_store end address. If no

mapping from the value identifier to an offset can be found, this function should return

SID_PAL_MFG_STORE_INVALID_OFFSET value, which will cause the manufacturing store implementation to reject any

operation on the provided value.

Copyright © 2025 Silicon Laboratories. All rights reserved. 251/297

T imer Interfaces

Timer Interfaces

Timer Interfaces

Timer Interfaces

The Timer Interfaces module provides interfaces for managing timer functionalities within the S idewalk SDK. These

interfaces ensure consistent and platform-independent access to timer operations, such as setting, starting, stopping, and

resetting timers. Developers can create applications that are portable across different hardware platforms while maintaining

consistent timing behavior and performance.

Modules

Delay

Timer

Uptime

Copyright © 2025 Silicon Laboratories. All rights reserved. 252/297

Delay

Delay

Delay
Provides a way for Sub-Ghz protocol to control delay.

Functions

void sid_pal_delay_us(uint32_t delay)
Implements a busy wait delay safe to be used in SWI context.

void sid_pal_scheduler_delay_ms(uint32_t delay)
Implements a delay function using RTOS API call.

Function Documentation

sid_pal_delay_us

void sid_pal_delay_us (uint32_t delay)

Implements a busy wait delay safe to be used in SWI context.

Parameters

Type Direction Argument Name Description

uint32_t [in] delay Time in us to delay

Due to busy wait implementation, should not be used for long durations. If you need delay >1ms then use

sid_pal_scheduler_delay_ms instead.

sid_pal_scheduler_delay_ms

void sid_pal_scheduler_delay_ms (uint32_t delay)

Implements a delay function using RTOS API call.

Parameters

Type Direction Argument Name Description

uint32_t [in] delay Time in ms to delay

This function will block the calling thread, do not use in ISR context. This will allow the RTOS scheduler to run other tasks or

switch to an IDLE state while the delay is pending.

If you need sub-millisecond delays then use sid_pal_delay_us instead.

Do not use this function for internal S idewalk stack delays - use the sid_pal_timer API instead.

Copyright © 2025 Silicon Laboratories. All rights reserved. 253/297

T imer

Timer

Timer
Interface for timers for sidewalk SDK.

Modules

Type definitions

Functions

sid_error_t sid_pal_timer_init(sid_pal_timer_t *timer, sid_pal_timer_cb_t event_callback, void *event_callback_arg)
Initialize a timer object.

sid_error_t sid_pal_timer_deinit(sid_pal_timer_t *timer)
De-initialize a timer object.

sid_error_t sid_pal_timer_arm(sid_pal_timer_t *timer, sid_pal_timer_prio_class_t type, const struct sid_timespec *when,
const struct sid_timespec *period)
Arm a timer object.

sid_error_t sid_pal_timer_cancel(sid_pal_timer_t *timer)
Disarm a timer object.

bool sid_pal_timer_is_armed(const sid_pal_timer_t *timer)
Check a timer object is valid and armed.

sid_error_t sid_pal_timer_facility_init(void *arg)
Init the timer facility.

void sid_pal_timer_event_callback(void *arg, const struct sid_timespec *now)
HW event callback.

Function Documentation

sid_pal_timer_init

sid_error_t sid_pal_timer_init (sid_pal_timer_t * timer, sid_pal_timer_cb_t event_callback, void * event_callback_arg)

Initialize a timer object.

Parameters

Type Direction Argument Name Description

sid_pal_timer_t * [in] timer Timer object to initialize

sid_pal_timer_cb_t [in] event_callback Pointer to the callback function the timer event will be delivered to

void * [in] event_callback_arg Argument to be provided to the event_callback during call

sid_pal_timer_deinit

Copyright © 2025 Silicon Laboratories. All rights reserved. 254/297

T imer

sid_error_t sid_pal_timer_deinit (sid_pal_timer_t * timer)

De-initialize a timer object.

Parameters

Type Direction Argument Name Description

sid_pal_timer_t * [in] timer Timer object to de-initialize

Function fully de-initializes the timer object. If it is armed, it will be canceled and then de-initialized.

sid_pal_timer_arm

sid_error_t sid_pal_timer_arm (sid_pal_timer_t * timer, sid_pal_timer_prio_class_t type, const struct sid_timespec * when,
const struct sid_timespec * period)

Arm a timer object.

Parameters

Type Direction
Argument
Name

Description

sid_pal_timer_t * [in] timer Timer object to arm

sid_pal_timer_prio_class_t [in] type Priority class specifier for the timer to be armed

const struct
sid_timespec *

[in] when Pointer to struct sid_timespec identifying the time for the first event

generation

const struct
sid_timespec *

[in] period Pointer to struct sid_timespec identifying the period between event

generation

Function will initialize the timer object for first shot at time provided in when (required). If the period is not NULL and is

not TIMESPEC_INFINITY, the timer object will be armed to repeat events generation periodically with the period according

to the time provided in period .

sid_pal_timer_cancel

sid_error_t sid_pal_timer_cancel (sid_pal_timer_t * timer)

Disarm a timer object.

Parameters

Type Direction Argument Name Description

sid_pal_timer_t * [in] timer Timer object to disarm

Function will disarm the timer object. If it is not armed, function does no operation.

sid_pal_timer_is_armed

bool sid_pal_timer_is_armed (const sid_pal_timer_t * timer)

Copyright © 2025 Silicon Laboratories. All rights reserved. 255/297

T imer

Check a timer object is valid and armed.

Parameters

Type Direction Argument Name Description

const sid_pal_timer_t * [in] timer Timer object to check

sid_pal_timer_facility_init

sid_error_t sid_pal_timer_facility_init (void * arg)

Init the timer facility.

Parameters

Type Direction Argument Name Description

void * [in] arg Pointer to implementation-specific arguments, can be NULL if not used.

This function must be called before before sid_pal_timer_ init().

OPTIONAL This function is typically used to init HW or SW resources needed for the timer. If none are needed by the timer

implementation then this function is unnecessary.

sid_pal_timer_event_callback

void sid_pal_timer_event_callback (void * arg, const struct sid_timespec * now)

HW event callback.

Parameters

Type Direction
Argument
Name

Description

void * [in] arg Pointer to implementation-specific arguments, can be NULL if not

used.

const struct sid_timespec
*

[in] now Pointer to the current time when the event occurred.

OPTIONAL If sid_timer is implemented as a SW timer, this is the callback that can be registered with the HW resource to

provide noritification of HW timer expiry.

Copyright © 2025 Silicon Laboratories. All rights reserved. 256/297

Type definitions

Type definitions

Type definitions

Enumerations

enum sid_pal_timer_prio_class_t {

SID_PAL_TIMER_PRIO_CLASS_PRECISE
SID_PAL_TIMER_PRIO_CLASS_LOWPOWER

}
Timer priority class enumeration.

Enumeration Documentation

sid_pal_timer_prio_class_t

sid_pal_timer_prio_class_t

Timer priority class enumeration.

This enum defines the priority classes for timers, which determine the precision and power consumption characteristics of

timer events.

Enumerator

SID_PAL_TIMER_PRIO_CLASS_PRECISE Events to be generated with the maximum supported on this platform

precision

SID_PAL_TIMER_PRIO_CLASS_LOWPOWER Events can be delayed for up to 1 second to optimize power consumption

Copyright © 2025 Silicon Laboratories. All rights reserved. 257/297

Uptime

Uptime

Uptime
The Uptime Interface module provides interfaces for tracking and managing system uptime within the S idewalk SDK. These

interfaces ensure consistent and platform-independent access to uptime information, allowing developers to monitor the

duration for which the system has been running since the last reset or power cycle.

Functions

sid_error_t sid_pal_uptime_now(struct sid_timespec *time)
Get the current time of specified clock source .

void sid_pal_uptime_set_xtal_ppm(int16_t ppm)
Set crystal offset for RTC compensation.

int16_t sid_pal_uptime_get_xtal_ppm(void)
Get current crystal offset.

Function Documentation

sid_pal_uptime_now

sid_error_t sid_pal_uptime_now (struct sid_timespec * time)

Get the current time of specified clock source.

Parameters

Type Direction Argument Name Description

struct sid_timespec * [out] time current time

NOTE: drift may be NULL. In this case time should be set and drift ignored. Success should be returned.

sid_pal_uptime_set_xtal_ppm

void sid_pal_uptime_set_xtal_ppm (int16_t ppm)

Set crystal offset for RTC compensation.

Parameters

Type Direction Argument Name Description

int16_t [in] ppm offset in PPM

sid_pal_uptime_get_xtal_ppm

int16_t sid_pal_uptime_get_xtal_ppm (void)

Copyright © 2025 Silicon Laboratories. All rights reserved. 258/297

Uptime

Get current crystal offset.

Parameters

Type Direction Argument Name Description

void N/A

Copyright © 2025 Silicon Laboratories. All rights reserved. 259/297

Sidewalk PAL

Sidewalk PAL

Sidewalk PAL

PAL

The S idewalk Platform Abstraction Layer (PAL) provides a set of standardized interfaces that abstract the underlying

hardware and platform-specific details. This layer ensures that the S idewalk SDK can operate seamlessly across different

hardware platforms by providing consistent APIs for common functionalities such as GPIO, timers, logging, and storage.

Developers can create portable applications that maintain consistent behavior and performance across various hardware

configurations.

Modules

BLE Adaptation

GPIO

NVM3 Manager

Timer Types

Copyright © 2025 Silicon Laboratories. All rights reserved. 260/297

BLE Adaptation

BLE Adaptation

BLE Adaptation

BLE Adaptation

The BLE adapter module provides the necessary interfaces and functionalities to integrate Bluetooth Low Energy (BLE)

capabilities into applications using the S idewalk SDK. This module includes support for BLE advertising, connection

management, and data transmission. It also defines the configuration structures and callback mechanisms required to handle

BLE events and operations. By utilizing the BLE adapter, developers can enable their devices to communicate over BLE

within the Amazon S idewalk network.

Key Features:

BLE Advertising: Supports BLE advertising to broadcast data to nearby devices.

Connection Management: Manages BLE connections, including establishing and terminating connections.

Data Transmission: Facilitates data transmission over BLE, including sending and receiving data.

Event Handling: Provides callback mechanisms to handle various BLE events such as connection, disconnection, and data

reception.

Configuration Structures: Defines configuration structures for setting up BLE parameters.

Security: Supports secure BLE communication through encryption and authentication mechanisms.

Modules

BLE adapter

Copyright © 2025 Silicon Laboratories. All rights reserved. 261/297

BLE adapter

BLE adapter

BLE adapter

Modules

Type definitions

Functions

sid_error_t sid_pal_ble_adapter_create(sid_pal_ble_adapter_interface_t *handle)
Creates a BLE adapter interface .

void sl_ble_adapter_on_event(sl_bt_msg_t *evt)
Handles BLE events.

void sl_ble_adapter_on_kernel_start(void)
Callback for kernel start event.

sid_error_t ble_adapter_get_advertiser_address(uint8_t *addr)
This function returns the MAC address of the BLE advertiser.

sid_error_t ble_adapter_get_connection_address(uint8_t *addr)
This function returns the MAC address of the BLE connection.

Function Documentation

sid_pal_ble_adapter_create

sid_error_t sid_pal_ble_adapter_create (sid_pal_ble_adapter_interface_t * handle)

Creates a BLE adapter interface.

Parameters

Type Direction Argument Name Description

sid_pal_ble_adapter_interface_t * [inout] handle Pointer to the BLE adapter interface handle.

This function initializes the BLE adapter interface and assigns it to the provided handle.

Returns

sid_error_t Error code indicating the result of the operation.

sl_ble_adapter_on_event

void sl_ble_adapter_on_event (sl_bt_msg_t * evt)

Handles BLE events.

Parameters

Copyright © 2025 Silicon Laboratories. All rights reserved. 262/297

BLE adapter

Type Direction Argument Name Description

sl_bt_msg_t * [in] evt Pointer to the Bluetooth event message.

This function processes BLE events received from the Bluetooth stack.

sl_ble_adapter_on_kernel_start

void sl_ble_adapter_on_kernel_start (void)

Callback for kernel start event.

Parameters

Type Direction Argument Name Description

void N/A

This function is called when the kernel starts.

ble_adapter_get_advertiser_address

sid_error_t ble_adapter_get_advertiser_address (uint8_t * addr)

This function returns the MAC address of the BLE advertiser.

Parameters

Type Direction Argument Name Description

uint8_t * [out] addr Pointer to the buffer where the MAC address will be stored.

This MAC address is used during BLE advertising.

Returns

sid_error_t Error code indicating the result of the operation.

ble_adapter_get_connection_address

sid_error_t ble_adapter_get_connection_address (uint8_t * addr)

This function returns the MAC address of the BLE connection.

Parameters

Type Direction Argument Name Description

uint8_t * [out] addr Pointer to the buffer where the MAC address will be stored.

This MAC address is used during BLE connection.

Returns

sid_error_t Error code indicating the result of the operation.

Copyright © 2025 Silicon Laboratories. All rights reserved. 263/297

BLE adapter

Copyright © 2025 Silicon Laboratories. All rights reserved. 264/297

Type definitions

Type definitions

Type definitions

Modules

sid_pal_ble_profile_config_t

sid_pal_ble_adapter_ctx_t

Copyright © 2025 Silicon Laboratories. All rights reserved. 265/297

sid_pal_ble_profile_config_t

sid_pal_ble_profile_config_t

Configuration structure for BLE profile in SID PAL.

This structure holds the handles for the current BLE service, characteristic, and descriptor.

Public Attributes

uint16_t current_service_handle

uint16_t * current_characteristic_handle

uint16_t * current_descriptor_handle

Public Attribute Documentation

current_service_handle

uint16_t sid_pal_ble_profile_config_t::current_service_handle

The service declaration attribute handle

current_characteristic_handle

uint16_t* sid_pal_ble_profile_config_t::current_characteristic_handle

The characteristic value attribute handle

current_descriptor_handle

uint16_t* sid_pal_ble_profile_config_t::current_descriptor_handle

The descriptor attribute handle

Copyright © 2025 Silicon Laboratories. All rights reserved. 266/297

sid_pal_ble_adapter_ctx_t

sid_pal_ble_adapter_ctx_t

BLE Adapter Context Structure.

This structure holds the context information for the BLE adapter.

Public Attributes

const
sid_ble_config_t *

cfg

const
sid_pal_ble_adapt
er_callbacks_t *

callback

uint16_t mtu_size

bool is_connected

uint16_t conn_id

uint8_t bt_addr

sid_ble_cfg_adv_p
aram_t

current_adv_config

sid_ble_cfg_conn_
param_t

current_conn_config

sid_ble_cfg_conn_
param_t

last_conn_config

Public Attribute Documentation

cfg

const sid_ble_config_t* sid_pal_ble_adapter_ctx_t::cfg

Configuration parameters for the BLE adapter.

callback

const sid_pal_ble_adapter_callbacks_t* sid_pal_ble_adapter_ctx_t::callback

Callback functions for the BLE adapter.

mtu_size

uint16_t sid_pal_ble_adapter_ctx_t::mtu_size

Maximum Transmission Unit (MTU) size.

Copyright © 2025 Silicon Laboratories. All rights reserved. 267/297

sid_pal_ble_adapter_ctx_t

is_connected

bool sid_pal_ble_adapter_ctx_t::is_connected

Connection status flag.

conn_id

uint16_t sid_pal_ble_adapter_ctx_t::conn_id

Connection identifier.

bt_addr

uint8_t sid_pal_ble_adapter_ctx_t::bt_addr[BLE_ADDR_MAX_LEN�

Bluetooth address.

current_adv_config

sid_ble_cfg_adv_param_t sid_pal_ble_adapter_ctx_t::current_adv_config

Current advertising configuration parameters.

current_conn_config

sid_ble_cfg_conn_param_t sid_pal_ble_adapter_ctx_t::current_conn_config

Current connection configuration parameters.

last_conn_config

sid_ble_cfg_conn_param_t sid_pal_ble_adapter_ctx_t::last_conn_config

Last connection configuration parameters.

Copyright © 2025 Silicon Laboratories. All rights reserved. 268/297

GPIO

GPIO

GPIO

Modules

Type definitions

Copyright © 2025 Silicon Laboratories. All rights reserved. 269/297

Type definitions

Type definitions

Type definitions

Modules

GPIO_PinConfig

GPIO_LookupItem

Enumerations

enum SL_PINout {

SL_PIN_BUSY = 0
SL_PIN_ANTSW
SL_PIN_DIO
SL_PIN_NRESET
SL_PIN_NSS
SL_PIN_MAX

}
Enumeration for GPIO pin assignments.

Enumeration Documentation

SL_PINout

SL_PINout

Enumeration for GPIO pin assignments.

This enumeration defines the various GPIO pin assignments.

Enumerator

SL_PIN_BUSY GPIO pin for BUSY signal.

SL_PIN_ANTSW GPIO pin for antenna switch.

SL_PIN_DIO GPIO pin for DIO signal.

SL_PIN_NRESET GPIO pin for reset signal.

SL_PIN_NSS GPIO pin for NSS signal.

SL_PIN_MAX Maximum number of GPIO pins.

Copyright © 2025 Silicon Laboratories. All rights reserved. 270/297

GPIO_PinConfig

GPIO_PinConfig

Configuration structure for a GPIO.

This structure defines the configuration parameters for a GPIO.

Public Attributes

sid_pal_gpio_direc
tion_t

dir

sid_pal_gpio_input
_t

input_mode

sid_pal_gpio_outp
ut_t

output_mode

sid_pal_gpio_pull_t pull_mode

Public Attribute Documentation

dir

sid_pal_gpio_direction_t GPIO_PinConfig::dir

Direction of the GPIO pin (input/output).

input_mode

sid_pal_gpio_input_t GPIO_PinConfig::input_mode

Input mode configuration for the GPIO pin.

output_mode

sid_pal_gpio_output_t GPIO_PinConfig::output_mode

Output mode configuration for the GPIO pin.

pull_mode

sid_pal_gpio_pull_t GPIO_PinConfig::pull_mode

Pull mode configuration for the GPIO pin.

Copyright © 2025 Silicon Laboratories. All rights reserved. 271/297

GPIO_LookupItem

GPIO_LookupItem

Lookup item structure for GPIO configuration.

This structure defines the lookup item for GPIO configuration, including port, pin, pin configuration, mode, interrupt settings,

and callback information.

Public Attributes

sl_gpio_t gpio

struct
GPIO_PinConfig

PinConfig

sl_gpio_mode_t mode

sid_pal_gpio_irq_h
andler_t

callback

bool falling

bool rising

struct
GPIO_LookupItem:

��1

irq

void * callbackarg

Public Attribute Documentation

gpio

sl_gpio_t GPIO_LookupItem::gpio

gpio port and pin number.

PinConfig

struct GPIO_PinConfig GPIO_LookupItem::PinConfig

Configuration parameters for the GPIO pin.

mode

sl_gpio_mode_t GPIO_LookupItem::mode

Mode of the GPIO pin.

callback

Copyright © 2025 Silicon Laboratories. All rights reserved. 272/297

GPIO_LookupItem

sid_pal_gpio_irq_handler_t GPIO_LookupItem::callback

Callback function to be called on GPIO interrupt.

falling

bool GPIO_LookupItem::falling

Indicates if the interrupt is triggered on falling edge.

rising

bool GPIO_LookupItem::rising

Indicates if the interrupt is triggered on rising edge.

irq

struct GPIO_LookupItem::@1 GPIO_LookupItem::irq

Interrupt configuration for the GPIO pin.

callbackarg

void* GPIO_LookupItem::callbackarg

Argument to be passed to the callback function.

Copyright © 2025 Silicon Laboratories. All rights reserved. 273/297

NVM3 Manager

NVM3 Manager

NVM3 Manager

Modules

Type definitions

Functions

sid_error_t sli_sid_nvm3_convert_ecode_to_sid_error�Ecode_t nvm3_return_code)
Translates Ecode_t type error codes to sid_error_t type .

Function Documentation

sli_sid_nvm3_convert_ecode_to_sid_error

sid_error_t sli_sid_nvm3_convert_ecode_to_sid_error �Ecode_t nvm3_return_code)

Translates Ecode_t type error codes to sid_error_t type.

Parameters

Type Direction Argument Name Description

Ecode_t [in] nvm3_return_code type error code from nvm3

Returns

translated error code to sid_error_t

Copyright © 2025 Silicon Laboratories. All rights reserved. 274/297

Type definitions

Type definitions

Type definitions

Macros

#define SLI_SID_NVM3_KEY_BASE 0xA0000

#define SLI_SID_NVM3_KEY_MIN_APP_REL 0�0

#define SLI_SID_NVM3_KEY_MAX_APP_REL 0�1FFF

#define SLI_SID_NVM3_KEY_MIN_KV_REL 0�0

#define SLI_SID_NVM3_KEY_MAX_KV_REL 0�6FFF

#define SLI_SID_NVM3_KEY_MIN_MFG_REL 0�0

#define SLI_SID_NVM3_KEY_MAX_MFG_REL 0�6FFF

#define SLI_SID_NVM3_KEY_MIN_APP �SLI_SID_NVM3_KEY_BASE + SLI_SID_NVM3_KEY_MIN_APP_REL�

#define SLI_SID_NVM3_KEY_MAX_APP �SLI_SID_NVM3_KEY_BASE + SLI_SID_NVM3_KEY_MAX_APP_REL�

#define SLI_SID_NVM3_KEY_MIN_KV �SLI_SID_NVM3_KEY_MAX_APP + 1�

#define SLI_SID_NVM3_KEY_MAX_KV �SLI_SID_NVM3_KEY_MAX_APP + 1 + SLI_SID_NVM3_KEY_MAX_KV_REL�

#define SLI_SID_NVM3_KEY_MIN_MFG �SLI_SID_NVM3_KEY_MAX_KV + 1�

#define SLI_SID_NVM3_KEY_MAX_MFG �SLI_SID_NVM3_KEY_MAX_KV + 1 + SLI_SID_NVM3_KEY_MAX_MFG_REL�

#define SLI_SID_NVM3_KEY_BASE_APP SLI_SID_NVM3_KEY_MIN_APP

#define SLI_SID_NVM3_KEY_BASE_KV SLI_SID_NVM3_KEY_MIN_KV

#define SLI_SID_NVM3_KEY_BASE_MFG SLI_SID_NVM3_KEY_MIN_MFG

#define SID_PAL_MFG_STORE_SL_NVM3_VERSION �SID_PAL_MFG_STORE_CORE_VALUE_MAX + 1�
SiLabs-specific MFG key for the NVM3 version MFG object.

#define SID_PAL_MFG_STORE_SL_NVM3_VERSION_SIZE 4
Size of the NVM3 version in bytes.

#define SLI_SID_NVM3_VALIDATE_KEY (region, key)
Validate if a key is within the specified region's range .

#define SLI_SID_NVM3_MAP_KEY (region, key)
Map a key to the specified region's base key.

Copyright © 2025 Silicon Laboratories. All rights reserved. 275/297

T imer Types

Timer Types

Timer Types

Modules

Type definitions

Copyright © 2025 Silicon Laboratories. All rights reserved. 276/297

Type definitions

Type definitions

Type definitions

Modules

sid_pal_timer_ impl_t

Typedefs

typedef void(* sid_pal_timer_cb_t)(void *arg, sid_pal_timer_t *originator)
Timer callback type .

Typedef Documentation

sid_pal_timer_cb_t

typedef void(* sid_pal_timer_cb_t) (void *arg, sid_pal_timer_t *originator))(void *arg, sid_pal_timer_t *originator)

Timer callback type.

Note

The callback is allowed to execute absolute minimum amount of work and return as soon as possible

Implementer of the callback should consider the callback is executed from ISR context

Copyright © 2025 Silicon Laboratories. All rights reserved. 277/297

sid_pal_timer_ impl_t

sid_pal_timer_impl_t

Timer storage type.

Typedef for the timer implementation structure.

Note

This is the implementor defined storage type for timers.

This typedef defines a type alias for the timer implementation structure.

Public Attributes

struct
sid_timespec

alarm

struct
sid_timespec

period

sl_sleeptimer_time
r_handle_t

sleeptimer_handle

sid_pal_timer_cb_t callback

bool is_periodic

bool has_started

uint32_t period_in_ms

void * callback_arg

Public Attribute Documentation

alarm

struct sid_timespec sid_pal_timer_t::alarm

The alarm time for the timer.

period

struct sid_timespec sid_pal_timer_t::period

The period of the timer.

sleeptimer_handle

sl_sleeptimer_timer_handle_t sid_pal_timer_t::sleeptimer_handle

Handle for the sleep timer.

Copyright © 2025 Silicon Laboratories. All rights reserved. 278/297

sid_pal_timer_ impl_t

callback

sid_pal_timer_cb_t sid_pal_timer_t::callback

Callback function to be called when the timer expires.

is_periodic

bool sid_pal_timer_t::is_periodic

Indicates if the timer is periodic.

has_started

bool sid_pal_timer_t::has_started

Indicates if the timer has started.

period_in_ms

uint32_t sid_pal_timer_t::period_in_ms

The period of the timer in milliseconds.

callback_arg

void* sid_pal_timer_t::callback_arg

Argument to be passed to the callback function.

Copyright © 2025 Silicon Laboratories. All rights reserved. 279/297

Sidewalk Sample Applications

Sidewalk Sample Applications

Sample Applications

Introduction

A number of examples are provided with S implicity Studio and the Proprietary Flex SDK. Each example has an associated

README that explains the purpose of the example and how to use it. Some of the examples have more extensive

documentation, and that is included in this section.

SoC Dynamic Multiprotocol Light

This is a Dynamic Multiprotocol reference application demonstrating a light bulb that can be switched via Bluetooth or

Amazon S idewalk (BLE or FSK radio layer).

It allows a BLE central device to control the LED on the mainboard and receive button press notifications. To test this

demo, install S implicity Connect mobile application. S imultaneously, this sample application leverages the Amazon S idewalk

protocol to connect to the cloud using either BLE or sub-GHz FSK modulation. The S idewalk endpoint connects to a

gateway, allowing it to exchange data with the AWS cloud.

You interact with the endpoint either by pressing the mainboard buttons, through the BLE S implicity Connect application or

through the AWS cloud by issuing CLI commands.

You can learn more about S ilicon Labs Multiprotocol libraries on S ilicon Labs website.

You can find more details about SoC Dynamic Multiprotocol Light on the S ilicon Labs Amazon S idewalk G ithub repository

SoC Bluetooth Sub-GHz CLI Application

The Bluetooth sub-GHz Command Line Interface (CLI) sample application allows the user to interact with the endpoint

using CLI commands. The application leverages the Amazon S idewalk protocol to exchange data between the endpoint and

the AWS Cloud using one of the 3 radio layers. It is possible to initialize and start the stack using any one of the 3 radio

layers (BLE, FSK, or CSS). A one-time registration phase (using either BLE or FSK, as registration does not occur over

CSS) is required at first boot.

You can find more details about SoC Bluetooth Sub-GHz CLI Application on the S ilicon Labs Amazon S idewalk G ithub

repository.

SoC Empty

The Amazon S idewalk Empty sample application is a minimalist template designed for developing Amazon S idewalk

applications. It can be used alongside the developer's guide, which helps you use and configure the Amazon S idewalk

solution and implement your own application. Before diving into this application, it is recommended to review the Getting

Started guide to become familiar with the Amazon S idewalk workflow, and then refer to the Developer's Guide.

You can find more details about SoC Empty App on the S ilicon Labs Amazon S idewalk G ithub repository.

SoC Bluetooth Sub-GHz Hello Neighbor

The Hello Neighbor sample application leverages the Amazon S idewalk protocol to connect to the cloud using either BLE or

sub-GHz FSK / CSS modulation (after an initial registration phase over BLE, if necessary). The S idewalk endpoint connects

to a gateway, allowing it to exchange data with the AWS cloud. You interact with the endpoint either by pressing the

mainboard buttons (not supported when using KG100S) or issuing CLI commands.

Copyright © 2025 Silicon Laboratories. All rights reserved. 280/297

https://www.silabs.com/wireless/multiprotocol?tab=learn
https://github.com/SiliconLabs/amazon-sidewalk/tree/sisdk-2024.12/documentation/example/amazon_sidewalk_dmp_soc_light
https://github.com/SiliconLabs/amazon-sidewalk/tree/sisdk-2024.12/documentation/example/amazon_sidewalk_soc_cli/bt_subghz
https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-developers-guide
https://github.com/SiliconLabs/amazon-sidewalk/tree/sisdk-2024.12/documentation/example/amazon_sidewalk_soc_empty

Sidewalk Sample Applications

You can find more details about SoC Bluetooth Sub-GHz Hello Neighbor on the S ilicon Labs Amazon S idewalk G ithub

repository.

SoC Out-of-the-Box �OOB� Demo

SoC Bluetooth Out-of-the-Box (OOB) Demo

Ⓘ INFO Ⓘ : This application image is provided for the sole purpose of restoring the factory-default OOB demo

application on EFR32xG24 2.4 GHz 20 dBm Radio Boards (BRD4187C) included in the S ilicon Labs Pro K it for

Amazon S idewalk. It will not function on any other device, nor on any BRD4187C boards sourced independently

from the above kits.

The OOB (Bluetooth) sample application leverages the Amazon S idewalk protocol to connect to the cloud using a

Bluetooth connection. The S idewalk endpoint connects to a gateway, allowing it to exchange data with the AWS cloud. The

user interacts with the endpoint either by pressing the main board buttons or through GUI elements in the associated web-

based application running in AWS.

You can find more details about Bluetooth OOB on the S ilicon Labs Amazon S idewalk G ithub repository.

SoC Bluetooth Sub-GHz Out-of-the-Box (OOB) Demo

Ⓘ INFO Ⓘ : This application image is provided for the sole purpose of restoring the factory-default OOB demo

application on KG100S S idewalk Module Radio Boards (BRD4332A) included in the S ilicon Labs Pro K it for

Amazon S idewalk. It will not function on any other device, nor on any BRD4332A boards sourced independently

from the above kits.

The OOB (Bluetooth & sub-GHz) sample application leverages the Amazon S idewalk protocol to connect to the cloud using

sub-GHz FSK / CSS modulation (after an initial registration phase over BLE, if necessary). The S idewalk endpoint connects

to a gateway, allowing it to exchange data with the AWS cloud. The user interacts with the endpoint either by pressing the

main board buttons or through GUI elements in the associated web-based application running in AWS.

You can find more details about Bluetooth Sub-GHz OOB on the S ilicon Labs Amazon S idewalk G ithub repository.

SoC Production Device Provisioner �PDP�

The Production Device Provisioner application is a tool to enable your production product to leverage Secure Vault,

generating the key pair directly on the device thus, limiting the exposure of the private key.

In S idewalk, you can leverage Secure Vault to store sensitive data (private keys) in a secure place. A set of scripts and this

application is provided to use the Secure Element in the Amazon S idewalk context.

The PDP application is used to exchange certificate data and to communicate with the Secure Element through APIs. The

PDP application can be used for provisioning and is automatically deleted upon reboot, as it is a transient application running

in RAM.

For more information on product manufacturing in the S idewalk context, refer to Manufacturing a Product.

You can find more details about SoC Production Device Provisioner on the S ilicon Labs Amazon S idewalk G ithub repository

SoC Qualification

The SoC Qualification example is a command-line interface (CLI) based sample application. It enables testing of the

S idewalk API functions via the command line. This is the reference application for S idewalk qualification and contains all the

commands needed to pass the certification with Amazon.

Copyright © 2025 Silicon Laboratories. All rights reserved. 281/297

https://github.com/SiliconLabs/amazon-sidewalk/tree/sisdk-2024.12/documentation/example/amazon_sidewalk_soc_hello_neighbor
https://www.silabs.com/development-tools/wireless/proprietary/amazon-sidewalk-pro-kit
https://github.com/SiliconLabs/amazon-sidewalk/tree/sisdk-2024.12/documentation/example/amazon_sidewalk_soc_oob/bt
https://www.silabs.com/development-tools/wireless/proprietary/amazon-sidewalk-pro-kit
https://github.com/SiliconLabs/amazon-sidewalk/tree/sisdk-2024.12/documentation/example/amazon_sidewalk_soc_oob/bt_subghz
https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-manufacture-product
https://github.com/SiliconLabs/amazon-sidewalk/tree/sisdk-2024.12/documentation/example/amazon_sidewalk_soc_pdp

Sidewalk Sample Applications

Amazon fully manages the qualification process. For any questions regarding this process, reach out to Amazon support

directly. This sample application serves as a guide for developers to implement the interface with Amazon's qualification

tests. The qualification sample application can be used to port custom hardware and should be included in the application

submitted to Amazon for approval.

You can find more details about SoC Qualification on the S ilicon Labs Amazon S idewalk G ithub repository.

Copyright © 2025 Silicon Laboratories. All rights reserved. 282/297

https://github.com/SiliconLabs/amazon-sidewalk/tree/sisdk-2024.12/documentation/example/amazon_sidewalk_soc_qualification

Overview

Overview

Platform Resources
When you develop in the S ilicon Labs S implicity SDK, you have additional resources available to you through the Gecko

Platform. This section includes information on the following topics.

Bootloading: Bootloading allows you to update application firmware images on Wi-SUN devices. This section provides

background information about bootloading using the S ilicon Labs Gecko Bootloader.

Non-Volatile Memory Use : This section offers an introduction to non-volatile data storage and describes how to use NVM3

data storage.

Security: S ilicon Labs offers a range of security features depending on the part you are using and your application and

production needs.

Copyright © 2025 Silicon Laboratories. All rights reserved. 283/297

https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-bootloading-overview
https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-memory-use-overview
https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-security-overview

Overview

Overview

Bootloading Amazon Sidewalk Applications
Bootloading allows you to update application firmware images on S idewalk devices. This section provides background

information about bootloading using the S ilicon Labs Gecko Bootloader.

Bootloader Fundamentals (PDF): Introduces bootloading for S ilicon Labs networking devices. Discusses the Gecko

Bootloader and bootloader file formats.

Silicon Labs Gecko Bootloader User's Guide for GSDK 4.0 and Higher (PDF): Describes the high-level implementation of the

S ilicon Labs Gecko Bootloader for EFR32 SoCs and NCPs, and provides information on how to get started using the Gecko

Bootloader with S ilicon Labs wireless protocol stacks in GSDK 4.0 and higher or S implicity SDK 2024.6.0 and higher.

Copyright © 2025 Silicon Laboratories. All rights reserved. 284/297

https://www.silabs.com/documents/public/user-guides/ug103-06-fundamentals-bootloading.pdf
https://www.silabs.com/documents/public/user-guides/ug489-gecko-bootloader-user-guide-gsdk-4.pdf

Overview

Overview

Non-Volatile Memory Use
This section offers an introduction to non-volatile data storage and describes how to use NVM3 data storage.

Non-Volatile Data Storage Fundamentals (PDF): Introduces non-volatile data storage using flash and the three different

storage implementations offered for S ilicon Labs microcontrollers and SoCs: S imulated EEPROM, PS Store, and NVM3.

Using NVM3 Data Storage (PDF): Explains how NVM3 can be used as non-volatile data storage in various protocol

implementations.

Copyright © 2025 Silicon Laboratories. All rights reserved. 285/297

https://www.silabs.com/documents/public/user-guides/ug103-07-non-volatile-data-storage-fundamentals.pdf
https://www.silabs.com/documents/public/application-notes/an1135-using-third-generation-nonvolatile-memory.pdf

Overview

Overview

Security
S ilicon Labs offers a range of security features depending on the part you are using and your application and production

needs.

IoT Security Fundamentals (PDF): Introduces the security concepts that must be considered when implementing an Internet

of Things (IoT) system. Using the ioXt Alliance's eight security principles as a structure, it clearly delineates the solutions

S ilicon Labs provides to support endpoint security and what you must do outside of the S ilicon Labs framework.

Integrating Crypto Functionality with PSA Crypto vs. Mbed TLS (PDF): Describes how to integrate crypto functionality into

applications using PSA Crypto compared to Mbed TLS.

Copyright © 2025 Silicon Laboratories. All rights reserved. 286/297

https://www.silabs.com/documents/public/user-guides/ug103-05-fundamentals-security.pdf
https://www.silabs.com/documents/public/application-notes/an1311-mbedtls-psa-crypto-porting-guide.pdf

Manufacturing a Product

Manufacturing a Product

Manufacturing a Product
This section provides information on how to mass manufacture a S ilicon Labs S idewalk-enabled product. It is based on

Amazon's documentation called Manufacturing Amazon S idewalk devices for mass production and describes the S ilicon

Labs specific steps in detail as well as a short summary of the global production flow in the factory.

To enable the production of your S idewalk-based product, it needs to be certified (see corresponding documentation on

qualification). Amazon provides a set of tools to facilitate production and this section describes the specific S ilicon Labs

tools that integrate with them. For more information on those tools and how to obtain them, check Amazon documentation

on manufacturing or contact your Amazon S idewalk business representative.

Standard Amazon Manufacturing Flow

Amazon documentation describes how a manufacturer can mass produce S idewalk products. This flow is used to

manufacture a large number of devices, and can be divided into 4 phases:

Setting up the factory infrastructure

Manufacturing at the factory

Uploading the device records (control logs) to Amazon

Creating the recorded devices in your AWS cloud account

The S ilicon Labs added-value elements described in the following sections impact the "Manufacturing at the factory" phase.

All other steps stay unchanged and follow the Amazon standard flow described in the figure below.

Copyright © 2025 Silicon Laboratories. All rights reserved. 287/297

https://docs.sidewalk.amazon/manufacturing/
https://docs.sidewalk.amazon/qualification/
https://docs.sidewalk.amazon/manufacturing/
https://docs.sidewalk.amazon/manufacturing/manufacture-provision/sidewalk-host-installation.html
https://docs.sidewalk.amazon/manufacturing/manufacture-provision/sidewalk-provision-certprofile.html
https://docs.sidewalk.amazon/manufacturing/manufacture-provision/sidewalk-provision-controllogs.html
https://docs.aws.amazon.com/iot/latest/developerguide/sidewalk-bulk-provisioning.html

Manufacturing a Product

ò The endpoint key pair is generated directly on the device. A custom application (leveraging Amazon Provisioning Libraries)

triggers the certificates generation by calling the S igning Tool provided by Amazon.

ó The HSM, provisioned by Amazon, is used to sign the Certificate S igning Request (CSR) and outputs the certificate.

ô The signing tool is used along with the HSM to create the certificate chain from the endpoint certificate to the S idewalk

Network server and Application certificates. Control logs are generated as well.

õ Once the certificate chain is generated, it can be added to the manufacturing page generated during this flow.

ö Control logs are assembled into a database and can be uploaded to the cloud to populate the devices record.

÷ Once all devices are entered into the record, the devices are known to the backend and can be created using the import

tasks. A list of all SMSNs of created devices can be uploaded to the cloud to create the corresponding virtual devices in IoT

Core.

For added security, the step requiring AWS connection can be done periodically on another computer. This way, the

production PC can be totally offline and only the control logs database is shared to the computer handling AWS and

connectivity tasks.

Silicon Labs Security Added Value

On S ilicon Labs EFR32 Series 2 platforms, you can leverage Secure Vault to store sensitive data (private keys) in a secure

place. A set of scripts and a device application, called Production Device Provisioner (PDP), is provided to use the Secure

Element in the Amazon S idewalk context.

The goal of the production scripts is to facilitate data provisioning by providing ready-to-use scripts and a way of

communicating with the embedded device from a host computer. The production flow for development and manufacturing

setups stays the same, which makes the transition from development to manufacturing transparent.

In addition to the production scripts, to communicate between the device and the production line PC, S ilicon Labs provides

a PDP application. It is used to exchange certificate data and to communicate with the Secure Element through APIs. The

PDP application can be used for provisioning and is automatically deleted upon reboot, as it is a transient application running

in RAM.

Generating the key pair directly on the device limits the exposure of the private key. Amazon security requirements are

evolving to require this "on-device" generation of the private key or new products. Starting with Amazon S idewalk SDK 1.16,

all products must be produced using the on-device certification generation. YubiHSM requested after S idewalk SDK 1.16

release must use the on-device certification generation. For products released before S idewalk SDK 1.16, keys can be

generated on the production machine following the legacy flow described in the OpenSSL Private Key Provisioning section.

Provisioning Methods

All available methods to provision a device appear in the following table. It includes the prototyping method used during

development, and the two manufacturing methods (depending on your Amazon S idewalk SDK version). All of these

methods can be used alongside the Secure Vault to store the credentials.

Method Name

Certificate

Generation

Method

Flow YubiHSM
Crypto

Library

Security

Level
Usage

On-device

Certificate

Generation

On-device Manufacturing Yes S ilicon Labs

PSA Crypto

HIGH Volume Production

Prototyping Cloud Prototyping No OpenSSL LOW Development only

OpenSSL Private

Key Provisioning

Offline/Production

PC

Legacy

Manufacturing

Yes OpenSSL MEDIUM Volume Production

(Deprecated as of

1.16)

The prototyping flow leveraging Secure Vault is covered in the OpenSSL Private Key Provisioning section below.

On-Device Certificate Generation

In Amazon S idewalk SDK 1.16, Amazon introduced a new flow called On-Device Certificate Generation. The main point of

this flow is to generate the private key directly on the device and only communicate the CSR and public certificate to the

Copyright © 2025 Silicon Laboratories. All rights reserved. 288/297

https://docs.silabs.com/d/platform-security/4.3/

Manufacturing a Product

production PC. The private keys never leave the device. S ilicon Labs provides a tool that builds on the On-Device

Certificate Generation flow and leverages Secure Vault to store the keys. This enhanced flow is described in the figure

below.

ò The endpoint key pair is generated directly on the device. The private keys are wrapped by the Secure Element as

described in the Secure Vault documentation section 3.3.2 using the Production Device Provisioner application provided by

Silicon Labs.

ó The HSM, provisioned by Amazon, is used to sign the Certificate S igning Request (CSR) and outputs the certificate.

ô The signing tool is used along with the HSM to create the certificate chain from the endpoint certificate to the S idewalk

Network server and Application certificates. Control logs are generated as well.

õ Once the certificate chain is generated, it can be added to the manufacturing page generated during this flow. The

manufacturing page, containing the private keys ID from Secure Vault, is written to the device flash.

ö Control logs are assembled into a database and can be uploaded to the cloud to populate the devices record.

÷ Once all devices are entered into the record, the devices are known to the backend and can be created using the import

tasks. A list of all SMSNs of created devices can be uploaded to the cloud to create the corresponding virtual devices in IoT

Core.

Silicon Labs Production Provisioning Walkthrough

Both on-device and offline manufacturing certificate generation flows use the production scripts and application.

Production provisioning scripts consist of two functions: initialization and provisioning.

The initialization script generates an image with the static data of a S idewalk device (the common part of the Amazon

S idewalk certificate) and optionally a S idewalk application. The generated image is identical for all the devices in question. In

the case of on-device certificate generation, the output of this script is just the custom application binary without any

static data added.

Copyright © 2025 Silicon Laboratories. All rights reserved. 289/297

https://www.silabs.com/documents/public/application-notes/an1271-efr32-secure-key-storage.pdf

Manufacturing a Product

The provisioning script, on the other hand, flashes the initialization image generated in the previous step, flashes the

Production Device Provisioner RAM application, and provisions device-specific information via this application. Each device

is provisioned with a unique set of security credentials (device-specific part of the S idewalk certificate).

The scripts can be used in two certificate generation modes:

On-device certificate generation: Device certificate is generated and private keys are wrapped by the Secure Element on

the device.

Private key provisioning: Device certificate is generated outside of the device and private keys are wrapped by the Secure

Element. Deprecated since Amazon S idewalk SDK 1.16, see the section at the end of this page.

The production scripts are located in too ls/scripts/public/pdp folder of the extension.

Enabling the Secure Element

For starters, the Secure Vault should be enabled in your S idewalk application. To enable Secure Vault in the application, you

must modify the config/sl_sidewalk_common_config.h file in your project as follows:

In file config/sl_sidewalk_common_config.h , add definition for SV_ENABLED .

#ifndef SV_ENABLED

 #define SV_ENABLED 1

#endif //SV_ENABLED

Compiling the Production Device Provisioner Application

The production scripts communicate between the Amazon S igning Tool and with a device through the Production Device

Provisioner application.

To create a Production Device Provisioner application, follow the getting started documentation and compile the

Production Device Provisioner instead of the Hello Neighbor application: Create an Amazon S idewalk Project.

To compile the application, go to your newly created Production Device Provisioner application folder in the S implicity IDE

persective. In the left explorer view, right-click the project and select Build Project. When the compilation is finished, you

will find the compiled binary in your S implicity Studio workspace under your_pdp_pro ject_name/GNU ARM v10.3.1 -

Default/your_pro ject_name .s37 . This file is needed by the production provisioning script in the next step.

On-Device Certificate Generation

For On-Device Certificate Generation, we generate the private keys on the device; only the CSR and public certificate are

communicated to the production PC. Private data never leaves the device. Only the public data needed to create the

device on the cloud is communicated to the production PC.

Here is a detailed description of the steps:

ò Production Device Provisioner (PDP) script sends a command to the device that triggers Amazon on-device certificate

generation module's init API, which initializes the process context.

ó PDP script sends a command to the device that triggers amazon on-device certificate generation module's generate SMSN

(S idewalk MAnuafacturing Serial Number) API. It sends the command along with the device type (provided by Amazon),

device serial number (generated per device), and ApID (provided by Amazon) parameters. The device sends back generated

SMSN.

ô PDP script sends a command to the device that triggers Amazon on-device certificate generation module's generate CSR

API, two times in a row, one for ED25519 elliptic curve and another for P256R1 elliptic curve. It's at this stage that the device

private keys (two keys, one for each curve) are generated in Secure Vault and wrapped with the device private key before

being stored on the default NVM3 instance.

õ PDP script calls S idewalk signing tool provided by Amazon. It passes production tag, HSM connection address, HSM PIN,

ED25519 CSR, p256r1 CSR and ApID parameters to the signing tool.

Copyright © 2025 Silicon Laboratories. All rights reserved. 290/297

https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-getting-started/create-and-compile-application#create-an-amazon-sidewalk-project

Manufacturing a Product

ö S igning tool sends back signed CSRs (certificate chain for each curve) to the PDP script. PDP script sends a command to

the device that triggers Amazon on-device certificate generation module's write certificate chain API to insert signed CSRs

to the device.

÷ PDP script sends a command to the device that triggers Amazon on-device certificate generation module's write application

server public key API to insert the application server public key to the device.

ø PDP script sends a command to the device that triggers Amazon on-device certificate generation module's verify and store

API. This basically writes all the generated manufacturing information onto the manufacturing image NVM3 instance.

In this walkthrough, we are going to use the manufacturing provisioning script that leverages Secure Vault to store the

private keys.

Running the Initialization Script

For On-Device Certificate Generation, the initialization script is not needed anymore. Instead, directly use the S idewalk

application as input to the provisioning script.

Running the Provisioning Script

The provisioning script takes an SoC family, S idewalk application image, Production Device Provisioner image, and YubiHSM

related information as input arguments, and provisions the end device with device credentials generated on the device. This

script must be run on each device in production, using the following steps:

ò Connect your device with a supported EFR32 chip.

ó Connect the YubiHSM key.

ô Run the following command in as administrator: sudo yubihsm-connector -d .

õ Navigate to too ls/scripts/public/pdp directory.

ö Fill the configuration file with the product information.

÷ Run the following commands.

Ⓘ INFO Ⓘ : If you prefer to flash the initialization image before the provisioning, leave the sid-init-img field

empty.

⚠ WARNING ⚠: S implicity Commander version 1v16 and JLink RTT version 7.96 are the minimum required

versions to run the scripts.

{

 "part": "part_number_like_efr32zg28b322f1024im68",

 "sid_init_img": "out/sid_init_img.s37",

 "pdp_img": "/path/to/pdp/app.s37",

 "dev_type": "dev_type_like_A232AX65BNIW2J",

 "apid": "advertised_product_id_like_zGhh",

 "app_srv_pub_key": "app_srv_pub_key_like_887fc49bb23ffbbdb98550040506c7eddf696707519b0c1c603e4bf8801631c6",

 "sst_prod_tag": "prod_tag_like_RNET_DAK_DUMMY",

 "sst_hsm_conn_addr": "hsm_yubi_connector_addr_like_http://localhost:12345",

 "sst_hsm_pin": "yubi_hsm_pin_like_1234"

}

python3 provision_silabs.py \

 --dsn <device_serial_no_like_G6F1JN06119201GP> \

 --prod-config template_prod_config.json

 --pdp-mode on_dev_cert_gen

With fields as follows:

Copyright © 2025 Silicon Laboratories. All rights reserved. 291/297

Manufacturing a Product

part: Part number (efr32zg28b322f1024im68)

sid_init_img: S idewalk custom application binary (.s37 file)

pdp_img: S idewalk Production Device Provisioner application binary (.s37 file)

dev_type: This field is provided by Amazon upon HSM provisioning request

apid: This value can be extracted from the device profile associated to your HSM

app_srv_pub_key: This value can be extracted from the device profile associated to your HSM

sst_prod_tag: This field is provided by Amazon upon HSM provisioning request

sst_hsm_conn_addr: This is the socket address connected to your HSM usb key, it is http://localhost:12345 by default in

yubico toolkit

sst_hsm_pin: This field is provided by Amazon upon HSM provisioning request

And arguments as follows:

dsn: This field is used to generate the S idewalk SMSN, it shall be unique for each device

pdp-mode: To choose between On-device certificate generation and OpenSSL private key provisioning

prod-config: Path to the configuration file

To use the script with command-line arguments instead of a configuration file, simply drop the --prod-config parameter and

add all configuration fields as arguments.

After completing this step, the S idewalk end device is now provisioned and all public information is stored in the out/ folder

for the device upload to the cloud following the standard Amazon flow.

OpenSSL Private Key Provisioning �Deprecated)

This manufacturing flow is deprecated as of Amazon S idewalk SDK 1.16. See the security section above for information on

whether or not you can use this flow for your product.

This flow is an extension of the now deprecated Standard Amazon flow below.

Copyright © 2025 Silicon Laboratories. All rights reserved. 292/297

Manufacturing a Product

In the S ilicon Lab version of this flow, the private key are wrapped by the Secure Vault instead of the flash. The

manufacturing page contains references to the Secure Vault slot storing the private keys.

ò The endpoint key pair is generated on the production computer and the S igning Tool provided by Amazon is called to start

certificate generation.

ó The HSM, provisioned by Amazon, is used to sign the Certificate S igning Request (CSR) and outputs the certificate.

ô The signing tool is used along with the HSM to create the certificate chain from the endpoint certificate to the S idewalk

Network server and Application certificates. Control logs are generated as well.

õ Once the certificate chain is generated, it can be used to generate the manufacturing page with the provisioning script.

The private keys are wrapped by the Secure Element as described in the Secure Vault documentation section 3.3.1. The

manufacturing page, containing the private keys ID from Secure Vault, is flashed to the device.

ö Control logs are assembled into a database and can be uploaded to the cloud to populate the devices record.

÷ Once all devices are entered into the record, the devices are known to the backend and can be created using the import

tasks. A list of all SMSNs of created devices can be uploaded to the cloud to create the corresponding virtual devices in IoT

Core.

Leveraging Secure Vault does not use the manufacturing page (MFG) generated by the prototyping scripts. Instead it uses

the WirelessDevice.json and DeviceProfile.json files obtained as outputs from the prototyping scripts described in the

Prototyping APIs section. The steps are as follows:

ò The initialization script creates an output file (.s37) containing a part of the manufacturing page that is identical for all the

devices created using the same Device Profile.

ó The output of this initialization script can optionally include the S idewalk application binary.

ô The device-specific information is provisioned to the device using the provisioning script. Here, the rest of the manufacturing

page on the device will be completed with the device-specific information.

To summarize, the initialization script generates an output file that can be flashed to all devices. Then the provisioning script

is used to provision the device credentials. The credentials are wrapped by keys contained in the Secure Vault and stored

in the Default NVM3 Instance as described in the Non-Volatile Memory Use section.

Copyright © 2025 Silicon Laboratories. All rights reserved. 293/297

https://www.silabs.com/documents/public/application-notes/an1271-efr32-secure-key-storage.pdf
https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-app-development#prototyping-apis
https://docs.silabs.com/amazon-sidewalk/2.5.0/sidewalk-app-development#non-volatile-memory-use

Manufacturing a Product

OpenSSL Private Key Provisioning Walkthrough �Deprecated)

Device certificate is generated outside of the device so it is intrinsically less secure. Amazon's signing server tool

generates device certificates using OpenSSL and YubiHSM.

Here is an overview of what happens in this mode:

ò All dynamic data is sent to the device.

ó ED25519 and P256R1 device private keys are wrapped by the Secure Vault.

Production provisioning scripts consist of two functions: initialization and provisioning. The scripts can be used in three

different configurations:

ò You can include the application binary in the initialization script and use the output of the script in the provisioning script. This

flashes both binaries containing the application, MFG common section, and MFG device-specific section.

ó You can call the initialization script with the application binary. Flash the resulting image, which contains the application and

MFG common section, on your device. Then call the provisioning script without the initialization image (sid-init-img) option to

flash the remaining MFG device-specific information.

ô You can omit the application binary in the initialization script (sid-app option). You will have to flash the output of the

initialization script (MFG common section) before calling the provisioning one. Then you can call the provisioning script (MFG

device-specific section). The application binary can be flashed at any point or added as an argument of the provisioning

script (using the sid-init-img option).

In all the flows, the only hard requirement is to flash the output of initialize_silabs.py (sid.s37) before calling

silabs_provision.py. The common information in the manufacturing page must be on the device before the device-specific

one. See the diagram below for more details.

Copyright © 2025 Silicon Laboratories. All rights reserved. 294/297

Manufacturing a Product

The production script folder contains several python scripts (initialization_silabs.py and provision_silabs.py). In the following

instructions on each script, two commands are shown, one for prototyping and one for manufacturing. The prototyping one

can be used with the output files of the Amazon prototyping flow (DeviceProfile.json and WirelessDevice.json) while the

manufacturing one can be used with Amazon manufacturing flow output files containing the private keys.

Before provisioning your device, you will need to enable Secure Vault in your S idewalk application and to compile the

Production Device Provisioner application needed in the next steps.

⚠ WARNING ⚠: S implicity Commander version 1v16 and JLink RTT version 7.96 are the minimum required

versions to run the scripts.

Running the Initialization Script

Copyright © 2025 Silicon Laboratories. All rights reserved. 295/297

Manufacturing a Product

The initialization script takes an Amazon S idewalk device certificate, SoC family and S idewalk application binary as input

arguments and generates a binary file that contains the static (common) part of the S idewalk certificate and the S idewalk

application provided as input arguments. The output binary file is common to all the product instances so it does not contain

any device-specific information (device-specific information is provisioned in the next step). This script can be run once to

generate the common binary in the production, following these steps:

ò Navigate to too ls/scripts/public/pdp directory.

ó Run the commands below.

pip3 install -r requirements.txt

For manufacturing

python3 initialize_silabs.py --sid-cert </path/to/certificate.json> --sid-cert-type prod --part <part> --sid-usr-app-img </path/to/user/sid/app.s37> -

-pdp-mode priv_key_prov

For prototyping

python3 initialize_silabs.py --sid-cert </path/to/WirelessDevice.json> --sid-cert-type proto --sid-dev-prof </path/to/DeviceProfile.json> --part

<part> --sid-usr-app-img </path/to/user/sid/app.s37> --pdp-mode priv_key_prov

With arguments as follows:

sid-cert: S idewalk device certificate containing private key pairs or Wireless Device JSON file from AWS.

sid-cert-type: Either prod or proto depending on the flow in use (manufacturing or prototyping)

sid-dev-prof: If prototyping flow, we need to give the Device Profile JSON file

part: Part number (like efr32zg28b322f1024im68)

sid-usr-app-img: S idewalk custom application

pdp-mode: To choose between On-device certificate generation and OpenSSL private key provisioning

At the end of this step, an output file (in too ls/scripts/public/pdp/out) that contains the static (common) part of the S idewalk

certificate and the S idewalk application is generated. It will be used as an input argument in the next step.

Running the Provisioning Script

The provisioning script takes a S idewalk device certificate, SoC family, initialization image (generated in the previous step),

and provisioning image (.bin image generated in S implicity Studio by compiling the Production Device Provisioner sample

application) as input arguments and provisions the end device with device credentials extracted from the S idewalk device

certificate. This script must be run per device in production, using the following steps:

ò Connect your device with a supported EFR32 chip.

ó Navigate to too ls/scripts/public/pdp directory.

ô Run the following commands.

Ⓘ INFO Ⓘ : If you prefer to flash the initialization image before the provisioning, you can skip the --sid-init-img

argument.

For manufacturing

python3 provision_silabs.py --sid-cert </path/to/certificate.json> --sid-cert-type prod --part <part> --sid-init-img out/sid_init_img.s37 --pdp-img

</path/to/pdp/app.s37> --pdp-mode priv_key_prov

For prototyping

python3 provision_silabs.py --sid-cert </path/to/WirelessDevice.json> --sid-cert-type proto --part <part> --sid-init-img out/sid_init_img.s37 --pdp-

img </path/to/pdp/app.s37> --pdp-mode priv_key_prov

With arguments as follows:

sid-cert: S idewalk device certificate containing private key pairs or Wireless Device JSON file from AWS.

Copyright © 2025 Silicon Laboratories. All rights reserved. 296/297

Manufacturing a Product

sid-cert-type: Either prod or proto depending on the flow in use (manufacturing or prototyping)

part: Part number (like efr32zg28b322f1024im68)

sid-init-img: Initialization image generated in the previous step

pdp-img: S idewalk Production Device Provisioner application

pdp-mode: To choose between On-device certificate generation and OpenSSL private key provisioning

After completing this step, the S idewalk end device is now provisioned with device-specific credentials.

Copyright © 2025 Silicon Laboratories. All rights reserved. 297/297

	Developing with Amazon Sidewalk
	Release Notes
	Amazon Sidewalk

	Out-of-the-Box Demo
	Overview
	Kit Preparation
	Sidewalk Network Access
	Run the Demo
	Going Further

	Getting Started
	Overview
	Prerequisites
	Create and Compile an Application
	Provision your Device
	Interacting with the Cloud

	Protocol Overview
	Overview
	Frustration Free Networking
	FSK Configuration
	CSS Configuration
	Multi-link and Auto Connect

	Developer's Guide
	Overview
	Stack Structure
	Application Development Walkthrough
	Amazon Sidewalk API
	Testing and Debugging
	Power Consumption Analysis
	Performance
	Multiprotocol with Sidewalk
	Troubleshooting

	PAL API Reference
	Overview
	Interfaces
	SAL
	Common Interface
	Type definitions
	platform_parameters_t

	Critical Region Interface
	Logging Interface
	sid_pal_log_buffer
	Type definitions

	Peripheral Interfaces
	GPIO
	Type definitions

	Serial Bus Interface
	Type definitions
	sid_pal_serial_bus_client
	sid_pal_serial_bus_iface
	sid_pal_serial_bus_factory

	Serial Client Interface
	Type definitions
	sid_pal_serial_callbacks_t
	sid_pal_serial_params_t
	sid_pal_serial_ifc_s
	sid_pal_serial_client_factory_t

	Temperature

	Radio Interfaces
	FSK Interface
	Type definitions
	sid_pal_radio_fsk_cad_params_t
	sid_pal_radio_fsk_modulation_params_t
	sid_pal_radio_fsk_packet_params_t
	sid_pal_radio_fsk_phy_hdr_t
	sid_pal_radio_fsk_pkt_cfg_t
	sid_pal_radio_fsk_rx_packet_status_t
	sid_pal_radio_fsk_phy_settings_t

	LoRa Interface
	Type definitions
	sid_pal_radio_lora_modulation_params_t
	sid_pal_radio_lora_packet_params_t
	sid_pal_radio_lora_rx_packet_status_t
	sid_pal_radio_lora_cad_params_t
	sid_pal_radio_lora_phy_settings_t

	Sub-GHz Interface
	Type definitions
	sid_pal_radio_rx_packet_t
	sid_pal_radio_packet_cfg_t
	sid_pal_radio_tx_packet_t
	sid_pal_radio_state_transition_timings_t

	SWI Interface
	Security and Crypto
	Type definitions
	sid_pal_hash_params_t
	sid_pal_hmac_params_t
	sid_pal_aes_params_t
	sid_pal_aead_params_t
	sid_pal_dsa_params_t
	sid_pal_ecdh_params_t
	sid_pal_ecc_key_gen_params_t

	Storage Interface
	KV Storage
	Manufacturing Page
	Type definitions
	sid_pal_mfg_store_region_t

	Timer Interfaces
	Delay
	Timer
	Type definitions

	Uptime

	Sidewalk PAL
	BLE Adaptation
	BLE adapter
	Type definitions
	sid_pal_ble_profile_config_t
	sid_pal_ble_adapter_ctx_t

	GPIO
	Type definitions
	GPIO_PinConfig
	GPIO_LookupItem

	NVM3 Manager
	Type definitions

	Timer Types
	Type definitions
	sid_pal_timer_impl_t

	Sidewalk Sample Applications
	Platform Resources
	Overview
	Bootloading
	Overview

	Non-Volatile Memory Use
	Overview

	Security
	Overview

	Manufacturing a Product

