D DYNAMENT Application Note

FRARED GAS SENSORS ANO0007

ARDUINO to PLATINUM COMMS

HELP DOCUMENT

Dynament Limited
Hermitage Lane Industrial Estate :+ Kings Mill Way :+ Mansfield : Nottinghamshire + NG18 5ER : UK.
Tel: 44 (0)1623 663636

email: sales@dynament.com + www.dynament.com

ANO0007 Issue 1.2 09/04/2025 Change Note 805 Page 1 of 14


mailto:sales@dynament.com
http://www.dynament.com/
https://manuals.plus/m/bb77a78d021036ab6278f7d71336c27c25948df1c9ff659ec37b05cdde2ee8f7

Contents

DyNament LIMITEA .....c..ooiieee ettt 1
CoNNECHNG the SENSOT ...t 3
ATAUINO IDE ... .ottt ettt b e bt bt ettt et et naes 5
COdE EXPIANALION ...t 9
Packet BreakaOWN ..........c.ooiiiiiiieieeeee ettt sttt 11
USING SEHALIEAA() .ovveviveieeieiieieeeetete ettt ettt ese b seesesenis 13

Advanced Conversion NOTES.........coviiiiiiieee e 14

ANO0007 Issue 1.2 09/04/2025 Change Note 805 Page 2 of 14



Connecting the Sensor

This data sheet uses the Arduino Mega as an example. The Ardunio Mega provides
more than one comm port, therefore comm port 1 is used to communicate with the
sensor and comm port 0 is used to print to the PC.

The Arduino uses 5v logic high whereas the Platinum Sensor uses 3.3v, so to

prevent damage to the Sensor a voltage divider must be used. Suggested values for
R1 and R2 are 4K7Q.

CUSTOMER TX
(+5¥ LOGIC LEVEL)

I::] k1 A1=RZ
SENSOR RX

I:::I [+ 2VE]

.
av

Figure 1: Lowers the voltage to useable level

The Sensor transmit line going to the Arduino receive doesn’t need a divider as 3.3v
is an acceptable input to the Arduino.

In order to power the Sensor it must be connected to 5v and Ov. To do this you can
use the pins on the Arduino.

After this is complete, the sensor should now have the following pins connected:
5v -> 5v Arduino pin

Ov -> Arduino GND

Tx -> Arduino RX1

Rx -> Goes to the output of the potential divider. The input goes to Arduino Tx

ANO0007 Issue 1.2 09/04/2025 Change Note 805 Page 3 of 14



BAAEA BRARE SAREs srnen
B L )

T e S E 1 L
..l.‘..ll.l..:::::..
'S E R R R R R R

e
R R R R R R R

Srsssanannn
R R R R R R R
BOSESAERtEvrssnnavwny

Figure 2: Sensor is shown upside down with a solder adapter

If you are using an Arduino with only one comm port (like the Arduino Uno) you will
have to connect it to that, however when you use the serial monitor (shown later) it
will also show the hex that is transmitted.

ANO0007 Issue 1.2 09/04/2025 Change Note 805 Page 4 of 14



Arduino IDE
Go to the Arduino website and download the newest version of the Arduino IDE

software. Once installed you should see the following screen:

R NC (R, TR W —

Fup e Gleefeh Pl ey

Figure 3: Arduino home screen

In the tools drop down menu select the Arduino board, processor and port you are
using:

B ahiics Ieadh | Arfees |41

Fin Qo Zhmich lock Help

MUFTEE (="
Byt Sappih
batih_bik by froaedeg B S pand

Ll L e [RER T

vt e din B il e p

wral Palie bt e |

AT W AR Frmaes opaleie

Bumml  dighnr gt vn Khinje FIT | Pewh asage
B ivike i Bl e T ki

Bart TEORNTY [t Aeliiin ae Lbiga TUMEY Ridum o
o Emawinin K rdadins Liva

Brmomie Delounired o Ol amid

Frugrprererr 208RF mall

By b ra e

Brours Flro

& s Boega er R 15
Brzure [Ppga ~16
Erzwrn | Benmds
dirgorra Levmw=tn [
Erjuarr Mo
Hrpes bpieis
Rrdorrn B
B Epeprad
drdins P

Bimsara BT

Figure 4: Select Board, Processor and Ibar}‘ 'o'ptibﬁls

ANO0007 Issue 1.2 09/04/2025 Change Note 805 Page 5 of 14


https://www.arduino.cc/en/main/software

Copy in this example code:
void send_read_live_data_simple();

void receive_read_live_data_simple();

void setup() {

Serial.begin(38400);
Serial1.begin(38400);

}
void loop() {

send_read_live_data_simple();
receive_read_live_data_simple();

delay(5000);
}

void send_read_live_data_simple(){
// 0x10, 0x13, 0x06, 0x10, Ox1F, 0x00, 0x58

Serial1.write(0x10);

Seriall.write
Seriall.write
Seriall.write
Seriall.write
Seriall.write
Seriall.write

}

0x13);
0x06

b

)
)
0x10);
Ox1F);
0x00);
0x58);

void receive_read_live_data_simple(){

while (Serial1.available())

Serial.print(Serial1.read(), HEX);

Serial.print("|");

}
Serial.printin();

}

ANO0007

Issue 1.2

09/04/2025

Change Note 805

Page 6 of 14



iwts wizgleiii

Llve_laam_pimplsdl

Figure 5: Code ready to upload

Click the arrow to upload the code to the Arduino.

After the Arduino has been programmed open the serial monitor.

'E Platusn_Cornms_Test | Arduino 1.812

Fie Bt Sketch Topd Help

I
mend_read 1

recElnE_red

17 b

SEAA Bl

ANO007 Issue 1.2

higka Famrel

Archhve Skeich

Fii bnceding & Relosd

lwrge Litmwies..

Sewigl Manrior

Serial Floffe

WEFTHH ¢ WARMERLA, Frrrtrevare Ulpdates

Soard: “Srduing Mega or Mega 2560
Popcesson “ATmeged 560 Mege 25601

Port “COMTT (Srdusne Megas or Megs 2560°
Jet fowed iefn

Padgrarimin " AVRISE mllilk

Buin Bootheade

3 EOE: ONld. CmiF ] 15
Figure 6: Open the Serial Monitor

09/04/2025

Change Note 805

Ll T

Chrl+ Shdy=|
Chals Shitte b
Ctrls Shift-1

Page 7 of 14



& comnt

EDTERT (4 D 1 TR EL BRI IR AT ET 1T 5 |

NOTERIE (AP PEATS (RIDTIRIE DI I RETE

SRR FEAT R T8 AL AF T g LT AW RE g F FF ]

LAIERiEidipiaisiRrDY AT X0l L8 LFi 2e3d)

S agonral [ G trestenn

Nees | (Wt | [ ]

Figure 7: The Serial Montor shows the packet that has been received

ANO0007 Issue 1.2 09/04/2025 Change Note 805 Page 8 of 14



Code Explanation
The Arduino IDE uses C++ to program the Arduino.

vold send read live data simple();

vold recelve_read live data simple();
This line is a forward declaration. This is used to tell the Microcontroller that further
down in the program the ‘send_read_live_data_simple’ function and the
‘receive_read_live _data_simple’ function will be called.

void setup() |
Serial .begin (38400} ;
Seriall.kbegin(38400);

1

Next is the setup function. This code gets run only once on startup. It starts the
Serial0 and Serial1 ports. Serial0 is what is shown in the serial monitor screen.
Seriall is the port to communicate with the sensor.
volid loop() |
gend read liwve data simple();
receive_read live_data_simple():
d=lay {5000} ;
1
This is the main loop, this code gets repeatedly looped. You can see by reading the
function names that it sends a request to read a simplified version of the live data
struct. Then it reads the receive port to read the reply. After this the Microcontroller
waits 5000mS.

wold send_read liwve data simple () {
/f Oxlo, 0x13, Ox06&, Ox10, OxlF, Ox00, Ox58

Seriall.write {0x10);
Seriall.write (0x13);
Seriall.write (0x0&);
Seriall.write (0x10);
Seriall.write (0x1F);
Seriall.write (0x00) >
Seriall.write {0x58) >

1
This function writes the request to get the live data simple struct to serial port 1. As
previously mentioned if you only have one serial port you should change Seriall to
Serial.
To see the full list of commands, refer to the Premier sensor Communications
protocol document. Here is the part of the document that tells you what to write for
this command:

1.5.2 Read live data simpla

Send the I-;JIIl_lwlnu biybas

DLE, RD, Variable ID, DLE, EOF, Checksum High byte, Checksum low byte or , .8,
D=0, Ox13, MaDG, Ox10, Ox1F, Ox(0, 0x58 E

ANO0007 Issue 1.2 09/04/2025 Change Note 805 Page 9 of 14



vold receive read liwve data simple () {

while (Seriall.awvailabls(})
Serial.print({Seriall.read({), HEX):
Serial.princ{™|"):

}

Serial.println():

1
This function loops the read function while there is still data to be received from the
Platinum Sensor. Seriali.read() reads the data from Serial1 which is connected to
the sensor and prints it on Serial0 so it can be seen on the serial monitor. The
character ‘|’ is then printed to break up each byte that is received to make it clearer
on the serial monitor.

After this is complete it writes a new line to the serial monitor.

ANO0007 Issue 1.2 09/04/2025 Change Note 805 Page 10 of 14



Packet Breakdown
Figure 8 and 9 show the output of a serial decoder connected to the receive and
transmit lines.

Figure 8: Outgoing Packet

Figure 9: Incoming Packet

Figure 10 and 11 show the outgoing and incoming hex respectively with a column
that shows which command it is.

Packet Data Command
1 10 DLE
2 13 RD
3 6 Variable ID
4 10 DLE
5 1F EOF
6 0 Checksum High
7 58 Checksum Low

Figure 10: Outgoing Packet Description

ANO0007 Issue 1.2 09/04/2025 Change Note 805 Page 11 of 14



Packet Data Command

1 10 DLE

2 1A DAT

3 8 Data Length
4q 4 Version

5 0 Version

6 4 Status Flags
7 0 Status Flags
8 0 Gas Reading
9 0 Gas Reading
10 TA Gas Reading
11 C3 Gas Reading
12 10 DLE

13 1F EOF

14 1 Checksum High
15 A Checksum Low

Figure 11: Incoming Packet Description

Please note the Gas reading is a decimal not an integer. This decimal is in IEEE-754
format, you can use an online converter like this to convert it. The gas value in this
case shows -250 (as it was in error mode at the time).

ANO0007 Issue 1.2 09/04/2025 Change Note 805 Page 12 of 14


https://babbage.cs.qc.cuny.edu/IEEE-754.old/32bit.html

Using Serial.read()

The previous code only printed the data received to the serial monitor, if you want to save the data in
variables you will need to do some further processing. The packet you receive is split into bytes,
because of this you will need to concatenate some of this data into variables.

Serial1.Read() returns an int (which for Arduino is 16 bits), however, only the first 8 bits are used.
Because of this we can copy it into a smaller data type that is only 8 bits, in this case | will use char.

char readByte = Seriall.r=ad():

for the packets that are only a byte long, this works fine:

Packet Data Command
1 10 DLE
2 1A DAT
3 8 Data Length

For the packets that are 2 bytes or 4 bytes long you will need to concatenate the data.

4 4 Version

5 0 Version

6 4 Status Flags
7 0 Status Flags
8 0 Gas Reading
9 ] Gas Reading
10 A Gas Reading
11 C3 Gas Reading

You can do this in a lot of different ways, here what | am going to do is left shift the data and then OR
it.

char readBytel = Seriall.read();
char readByte2 = Seriall.rsad();
int readInt = (int)readByte2 << 8 | readBytel;

Using this code, if readByte1 is 0x34 and readByte2 is 0x12.

(int)readByte2 // this converts the 0x12 into 0x0012.

(int)readByte2 << 8 // this shifts the bits over by a byte making it 0x1200.
(int)readByte2 << 8 | readByte1 // this then gets OR’ed, with 0x34 making 0x1234.

Another way to do this would be to put the values into an array and then convert the array into the
type you want:

ANO0007 Issue 1.2 09/04/2025 Change Note 805 Page 13 of 14



char readBytel = 0x00;
0x00;
char readByte3 0xTh;
char readByted = 0xC3;

char readByte2

char readArray[4]:

readirray[0] = readBytEld

readirray[l] = readBytel;
readhrray[2] = readByted;
readhrray[3] = readByted;
float gasReading = Y{flcat’)readidrray;

chars are a byte long, whereas float is 4 bytes long. Because of this if we make an array of 4 chars
with our values in it and change the type to float.

In this case readArray is a pointer to a char array. ( *JreadArray this part casts it to a pointer to a
float and then a * is added to the front to get the value of the float.

Advanced Conversion Notes

1. Serial.read() returns int instead of char because errors will return negative values. Your
program should check for this.

2. uint8_t and uint16_t should be used in place of char and int respectively, as these types do
not have a standard size (on my PC int is 32 bits whereas on the Arduino it is 16 bits).

3. The comms protocol contains byte stuffed characters (also known as control characters), this
is explained in more detail in the tds0045 Premier sensor Communications protocol
document. Because of this the read live data simple packet will occasionally be bigger than
expected.

ANO0007 Issue 1.2 09/04/2025 Change Note 805 Page 14 of 14



