
IoT Security

IoT Security

Using IoT Security Features

Getting Started

IoT Endpoint Security Fundamentals

Introduction

Overview

No Universal Passwords

Secured Interfaces

Proven Cryptography

Security by Default

Signed Software Updates

Automatically Applied Updates

Vulnerability Reporting Program

Security Expiration Date

Next Steps

Series 2 Device Security Features

Developer's Guide

Overview

Series 2 Secure Debug

Introduction

Series 2 Device Security Features

Introduction To Secure Debug

Secure Engine Subsystem

Debug Lock

Debug Unlock

Examples

Precautions

Failure Analysis

Series 2 TrustZone

Introduction

Series 2 Device Security Features

TrustZone Basics

Bus Level Security �BLS�

Secure And Privileged Programming Model

TrustZone Implementation

Upgrade Existing Application To TrustZone

TrustZone Platform Examples

Production Programming of Series 2 Devices �PDF�

Anti-Tamper Protection Configuration and Use

Copyright © 2025 Silicon Laboratories. All rights reserved. 1/280

https://www.silabs.com/documents/public/application-notes/an1222-efr32xg2x-production-programming.pdf

IoT Security

Overview

Series 2 Device Security Features

Introduction

Secure Engine Manager

Tamper Responses

Tamper Sources

Anti-Tamper Configuration

Usage Example

Tamper Disable

Examples

Authenticating Silicon Labs Devices using Device Certificates

Overview

Series 2 Device Security Features

Introduction

Secure Identification on HSE�SVH Devices

Device Certificate Options

Entity Attestation Token �EAT�

Remote Authentication Process

Secure Engine Manager

Examples

Secure Key Storage

Overview

Series 2 Device Security Features

Introduction

HSE Secure Key Storage

TrustZone Secure Key Storage

Secure Key Storage Implementations

Examples

Programming Series 2 Devices Using the DCI and SWD �PDF�

Integrating Crypto Functionality with PSA Crypto vs. Mbed TLS �PDF�

Protocol-Specific Information

Production Guide

Overview

Custom Part Manufacturing Service

Overview

SE Firmware Version

Debug Lock Settings

Secure Boot with RTSL Settings

Tamper Response

Standard Security Keys

Additional Custom Keys

Custom Certificates

Configure Device for Untrusted Environment Example

Import Custom Wrapped Keys Example

Copyright © 2025 Silicon Laboratories. All rights reserved. 2/280

https://www.silabs.com/documents/public/application-notes/an1303-efr32-dci-swd-programming.pdf
https://www.silabs.com/documents/public/application-notes/an1311-mbedtls-psa-crypto-porting-guide.pdf

IoT Security

PKI Recommendations

Copyright © 2025 Silicon Laboratories. All rights reserved. 3/280

Using IoT Security Features

Using IoT Security Features

Using Silicon Labs IoT Security Features
S ilicon Labs offers a range of security features depending on the part you are using and your application and production

needs.

The content on these pages is intended for those who want to implement security features as part of your IoT device

management. If you are looking for an introduction to S ilicon Labs Security features and to security issues that confront

those implementing IoT systems, see the S ilabs.com Security page.

For details about this release: Links to release notes are available on the silabs.com Gecko SDK page as part of the Gecko

Platform release notes.

For background on security issues in general: IoT Security Fundamentals explains some security basics.

To get started with implementing security: See the Getting Started page for help determining what features you want to

implement based on the series 2 part you are working with. Series 2 devices are the preferred choice for secure system

implementation.

If you are already in development: See the Developer's Guide for details. Security APIs are documented in the Gecko

Platform API Reference.

For detailed information about implementing some security features with specific protocols: See the protocol-specific

pages. An extensive body of other protocol-specific content can be accessed through the docs.silabs.com homepage.

Copyright © 2025 Silicon Laboratories. All rights reserved. 4/280

https://www.silabs.com/security
https://www.silabs.com/developers/gecko-software-development-kit
https://docs.silabs.com/iot-security/1.1.1/iot-endpoint-security-fundamentals
https://docs.silabs.com/iot-security/1.1.1/iot-security-getting-started
https://docs.silabs.com/iot-security/1.1.1/iot-security-developers-guide-overview
https://docs.silabs.com/gecko-platform/latest/
https://docs.silabs.com/iot-security/1.1.1/iot-security-protocol-specific
https://docs.silabs.com/

Getting Started

Getting Started

Getting Started with Silicon Labs IoT Security
Features on Series 2 Devices

Protecting IoT devices against security threats is central to a quality product. S ilicon Labs offers several security options to

help developers build secure devices, secure application software, and secure paths of communication to manage those

devices. S ilicon Labs’ security offerings were significantly enhanced by the introduction of the Series 2 products that

included a Secure Engine. The Secure Engine is a tamper-resistant component used to securely store sensitive data and

keys, and to execute cryptographic functions and secure services.

On Series 1 devices, the security features are implemented by the TRNG (if available) and CRYPTO peripherals.

On Series 2 devices, the security features are implemented by the Secure Engine and CRYPTOACC (if available). The

Secure Engine may be hardware-based or virtual (software-based). Here the following abbreviations are used:

HSE - Hardware Secure Engine

VSE - Virtual Secure Engine

SE - Secure Engine (either HSE or VSE)

Additional security features are provided by Secure Vault. Three levels of Secure Vault feature support are available,

depending on the part and SE implementation, as reflected in the following table:

Security Level

(1)
SE Support MCU Wireless SoC (2)

Secure Vault

Base (SVB)

N/A EFM32JG1, EFM32PG1, EFM32JG12, EFM32PG12,

EFM32GG11, EFM32GG12, EFM32TG11

EFR32xG1, EFR32xG12,

EFR32xG13, EFR32xG14

Secure Vault

Mid (SVM)

VSE (VSE-

SVM)

EFM32PG22 EFR32xG22

= HSE (HSE-

SVM)

EFM32PG23A EFR32xG21A, EFR32xG23A,

EFR32xG24A

Secure Vault

High (SVH)

HSE only

(HSE-SVH)

EFM32PG23B EFR32xG21B, EFR32xG23B,

EFR32xG24B

Note:

ò The features of different Secure Vault levels can be found in https://www.silabs.com/security .

ó The x is a letter B, F, M, or Z.

Secure Vault Mid consists of two core security functions:

Secure Boot: Process where the initial boot phase is executed from an immutable memory (such as ROM) and where code is

authenticated before being authorized for execution.

Secure Debug access control: The ability to lock access to the debug ports for operational security, and to securely unlock

them when access is required by an authorized entity.

Secure Vault High offers additional security options:

Secure Key Storage: Protects cryptographic keys by <wrapping= or encrypting the keys using a root key known only to the

HSE-SVH.

Anti-Tamper protection: A configurable module to protect the device against tamper attacks.

Device authentication: Functionality that uses a secure device identity certificate along with digital signatures to verify the

source or target of device communications.

Copyright © 2025 Silicon Laboratories. All rights reserved. 5/280

https://www.silabs.com/security

Getting Started

A Secure Engine Manager and other tools allow users to configure and control their devices both in-house during testing

and manufacturing, and after the device is in the field.

S ilicon Labs strongly recommends installing the latest SE firmware on Series 2 devices to support the required security

features. The latest SE firmware image (.seu and .hex) and release notes can be found in these Windows folders of the

GSDK.

C:\Users\<UserName>\SimplicityStudio\SDKs\gecko_sdk\util\se_release\public

If you have not already installed the GSDK, instructions for doing so with S implicity Studio are available in the Getting

Started section of the S implicity Studio 5 User's Guide.

Refer to AN1222: Production Programming of Series 2 Devices for guidance on the SE firmware upgrade procedure. The

latest SE firmware shipped with Series 2 devices and modules (if available) at the time of this writing are listed in the

following table:

MCU Series 2 and Wireless SoC Series 2 SE Shipped SE Firmware Version (Device and Module)

EFR32xG21A HSE-SVM 1.2.13

EFM32PG23A HSE-SVM 2.1.7

EFR32xG23A HSE-SVM 2.1.2 (Rev B), 2.1.7 (Rev C)

EFR32xG24A HSE-SVM 2.1.7

EFR32xG21B HSE-SVH 1.2.13

EFM32PG23B HSE-SVH 2.1.7

EFR32xG23B HSE-SVH 2.1.2 (Rev B), 2.1.7 (Rev C)

EFR32xG24B HSE-SVH 2.1.7

EFM32PG22 and EFR32xG22 VSE-SVM 1.2.12

In support of these products S ilicon Labs offers whitepapers, webinars, and documentation. The following table summarizes

the key security documents:

Document Summary Applicability

Series 2 Secure Debug How to lock and unlock Series 2 debug access, including background

information about the Secure Engine

Series 2

Series 2 Secure Boot with RTSL Describes the secure boot process on Series 2 devices using Secure

Engine. For information on bootloading with S ilicon Labs products, see

S ilicon Labs Gecko Bootloader User's Guide for GSDK 4.0 and Higher

(series 1 and 2 devices)

Series 2

Anti-Tamper Protection

Configuration and Use

How to program, provision, and configure the anti-tamper module Series 2

with SVH

Authenticating S ilicon Labs

Devices using Device Certificates

How to authenticate a device using secure device certificates and

signatures, at any time during the life of the product

Series 2

with SVH

Secure Key Storage How to securely <wrap= keys so they can be stored in non-volatile

storage

Series 2

with SVH

AN1222: Production Programming

of Series 2 Devices

How to program, provision, and configure security information using

Secure Engine during device production

Series 2

AN1303: Programming Series 2

Devices Using the Debug

Challenge Interface (DCI) and

Serial Wire Debug (SWD)

How to provision and configure Series 2 devices through the DCI and

how to program their internal flash memory through the SWD

Series 2

AN1311: Integrating Crypto

Functionality Using PSA Crypto

Compared to Mbed TLS

How to integrate crypto functionality into applications using S ilicon

Labs implementation of PSA Crypto compared to Mbed TLS

Series 1 and

Series 2

Copyright © 2025 Silicon Laboratories. All rights reserved. 6/280

https://docs.silabs.com/simplicity-studio-5-users-guide/5.5.0/ss-5-users-guide-getting-started/install-ss-5-and-software
https://docs.silabs.com/iot-security/1.1.1/series2-secure-debug
https://docs.silabs.com/mcu-bootloader/latest/series2-secure-boot-with-rtsl/index.html
https://docs.silabs.com/mcu-bootloader/latest/bootloader-user-guide-gsdk-4/index.html
https://docs.silabs.com/iot-security/1.1.1/efr32-secure-vault-tamper
https://docs.silabs.com/iot-security/1.1.1/authenticating-devices-using-device-certificates
https://docs.silabs.com/iot-security/1.1.1/efr32-secure-key-storage

Getting Started

Copyright © 2025 Silicon Laboratories. All rights reserved. 7/280

IoT Endpoint Security Fundamentals

IoT Endpoint Security Fundamentals

IoT Endpoint Security Fundamentals
NOTE: This section replaces UG103.05: IoT Endpoint Security Fundamentals. Further updates to this user guide will be

provided here.

This guide introduces the security concepts that must be considered when implementing an Internet of Things (IoT) system.

Using the ioXt Alliance ’s eight security principles as a structure, this guide clearly delineates the solutions S ilicon Labs

provides to support endpoint security and what you must do outside of the S ilicon Labs framework. Where appropriate,

S ilicon Labs’ approach to our own security is offered as an example. This guide is designed for product developers and

managers.

S ilicon Labs’ Fundamentals series covers topics that project managers, application designers, and developers should

understand before beginning to work on an embedded networking solution using S ilicon Labs chips, networking stacks such

as EmberZNet PRO or S ilicon Labs Bluetooth, and associated development tools. These guides can be used as a starting

place for anyone needing an introduction to developing wireless networking applications, or who is new to the S ilicon Labs

development environment.

Copyright © 2025 Silicon Laboratories. All rights reserved. 8/280

Overview

Overview

Overview
Securing the IoT is challenging. It is also mission-critical. Threats are continuously evolving, and the demand on product

developers to keep up can be burdensome – particularly in low-cost, resource-constrained IoT products. Protecting your

product in a connected world is a necessity, as customer data and modern online business models are increasingly targets

for costly hacks that jeopardize end-user privacy and corporate brand damage. S ilicon Labs is committed to working with

the security community, customers, and other experts to bring state-of-the-art technology to help protect your connected

portfolio.

S ilicon Labs is a member of the ioXt (Internet of Secure Things) Alliance. The ioXt Alliance was formed to bring together

wireless carriers, leading consumer product manufacturers, standards groups, compliance labs and government organizations

to align baseline security requirements, to set the stage for testing and compatibility certification, and to work together

building global standards for the IoT world.

The ioXt alliance has produced the ioXt Security Pledge (https://www.ioxtalliance.org/s/ioXt-SecurityPledge-booklet-

final.pdf) The pledge covers eight principles in the areas of Security, Upgradability, and Transparency. S ilicon Labs has

adopted these principles in our own operations as well as in the products we provide. Our approach to these principles is

described in this document.

Copyright © 2025 Silicon Laboratories. All rights reserved. 9/280

https://www.ioxtalliance.org/s/ioXt-SecurityPledge-booklet-final.pdf

Overview

The above image and all pledge language is reproduced from The ioXt Security Pledge: 8 Principles for Consumer Product
Design and Manufacturing to Ensure Security, Upgradability & Transparency (2019).

Copyright © 2025 Silicon Laboratories. All rights reserved. 10/280

No Universal Passwords

No Universal Passwords

No Universal Passwords
The product shall not have a universal password; unique security credentials will be required for operation. Universal
passwords allow an attacker to easily gain access to any device. Therefore, products shall either have a unique password or
require the user to enter a new password immediately upon first use.

It is your responsibility to ensure that your product enforces the creation of a unique password before activation.

S ilicon Labs’ products are designed to be configured by the manufacturer before being delivered to customers, and

therefore passwords are outside of our scope. However, S ilicon Labs tools are designed to support the various levels of

security provided by the protocol in question. Most protocols offer different security levels, with tradeoffs between

security level and other features such as ease of network formation. You need to review and decide on the level required

by your application. For example:

The EmberZNet Pro SDK supports a highly secure centralized trust-center-controlled method that replaces a device ’s

factory-programmed link key with a key that is unique to each device on the network.

Z-Wave 700 products come with a factory-programmed unique S2 keypair on first power-up, and support SmartStart

commissioning through a package QR code containing the public key.

Bluetooth options range from an unsecured <Just Works= approach to a LE Secure Connections Pairing model. Application

designers can implement additional device authentication methods, such as through the companion smartphone app, to help

ensure secure pairing even for devices without a user interface.

Copyright © 2025 Silicon Laboratories. All rights reserved. 11/280

Secured Interfaces

Secured Interfaces

Secured Interfaces
All product interfaces shall be appropriately secured by the manufacturer.

The interfaces to be secured will vary by product configuration. For example, in an NCP topology the NCP interface must

be secured. Debug interfaces should always be locked. Wireless interfaces should be secured by using strong pairing and

commissioning methods and by enabling encrypted and authenticated transmissions.

While securing the interfaces is in the end your responsibility, S ilicon Labs provides the tools to enable that security.

Both Series 1 and Series 2 devices are designed to support securing debug access. For Series 1 devices, that functionality

is provided through writing a Debug Lock word to the device. Unlocking the device erases the main application and the key

material stored in the Lockbits page. For Series 2 devices, securing debug access is done through the device ’s Secure

Engine. Both allow the developer to lock the debug port itself. See S ilicon Labs Gecko Bootloader User’s Guide for Series 3

and Higher, S ilicon Labs Gecko Bootloader User's Guide for GSDK 4.0 and Higher (series 1 and 2 devices), or UG266:
Silicon Labs Gecko Bootloader User’s Guide for GSDK 3.2 and Lower for an overview of securing debug access, and Series 2

Secure Debug for details on the Series 2 implementation. UG104: Testing and Debugging Applications for the Silicon Labs
EFR32MG Platforms provides an overview of the various application testing stages and the debug access (hardware and

software) required in each.

For more information on Wireless interface security in the different protocols, see the following:

Zigbee Security

Bluetooth LE Fundamentals and relevant KBAs

AN1037: Apple HomeKit Over Bluetooth®
UG235.03: Architecture of the Silicon Labs Connect Stack v2.x
UG435.03: Architecture of the Silicon Labs Connect Stack v3.x

Copyright © 2025 Silicon Laboratories. All rights reserved. 12/280

https://docs.silabs.com/mcu-bootloader/latest/bootloader-user-guide-series3-and-higher/
https://docs.silabs.com/mcu-bootloader/latest/bootloader-user-guide-gsdk-4/
https://docs.silabs.com/iot-security/latest/series2-secure-debug/
https://docs.silabs.com/zigbee/latest/zigbee-security/
https://docs.silabs.com/bluetooth/latest/bluetooth-le-fundamentals/

Proven Cryptography

Proven Cryptography

Proven Cryptography
Product security shall use strong, proven, updatable cryptography using open, peer-reviewed methods and algorithms.

An important aspect of any IoT device is how secure the device is when it communicates with other devices, gateways, or

the cloud. This standard mandates using proven cryptographic methods rather than attempting to implement your own.

Developers commonly secure communications such as TCP/IP connections, Bluetooth, Zigbee, or Z-Wave using the

standardized and proven cryptographic methods native to the protocol. However, if a microcontroller sends sensitive

information over a simple interface such as a UART to another microcontroller, it is important to realize that data should

also be secured to prevent someone from snooping the UART line.

S ilicon Labs offers a hardware CRYPTO module that provides an efficient acceleration of common cryptographic operations

and allows these to be used efficiently with low CPU overhead. The CRYPTO module includes hardware accelerators for

the Advanced Encryption Standard (AES), Secure Hash Algorithm SHA-1 and SHA-2 (SHA-224 and SHA-256), and modular

multiplication used in ECC (Elliptic Curve Cryptography) and GCM (Galois Counter Mode). The CRYPTO module can

autonomously execute and iterate a sequence of instructions to aid software and speed up complex cryptographic

functions like ECC, GCM, and CCM (Counter with CBC-MAC).

In addition to the CRYPTO module, S ilicon Labs includes mbed TLS as part of the Gecko Platform SDK. mbed TLS is open

source software licensed by ARM Limited. It provides an SSL library that makes it easy to use cryptography and SSL/TLS in

applications. mbed TLS supports software implementations of all crypto algorithms that are supported by TLS 1.2 as well as

a build API that allows hardware drivers to replace the software implementations when cipher accelerators are supported by

the platform. Its modular framework allows for subcomponents like the crypto libraries to be incorporated into a design

independently of the SSL/TLS components, saving valuable code space and runtime RAM. mbed TLS supports SSLv3 up to

TLSv1.2 communication by providing the following:

TCP/IP communication functions: listen, connect, accept, read/write.

SSL/TLS communication functions: init, handshake, read/write.

X.509 functions: CRT, CRL and key handling

Random number generation

Hashing

Encryption/decryption

These functions are split up into logical interfaces. They can be used separately to provide any of the above functions or

to mix-and-match into an SSL server/client solution that utilizes a X.509 PKI. Examples of such implementations are

provided with the source code. Components or plugins and APIs provide configuration interfaces accessible through the

various SDK installations.

For more information, see the latest MCU and Peripheral Software Documentation for the target part at

https://docs.silabs.com.

Copyright © 2025 Silicon Laboratories. All rights reserved. 13/280

https://docs.silabs.com/

Security by Default

Security by Default

Security by Default
Product security shall be appropriately enabled by default by the manufacturer.

The state in which a product is shipped is up to the manufacturer. This standard mandates that any security features

provided with the product be enabled before shipping. Customers should not have to turn security on; rather they should

actively have to disable it. For example, S ilicon Labs Z-Wave end-nodes and gateway SDKs ship with S2 cryptography and

SmartStart network formation enabled by default.

S ilicon Labs believes that product security should be considered during product design, and not as an afterthought. Within

development environments, all S ilicon Labs application security features may be enabled or disabled as appropriate during

application development. Security must also be considered during device design and testing. Bringing Up Custom Devices

for the EFR32MG and EFR32FG Families describes the security tokens (keys, certificates, and so on) that can be

programmed into a custom device to support various types of security, including that provided by the Gecko Bootloader

(see S igned Software Updates).

Copyright © 2025 Silicon Laboratories. All rights reserved. 14/280

https://docs.silabs.com/zigbee/latest/custom-nodes-efr32/

Signed Software Updates

Signed Software Updates

Signed Software Updates
The product shall only support signed software updates. While it is critical that all products be updatable, it is just as critical
that these update images be secured. A manufacturer must cryptographically sign update images to prevent tampering
during deployment. The product must not use unsigned updates, as they could be fraudulent.

S ilicon Labs development tools support building signed upgrade images and securely updating devices in the field, through

the S ilicon Labs Gecko Bootloader. The Gecko Bootloader can be configured to perform a variety of functions, from device

initialization to firmware upgrades. Key features of the bootloader are:

Useable across S ilicon Labs Gecko microcontroller and wireless microcontroller families

In-field upgradeable

Configurable

Enhanced security features, including:

Secure Boot: When Secure Boot is enabled, the bootloader enforces cryptographic signature verification of the application

image on every boot, using asymmetric cryptography. This ensures that the application was created and signed by a trusted

party.

S igned upgrade image file: The Gecko Bootloader supports enforcing cryptographic signature verification of the upgrade

image file. This allows the bootloader and application to verify that the application or bootloader upgrade comes from a

trusted source before starting the upgrade process, ensuring that the image file was created and signed by a trusted party.

Encrypted upgrade image file: The image file can also be encrypted to prevent eavesdroppers from acquiring the plaintext

firmware image.

On Series 1 devices, the Gecko Bootloader has a two-stage design, first stage and main stage, where a minimal first stage

bootloader is used to upgrade the main bootloader. The first stage bootloader only contains functionality to read from and

write to fixed addresses in internal flash. To perform a main bootloader upgrade, the running main bootloader verifies the

integrity and authenticity of the bootloader upgrade image file. The running main bootloader then writes the upgrade image

to a fixed location in internal flash and issues a reboot into the first stage bootloader. The first stage bootloader verifies the

integrity of the main bootloader firmware upgrade image, by computing a CRC32 checksum before copying the upgrade

image to the main bootloader location.

On Series 2 devices, the Gecko Bootloader consists only of the main stage bootloader. The main bootloader is upgradable

through the hardware peripheral Secure Engine. The Secure Engine provides functionality to install an image to address 0x0

in internal flash, by copying from a configurable location in internal flash. To perform a main bootloader upgrade, the running

main bootloader verifies the integrity and authenticity of the bootloader upgrade image file. The running main bootloader

then writes the upgrade image to the upgrade location in flash and requests that the Secure Engine install it. The Secure

Engine is also capable of verifying the authenticity of the main bootloader update image against a root of trust. The Secure

Engine itself is upgradable using the same mechanism.

In summary, Series 2 devices support a hardware root of trust and a Secure Boot process that verifies the authenticity and

integrity of Gecko Bootloader, whereas in Series 1 devices, the authenticity and integrity of Gecko Bootloader are assumed

trusted and are not explicitly checked.

The Gecko Bootloader can enforce application image security on two levels:

Secure Boot refers to the verification of the authenticity of the application image in main flash on every boot of the device.

When Secure Boot is enabled, the cryptographic signature of the application image in flash is verified on every boot, before

the application is allowed to run. Secure Boot is not enabled by default in the example configurations provided by S ilicon

Labs, but enabling it is highly recommended to ensure the validity and integrity of firmware images.

Secure Firmware Upgrade refers to the verification of the authenticity of an upgrade image before performing a bootload,

and optionally enforcing that upgrade images are encrypted. The Secure Firmware Upgrade process uses symmetric

Copyright © 2025 Silicon Laboratories. All rights reserved. 15/280

Signed Software Updates

encryption to encrypt the upgrade image, and asymmetric cryptography to sign the upgrade image in order to ensure its

integrity and authenticity.

For more information on S ilicon Labs’ support for software update security, refer to the following:

Bootloaders in general: Bootloader Fundamentals

The Gecko Bootloader in general: S ilicon Labs Gecko Bootloader User’s Guide for Series 3 and Higher, S ilicon Labs Gecko

Bootloader User's Guide for GSDK 4.0 and Higher (series 1 and 2 devices), or UG266: Silicon Labs Gecko Bootloader User’s
Guide for GSDK 3.2 and Lower.

Using the Gecko Bootloader with specific protocols:

Using the Gecko Bootloader with EmberZNet

Using the Gecko Bootloader with S ilicon Labs Connect

Using the Gecko Bootloader with S ilicon Labs Bluetooth Applications

Secure Boot on Series 2 devices: Series 2 Secure Boot with RTSL

Copyright © 2025 Silicon Laboratories. All rights reserved. 16/280

https://docs.silabs.com/mcu-bootloader/latest/bootloader-fundamentals/
https://docs.silabs.com/mcu-bootloader/latest/bootloader-user-guide-series3-and-higher
https://docs.silabs.com/mcu-bootloader/latest/bootloader-user-guide-gsdk-4/
https://docs.silabs.com/zigbee/latest/using-gecko-bootloader-with-zigbee/
https://docs.silabs.com/connect-stack/latest/using-gecko-bootloader-with-connect/
https://docs.silabs.com/bluetooth/latest/using-gecko-bootloader-with-bluetooth-apps/
https://docs.silabs.com/mcu-bootloader/latest/series2-secure-boot-with-rtsl/

Automatically Applied Updates

Automatically Applied Updates

Automatically Applied Updates
The manufacturer will act quickly to apply timely security updates. Whenever a security vulnerability is detected, the
manufacturer will automatically apply a patch to the product. No user intervention will be required.

It is the manufacturer’s responsibility to develop and implement automatic security updates. The design and methodology of

such systems, for example through a Cloud-connected infrastructure or by direct intervention by a service representative,

is up to you.

S ilicon Labs will notify you of any security-related updates, as described in Vulnerability Reporting Program. Your

responsibility is to evaluate the level of risk that vulnerability poses for your particular product and to integrate the update

into your platform as appropriate so that your end users are protected. Updated components might include the protocol

libraries, Secure Engine firmware inside the Series 2 family, or an SDK module such as the Gecko Bootloader that enforces

secure OTA updates and secure boot functionality.

S ilicon Labs recommends the following:

Subscribe to security updates through our Salesforce portal. To review or change your subscriptions, log in to the portal,

click HOME to go to the portal home page and then click the Manage Notifications tile. Make sure that Software/Security

Advisory Notices & Product Change Notices (PCNs) is checked, and that you are subscribed at minimum for your platform

and protocol. Click Save to save any changes.

Do not turn off S implicity Studio ’s update notification. Within S implicity Studio, you can download updates and easily access

product release notes.

Copyright © 2025 Silicon Laboratories. All rights reserved. 17/280

Vulnerability Reporting Program

Vulnerability Reporting Program

Vulnerability Reporting Program
The manufacturer shall implement a vulnerability reporting program, which will be addressed in a timely manner. All
companies that offer Internet-connected devices and services shall provide a public point of contact as part of a
vulnerability disclosure policy in order that security researchers and others are able to report issues. Disclosed
vulnerabilities should be acted on in a timely manner.

Manufacturers are responsible for implementing their own program. For any individual vulnerability, you will need to weigh

the value of transparency with your customers against the risk of malicious use of the information to exploit a vulnerability

before it can be addressed. S ilicon Labs makes similar decisions about how broadly to report security vulnerabilities

discovered in our products.

S ilicon Labs customers and security researchers can report security vulnerabilities in S ilicon Labs hardware and software

products on the S ilicon Labs website: https://www.silabs.com/security/product-security.

S ilicon Labs’ Security Vulnerability Disclosure Policy may be found here:

https://www.silabs.com/documents/public/miscellaneous/PS1012-Security_Vulnerability_Disclosure_Policy.pdf

S ilicon Labs has a Product Security Incident Response Team (PSIRT) that is dedicated to the case management of reported

security vulnerabilities. The PSIRT works with other S ilicon Labs groups including Applications, Developers, Sales, and

Marketing to assess reported vulnerabilities, perform technical analysis and determine an appropriate response. The key

processes for addressing vulnerabilities include:

Triage: Determines what is needed to reproduce the vulnerability.

Technical Analysis and Disposition: Confirms the validity of the security vulnerability, its scope, and its impact, and provides a

resolution or disposition decision. S ilicon Labs scores incidents according to CVSS 3.1 (Common Vulnerability Scoring

System): low, medium, high, critical.

Output: Communicates with our customers. The level and method of disclosure beyond the reporting entity depends on the

severity and scope of the vulnerability.

S ilicon Labs’ provides broad vulnerability reporting to customers subscribed through our Salesforce portal (see

Automatically Applied Updates for information on how to subscribe). A subscribed customer will see Security Advisory

notifications something like the following:

Copyright © 2025 Silicon Laboratories. All rights reserved. 18/280

https://www.silabs.com/security/product-security
https://www.silabs.com/documents/public/miscellaneous/PS1012-Security_Vulnerability_Disclosure_Policy.pdf

Vulnerability Reporting Program

Copyright © 2025 Silicon Laboratories. All rights reserved. 19/280

Security Expiration Date

Security Expiration Date

Security Expiration Date
The manufacturer shall be transparent about the period of time that security updates will be provided. Like a manufacturer’s
product warranty, there shall be transparency around the support period of security updates.

Manufacturers should provide details about product support at various stages and publish security expiration dates. Z-

Wave ’s Protocol Lifecycle provides an example.

The Lifecycle details in what phases updates will be applied, and to what product branch. For details on the various phases

and how the lifecycle is implemented for specific Z-Wave products, see:

https://www.silabs.com/products/development-tools/software/z-wave/embedded-sdk/life-cycle

Copyright © 2025 Silicon Laboratories. All rights reserved. 20/280

https://www.silabs.com/products/development-tools/software/z-wave/embedded-sdk/life-cycle

Next Steps

Next Steps

Next Steps
The S ilicon Labs Security web page (https://www.silabs.com/security) contains links to a variety of general security-related

resources. You may wish to bookmark the page, as it will be continually updated with new content, new tools, and new

flows.

If you are already in development, we strongly recommend that you implement the standards described here as you

develop, test, and release your product to customers.

If you are in the early stages of your product design and have not already selected a device or development environment,

we recommend that you include security considerations in your decision. S ilicon Labs provides information about the

security features of our devices and development environments. Section EFR32 Series 2 Device Security Features

highlights the features and their documentation references. In addition, protocol-specific security information is available in

the following documents.

Zigbee Security

AN1302: Bluetooth® Low Energy Application Security Design Considerations in SDK v3.x and Higher
AN1329: Using Silicon Labs Secure Vault Features with OpenThread
Bluetooth LE Fundamentals and relevant Knowledge Base Articles (KBAs)

UG235.03: Architecture of the Silicon Labs Connect Stack v2.x
UG435.03: Architecture of the Silicon Labs Connect Stack v3.x

Copyright © 2025 Silicon Laboratories. All rights reserved. 21/280

https://www.silabs.com/security
https://docs.silabs.com/zigbee/latest/zigbee-security/
https://docs.silabs.com/bluetooth/latest/bluetooth-le-fundamentals/

Series 2 Device Security Features

Series 2 Device Security Features

Series 2 Device Security Features
Protecting IoT devices against security threats is central to a quality product. S ilicon Labs offers several security options to

help developers build secure devices, secure application software, and secure paths of communication to manage those

devices. S ilicon Labs’ security offerings were significantly enhanced by the introduction of the Series 2 products that

included a Secure Engine. The Secure Engine is a tamper-resistant component used to securely store sensitive data and

keys, and to execute cryptographic functions and secure services.

On Series 1 devices, the security features are implemented by the TRNG (if available) and CRYPTO peripherals.

On Series 2 devices, the security features are implemented by the Secure Engine and CRYPTOACC (if available). The

Secure Engine may be hardware-based, or virtual (software-based). Throughout this document, the following abbreviations

are used:

HSE: Hardware Secure Engine

VSE: Virtual Secure Engine

SE: Secure Engine (either HSE or VSE)

Additional security features are provided by Secure Vault. Three levels of Secure Vault feature support are available,

depending on the part and SE implementation, as reflected in the following table:

Security Level (1) SE Support MCU Wireless SoC (2)

Secure Vault Base

(SVB)

N/A EFM32JG1, EFM32PG1,

EFM32JG12, EFM32PG12,

EFM32GG11, EFM32GG12,

EFM32TG11

EFR32xG1, EFR32xG12,

EFR32xG13, EFR32xG14

Secure Vault Mid

(SVM)

VSE (VSE-SVM) EFM32PG22C EFR32xG22C, EFR32xG27C (3)

Secure Vault Mid

(SVM)

HSE (HSE-SVM) - EFR32xG21A, EFR32xG21A (Rev

C), EFR32MR21A (Rev C),

EFR32xG23A, EFR32xG24A,

EFR32xG25A, EFR32xG28A

Secure Vault High

(SVH)

HSE only (HSE-SVH) EFM32PG23B, EFM32PG28B EFR32xG21B, EFR32xG12B (Rev

C) EFR32xG23B, EFR32xG24B,

EFR32xG25B, EFR32xG28B

Notes:

ò The features of different Secure Vault levels can be found in https://www.silabs.com/security.

ó The x is a letter B, F, M, or Z.

ô Unlike other VSE-SVM parts, the EFR32xG27C device has a built-in PUF.

Secure Vault Mid consists of two core security functions:

Secure Boot: Process where the initial boot phase is executed from an immutable memory (such as ROM) and where code is

authenticated before being authorized for execution.

Secure Debug access control: The ability to lock access to the debug ports for operational security, and to securely unlock

them when access is required by an authorized entity.

Secure Vault High offers additional security options:

Secure Key Storage: Protects cryptographic keys by <wrapping= or encrypting the keys using a root key known only to the

HSE-SVH.

Anti-Tamper protection: A configurable module to protect the device against tamper attacks.

Copyright © 2025 Silicon Laboratories. All rights reserved. 22/280

https://www.silabs.com/security

Series 2 Device Security Features

Device authentication: Functionality that uses a secure device identity certificate along with digital signatures to verify the

source or target of device communications.

A Secure Engine Manager and other tools allow users to configure and control their devices both in-house during testing

and manufacturing, and after the device is in the field.

S ilicon Labs strongly recommends installing the latest SE FW image on Series 2 devices and updating to the latest GSDK to

mitigate security vulnerabilities. The latest SE FW image can be found in this Windows folder for GSDK v4.x:

C:\Users\<PC USER NAME>\S implicityStudio\SDKs\gecko_sdk\util\se_release\public

Refer to AN1222: Production Programming of Series 2 Devices for guidance on the SE firmware upgrade procedure. The

latest SE firmware shipped with Series 2 devices and modules (if available) at the time of this writing are listed in the

following table:

:::custom-table{30%,}

Series 2 MCU and Wireless SoC VSE - SVM Shipped SE Firmware Version

EFM32PG22C 1.2.12

EFR32xG22C 1.2.12

EFR32xG22C (Rev D) 1.2.14

EFR32xG27C 2.2.1

:::

:::custom-table{30%,}

Series 2 Wireless SoC HSE - SVM Shipped SE Firmware Version

EFR32xG21A 1.2.13

EFR32MR21A (Rev C) 1.2.16

EFR32xG21A (Rev C) 1.2.16

EFR32xG23A 2.1.7

EFR32xG24A 2.1.7

EFR32xG25A 2.2.1

EFR32xG28A 2.2.2

:::

:::custom-table{30%,}

Series 2 MCU and Wireless SoC HSE - SVH Shipped SE Firmware Version

EFR32xG21B 1.2.13

EFR32xG21B (Rev C) 1.2.16

EFM32PG23B 2.1.7

EFR32xG23B 2.1.7

EFR32xG24B 2.1.7

EFR32xG25B 2.2.1

EFM32PG28B 2.2.2

EFR32xG28B 2.2.2

:::

In support of these products S ilicon Labs offers whitepapers, webinars, and documentation. The following table summarizes

the key security documents:

:::custom-table{30%,50%,20%}

Copyright © 2025 Silicon Laboratories. All rights reserved. 23/280

Series 2 Device Security Features

Document Summary Applicability

Document Summary Applicability

Series 2 Secure Debug How to lock and unlock Series 2 debug access, including

background information about the Secure Engine

Series 2

Series 2 Secure Boot with RTSL Describes the secure boot process on Series 2 devices

using Secure Engine.

Series 2

Anti-Tamper Protection Configuration and Use How to program, provision, and configure the anti-tamper

module

Series 2

with SVH

Authenticating S ilicon Labs Devices using

Device Certificates

How to authenticate a device using secure device

certificates and signatures, at any time during the life of

the product

Series 2

with SVH

Secure Key Storage How to securely <wrap= keys so they can be stored in

non-volatile storage

Series 2

with SVH

AN1222: Production Programming of Series 2

Devices

How to program, provision, and configure security

information using Secure Engine during device production

Series 2

AN1303: Programming Series 2 Devices Using

the Debug Challenge Interface (DCI) and

Serial Wire Debug (SWD)

How to provision and configure Series 2 devices through

the DCI and how to program their internal flash memory

through the SWD

Series 2

AN1311: Integrating Crypto Functionality Using

PSA Crypto Compared to Mbed TLS

How to integrate crypto functionality into applications

using S ilicon Labs implementation of PSA Crypto

compared to Mbed TLS

Series 1 and

Series 2

Series 2 TrustZone Describes the basics of TrustZone, secure and privileged

programming model, and shows how to upgrade existing

application to TrustZone.

Series 2

Copyright © 2025 Silicon Laboratories. All rights reserved. 24/280

https://docs.silabs.com/iot-security/latest/series2-secure-debug/
https://docs.silabs.com/mcu-bootloader/latest/series2-secure-boot-with-rtsl/
https://docs.silabs.com/iot-security/latest/efr32-secure-vault-tamper/
https://docs.silabs.com/iot-security/latest/authenticating-devices-using-device-certificates/
https://docs.silabs.com/iot-security/latest/efr32-secure-key-storage/
https://docs.silabs.com/mcu-bootloader/latest/series2-trustzone/

Overview

Overview

Silicon Labs IoT Security Developer's Guide
The IoT Security Developer's Guide offers detailed information on how to implement each of the device security features.

This content is applicable to any protocol that supports the feature described. Additional protocol-specific information for

Bluetooth, Bluetooth Mesh, OpenThread, and Zigbee is available in the protocol-specific section.

Series 2 Secure Debug: Describes how to lock and unlock the debug access of EFR32 Gecko Series 2 devices. Many

aspects of the debug access, including the secure debug unlock are described. The Debug Challenge Interface (DCI) and

Secure Engine (SE) Mailbox Interface for locking and unlocking debug access are also included.

Series 2 TrustZone: Covers the basics of ARMv8-M TrustZone, describes how TrustZone is implemented on Series 2

devices, and provides application examples.

Production Programming of Series 2 Devices (PDF): Provides details on programming, provisioning, and configuring Series 2

devices in production environments. Covers Secure Engine Subsystem of Series 2 devices, which runs easily upgradeable

Secure Engine (SE) or Virtual Secure Engine (VSE) firmware.

Anti-Tamper Protection Configuration and Use : Shows how to program, provision, and configure the anti-tamper module on

EFR32 Series 2 devices with Secure Vault.

Authenticating Silicon Labs Devices using Device Certificates: Describes how to authenticate an EFR32 Series 2 device

with Secure Vault, using secure device certificates and signatures.

Secure Key Storage: Explains how to securely "wrap" keys in EFR32 Series 2 devices with Secure Vault, so they can be

stored in non-volatile storage.

Programming Series 2 Devices Using the Debug Challenge Interface (DCI) and Serial Wire Debug (SWD) (PDF): Describes

how to provision and configure Series 2 devices through the DCI and SWD.

Integrating Crypto Functionality Using PSA Crypto Compared to Mbed TLS (PDF): Describes how to integrate crypto

functionality into applications using PSA Crypto compared to Mbed TLS.

Copyright © 2025 Silicon Laboratories. All rights reserved. 25/280

https://docs.silabs.com/iot-security/1.1.1/iot-security-protocol-specific
https://docs.silabs.com/iot-security/1.1.1/series2-secure-debug
https://docs.silabs.com/iot-security/1.1.1/series2-trustzone
https://www.silabs.com/documents/public/application-notes/an1222-efr32xg2x-production-programming.pdf
https://docs.silabs.com/iot-security/1.1.1/efr32-secure-vault-tamper
https://docs.silabs.com/iot-security/1.1.1/authenticating-devices-using-device-certificates
https://docs.silabs.com/iot-security/1.1.1/efr32-secure-key-storage
https://www.silabs.com/documents/public/application-notes/an1303-efr32-dci-swd-programming.pdf
https://www.silabs.com/documents/public/application-notes/an1311-mbedtls-psa-crypto-porting-guide.pdf

Series 2 Secure Debug

Series 2 Secure Debug

Series 2 Secure Debug
NOTE: This section replaces AN1190: Series 2 Secure Debug. Further updates to this application note will be provided

here.

This application note describes how to lock and unlock the debug access of Series 2 devices. Many aspects of the debug

access, including the secure debug unlock, are discussed. The Debug Challenge Interface (DCI) and Mailbox Interface for

locking and unlocking debug access are also included.

The debug locks and unlocks for the Cortex-M33 debug interface are implemented through the Secure Engine on Series 2

devices.

Key Points

Basic overview of the Secure Engine.

Debug port access by Debug Challenge Interface (DCI) or Mailbox Interface.

New locking and unlocking features for Series 2 devices.

Examples for provisioning and Secure Debug Unlock.

Copyright © 2025 Silicon Laboratories. All rights reserved. 26/280

Series 2 Device Security Features

Series 2 Device Security Features

Series 2 Device Security Features
Protecting IoT devices against security threats is central to a quality product. S ilicon Labs offers several security options to

help developers build secure devices, secure application software, and secure paths of communication to manage those

devices. S ilicon Labs’ security offerings were significantly enhanced by the introduction of the Series 2 products that

included a Secure Engine. The Secure Engine is a tamper-resistant component used to securely store sensitive data and

keys and to execute cryptographic functions and secure services.

On Series 1 devices, the security features are implemented by the TRNG (if available) and CRYPTO peripherals.

On Series 2 devices, the security features are implemented by the Secure Engine and CRYPTOACC (if available). The

Secure Engine may be hardware-based, or virtual (software-based). Throughout this document, the following abbreviations

are used:

HSE - Hardware Secure Engine

VSE - Virtual Secure Engine

SE - Secure Engine (either HSE or VSE)

Additional security features are provided by Secure Vault. Three levels of Secure Vault feature support are available,

depending on the part and SE implementation, as reflected in the following table:

Level �1� SE Support Part �2�

Secure Vault High (SVH) HSE only (HSE-SVH) Refer to IoT Endpoint Security Fundamentals

for details on supporting devices.

Secure Vault Mid (SVM) HSE (HSE-SVM) "

" VSE (VSE-SVM) "

Secure Vault Base (SVB) N/A "

Notes:

ò The features of different Secure Vault levels can be found in https://www.silabs.com/security.

ó IoT Endpoint Security Fundamentals.

Secure Vault Mid consists of two core security functions:

Secure Boot: Process where the initial boot phase is executed from an immutable memory (such as ROM) and where code is

authenticated before being authorized for execution.

Secure Debug access control: The ability to lock access to the debug ports for operational security, and to securely unlock

them when access is required by an authorized entity.

Secure Vault High offers additional security options:

Secure Key Storage: Protects cryptographic keys by "wrapping" or encrypting the keys using a root key known only to the

HSE-SVH.

Anti-Tamper protection: A configurable module to protect the device against tamper attacks.

Device authentication: Functionality that uses a secure device identity certificate along with digital signatures to verify the

source or target of device communications.

A Secure Engine Manager and other tools allow users to configure and control their devices both in-house during testing

and manufacturing, and after the device is in the field.

User Assistance

Copyright © 2025 Silicon Laboratories. All rights reserved. 27/280

https://docs.silabs.com/iot-security/latest/iot-endpoint-security-fundamentals/
https://www.silabs.com/security
https://docs.silabs.com/iot-security/latest/iot-endpoint-security-fundamentals/

Series 2 Device Security Features

In support of these products, S ilicon Labs offers whitepapers, webinars, and documentation. The following table

summarizes the key security documents:

Document Summary Applicability

Series 2 Secure Debug (this

application note)

How to lock and unlock Series 2 debug access,

including background information about the SE

Secure Vault Mid and High

Series 2 Secure Boot with RTSL Describes the secure boot process on Series 2

devices using SE

Secure Vault Mid and High

Anti-Tamper Protection

Configuration and Use

How to program, provision, and configure the anti-

tamper module

Secure Vault High

Authenticating S ilicon Labs

Devices using Device Certificates

How to authenticate a device using secure device

certificates and signatures, at any time during the life

of the product

Secure Vault High

Secure Key Storage How to securely 'wrap' keys so they can be stored in

non-volatile storage.

Secure Vault High

AN1222: Production Programming

of Series 2 Devices

How to program, provision, and configure security

information using SE during device production

Secure Vault Mid and High

Key Reference

Public/Private keypairs along with other keys are used throughout S ilicon Labs security implementations. Because

terminology can sometimes be confusing, the following table lists the key names, their applicability, and the documentation

where they are used.

Key Name Customer Programmed Purpose

Public S ign key (S ign Key Public) Yes Secure Boot binary authentication and/or OTA

upgrade payload authentication

Public Command key (Command

Key Public)

Yes Secure Debug Unlock or Disable Tamper command

authentication

OTA Decryption key (GBL

Decryption key) aka AES-128 Key

Yes Decrypting GBL payloads used for firmware upgrades

Attestation key aka Private Device

Key

No Device authentication for secure identity

SE Firmware

S ilicon Labs strongly recommends installing the latest SE firmware on Series 2 devices to support the required security

features. Refer to AN1222 for the procedure to upgrade the SE firmware and IoT Endpoint Security Fundamentals for the

latest SE Firmware shipped with Series 2 devices and modules.

Copyright © 2025 Silicon Laboratories. All rights reserved. 28/280

https://docs.silabs.com/mcu-bootloader/latest/series2-secure-boot-with-rtsl/
https://docs.silabs.com/iot-security/latest/efr32-secure-vault-tamper/
https://docs.silabs.com/iot-security/latest/authenticating-devices-using-device-certificates/
https://docs.silabs.com/iot-security/latest/efr32-secure-key-storage/
https://www.silabs.com/documents/public/application-notes/an1222-efr32xg2x-production-programming.pdf
https://docs.silabs.com/iot-security/latest/iot-endpoint-security-fundamentals/

Introduction To Secure Debug

Introduction To Secure Debug

Introduction to Secure Debug

Debug Lock

All devices require the capability to lock out debug access to the device. This prevents attackers from using the debug

interface to perform the following illegal operations:

Reprogramming the device

Interrogating the device

Interfering with the operation of the device

A fairly standard practice during the board-level test in production is to program, test, and lock the parts.

Three different locks can be enabled on the Series 2 debug interface:

Standard-debug-lock

Permanent-debug-lock

Secure-debug-lock

S ilicon Labs provides Custom Part Manufacturing Service (CPMS) to securely configure the debug port of the chip to one

of the three possible locks before the devices leave the factory.

Debug Unlock

Users need to unlock parts under a number of circumstances:

Code development

Field failure diagnosis

Product field service

Existing inventory reprogramming

Two different unlocks can run on the Series 2 debug interface:

Standard-debug-unlock

Secure-debug-unlock

Copyright © 2025 Silicon Laboratories. All rights reserved. 29/280

https://www.silabs.com/developers/custom-part-manufacturing-service

Secure Engine Subsystem

Secure Engine Subsystem

Secure Engine Subsystem

Overview

The HSE refers to a separate security co-processor that provides hardware isolation between security functions and the

host processor.

The VSE refers to a collection of security functions available to the host processor in Root mode if a separate security co-

processor is not provided.

The SE is used to perform a series of cryptographic operations and other secure system operations as described in the

following table.

Operation VSE�SVM HSE�SVM HSE�SVH Description

Unique ID Y Y Y Software can identify every device.

Secure Boot with

RTSL

Y Y Y Only boot authenticated firmware.

Secure Debug Y Y Y Allow enhanced failure analysis.

Crypto Engine (1) - Y Y Up to 256-bit ciphers and elliptic curves.

TRNG (1) - Y Y Generate keys for cryptography.

DPA Countermeasures - Y Y Resist side channel attacks.

Secure Key Storage - - Y Protected by PUF technology.

Secure Key

Management

- - Y Isolate encrypted keys from application

code.

Secure Attestation - - Y Ensure integrity and authenticity.

Anti-Tamper - - Y Detect tamper and protect keys/data.

Advanced Crypto - - Y Up to 512-bit ciphers and 521-bit elliptic

curves.

Note:

 On VSE-SVM devices, the crypto engine and TRNG (True Random Number Generator) are implemented by the CRYPTOACC

(Cryptographic Accelerator) peripheral.

To start using the secure debug unlock functionality, the device needs to be provisioned. These steps include writing one-

time-programmable (OTP) settings to the SE to determine which functionality is enabled, and uploading the Public Command

Key to validate a secure debug attempt.

This application note describes how the different device debug locks and unlocks are implemented through the SE on

Series 2 devices.

The secure debug feature is implemented by Root code executed by the HSE Core or by the Cortex-M33 operating in VSE

(Root mode).

S ilicon Labs strongly recommends installing the latest SE firmware on Series 2 devices to support the required security

features. The latest SE firmware image (. seu and . hex) and release notes can be found in the Windows folder below.

For GSDK v3.2 and lower:

C:\SiliconLabs\SimplicityStudio\v5\developer\sdks\gecko_sdk_suite\<GSDK VERSION>\util\se_release\public

Copyright © 2025 Silicon Laboratories. All rights reserved. 30/280

Secure Engine Subsystem

For GSDK v4.0 and higher:

C:\Users\<PC USER NAME>\SimplicityStudio\SDKs\gecko_sdk\util\se_release\public

Command Interface

Interaction with the SE is performed over a command interface. The command interface is available through a dedicated

Debug Challenge Interface (DCI) as well as through a mailbox interface from the Cortex-M33.

Some commands may not be available at all times and may not be accessible over both interfaces. The DCI typically only

contains operations for setting up a new device and for locking it down (meant for production processes), while the mailbox

interface also contains commands to support cryptographic operations in HSE.

Mailbox

Mailbox operations should not be performed directly, but rather should be executed through the appropriate functions in

em_se .c of emlib . The em_se .c provides an abstraction of the mailbox interface, allowing message construction and DMA

transfer setup.

On top of emlib , the Secure Engine Manager (SE Manager) provides an abstraction of the Secure Engine's command set.

The SE Manager also provides APIs for cryptographic operations and thread synchronization. The SE Manager is available in

GSDK v3.0 or later.

Note: Some functions in em_se .c of emlib are deprecated in GSDK v3.0 and will be removed in a future version

of emlib . All high-level functionality has been moved to the SE Manager.

Debug Challenge Interface �DCI�

The Debug Challenge Interface (DCI) is made available through commands in S implicity Studio and S implicity Commander.

This is the easiest way to access and set up the different security options.

For more information about DCI, see AN1303: Programming Series 2 Devices using the Debug Challenge Interface (DCI)

and Serial Wire Debug (SWD).

Copyright © 2025 Silicon Laboratories. All rights reserved. 31/280

https://www.silabs.com/documents/public/application-notes/an1303-efr32-dci-swd-programming.pdf

Debug Lock

Debug Lock

Debug Lock

Overview

The debug access port connected to the Series 2 device's Cortex-M33 processor can be closed by issuing commands to

the SE, either from a debugger over DCI or through the mailbox interface. These three debug lock properties govern the

behavior of the debug lock.

Property Description If Set Default Value

Debug Lock The debug port is kept locked on boot. False (Disabled)

Device Erase The Erase Device command is available. True (Enabled)

Secure Debug Secure debug unlock is available. False (Disabled)

The following sections describe how to interact with these properties and how to enable debug locks using the SE

command interface either over DCI or the mailbox interface. The status of the debug lock can be inspected using the Read

Lock Status command.

Standard Debug Unlock

The device is in standard debug unlock state if the debug lock properties are in default values.

Secure Debug Device Erase Debug Lock Description

Disabled Enabled Disabled (Unlock) All debug operations are allowed.

Standard Debug Lock

With the default properties in the table above, the device can be locked using the Apply Lock command. The typical flow

for this configuration is simply to issue the Apply Lock command after the device has been programmed, either using a DCI

command from the programming debugger or through the mailbox interface.

Secure Debug Device Erase Debug Lock Description

Disabled Enabled Enabled (Standard) The Erase Device command will wipe the main

flash and RAM, and then a reset will yield an

unlocked device.

The standard debug lock behaves similarly to Series 1 devices. The access port can be closed, but issuing a device erase

wipes the device and opens the debug port again.

Permanent Debug Lock

The Erase Device command can be disabled, which permanently enables the debug lock. This can be done at any time by

issuing the Disable Device Erase command, even after the debug lock has been enabled.

Secure Debug Device Erase Debug Lock Description

Disabled Disabled Enabled (Permanent) The part cannot be unlocked. Devices

with Permanent Debug Lock engaged

cannot be returned for failure analysis.

Secure Debug Lock

Copyright © 2025 Silicon Laboratories. All rights reserved. 32/280

Debug Lock

For secure debug lock, the debug interface can be temporarily enabled by answering a challenge if the Secure debug

property is enabled before locking.

Secure Debug Device Erase Debug Lock Description

Enabled (1) Disabled (2) Enabled (Secure) Secure debug unlock is enabled, which

makes it possible to securely open the

debug lock temporarily to reprogram or

debug a locked device.

Note:

ò Secure debug is enabled in two steps before the debug lock is enabled:

a. Install the Public Command Key using S implicity Studio or S implicity Commander or directly through the SE Manager API.

b. Enable secure debug using S implicity Studio or S implicity Commander or directly through the SE Manager API.

ó Disable the device erase using S implicity Studio or S implicity Commander or directly through the SE Manager API. This is an

IRREVERSIBLE action and should be disabled AFTER the secure debug is enabled.

Debug Lock State Transition

The following figure describes the transitions between different debug lock states.

ò Standard debug unlock can transit to any debug lock state.

ó Standard debug lock can revert to standard debug unlock via an Erase Device command (erase the main flash and RAM).

After the device is reset, debug port remains unlocked until it is explicitly locked again.

ô Standard debug lock can transit to permanent debug lock by disabling the Device Erase property but cannot transit to

secure debug lock.

õ Secure debug lock can use Debug Unlock Token to temporary transit to secure debug unlock, which does not erase the

main flash and RAM but enables debug operations. The device reverts to the secure debug lock through a power-on or pin

reset.

ö Secure debug lock can transit to permanent debug lock by disabling the Secure Debug property but cannot transit to

standard debug lock.

÷ Permanent debug lock is a terminal state and cannot transit to any debug lock or unlock state.

Debug Lock Command Reference

The commands for debug lock are described in the following table.

DCI Command �1� Mailbox �SE Manager) API �2� Description Availability

Apply Lock sl_se_apply_debug_lock Enables the debug lock for the part. While debug is

unlocked.

Copyright © 2025 Silicon Laboratories. All rights reserved. 33/280

Debug Lock

DCI Command �1� Mailbox �SE Manager) API �2� Description Availability

Read Lock Status sl_se_get_debug_lock_status Returns the current debug lock status

and configuration.

Always.

Disable Device Erase sl_se_disable_device_erase Disables the Erase Device command.

This command does not lock the debug

interface to the part, but it is an

IRREVERSIBLE action for the part.

Always.

Disable Secure Debug sl_se_disable_secure_debug Disables the secure debug functionality

that can be used to open a locked

debug port.

While secure

debug is

enabled.

Enable Secure Debug sl_se_enable_secure_debug Enables the secure debug functionality

that can be used to open a locked

debug port.

While debug is

unlocked and

Public

Command Key

is uploaded.

Set debug options sl_se_set_debug_options Configures the TrustZone access

permissions of the debug interface. (3)

While debug is

unlocked.

Init Pub Key sl_se_ init_otp_key Used to provision a single public key

during device initialization. The public key

cannot be changed once written, and

the command will be unavailable for that

key.

Available once

for each key.

Read Pub Key sl_se_read_pubkey Reads the stored public key. Always.

Get Challenge sl_se_roll_challenge Used to roll the current challenge value

(16 bytes) to revoke secure debug

access. (4)

While Public

Command Key

is uploaded.

Notes:

ò Performing these commands over DCI is implemented in S implicity Studio and S implicity Commander.

ó The sl_se_apply_debug_lock , sl_se_get_debug_lock_status , sl_se_init_otp_key , and sl_se_read_pubkey are available on all Series 2

devices. Other APIs are only available on HSE devices. The SE Manager API document can be found at

https://docs.silabs.com/gecko-platform/latest/service/api/group-sl-se-manager.

ô For more information about debug options, see TrustZone Debug Authentication.

õ A new challenge will only be generated if the current one has been successfully used at least once.

Copyright © 2025 Silicon Laboratories. All rights reserved. 34/280

https://docs.silabs.com/gecko-platform/latest/service/api/group-sl-se-manager

Debug Unlock

Debug Unlock

Debug Unlock

Overview

The debug access port connected to the Series 2 device's Cortex-M33 processor can be opened by issuing commands to

the SE, either from a debugger over DCI or through the mailbox interface.

New on the Series 2 devices is the addition of secure debug unlock functionality. When enabled, it is possible to request a

challenge from the device and, by answering the challenge, disable the debug lock until the next power-on or pin reset.

The status of the debug lock can be inspected using the Read Lock Status command.

Standard Debug Unlock

With the properties of the standard debug lock or secure debug lock with Device Erase enabled, the device can be

returned to the standard debug unlock state using the Erase Device command. This command will wipe the main flash and

RAM and verify they are empty before opening the debug lock. It will not wipe user data and provisioned SE settings.

Secure Debug Unlock

In a secure debug unlock scenario, the customer, who has control over the Private Command Key for a SE, has programmed

a Public Command Key into the device. The Public Command Key is used to verify the signature on a certificate, telling the

SE what authorization has been given by the owner of the key (customer) to the one issuing the command (customer or

delegate). Authorization can be granted, for example, to unlock only the debug port on the Cortex-M33, or to restore only

specific tamper signals on HSE-SVH devices.

Copyright © 2025 Silicon Laboratories. All rights reserved. 35/280

Debug Unlock

This mode is particularly useful in failure analysis scenarios because it allows devices to be unlocked without losing flash

and RAM contents.

Debug Unlock Token

The elements of the Debug Unlock Token are described in the following figures and table.

Element Value Description

Debug access command 0xfd010001 The command word of the Debug Unlock Token.

Debug mode request Device-dependent The command parameter of the debug access

command.

Access certificate (1) Device-dependent See section Access Certificate.

Debug access command signature

(1)

Device-dependent See section Challenge Response.

Note:

ò The debug access command payload consists of an access certificate and a debug access command signature.

Notes:

Enable debug port - Debug port enabled if set.

DBGLOCK (Non-secure, Invasive debug lock) - The Invasive debug features for the Non-secure state are unlocked if set.

NIDLOCK (Non-secure, Non-invasive debug lock) - The Non-invasive debug features for the Non-secure state are unlocked

if set.

SPIDLOCK (Secure, Invasive debug lock) - The Invasive debug features for the Secure state are unlocked if set.

SPNIDLOCK (Secure, Non-Invasive debug lock) - The Non-invasive debug features for the Secure state are unlocked if set.

All reserved bits should be 0, and bit 1 must be 1 to access the debug port.

For the TrustZone-unaware debugging, bits 2 to 5 are irrelevant, so bits 1 to 5 are usually set (0x0000003e) to match with

the Authorizations in the access certificate.

For the TrustZone-aware debugging, bits 2 to 5 are relevant. Refer to Trust Zone Debug Authentication for details about

these debug options.

Copyright © 2025 Silicon Laboratories. All rights reserved. 36/280

Debug Unlock

Access Certificate

The elements of the access certificate are described in the following figures and table.

Element Value Description

Magic word 0xe5ecce01 A constant value used to identify the access

certificate.

Authorizations 0x0000003e (1) A value used to authorize which bit in the debug

mode request can be enabled for secure debug.

Tamper Authorizations 0x00000000 or 0xffffffb6

(2)

A value used to authorize which bit in the tamper

disable mask can be set to disable the tamper

response.

Serial number Device-dependent A number used to compare against the on-chip serial

number for secure debug or tamper disable.

Public Certificate Key (3) Device-dependent The public key corresponding to the Private

Certificate Key (3) used to generate the signature

(ECDSA-P256-SHA256) in a challenge response.

Access certificate signature Device-dependent All the content above is signed (ECDSA-P256-

SHA256) by the Private Command Key

corresponding to the Public Command Key in the SE

OTP.

Notes:

ò This value allows all debug options to be reset for secure debug.

ó Value that sets available bits in the tamper disable mask for tamper disable (HSE-SVH device only).

ô The Private/Public Certificate Key is a randomly generated key pair. It can be ephemeral or retainable.

The Private Certificate Key can be used repeatedly to generate the signature in a challenge response on one device until

the Private/Public Certificate Key pair is discarded. This can reduce the frequency of access to the Private Command Key,

allowing more restrictive access control on that key.

For more information about tamper disable, see Anti-Tamper Protection Configuration and Use .

Copyright © 2025 Silicon Laboratories. All rights reserved. 37/280

https://docs.silabs.com/iot-security/latest/efr32-secure-vault-tamper/

Debug Unlock

Notes:

Set the bit to enable the corresponding bit in the debug mode request.

The Debug Unlock Token will reset the corresponding debug option if the same bit is set in Debug mode request and

Authorizations.

Challenge Response

The elements of the challenge response are described in the following figure and table.

Element Value Description

Debug access command 0xfd010001 The command word of the Debug Unlock Token.

Debug mode request Device-dependent The command parameter of the debug access

command.

Challenge Device-dependent (1) A random value generated by the SE.

Debug access command signature Device-dependent (2) All the content above is signed (ECDSA-P256-

SHA256) by the Private Certificate Key

corresponding to the Public Certificate Key in the

access certificate.

Notes:

ò The challenge remains unchanged until it is updated to a new random value by rolling the challenge. The Private Certificate

Key can be reused for signing when the device challenge is refreshed.

ó This signature is the final argument of the Debug Unlock Token.

Debug Access Flow

Copyright © 2025 Silicon Laboratories. All rights reserved. 38/280

Debug Unlock

The debug access flow is described in the following figure.

ò Get the serial number and challenge from the SE.

ó Generate the access certificate with the device serial number.

ô Generate the challenge response with device challenge.

õ Generate the debug access command payload with access certificate and debug access command signature.

ö Send the Debug Unlock Token to the SE.

÷ Verify the debug access command signature using the Public Certificate Key in the access certificate.

ø Verify the serial number and the access certificate signature using the on-chip serial number and Public Command Key in the

SE OTP.

ù Authorize the debug mode request to reset the debug options until the next power-on or pin reset.

ú Roll the challenge to invalidate the current Debug Unlock Token.

TrustZone Debug Authentication

The debug and trace support in the Cortex-M33 devices are based on the CoreS ight architecture, which can be classified

into Invasive and Non-invasive debugging features as described in the following table.

Classification Debug and Trace Features Description

Invasive Core debug (e.g., single stepping), Breakpoints,

Data watchpoints, Halt mode debugging

These features halt the Cortex-M33 core and

change the program execution flow.

Non-invasive Embedded Trace Macrocell (ETM), Micro Trace

Buffer (MTB), Data trace, Instrumentation

Trace Macrocell (ITM), Profiling

These features have a minor or no impact on

the program execution flow.

The separation of Invasive and Non-invasive debug and trace operations in CoreS ight architecture can apply to TrustZone

debug authentication, which defines the permission levels of the debug and trace features on Secure and Non-secure

worlds.

The table below describes four debug options in SE to support TrustZone debug authentication. It is possible to restrict the

TrustZone access permissions of the debug interface by setting one or more of the following options.

Copyright © 2025 Silicon Laboratories. All rights reserved. 39/280

https://developer.arm.com/documentation/ihi0029/f?lang=en

Debug Unlock

Debug Option Description

DBGLOCK Non-secure, Invasive debug lock. If this bit is set, the Invasive debug features for the

Non-secure state are locked.

NIDLOCK Non-secure, Non-invasive debug lock. If this bit is set, the Non-invasive debug features

for the Non-secure state are locked.

SPIDLOCK Secure, Invasive debug lock. If this bit is set, the Invasive debug features for the Secure

state are locked.

SPNIDLOCK Secure, Non-invasive debug lock. If this bit is set, the Non-invasive debug features for

the Secure state are locked.

Notes:

Use S implicity Commander or the SE Manager API to set the debug options.

The state of the debug options is stored permanently in SE and can only be reset to the default value (0000) through the

Erase Device command (if enabled).

A secure debug lock device (Device Erase was disabled) can only use the Debug Unlock Token to temporarily unlock (reset)

the debug options to debug the Secure and Non-secure applications.

The following conditions are recommended (1, 2, and 3) or mandatory (4) when setting up the debug options for secure

debug unlock.

ò If SPIDLOCK is unlocked, then DBGLOCK should also be unlocked.

ó If SPNIDLOCK is unlocked, then NIDLOCK should also be unlocked.

ô If DBGLOCK is unlocked, the NIDLOCK should also be unlocked.

õ If SPIDLOCK is unlocked, then SPNIDLOCK is automatically unlocked.

The following table lists the recommended combinations of debug options.

SPNIDLOCK SPIDLOCK NIDLOCK DBGLOCK Description

0 0 0 0 Allows all debug and trace features for both

the Secure and the Non-secure world (default

setting).

0 1 0 0 Only allows a Non-invasive debug in the

Secure world. Allows both Invasive and Non-

invasive debugs in the Non-secure world.

0 1 0 1 Only allows a Non-invasive debug in the

Secure and the Non-secure world.

1 1 0 0 Only allows debug and trace features in the

Non-secure world.

1 1 0 1 Only allows a Non-invasive debug in the Non-

secure world.

1 1 1 1 All debug and trace features are disabled.

Notes:

Trace Point Interface Unit (TPIU) registers' access fault will occur and lock the processor in a security assertion if both

NIDLOCK and DBGLOCK in debug option are set (xx11). The device will be unrecoverable if it is in the permanent debug

lock state.

The workaround is to avoid using the xx11 debug option or avoid accessing the TPIU registers and upgrade to SE firmware ≥

v1.2.14 (xG21 and xG22) or ≥ v2.2.1 (other Series 2 devices) so that the debug options cannot be modified after the device

is locked.

The highly recommended setting of debug options is to allow debugging in the Non-secure world while, at the same time,

disabling debugging for the Secure world (1100).

Secure memories (flash and RAM) are not accessible by the debugger.

All debug access is blocked from accessing Secure addresses.

Copyright © 2025 Silicon Laboratories. All rights reserved. 40/280

https://developer.arm.com/documentation/ka005320/latest

Debug Unlock

The debugger will ignore the vector-catch events generated by the Secure exceptions.

Trace sources (e.g., ETM) will stop generating instruction/data trace packets when the Cortex-M33 is in a Secure state.

The debugger can neither halt a Secure application (e.g., breakpoint) nor single step into it.

The Cortex-M33 will not stop when stepping into the Secure application until it returns to the Non-secure state.

The figure below describes the debug scenario of debug options with 1100 configuration.

The following examples describe the relationship between debug options and debug mode request when performing a

secure debug unlock on Series 2 devices.

Example 1: All debug and trace features for both the Secure and the Non-secure world are allowed (0000)

Debug Options Authorizations Debug Mode Request
Debug options after
Secure Debug Unlock

Description

0000 00|1111|10 00|xxxx|10 0000 No action

Example 2: Only debug and trace features in the Non-secure world are allowed (1100)

Debug Options Authorizations Debug Mode Request
Debug options after
Secure Debug Unlock

Description

1100 00|1111|10 00|00xx|10 1100 No action

1100 00|1111|10 00|10xx|10 0100 Unlock SPNIDLOCK

1100 00|1111|10 00|01xx|10 or 00|11xx|10 0000(reset

SPIDLOCK will

automatically unlock

SPNIDLOCK)

Unlock SPNIDLOCK

and SPIDLOCK

Notes:

The bit order of debug options are SPNIDLOCK (MSB), SPIDLOCK, NIDLOCK, and DBGLOCK (LSB).

Debug options: 0 = Unlocked, 1 = Locked

Authorizations in the access certificate: 0 = Disable, 1 = Enable

The authorizations in the access certificate are usually set to 00|1111|10 (0x3e), so the corresponding debug options (bits 2

to 5) can be reset (unlocked) by debug mode request during secure debug unlock.

Debug mode request (bits 2 to 5) in the Debug Unlock Token:

-0 = No action on the corresponding debug option if it was locked (i.e., 1)

-1 = Reset (unlock) the corresponding debug option from 1 to 0 if it was locked (i.e., 1)

-x = No action (either 0 or 1) on the corresponding debug option if it was unlocked (i.e., 0)

Debug options return to the original state after power-on or pin reset.

Debug Unlock Command Reference

The commands for debug unlock are described in the following table.

Copyright © 2025 Silicon Laboratories. All rights reserved. 41/280

Debug Unlock

DCI Command �1� Mailbox �SE Manager) API �2� Description Availability

Erase Device sl_se_erase_device Performs a device mass erase and

resets the debug configuration to its

initial unlocked state.

While Device

Erase is

enabled.

Read Serial Number sl_se_get_serialnumber Reads out the serial number (16 bytes)

of the Series 2 device.

Always.

Get Challenge sl_se_get_challenge Reads out the current challenge value

(16 bytes) for Secure debug unlock.

While Public

Command Key

is uploaded.

Debug Access sl_se_open_debug Opens the secure debug access of the

Cortex-M33.

Only when

Secure Debug

is enabled.

Notes:

ò Performing these commands over DCI is implemented in S implicity Studio and S implicity Commander.

ó These APIs are only available on HSE devices. The SE Manager API document can be found at

https://docs.silabs.com/gecko-platform/latest/service/api/group-sl-se-manager.

Copyright © 2025 Silicon Laboratories. All rights reserved. 42/280

https://docs.silabs.com/gecko-platform/latest/service/api/group-sl-se-manager

Examples

Examples

Examples

Overview

The examples for Series 2 debug lock and debug unlock are described in the following table.

Example Device �Radio Board) SE Firmware Tool

Standard debug lock EFR32MG21A010F1024IM32 (BRD4181A) Version 1.2.14 SE Manager

Standard debug lock and

unlock

EFR32MG21A010F1024IM32 (BRD4181A) Version 1.2.14 S implicity Commander

" EFR32MG21A010F1024IM32 (BRD4181A) Version 1.2.9 S implicity Studio 5

Provision Public Command

Key

EFR32MG21A010F1024IM32 (BRD4181A) Version 1.2.14 SE Manager

Secure debug lock EFR32MG21A010F1024IM32 (BRD4181A) Version 1.2.14 SE Manager

Provision Public Command

Key and secure debug lock

EFR32MG21A010F1024IM32 (BRD4181A) Version 1.2.14 S implicity Commander

" EFR32MG21A010F1024IM32 (BRD4181A) Version 1.2.9 S implicity Studio 5

Secure debug unlock and

roll challenge

EFR32MG21A010F1024IM32 (BRD4181A) Version 1.2.14 SE Manager

" EFR32MG21A010F1024IM32 (BRD4181A) Version 1.2.14 S implicity Commander

" EFR32MG21A010F1024IM32 (BRD4181A) Version 1.2.9 S implicity Studio 5

Secure debug unlock EFR32MG21A010F1024IM32 (BRD4181A) Version 1.2.9 IAR v8.50.9

Permanent debug lock EFR32MG21A010F1024IM32 (BRD4181A) Version 1.2.14 S implicity Commander

" EFR32MG21A010F1024IM32 (BRD4181A) Version 1.2.9 S implicity Studio 5

Note: Unless specified in the example, these examples can be applied to other Series 2 devices.

Using Simplicity Studio

The security operations are performed in the Security Settings of S implicity Studio. This application note uses S implicity

Studio v5.2.1.1. The procedures and pictures may be different for the other versions of S implicity Studio 5.

ò Right-click the selected debug adapter RB (ID:J-Link serial number) to display the context menu.

Copyright © 2025 Silicon Laboratories. All rights reserved. 43/280

Examples

ó Click Device configuration... to open the Configuration of device: J-Link Silicon Labs (serial number) dialog box. Click the

Security Settings tab to get the selected device configuration.

Copyright © 2025 Silicon Laboratories. All rights reserved. 44/280

Examples

Using Simplicity Commander

ò This application note uses S implicity Commander v1.14.2. The procedures and console output may be different for the other

versions of S implicity Commander. The latest version of S implicity Commander can be downloaded from

https://www.silabs.com/developers/mcu-programming-options.

commander --version

Simplicity Commander 1v14p2b1232

JLink DLL version: 7.70d

Qt 5.12.10 Copyright (C) 2017 The Qt Company Ltd.

EMDLL Version: 0v18p7b669

mbed TLS version: 2.16.6

Emulator found with SN=440048205 USBAddr=0

DONE

ó The S implicity Commander's Command Line Interface (CLI) is invoked by commander.exe in the S implicity Commander folder.

The location for S implicity Studio 5 in Windows is C:\SiliconLabs\SimplicityStudio\v5\developer\adapter_packs\commander . For

ease of use, it is highly recommended to add the path of commander.exe to the system PATH in Windows.

ô If more than one Wireless Starter K it (WSTK) is connected via USB, the target WSTK must be specified using the --serialno

\<J-Link serial number> option.

õ If the WSTK is in debug mode OUT, the target device must be specified using the --device \<device name> option.

For more information about S implicity Commander, see UG162: S implicity Commander Reference Guide.

Using External Tools

ò The secure debug unlock example uses the OpenSSL to sign the access certificate and challenge response. The Windows

version of OpenSSL can be downloaded from https://slproweb.com/products/Win32OpenSSL.html. This application note uses

OpenSSL Version 1.1.1h (Win64).

openssl version

OpenSSL 1.1.1h 22 Sep 2020

The OpenSSL's Command Line Interface (CLI) is invoked by openssl.exe in the OpenSSL folder. The location in Windows

(Win64) is C:\Program Files\OpenSSL-Win64\bin . For ease of use, it is highly recommended to add the path of openssl.exe to

the system PATH in Windows.

ó The secure debug unlock example uses the free Hex Editor Neo to edit the binary files generated by S implicity Commander.

The Windows version of Hex Editor Neo can be downloaded from https://www.hhdsoftware.com/free-hex-editor.

Using Platform Examples

S implicity Studio 5 includes the SE Manager platform examples for debug lock, key provisioning, and secure debug unlock.

This application note uses platform examples of GSDK v4.2.1. The console output may be different on other versions of

GSDK.

Refer to the corresponding readme file for details about each SE Manager platform example. This file also includes the

procedures to create the project and run the example.

Standard Debug Lock and Unlock

SE Manager - Debug Lock Platform Example

Click the View Pro ject Documentation link to open the readme file.

Copyright © 2025 Silicon Laboratories. All rights reserved. 45/280

https://www.silabs.com/developers/mcu-programming-options
https://www.silabs.com/documents/public/user-guides/ug162-simplicity-commander-reference-guide.pdf
https://slproweb.com/products/Win32OpenSSL.html
https://www.hhdsoftware.com/free-hex-editor
https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-getting-started/start-a-project#examples

Examples

ò Press SPACE then ENTER to select the debug lock operation.

SE Manager Host Firmware Upgrade and Debug Lock Example - Core running at 38000 kHz.

. SE manager initialization... SL_STATUS_OK (cycles: 10 time: 0 us)

. Current selection is HOST FIRMWARE UPGRADE.

 + Press SPACE to select HOST FIRMWARE UPGRADE or DEBUG LOCK, press ENTER to run.

 + Current selection is DEBUG LOCK.

. Get debug lock status... SL_STATUS_OK (cycles: 8788 time: 231 us)

 + Debug lock: Disabled

 + Press ENTER to apply debug lock or press SPACE to exit.

ó Press ENTER again to lock the device.

. Apply the debug lock... SL_STATUS_OK (cycles: 52585 time: 1383 us)

 + Get debug lock status... SL_STATUS_OK (cycles: 8769 time: 230 us)

 + Debug lock: Enabled

. Current selection is DEBUG LOCK.

 + Press SPACE to select HOST FIRMWARE UPGRADE or DEBUG LOCK, press ENTER to run.

Simplicity Commander

ò Run the security status command to get the selected device configuration.

commander security status --device EFR32MG21A010F1024 --serialno 440048205

SE Firmware version : 1.2.14

Serial number : 000000000000000014b457fffe045a93

Debug lock : Disabled

Device erase : Enabled

Secure debug unlock : Disabled

Tamper status : OK

Secure boot : Disabled

Boot status : 0�20 - OK

DONE

ó Run the security lock command to lock the selected device.

commander security lock --device EFR32MG21A010F1024 --serialno 440048205

WARNING� Secure debug unlock is disabled. Only way to regain debug access is to run a device erase.

Device is now locked.

DONE

ô Run the security status command again to check the device configuration.

commander security status --device EFR32MG21A010F1024 --serialno 440048205

Copyright © 2025 Silicon Laboratories. All rights reserved. 46/280

Examples

SE Firmware version : 1.2.14

Serial number : 000000000000000014b457fffe045a93

Debug lock : Enabled

Device erase : Enabled

Secure debug unlock : Disabled

Tamper status : OK

Secure boot : Disabled

Boot status : 0�20 - OK

DONE

õ Run the security erasedevice command to unlock the selected device.

commander security erasedevice --device EFR32MG21A010F1024 --serialno 440048205

Successfully erased device

DONE

Note: Issue a power-on or pin reset to complete the unlock process.

ö Run the security status command again to check the device configuration.

commander security status --device EFR32MG21A010F1024 --serialno 440048205

SE Firmware version : 1.2.14

Serial number : 000000000000000014b457fffe045a93

Debug lock : Disabled

Device erase : Enabled

Secure debug unlock : Disabled

Tamper status : OK

Secure boot : Disabled

Boot status : 0�20 - OK

DONE

Simplicity Studio

ò Open the Security Settings of the selected device as described in Using S implicity Studio.

ó Click [Enable] next to Enable Debug Lock: to lock the device. The following Enable Debug Lock Warning is displayed. Click

[Yes] to confirm. This configures standard debug lock.

Copyright © 2025 Silicon Laboratories. All rights reserved. 47/280

Examples

The [Enable] controls next to Enable Secure Debug Unlock: and Enable Debug Lock: are grayed out after standard debug

lock is enabled.

Copyright © 2025 Silicon Laboratories. All rights reserved. 48/280

Examples

ô Click [Device Erase] to unlock the device.

Copyright © 2025 Silicon Laboratories. All rights reserved. 49/280

Examples

õ The device will return to the unlock state. Click [OK] to exit.

Copyright © 2025 Silicon Laboratories. All rights reserved. 50/280

Examples

Provision Public Command Key and Secure Debug Lock

SE Manager - Key Provisioning Platform Example

Click the View Pro ject Documentation link to open the readme file.

ò Press SPACE to skip the programming of AES-128 key.

SE Manager Key Provisioning Example - Core running at 38000 kHz.

. SE manager initialization... SL_STATUS_OK (cycles: 9 time: 0 us)

. Get current SE firmware version... SL_STATUS_OK (cycles: 3578 time: 94 us)

 + Current SE firmware version (MSB..LSB): 00010209

. Read SE OTP configuration... SL_STATUS_COMMAND_IS_INVALID (cycles: 3908 time: 102 us)

. Press ENTER to program 128-bit AES key in SE OTP or press SPACE to skip.

. Encrypt 16 bytes plaintext with 128-bit AES OTP key... SL_STATUS_FAIL (cycles: 4627 time: 121 us)

. Press ENTER to program public sign key in SE OTP or press SPACE to skip.

ó Press SPACE to skip the programming of Public S ign Key.

Copyright © 2025 Silicon Laboratories. All rights reserved. 51/280

Examples

. Get public sign key... SL_STATUS_FAIL (cycles: 4144 time: 109 us)

. Press ENTER to program public command key in SE OTP or press SPACE to skip.

ô Press ENTER to program the default Public Command Key in flash to the SE OTP.

 + Warning: The public command key in SE OTP cannot be changed once written!

 + Press ENTER to confirm or press SPACE to skip if you are not sure.

õ Press ENTER to confirm the operation.

. Initialize public command key... SL_STATUS_OK (cycles: 56052 time: 1475 us)

. Get public command key... SL_STATUS_OK (cycles: 7135 time: 187 us)

 + The public command key (64 bytes):

 B1 BC 6F 6F A5 66 40 ED 52 2B 2E E0 F5 B3 CF 7E

 5D 48 F6 0B E8 14 8F 0D C0 84 40 F0 A4 E1 DC A4

 7C 04 11 9E D6 A1 BE 31 B7 70 7E 5F 9D 00 1A 65

 9A 05 10 03 E9 5E 1B 93 6F 05 C3 7E A7 93 AD 63

. Press ENTER to initialize SE OTP for secure boot configuration or press SPACE to skip.

ö Press SPACE to skip the secure boot configuration.

. SE manager deinitialization... SL_STATUS_OK (cycles: 7 time: 0 us)

SE Manager - Secure Debug Platform Example

Click the View Pro ject Documentation link to open the readme file.

Note: The secure debug platform example can only run on the HSE device.

ò Use a standard debug unlock device with matched Public Command Key.

Copyright © 2025 Silicon Laboratories. All rights reserved. 52/280

Examples

SE Manager Secure Debug Example - Core running at 38000 kHz.

. SE manager initialization... SL_STATUS_OK (cycles: 9 time: 0 us)

. Get SE status... SL_STATUS_OK (cycles: 8496 time: 223 us)

 + The SE firmware version (MSB..LSB): 0001020E

 + Debug lock: Disabled

 + Device Erase: Enabled

 + Secure debug: Disabled

 + Secure boot: Disabled

 + Debug lock state: Unlocked

 + Non-secure, Invasive debug lock (DBGLOCK) configuration: Unlocked

 + Non-secure, Non-invasive debug lock (NIDLOCK) configuration: Unlocked

 + Secure, Invasive debug lock (SPIDLOCK) configuration: Unlocked

 + Secure, Non-invasive debug lock (SPNIDLOCK) configuration: Unlocked

 + Non-secure, Invasive debug lock (DBGLOCK) current state: Unlocked

 + Non-secure, Non-invasive debug lock (NIDLOCK) current state: Unlocked

 + Secure, Invasive debug lock (SPIDLOCK) current state: Unlocked

 + Secure, Non-invasive debug lock (SPNIDLOCK) current state: Unlocked. The device is in normal state and secure debug is disabled.

 + Exporting a public command key from a hard-coded private command key... SL_STATUS_OK (cycles: 202467 time: 5328 us)

 + Reading the public command key from SE OTP... SL_STATUS_OK (cycles: 7589 time: 199 us)

 + Comparing exported public command key with SE OTP public command key... OK

 + Press ENTER to enable secure debug or press SPACE to exit.

ó Press ENTER to enable the secure debug.

 + Enable the secure debug... SL_STATUS_OK (cycles: 48313 time: 1271 us)

 + Press ENTER to lock the device or press SPACE to disable the secure debug and exit.

ô Press ENTER to lock the device with debug options 0x0c .

 + Setting the debug options (0xc)... SL_STATUS_OK (cycles: 51091 time: 1344 us)

 + Locking the device... SL_STATUS_OK (cycles: 89683 time: 2360 us)

 + Device erase is enabled, press ENTER to disable device erase (optional if just for testing) or press SPACE to skip.

õ Press ENTER to disable device erase.

 + Warning: This is a ONE�TIME command which PERMANETLY disables device erase!

 + Press ENTER to confirm or press SPACE to skip if you are not sure.

ö Press ENTER to confirm the operation.

. Get SE status... SL_STATUS_OK (cycles: 8496 time: 223 us)

 + The SE firmware version (MSB..LSB): 0001020E

 + Debug lock: Enabled

 + Device Erase: Disabled

 + Secure debug: Enabled

 + Secure boot: Disabled

 + Debug lock state: Locked

 + Non-secure, Invasive debug lock (DBGLOCK) configuration: Unlocked

 + Non-secure, Non-invasive debug lock (NIDLOCK) configuration: Unlocked

 + Secure, Invasive debug lock (SPIDLOCK) configuration: Locked

 + Secure, Non-invasive debug lock (SPNIDLOCK) configuration: Locked

 + Non-secure, Invasive debug lock (DBGLOCK) current state: Unlocked

 + Non-secure, Non-invasive debug lock (NIDLOCK) current state: Unlocked

 + Secure, Invasive debug lock (SPIDLOCK) current state: Locked

 + Secure, Non-invasive debug lock (SPNIDLOCK) current state: Locked. The device is in secure debug lock state.

 + Press ENTER to issue a secure debug unlock or press SPACE to exit.

÷ Press SPACE to exit.

. SE manager deinitialization... SL_STATUS_OK (cycles: 9 time: 0 us)

Simplicity Commander

ò Run the security status command to get the selected device configuration.

Copyright © 2025 Silicon Laboratories. All rights reserved. 53/280

Examples

commander security status --device EFR32MG21A010F1024 --serialno 440048205

SE Firmware version : 1.2.14

Serial number : 000000000000000014b457fffe045a93

Debug lock : Disabled

Device erase : Enabled

Secure debug unlock : Disabled

Tamper status : OK

Secure boot : Disabled

Boot status : 0�20 - OK

DONE

ó Run the security writekey command to provision the Public Command Key (e.g., command_pubkey.pem).

commander security writekey --command command_pubkey.pem --device EFR32MG21A010F1024 --serialno 440048205

Device has serial number 000000000000000014b457fffe045a93

==

Please look through any warnings before proceeding.

THIS IS A ONE�TIME command which permanently ties debug and tamper access to certificates signed by this key.

Type 'continue' and hit enter to proceed or Ctrl-C to abort:

==

continue

DONE

Note: The Public Command Key cannot be changed once written.

ô Run the security readkey command to read the Public Command Key from the SE OTP.

commander security readkey --command --device EFR32MG21A010F1024 --serialno 440048205

B1BC6F6FA56640ED522B2EE0F5B3CF7E5D48F60BE8148F0DC08440F0A4E1DCA4

7C04119ED6A1BE31B7707E5F9D001A659A051003E95E1B936F05C37EA793AD63

DONE

õ Run the security lockconfig command to enable the secure debug.

commander security lockconfig --secure-debug-unlock enable --device EFR32MG21A010F1024 --serialno 440048205

Secure debug unlock was enabled

DONE

ö a. For the TrustZone-unaware application, run the security lockcommand to lock the selected device.

commander security lock --device EFR32MG21A010F1024 --serialno 440048205

Device is now locked.

DONE

b. For the TrustZone-aware application, run the security lock --trustzone #### command to set the debug options (e.g.,

1100) and lock the selected device. The bit order of #### is SPNIDLOCK (MSB), SPIDLOCK, NIDLOCK, and DBGLOCK

(LSB).

commander security lock --trustzone 1100 --device EFR32MG21A010F1024 --serialno 440048205

Copyright © 2025 Silicon Laboratories. All rights reserved. 54/280

Examples

Writing debug restriction bits:

DBGLOCK� 0

NIDLOCK� 0

SPIDLOCK� 1

SPNIDLOCK� 1

Device is now locked.

DONE

Notes:

The --trustzone option for the security lock command requires S implicity Commander ≥ v1.13.3.

It is strongly recommended to upgrade to SE firmware ≥ v1.2.14 (xG21 and xG22) or ≥ v2.2.1 (other Series 2 devices)

so that the debug options cannot be modified after the device is locked.

Use commander security lock without the --trustzone #### option if the default setting of debug options (0000) is

good enough for a TrustZone-aware application.

÷ Run the security disabledeviceerase command to disable device erase. This is an IRREVERSIBLE action, and should be the last

step in production.

commander security disabledeviceerase --device EFR32MG21A010F1024 --serialno 440048205

==

THIS IS A ONE�TIME command which Permanently disables device erase.

If secure debug lock has not been set, there is no way to regain debug access to this device.

Type 'continue' and hit enter to proceed or Ctrl-C to abort:

==

continue

Disabled device erase successfully

DONE

Note: The debug options cannot be reset to the default value 0000 (unlock) if the device erase option is

disabled.

ø a. For S implicity Commander < v1.13.3, run the security status command to check the debug lock status of the device.

commander security status --device EFR32MG21A010F1024 --serialno 440048205

SE Firmware version : 1.2.14

Serial number : 000000000000000014b457fffe045a93

Debug lock : Enabled

Device erase : Disabled

Secure debug unlock : Enabled

Tamper status : OK

Secure boot : Disabled

Boot status : 0�20 - OK

DONE

b. For S implicity Commander ≥ v1.13.3, run the security status --trustzone command to check the full debug lock status of the

device.

commander security status --trustzone --device EFR32MG21A010F1024 --serialno 440048205

Copyright © 2025 Silicon Laboratories. All rights reserved. 55/280

Examples

SE Firmware version : 1.2.14

Serial number : 000000000000000014b457fffe045a93

Debug lock : Enabled

Device erase : Disabled

Secure debug unlock : Enabled

Debug lock state: Locked

Non-secure, invasive debug lock (DBGLOCK) : Unlocked

Non-secure, non-invasive debug lock (NIDLOCK) : Unlocked

Secure, invasive debug lock (SPIDLOCK) : Locked

Secure, non-invasive debug lock (SPNIDLOCK): Locked

Non-secure, invasive debug lock state (DBGLOCK) : Unlocked

Non-secure, non-invasive debug lock state (NIDLOCK) : Unlocked

Secure, invasive debug lock state (SPIDLOCK) : Locked

Secure, non-invasive debug lock state (SPNIDLOCK): Locked

Tamper status : OK

Secure boot : Disabled

Boot status : 0�20 - OK

DONE

Simplicity Studio

ò Run the util keytotoken command to convert the Public Command Key file (PEM format) into a text file (command_pubkey.txt).

commander `util keytotoken` command_pubkey.pem --outfile command_pubkey.txt

Writing EC tokens to command_pubkey.txt...

DONE

ó Open Security Settings of the selected device as described in Using S implicity Studio.

ô Click the WriteKey link next to Command Key: to open a dialog box.

õ The Write Command Key dialog box is displayed.

Copyright © 2025 Silicon Laboratories. All rights reserved. 56/280

Examples

ö Open the command_pubkey.txt file generated in step 1.

MFG_SIGNED_BOOTLOADER_KEY_X : B1BC6F6FA56640ED522B2EE0F5B3CF7E5D48F60BE8148F0DC08440F0A4E1DCA4

MFG_SIGNED_BOOTLOADER_KEY_Y : 7C04119ED6A1BE31B7707E5F9D001A659A051003E95E1B936F05C37EA793AD63

÷ Copy Public Command Key (X-point B1BC... first, then Y-point 7C04...) to Command Key: box.

ø Click [Write] to provision the Public Command Key.

ù Click [Enable] next to Enable Secure Debug Unlock: to enable the secure debug functionality.

Copyright © 2025 Silicon Laboratories. All rights reserved. 57/280

Examples

Click [Enable] next to Enable Debug Lock: to lock the device. This configures secure debug lock.

òñ Click [Disable] next to Disable Device Erase: to disable the device erase. The following Disable Device Erase Warning is

displayed. Click [Yes] to confirm.

Copyright © 2025 Silicon Laboratories. All rights reserved. 58/280

Examples

Note: This is an IRREVERSIBLE action, and should be the last step in production.

Secure Debug Unlock and Roll Challenge

SE Manager - Secure Debug Platform Example

Click the View Pro ject Documentation link to open the readme file.

Note: The secure debug platform example can only run on the HSE device.

ò Use a secure debug lock device with matched Public Command Key.

Copyright © 2025 Silicon Laboratories. All rights reserved. 59/280

Examples

. Get SE status... SL_STATUS_OK (cycles: 8496 time: 223 us)

 + The SE firmware version (MSB..LSB): 0001020E

 + Debug lock: Enabled

 + Device Erase: Disabled

 + Secure debug: Enabled

 + Secure boot: Disabled

 + Debug lock state: Locked

 + Non-secure, Invasive debug lock (DBGLOCK) configuration: Unlocked

 + Non-secure, Non-invasive debug lock (NIDLOCK) configuration: Unlocked

 + Secure, Invasive debug lock (SPIDLOCK) configuration: Locked

 + Secure, Non-invasive debug lock (SPNIDLOCK) configuration: Locked

 + Non-secure, Invasive debug lock (DBGLOCK) current state: Unlocked

 + Non-secure, Non-invasive debug lock (NIDLOCK) current state: Unlocked

 + Secure, Invasive debug lock (SPIDLOCK) current state: Locked

 + Secure, Non-invasive debug lock (SPNIDLOCK) current state: Locked. The device is in secure debug lock state.

 + Press ENTER to issue a secure debug unlock or press SPACE to exit.

ó Press ENTER to unlock the device with debug mode request 0x3e .

 + Creating a private certificate key in a buffer... SL_STATUS_OK (cycles: 202354 time: 5325 us)

 + Exporting a public certificate key from a private certificate key... SL_STATUS_OK (cycles: 199394 time: 5247 us)

 + Read the serial number of the SE and save it to access certificate... SL_STATUS_OK (cycles: 7084 time: 186 us)

 + Signing the access certificate with private command key... SL_STATUS_OK (cycles: 221849 time: 5838 us)

 + Request challenge from the SE and save it to challenge response... SL_STATUS_OK (cycles: 4418 time: 116 us)

 + Signing the challenge response with private certificate key... SL_STATUS_OK (cycles: 220833 time: 5811 us)

 + Creating an unlock token (DEBUG_MODE_REQUEST = 0�3e) to unlock the device... SL_STATUS_OK (cycles: 935778 time: 24625 us)

 + Get debug status to verify the device is unlocked... SL_STATUS_OK (cycles: 9017 time: 237 us)

 + Success to unlock the device!

. Get SE status... SL_STATUS_OK (cycles: 8683 time: 228 us)

 + The SE firmware version (MSB..LSB): 0001020D

 + Debug lock: Enabled

 + Device Erase: Enabled

 + Secure debug: Enabled

 + Secure boot: Disabled

 + Debug lock state: Unlocked

 + Non-secure, Invasive debug lock (DBGLOCK) configuration: Unlocked

 + Non-secure, Non-invasive debug lock (NIDLOCK) configuration: Unlocked

 + Secure, Invasive debug lock (SPIDLOCK) configuration: Locked

 + Secure, Non-invasive debug lock (SPNIDLOCK) configuration: Locked

 + Non-secure, Invasive debug lock (DBGLOCK) current state: Unlocked

 + Non-secure, Non-invasive debug lock (NIDLOCK) current state: Unlocked

 + Secure, Invasive debug lock (SPIDLOCK) current state: Unlocked

 + Secure, Non-invasive debug lock (SPNIDLOCK) current state: Unlocked. The device is in secure debug unlock state.

 + Issue a power-on or pin reset to re-enable the secure debug lock.

 + Press ENTER to roll the challenge to invalidate the current unlock token or press SPACE to exit.

ô Press ENTER to roll the challenge.

. Check and roll the challenge.

 + Request current challenge from the SE... SL_STATUS_OK (cycles: 4450 time: 117 us)

 + The current challenge (16 bytes):

 FA A7 AA 5E EF E6 18 23 E5 21 89 84 DB 7E 52 7D

 + Rolling the challenge... SL_STATUS_OK (cycles: 19757 time: 519 us)

 + Request rolled challenge from the SE... SL_STATUS_OK (cycles: 4628 time: 121 us)

 + The rolled challenge (16 bytes):

 5A 7A 81 CC 6E 46 C1 EF B4 A4 CA 7A DD A9 85 EB

 + Issue a power-on or pin reset to activate the rolled challenge.

. SE manager deinitialization... SL_STATUS_OK (cycles: 9 time: 0 us)

Simplicity Commander

The secure debug was designed with three organizations in mind:

Copyright © 2025 Silicon Laboratories. All rights reserved. 60/280

Examples

Direct Customer to whom S ilicon Labs sells the chip. This chip has the Public Command Key installed in the SE OTP.

That Direct Customer may be creating a white-labeled product for another company or a sub-component that goes into

another company ’s product. The Product Company is the customer of the direct customer.

The Debug 3rd Party could be anyone, internal or external, that the Product Company decides is qualified to debug the

device.

Because the Public Command Key is installed into the SE OTP of a large number of devices and cannot be changed, the

corresponding Private Command Key must be guarded by a very stringent process. If this Private Command Key is ever

leaked, all the devices programmed with the corresponding Public Command Key will be compromised.

A secure debug unlock user case is described in the following figure.

The secure debug unlock flow moving across the time axis from left to right is explained below:

Copyright © 2025 Silicon Laboratories. All rights reserved. 61/280

Examples

ò The Product Company creates a Private/Public Certificate Key pair for each device. Because the key pair is assigned only to

a single device, the company may not need to protect the Private Certificate Key as securely as the Private Command Key

by the Direct Customer.

In this example, the Private/Public Certificate Key pair (cert_key.pem and cert_pubkey.pem) is generated by running the util

genkey command.

commander util genkey --type ecc-p256 --privkey cert_key.pem --pubkey cert_pubkey.pem

Generating ECC P256 key pair...

Writing private key file in PEM format to cert_key.pem

Writing public key file in PEM format to cert_pubkey.pem

DONE

ó The Public Certificate Key (cert_pubkey.pem) for each device is passed to the S ilicon Labs Direct Customer. The part

number and serial number are also required if Direct Customer cannot access the device.

If necessary, run the security status command to get the device serial number.

commander security status --device EFR32MG21A010F1024 --serialno 440048205

SE Firmware version : 1.2.14

Serial number : 000000000000000014b457fffe045a32Debug lock : Enabled

Device erase : Disabled

Secure debug unlock : Enabled

Tamper status : OK

Secure boot : Disabled

Boot status : 0�20 - OK

DONE

ô The Direct Customer then places that Public Certificate Key in the access certificate. The access certificate is per device

because it contains the unique device serial number. This certificate is generated once upon creation of the device, and

thereafter, is generally only modified when the Private/Public Certificate Key pair is changed by the Product Company.

Run the security gencert command with the following parameters from the Product Company to generate an unsigned

access certificate (access_certificate .extsign) in Security Store:

Device part number

Device serial number

Public Certificate Key

commander security gencert --device EFR32MG21A010F1024 --deviceserialno 000000000000000014b457fffe045a32

--cert-pubkey cert_pubkey.pem --extsign

Authorization file written to Security Store:

C�/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe045a32/certificate_authori

Cert key written to Security Store:

C�/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe045a32/cert_pubkey.pem

Created an unsigned certificate in Security Store:

C�/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe045a32/access_certificate

DONE

Note:

The --extsign option to create an unsigned access certificate is only available in S implicity Commander Version 1.11.2 or

above.

The unsigned access certificate is generated with the default certificate authorization file (certificate_authorization.json)

which uses 0x0000003e for Authorizations and 0x00000000 (HSE-SVM device) for Tamper Authorizations (Table

Elements of the Access Certificate on page 12).

õ The signing of the access certificate can be done by passing an unsigned access certificate to a Hardware Security Module

(HSM) containing the Private Command Key.

In this example, the OpenSSL is used to sign the access certificate (access_certificate .extsign) in Security Store with the

Private Command Key (command_key.pem). The access certificate signature is in the cert_signature.binfile.

Copyright © 2025 Silicon Laboratories. All rights reserved. 62/280

Examples

Run the util signcert command with the following parameters to verify the signature and generate the signed access

certificate (access_certificate .bin):

Unsigned access certificate

Access certificate signature

Public Command Key

commander util signcert access_certificate.extsign --cert-type access --signature cert_signature.bin

--verify command_pubkey.pem --outfile access_certificate.bin

R = D97E43FEA278207080D6D0808B46810C1167F123AF1CA9FAF2DE0F4322B97ACE

S = FEDFEA11A3C83AFFCD5293283B13A50580862B9F651AAE08012C2BFB6BA8E697

Successfully verified signature

Successfully signed certificate

DONE

Notes:

Put the required files in the same folder to run the command.

The util signcert command for access certificate is only available in S implicity Commander Version 1.11.2 or above.

The access certificate signature can be in a Raw or Distinguished Encoding Rules (DER) format.

ö The access certificate is passed to the Product Company. The purpose of the access certificate is to grant overall debug

access capabilities to the Product Company and authorize them to allow third parties to debug the device. The Product

Company can now use the access certificate to generate the Debug Unlock Token. The same access certificate can be

used to generate as many Debug Unlock Tokens as necessary without having to ever go back to the Direct Customer.

÷ To create the Debug Unlock Token, a debug session must be started with the device and the challenge value (which is a

random number Challenge 1 in this example) should be read out to generate the challenge response.

Run the security gencommand command to generate the challenge response without debug access command signature and

store it in a file (command_unsign.bin).

commander security gencommand --action debug-unlock--unlock-param 1111 -o command_unsign.bin --nostore

--device EFR32MG21A010F1024 --serialno 440048205

Unsigned command file written to:

command_unsign.bin

DONE

Notes:

The data in the --unlock-param option are the bits 2 to 5 of debug mode request in the challenge response.

The default value 1111(reset all debug options) is in place if the security gencommand command does not include the --

unlock-param option.

ø The challenge response is then cryptographically hashed (SHA-256) to create a digest. The digest is then signed by the

Private Certificate Key to generate the debug access command signature.

The signing of the challenge response can be done by passing an unsigned challenge response to a Hardware Security

Module (HSM) containing the Private Certificate Key.

In this example, the OpenSSL is used to sign the challenge response (command_unsign.bin) with the Private Certificate Key

(cert_key.pem). The debug access command signature is in the command_signature.binfile.

openssl dgst -sha256 -binary -sign cert_key.pem -out command_signature.bincommand_unsign.bin

ù Run the security unlock command with the access certificate (access_certificate .bin) from Direct Customer and debug access

command signature (command_signature .bin) in step 7 to generate the Debug Unlock Token.

commander security unlock --cert access_certificate.bin --command-signature command_signature.bin--unlock-param 1111 --device

EFR32MG21A010F1024 --serialno 440048205

Copyright © 2025 Silicon Laboratories. All rights reserved. 63/280

Examples

Certificate written to Security Store:

C�/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe045a32/access_certificate

R = 67B51151F1E5F1BB9A49EC8D5885B221BD3D331D53741EEF54F81F0F3CB40455

S = 066C6AB5EDE3AE784DB1F75F44C5CA931736116D5A2104DBF44BC77ED8F49282

Command signature is valid

Secure debug successfully unlocked

Command unlock payload was stored in Security Store

DONE

Notes:

Put the required files in the same folder to run the command.

The debug access command signature can be in a Raw or Distinguished Encoding Rules (DER) format.

It requires S implicity Commander Version 1.11.2 or above to support signature in DER format.

The data in the --unlock-param option are the bits 2 to 5 of debug mode request in the Debug Unlock Token. This value

MUST be equal to the value of --unlock-param option in step 6.

The default value 1111 (reset all debug options) is in place if the security unlock command does not include the --

unlock-param option.

ú (Alternative) The key protection is not required if the Private Certificate Key is ephemeral. Steps 6 to 8 can be implemented

by running the security unlock command with the access certificate (access_certificate .bin)from the Direct Customer and

Private Certificate Key (cert_key.pem) to generate the Debug Unlock Token.

commander security unlock --cert access_certificate.bin --cert-privkey cert_key.pem--unlock-param 1111

--device EFR32MG21A010F1024 --serialno 440048205

Certificate written to Security Store:

C�/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe045a32/access_certificate

Cert key written to Security Store:

C�/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe045a32/cert_pubkey.pem

Created unsigned unlock command

Signed unlock command using

C�/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe045a32/cert_key.pem

Secure debug successfully unlocked

Command unlock payload was stored in Security Store

DONE

Notes:

The data in the --unlock-param option are the bits 2 to 5 of debug mode request in the Debug Unlock Token.

The default value 1111 (reset all debug options) is in place if the security unlock command does not include the --

unlock-param option.

òñ The Debug Unlock Token (aka Command unlock payload) file (unlock_payload_0000000000111110.bin , where 0000000000111110

is the value of debug mode request) is stored in the Security Store. The location in Windows is C:\Users\<PC user

name>\AppData\Local\SiliconLabs\commander\SecurityStore\device_\<Serial number>\challenge_\<Challenge value> .

Users can also use the security getpathcommand to get the path of the Security Store or a specified device.

commander security getpath

C�/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore

DONE

commander security getpath --deviceserialno 000000000000000014b457fffe045a32

Copyright © 2025 Silicon Laboratories. All rights reserved. 64/280

Examples

C�/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe045a32

DONE

òò The Debug Unlock Token and the device are now delivered to the Debug 3rd Party.

Run the security gencommand command to create the Security Store to place the Debug Unlock Token file.

commander security gencommand --action debug-unlock --device EFR32MG21A010F1024 --serialno 440048205

Unsigned command file written to Security Store:

C�/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe045a32/challenge_8b9255

DONE

Copy the Debug Unlock Token file (unlock_payload_0000000000111110.bin) from Product Company to the Windows Security

Store challenge_\<Challenge value> folder located in C:\Users\<PC user

name>\AppData\Local\SiliconLabs\commander\SecurityStore\device_\<Serial number>\challenge_\<Challenge value> .

òó The device compares the Debug Unlock Token contents with its internal serial number, challenge value, and Public Command

Key to determine the token’s authenticity. If authentic, it will execute the debug access command to unlock the device;

otherwise, it will ignore the command.

Run the security unlock command to unlock the device.

commander security unlock --unlock-param 1111 --device EFR32MG21A010F1024 --serialno 440048205

Unlocking with unlock payload:

C�/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe045a32/challenge_8b9255

 debug successfully unlocked

DONE

Notes:

If the security store has multiple tokens for the selected device, use --unlock-param option to specify which unlock

token is chosen to unlock the device.

S implicity Commander will only use the token with value 1111 (error if not available) from the security store to unlock

the device if the security unlock command does not include the --unlock-param option.

òô For S implicity Commander ≥ v1.13.3, run the security status --trustzone command to check the full debug lock status of the

device.

commander security status --trustzone --device EFR32MG21A010F1024 --serialno 440048205

SE Firmware version : 1.2.14

Serial number : 000000000000000014b457fffe045a32

Debug lock : Enabled

Device erase : Disabled

Secure debug unlock : Enabled

Debug lock state: Unlocked

Non-secure, invasive debug lock (DBGLOCK) : Unlocked

Non-secure, non-invasive debug lock (NIDLOCK) : Unlocked

Secure, invasive debug lock (SPIDLOCK) : Locked

Secure, non-invasive debug lock (SPNIDLOCK): Locked

Non-secure, invasive debug lock state (DBGLOCK) : Unlocked

Non-secure, non-invasive debug lock state (NIDLOCK) : Unlocked

Secure, invasive debug lock state (SPIDLOCK) : Unlocked

Secure, non-invasive debug lock state (SPNIDLOCK): Unlocked

Tamper status : OK

Secure boot : Disabled

Boot status : 0�20 - OK

DONE

òõ The Debug 3rd Party can now use this same Debug Unlock Token to unlock the device (step 12), over and over again after

each power-on or pin reset, until they have finished debugging the device.

òö Once the Debug 3rd Party has finished debugging, they will send the device back to the Product Company.

Copyright © 2025 Silicon Laboratories. All rights reserved. 65/280

Examples

will effectively invalidate any Debug Unlock Token that has been previously given to any third party.

Run the security ro llchallenge command and reset the device to invalidate the current Debug Unlock Token. The challenge

cannot be rolled before it has been used at least once — that is, by running the security unlock or security disabletamper

command.

commander security rollchallenge --device EFR32MG21A010F1024 --serialno 440048205

Challenge was rolled successfully.

DONE

The unlock token is invalidated after rolling the challenge because any previously issued Debug Unlock Token now contains

a different challenge value (Challenge 1) than the challenge value currently in the device (Challenge 2).

The validation process of any previously issued Debug Unlock Token will always fail until a new Debug Unlock Token is

issued with a current matching challenge value (Challenge 2).

Note: Direct Customer can directly use the Private Command Key on the connected chip to generate the

Debug Unlock Token in Security Store. But it has a high risk (cannot use HSM) to leak the Private

Command Key to a 3rd party when using this approach.

commander security unlock --command-key command_key.pem--unlock-param 1111 --device EFR32MG21A010F1024

--serialno 440048205

Authorization file written to Security Store:

C�/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe045a32/certificate_authori

Generating ECC P256 key pair...

Cert public key stored at:

C�/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe045a32/cert_pubkey.pem

Cert private key stored at:

C�/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe045a32/cert_key.pem

Command public key stored at:

C�/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe045a32/command_pubkey

Command private key stored at:

C�/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe045a32/command_key.pem

Certificate was signed with key:

C�/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe045a32/command_key.pem

Certificate written to Security Store:

C�/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe045a32/access_certificate

Created unsigned unlock command

Signed unlock command using

C�/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe045a32/cert_key.pem

Secure debug successfully unlocked

Command unlock payload was stored in Security Store

DONE

Simplicity Studio

Use the Debug Unlock Token file (unlock_payload_0000000000111110.bin) generated in Using S implicity Commander steps 8

or 9 to unlock the device with S implicity Studio.

ò Open the unlock_payload_0000000000111110.bin file with the Hex Editor Neo.

Copyright © 2025 Silicon Laboratories. All rights reserved. 66/280

Examples

ó Click View to open the context menu, and then select Group By → Double words to convert the token into a little-endian

format.

ô Select all (Ctrl+A) and copy (Ctrl+C) the Debug Unlock Token to a text editor.

õ Use the text editor to remove all the spaces from the token.

fd0100010000003ee5ecce010000003e000000000000000000000000ff6f0d00...

ö Right-click the selected debug adapter RB (ID:J-Link serial number) to display the context menu.

Copyright © 2025 Silicon Laboratories. All rights reserved. 67/280

Examples

÷ Click Set Unlock Token to open the Add Debug Unlock Token dialog box. Enter the name (e.g., AN1190 Token) for this

Debug Unlock Token, and copy the content in step 4 to the Debug Unlock Token: box. Click [OK] to confirm and exit.

Note: The S implicity Studio can only keep one Debug Unlock Token on each WSTK.

ø Open Security Settings of the selected device as described in Using S implicity Studio.

ù The token added in step 6 should display on the Crypto Profile: field. If not, click the link next to Crypto Profile: to select the

token from the Crypto Profile Manager drop-down list. The S implicity Studio will automatically add the WSTK J-Link serial

number (-J-Link Silicon Labs (serial number)) to the token's name.

Copyright © 2025 Silicon Laboratories. All rights reserved. 68/280

Examples

ú Click [Unlock Debug Port] to use the token in Crypto Profile: to unlock the device (invalid token will display an error

message). The device stays in the unlock state until the next power-on or pin reset. Click [OK] to exit.

Copyright © 2025 Silicon Laboratories. All rights reserved. 69/280

Examples

òñ The S implicity IDE will automatically use the selected Debug Unlock Token in Crypto Profile for debugging and flashing. For

other IDE, the device should unlock again (step 9) after power-on or pin reset. After finished debugging, open the Security

Settings of the selected device as described in Using S implicity Studio.

òò Click [Roll Challenge] to generate a new challenge value to invalidate the Debug Unlock Token added in step 6. Click [OK]

to exit.

Copyright © 2025 Silicon Laboratories. All rights reserved. 70/280

Examples

òó Right-click the selected debug adapter RB Board (ID:J-Link serial number) to display the context menu.

Copyright © 2025 Silicon Laboratories. All rights reserved. 71/280

Examples

òô Click [Clear Unlock Token] to delete the WSTK Debug Unlock Token from S implicity Studio.

IAR

Use the Debug Unlock Token file (unlock_payload_0000000000111110.bin) in the Security Store (S implicity Commander step

11) to unlock the device with IAR (Windows).

ò The Windows environment variable PATH should include the folder

(C:\SiliconLabs\SimplicityStudio\v5\developer\adapter_packs\commander) that locates the commander.exe of S implicity

Commander.

ó Right-click the project in the workspace, and then click Options....

Copyright © 2025 Silicon Laboratories. All rights reserved. 72/280

Examples

ô Click Build Actions to open the Build Actions Configuration dialog box. Enter the phrase below to the Post-build command

line: box. Click [OK] to exit.

cmd /c "commander security unlock--unlock-param 1111 EFR32MG21A010F1024 --serialno 440048205 > $PROJ_DIR$\log.txt 2�&1"

õ After building the project, the security unlock in the Post-build command unlocks the device using the Debug Unlock Token

in Security Store. The device stays in the unlock state until the next power-on or pin reset.

Note: If the project is already up-to-date, it will not invoke the Post-build command to unlock the device.

Use a dummy edit (add space or newline) on one of the source files in the project to trigger the build

Copyright © 2025 Silicon Laboratories. All rights reserved. 73/280

Examples

action.

ö The > $PROJ_DIR$\log.txt 2>&1 redirects the security unlock command output to the log.txt file in the IAR project folder.

Permanent Debug Lock

Simplicity Commander

ò Run the security status command to get the selected device configuration.

commander security status --device EFR32MG21A010F1024 --serialno 440048205

SE Firmware version : 1.2.14

Serial number : 000000000000000014b457fffe045a32

Debug lock : Disabled

Device erase : Enabled

Secure debug unlock : Disabled

Tamper status : OK

Secure boot : Disabled

Boot status : 0�20 - OK

DONE

ó Run the security lock command to lock the selected device.

commander security lock --device EFR32MG21A010F1024 --serialno 440048205

WARNING� Secure debug unlock is disabled. Only way to regain debug access is to run a device erase.

Device is now locked.

DONE

ô Run the security disabledeviceerase command to disable device erase.

commander security disabledeviceerase --device EFR32MG21A010F1024 --serialno 440048205

==

THIS IS A ONE�TIME command which Permanently disables device erase.

If secure debug lock has not been set, there is no way to regain debug access to this device.

Type 'continue' and hit enter to proceed or Ctrl-C to abort:

==

continue

Disabled device erase successfully

DONE

Copyright © 2025 Silicon Laboratories. All rights reserved. 74/280

Examples

Note: This is an IRREVERSIBLE action, and should be the last step in production.

õ Run the security status command again to check the device configuration.

commander security status --device EFR32MG21A010F1024 --serialno 440048205

SE Firmware version : 1.2.14

Serial number : 000000000000000014b457fffe045a32

Debug lock : Enabled

Device erase : Disabled

Secure debug unlock : Disabled

Tamper status : OK

Secure boot : Disabled

Boot status : 0�20 - OK

DONE

Simplicity Studio

ò Open Security Settings of the selected device as described in Using S implicity Studio.

ó Click [Enable] next to Enable Debug Lock: to lock the device. The following Enable Debug Lock Warning is displayed. Click

[Yes] to confirm. This configures standard debug lock.

Copyright © 2025 Silicon Laboratories. All rights reserved. 75/280

Examples

ô Click [Disable] next to Disable Device Erase: to disable the device erase. The following Disable Device Erase Warning is

displayed. Click [Yes] to confirm. This configures a permanent debug lock.

Note: This is an IRREVERSIBLE action, and should be the last step in production.

Copyright © 2025 Silicon Laboratories. All rights reserved. 76/280

Precautions

Precautions

Precautions

Device Erase for Secure Debug

Disable the Device Erase is mandatory for secure debug as described in the following table.

Secure Debug Device Erase Debug Lock State Description

Enabled Enabled Enabled Insecure debug lock

(1)

The device will return to the default

debug lock properties after applying the

standard debug unlock. (2)

Enabled Disabled (3) Enabled Secure debug lock The device cannot be unlocked using the

Erase Device command. The device will

change to the permanent debug lock

state if disabling the Secure Debug

property. (4)

Notes:

ò This state is only for secure debug testing.

ó See Standard Debug Unlock.

ô This is an IRREVERSIBLE action and should be disabled AFTER the secure debug is enabled.

õ See Permanent Debug Lock.

commander security lockconfig --secure-debug-unlock disable --device EFR32MG21A010F1024

--serialno 440048205

==

WARNING� Device erase is disabled and secure debug access is locked.

If disabling secured debug access, there is no way to regain debug access to this device if continuing with this command.

Type 'continue' and hit enter to proceed or Ctrl-C to abort:

==

continue

Secure debug unlock was disabled

DONE

Secure Boot and Debug Lock

The following table describes the different debug lock scenarios on the secure boot-enabled device.

Secure Debug Device Erase Debug Lock State Recover from Secure Boot Failure

Disabled Enabled Disabled Standard debug

unlock

Flash a correctly signed image.

Disabled Enabled Enabled Standard debug lock Flash a correctly signed image after

standard debug unlocking the device.

Disabled Disabled Enabled Permanent debug lock There is no way to recover the device.

Make sure the programmed image is

correctly signed before locking the

device.

Enabled Disabled Enabled Secure debug lock Flash a correctly signed image after

secure debug unlocking the device.

Copyright © 2025 Silicon Laboratories. All rights reserved. 77/280

Precautions

Note: See section Recover Devices when Secure Boot Fails in Series 2 Secure Boot with RTSL to flash a

correctly signed image on different debug lock scenarios.

Copyright © 2025 Silicon Laboratories. All rights reserved. 78/280

https://docs.silabs.com/mcu-bootloader/latest/series2-secure-boot-with-rtsl/

Failure Analysis

Failure Analysis

Failure Analysis
The following table describes the different scenarios when returning a Series 2 device to S ilicon Labs for failure analysis.

State Secure Boot Disabled Secure Boot Enabled �2�

Standard debug unlock Device erase is not necessary for failure

analysis.

Device erase is not necessary, but a correctly

signed image is required to perform failure

analysis.

Standard debug lock Device erase is required to perform

failure analysis.

Require device erase and correctly signed

image to perform failure analysis.

Permanent debug lock Cannot perform failure analysis. Cannot perform failure analysis.

Secure debug lock (1) Require debug unlock token to perform

failure analysis.

Require debug unlock token and correctly

signed image to perform failure analysis.

Notes:

ò Follow the procedures in S implicity Commander to generate a valid debug unlock token for each device returned to S ilicon

Labs for failure analysis.

ó Secure boot enabled devices, especially with secure boot failure, may limit S ilicon Labs' ability to determine the root cause

of failure.

Copyright © 2025 Silicon Laboratories. All rights reserved. 79/280

Series 2 TrustZone

Series 2 TrustZone

Series 2 TrustZone
NOTE: This section replaces AN1374: TrustZone. Further updates to this user guide will be provided here.

ARMv8-M TrustZone is a technology that provides a foundation for improved system security in embedded applications. It

allows the ARMv8-M to be aware of the security states of the system. Series 2 devices use the Cortex-M33 core to

implement the ARMv8-M TrustZone security extension, which provides the ability to restrict access to peripherals and

memory regions based on the processor security attribute. TrustZone works with the MPU, which controls

privileged/unprivileged execution of code to provide a complete security solution.

ARMv8-M TrustZone is an extensive topic. The references below are publicly available on the ARM Developer

Documentation website.

ARMv8-M Architecture Reference Manual

ARMv8-M Architecture Technical Overview

ARM Cortex-M33 Processor Technical Reference Manual

System Design with ARMv8-M

TrustZone technology for ARMv8-M Architecture

ARM Cortex-M33 Devices Generic User Guide

Secure software guidelines for ARMv8-M

Software Development in ARMv8-M ArchitectureReading guides:

Beginner

Minimal experience with TrustZone, starting with TrustZone Basics

Intermediate - Have a basic understanding of the TrustZone technology, starting with Bus Level Security

Advanced - Developed experience on TrustZone, starting with TrustZone Implementation-Demo - Starting with TrustZone

Platform Examples

Key Points

TrustZone Basics

Bus Level Security (BLS)

Secure and Privileged Programming Model

TrustZone Implementation

Upgrade Existing Application to TrustZone

TrustZone Platform Examples

Copyright © 2025 Silicon Laboratories. All rights reserved. 80/280

https://developer.arm.com/docs
https://developer.arm.com/documentation/ddi0553/latest
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-00-66-90/Whitepaper-_2D00_-ARMv8_2D00_M-Architecture-Technical-Overview.pdf
https://developer.arm.com/documentation/100230/latest
https://developer.arm.com/documentation/100767/0100/System-Design-for-ARMv8-M
https://developer.arm.com/documentation/100690/latest/
https://developer.arm.com/documentation/100235/latest
https://developer.arm.com/documentation/100720/0300
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-01-27-19/ARM-Cortex-_2D00_-session-11-_2D00_-Yiu-_2D00_-Software-Development-in-ARMv8_2D00_M-Architecture.pdf

Series 2 Device Security Features

Series 2 Device Security Features

Series 2 Device Security Features
Protecting IoT devices against security threats is central to a quality product. S ilicon Labs offers several security options to

help developers build secure devices, secure application software, and secure communication paths to manage those

devices. S ilicon Labs’ security offerings were significantly enhanced by the introduction of the Series 2 products that

included a Secure Engine. The Secure Engine is a tamper-resistant component used to securely store sensitive data and

keys, and to execute cryptographic functions and secure services.

On Series 2 devices, the security features are implemented by the Secure Engine and CRYPTOACC (if available). The

Secure Engine may be hardware-based or virtual (software-based). Throughout this document, the following abbreviations

are used:

HSE - Hardware Secure Engine

VSE - Virtual Secure Engine

SE - Secure Engine (either HSE or VSE)

Additional security features are provided by Secure Vault. Three levels of Secure Vault feature support are available,

depending on the part and SE implementation, as reflected in the following table:

Level (1) SE Support Part

Secure Vault High (SVH) HSE only (HSE-SVH) Refer to IoT Endpoint Security Fundamentals

for details on supporting devices.

Secure Vault Mid (SVM) HSE (HSE-SVM) "

Secure Vault Mid (SVM) VSE (VSE-SVM) "

Secure Vault Base (SVB) N/A "

Note: 1. The features of different Secure Vault levels can be found in https://www.silabs.com/security.

Secure Vault Mid consists of two core security functions:

Secure Boot: Process where the initial boot phase is executed from an immutable memory (such as ROM) and where code is

authenticated before being authorized for execution.

Secure Debug Access Control: The ability to lock access to the debug ports for operational security, and to securely unlock

them when access is required by an authorized entity.

Secure Vault High offers additional security options:

Secure Key Storage: Protects cryptographic keys by "wrapping" or encrypting the keys using a root key known only to the

HSE-SVH.

Anti-Tamper protection: A configurable module to protect the device against tamper attacks.

Device authentication: Functionality that uses a secure device identity certificate along with digital signatures to verify the

source or target of device communications.

Series 2 devices require a specific SE firmware version to support the TrustZone implementation. Refer to AN1222:

Production Programming of Series 2 Devices to learn how to upgrade the SE firmware and IoT Endpoint Security

Fundamentals for the latest SE Firmware shipped with Series 2 devices and modules.

Series 2 devices use Cortex-M33 core to implement the ARMv8-M Mainline TrustZone security extension and refer to

TrustZone as Bus Level Security. The following table lists the configuration of TrustZone related components in the Series

2 Cortex-M33 core.

Copyright © 2025 Silicon Laboratories. All rights reserved. 81/280

https://docs.silabs.com/iot-security/latest/iot-endpoint-security-fundamentals/
https://www.silabs.com/security
https://www.silabs.com/documents/public/application-notes/an1222-efr32xg2x-production-programming.pdf
https://docs.silabs.com/iot-security/latest/iot-endpoint-security-fundamentals/

Series 2 Device Security Features

Component Series 2 Configuration Description

Security Extension (TrustZone) Enabled The security extension cannot be disabled,

and the entire memory after RESET is Secure

by default.

Memory Protection Unit (MPU) 16 regions (maximum) The MPU regions for both Secure and Non-

secure MPUs.

Security Attribution Unit (SAU) 8 regions (maximum) The SAU regions for Non-secure and Non-

secure Callable.

Copyright © 2025 Silicon Laboratories. All rights reserved. 82/280

TrustZone Basics

TrustZone Basics

TrustZone Basics

Introduction

TrustZone for ARMv8-M adds extra states to the Cortex-M processor operations to ensure there is a Secure and Non-

secure state. These security states are orthogonal to the existing Thread and Handler modes, thereby having both a

Thread and Handler mode in both Secure and Non-secure states. The Thread mode can also be either Privileged or

Unprivileged.

Copyright © 1995-2022 Arm Limited (or its affiliates). All rights reserved.

TrustZone for ARMv8-M is an optional architecture extension. By default, the system starts up in a Secure state if the

processor implements the TrustZone security extension. The division of Secure and Non-secure worlds is memory-map

based (security state depends on the address of the fetched instruction), and the transitions happen automatically. It is also

possible to leave the Non-secure state unused and execute the whole application in the Secure state.

Memory Security Attributes

TrustZone classifies memory into four security attributes as described in the following table.

Security Attribute Processor State Description

Non-secure (NS) Non-secure Non-secure and Secure software can access these memory

regions.

Secure (S) Secure Secure software can access these memory regions. Non-secure

software cannot gain access to the Secure memory.

Non-secure Callable (NSC) Secure Secure memory with an NSC attribute provides entry points for

Secure APIs that can be called from a Non-secure space. It is a

region of memory that contains the Secure Gateway (SG)

veneers that allow Non-secure code to call secure functions that

exist in Secure code. Non-secure software cannot read/write to

an NSC memory but can branch into it if the branch target is an

SG instruction.

Copyright © 2025 Silicon Laboratories. All rights reserved. 83/280

TrustZone Basics

Security Attribute Processor State Description

Exempted Secure/Non-secure Non-secure and Secure software can access these memory

regions (exempted from security checking). Exempted regions are

typically used by debugging components that do not pose any

security risk (e.g., system ROM table) when accessed by the

Non-secure software.

Note: The Non-secure Callable is also known as Secure Non-secure Callable (Secure NSC) to declare that this

region resides in Secure memory.

Banked Register

The concept of a banked register in ARMv8-M between Secure and Non-secure states means that there are two copies of

the register, and the core automatically uses the copy that belongs to the current security state. When a register is banked,

the _S and _NS suffixes are used in the ARMv8-M architecture to identify whether the resource is for the Secure state or

Non-secure state.

General-Purpose Registers

The Cortex-M processors have 16 general-purpose registers (R0 - R15) for data processing (R0 - R12) and control. The

following figure shows the general-purpose register view of the ARMv8-M system with TrustZone. Refer to the ARM

Cortex-M33 Devices Generic User Guide for details about these registers.

Copyright © 1995-2022 Arm Limited (or its affiliates). All rights reserved.

The Secure or Non-secure state can access the data processing registers R0 - R12 and special usage registers R13 - R15.

The register R13 (banked SP) is the stack pointer alias, and the actual stack pointer (MSP_NS , PSP_NS , MSP_S , PSP_S)

accessed depends on the state (Secure or Non-secure) and mode (Handler or Thread) as described in the following figure.

In addition, stack limit registers (special registers) enable hardware to detect stack overflow conditions. Two pairs of stack

limit registers (MSPLIM_NS and PSPLIM_NS , MSPLIM_S and PSPLIM_S) are implemented, one per security state, to protect

the Main Stack Pointer (MSP) and Process Stack Pointer (PSP).

Copyright © 2025 Silicon Laboratories. All rights reserved. 84/280

https://developer.arm.com/documentation/100235/0100/The-Cortex-M33-Processor/Programmer-s-model/Core-registers

TrustZone Basics

Copyright © 1995-2022 Arm Limited (or its affiliates). All rights reserved.

In Thread mode, execution can be privileged or unprivileged. The stack pointer used can be the MSP or PSP, depending on

the SPSEL bit in the CONTROL register. When in Handler mode, the processor is Privileged. The stack pointer is always

MSP.

It is possible to directly access the stack pointers (MSP and PSP) and stack limit registers (MSPLIM and PSPLIM), providing

that the processor is in a privileged state. If the processor is in a Secure privileged state, the software can also access the

Non-secure stack pointers (MSP_NS and PSP_NS) through Core Register Access Functions in CMSIS-Core.

Special-Purpose Registers

Except for the general-purpose registers, there are several special-purpose registers for conditional flags, interrupt masking,

control, and stack pointer limit. The following figure shows the special-purpose registers view of the ARMv8-M system with

TrustZone. Refer to the ARM Cortex-M33 Devices Generic User Guide for details about these registers.

Copyright © 2025 Silicon Laboratories. All rights reserved. 85/280

https://arm-software.github.io/CMSIS_5/Core/html/group__Core__Register__gr.html
https://arm-software.github.io/CMSIS_5/Core/html/group__coreregister__trustzone__functions.html
https://developer.arm.com/documentation/100235/0100/The-Cortex-M33-Processor/Programmer-s-model/Core-registers

TrustZone Basics

Image:https://documentation-service.arm.com/.Copyright © 1995-2022 Arm Limited (or its affiliates). All rights reserved.

The Combined Program Status Register (xPSR) consists of the Application Program Status Register (APSR), Interrupt

Program Status Register (IPSR), and Execution Program Status Register (EPSR).

Some of the special-purpose registers are banked between Secure and Non-secure states. Special-purpose registers are

not memory-mapped and can be accessed using Core Register Access Functions in CMSIS-Core (except for EPSR in xPSR).

Secure privileged software can also access the Non-secure interrupt masking registers (PRIMASK_NS , FAULTMASK_NS , and

BASEPRI_NS), CONTROL register (CONTROL_NS), and stack limit registers (MSPLIM_NS and PSPLIM_NS) through Core

Register Access Functions in CMSIS-Core.

System Private Peripheral Bus �PPB�

The banking of registers is usually used to separate the Secure and Non-secure information of the system components

inside the processor. The following figure shows the System Private Peripheral Bus (PPB) registers view of the ARMv8-M

system with TrustZone. Refer to the ARM Cortex-M33 Devices Generic User Guide for details about the System PPB

registers.

System components for debugging and trace operations (0xE0000000 to 0xE0002FFF):

Instrumentation Trace Macrocell (ITM)

Data Watch point and Trace unit (DWT)

Flash Patch and Breakpoint unit (FPB)

System Control Space (SCS):

The registers in SCS address spaces are memory-mapped and can be accessed using pointers in software

Secure SCS (0xE000E000 to 0xE000EFFF) - Secure software using this address space to access the banked Secure SCS

registers (e.g., SCB->CPUID)

Non-secure SCS (0xE000E000 to 0xE000EFFF) - Non-secure software using this address space to access the banked Non-

secure SCS registers (e.g., SCB->CPUID)

Non-secure alias SCS (0xE002E000 to 0xE002EFFF) - Secure software using this address space to access the Non-secure

SCS registers (e.g., SCB_NS->CPUID)

Copyright © 2025 Silicon Laboratories. All rights reserved. 86/280

https://documentation-service.arm.com/static/5e7cd7b67158f500bd5c4eea?token=
https://arm-software.github.io/CMSIS_5/Core/html/group__Core__Register__gr.html
https://arm-software.github.io/CMSIS_5/Core/html/group__coreregister__trustzone__functions.html
https://developer.arm.com/documentation/100235/0100/The-Cortex-M33-Peripherals/About-the-Cortex-M33-peripherals

TrustZone Basics

The following table describes some core peripherals in the SCS and corresponding data structures defined in the CMSIS-

Core header file to access the registers of core peripherals in two SCS address spaces.

Core Peripheral Data Structure for Secure and NS SCS Data Structure for NS Alias SCS

Implementation Control Block SCnSCB (0xE000E004) SCnSCB_NS (0xE002E004)

SysTick Timer SysTick (0xE000E010) SysTick_NS (0xE002E010)

Nested Vectored Interrupt

Controller

NVIC (0xE000E100) NVIC_NS (0xE002E100)

System Control Block SCB (0xE000ECFC) SCB_NS (0xE002ECFC)

Memory Protection Unit MPU (0xE000ED90) MPU_NS (0xE002ED90)

Security Attribution Unit SAU (0xE000EDD0) -

Debug Control Block CoreDebug (0xE000EDF0) CoreDebug_NS (0xE002EDF0)

Software Interrupt Generation STIR (0xE000EF00) STIR_NS (0xE002EF00)

Floating-Point Extension FPU (0xE000EF34) FPU_NS (0xE002EF34)

Notes:

The SCB is a group of system control registers for the various usages below.

System Control Register (SCR) to configure processor low power mode

Fault Status Register (xFSR) to provide fault status information

Vector Table Offset Register (VTOR) for vector table relocation

The SAU register is accessible from the Secure state only.

The STIR register is not physically banked.

Core peripherals such as SysTick, SCB, and MPU are duplicated. One instance is Secure and the other one is Non-secure.

Secure software can use the corresponding functions for ARMv8-M in CMSIS-Core to configure the Non-secure NVIC and

SysTick through the Non-secure alias SCS.

Debug or vendor specific components (0xE0040000 to 0xE00FFFFF):

Optional debug components (e.g., ETM)

External Private Peripheral Bus (EPPB) allows designers to add their own debug or vendor-specific components

System ROM Table is a simple lookup table that enables debug tools to extract the addresses of debug and trace

components

Secure Attribution Unit �SAU�, Implementation Defined Attribution Unit �IDAU�,
and Memory Protection Unit �MPU�

Two units determine the security attribute of an address:

ò The internal programmable Secure Attribution Unit (SAU).

ó The external Implementation Defined Attribution Unit (IDAU), through the IDAU interface, returns the security attribute and

region number of an address.

Copyright © 2025 Silicon Laboratories. All rights reserved. 87/280

https://arm-software.github.io/CMSIS_5/Core/html/annotated.html
https://arm-software.github.io/CMSIS_5/Core/html/group__nvic__trustzone__functions.html
https://arm-software.github.io/CMSIS_5/Core/html/group__systick__trustzone__functions.html
https://developer.arm.com/documentation/100690/0201/Attribution-units--SAU-and-IDAU-

TrustZone Basics

Three possible configurations to define the security attribute of an address:

ò Internal SAU only

ó External IDAU only

ô A combination of the internal SAU and external IDAU

Notes:

Series 2 devices use configuration 3.

IDAU in Series 2 devices is the External Secure Attribution Unit (ESAU).

The Memory Protection Unit (MPU) is a programmable unit that allows privileged software to define memory access

permission. If the TrustZone is enabled, there can be up to two MPUs, one for Secure and one for Non-secure.

The number of MPU regions for the Secure and the Non-secure MPU can be different.

The MPU registers are memory-mapped and are placed in the System Control Space (SCS).

Secure software can use the MPU Functions for ARMv8-M in CMSIS-Core to configure the Non-secure MPU through the

Non-secure alias SCS (0xE002ED90 - 0xE002EDC4).

Software Non-secure MPU Registers Secure MPU Registers MemManage Fault

Non-secure privileged 0xE000ED90 -

0xE000EDC4

- Non-secure MPU violation

Secure privileged 0xE002ED90 -

0xE002EDC4

0xE000ED90 -

0xE000EDC4

Secure MPU violation

Exceptions and Interrupts

Type of Exceptions

The following table describes the types of exceptions in the TrustZone implemented system.

Section Guidance Type Default State

1 (-) Reset Secure only Secure

2 (-14) NMI Configurable Secure

3 (-13) HardFault Configurable Secure

4 (-12) MemManage Fault Banked Banked

5 (-11) BusFault Configurable Secure

Copyright © 2025 Silicon Laboratories. All rights reserved. 88/280

https://developer.arm.com/documentation/100699/0100/
https://arm-software.github.io/CMSIS_5/Core/html/group__mpu8__functions.html

TrustZone Basics

Section Guidance Type Default State

6 (-10) UsageFault Banked Banked

7 (-9) SecureFault Secure only Secure

11 (-5) SVCall Banked Banked

12 (-4) DebugMonitor Configurable Secure

14 (-2) PendSV Banked Banked

15 (-1) SysTick Banked Banked

16 - 495 (0 - 479) IRQ0 - IRQ479 Configurable Secure

Notes:

"Secure only" means the system exceptions can only trigger in the Secure state.

"Configurable" means the system exceptions and interrupts can be configured to target either the Secure state or the Non-

secure state.

Banked means the system exceptions can have Secure and Non-secure versions. Both can be triggered and executed

independently and have different priority level settings.

Exception Priorities

It may cause a security issue if the Non-secure software uses high priority levels to mask the Secure interrupts. To avoid

this issue, TrustZone introduces a programmable bit in the AIRCR register called PRIS (Prioritize Secure exception) for

Secure software to prioritize, if needed, Secure exceptions and interrupts.

The AIRCR.PRIS is set to 0 out of reset, which means Secure and Non-secure exceptions/interrupts share the same

configurable programmable priority level space (columns 2 and 3 in the following table). When the AIRCR.PRIS is set to 1, all

Non-secure configurable exceptions/interrupts are placed in the lower half of the priority level space so that Secure

exceptions/interrupts can potentially have higher priorities (columns 2 and 4 in the following table).

Priority Value Secure Priority
Non-secure Priority �PRIS =
0�

Non-secure Priority �PRIS =
1�

0 0 0 (0x00) 128 (0x80)

1 32 32 (0x20) 144 (0x90)

2 64 64 (0x40) 160 (0xA0)

3 96 96 (0x60) 176 (0xB0)

4 128 128 (0x80) 192 (0xC0)

5 160 160 (0xA0) 208 (0xD0)

6 192 192 (0xC0) 224 (0xE0)

7 224 224 (0xE0) 240 (0xF0)

Note: This table uses three bits (Bit [7:5]) of the group priority level (AIRCR.PRIGROUP) to limit the maximum

number of preemption levels to 8. A lower priority value indicates a higher priority.

Vector Tables

The following figure shows two vector tables for Secure and Non-secure exceptions and interrupts. The vector table offset

is defined by a Vector Table Offset Register (VTOR at 0xE000ED08), which can only be programmed in the privileged state.

Copyright © 2025 Silicon Laboratories. All rights reserved. 89/280

TrustZone Basics

Image: Vector Table.Copyright © 1995-2022 Arm Limited (or its affiliates). All rights reserved.

Notes:

The VTOR_S defines the address of the Secure vector table in Secure memory, and the Secure Main Stack Pointer

(MSP_S) is the default stack for the Secure exception handler.

The VTOR_NS defines the address of the Non-secure vector table in Non-secure memory, and the Non-secure Main Stack

Pointer (MSP_NS) is the default stack for the Non-secure exception handler.

Secure privileged software can access the VTOR_NS using the Non-secure SCB alias (0xE002ED08).

The System Control Space contains registers for the SysTick timer, NVIC, and SCB.

The interrupt masking registers (PRIMASK, FAULTMASK, and BASEPRI) are banked between security states. The priority

level space is shared between the Secure and the Non-secure world, setting an interrupt mask register on one side can

block some, or all, of the exceptions on the other side.

Interrupts (IRQ0 - IRQ479) are defined as Secure by default. Each interrupt can be configured as Secure or Non-secure and

is determined by the Interrupt Target Non-secure (NVIC_ITNS) register, which is only programmable in the Secure software.

State Transitions in Exceptions and Interrupts

The following figure shows transitions between the processor states in ARMv8-M TrustZone.

Image (left): Switching-between-Secure-and-Non-secure-states.Copyright © 1995-2022 Arm Limited (or its affiliates). All
rights reserved.

ò Secure Thread → Secure Handler or Non-secure Thread to Non-secure Handler

No security state transition.

The exception sequence is almost identical to the exception stacking mechanism of current Cortex-M processors.

Copyright © 2025 Silicon Laboratories. All rights reserved. 90/280

https://developer.arm.com/documentation/100235/0100/The-Cortex-M33-Processor/Exception-model/Vector-table
https://developer.arm.com/documentation/100690/0201/Switching-between-Secure-and-Non-secure-states

TrustZone Basics

The Interrupt Service Routine (ISR) is executed in the current security state (either Secure or Non-secure).

ó Non-secure Thread → Secure Handler or Non-secure Handler → Secure Handler

The transition from Non-secure to Secure state.

The exception sequence is almost identical to the exception stacking mechanism of current Cortex-M processors.

The ISR is executed in a Secure state.

ô Secure Thread → Non-secure Handler or Secure Handler → Non-secure Handler

The transition from Secure to Non-secure state.

To avoid an information leak when transitioning from the Secure to Non-secure state. The processor automatically

pushes all general-purpose registers into the Secure stack and erases the contents of all general-purpose registers

before executing the Non-secure ISR. The processor pops the contents of all general-purpose registers from the

Secure stack when returning from the Non-secure ISR (right side in Figure 2.6 State Transitions on page 12). It incurs a

slightly longer interrupt latency.

The ISR is executed in a Non-secure state.

õ Secure Privileged Thread ↔ Non-secure Privileged Thread or Secure Unprivileged Thread ↔ Non-secure Unprivileged

Thread

The transition from Secure to Non-secure state or Non-secure to Secure state.

The Function calls and returns can be used when the privileged level remains the same.

Note: Subject to interrupt priority, there are no restrictions regarding whether a Non-secure or Secure interrupt

can occur when the processor runs Non-secure or Secure code.

Switching Between Secure and Non-secure States

The TrustZone allows direct calling between Secure and Non-secure software. The following figure shows how to use an

API function call to trigger security state transitions. The state transitions can also happen because of exceptions and

interrupts.

Image: Switching-between-Secure-and-Non-secure-states.Copyright © 1995-2022 Arm Limited (or its affiliates). All rights
reserved.

Switching from Non-secure to Secure State

When the Non-secure program calls a Secure software, the first instruction must be a Secure Gateway (SG) instruction

residing in Non-secure Callable memory. The Secure Gateway entry points (veneers) decouple the address of the SG

instructions in the Non-secure Callable memory region from the rest of the Secure code. It can eliminate the risk of having

inadvertent entry points when the Secure software contains a pattern that matches the opcode of the SG instruction.

Copyright © 2025 Silicon Laboratories. All rights reserved. 91/280

https://developer.arm.com/documentation/100690/0201/Switching-between-Secure-and-Non-secure-states

TrustZone Basics

Image (right): Whitepaper - ARMv8-M Architecture Technical Overview. Copyright © 1995-2022 Arm Limited (or its
affiliates). All rights reserved.

The bit 0 of the Link Register (LR) is cleared to zero by SG instruction to indicate that returning from this function transits

from Secure to Non-secure. The processor is still in the Non-secure state when the SG instruction is executed. The BXNS

LR instruction is used when returning since a normal BX LR instruction interprets it as an unsupported execution mode

change. A SecureFault exception is triggered if the processor returns to a Secure address. It prevents a hacker from calling

a Secure API with a fake return address pointing to a Secure program location. If bit 0 of LR is 1, the BXNS LR instruction

behaves like a normal BX LR . Therefore, Secure code can call a Secure API in the NSC region even it is not a usual

practice.

Program Call Instruction SG Instruction Return Instruction

Non-secure call Non-secure BL or BLX - BX LR (Return to Non-

secure state)

Non-secure call Secure BL or BLX Clear bit 0 of LR BXNS LR (Return to Non-

secure state)

Secure call Secure BL or BLX Set bit 0 of LR BXNS LR (Return to Secure

state)

To help software developers create Secure APIs in C/C++, the Cortex-M Security Extension (CMSE) defines a C function

attribute called cmse_nonsecure_entry .

GCC — __attribute__((cmse_nonsecure_entry))

IAR — __cmse_nonsecure_entry

Test Target �TT� Instruction

The software can use an ARMv8-M instruction called Test Target (TT) and the region number generated by the SAU or the

IDAU to determine if a contiguous range of memory shares common security attributes and privilege levels.

The TT instruction returns the SAU/IDAU region number, security attributes (S/NS), and MPU region number after passing

the start and end addresses of the memory range to the TT instruction. The software can determine whether the memory

range has required security attributes and resides in the same region number.

Copyright © 2025 Silicon Laboratories. All rights reserved. 92/280

https://developer.arm.com/documentation/ecm0359818/latest

TrustZone Basics

Image: Test-target-instruction.Copyright © 1995-2022 Arm Limited (or its affiliates). All rights reserved.

This mechanism allows security checking at the beginning of the API service (instead of during the operation) to determine

if the memory referenced by a pointer from Non-secure software points to the Non-secure address. It prevents Non-

secure software from using those APIs in Secure software to access or modify Secure data.

To make these operations easier in a C/C++ programming environment, the Cortex-M Security Extension (CMSE) has

defined a range of intrinsic functions for dealing with pointer checks with the TT instructions.

Switching from Secure to Non-secure State

When the Secure program calls a Non-secure software, the Secure program must use a BLXNS <reg> instruction to invoke

the process. If bit 0 of the <reg> is 0, the processor must switch to the Non-secure state when branching to the target

address. During the state transition, the return address and some processor state information are pushed onto the Secure

stack, while the return address on the Link Register (LR) is set to a special value called FNC_RETURN (0xFEFFFFFF).

The Non-secure function completes by performing a branch (BX LR) to the FNC_RETURN address (bit 0 is 1 to indicate the

function was called from the Secure state). It automatically triggers the unstacking of the actual return address from the

Secure stack and returns to the calling function. The FNC_RETURN hides the return address of the Secure program from the

Non-secure software to avoid the leakage of any secret information. It also prevents Non-secure software from modifying

the Secure return address stored in the Secure stack.

Image: Switching-between-Secure-and-Non-secure-states.Copyright © 1995-2022 Arm Limited (or its affiliates). All rights
reserved.

To help software developers declare Non-secure function pointers in C/C++, the Cortex-M Security Extension (CMSE)

defines a C function attribute called cmse_nonsecure_call .

GCC: __attribute__((cmse_nonsecure_call))

IAR: __cmse_nonsecure_call

Copyright © 2025 Silicon Laboratories. All rights reserved. 93/280

https://developer.arm.com/documentation/100690/0201/Test-target-instruction
https://developer.arm.com/documentation/ecm0359818/latest
https://www.keil.com/support/man/docs/armclang_ref/armclang_ref_pge1446715440722.htm
https://developer.arm.com/documentation/100690/0201/Switching-between-Secure-and-Non-secure-states
https://developer.arm.com/documentation/ecm0359818/latest

TrustZone Basics

Software Flow

The following figure describes a software flow example in a TrustZone implemented system.

Image: Software Development in ARMv8-M Architecture.Copyright © 1995-2022 Arm Limited (or its affiliates). All rights
reserved.

ò The system starts executing code in the Secure state after a power-on or reset (Secure boot).

The Secure stack pointer (MSP_S) is set from the address of the Secure vector table (VTOR_S).

The Secure Reset Handler pointed by the VTOR_S is called.

Perform various initialization tasks such as C startup code.

Place peripherals and associated interrupts in either Secure or Non-secure applications.

Program SAU/IDAU to partition the entire memory into Secure, Non-secure Callable, and Non-secure regions.

Program the address of the Non-secure vector table (VTOR_NS).

Initialize the two first entries of the table for the Non-secure stack pointer (MSP_NS) and Reset Handler to emulate a

Non-secure reset.

ó The Secure firmware branches to the entry point (Reset Handler pointed by the VTOR_NS) of the Non-secure application.

The Non-secure software has its Reset Handler.

Perform various initialization tasks such as C startup code and hardware initialization (e.g., Non-secure peripherals).

It does not conflict with initialization from the Secure code as the stack and heap spaces of Secure and Non-secure

code are separated.

ô During the execution of Non-secure applications, the application could call Secure APIs through the Secure Gateway (SG)

veneer in the Non-secure Callable region.

õ In some cases, Secure APIs might need to call Non-secure call-back functions (e.g., a hardware driver).

Copyright © 2025 Silicon Laboratories. All rights reserved. 94/280

https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-01-27-19/ARM-Cortex-_2D00_-session-11-_2D00_-Yiu-_2D00_-Software-Development-in-ARMv8_2D00_M-Architecture.pdf

Bus Level Security �BLS�

Bus Level Security �BLS�

Bus Level Security �BLS�

System Design

The following figure shows two system designs:

The sample system contains an ARMv8-M processor and the required components to support TrustZone.

Bus Level Security (BLS) on Series 2 devices implements the concepts introduced in the ARM TrustZone sample system.

BLS enforces Secure and privileged programming models and uses security components (colored blocks) to configure the

security attribute and privileged level of peripherals and Bus Masters.

ARMv8�M Processor

The ARMv8M processor is TrustZone capable of Secure and Non-secure states. It has a dedicated internal SAU that is fully

programmable up to 8 different memory regions. Out of reset, the processor is in a Secure state and every transaction is a

Secure transaction.

ARMv8-M Processor in Series 2 devices is the Cortex-M33.

System Security Controller

The system security controller is the central location for all security settings in the system. Each type of controller, IDAU,

and wrapper receives its security configuration and bus response configuration from this block.

System Security Controller in Series 2 devices is the Security Management Unit (SMU).

Implementation Defined Attribution Unit �IDAU�

Copyright © 2025 Silicon Laboratories. All rights reserved. 95/280

Bus Level Security �BLS�

The IDAU generates the security attribute for a given address. All IDAUs in the system have the same memory partitioning.

The IDAU is intended only for ARMv8-M cores and utilizes the entire IDAU interface for the core. The lite IDAU uses only

the Secure and Non-secure interface from the IDAU and is intended for Non-ARMv8-M Bus Masters.

IDAU in Series 2 devices is the External Secure Attribution Unit (ESAU).

Security Wrapper

The Security Wrapper gives a legacy Bus Master the ability to drive security attribution. The security wrapper outputs the

transaction address to the lite IDAU which returns the security attribute of the address. If the wrapper is configured as Non-

secure, any transactions to a Secure address are blocked.

Security Wrapper in Series 2 devices is the Bus Master Protect Unit (BMPU).

Memory Protection Controller �MPC�

MPC has a security configuration for a per block of memory or memory above and below the watermark. If the security

attribute of the block or memory region does not match the security attribute of the address, the transaction is blocked.

This controller is used in a system that alias RAM or flash memory locations. This controller is not needed when the memory

region size is programmable in an IDAU.

Series 2 devices have a programmable flash and RAM region in the ESAU (equivalent to IDAU) and are not implementing

this block.

Peripheral Protection Controller �PPC�

PPC has a security configuration for every peripheral. If the security attribute of the selected peripheral does not match the

security attribute of the address, the transaction is blocked. This controller is used in systems that alias the peripheral

memory locations.

PPC in Series 2 devices is the Peripheral Protection Unit (PPU).

Hardware security is now extended to the peripheral bus system of the processor. Each component on the bus can verify

and propagate the security level for each bus operation. The following sections describe the individual security component

for BLS on Series 2 devices.

Security Management Unit �SMU�

The SMU is the only user-facing block in the BLS architecture and houses all the configuration and status for the ESAUs,

BMPUs, and PPUs.

Thirteen memory regions (ESAU)

Per Bus Master privileged and security attribute (BMPU)

Interrupt flag for Bus Master security fault (fault table in BMPU section)

Per peripheral privileged and security attribute (PPU)

Interrupt flags for privileged, security, and instruction peripheral access faults (fault tables in PPU section)

Separate Secure and Privileged IRQ

The SMU configurations can be locked down and protected from runaway code. The SMU_LOCK register resets to

UNLOCK. Any write other than the unlock code (0xACCE55) locks all SMU registers from further updates. The SMU_STATUS

register contains a SMULOCK bitfield with the current lock state of the SMU.

The SMU_M33CTRL register can lock down internal security and privileged configurations below.

Cortex-M33 SAU

Non-secure MPU

Secure MPU

Non-secure Vector Table Offset Register (VTOR)

Secure AIRCR register

Copyright © 2025 Silicon Laboratories. All rights reserved. 96/280

Bus Level Security �BLS�

Interrupt flags in the SMU_IF register can generate a Secure or Privileged interrupt in the table below when its

corresponding interrupt enable bit in the SMU_IEN register is set and IRQn is enabled.

Enable Bit in SMU_IEN Register IRQn Interrupt Handler

BMPUSEC, PPUSEC SMU_SECURE_IRQn SMU_SECURE_IRQHandler()

PPUPRIV, PPUINST SMU_PRIVILEGED_IRQn SMU_PRIVILEGED_IRQHandler()

Each interrupt flag in the SMU_IF register can be cleared by writing 1 to the corresponding bit of the SMU_IF_CLR register.

External Secure Attribution Unit �ESAU�

The ESAU is responsible for determining the memory region and security attribute of a given address. Referring to ARMv8-

M TrustZone Implementation on page 16, the Cortex-M33 interfaces with an ESAU and the BMPUs of other Bus Masters

interface with lite ESAUs to determine the security attribute of all transactions. The following figure describes the security

attributes of different memory regions defined by the ESAU on Series 2 devices.

Copyright © 2025 Silicon Laboratories. All rights reserved. 97/280

Bus Level Security �BLS�

Notes:

For Series 2 devices with base address 0x08000000 in region 0, the memory address from 0x0 to 0x07FFFFFF is an invalid

region.

The invalid regions are deemed as Secure.

The NSC and Exempted attributes are only available to the ESAU, and all lite ESAUs in the system view these attributes as

Secure.

The ESAU divides the memory map into 13 memory regions and has a maximum of 6 Non-secure regions.

Four Movable Region Boundaries (MRBs) determine the size of 6 regions.

Two regions have configurable security attributes.

Each memory region consists of a base address that specifies the start of the region and a limit address that specifies the

end of the region plus one (+ 1).

The address is valid if it falls between the base (≥ base) and limit (< limit) of a region.

If the memory region is not defined, it is deemed invalid and Secure.

The MRBs distinguish the Secure, Non-secure Callable, and Non-secure regions in flash and RAM. The two configurable

regions determine if the Info flash and Cortex-M33 EPPB regions are Secure or Non-secure. The MRBs have a specific

programming sequence. Any misprogramming results in a SMUPRGERR in the SMU_STATUS register.

ARMv8�M CODE Regions

Regions 0, 1, and 2 are in the Main space of flash. Region 3 is the info space of flash.

The mrb01 (ESAUMRB01 in SMU_ESAURMBR01 register) determines the end of region 0 and the start of region 1.

The mrb12 (ESAUMRB12 in SMU_ESAURMBR12 register) determines the end of region 1 and the start of region 2.

The size of region 3 is device-dependent.

Three regions' security attributes are static, and one region is configurable. Region 0 is always Secure, region 1 is always

Non-secure Callable, and region 2 is always Non-secure. Region 3 is configurable as either Secure or Non-secure

(ESAUR3NS in SMU_ESAURTYPES0 register, default is secure after reset).

S izes of regions 0, 1, and 2 are adjusted in 4 kB increments with the lower 12 bits of ESAUMRB## in SMU_ESAURMBR##

ignored.

The Secure region can be set to size 0 when mbr01 = base address of region 0.

The Non-secure Callable regions can be set to size 0 when mbr01 = mbr12.

The default value of mbr01 is equal to base address + 0x02000000 , so the size of region 0 is 32 MB. Out of reset, all flash

is Secure since all Series 2 devices have less than 32 MB of flash.

Region Memory Base Address Limit Address
Security
Attribute

0 Main flash 0x00000000 or

0x08000000

(0x00000000 or

0x08000000) | mbr01

Secure

1 Main flash (0x00000000 or

0x08000000) | mbr01

(0x00000000 or

0x08000000) | mbr12

Non-secure

Callable

2 Main flash (0x00000000 or

0x08000000) | mbr12

0x0FE00000 Non-secure

3 Info flash 0x0FE0000 0x10000000 Secure or Non-

secure

ARMv8�M RAM Regions

Regions 4, 5, and 6 cover the entire available RAM in the device.

The mrb45 (ESAUMRB45 in SMU_ESAURMBR45 register) determines the end of region 4 and the start of region 5.

The mrb56 (ESAUMRB56 in SMU_ESAURMBR56 register) determines the end of region 5 and the start of region 6.

All three regions' security attributes are static. Region 4 is always Secure, region 5 is always Non-secure Callable, and region

6 is always Non-secure.

S izes of all three regions are adjusted in 4 kB increments with the lower 12 bits of ESAUMRB## in SMU_ESAURMBR##

ignored.

The Secure region can be set to size 0 when mbr45 = base address of region 4.

Copyright © 2025 Silicon Laboratories. All rights reserved. 98/280

Bus Level Security �BLS�

The Non-secure Callable region can be set to size 0 when mbr45 = mbr56.

The default value of mbr45 is equal to 0x02000000 , so the size of region 4 is 32 MB. Out of reset, all RAM is Secure since

all Series 2 devices have less than 32 MB of RAM.

Region Memory Base Address Limit Address
Security
Attribute

4 SRAM 0x20000000 0x20000000 | mbr45 Secure

5 SRAM 0x20000000 | mbr45 0x20000000 | mbr56 Non-secure

Callable

6 SRAM 0x20000000 | mbr56 0x30000000 Non-secure

ARMv8�M Peripheral Regions

These regions are aliases to the chip peripherals and SE mailbox (a device with HSE).

Both regions have a fixed size.

Both regions' security attributes are static. Region 7 is always Secure, and region 8 is always Non-secure.

Region Memory Base Address Limit Address
Security
Attribute

7 Chip Peripherals 0x40000000 0x50000000 Secure

8 Chip Peripherals 0x50000000 0x60000000 Non-secure

ARMv8�M Device Regions

These regions are aliases to all radio peripherals and radio RAM.

Both regions have a fixed size.

Both regions' security attributes are static. Region 9 is always Secure, and region 10 is always Non-secure.

From the perspective of the device bus system, the radio is one peripheral that is either Secure or Non-secure. So any Bus

Master accessing the radio needs to know the security attribute of the radio. From the perspective of the radio, all of its

radio bus peripherals are accessible regardless of the security attribute. However, the radio needs to know the security

attribute of chip bus peripherals to access them through the correct alias.

Region Memory Base Address Limit Address
Security
Attribute

9 Radio Peripherals 0xA0000000 0xB0000000 Secure

10 Radio Peripherals 0xB0000000 0xC0000000 Non-secure

ARMv8�M System Private Peripheral Bus �PPB� Regions

Both regions have a fixed size.

Region 11 is the Cortex-M33 EPPB memory region and is configurable as either Secure or Non-secure (ESAUR11NS in

SMU_ESAURTYPES1 register, default is secure after reset). It is important to note that the Cortex-M33 core is the only Bus

Master that sees these memory regions. All other Bus Masters in the system do not have access to the System PPB, and it

is an invalid region.

Region 12 has a static security attribute of Exempted. It means that the Cortex-M33 core allows the transaction in all cases.

It permits debuggers to read the system ROM Table regardless of the state of the Cortex-M33 core.

Region Memory Base Address Limit Address
Security
Attribute

11 EPPB 0xE0044000 0xE00FE000 Secure or Non-

secure

12 System ROM Table 0xE00FE000 0xE00FF000 Exempted

Notes:

The regions in flash (0/1/2) and RAM (4/5/6) can only create in the order of Secure, Non-secure Callable, and Non-secure.

Copyright © 2025 Silicon Laboratories. All rights reserved. 99/280

Bus Level Security �BLS�

The ESAU and lite ESAUs handle the transactions of Bus Masters and must have consistent security attribute mapping.

Therefore, configurations in the SMU registers apply to ESAU and lite ESAUs.

Unlike other Bus Masters using BMPU and lite ESAU, merging the address lookup results from the internal SAU and ESAU

determines the security attribute of the Cortex-M33 transaction.

Bus Master Security Attribution

Cortex-M33 SAU and ESAU

Other Lite ESAU

Security Attribution Unit

In Series 2 devices, the combination of the integrated SAU in the Cortex-M33 processor and an ESAU determine the

security attribute of a Cortex-M33 transaction.

The SAU consists of several programmable registers. These registers are placed in the System Control Space (SCS) and

are only accessible from the Secure privileged state.

SAU Control Register (SAU_CTRL) — The SAU is disabled after RESET

SAU Type Register (SAU_TYPE) — Indicates the number of available regions (read-only)

SAU Region Number Register (SMU_RNR) — Assigns a region number

SAU Region Base Address Register (SAU->RBAR) — Configures selected region base address

SAU Region Limit Address Register (SAU->RLAR) — Configures selected region limit address and security attribute (NSC or

NS), enable or disable the region

The following figure shows three different SAU configurations for determining the security attribute of a Cortex-M33

transaction.

Notes:

All address ranges after RESET in SAU are Secure by default.

The SAU can configure a 32 bytes aligned region as Non-secure or Non-secure Callable. Any address not defined in the

SAU defaults to Secure.

An ESAU can configure or hard-code a region as Secure, Non-secure Callable, Non-secure, or Exempted. An Exempted

region enables Non-secure debuggers to access debugging components and establish a debug connection to the processor

before the SAU is configured.

The processor determines the final attribute of the address based on the higher security attribute (Exempted > S > NSC >

NS) from either the SAU or the ESAU.

Copyright © 2025 Silicon Laboratories. All rights reserved. 100/280

https://developer.arm.com/documentation/100690/0201/SAU-register-summary

Bus Level Security �BLS�

All Secure Configuration

Highlights:

SAU is disabled.

ALLNS bit in the SAU Control register is clear.

The whole memory is in a Secure state (highest security attribute apart from Exempted).

All Cortex-M33 transactions in this configuration are Secure or Exempted and give the Cortex-M33 access to all memory

locations through either the Secure or Non-secure alias after RESET.

It is up to the boot procedure in a Secure state to keep the current configuration or use other configurations once the boot

process is complete.

Copyright © 2025 Silicon Laboratories. All rights reserved. 101/280

Bus Level Security �BLS�

All Non-secure Configuration

Highlights:

SAU is disabled.

ALLNS bit in the SAU Control register is set.

The whole memory is in a Non-secure state (lowest security attribute).

Therefore the ESAU configuration determines the security attribute of all Cortex-M33 transactions.

Except for the SAU_CTRL register, this configuration does not require programming on other SAU registers.

Configurable Configuration

Highlights:

SAU is enabled.

ALLNS bit in the SAU Control register can be 0 or 1 (do not care).

The NSC bit on the SAU_RLAR register determines the security attribute of an address as Non-secure or Non-secure

Callable if an address matches an SAU region.

The security attribute of an address is Secure by default if the address does not match any SAU region.

This configuration programs SAU_RNR , SAU_RBAR , and SAU_RLAR registers to correlate the Non-secure regions in ESAU.

The SAU or ESAU overrides the attribute to a higher security level if any security attribute mismatch occurs in a memory

region.

The following figure is an example of a configurable configuration with the size of ESAU regions 0 and 5 are set to zero.

Copyright © 2025 Silicon Laboratories. All rights reserved. 102/280

Bus Level Security �BLS�

Note: The Cortex-M33 has an internal SAU that defaults all undefined addresses to Secure if enabled. If the

Secure regions do not align between the Cortex-M33 (SAU + ESAU) and other Bus Masters (lite ESAU), the

Cortex-M33 treats a memory region as Secure while other Bus Masters treat it as Non-secure. It can lead to

the leaking of secure data if the Cortex-M33 stores secure data in what other Bus Masters think is a Non-

secure area (Main Flash Layout on page 34).

Bus Master Protection Unit �BMPU�

The BMPU is a security wrapper used for assigning a Bus Master specific security and privileged states. Referring to Figure

3.1 ARMv8-M TrustZone Implementation on page 16, the BMPU generally lies between the Bus Master and the Advanced

High-performance Bus (AHB) Matrix. BMPU interfaces with a lite ESAU to determine the security attribute of all Bus Master

transactions.

The registers below in SMU configure the security and privileged state of a Bus Master. The Bus Masters in group 0 are

device-dependent. Out of reset, each Bus Master is Secure and privileged.

Register Description

SMU_BMPUPATD0 Bitfields (privileged if set) for privileged attribute configuration on Bus Master group

0

SMU_BMPUSATD0 Bitfields (Secure if set) for security attribute configuration on Bus Master group 0

Note: The Bus Master privileged attribute only applies to peripheral accesses. Flash and RAM accesses ignore

the privileged attribute of the Bus Master.

The BMPU generates a security fault when the security attribute of the bus transaction is Secure, and the security

attribute (SMU_BMPUSATD0) for the BMPU is configured as Non-secure.

Below is the security fault table that shows how the security attribute on the bus is driven based on the lite ESAU attribute

and the BMPU security configuration. The interrupt is triggered if BMPUSEC in SMU_IEN is set and the SMU_SECURE_IRQn is

enabled.

Lite ESAU Attribute Secure Bus Master Non-secure Bus Master

Non-secure Non-secure Non-secure

Secure Secure FAULT

Upon a BMPU fault, the registers in SMU below notify that a BMPU security fault occurred and on which Bus Master. The

registers also identify the offending fault address. If a fault is detected, the response is Read As Zero (RAZ) or Write

Ignored (WI) and the corresponding interrupt flag is set in the SMU_IF register. The values in SMU_BMPUFS and

SMU_BMPUFSADDR do not change until the BMPU fault (BMPUSEC) in the SMU_IF register is cleared by software.

Register Bitfield Fault

SMU_IF BMPUSEC Security Fault if set

SMU_BMPUFS BMPUFSMASTERID ID of the Bus Master that triggered the fault

SMU_BMPUFSADDR BMPUFSADDR Access address that triggered the fault

Note: No privileged fault is generated because all the other Bus Masters in the system do not drive the

privileged attribute.

Copyright © 2025 Silicon Laboratories. All rights reserved. 103/280

Bus Level Security �BLS�

Peripheral Protection Unit �PPU�

The PPU is a security wrapper used for assigning a Bus S lave peripheral specific security and privileged states. Referring to

Figure 3.1 ARMv8-M TrustZone Implementation on page 16, the PPU comes in the form of a PPU in Advanced High-

performance Bus (AHB) and a PPU in Advanced Peripheral Bus (APB).

The PPU AHB generally lies between the Bus Matrix and an AHB Bus S lave peripheral.

The PPU APB lies between the output of an AHB to APB bridge and all of the APB S laves on that APB bus.

The registers below in SMU configure the security and privileged state of a peripheral. The peripherals in groups 0 and 1 are

device-dependent. Out of reset, each peripheral is Secure and privileged. While each peripheral in address 0x40000000

(region 7) or 0x50000000 (region 8) can be configured independently, the radio subsystem in 0xA0000000 (region 9) or

0xB0000000 (region 10) is configured as a unit.

Register Description

SMU_PPUPATD0 Bitfields (privileged if set) for privileged access configuration on peripheral group 0

SMU_PPUPATD1 Bitfields (privileged if set) for privileged access configuration on peripheral group 0

SMU_PPUSATD0 Bitfields �Secure if set) for security access configuration on peripheral group 0

SMU_PPUSATD1 Bitfields �Secure if set) for security access configuration on peripheral group 1

The PPU can generate three types of faults:

ò Privileged faults occur on unprivileged transactions to privileged peripherals. Below is the privileged fault table that shows

when a privileged fault occurs based on the PPU peripheral privileged configuration and the bus transaction privileged

attribute. The interrupt is triggered if PPUPRIV in SMU_IEN is set and the SMU_PRIVILEGED_IRQn is enabled.

Bus Attribute Privileged Peripheral Unprivileged Peripheral

Privileged SUCCESS SUCCESS

Unprivileged FAULT SUCCESS

ó Security faults occur on Secure transactions to Non-secure peripherals and Non-secure transactions to Secure peripherals.

Below is the security fault table that shows when a security fault occurs based on the PPU Peripheral security configuration

and the bus transaction security attribute. The interrupt is triggered if PPUSEC in SMU_IEN is set and the SMU_SECURE_IRQn

is enabled.

Bus Attribute Secure Peripheral Non-secure Peripheral

Secure SUCCESS FAULT

Non-secure FAULT SUCCESS

ô Instruction faults occur on any transaction marked as an instruction fetch. Below is the instruction fault table that shows

when a PPU instruction fault occurs based on the bus transaction instruction attribute. The interrupt is triggered if PPUINST

in SMU_IEN is set and the SMU_PRIVILEGED_IRQn is enabled.

Bus Attribute Secure Peripheral Non-secure Peripheral

Secure SUCCESS FAULT

Non-secure FAULT SUCCESS

Upon a PPU fault, the registers below in SMU notifies which PPU fault occurred and on which peripheral. If a fault is

detected, the response is Read As Zero (RAZ) or Write Ignored (WI) and set the corresponding interrupt flag in the SMU_IF

register. The values in SMU_IF and SMU_PPUFS do not change until all PPU faults in the SMU_IF register are cleared by

software.

Register Bitfield Fault

SMU_IF PPUPRIV Privilege Fault if set

SMU_IF PPUSEC Security Fault if set

SMU_IF PPUINST Instruction Fault if set

Copyright © 2025 Silicon Laboratories. All rights reserved. 104/280

Bus Level Security �BLS�

Register Bitfield Fault

SMU_PPUFS PPUFSPERIPHID ID of the peripheral that caused the fault

Compatibility

Secure software usually controls the SYSCFG and SMU peripherals to prevent Non-secure software from changing critical

configurations in the Secure domain. It requires switching between Secure and Non-secure states when Non-secure

software wants to update the registers in these peripherals. Therefore dedicated registers for Non-secure access are

added to SYSCFG and SMU peripherals on newer Series 2 devices.

System Configuration �SYSCFG�

Except for EFR32xG21 devices, the following tables apply to all Series 2 devices.

Table: Dedicated Bitfield to Configure Access for Non-secure SYSCFG Registers

Bitfield �Register) Description

SYSCFGCFGNS (SMU_PPUPATD0) Bitfields (privileged if set) for privileged access configuration on NS

SYSCFG registers

SYSCFGCFGNS (SMU_PPUSATD0) Bitfields (Secure if set) for security access configuration on NS

SYSCFG registers

Note: Reset SYSCFGCFGNS bit in SMU_PPUSATD0 to allow Non-secure software to access NS SYSCFG

registers.

Table: Dedicated SYSCFG Registers for Non-secure State

SYSCFG Non-secure Registers Description

SYSCFG_CFGNS_CFGNSTCALIB NS SysTick calibration value register

SYSCFG_CFGNS_ROOTNSDATA0 NS root data register 0

SYSCFG_CFGNS_ROOTNSDATA0 NS root data register 1

Security Management Unit �SMU�

Except for EFR32xG21 devices, the following tables apply to all Series 2 devices.

Table: Dedicated Bitfield to Configure Access for Non-secure SMU Registers

Bitfield �Register) Description

SMUCFGNS (SMU_PPUPATD1) Bitfields (privileged if set) for privileged access configuration on NS

SMU registers

SMUCFGNS (SMU_PPUSATD1) Bitfields (Secure if set) for security access configuration on NS

registers

Note: Reset SMUCFGNS bit in SMU_PPUSATD1 to allow Non-secure software to access NS SMU registers.

The SMU_CFGNS register file is for the TrustZone Non-secure state and has its register lock (NSLOCK). It allows hardware

to maintain the privileged assignments for the NS state. The privileged configuration within the NS state is the same as the

Secure state, except it has an "NS" to differentiate the registers.

Table: Dedicated SMU Registers for Non-secure State

Copyright © 2025 Silicon Laboratories. All rights reserved. 105/280

Bus Level Security �BLS�

SMU Non-secure Registers Description

SMU_CFGNS_NSSTATUS Lock status of SMU_CFGNS registers

SMU_CFGNS_NSLCOK Lock and unlock the SMU_CFGNS registers

SMU_CFGNS_NSIF Interrupt flags for NS privilege (PPUNSPRIVIF) and instruction

(PPUNSINSTIF) faults

SMU_CFGNS_NSIEN Interrupt enable flags for NS privilege (PPUNSPRIVIEN) and instruction

(PPUNSINSTIEN) faults

SMU_CFGNS_PPUNSPATD0 Bitfields (privileged if set) for NS privileged access configuration on

peripheral group 0

SMU_CFGNS_PPUNSPATD1 Bitfields (privileged if set) for NS privileged access configuration on

peripheral group 1

SMU_CFGNS_PPUNSFS ID (PPUFSPERIPHID) of the NS peripheral that caused the fault

SMU_CFGNS_BMPUNSPATD0 Bitfields (privileged if set) for privileged attribute configuration on NS

Bus Master group 0

Table: Fault Statuses Only for Secure State

Bitfield �Register) Description

PPUPRIV (SMU_IF) Fault status now limited only to Secure state

PPUINST (SMU_IF) Fault status now limited only to Secure state

PPUPRIV (SMU_IEN) Fault status now limited only to Secure state

PPUINST (SMU_IEN) Fault status now limited only to Secure state

PPUFSPERIPHID (SMU_PPUFS) Fault status now limited only to Secure state

Table Dedicated SMU Interrupt for Non-secure State

Interrupt Description

SMU_NS_PRIVILEGED_IRQHandler() An interrupt flag in the SMU_CFGNS_NSIF register can generate an NS

privileged interrupt when its corresponding interrupt enable bit in the

SMU_CFGNS_NSIEN register is set and SMU_NS_PRIVILEGED_IRQn is

enabled, and in which the peripheral (ID) that triggers the fault is in the

SMU_CFGNS_PPUNSFS register.

Copyright © 2025 Silicon Laboratories. All rights reserved. 106/280

Secure And Privileged Programming Model

Secure And Privileged Programming Model

Secure and Privileged Programming Model
The implementation of BLS on Series 2 devices, both flash and RAM, use a programmable watermark to delineate Secure,

Non-secure Callable, and Non-secure regions. On the other hand, peripherals exist in both a Secure and Non-secure alias of

memory.

BLS SMU Programming

Enabling SMU Clock

Except for the EFR32xG21 devices, all Series 2 devices enable the SMU clock in CMU before programming the SMU

registers.

#if (_SILICON_LABS_32B_SERIES_2_CONFIG > 1)

 CMU->CLKEN1_SET = CMU_CLKEN1_SMU;

#endif

Cortex-M33 Lock Control

The Cortex-M33 security and privileged configurations can be locked by programming the SMU_M33CTRL register.

// Lock Secure MPU configuration

 SMU->M33CTRL |= SMU_M33CTRL_LOCKSMPU;

Locking SMU Configuration

Th entire SMU configuration can be locked down to avoid runaway code. Below is an example of how to lock and unlock

the SMU.

 uint32_t lock_status;

// Lock Down SMU

 SMU->LOCK = ~SMU_LOCK_SMULOCKKEY_UNLOCK;

// Grab Lock Status

 lock_status = (SMU->STATUS & _SMU_STATUS_SMULOCK_MASK) >> _SMU_STATUS_SMULOCK_SHIFT;

// Unlock SMU

 SMU->LOCK = SMU_LOCK_SMULOCKKEY_UNLOCK;

Interrupt Control

Each interrupt flag in SMU_IF can generate an interrupt when its corresponding interrupt enable flag in the SMU_IEN register

is set. Each interrupt flag can be cleared by writing the clear alias of the SMU_IF register.

Copyright © 2025 Silicon Laboratories. All rights reserved. 107/280

Secure And Privileged Programming Model

// Clear and enable the SMU PPUSEC and BMPUSEC interrupt

NVIC_ClearPendingIRQ(SMU_SECURE_IRQn);

 SMU->IF_CLR = SMU_IF_PPUSEC | SMU_IF_BMPUSEC;

NVIC_EnableIRQ(SMU_SECURE_IRQn);

 SMU->IEN = SMU_IEN_PPUSEC | SMU_IEN_BMPUSEC;

BLS ESAU Programming

Region Types

The SMU_ESAURTYESn registers are used to configure memory regions with a specific security attribute. All configurable

memory regions reset to Secure. Below is an example of programming regions 3 and 11 to Non-secure.

// Region 3 �Info flash) is Non-secure

 SMU->ESAURTYPES0 = SMU_ESAURTYPES0_ESAUR3NS;

// Region 11 �EPPB� is Non-secure

 SMU->ESAURTYPES1 = SMU_ESAURTYPES1_ESAUR11NS;

Region Sizes

The code and figure below highlight how to program the Movable Region Boundaries (MRBs) of ESAU.

// ESAU region 0/1/2 programming

// Boundary01 at 252kB and Boundary12 at 256kB

 SMU->ESAUMRB01 = 0x0003F000U & _SMU_ESAUMRB01_MASK;

 SMU->ESAUMRB12 = 0x00040000U & _SMU_ESAUMRB12_MASK;

// ESAU region 4/5/6 programming

// Boundary45 at 44kB and Boundary56 at 44kB (region 5 size = 0�

 SMU->ESAUMRB45 = 0x0000B000U & _SMU_ESAUMRB45_MASK;

 SMU->ESAUMRB56 = 0x0000B000U & _SMU_ESAUMRB56_MASK;

Copyright © 2025 Silicon Laboratories. All rights reserved. 108/280

Secure And Privileged Programming Model

Notes:

The mrb12 (ESAUMRB12 in SMU_ESAURMBR12) has to be greater than or equal to mrb01 (ESAUMRB12 in SMU_ESAURMBR12).

The mrb56 (ESAUMRB56 in SMU_ESAURMBR562) has to be greater than or equal to mrb45 (ESAUMRB45 in

SMU_ESAURMBR45).

If one of the rules above is violated, the SMU_STATUS.SMUPRGERR is asserted.

When mrb01 and mrb12 are equal, region 1 (NSC) is a size of 0 and is not seen by the system.

When mrb45 and mrb56 are equal, region 5 (NSC) is a size of 0 and is not seen by the system.

BLS SAU Programming

All Secure Configuration

All secure configuration is the default state after reset. It clears the SAU_CTRL.ENABLE and the SAU_CTRL.ALLNS bits in SAU,

and the entire memory is in a Secure attribute.

All Non-secure Configuration

All Non-secure Configuration occurs when the SAU_CTRL.ENABLE bit is cleared, and the SAU_CTRL.ALLNS bit is set. The

ESAU controls the security attribute of a Cortex-M33 transaction.

// Disable SAU �ALLNS = 1� and clear data and instruction pipe

 SAU->CTRL = SAU_CTRL_ALLNS_Msk;

__DSB();

__ISB();

Configurable Configuration

Configurable configuration occurs when the SAU_CTRL.ENABLE bit is set (SAU_CTRL.ALLNS is irrelevant). Both SAU and

ESAU determine the security attribute of a Cortex-M33 transaction. The code and figure below highlight how to program

the SAU regions.

// Define all Non-secure �NS� and Non-secure Callable �NSC� Regions

 #define REGION0_BASE 0x0001E000UL

 #define REGION1_BASE 0x00020000UL

 #define REGION2_BASE 0x20004000UL

 #define REGION0_LIMIT 0x0001FFFFUL

 #define REGION1_LIMIT 0x000FFFFFUL

 #define REGION2_LIMIT 0x20017FFFUL

// CMSIS calls to enable SAU Regions

// SAU region 0 - Flash NSC at 120 kB to 128 kB �0�0001E000 - 0�0001FFFF�

 SAU->RNR = (0UL & SAU_RNR_REGION_Msk);

 SAU->RBAR = (REGION0_BASE & SAU_RBAR_BADDR_Msk);

 SAU->RLAR = (REGION0_LIMIT & SAU_RLAR_LADDR_Msk) | SAU_RLAR_NSC_Msk | SAU_RLAR_ENABLE_Msk;

// SAU region 1 - Flash NS at 128 KB to 1024 kB �0�00020000 - 0�000FFFFF�

 SAU->RNR = (1UL & SAU_RNR_REGION_Msk);

 SAU->RBAR = (REGION1_BASE & SAU_RBAR_BADDR_Msk);

 SAU->RLAR = (REGION1_LIMIT & SAU_RLAR_LADDR_Msk) | SAU_RLAR_ENABLE_Msk;

// SAU region 2 - RAM NS at 16 kB to 96 kB �0�20004000 - 0�20017FFF�

 SAU->RNR = (2UL & SAU_RNR_REGION_Msk);

 SAU->RBAR = (REGION2_BASE & SAU_RBAR_BADDR_Msk);

 SAU->RLAR = (REGION2_LIMIT & SAU_RLAR_LADDR_Msk) | SAU_RLAR_ENABLE_Msk;

// CMSIS functions to enable SAU and clear data and instruction pipe

TZ_SAU_Enable();

__DSB();

__ISB();

Copyright © 2025 Silicon Laboratories. All rights reserved. 109/280

Secure And Privileged Programming Model

BLS BMPU Programming

Bus Master Privileged Attribute

A Bus Master can be configured as either privileged (default) or unprivileged by programming the corresponding index in the

SMU_BMPUPATDn register.

// Configure all odd Bus Masters unprivileged

for (i = 0; i < SMU_NUM_BMPUS; i++) {

if (i & 0�01) {

 SMU->BMPUPATD0 &= ~(1 << i);

}

}

Bus Master Security Attribute

A Bus Master can be configured as either Secure (default) or Non-secure by programming the corresponding index in the

SMU_BMPUPATDn register. Configure a Bus Master as Non-secure results in the Bus Master only being able to access Non-

secure addresses.

// Configure all odd Bus Masters Non-secure

for (i = 0; i < SMU_NUM_BMPUS; i++) {

if (i & 0�01) {

 SMU->BMPUSATD0 &= ~(1 << i);

}

}

Bus Master Fault Status

Copyright © 2025 Silicon Laboratories. All rights reserved. 110/280

Secure And Privileged Programming Model

The Bus Master ID and the address that triggered the fault can be read from the SMU_BMPUFS and SMU_BMPUFSADDR

registers.

 uint32_t fs_bmpu_id;

 uint32_t fs_bmpu_addr;

 uint32_t fs_bmpu_secfault;

// Read Bus Master fault status

 fs_bmpu_id = SMU->BMPUFS;

 fs_bmpu_addr = SMU->BMPUFSADDR;

 fs_bmpu_secfault = (SMU->IF & _SMU_IF_BMPUSEC_MASK) >> _SMU_IF_BMPUSEC_SHIFT;

// Clear the IF to capture a new fault

 SMU->IF_CLR = SMU_IF_BMPUSEC;

BLS PPU Programming

Peripheral Privileged Attributes

A peripheral can be configured as either privileged (default) or unprivileged by programming the corresponding index in the

SMU_PPUPATDn register.

// Configure all odd peripherals unprivileged

for (i = 0; i < SMU_NUM_PPU_PERIPHS; i++) {

if (i & 0�01) {

if (i >= 32){

 SMU->PPUPATD1 &= ~(1 << (i-32));

} else {

 SMU->PPUPATD0 &= ~(1 << i);

}

}

}

Notes:

The peripherals in SMU_PPUPATD0 and SMU_PPUPATD0 are device-dependent.

The privileged attribute of the radio subsystem (AHBRADIO index) is configured as a unit.

Peripheral Security Attributes

A peripheral can be configured as either Secure (default) or Non-secure by programming the corresponding index in the

SMU_PPUSATDn register. The figure below shows the memory map when the ADC, I2C0, USART1, and RADIO are configured

as Non-secure and other peripherals (e.g., SMU, RTCC, TIMER1, TIMER0, USART0...) as Secure.

// Configure all the Non-secure peripherals

 SMU->PPUSATD0 &= ~SMU_PPUSATD0_USART1;

 SMU->PPUSATD1 &= ~(SMU_PPUSATD1_I2C0 | SMU_PPUSATD1_IADC0 | SMU_PPUSATD1_AHBRADIO);

Copyright © 2025 Silicon Laboratories. All rights reserved. 111/280

Secure And Privileged Programming Model

Notes:

The peripherals in SMU_PPUSATD0 and SMU->PPUSATD1 are device-dependent.

The security attribute of the radio subsystem (AHBRADIO index) is configured as a unit.

Peripheral Fault Status

The peripheral ID that triggered the fault can be read from the SMU_PPUFS register.

 uint32_t fs_ppu_periph_id;

 uint32_t fs_sec_fault;

 uint32_t fs_priv_fault;

 uint32_t fs_inst_fault;

// Read peripheral fault status

 fs_ppu_periph_id = SMU->PPUFS;

 fs_sec_fault = (SMU->IF & _SMU_IF_PPUSEC_MASK) >> _SMU_IF_PPUSEC_SHIFT;

 fs_priv_fault = (SMU->IF & _SMU_IF_PPUPRIV_MASK) >> _SMU_IF_PPUPRIV_SHIFT;

 fs_inst_fault = (SMU->IF & _SMU_IF_PPUINST_MASK) >> _SMU_IF_PPUINST_SHIFT;

// Clear the IF to capture a new fault

 SMU->IF_CLR = SMU_IF_PPUSEC | SMU_IF_PPUPRIV | SMU_IF_PPUINST;

Floating Point Unit �FPU� Programming

If the Non-secure application enables the FPU at initialization, the Secure software needs to set up the NSACR register in

SCB to grant the FPU access for Non-secure software.

// Enable Non-secure access to the FPU

 SCB->NSACR |= SCB_NSACR_CP10_Msk + SCB_NSACR_CP11_Msk;

Copyright © 2025 Silicon Laboratories. All rights reserved. 112/280

TrustZone Implementation

TrustZone Implementation

TrustZone Implementation
The goal of TrustZone implementation is to provide Secure Key Storage that can keep access to keys limited to Secure

applications while at the same time allowing Non-secure applications to exercise the keys. It is an added feature for the

SVM devices that do not have dedicated hardware for Secure Key Storage as in SVH devices.

The PSA Crypto is placed in a Secure region to keep key material hidden from the Non-secure application. The exposed

PSA Crypto APIs stay the same while the backend provides persistent key encryption and decryption similar to the key

wrapping and unwrapping functionality of the SVH device.

The following items need to be considered when upgrading the existing system for Secure Key Storage with TrustZone.

System Configuration

Gecko Bootloader

Secure Library

TrustZone Secure Key Storage

PSA Attestation

SE Manager

Common Vulnerabilities and Exposures (CVE)

System Configuration

The system configuration includes the following items:

Enable system exceptions in the Secure state.

Set the security attributes of different regions in the SAU and ESAU.

Place peripherals and associated interrupts in either Secure or Non-secure applications.

Assign the Bus Masters' security attributes.

The system has two Secure/Non-secure pairs for the bootloader and application. The Secure part of each pair is responsible

for properly configuring the split in its Secure application before branching to the Non-secure application.

Note: The secure application will issue a software reset at startup (fatal error) if the device's SE firmware

version is lower than the first version that supports TrustZone.

System Exceptions

The following system exceptions are enabled in the Secure state for the bootloader and application.

MemManage Fault

BusFault

UsageFault

SecureFault

Main Flash Layout

The following figure is an overview of the main flash layout that covers the isolation requirements for the Secure Key

Storage solution. The SAU and ESAU configurations provide the required security to the Cortex-M33 and other Bus

Masters during boot and normal operation.

Copyright © 2025 Silicon Laboratories. All rights reserved. 113/280

https://docs.silabs.com/iot-security/latest/efr32-secure-key-storage/
https://www.silabs.com/documents/public/application-notes/an1311-mbedtls-psa-crypto-porting-guide.pdf

TrustZone Implementation

ò Settings:

The application is set to non-executable (XN) by Secure MPU to avoid any code execution in this area during boot.

The bootloader is set to non-executable (XN) by Secure MPU to avoid any code execution in this area during normal

operation.

ó The ESAU configuration only uses the NSC section by setting mrb01 to the base address of region 0. The reason is that lite

ESAU in other Bus Masters treats both S and NSC as a Secure attribute. For the Cortex-M33, the SAU upgrades the NSC in

the ESAU to Secure. The 32 bytes region alignment of SAU also relaxes the 4 kB alignment restriction on the start address

of the NSC in ESAU.

ô The whole application area is set to Secure in SAU for Cortex-M33 during boot to hide details from the bootloader NS part.

õ The ESAU cannot mark any region that comes after a Non-secure section as Secure (must be in the order of S/NSC/NS).

Therefore the Secure application area does not align between the Cortex-M33 (SAU + ESAU) and other Bus Masters (lite

ESAU) during boot. The secrets stored in that Secure region expose as Non-secure for other Bus Masters during boot (no

such issue in normal operations). So the application must not save any plaintext secrets in that Secure region to overcome

this limitation during boot.

ö The NVM storage is in the Non-secure region, so the application must encrypt the persistent keys before storing them in this

area.

RAM Layout

The following figure is an overview of the RAM layout used for the bootloader and application. The SAU and ESAU are used

to split the RAM into a Secure and Non-secure region (Non-secure Callable is not required).

Copyright © 2025 Silicon Laboratories. All rights reserved. 114/280

TrustZone Implementation

In practice, the Secure part (bootloader or application) takes ownership of the amount of RAM it needs from the beginning

of RAM and leaves the rest (up to the ESAU 4 kB alignment requirement) configured as Non-secure.

The bootloader does not know how the application partitions the RAM between Secure and Non-secure. So bootloader

removes any secrets from RAM before handing control to the application.

Info Flash and EPPB

The following figure is an overview of the Info flash and EPPB layout for the application. The Cortex-M33 core is the only

Bus Master that can access the EPPB region.

Peripheral and Device

The following figure is an overview of the peripheral and device layout for the bootloader and application. The SAU and

ESAU are used to split the peripheral and device into a Secure and Non-secure region.

The Secure software is responsible for moving all peripherals and associated interrupts to the Non-secure state at startup,

except for the peripherals and interrupts that need to be Secure. The Non-secure software must not include code that

attempts to directly access any peripheral that is used by the Secure software.

Peripherals owned by the Secure software (application)

ò Security Management Unit (SMU)

It prevents Non-secure software from changing the configuration for the ESAUs, BMPUs, and PPUs.

Except for EFR32xG21 devices, some features are also available in the dedicated Non-secure version of SMU registers

(SMU_CFGNS).

ó CRYPTOACC (VSE devices) or SEMAILBOX (HSE devices)

The crypto engine is placed in the Secure domain for Secure library.

ô System Configuration (SYSCFG)

It prevents Non-secure software from changing system configurations for Secure software.

Except for EFR32xG21 devices, some features are also available in the dedicated Non-secure version of SYSCFG

registers (SYSCFG_CFGNS).

õ Memory System Controller (MSC)

Copyright © 2025 Silicon Laboratories. All rights reserved. 115/280

TrustZone Implementation

It prevents Non-secure software from writing to Secure flash.

Peripheral interrupts owned by the Secure software:

Table: Secure Peripheral Interrupts (Application)

VSE Device HSE Device

SMU_SECURE_IRQn SMU_SECURE_IRQn

SYSCFG_IRQn SYSCFG_IRQn

MSC_IRQn MSC_IRQn

CRYTOACC_IRQn SEMBRX_IRQn

TRNG_IRQn SEMBTX_IRQn

PKE_IRQn

The PRIS bit in the AIRCR register is set to 1 to place all Non-secure exceptions/interrupts in lower priority level space.

Therefore any Secure exceptions/interrupts can be programmed with higher priority than Non-secure ones.

The BMPUSEC and PPUSEC interrupt enable flags in the SMU_IEN register are set to enable the SMU security fault

interrupts (SMU_SECURE_IRQn) on Bus Masters and peripherals.

Floating Point Unit (FPU):

The Secure application does not use the FPU. But the Secure startup code also enables the FPU for use by the Non-

secure application.

Bus Masters

To keep all secrets from the Non-secure world, only the Bus Masters in the table below can access data in the Secure

world. For the Bus Masters living in the Secure world, the secure application must configure their corresponding control

interfaces in the peripheral space to Secure. The Cortex-M33 core as a Bus Master is split to run in Secure and Non-

secure contexts.

Table: Secure Bus Masters (Application)

Device Secure Bus Master Control Interface of Bus Master

VSE CRYPTOACC CRYTPOACC

HSE SEDMA or SEEXTDMA SEMAILBOX

Notes:

Use SMU_BMPUSATD0 register to configure the security attribute of a Bus Master.

Use SMU_PPUSATDn register to configure the control interface of Bus Master as a Secure peripheral.

LDMA is set as a Non-secure Bus Master to make sure it cannot be used to copy out data from the Secure memory.

Application Transitions

The system contains two Secure/Non-secure pairs.

ò The [bootloader pair](#bootloader pair) has a Secure bootloader and a Non-secure bootloader containing the

communication interfaces.

ó The [application pair](#application pair) has a Secure application and a Non-secure application consisting of the wireless

stacks (if applicable) and application layers.

As described in the preceding sections, the Secure part of these pairs is responsible for setting the security configurations

of the system during startup. For the handover between Secure/Non-secure pairs, the software must restore the system

so the Secure part of the other pair can execute and reconfigure the system.

The software must reconfigure the following items before transitioning to the next Secure/Non-secure pair:

Restored all peripherals and interrupts to Secure

Reset ESAU to default configuration (all configurable regions to Secure)

Reset SAU to default configuration (Secure for everything)

Copyright © 2025 Silicon Laboratories. All rights reserved. 116/280

TrustZone Implementation

Reset MPU to default configuration (removes any XN)

Gecko Bootloader

The Gecko bootloader ensures the Secure assets are protected during the boot flow and normal operation.

ò The SAU and Secure MPU mark all the flash for application and NVM as Secure and non-executable (XN) during boot. It

guards against bootloader NS code execution branching into the application code.

ó The bootloader needs to split into Secure and Non-secure software to protect secrets in the system. Secure code can

access the entire flash to validate or upgrade the system.

ô For VSE devices, the GBL Decryption Key (AES-128 key) is moved from the NS memory (last page of the main flash) to the

Secure part of the bootloader. The S implicity Commander v1.13 or higher provides a feature to inject the AES-128 key to the

bootloader binary file.

commander convert <BL image file> --aeskey <decryption key file> --outfile <BL image with decryption key>

õ The bootloader communication interfaces are placed in the NS area to support various communication components below

for firmware upgrades.

BGAPI UART

EZSP-SPI

UART XMODEM

ö The NS communication functions call into the bootloader APIs placed in the bootloader NSC region. The Secure application

validates all input arguments before processing the request.

÷ Before transiting from bootloader to normal operation, it resets the SAU to default configuration to make all the flash for

bootloader as Secure.

ø The Non-secure application software can call bootloader APIs through application NSC, and the corresponding Secure

function releases the non-executable (XN) restriction on the bootloader during normal operation.

Secure Library

The goal of the Secure library is to keep the PSA Crypto key and attestation token protected from malicious code on the

NSPE. The following figure overviews multiple components to support the Secure library.

Copyright © 2025 Silicon Laboratories. All rights reserved. 117/280

https://docs.silabs.com/mcu-bootloader/latest/bootloader-user-guide-gsdk-4/
https://www.silabs.com/documents/public/application-notes/an1222-efr32xg2x-production-programming.pdf
https://docs.silabs.com/mcu-bootloader/latest/group-Communication
https://docs.silabs.com/mcu-bootloader/latest/group-Interface
https://docs.silabs.com/mcu-bootloader/latest/group-Interface

TrustZone Implementation

ò The NS interfaces in NSPE are responsible for packing and passing all input arguments over the NSC functions on wrappers

in SPE.

ó The wrappers in SPE validate all input arguments before calling into the corresponding APIs in different drivers.

ô Because of the system memory layout limitation, the flash for NVM3 storage is located in the NSPE. Therefore the updated

PSA Internal Trusted Storage (ITS) driver needs to encrypt all crypto keys before storing them in Non-secure NVM.

õ Data stored directly using the NVM3 APIs are not encrypted.

The following table describes the new and updated components of the Secure library.

Component Description

SE Manager NS interface This component contains SE Manager API callable from the NSPE. It packages

the list of input arguments in the appropriate format before calling into the SE

Manager wrapper's NSC functions.

SE manager wrapper This component contains the interface into SE Manager exposed to the

NSPE. These NSC functions grant access to the SE Manager utility API and

validate all input arguments before calling into SE Manager.

PSA Crypto & Attestation NS interface This component contains PSA Crypto and attestation API callable from the

NSPE. It packages the list of input arguments in the appropriate format before

calling into the PSA Crypto and attestation wrapper's NSC functions.

PSA Crypto & Attestation wrapper This component contains the interface into PSA Crypto and attestation

exposed to the NSPE. These NSC functions grant access to the entire PSA

Crypto and attestation API and validate all input arguments before calling into

PSA Crypto and attestation.

PSA attestation This component in SPE provides the functionality required by the PSA

attestation specification.

Encrypted PSA ITS The PSA ITS layer builds on top of NVM3. This component is updated to

support encrypted storage to secure stored keys. The encryption is based on

the device's TrustZone Root Key.

NVM3 NS interface This component contains NVM3 API callable from the NSPE. It packages the

list of input arguments in the appropriate format before calling into the NVM3

wrapper's NSC functions.

NVM3 wrapper This component contains the interface into NVM3 exposed to the NSPE.

These NSC functions grant access to the NVM3 API and validate all input

arguments before calling into NVM3.

Notes:

The SE Manager NS interface, PSA Crypto NS interface, and NVM3 NS interface in the NSPE provide drop-in replacement

on SE Manager utility, PSA Crypto, and NVM3 APIs for existing wireless stacks and user applications.

The NSC calls can only take a limited number of arguments, so all NSC functions take a pointer to a list of parameters to

support a long list of arguments. All arguments must be validated using the intrinsic functions from CMSIS.

TrustZone Secure Key Storage

Copyright © 2025 Silicon Laboratories. All rights reserved. 118/280

https://armmbed.github.io/mbed-crypto/html/about.html
https://docs.silabs.com/gecko-platform/latest/driver/api/group-nvm3

TrustZone Implementation

The TrustZone Secure Key Storage provides a solution to store a user key in Secure RAM or an encrypted form in Non-

secure flash.

The TrustZone Root Key stored in the SE NVM for Secure Key Storage encryption is generated or renewed by following

operations.

The TrustZone Root Key had already existed if the shipped Series 2 device with SE firmware version supports this key.

Generate a TrustZone Root Key when upgrading from a SE firmware version that did not support this key to the one that

does.

Renew a TrustZone Root Key after performing a Device Erase.

Note: The TrustZone Root Key cannot be renewed if Device Erase is disabled.

The TrustZone Root Key is not exposable to the NSPE, and access to this key in SPE is different in HSE and VSE devices.

HSE - The SPE can access the TrustZone Root Key as a built-in non-exportable key in HSE NVM.

VSE - The SPE can access the TrustZone Root Key in Secure RAM, which is copied from VSE NVM during boot.

The TrustZone Root Key value after reset is identical to the value before reset. TrustZone Root Keys are unique on each

device. The key allows a user to securely store a key in the Non-secure flash, limiting the number of keys that can be

saved only by the amount of Non-secure storage. The following figure describes using the TrustZone Root Key to encrypt

a plaintext key and store it in Non-secure NVM.

ò After power-on, the device's TrustZone Root Key is available for the SPE.

ó A user key is generated and imported into the device's Non-secure memory. In this example, the key is imported into Non-

secure RAM for easy deletion, and the key is lost if device power is removed.

ô Call PSA Crypto API (psa_import_key() or psa_generate_key()) through SG in NSC to generate a key for crypto operations.

õ The plaintext key is passed to the PSA Crypto in SPE, where it is encrypted (AES-GCM) with the TrustZone Root Key.

ö The encrypted key is stored to the NVM in NSPE through the PSA ITS and NVM3 drivers.

÷ The plaintext key can now be deleted from the Non-secure RAM.

ø Only the PSA Crypto in SPE can retrieve the encrypted key from NVM in NSPE and decrypt it for crypto operations in SPE.

Copyright © 2025 Silicon Laboratories. All rights reserved. 119/280

https://docs.silabs.com/iot-security/latest/series2-secure-debug/

TrustZone Implementation

Note: Ignore steps 2 and 6 if the plaintext key is randomly generated by the PSA Crypto.

The following tables describe the storage differences between SVM and SVH devices with and without TrustZone Secure

Key Storage (SKS).

Key Type Storage on SVM Device Storage on SVH Device

Volatile Plaintext (without TrustZone SKS) RAM RAM

Persistent Plaintext (without TrustZone SKS) NVM NVM

Volatile Wrapped (without TrustZone SKS) Not supported RAM (1)

Persistent Wrapped (without TrustZone SKS) Not supported NVM (1)

Key Type Storage on SVM Device Storage on SVH Device

Volatile Plaintext (with TrustZone SKS) Secure RAM (2) Secure RAM

Persistent Plaintext (with TrustZone SKS) Encrypted plaintext key in NS

NVM (2)

Encrypted plaintext key in NS

NVM

Volatile Wrapped (with TrustZone SKS) Not supported Secure RAM

Persistent Wrapped (with TrustZone SKS) Not supported Encrypted wrapped key in NS

NVM

Notes:

The NVM or NS NVM is at the last part of the main flash.

It is possible to replace the wrapped key solution on the SVH device (1) with TrustZone Secure Key Storage on the SVM

device (2), but this is a less secure approach.

PSA Attestation

The device attestation service creates a token that contains a fixed set of device-specific data when requested by the

caller. Each device must have a unique Initial Attestation Key (IAK) pair. The device uses the private IAK to sign the token,

and the caller uses the public IAK to verify the token's authenticity.

The generation of the private IAK is different in SVM and SVH devices.

SVM - If the private IAK does not exist in NVM3, it is randomly generated when requested from the PSA Attestation driver

and saved to NVM3 through the TrustZone Secure Key Storage.

SVH - The private IAK is generated and securely stored in the HSE during chip production.

An Entity Attestation Token (EAT) is a mini-report that is cryptographically signed. An EAT is encoded in either one of two

standardized data formats: a Concise Binary Object Representation (CBOR) or in the text-based format JSON. A digital

signature is then used to protect its content. The technical specification defining the content of the EAT, which are claims

about the hardware and the software running on a device, is specified by the Internet Engineering Task Force (IETF).

The EAT is a crypto-signed report card with claims. A claim is a data item that is represented as a Key-Value pair. Claims can

relate to the device's pedigree or anything one wants the device to attest. Collected data can originate from the Root of

Trust (RoT), any protected area, or non-protected areas.

The EAT must be signed following the structure of the CBOR Object S igning and Encryption (COSE) specification. For

asymmetric key algorithms, the signature structure must be COSE-S ign1. A COSE-S ign1 is a CBOR encoded, self-secured

data blob that contains headers, a payload, and a signature.

The primary need for EAT verification is to check correct formation and signing as for any token. In addition, though, the

verifier can operate a policy where values of some of the claims in this profile can be compared to reference values that

are registered with the verifier for a given deployment, to confirm that the device is endorsed by the manufacturer supply

chain.

Copyright © 2025 Silicon Laboratories. All rights reserved. 120/280

https://docs.silabs.com/iot-security/latest/efr32-secure-key-storage/
https://www.rfc-editor.org/info/rfc7049
https://datatracker.ietf.org/doc/html/draft-ietf-rats-eat-11
https://www.rfc-editor.org/info/rfc8152

TrustZone Implementation

The PSA attestation token (aka Initial Attestation Token - IAT) is a profiled EAT. The Series 2 device will generate this

token by (Nonce claim below) unless the SE OTP is uninitialized or the SECURE_BOOT_ENABLE option in SE OTP is disabled.

The following tables describe claims used in the PSA attestation token of the Series 2 device.

Table: Claims of PSA Attestation Token

Key Claim Name �Present) Claim Description Claim Value

265

(-75000)

Profile Definition (Must) The Profile Definition claim encodes the

unique identifier corresponds to the EAT

profile.

http://arm.com/psa/2.0.0

2394

(-75001)

Client ID (Must) The Client ID claim represents the security

domain of the caller.

See note below (2

byes)

2395

(-75002)

Security Lifecycle (Must) The Security Lifecycle claim represents the

current lifecycle state of the PSA RoT.

Device dependent (2

bytes)

2396

(-75003)

Implementation ID (Must) The Implementation ID claim uniquely

identifies the implementation of the immutable

PSA RoT.

Device dependent (32

bytes)

2397

(-75004)

Boot Seed (Optional) The Boot Seed claim represents a value

created at system boot time that will allow

differentiation of reports from different boot

sessions.

Device dependent (32

bytes)

2399

(-75006)

Software Components (Must) The Software Components claim is a list of

software components that includes all the

software loaded by the PSA RoT.

See note below

10

(-75008)

Nonce (Must) The Nonce claim is used to carry the

challenge provided by the caller to

demonstrate freshness of the generated

token. The length must be either 32, 48, or

64 bytes.

Random nonce

(32/48/64 bytes)

256

(-75009)

Instance ID (Must) The Instance ID claim represents the unique

identifier of the IAK. The length must be 33

bytes.

SHA-256 hash of public

IAK (32 bytes) with

header 0x01

Notes:

Some claims MUST be present in a PSA attestation token.

The keys -7500x were defined in a previous version of the PSA attestation token specification (PSA_IOT_PROFILE_1 profile)

that is still used in the HSE-SVH firmware.

The actual claims returned from the tokens on the SVH device are HSE firmware version-dependent.

Key 2394: In PSA, a security domain is represented by a signed integer where negative values represent callers from the

NSPE and positive IDs represent callers from the SPE. The value 0 is not permitted.

Key 2395 (For the definitions of these lifecycle states, refer to the ARM PSA Security Model):

UNKNOWN (0x0000 - 0x00ff)

ASSEMBLY_AND_TEST (0x1000 - 0x10ff)

PSA_ROT_PROVISIONING (0x2000 - 0x20ff)

SECURED (0x3000 - 0x30ff)

NON_PSA_ROT_DEBUG (0x4000 - 0x40ff)

RECOVERABLE_PSA_ROT_DEBUG (0x5000 - 0x50ff)

DECOMMISSIONED (0x6000 - 0x60ff)

Key 2396:

Word[0]: Die revision

Word[1]: SE OTP version (return 0 for VSE SE firmware < v1.2.14)

Word[2]: Security capability (not applicable to HSE-SVH device, always returns 1 in this word)

0: Unknown security capability

1: Security capability not applicable

Copyright © 2025 Silicon Laboratories. All rights reserved. 121/280

https://www.ietf.org/archive/id/draft-tschofenig-rats-psa-token-21.html
https://docs.silabs.com/mcu-bootloader/latest/series2-secure-boot-with-rtsl/
https://developer.arm.com/-/media/Files/pdf/PlatformSecurityArchitecture/Architect/DEN0079_PSA_SM_ALPHA-03_RC01.pdf

TrustZone Implementation

2: Basic security capability

3: Root of Trust security capability

4: HSE-SVM security capability

5: HSE-SVH security capability (run HSE-SVM binary on HSE-SVH device)

Word[3]: Production version

Word[4:7]: Reserved (zeros)

Key 2399: Each software component uses the attributes described in the following table, and some MUST be present in a

software component claim.

Key Attribute �Present) Description Value

1 Measurement Type (Optional) The Measurement Type attribute is a short

string representing the role of this software

component.

See note below

2 Measurement Value (Must) The Measurement Value attribute represents a

hash of the invariant software component in

memory at startup time.

SHA-256 hash (32

bytes) of the

firmware

4 Version (Optional) The Version attribute is the issued software

version in the form of a text string.

A string of 8 bytes

The following measurement types may be used for Key 1:

"BL": a Bootloader

"PRoT": a component of the PSA Root of Trust

"ARoT": a component of the Application Root of Trust

"App": a component of the NSPE application

"TS": a component of a Trusted Subsystem

The PSA Attestation API allows access to the PSA attestation token, so an external entity can cryptographically verify the

identity and trust status of the device.

Table: PSA Attestation API

PSA Attestation API Usage

psa_ initial_attest_get_token Retrieve the PSA attestation Token.

psa_ initial_attest_get_token_size Calculate the size of a PSA attestation Token.

sl_tz_attestation_get_public_key Get the public IAK key for PSA attestation token signature verification.

Note: The sl_tz_attestation_get_public_key is a S ilicon Labs custom API.

SE Manager

SE Manager is the foundation for the Secure library cryptographic operations on HSE devices. It means that SE Manager

has to move into the SPE.

The following SE Manager core APIs are always available in the NSPE.

SE Manager Core API VSE�SVM HSE�SVM HSE�SVH

sl_se_ init Y Y Y

sl_se_deinit Y Y Y

sl_se_ init_command_context Y Y Y

sl_se_deinit_command_context Y Y Y

sl_se_set_yield Y Y Y

The following SE Manager core APIs expose to the NSPE through the NSC interface for the VSE devices.

Copyright © 2025 Silicon Laboratories. All rights reserved. 122/280

https://docs.silabs.com/gecko-platform/latest/service/api/group-sl-se-manager-core
https://docs.silabs.com/gecko-platform/latest/service/api/group-sl-se-manager-core

TrustZone Implementation

SE Manager Core API VSE�SVM HSE�SVM HSE�SVH

sl_se_read_executed_command Y - -

sl_se_ack_command Y - -

The following SE Manager utility APIs expose to the NSPE through the NSC interface for configuring the security features

of HSE or VSE devices.

SE Manager Utility API VSE�SVM HSE�SVM HSE�SVH

sl_se_check_se_ image Y Y Y

sl_se_apply_se_ image Y Y Y

sl_se_get_upgrade_status_se_ image Y Y Y

sl_se_check_host_ image Y Y Y

sl_se_apply_host_ image Y Y Y

sl_se_get_upgrade_status_host_ image Y Y Y

sl_se_ init_otp_key Y Y Y

sl_se_read_pubkey Y Y Y

sl_se_ init_otp Y Y Y

sl_se_read_otp Y Y Y

sl_se_get_se_version Y Y Y

sl_se_get_debug_lock_status Y Y Y

sl_se_apply_debug_lock Y Y Y

sl_se_get_otp_version Y Y Y

sl_se_write_user_data - Y (EFR32xG21 only) Y (EFR32xG21 only)

sl_se_erase_user_data - Y (EFR32xG21 only) Y (EFR32xG21 only)

sl_se_get_reset_cause - Y (EFR32xG21 only) Y (EFR32xG21 only)

sl_se_get_status - Y Y

sl_se_get_serialnumber - Y Y

sl_se_enable_secure_debug - Y Y

sl_se_disable_secure_debug - Y Y

SE Manager Utility API VSE�SVM HSE�SVM HSE�SVH

sl_se_set_debug_options - Y Y

sl_se_erase_device - Y Y

sl_se_disable_device_erase - Y Y

sl_se_get_challenge - Y Y

sl_se_roll_challenge - Y Y

sl_se_open_debug - Y Y

sl_se_disable_tamper - - Y

sl_se_read_cert_size - - Y

sl_se_read_cert - - Y

Note: The NSPE cannot access the other SE Manager APIs for cryptographic and attestation operations.

Copyright © 2025 Silicon Laboratories. All rights reserved. 123/280

https://docs.silabs.com/gecko-platform/latest/service/api/group-sl-se-manager-util
https://docs.silabs.com/gecko-platform/latest/service/api/group-sl-se-manager

TrustZone Implementation

Common Vulnerabilities and Exposures �CVE�

At this writing, the following known TrustZone CVE had been fixed in the current implementation.

CVE-2020-16273: Stack sealing

CVE-2021-36465: VLLDM instruction/floating-point vulnerability

Copyright © 2025 Silicon Laboratories. All rights reserved. 124/280

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-16273
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-35465

Upgrade Existing Application To TrustZone

Upgrade Existing Application To TrustZone

Upgrade Existing Application to TrustZone
The main concerns when upgrading existing deployment to the TrustZone solution are:

The Secure/Non-secure pair for the bootloader (24 kB) does not fit inside the current allotted bootloader space (16 kB).

The Secure/Non-secure pair for the application does not fit inside the current allotted application space.

The PSA ITS moves from a non-encrypted to an encrypted format, so the existing stored cryptographic keys in NVM3

cannot be reused after upgrading the current application to TrustZone.

The Secure Library is based on PSA Crypto, so the existing application cannot integrate with the TrustZone if one of the

following conditions is valid.

Use SE Manager APIs for cryptographic and attestation operations.

Use classic Mbed TLS APIs for cryptographic operations (except for X.509 certificate) and Transport Layer Security (TLS)

protocol.

System Requirements

The following table lists the tools and software required for TrustZone development on Series 2 devices.

Tool/Software Required Version Description

GCC v10.3.1 Fix a bug (ID 99271) on cmse_nonsecure_call attribute.

IAR EWARM v9.20.4 Fix a bug (EWARM-9484) on __cmse_nonsecure_call

attribute.

Segger J-Link ≥ v7.6.2c v7.6.2c is the first version to add basic TrustZone support

on Series 2 devices.

S implicity Studio ≥ v5.6.3.0 v5.6.3.0 is the first version to support TrustZone software

development on Series 2 devices.

S implicity Commander ≥ v1.13.3 v1.13.3 includes a TrustZone-aware flash loader and

supports features required for TrustZone development.

GSDK ≥ v4.2.2 GSDK v4.2.2 is the first version to support TrustZone

software development on Series 2 devices.

SE Firmware ≥ v1.2.14 v1.2.14 is the first version to fully support TrustZone on

xG21 (HSE) and xG22 (VSE) devices.

SE Firmware ≥ v2.2.1 v2.2.1 is the first version to fully support TrustZone on

other Series 2 HSE and VSE devices.

Notes:

Required GCC and IAR EWARM versions are GSDK-dependent.

Bug list of GCC v10.3

IAR EWARM release note

Segger J-Link release note

S implicity Studio user guide

Latest version of S implicity Commander

GSDK release note

S ilicon Labs strongly recommends installing the latest SE firmware on Series 2 devices to support the required TrustZone

features. The latest SE firmware image and release notes after installing the GSDK (Windows folder):

C:\Users<PC USER NAME>\S implicityStudio\SDKs\gecko_sdk\util\se_release\public

Peripheral Addresses in Device Header Files

Copyright © 2025 Silicon Laboratories. All rights reserved. 125/280

https://docs.silabs.com/gecko-platform/latest/service/api/group-sl-se-manager
https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=10.3
https://updates.iar.com/?product=EWARM
https://www.segger.com/downloads/jlink/ReleaseNotes_JLink.html
https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-overview/
https://www.silabs.com/developers/mcu-programming-options
https://github.com/SiliconLabs/gecko_sdk/releases

Upgrade Existing Application To TrustZone

The device header files (e.g., efr32mg21b020f1024im32.h) need to be configurable for different situations. The

SL_TRUSTZONE_SECURE and SL_TRUSTZONE_NONSECURE definitions specify whether the compilation is for Secure or Non-

secure applications. The SL_TRUSTZONE_SECURE and SL_TRUSTZONE_NONSECURE should be exclusive. If none of the

definitions are true, the state should be similar to the Non-secure configuration, but the startup code (SystemInit() in

system_*.c) will be responsible for reconfiguring the system.

Define �Software Component) Default Peripheral Pointer Startup Code

SL_TRUSTZONE_SECURE (TrustZone

Secure)

Point to Secure peripherals (*_BASE =

*_S_BASE)

No effect on SystemInit()

SL_TRUSTZONE_NONSECURE

(TrustZone Non-Secure)

Point to Non-secure peripherals

(*_BASE = *_NS_BASE)

No effect on SystemInit()

None of the above (-) Point to Non-secure peripherals

(*_BASE = *_NS_BASE)

SystemInit() moves peripherals to Non-

secure

When building a Secure application (SL_TRUSTZONE_SECURE is true), all peripherals shall have their non-suffixed default

address pointing to the Secure location of the peripheral (e.g., EMU). But the definitions in sl_trustzone_secure_config.h can

force the addresses of specific peripherals pointing to the Non-secure location.

#ifndef SL_TRUSTZONE_SECURE_CONFIG_H

#define SL_TRUSTZONE_SECURE_CONFIG_H

// Specify security configuration of peripherals. Peripherals that are not

// included here will automatically have their _BASE addresses point to their

// secure address. This might not be true, since most peripherals are configured

// to be non-secure -- but it's also not a problem if the peripheral is not

// accessed from the S app.

// Used in multiple places.

#define SL_TRUSTZONE_PERIPHERAL_CMU_S (0)

// Used by SE Manager service.

#define SL_TRUSTZONE_PERIPHERAL_AHBRADIO_S (0)

// Used by MSC service.

#define SL_TRUSTZONE_PERIPHERAL_LDMA_S (1)

// Used by MSC service.

#define SL_TRUSTZONE_PERIPHERAL_LDMAXBAR_S (1)

#endif // SL_TRUSTZONE_SECURE_CONFIG_H

#if defined(SL_CATALOG_TRUSTZONE_SECURE_CONFIG_PRESENT)

#include "sl_trustzone_secure_config.h"

#endif

#if ((defined(SL_TRUSTZONE_SECURE) && !defined(SL_TRUSTZONE_PERIPHERAL_EMU_S))

|| (defined(SL_TRUSTZONE_PERIPHERAL_EMU_S) && (SL_TRUSTZONE_PERIPHERAL_EMU_S !� 0)))

#define EMU_BASE (EMU_S_BASE) /* EMU base address */

#else

In other cases (SL_TRUSTZONE_NONSECURE is true or both SL_TRUSTZONE_SECURE and SL_TRUSTZONE_NONSECURE are

false), all peripherals shall have their non-suffixed default address pointing to the Non-secure location of the peripheral

(e.g., EMU).

#define EMU_BASE (EMU_NS_BASE) /* EMU base address */

Note: Do not install the TrustZone Secure or TrustZone Non-Secure software component to the TrustZone-

unaware application.

Startup Code

Copyright © 2025 Silicon Laboratories. All rights reserved. 126/280

Upgrade Existing Application To TrustZone

The startup code moves peripherals from Secure to Non-secure to support the default peripheral locations. In a TrustZone-

aware application (either SL_TRUSTZONE_SECURE or SL_TRUSTZONE_NONSECURE is true), this is the application's

responsibility (skip lines 168 to 194 in SystemInit()) and is done in the Secure firmware of the system.

For the TrustZone-unaware application (both SL_TRUSTZONE_SECURE and SL_TRUSTZONE_NONSECURE are false), the

SystemInit() in system_*.c (e.g., system_efr32mg21.c) moves peripherals to the Non-secure location.

The SystemInit() sets the accesses of all peripherals to Non-secure except for the SMU and HSE SEMAILBOX (lines 172 to

178).

The SystemInit() sets the SAU in All Non-secure configuration (lines 180 to 187).

It ensures Non-secure access to Non-secure peripherals.

The device component files (e.g., efr32mg21b020f1024im32.slcc) enable the CMSE compiler option (-mcmse for GCC and --

cmse for IAR) to pass the condition in line 181 to program the SAU.

To catch the missing CMSE compiler option, it will generate a preprocessor error (line 186) if the CMSE flag is not set

when manually upgrading a project from GSDK v4.0.x to ≥v4.1.x for the TrustZone-unaware application.

The SystemInit() does not program the ESAU (default Secure flash is 32 MB), so the whole program is run in the Secure

state.

The SystemInit() also enables the BMPUSEC and PPUSEC interrupts in the SMU (lines 189 to 193). It ensures the TrustZone-

unaware application catches any violations of Bus Master and peripheral security access permissions.

The SMU_BASE and HSE SEMAILBOX_HOST_BASE in device header files must point to the Secure location regardless of the

SL_TRUSTZONE_SECURE and SL_TRUSTZONE_NONSECURE settings to avoid security violations on peripherals in the

TrustZone-unaware application (SMU and HSE SEMAILBOX are set to Secure peripherals).

Copyright © 2025 Silicon Laboratories. All rights reserved. 127/280

https://developer.arm.com/documentation/ecm0359818/latest

Upgrade Existing Application To TrustZone

#if ((defined(SL_TRUSTZONE_SECURE) && !defined(SL_TRUSTZONE_PERIPHERAL_SMU_S))

|| (defined(SL_TRUSTZONE_PERIPHERAL_SMU_S) && (SL_TRUSTZONE_PERIPHERAL_SMU_S !� 0)))

#define SMU_BASE (SMU_S_BASE) /* SMU base address */

#else

#define SMU_BASE (SMU_S_BASE) /* SMU base address */

#if ((defined(SL_TRUSTZONE_SECURE) && !defined(SL_TRUSTZONE_PERIPHERAL_SEMAILBOX_HOST_S))

|| (defined(SL_TRUSTZONE_PERIPHERAL_SEMAILBOX_HOST_S) && (SL_TRUSTZONE_PERIPHERAL_SEMAILBOX_HOST_S !� 0)))

#define SEMAILBOX_HOST_BASE (SEMAILBOX_S_HOST_BASE) /* SEMAILBOX_HOST base address */

#else

#define SEMAILBOX_HOST_BASE (SEMAILBOX_S_HOST_BASE) /* SEMAILBOX_HOST base address */

Notes:

The CMSE compiler option of GCC is in the Other flagswindow under C/C++ Build → Settings → Tool Settings → GNU ARM C

Compiler→ Miscellaneous.

The CMSE compiler option of IAR is in the Command line options: (one per line) window under Options... → C/C++ Compiler →

Extra Options.

Copyright © 2025 Silicon Laboratories. All rights reserved. 128/280

Upgrade Existing Application To TrustZone

Linker File

The template_contribution defined in the slcp files of Secure and Non-secure projects will override the default memory

settings defined in the device component files (e.g., efr32mg21b020f1024im32.slcc) to generate the linker files for Secure

and Non-secure applications.

Memory Region
Default Setting in Device Component
File

Override Setting in
template_contribution

Flash start address device_flash_addr memory_flash_start

Flash size device_flash_size memory_flash_size

RAM start address device_ram_addr memory_ram_start

RAM size device_ram_size memory_ram_size

The ESAU sets the flash and RAM start address, so these addresses should be alignment at 4 kB (0x1000). The Secure

project linker file needs to have a section for NSC (Secure Gateway) at the end of the Secure flash section. The SAU sets

the start address of the NSC section, so this section only needs to be 32 bytes aligned.

GCC NSC: The .gnu.sgstubs region in the Secure application map file (.map)

IAR NSC: The Veneer$$CMSE region in the Secure application map file (.map)

Copyright © 2025 Silicon Laboratories. All rights reserved. 129/280

https://siliconlabs.github.io/slc-specification/latest/format/component/template_contribution/
https://siliconlabs.github.io/slc-specification/latest/format/project/

Upgrade Existing Application To TrustZone

The Secure and Non-secure flash and RAM sizes are incremented or decremented in 4 kB. The memory configurations in

Secure and Non-secure applications are correlated, so the flash and RAM settings are in pairs.

Note: Users should not directly edit the template_contribution in the slcp file, but rather use the Memory Editor

in S implicity Studio to update the memory configuration.

Debugger

S implicity Studio supports two debuggers:

GNU Debugger (GDB) client and SEGGER's GDB server

S implicity Studio Debugger

The TrustZone-unaware and TrustZone-aware applications enable the PPUSEC interrupts in the SMU. The debugger will

trigger the SMU_SECURE_IRQHandler if the [Registers] or [Peripherals] view feature violates peripheral security access

permission.

Simplicity Studio Debugger

The [Registers] view of S implicity Studio Debugger can only access the Secure location of a peripheral. The following

figure demonstrates the Default_Handler (SMU_SECURE_IRQHandler not defined) is triggered (PPUSEC in SMU-> IF = 1) when

viewing the registers of GPIO peripheral (PPUFSPERIPHID = 13) that is set to Non-secure access in the SMU.

The debugger can access the registers of the SMU since this peripheral is set to Secure access in the SMU.

This limitation does not apply to GSDK < v4.1.0 since no peripherals are configured for Non-secure access.

Copyright © 2025 Silicon Laboratories. All rights reserved. 130/280

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-testing-and-debugging/using-the-debugger

Upgrade Existing Application To TrustZone

The S implicity Studio Debugger is not the preferred choice for TrustZone debugging since it has limitations on viewing Non-

secure access peripherals.

GNU Debugger �GDB�

The [Peripherals] view of GNU Debugger can access either the Secure or Non-secure location of the peripheral to avoid

conflicts on security access permission. The following figure shows the registers of GPIO on Secure (GPIO at

0x4003C000) and Non-secure (GPIO_NS at 0x5003C000) addresses. The GPIO peripheral is set to Non-secure access in

the SMU, so the registers in the Secure address are displayed as zero.

Copyright © 2025 Silicon Laboratories. All rights reserved. 131/280

Upgrade Existing Application To TrustZone

The GNU Debugger is the preferred choice for TrustZone debugging and is the default debugger for S implicity Studio ≥

v5.5.0.0.

Copyright © 2025 Silicon Laboratories. All rights reserved. 132/280

TrustZone Platform Examples

TrustZone Platform Examples

TrustZone Platform Examples
The following TrustZone platform examples located in the C:\Users<PC USER

NAME>\S implicityStudio\SDKs\gecko_sdk\app\common\example folder (Windows) demonstrate the TrustZone

implementation on Series 2 devices. All TrustZone platform examples do not include Gecko Bootloader.

TrustZone PSA Attestation

Example Folder Description

tz_psa_attestation The workspace description file (tz_psa_attestation_ws.slcw)

creates the TrustZone PSA Attestation example. The

project description file (tz_psa_attestation_s.slcp)

configures a Secure application that provides the Secure

Library functionality required by the Non-secure application.

tz_psa_attestation_ns The project description file (tz_psa_attestation_ns.slcp)

configures a Non-secure application for the TrustZone PSA

Attestation example.

Notes:

This example cannot run if the SECURE_BOOT_ENABLE (root of trust of the attestation) option in SE OTP is disabled.

The combined image of Secure and Non-secure applications is signed by the example_signing_key.pem (private key) in

C:\Users<PC USER NAME>\S implicityStudio\SDKs\gecko_sdk\platform\commonfolder (Windows). The

example_signing_pubkey.pem (public key) in the same folder is installed to the SE OTP to verify the image signature during

Secure Boot.

TrustZone PSA Crypto ECDH

Copyright © 2025 Silicon Laboratories. All rights reserved. 133/280

https://docs.silabs.com/mcu-bootloader/latest/series2-secure-boot-with-rtsl/

TrustZone Platform Examples

Example Folder Description

tz_psa_crypto_ecdh The workspace description file (tz_psa_crypto_ecdh_ws.slcw) upgrades the existing Platform -

PSA Crypto ECDH example to TrustZone-aware. The project description file

(tz_psa_crypto_ecdh_s.slcp) configures a Secure application that provides the Secure Library

functionality required by the Non-secure application.

tz_psa_crypto_ecdh_ns The project description file (tz_psa_crypto_ecdh_ns.slcp) configures the existing Platform - PSA

Crypto ECDH example as a Non-secure application. The source code can be reused without

changes.

The following sections use S implicity Studio v5.6.3.0 and GSDK v4.2.2. The procedures and pictures may be different if

using higher versions of S implicity Studio 5 and GSDK.

Project Description File

The project description file (.slcp) contains references to the GSDK used and a list of components to use from these. The

TrustZone-aware application requires separate slcp files for the Secure and Non-secure applications.

Users should not directly edit the slcp files, but rather use the Memory Editor and Post Build Editor in S implicity Studio to

update the memory configuration and post-build actions.

Secure Application

The following figure describes which TrustZone software components are installed for the TrustZone Secure library of the

TrustZone PSA Crypto ECDH example.

Copyright © 2025 Silicon Laboratories. All rights reserved. 134/280

https://siliconlabs.github.io/slc-specification/1.0/format/project/

TrustZone Platform Examples

Notes:

The services provided by the Secure library are standardized.

The source files for the Secure library will be automatically added to the application when generating the Secure project

from the slcp file. For the current TrustZone implementation, modifications of the source files of the Secure library are not

recommended.

Non-secure Application

The following figure describes which TrustZone software components are installed for the Non-secure application of the

TrustZone PSA Crypto ECDH example.

Copyright © 2025 Silicon Laboratories. All rights reserved. 135/280

TrustZone Platform Examples

Notes:

The following software components are automatically installed when PSA Crypto and ITS services are used on the Non-

secure application.

MSC Service for TrustZone Secure Key Library

NVM3 Service for TrustZone Secure Key Library

PSA Crypto Service for TrustZone Secure Key Library

PSA ITS Service for TrustZone Secure Key Library

SYSCFG Service for TrustZone Secure Key Library

The following software components can be installed to the Non-secure application when those services are required.

PSA Attestation Service for TrustZone Secure Key Library

SE Manager Service for TrustZone Secure Key Library

Workspace

A workspace is a structure that can contain multiple projects. 'Workspace' is a generic term for this construct. In the context

of S implicity Studio, where workspace has a different, Eclipse-based, meaning, workspaces are referred to as Solutions.

Copyright © 2025 Silicon Laboratories. All rights reserved. 136/280

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-developing-with-project-configurator/project-solutions

TrustZone Platform Examples

The workspace description file (.slcw) contains references to projects (.slcp) that make up the workspace. Users should

not directly edit the slcw file, but rather use the Post Build Editor in S implicity Studio to update the post-build actions.

Memory Configuration

The memory configurations in the TrustZone platform examples are based on the Series 2 radio board with minimum flash

(512 kB) and RAM (32 kB), so these configurations can run on all Series 2 radio boards. Users can customize the settings

when more flash and RAM are available on the selected device.

Memory flash size (total) = memory_flash_size (S) + memory_flash_size (NS) = 512 kB

Memory RAM size (total) = memory_ram_size (S) + memory_ram_size (NS) = 32 kB

Secure Application

The project description file of the Secure application (*_s.slcp) uses the default memory setting below to generate the

Secure linker file (linkerfile.ld for GCC and linkerfile.icf for IAR in the project autogen folder).

The actual memory usage during software development is unknown, so it needs to reserve enough flash (memory_flash_size :

176 kB) and RAM (memory_ram_size : 12 kB) for the Secure part of all TrustZone platform examples. The bigger RAM size

(including stack and heap) is mainly for the software fallback on cryptographic operations in PSA Crypto.

Default Memory Setting �Secure) xG21 and xG22 Devices Other Series 2 Devices

memory_flash_start 0x00000000 0x08000000

memory_flash_size 0x0002C000 (176 kB) 0x0002C000 (176 kB)

memory_ram_start 0x20000000 0x20000000

memory_ram_size 0x00003000 (12 kB) 0x00003000 (12 kB)

 MEMORY

{

 FLASH (rx) : ORIGIN = 0�0, LENGTH = 0�2c000

 RAM (rwx) : ORIGIN = 0�20000000, LENGTH = 0�3000

}

Non-secure Application

The project description files of the Non-secure application (*_ns.slcp) use the default memory setting below to generate

the Non-secure linker file (linkerfile.ld for GCC and linkerfile.icf for IAR in the project autogen folder).

The actual memory usage during software development is unknown, so the remaining flash (memory_flash_size : 336 kB) and

RAM (memory_ram_size : 20 kB) should be big enough for the Non-secure part of all TrustZone platform examples.

Default Memory Setting �Non-secure) xG21 and xG22 Devices Other Series 2 Devices

memory_flash_start 0x0002C000 (176 kB) 0x0802C000 (176 kB)

memory_flash_size 0x00054000 (336 kB) 0x00054000 (336 kB)

memory_ram_start 0x20003000 (12 kB) 0x20003000 (12 kB)

memory_ram_size 0x00005000 (20 kB) 0x00005000 (20 kB)

 MEMORY

{

 FLASH (rx) : ORIGIN = 0�2c000, LENGTH = 0�54000

 RAM (rwx) : ORIGIN = 0�20003000, LENGTH = 0�5000

}

Copyright © 2025 Silicon Laboratories. All rights reserved. 137/280

https://siliconlabs.github.io/slc-specification/latest/format/workspace/
https://siliconlabs.github.io/slc-specification/latest/format/project/

TrustZone Platform Examples

Note: The usable flash for Non-secure code should be equal to memory_flash_size - NVM size (default is 40 kB)

if NVM3 storage is required.

Memory Editor

The default memory setting of Secure and Non-secure applications are good enough for software development and

debugging. The final memory layouts of Secure and Non-secure projects are deduced by inspecting the flash and RAM

usage in the Secure application memory map file (.map).

The Memory Editor in S implicity Studio 5 is a graphical tool for editing the memory layout (flash and RAM) of the

applications in the workspace. The Memory Editor will update the linker file in the project autogen folder with the custom

settings. Rebuild the projects to use the new memory configurations in the linker files.

The Memory Editor is located at the Quick Links and CONFIGURATION TOOLS of Secure or Non-secure slcp file.

Copyright © 2025 Silicon Laboratories. All rights reserved. 138/280

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-getting-started/start-a-project#memory-editor

TrustZone Platform Examples

The following items will be determined by the flash usage in the Secure application memory map file:

memory_flash_size (S)

memory_flash_start (NS)

memory_flash_szie (NS)

Note: The Memory Editor in S implicity Studio v5.6.3.0 can only adjust the flash size in 8 kB (page size)

alignment, which may not fit the 4kB alignment between the Secure and Non-secure flash boundary.

The following items will be determined by the RAM usage in the Secure application memory map file:

memory_ram_size (S)

memory_ram_start (NS)

memory_ram_szie (NS)

Copyright © 2025 Silicon Laboratories. All rights reserved. 139/280

TrustZone Platform Examples

Build

The Secure project must be built first to create the Secure object library (trustzone_secure_library.o) with function entries

for the Non-secure project. Both projects need to be rebuilt if any changes in the Secure project. Users can use S implicity

IDE in S implicity Studio 5 or IAR EWARM v9.20.4 to build the TrustZone platform examples.

Simplicity IDE

The following procedures are based on the TrustZone PSA Crypto ECDH example on BRD4182A Radio Board

(EFR32MG22C224F512IM40).

ò Use the tz_psa_crypto keyword to search in EXAMPLE PROJECTS & DEMOS tab. Select the tz_psa_crypto_ecdh_ws

example.

 2. Click [CREATE] to generate the solution.

Copyright © 2025 Silicon Laboratories. All rights reserved. 140/280

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-developing-with-project-configurator/project-solutions

TrustZone Platform Examples

3. The Project Configuration dialog shows the Secure and Non-secure projects in the target solution. Click [FINISH] to start

the creation process.

4. The S implicity IDE perspective opens after finishing the solution creation. Click Build on the S implicity IDE perspective

toolbar to build the projects of a selected solution in order (Secure then Non-secure).

Copyright © 2025 Silicon Laboratories. All rights reserved. 141/280

TrustZone Platform Examples

5. The post-build actions (.slpb files) of the Secure project, Non-secure project, and workspace will be processed in

sequence if the solution is successfully built. The combined image (tz_psa_crypto_ecdh_ws-combined.s37) in the Secure

project artifact folder can be used for programming the device or debugging.

 6. Use Memory Editor to finalize the memory

layouts of Secure and Non-secure applications and rebuild the solution to update the memory configurations.

Note: The S implicity IDE can only apply the post-build action to a particular project if multiple Secure or Non-

secure projects exist in the solution.

IAR EWARM

The following procedures are based on the TrustZone PSA Crypto ECDH example on BRD4181A Radio Board

(EFR32MG21A010F1024IM32).

ò Follow steps 1 to 3 in TrustZone PSA Crypto ECDH to generate the solution for the tz_psa_crypto_ws . Select the

tz_psa_crypto_ecdh_s.slcp file.

ó The Overview tab shows the Target and Tool Settings card on the left side. Scroll down if necessary and click

[ChangeTarget/SDK/Generators].

Copyright © 2025 Silicon Laboratories. All rights reserved. 142/280

TrustZone Platform Examples

3. Drop down the CHANGE PROJECT GENERATORS list and select IAR Embedded Workbench Project.

4. Click [Save] to generate an IAR Secure project (tz_psa_crypto_ecdh_s.ewp).

Copyright © 2025 Silicon Laboratories. All rights reserved. 143/280

TrustZone Platform Examples

5. Select the tz_psa_crypto_ecdh_ns.slcp file. Repeat steps 2 to 4 to generate an IAR Non-secure* project

(tz_psa_crypto_ecdh_ns.ewp). 6. Use a text editor to create an IAR tz_psa_crypto_ecdh_ws.ewwfile (shown below) to

house the projects (tz_psa_crypto_ecdh_s.ewpand tz_psa_crypto_ecdh_ns.ewp) generated in steps 4 and 5. The location of

the tz_psa_crypto_ecdh_ws.eww is the directory for .

<?xml version ="1.0" encoding="iso-8859�1"?>

<workspace>

<project>

<path>WS_DIR\tz_psa_crypto_ecdh_s\tz_psa_crypto_ecdh_s.ewp</path>

</project>

<project>

<path>WS_DIR\tz_psa_crypto_ecdh_ns\tz_psa_crypto_ecdh_ns.ewp</path>

</project>

<batchBuild/>

</workspace>

 7. Double-click the

tz_psa_crypto_ecdh_ws.ewwfile to open the workspace that includes Secure and Non-secure projects.

Copyright © 2025 Silicon Laboratories. All rights reserved. 144/280

TrustZone Platform Examples

 8. Click the tz_psa_crypto_ecdh_s tab to

open the Secure project. Click (Make) to build. It exports the Secure object library (trustzone_secure_library.o) for

function entries that will be used by the Non-secure project.

 9. Click the tz_psa_crypto_ecdh_ns tab to

open the Non-secure project.

 10. The SL_TRUSTZONE_NONSECURE

defined in the Non-secure project disables the CMSE compiler option (--cmse) regardless of whether the Project →

Copyright © 2025 Silicon Laboratories. All rights reserved. 145/280

TrustZone Platform Examples

Options... → General Options → 32-bit → TrustZone → Mode: setting is Secure or Non-secure. So changing this

configuration from Secure to Non-secure is optional. Click [OK] to exit.

 11. Click (Make) to build

the Non-secure project. The post-build actions of the workspace (tz_psa_crypto_ecdh_ws.slpb) will be triggered in IAR to

combine the Secure and Non-secure images (tz_psa_crypto_ecdh_ws-combined.s37) to the artifact folder of

tz_psa_crypto_ecdh_s for programming the device.

 12. Use Memory Editor to finalize the

memory layouts of Secure and Non-secure applications and rebuild the Secure and Non-secure projects to update the

memory configurations.

Note: The IAR EWARM can only apply the workspace post-build action to a particular project if multiple Secure

or Non-secure projects exist in the workspace.

Debugging

Users can use S implicity IDE in S implicity Studio 5 or IAR EWARM v9.20.4 to debug the TrustZone platform examples.

Building the projects with Optimization Level None (-O0) is recommended for debugging.

Simplicity IDE

The TrustZone debugging process on S implicity IDE is similar to the existing sample projects in S implicity Studio.

Copyright © 2025 Silicon Laboratories. All rights reserved. 146/280

TrustZone Platform Examples

ó Flash the combined image (tz_psa_crypto_ecdh_ws-combined.s37) generated in S implicity IDE to the device.

ô Select the Secure or Non-secure project and use the Debug icon to launch a debug session.

 4. Follow the instructions in the Using the

Debugger section in S implicity Studio 5 User's Guide to debug the Secure or Non-secure application. 5. The debugger

cannot step into the function in a Non-secure application when debugging the Secure application and vice versa. Use the

Program Counter (PC in Secure or Non-secure address) in the Registers window to determine the program status.

IAR EWARM

Use the tz_psa_crypto_ecdh_ws.eww workspace created in IAR EWARM for the debugger settings. Except for a minor

difference in step 3, the following steps are the same as those to set up the Secure (tz_psa_crypto_ecdh_s) and Non-

secure (tz_psa_crypto_ecdh_ns) projects for debugging.

ò Select Options... in the context menu of the Secure or Non-secure project and open the IDE Options

→ Stack dialog. Uncheck the Stack pointer(s) not valid until program reaches* checkbox. Click [OK] to exit.

 2. Select

Options... in the context menu of the Secure or Non-secure project and open the window for

Copyright © 2025 Silicon Laboratories. All rights reserved. 147/280

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-testing-and-debugging/using-the-debugger

TrustZone Platform Examples

Debugger options. Click the Setup tab to open a dialog, and uncheck the Run to → main checkbox. Click the Images tab to

set up another option.

 3. Check the ownload extra

image option. Enter the location of the .out file to Path: with Offset: set to 0. All project relative paths are resolved from

the directory location of the tz_psa_crypto_ecdh_ws.eww workspace file.

Location of Non-secure .out file for Secure project: tz_psa_crypto_ecdh_ns\ewarm-iar\exe\tz_psa_crypto_ecdh_ns.out

Copyright © 2025 Silicon Laboratories. All rights reserved. 148/280

TrustZone Platform Examples

Location of Secure .out file for Non-secure project: tz_psa_crypto_ecdh_s\ewarm-iar\exe\tz_psa_crypto_ecdh_s.out

 4. Click the Extra Options

tab to set up another option. 5. Check the Use command line options. Enter --drv_vector_table_base=0x00000000 to

Command line options: (one per line) window. Click [OK] to exit.

 6. Finish the debug settings

in Secure and Non-secure projects, and click (Download and Debug) in the Secure or Non-secure project to download

the Secure and Non-secure images for debugging (assume both projects had successfully built before). Click (Go) to

Copyright © 2025 Silicon Laboratories. All rights reserved. 149/280

TrustZone Platform Examples

start running the code in a Secure or Non-secure project. 7. The debugger will automatically switch between Secure and

Non-secure projects when stepping into a function or hitting a breakpoint in a Secure or Non-secure project. Use the

Program Counter (PC in Secure or Non-secure address) or SECURE (0 or 1) in the Registers window to determine the

program status.

 8. Click (Stop Debugging) to end the debug session.

Benchmark

The TrustZone implementation will affect the memory footprint and performance of cryptographic operations. The following

comparisons are based on the TrustZone PSA Crypto ECDH example on BRD4182A Radio Board

(EFR32MG22C224F512IM40) with SE firmware v1.2.14.

Memory Footprint

The memory footprint of a TrustZone project depends on which services (software components in the figure below)

provided by the Secure Library are used in the Non-secure application (tz_psa_crypto_ecdh_ns project).

Copyright © 2025 Silicon Laboratories. All rights reserved. 150/280

TrustZone Platform Examples

The following tables compare the memory footprint of the TrustZone-unaware (Platform - PSA Crypto ECDH) and TrustZone-

aware projects (tz_psa_crypto_ecdh_ws) based on the following conditions.

The tz_psa_crypto_ecdh_ns reuses the source code from the Platform - PSA Crypto ECDH example without any changes.

The total size in tz_psa_crypto_ecdh_ns does not consider the 4 kB alignment on the Secure and Non-secure flash and RAM.

The 4 kB alignment requirement will increase the actual usage of flash and RAM.

All source code is compiled with Optimize for size (-Os) in S implicity IDE (GNU ARM v10.3.1) of S implicity Studio 5.

Table: Flash S ize Comparison

Platform Example Secure NSC Non-secure Total

Platform - PSA Crypto

ECDH

64688 B - - 64688 B

tz_psa_crypto_ecdh_ws 79172 B 288 B 29264 B 108724 B

Note: The NSC is part of the Secure code, and the total size does not include the flash for NVM3 storage.

Copyright © 2025 Silicon Laboratories. All rights reserved. 151/280

TrustZone Platform Examples

Table: RAM S ize Comparison

Platform Example Secure NSC Non-secure Total

Platform - PSA Crypto

ECDH

3784 B - - 3764 B

tz_psa_crypto_ecdh_ws 2156 B - 1200 B 3356 B

Note: The total size does not include the RAM for the stack and heap. The Secure and Non-secure applications

have their independent stack and heap.

PSA Crypto Performance

The following sections compare the PSA Crypto performance of the TrustZone-unaware (Platform - PSA Crypto ECDH) and

TrustZone-aware projects (tz_psa_crypto_ecdh_ws) based on the following conditions.

The tz_psa_crypto_ecdh_ns reuses the source code from the Platform - PSA Crypto ECDH example without any changes.

All source code is compiled with Optimize most (-O3) in S implicity IDE (GNU ARM v10.3.1) of S implicity Studio 5.

Use ECC curve SECP256R1 on volatile and persistent keys.

The EFR32MG22C224 runs at 38 MHz HFRCODPLL.

Volatile key ECDH operation on Platform - PSA Crypto ECDH

. ECDH Client

+ Creating a SECP256R1 (256-bit) VOLATILE PLAIN client key... PSA_SUCCESS (cycles: 2928 time: 77 us)

+ Creating a SECP256R1 (256-bit) VOLATILE PLAIN server key... PSA_SUCCESS (cycles: 2960 time: 77 us)

+ Exporting a public key of a SECP256R1 (256-bit) VOLATILE PLAIN server key... PSA_SUCCESS (cycles: 332134 time: 8740 us)

+ Computing client shared secret with a SECP256R1 (256-bit) server public key... PSA_SUCCESS (cycles: 336860 time: 8864 us)

Volatile key ECDH operation on tz_psa_crypto_ecdh_ws

. ECDH Client

+ Creating a SECP256R1 (256-bit) VOLATILE PLAIN client key... PSA_SUCCESS (cycles: 5047 time: 132 us)

+ Creating a SECP256R1 (256-bit) VOLATILE PLAIN server key... PSA_SUCCESS (cycles: 5067 time: 133 us)

+ Exporting a public key of a SECP256R1 (256-bit) VOLATILE PLAIN server key... PSA_SUCCESS (cycles: 333956 time: 8788 us)

+ Computing client shared secret with a SECP256R1 (256-bit) server public key... PSA_SUCCESS (cycles: 338470 time: 8907 us)

Persistent key ECDH operation on Platform - PSA Crypto ECDH

. ECDH Client

+ Creating a SECP256R1 (256-bit) PERSISTENT PLAIN client key... PSA_SUCCESS (cycles: 27489 time: 723 us)

+ Creating a SECP256R1 (256-bit) PERSISTENT PLAIN server key... PSA_SUCCESS (cycles: 27587 time: 725 us)

+ Exporting a public key of a SECP256R1 (256-bit) PERSISTENT PLAIN server key... PSA_SUCCESS (cycles: 332949 time: 8761 us)

+ Computing client shared secret with a SECP256R1 (256-bit) server public key... PSA_SUCCESS (cycles: 337803 time: 8889 us)

Persistent key ECDH operation on tz_psa_crypto_ecdh_ws

. ECDH Client

+ Creating a SECP256R1 (256-bit) PERSISTENT PLAIN client key... PSA_SUCCESS (cycles: 46998 time: 1236 us)

+ Creating a SECP256R1 (256-bit) PERSISTENT PLAIN server key... PSA_SUCCESS (cycles: 45962 time: 1209 us)

+ Exporting a public key of a SECP256R1 (256-bit) PERSISTENT PLAIN server key... PSA_SUCCESS (cycles: 334127 time: 8792 us)

+ Computing client shared secret with a SECP256R1 (256-bit) server public key... PSA_SUCCESS (cycles: 338321 time: 8903 us)

Copyright © 2025 Silicon Laboratories. All rights reserved. 152/280

TrustZone Platform Examples

The overheads on the TrustZone-aware project (tz_psa_crypto_ecdh_ws) are due to the following operations of Secure

Library implementation.

Packages the list of input arguments in the appropriate format before calling into the NSC function.

Switches from a Non-secure to a Secure state.

Validates all input arguments before calling into the function in SPE.

Encrypts PSA ITS if using a persistent key.

Returns to a Non-secure state.

Copyright © 2025 Silicon Laboratories. All rights reserved. 153/280

Anti-Tamper Protection Configuration and Use

Anti-Tamper Protection Configuration and Use

Anti-Tamper Protection Configuration and Use

Note: This section replaces AN1247: Anti-Tamper Protection Configuration and Use . Further updates to this

application note will be provided here.

This application note describes how to program, provision, and configure the anti-tamper module. Many aspects of the anti-

tamper module, including disabling the anti-tamper response when needed, are discussed.

The anti-tamper module is only available on High devices. The external tamper detect module is available on some Secure

Vault Mid devices (e.g. xG27) and Secure Vault High devices (e.g. xG25B).

Key Points

Tamper responses

Tamper sources

Tamper configuration

Tamper disable

Examples of provisioning and disabling the anti-tamper module

Copyright © 2025 Silicon Laboratories. All rights reserved. 154/280

Series 2 Device Security Features

Series 2 Device Security Features

Series 2 Device Security Features
Protecting IoT devices against security threats is central to a quality product. S ilicon Labs offers several security options to

help developers build secure devices, secure application software, and secure paths of communication to manage those

devices. S ilicon Labs’ security offerings were significantly enhanced by the introduction of the Series 2 products that

included a Secure Engine. The Secure Engine is a tamper-resistant component used to securely store sensitive data and

keys and to execute cryptographic functions and secure services.

On Series 1 devices, the security features are implemented by the TRNG (if available) and CRYPTO peripherals.

On Series 2 devices, the security features are implemented by the Secure Engine and CRYPTOACC (if available). The

Secure Engine may be hardware-based, or virtual (software-based). Throughout this document, the following abbreviations

are used:

HSE - Hardware Secure Engine

VSE - Virtual Secure Engine

SE - Secure Engine (either HSE or VSE)

Additional security features are provided by Secure Vault. Three levels of Secure Vault feature support are available,

depending on the part and SE implementation, as reflected in the following table:

Level �1� SE Support Part �2�

Secure Vault High (SVH) HSE only (HSE-SVH) Refer to IoT Endpoint Security Fundamentals

for details on supporting devices.

Secure Vault Mid (SVM) HSE (HSE-SVM) "

" VSE (VSE-SVM) "

Secure Vault Base (SVB) N/A "

Notes:

ò The features of different Secure Vault levels can be found in https://www.silabs.com/security.

ó IoT Endpoint Security Fundamentals.

Secure Vault Mid consists of two core security functions:

Secure Boot: Process where the initial boot phase is executed from an immutable memory (such as ROM) and where code is

authenticated before being authorized for execution.

Secure Debug access control: The ability to lock access to the debug ports for operational security, and to securely unlock

them when access is required by an authorized entity.

Secure Vault High offers additional security options:

Secure Key Storage: Protects cryptographic keys by "wrapping" or encrypting the keys using a root key known only to the

HSE-SVH.

Anti-Tamper protection: A configurable module to protect the device against tamper attacks.

Device authentication: Functionality that uses a secure device identity certificate along with digital signatures to verify the

source or target of device communications.

A Secure Engine Manager and other tools allow users to configure and control their devices both in-house during testing

and manufacturing, and after the device is in the field.

User Assistance

Copyright © 2025 Silicon Laboratories. All rights reserved. 155/280

https://docs.silabs.com/iot-security/latest/iot-endpoint-security-fundamentals/
https://www.silabs.com/security
https://docs.silabs.com/iot-security/latest/iot-endpoint-security-fundamentals/

Series 2 Device Security Features

In support of these products S ilicon Labs offers whitepapers, webinars, and documentation. The following table summarizes

the key security documents:

Document Summary Applicability

Series 2 Secure Debug How to lock and unlock Series 2 debug access,

including background information about the SE

Secure Vault Mid and High

Series 2 Secure Boot with RTSL Describes the secure boot process on Series 2

devices using SE

Secure Vault Mid and High

AN1222: Production Programming

of Series 2 Devices

How to program, provision, and configure security

information using SE during device production

Secure Vault Mid and High

Anti-Tamper Protection

Configuration and Use (this

document)

How to program, provision, and configure the anti-

tamper module

Secure Vault High

Authenticating S ilicon Labs

Devices using Device Certificates

How to authenticate a device using secure device

certificates and signatures, at any time during the life

of the product

Secure Vault High

Secure Key Storage How to securely 'wrap' keys so they can be stored in

non-volatile storage.

Secure Vault High

Key Reference

Public/Private keypairs along with other keys are used throughout S ilicon Labs security implementations. Because

terminology can sometimes be confusing, the following table lists the key names, their applicability, and the documentation

where they are used.

Key Name Customer Programmed Purpose

Public S ign key (S ign Key Public) Yes Secure Boot binary authentication and/or OTA

upgrade payload authentication

Public Command key (Command

Key Public)

Yes Secure Debug Unlock or Disable Tamper command

authentication

OTA Decryption key (GBL

Decryption key) aka AES-128 Key

Yes Decrypting GBL payloads used for firmware upgrades

Attestation key aka Private Device

Key

No Device authentication for secure identity

SE Firmware

S ilicon Labs strongly recommends installing the latest SE firmware on Series 2 devices to support the required security

features. Refer to AN1222 for the procedure to upgrade the SE firmware and IoT Endpoint Security Fundamentals for the

latest SE Firmware shipped with Series 2 devices and modules.

Copyright © 2025 Silicon Laboratories. All rights reserved. 156/280

https://docs.silabs.com/iot-security/latest/series2-secure-debug/
https://docs.silabs.com/mcu-bootloader/latest/series2-secure-boot-with-rtsl/
https://docs.silabs.com/iot-security/latest/authenticating-devices-using-device-certificates/
https://docs.silabs.com/iot-security/latest/efr32-secure-key-storage/
https://www.silabs.com/documents/public/application-notes/an1222-efr32xg2x-production-programming.pdf
https://docs.silabs.com/iot-security/latest/iot-endpoint-security-fundamentals/

Introduction

Introduction

Introduction
The HSE-SVH Anti-Tamper module is used to hamper or prevent both reverse engineering and re-engineering of proprietary

software systems or applications.

Tamper attacks come from one or more vectors. Common attacks include voltage glitching, magnetic interference, and

forced temperature adjustment. The HSE-SVH Anti-Tamper module provides fast hardware detection of external tamper

signals such as case opening, glitching, and logical attacks allowing analysis and escalation up to and including bricking the

device.

The anti-tamper module connects a number of hardware and software-driven tamper signals to a set of configurable

hardware and software responses. This can be used to program the device to automatically respond to external events that

could signal that someone is trying to tamper with the device, and very rapidly remove secrets stored in the HSE.

The available tamper signals range from signals based on failed authentication and secure boot to specialized glitch

detectors. When any of these signals fire, the tamper block can be configured to trigger several different responses,

ranging from triggering an interrupt to erasing the One-Time-Programmable (OTP) memory, removing all HSE secrets and

resulting in a permanently destroyed device.

S ilicon Labs provides Custom Part Manufacturing Service (CPMS) to protect the users' privacy by configuring the most

effective tamper detection features at the S ilicon Labs factory. For more information about CPMS, see the Custom Part

Manufacturing Service User's Guide.

Some SVM devices (e.g. xG25A and xG27) and SVH devices (e.g. xG25B) feature an External Tamper Detect module which

is used to detect signals such as case opening. The ETAMPDET signal on SVH devices is routed to the SE as an Anti-

Tamper module tamper source, in addition to being a stand-alone module. For more information about ETAMPDET operation,

refer to the device reference manual. Examples demonstrating how to use ETAMPDET can be found on the S ilicon Labs

peripheral_example github repository.

Copyright © 2025 Silicon Laboratories. All rights reserved. 157/280

https://www.silabs.com/developers/custom-part-manufacturing-service
https://docs.silabs.com/iot-security/latest/iot-security-cpms/
https://github.com/SiliconLabs/peripheral_examples/tree/master/series2/etampdet

Secure Engine Manager

Secure Engine Manager

Secure Engine Manager
The Secure Engine Manager provides thread-safe APIs for the SE's mailbox interface. The SE Manager APIs related to

tamper operations are listed in the following table.

For the SE's mailbox interface, see section Secure Engine Subsystem in Series 2 Secure Debug.

SE Manager API Usage

sl_se_ init_otp Initialize SE OTP configuration (including tamper configuration on HSE-SVH

devices).

sl_se_read_otp Read SE OTP configuration (including tamper configuration on HSE-SVH devices).

sl_se_ init_otp_key Used during device initialization to upload the Public Command Key.

sl_se_read_pubkey Read the stored Public Command Key.

sl_se_get_serialnumber Read out the serial number (16 bytes) of the HSE device.

sl_se_get_challenge Read out the current challenge value (16 bytes) for tamper disable.

sl_se_roll_challenge Used to roll the current challenge value (16 bytes) to invalidate the Disable Tamper

Token.

sl_se_disable_tamper Temporarily disable tamper configuration using the Disable Tamper Token.

sl_se_get_status Read the current HSE status (including recorded tamper status on HSE-SVH

devices).

sl_se_get_reset_cause Read the EMU->RSTCAUSE register from HSE devices after a tamper reset.

sl_se_get_tamper_reset_cause Read the cached value of the EMU->TAMPERRSTCAUSE register after a tamper

reset.

sl_se_enter_active_mode Force the SE to remain active to enable the detection of glitch tamper events on

the host Cortex-M33 core.(see fourth note below)

sl_se_exit_active_mode Exit active mode and allow the SE to sleep when not performing operations. This

will prevent the detection of glitch tamper events when the SE is sleeping. This API

should only be used if active mode was entered by calling sl_se_enter_active_mode.

If active mode is set through a DCI command, it can only be disabled through a DCI

command. (see fourth note below)

Notes:

The sl_se_get_reset_cause is only available on EFR32xG21B devices. The EMU->RSTCAUSE register can be directly read on

other HSE-SVH devices.

The sl_se_get_tamper_reset_cause is unavailable on EFR32xG21B devices, and SE firmware ≥ v2.2.1 is required.

The SE Manager API document can be found at https://docs.silabs.com/gecko-platform/latest/service/api/group-sl-se-

manager.

Does not apply to EFR32MG21B parts.

Copyright © 2025 Silicon Laboratories. All rights reserved. 158/280

https://docs.silabs.com/iot-security/latest/series2-secure-debug/03-r-secureelement
https://docs.silabs.com/gecko-platform/latest/service/api/group-sl-se-manager

Tamper Responses

Tamper Responses

Tamper Responses
A tamper source can lead to a series of different autonomous responses from the HSE. These responses are listed in the

following table.

Level Response Description

0 Ignore No action is taken

1 Interrupt Triggers the SETAMPERHOST interrupt on the host

2 Filter Increases a counter in the tamper filter

4 Reset Resets the device

7 Erase OTP Erases the device's OTP configuration

Notes:

ò Level 3, 5, and 6 are reserved.

ó These responses are cumulative:

If a filter response is triggered, it will also trigger an interrupt.

If a reset response is triggered, it will supersede the interrupt. The filter counter and interrupt flag are clear at reset.

If an erase OTP response is triggered, it will erase the OTP and reset the device. The device will fail to boot and

become unusable.

Interrupt

If a tamper source is configured to respond with the interrupt response or higher (≥ level 1), the SETAMPERHOST interrupt

line to the host Cortex-M33 will be pulsed and make the NVIC trigger the corresponding interrupt handler

(SETAMPERHOST_IRQHandler).

After the interrupt has been handled, the tamper status can be found by reading the HSE status (using sl_se_get_status in

the SE Manager), which contains a list of all the tamper sources that have been triggered since the last time the status was

read. Reading HSE status clears the registered tamper sources.

Note: Enabling the SEMAILBOXHOST clock for the tamper source is required to trigger the SETAMPERHOST

interrupt in most HSE-SVH devices. EFR32xG21B does not require this.

Filter

The HSE has a filter to debounce spurious tamper events. The filter has a counter that is periodically reset. If a tamper

source is configured to the filter response (level 2), when it is triggered, the counter is increased. If the counter value

reaches a configurable threshold, the Filter counter tamper source (number 1) is triggered, which can configure to lead to

any other responses (1, 4, or even 7).

Only a single shared filter counter is available, so the cumulative triggering of all tamper sources configured to the filter level

will increase the same counter. The filter can be programmed to use one of the trigger thresholds and reset periods

provided below. The filter counter is zero upon a tamper or normal reset.

Filter Trigger Threshold

Value (n): 0 to 7

Filter Trigger Threshold: 256/ (256 to 2)

Copyright © 2025 Silicon Laboratories. All rights reserved. 159/280

Tamper Responses

Filter Reset Period

Value (n): 0 to 31

Filter Reset Period: 32 ms * (32 ms to ~795.4 days)

Example Filter Configuration

For example, consider a device with a Filter Trigger Threshold of 3 and Filter Reset Period of 5. If that device detects 32

(256/) Filter response events in 1.024 seconds (32 ms *), the Filter counter tamper source (number 1) will trigger.

Reset

The reset response resets the HSE and Cortex-M33. After a tamper reset, the last reset cause can be directly read from

EMU->RSTCAUSE register or using sl_se_get_rstcause in the SE Manager. In cases where the reset was caused by a tamper

response, the source of the tamper can be determined by calling sl_se_get_tamper_reset_cause in the SE Manager. (Note

that this API is not available for EFR32xG21B-based parts). See Table Tamper Sources on Other HSE-SVH Devices for the

list of tamper sources. Tamper reset occurs when the HSE sends a request to the Cortex-M33’s EMU, which issues a hard

reset.

If a tamper reset is triggered during boot, this can lead to a boot loop. To debug such a scenario, the HSE has a tamper

reset counter and enters diagnostic mode if the counter reaches a programmable threshold. Users can issue a non-tamper

reset to clear the tamper reset counter before the programmable threshold is reached.

In diagnostic mode, the Cortex-M33 is held in reset and only DCI commands are available. The device will remain in

diagnostic mode until a power-on or pin reset occurs.

For more information on the SE's DCI, see section Secure Engine Subsystem in Series 2 Secure Debug.

Erase OTP

The Erase OTP response is the strongest reaction the HSE can take, and it will make the device and all wrapped secrets

unrecoverable. After this response, the device will no longer be able to boot or connect to a debugger.

This response should typically only be used in situations where the device believes that it is under an actual attack, for

instance through the detection of several voltage or digital glitches in a short time window.

Copyright © 2025 Silicon Laboratories. All rights reserved. 160/280

https://docs.silabs.com/iot-security/latest/series2-secure-debug/03-r-secureelement

Tamper Sources

Tamper Sources

Tamper Sources
The following tables list the available tamper sources and the default level on the EFR32xG21B and other HSE-SVH

devices. The tamper sources with the default level higher than 0 (Ignore) are always in effect even if the user does not

initialize the tamper configuration in HSE OTP. Users can keep or escalate the default tamper responses (≥ 0 for Ignore

and ≥ 4 for Reset) of any sources when initially configuring the part.

Table: Tamper Sources on the EFR32xG21B Devices

Type Number Name Description Default Level

SE Hardware 0 Reserved - -

" 1 Filter counter Filter counter reached the configured

threshold value

0 (Ignore)

" 2 SE watchdog Internal SE watchdog expired 4 (Reset)

" 3 Reserved - -

" 4 SE RAM CRC A 2-bit, non-correctable error in the SE RAM

has occurred.

4 (Reset)

" 5 SE hard fault The SE core has encountered a hard fault

exception indicating that an invalid memory

access was attempted.

4 (Reset)

" 6 Reserved - -

SE Software 7 SE software assertion SE firmware has triggered an assertion,

indicating that one of several sanity checks

has failed and that normal operation cannot

continue without a reset.

4 (Reset)

" 8 SE secure boot Secure boot of SE firmware failed 4 (Reset)

" 9 User secure boot Secure boot of host firmware failed 0 (Ignore)

" 10 Mailbox authorization Unauthorized command received over the

Mailbox interface. This can be triggered by

either (1) an incorrectly signed debug unlock or

tamper disable token or (2) attempting to

export a non-exportable key.

0 (Ignore)

" 11 DCI authorization Unauthorized command received over the DCI

interface. This can be triggered by either (1) an

incorrectly signed debug un-lock or tamper

disable token or (2) attempting to export a

non-exportable key.

0 (Ignore)

" 12 OTP read OTP or flash content could not be properly

authenticated.

4 (Reset)

" 13 Reserved - -

" 14 Self test A check of the integrity of the SE's internal

storage failed during boot up.

4 (Reset)

" 15 TRNG monitor The TRNG monitor performs a number of tests

on the collected entropy data. If any of these

tests fail, this tamper source is triggered.

0 (Ignore)

Hardware 16 - 23 PRS0 - 7 [1] PRS consumer for SE Tamper 0 - 7 asserted 0 (Ignore)

Copyright © 2025 Silicon Laboratories. All rights reserved. 161/280

Tamper Sources

Type Number Name Description Default Level

" 24 Decouple BOD [1] Decouple Brown-Out-Detector threshold alert 4 (Reset)

" 25 Temperature sensor

[1]

SE temperature is monitored to be within 5

degrees C of the limits for the device. If the

limit is exceeded, this tamper source will be

triggered.

0 (Ignore)

" 26 Voltage glitch falling Voltage glitch detector detected a falling glitch 0 (Ignore)

" 27 Voltage glitch rising Voltage glitch detector detected a rising glitch 0 (Ignore)

" 28 Secure lock This tamper source indicates that the guarding

mechanism (comparing the locks with their

logical complement) of the debug port locks

has failed

4 (Reset)

" 29 SE debug Debug access to SE 0 (Ignore)

" 30 Digital glitch Digital glitch detector detected an event 0 (Ignore)

" 31 SE ICACHE The SE's instruction cache uses a checksum to

verify the integrity of the data. This tamper

source is triggered if the checksum is invalid.

4 (Reset)

Table: Tamper Sources on Other HSE-SVH Devices

Type Number Name Description Default Level

SE Hardware 0 Reserved - -

" 1 Filter counter Filter counter reached the configured

threshold value

0 (Ignore)

" 2 SE watchdog Internal SE watchdog expired 4 (Reset)

" 3 Reserved - -

" 4 SE RAM ECC2 A 2-bit, non-correctable error in the SE RAM

has occurred.

4 (Reset)

" 5 SE hard fault The SE core has encountered a hard fault

exception indicating that an invalid memory

access was attempted.

4 (Reset)

" 6 Reserved - -

SE Software 7 SE software assertion SE firmware has triggered an assertion,

indicating that one of several sanity checks

has failed and that normal operation cannot

continue without a reset.

4 (Reset)

" 8 SE secure boot Secure boot of SE firmware failed 4 (Reset)

" 9 User secure boot Secure boot of host firmware failed 0 (Ignore)

" 10 Mailbox authorization Unauthorized command received over the

Mailbox interface. This can be triggered by

either (1) an incorrectly signed debug unlock or

tamper disable token or (2) attempting to

export a non-exportable key.

0 (Ignore)

" 11 DCI authorization Unauthorized command received over the DCI

interface. This can be triggered by either (1) an

incorrectly signed debug unlock or tamper

disable token or (2) attempting to export a

non-exportable key.

0 (Ignore)

" 12 OTP read OTP or flash content could not be properly

authenticated

4 (Reset)

" 13 Reserved - -

Copyright © 2025 Silicon Laboratories. All rights reserved. 162/280

Tamper Sources

Type Number Name Description Default Level

" 14 Self test A check of the integrity of the SE's internal

storage failed during boot up.

4 (Reset)

" 15 TRNG monitor The TRNG monitor performs a number of tests

on the collected entropy data. If any of these

tests fail, this tamper source is triggered.

0 (Ignore)

Hardware 16 Secure lock This tamper source indicates that the guarding

mechanism (comparing the locks with their

logical complement) of the debug port locks

has failed.

4 (Reset)

" 17 Digital glitch Digital Glitch detector detected an event 0 (Ignore)

" 18 Voltage glitch Voltage Glitch Detector detected an event 0 (Ignore)

" 19 SE ICACHE The SE's instruction cache uses a checksum to

verify the integrity of the data. This tamper

source is triggered if the checksum is invalid.

4 (Reset)

" 20 SE RAM ECC1 SE RAM 1-bit ECC error occurred 0 (Ignore)

" 21 BOD [1] Brown-Out-Detector threshold alert 4 (Reset)

" 22 Temperature sensor

[1]

SE temperature is monitored to be within 5

degrees C of the limits for the device. If the

limit is exceeded, this tamper source will be

triggered.

0 (Ignore)

" 23 DPLL fall DPLL lock failed low 0 (Ignore)

" 24 DPLL rise DPLL lock failed high 0 (Ignore)

" 25 PRS0 or ETAMPDET PRS consumer for SE Tamper 25 or

ETAMPDET asserted.

0 (Ignore)

" 26 - 31 PRS1 - 6 or PRS0 -

5[1]

PRS consumer for SE Tamper 26 - 31 asserted 0 (Ignore)

Notes:

[1] These tamper sources are available down to EM2. Other sources are available in EM1 and above.

In EFR32xG21B devices, hardware tamper sources 24 to 27 can operate down to Energy Mode 3 (EM3), whereas other

hardware tamper sources (16 - 23 and 28 - 31) can be active down to Energy Mode 1 (EM1).

In other HSE-SVH devices, tamper sources 25 to 31 are used for External Tamper Detect (ETAMPDET) if present and PRS

consumers. Devices with ETAMPDET (e.g. EFR32xG25B) will have 6 PRS consumers (26 to 31) and devices without

ETAMPDET will have 7 PRS consumers (25 to 31).

The ETAMPDET source gets triggered when any of the ETAMPDET channels are asserted.

User configuration or tamper disable cannot reduce the tamper response below the default Level.

The User secure boot source gets triggered if secure boot is enabled and host image verification fails. It is likely to put the

device in the boot loop if users escalate the tamper response of this source to 4 (Reset).

The Mailbox and DCI authorizations get triggered whenever one of the following conditions has occurred. The mailbox

returns SE_RESPONSE_AUTHORIZATION_ERROR , and DCI returns AUTH_ERROR = 2 .

ò A mailbox or DCI command tries to exercise a key that it is not allowed to use (e.g., trying to export a non-exportable

key).

ó A secure debug access or tamper disable request over the mailbox or DCI is invalidly signed.

ô A malformed HSE firmware upgrade over the mailbox or DCI is attempted.

The OTP read gets triggered if there is an issue when decrypting and authenticating settings in HSE OTP or flash.

The HSE has redundancy built into the locking mechanism, and the Secure lock source is used to detect errors in that

redundancy.

PRS inputs can allow user applications to implement additional tamper sources and feed them into the tamper response

mechanism. The PRS tamper sources are under the control of the user application and could be reconfigured or disabled if

the user application is compromised.

The Temperature sensor source is not completely accurate and is generally only suitable for systems that expect to stay

well within the specified temperature range. Users requiring a tighter temperature limit can implement their temperature

Copyright © 2025 Silicon Laboratories. All rights reserved. 163/280

https://www.silabs.com/documents/public/application-notes/an1303-efr32-dci-swd-programming.pdf
https://docs.silabs.com/iot-security/latest/series2-secure-debug/

Tamper Sources

monitor and provide the results as a tamper source via PRS.

On EFR32xG23B and later devices, the default behavior is to detect tamper events only when the SE core is active. To

detect tamper events when the SE is not performing operations, call sl_se_enter_active_mode() . This prevents the SE from

sleeping and will result in higher current draw.

Copyright © 2025 Silicon Laboratories. All rights reserved. 164/280

Anti-Tamper Configuration

Anti-Tamper Configuration

Anti-Tamper Configuration
The user can provision the anti-tamper configuration in HSE OTP detailed in the following table through sl_se_init_otp in the

SE Manager. Tamper configurations must be programmed with secure boot settings and are immutable once written.

For more information on enabling the OTP tamper configuration along with the secure boot settings, see Enabling Secure
Boot and Tamper Configuration in AN1222: Production Programming of Series 2 Devices.

Setting Description

Tamper response levels A user response level for each tamper source (1)

Filter settings The tamper filter counter has two settings: trigger threshold and reset period

Digital Glitch Detector Always On Bit 1 of tamper flag: 0 – Digital glitch detector runs only when the HSE is executing

a command; 1 – Digital glitch detector runs even when the HSE is not performing

any operations (note that this leads to increased energy consumption)

Keep Tamper Alive During S leep(2) Bit 2 of tamper flag: 0 – The tamper module stops running in sleep mode; 1 – The

tamper module keeps running in sleep mode (down to EM3)

Reset threshold The number of consecutive tamper resets (up to 255) before the part enters

diagnostic mode (3)

Notes:

ò The effective response of a tamper source is the maximum value between the default level and user level (Active level =

MAX(default level, user level)). If the user sets the response of a tamper source to a level lower than the default level, the

setting will still be saved to HSE OTP but does not take any effect. The HSE returns the user levels instead of active levels

of all tamper sources when reading back (sl_se_read_otp) the tamper configuration from the HSE OTP.

ó This flag is not available on EFR32xG21B devices.

ô If the threshold is set to 0, the part will never enter the diagnostic mode due to tamper reset.

Copyright © 2025 Silicon Laboratories. All rights reserved. 165/280

https://www.silabs.com/documents/public/application-notes/an1222-efr32xg2x-production-programming.pdf

Usage Example

Usage Example

Usage Example
Several of the available tamper sources report internal HSE errors. A number of these sources are configured to reset the

device (level 4) by default. Custom handling of internal and external tamper sources (default level 0) can be configured to

trigger an interrupt (level 1) on the Cortex-M33 or trigger an interrupt and increase a counter in the tamper filter (level 2) as

in the following figure for EFR32xG21B devices.

Figure: Custom Handling of Tamper Sources (EFR32xG21B Devices)

Note: The actions for level 1 on the right side are implemented by the tamper interrupt handler.

Usage example highlights:

The response of the TRNG monitor depends on the failure rate due to lack of entropy.

The voltage and digital glitch detectors can see spurious activations. They should typically not be used to drive a high-level

tamper response directly. Instead, they should feed their signals into a tamper interrupt, which activates a high-level action

(e.g., Reset in this example) through PRS tamper if a certain number of detections (noise filter) occur in a short time window.

The operating conditions decide the time out of the specification filter for the temperature sensor. For some systems, any

time out of specification should trigger a reset.

Mailbox authorization is handled similarly for voltage and digital glitch detectors.

A PRS tamper implements a high-level response for a tamper interrupt, which issues a tamper reset (level 4) to prevent or

slow further attacks.

In extreme cases, if the system identifies an attack with high confidence, a PRS tamper can be configured as Erase OTP

(level 7) to brick the part and prevent further attacks. This is recommended only when the destruction of parts is acceptable

and where high confidence of an attack can be achieved.

Another PRS tamper detects enclosure opening from GPIO. This source feeds into the tamper filter counter (level 2), which

will trigger an interrupt (cumulative effect) and activate a Filter counter (number 1) response (Reset in this example) if the

filter counter reaches the trigger threshold within the filter reset period. This filter counter response approach is less flexible

than the interrupt response approach since the trigger threshold and filter reset period are one-time programmable.

Copyright © 2025 Silicon Laboratories. All rights reserved. 166/280

Tamper Disable

Tamper Disable

Tamper Disable
For diagnostic purposes, it may be necessary to disable the tamper response. For example, if a user has configured the part

to Erase OTP on external tamper detection, disabling the tamper response is required to open the unit and perform failure

analysis or field service activities.

After the tamper configuration has been initialized, users can temporarily restore the tamper response to default for a set

of tamper sources via a Disable Tamper Token authenticated against the Public Command Key in HSE OTP (similar to

secure debug unlock). This is only possible if the Public Command Key has been provisioned in the device.

Copyright © 2025 Silicon Laboratories. All rights reserved. 167/280

Tamper Disable

Disable Tamper Token

The elements of the Disable Tamper Token are described in the following figures and table.

Element Value Description

Disable tamper command 0xfd020001 The command word of the Disable Tamper Token.

Tamper disable mask Device-dependent The command parameter of the Disable Tamper

Token.

Access certificate (1) Device-dependent See section Access Certificate.

Disable tamper command signature

(1)

Device-dependent See section Challenge Response.

Note:

ò The disable tamper command payload consists of an access certificate and a disable tamper command signature.

Copyright © 2025 Silicon Laboratories. All rights reserved. 168/280

Tamper Disable

Note: Set bit to restore the default response of the corresponding tamper source.

The Disable Tamper Token temporarily reverts all masked tamper sources in the figure above to the hard-coded

configuration (Figure 8.1 Tamper Disable on the EFR32xG21B Devices on page 13 and Figure 8.2 Tamper Disable on Other

HSE-SVH Devices on page 13).

The Disable Tamper Token can only restore the escalated user-level configuration to default. It cannot degrade the default

level of a tamper source.

Access Certificate

The elements of the access certificate are described in the following figure and table.

Element Value Description

Magic word 0xe5ecce01 A constant value used to identify the access

certificate.

Authorizations 0x0000003e (1) A value used to authorize which bit in the debug

mode request can be enabled for secure debug.

Tamper Authorizations 0xffffffb6 (2) A value used to authorize which bit in the tamper

disable mask can be set to disable the tamper

response.

Serial number Device-dependent A number used to compare against the on-chip serial

number for secure debug or tamper disable.

Public Certificate Key (3) Device-dependent The public key corresponding to the Private

Certificate Key (3) used to generate the signature

(ECDSA-P256-SHA256) in a challenge response.

Copyright © 2025 Silicon Laboratories. All rights reserved. 169/280

Tamper Disable

Element Value Description

Access certificate signature Device-dependent All the content above is signed (ECDSA-P256-

SHA256) by the Private Command Key

corresponding to the Public Command Key in the

HSE OTP.

Notes:

ò The value allows all debug options to be reset for secure debug. Note that the commands for debug unlock and tamper

disable are separate, so the secure debug lock will not be disabled when issuing a tamper disable command.

ó Value that sets available bits in the tamper disable mask for tamper disable.

ô The Private/Public Certificate Key is a randomly generated key pair. It can be ephemeral or retainable.

The Private Certificate Key can be used repeatedly to generate the signature in a challenge response on one device until

the Private/Public Certificate Key pair is discarded. This can reduce the frequency of access to the Private Command Key,

allowing more restrictive access control on that key.

For more information about secure debug, see Series 2 Secure Debug.

Notes:

Set the bit to enable the corresponding bit in the tamper disable mask.

The Disable Tamper Token will restore the default response of the corresponding tamper source if the same bit is set in the

tamper disable mask and tamper authorizations.

Challenge Response

The elements of the challenge response are described in the following figure and table.

Element Value Description

Disable tamper command 0xfd020001 The command word of Disable Tamper Token.

Tamper disable mask Device-dependent The command parameter of Disable Tamper Token.

Challenge Device-dependent (1) A random value generated by the HSE.

Copyright © 2025 Silicon Laboratories. All rights reserved. 170/280

https://docs.silabs.com/iot-security/latest/series2-secure-debug/

Tamper Disable

Element Value Description

Disable tamper command signature Device-dependent (2) All the content above is signed (ECDSA-P256-

SHA256) by the Private Certificate Key

corresponding to the Public Certificate Key in the

access certificate.

Notes:

ò The challenge remains unchanged until it is updated to a new random value by rolling the challenge. The Private Certificate

Key can be reused for signing when device challenge is refreshed.

ó This signature is the final argument of the Disable Tamper Token.

Tamper Disable Flow

The tamper disable flow is described in the following figure.

ò Get the serial number and challenge from the HSE.

ó Generate the access certificate with device serial number.

ô Generate the challenge response with device challenge.

õ Generate the disable tamper command payload with access certificate and disable tamper command signature.

ö Send the Disable Tamper Token to the HSE.

÷ Verify the disable tamper command signature using the Public Certificate Key in the access certificate.

ø Verify the serial number and the access certificate signature using the on-chip serial number and Public Command Key in the

HSE OTP.

ù Restore default levels on tamper disable mask until the next power-on or pin reset.

ú Roll the challenge to invalidate the current Disable Tamper Token.

Note: Refer to the S implicity Commander example for details on how to follow this flow using S implicity

Commander.

Copyright © 2025 Silicon Laboratories. All rights reserved. 171/280

Examples

Examples

Examples

Overview

The examples for HSE-SVH Anti-Tamper module are described in the following table.

Example Device �Radio Board) HSE Firmware Tool

Provision Tamper

configuration

EFR32MG21B010F1024IM32

(BRD4181C)

Version 1.2.9 SE Manager

Provision Public Command

Key & Tamper configuration

EFR32MG21B010F1024IM32

(BRD4181C)

Version 1.2.9 S implicity Commander

" EFR32MG21B010F1024IM32

(BRD4181C)

Version 1.2.9 S implicity Studio 5

Tamper disable and Roll

challenge

EFR32MG21B010F1024IM32

(BRD4181C)

Version 1.2.9 SE Manager

" EFR32MG21B010F1024IM32

(BRD4181C)

Version 1.2.9 S implicity Commander

Roll challenge EFR32MG21B010F1024IM32

(BRD4181C)

Version 1.2.9 S implicity Studio 5

Note: Unless specified in the example, these examples can be applied to other HSE-SVH devices.

Using a Platform Example

S implicity Studio 5 includes the SE Manager platform example for tamper. This application note uses platform examples of

GSDK v4.1.0. The console output may be different on the other version of GSDK.

Refer to the corresponding readme file for details about each SE Manager platform example. This file also includes the

procedures to create the project and run the example.

Using Simplicity Commander

ò This application note uses S implicity Commander v1.14.6. The procedures and console output may be different on other

versions of S implicity Commander. The latest version of S implicity Commander can be downloaded from .

commander --version

Simplicity Commander 1v14p6b1289

JLink DLL version: 7.70d

Qt 5.12.10 Copyright (C) 2017 The Qt Company Ltd.

EMDLL Version: 0v18p9b677

mbed TLS version: 2.16.6

DONE

ó The S implicity Commander's Command Line Interface (CLI) is invoked by commander.exe in the S implicity Commander folder.

The location for S implicity Studio 5 in Windows is C:\SiliconLabs\SimplicityStudio\v5\developer\adapter_packs\commander . For

ease of use, it is highly recommended to add the path of commander.exe to the system PATH in Windows.

Copyright © 2025 Silicon Laboratories. All rights reserved. 172/280

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-getting-started/start-a-project#examples

Examples

If more than one Wireless Starter K it (WSTK) is connected via USB, the target WSTK must be specified using the --serialno

\<J-Link serial number> option.

õ If the WSTK is in debug mode OUT, the target device must be specified using the --device \<device name> option.

For more information about S implicity Commander, see the S implicity Commander Reference Guide.

Using Simplicity Studio

The security operations are performed in the Security Settings of S implicity Studio. This application note uses S implicity

Studio v5.4.0.0. The procedures and pictures may be different on the other version of S implicity Studio 5.

ò Right-click the selected debug adapter RB (ID:J-Link serial number) to display the context menu.

ó Click Device configuration... to open the Configuration of device: J-Link Silicon Labs (serial number) dialog box. Click the

Security Settings tab to get the selected device configuration.

Copyright © 2025 Silicon Laboratories. All rights reserved. 173/280

https://docs.silabs.com/simplicity-commander/latest/simplicity-commander-start/

Examples

Using an External Tool

The tamper disable example uses OpenSSL to sign the access certificate and challenge response. The Windows version of

OpenSSL can be downloaded from Shining Light Productions. This application note uses OpenSSL Version 1.1.1h (Win64).

openssl version

OpenSSL 1.1.1h 22 Sep 2020

The OpenSSL's Command Line Interface (CLI) is invoked by openssl.exe in the OpenSSL folder. The location in Windows

(Win64) is C:\Program Files\OpenSSL-Win64\bin . For ease of use, it is highly recommended to add the path of openssl.exe to

the system PATH in Windows.

Provision Public Command Key and Tamper Configuration

The Public Command Key pair can be generated from the "unsafe" private key delivered with S implicity Studio, by S implicity

Commander, or by a Hardware Security Module (HSM). Using an HSM is recommended for production systems.

Generated from "Unsafe" Key

External tools such as openssl can be used to generate a public key from the reference private key provided in S implicity

Studio. Note that this private key is well known and should not be used in production devices.

Run the openssl ec command to generate the Public Command Key from the Private Command Key.

openssl ec -in /c/S iliconLabs/S implicityStudio/v5/developer/adapter_packs/secmgr/scripts/offline/cmd-unsafe-

privkey.pem -pubout -out cmd-unsafe-pubkey.pem

Generated Using Simplicity Commander

Copyright © 2025 Silicon Laboratories. All rights reserved. 174/280

https://slproweb.com/products/Win32OpenSSL.html

Examples

Run the util genkey command to generate the Public Command Key pair (command_key.pem and command_pubkey.pem)

and Public Command Key token file (command_pubkey.txt).

commander util genkey --type ecc-p256 --privkey command_key.pem --pubkey command_pubkey.pem --tokenfile command_pubkey.txt

Generating ECC P256 key pair...

Writing private key file in PEM format to command_key.pem

Writing public key file in PEM format to command_pubkey.pem

Writing EC tokens to command_pubkey.txt...

DONE

SE Manager - Tamper Platform Example

Click the View Pro ject Documentation link to open the readme file for instructions on creating the project and running the

example.

ò Press ENTER two times to program the secure boot and tamper configuration to the HSE OTP of an uninitialized device.

SE Manager Tamper Example - Core running at 38000 kHz.

. SE manager initialization... SL_STATUS_OK (cycles: 7 time: 0 us)

. Read EMU RSTCAUSE register... SL_STATUS_OK (cycles: 3728 time: 98 us)

 + The EMU RSTCAUSE register (MSB..LSB): 00000043

. Read SE OTP configuration... SL_STATUS_NOT_INITIALIZED (cycles: 7487 time: 197 us)

 + Cannot read SE OTP configuration.

 + Press ENTER to initialize SE OTP for tamper configuration or press SPACE to abort.

 + Warning: The OTP configuration cannot be changed once written!

 + Press ENTER to confirm or press SPACE to abort if you are not sure.

 + Initialize SE OTP for tamper configuration... SL_STATUS_OK (cycles: 267256 time: 7033 us)

 + Issue a power-on or pin reset to activate the new tamper configuration.

. SE manager deinitialization... SL_STATUS_OK (cycles: 9 time: 0 us)

Note: This example does not enable the secure boot.

ó Press the RESET button on the WSTK to restart the program. It will display the current tamper configuration of the device.

Copyright © 2025 Silicon Laboratories. All rights reserved. 175/280

Examples

SE Manager Tamper Example - Core running at 38000 kHz.

. SE manager initialization... SL_STATUS_OK (cycles: 10 time: 0 us)

. Read EMU RSTCAUSE register... SL_STATUS_OK (cycles: 3736 time: 98 us)

 + The EMU RSTCAUSE register (MSB..LSB): 00000043

. Read SE OTP configuration... SL_STATUS_OK (cycles: 7174 time: 188 us)

 + Secure boot: Disabled

 + Tamper source level

 Filter counter : 1

 SE watchdog : 4

 SE RAM CRC : 4

 SE hard fault : 4

 SE software assertion : 4

 SE secure boot : 4

 User secure boot : 0

 Mailbox authorization : 1

 DCI authorization : 0

 OTP read : 4

 Self test : 4

 TRNG monitor : 1

 PRS0 : 1

 PRS1 : 1

 PRS2 : 2

 PRS3 : 2

 PRS4 : 4

 PRS5 : 4

 PRS6 : 7

 PRS7 : 7

 Decouple BOD : 4

 Temperature sensor : 2

 Voltage glitch falling : 2

 Voltage glitch rising : 2

 Secure lock : 4

 SE debug : 0

 Digital glitch : 2

 SE ICACHE : 4

 + Reset period for the tamper filter counter: �32 ms x 1024

 + Activation threshold for the tamper filter: 4

 + Digital glitch detector always on: Disabled

 + Tamper reset threshold: 5

. Current tamper test is NORMAL.

 + Press SPACE to select NORMAL or TAMPER DISABLE, press ENTER to run.

Simplicity Commander

ò Run the security writekey command to provision the Public Command Key (e.g., command_pubkey.pem).

commander security writekey --command **command_pubkey.pem** --device EFR32MG21B010F1024 --serialno 440030580

Device has serial number 000000000000000014b457fffe0f77ce

==

Please look through any warnings before proceeding.

THIS IS A ONE�TIME command which permanently ties debug and tamper access to certificates signed by this key.

Type 'continue' and hit enter to proceed or Ctrl-C to abort:

==

continue

DONE

Copyright © 2025 Silicon Laboratories. All rights reserved. 176/280

Examples

Note: The Public Command Key cannot be changed once written.

ó Run the security readkey command to read the Public Command Key from the HSE OTP for verification with the key in step

1.

commander security readkey --command --device EFR32MG21B010F1024 --serialno 440030580

B1BC6F6FA56640ED522B2EE0F5B3CF7E5D48F60BE8148F0DC08440F0A4E1DCA4

7C04119ED6A1BE31B7707E5F9D001A659A051003E95E1B936F05C37EA793AD63

DONE

ô Run the security genconfig command to generate a default user_configuration.jsonfile for secure boot and tamper

configuration.

commander security genconfig --nostore -o user_configuration.json --device EFR32MG21B010F1024 --serialno 440030580

Configuration file written to user_configuration.json

DONE

Note: S implicity Commander Version 1.14.6 or above is required to support tamper configuration for all HSE-

SVH devices.

õ Use a text editor to modify the default tamper responses in user_configuration.json to the desired configuration as below.

Copyright © 2025 Silicon Laboratories. All rights reserved. 177/280

Examples

{

 "OPN": "EFR32MG21B010F1024",

 "VERSION": "1.0.0",

 "mcu_flags": {

 "SECURE_BOOT_ANTI_ROLLBACK": false,

 "SECURE_BOOT_ENABLE": false,

 "SECURE_BOOT_PAGE_LOCK_FULL": false,

 "SECURE_BOOT_PAGE_LOCK_NARROW": false,

 "SECURE_BOOT_VERIFY_CERTIFICATE": false

 },

 "tamper_filter": {

 "FILTER_PERIOD": 10,

 "FILTER_THRESHOLD": 6,

 "RESET_THRESHOLD": 5

 },

 "tamper_flags": {

 "DGLITCH_ALWAYS_ON": false

 },

 "tamper_levels": {

 "DCI_AUTH": 0,

 "DECOUPLE_BOD": 4,

 "DGLITCH": 2,

 "FILTER_COUNTER": 1,

 "MAILBOX_AUTH": 1,

 "OTP_READ": 4,

 "PRS0": 1,

 "PRS1": 1,

 "PRS2": 2,

 "PRS3": 2,

 "PRS4": 4,

 "PRS5": 4,

 "PRS6": 7,

 "PRS7": 7,

 "SECURE_LOCK": 4,

 "SELF_TEST": 4,

 "SE_CODE_AUTH": 4,

 "SE_DEBUG": 0,

 "SE_HARDFAULT": 4,

 "SE_ICACHE": 4,

 "SE_RAM_CRC": 4,

 "SOFTWARE_ASSERTION": 4,

 "TEMP_SENSOR": 2,

 "TRNG_MONITOR": 1,

 "USER_CODE_AUTH": 0,

 "VGLITCH_FALLING": 2,

 "VGLITCH_RISING": 2,

 "WATCHDOG": 4

 }

}

Note: This example does not enable the secure boot.

ö Run the security writeconfig command to program the secure boot and tamper configuration to the HSE OTP. This command

can be executed once per device.

commander security writeconfig --configfile user_configuration.json --device EFR32MG21B010F1024 --serialno 440030580

Copyright © 2025 Silicon Laboratories. All rights reserved. 178/280

Examples

==

THIS IS A ONE�TIME configuration: Please inspect file before confirming:

user_configuration.json

Type 'continue' and hit enter to proceed or Ctrl-C to abort:

==

continue

DONE

÷ Run the security readconfig command to check the secure boot and tamper configuration of the device.

commander security readconfig --serialno 440030580

MCU Flags

Secure Boot : Disabled

Secure Boot Verify Certificate : Disabled

Secure Boot Anti Rollback : Disabled

Secure Boot Page Lock Narrow : Disabled

Secure Boot Page Lock Full : Disabled

Tamper Levels

FILTER_COUNTER : 1

WATCHDOG : 4

SE_RAM_CRC : 4

SE_HARDFAULT : 4

SOFTWARE_ASSERTION : 4

SE_CODE_AUTH : 4

USER_CODE_AUTH : 0

MAILBOX_AUTH : 1

DCI_AUTH : 0

OTP_READ : 4

SELF_TEST : 4

TRNG_MONITOR : 1

PRS0 : 1

PRS1 : 1

PRS2 : 2

PRS3 : 2

PRS4 : 4

PRS5 : 4

PRS6 : 7

PRS7 : 7

DECOUPLE_BOD : 4

TEMP_SENSOR : 2

VGLITCH_FALLING : 2

VGLITCH_RISING : 2

SECURE_LOCK : 4

SE_DEBUG : 0

DGLITCH : 2

SE_ICACHE : 4

Tamper Filter

Filter Period : 10

Filter Threshold : 6

Reset Threshold : 5

Tamper Flags

Digital Glitch Detector Always On: Disabled

DONE

Simplicity Studio

This example focuses on provisioning the Public Command Key and tamper configuration. It skips the procedures for

provisioning of the Public S ign Key and Secure Boot Enabling.

ò Run the util keytotoken command to convert the Public Command Key file (PEM format) into a text file

(command_pubkey.txt).

Copyright © 2025 Silicon Laboratories. All rights reserved. 179/280

Examples

commander util keytotoken command_pubkey.pem --outfile command_pubkey.txt

Writing EC tokens to command_pubkey.txt...

DONE

ó Open the Security Settings of the selected device as described in Using S implicity Studio..

ô Click [Start Provisioning Wizard...] in the upper right corner to display the Secure Initialization dialog box.

õ Click [Edit] to open the Tamper Source Configuration dialog box. Use the dropdown menus to modify the default tamper

responses to the desired configuration. Click [OK] to exit.

Copyright © 2025 Silicon Laboratories. All rights reserved. 180/280

Examples

ö Click [Next >]. The Security Keys dialog box is displayed.

Copyright © 2025 Silicon Laboratories. All rights reserved. 181/280

Examples

÷ Using a text editor, open the command_pubkey.txt file generated in step 1.

MFG_SIGNED_BOOTLOADER_KEY_X : B1BC6F6FA56640ED522B2EE0F5B3CF7E5D48F60BE8148F0DC08440F0A4E1DCA4

MFG_SIGNED_BOOTLOADER_KEY_Y : 7C04119ED6A1BE31B7707E5F9D001A659A051003E95E1B936F05C37EA793AD63

ø Check Enable Writing Command Key. Copy the Public Command Key (X-point B1BC... first, then Y-point 7C04...) to the Key:

box under Command Key:.

Note: This example does not enable the secure boot (not checking Enable Writing Sign Key option).

ù Click [Next >]. The Secure Locks dialog box is displayed. The Debug locks are set by default. Uncheck Enable secure debug

unlock and Enable debug lock.

Copyright © 2025 Silicon Laboratories. All rights reserved. 182/280

Examples

ú Click [Next >] to display the Summary dialog box. Verify the tamper configuration and Public Command Key in the

Provisioning Summary are correct.

òñ If the information displayed is correct, click [Provision]. Click [Yes] to confirm.

Note: The Public Command Key and tamper configuration cannot be changed once written.

òò The Provisioning Status is displayed in the Summary dialog box.

Copyright © 2025 Silicon Laboratories. All rights reserved. 183/280

Examples

òó Click [Done] to exit the provisioning process. The device configuration is updated.

òô Click the View... link to check the tamper configuration or click [OK] to exit.

Tamper Disable and Roll Challenge

PRS Tamper Sources

Copyright © 2025 Silicon Laboratories. All rights reserved. 184/280

Examples

The tamper configuration in the SE Manager Tamper platform example is used to demonstrate the tamper disable on HSE-

SVH devices. The following tables list the PRS tamper source usage on EFR32xG21B and other HSE-SVH devices on this

example. The push buttons PB0 and PB1 are on the Wireless Starter K it (WSTK) Mainboard.

Table: PRS Tamper Source Usage on EFR32xG21B Devices

Source (Bit)
Default Level
�Response)

User Level �Response) PRS Producer
Tamper Disable
Mask �1�

PRS0 (16) 0 (Ignore) 1 (Interrupt) Push button PB0 0

PRS1 (17) 0 (Ignore) 1 (Interrupt) - 1

PRS2 (18) 0 (Ignore) 2 (Filter) Push button PB0 0

PRS3 (19) 0 (Ignore) 2 (Filter) - 1

PRS4 (20) 0 (Ignore) 4 (Reset) Push button PB1 1

PRS5 (21) 0 (Ignore) 4 (Reset) Software (2) 1

PRS6 (22) 0 (Ignore) 7 (Erase OTP) - 1

PRS7 (23) 0 (Ignore) 7 (Erase OTP) - 1

Notes:

ò The tamper disable mask is 0x00fa0000 to restore the tamper sources PRS1, PRS3, PRS4, PRS5, PRS6, and PRS7 to default

response (Ignore).

ó The Software PRS triggers the tamper source PRS5 to reset the device if the filter counter reaches the trigger threshold (4)

within the filter reset period (~32 ms x 1024).

Table: PRS Tamper Source Usage on Other HSE-SVH Devices

Source (Bit) �1�
Default Level
�Response)

User Level �Response) PRS Producer
Tamper Disable
Mask �2�

PRS0 (25 or 26) 0 (Ignore) 1 (Interrupt) - 1

PRS1 (26 or 27) 0 (Ignore) 1 (Interrupt) Push button PB0 0

PRS2 (27 or 28) 0 (Ignore) 2 (Filter) Push button PB0 0

PRS3 (28 or 29) 0 (Ignore) 2 (Filter) - 1

PRS4 (29 or 30) 0 (Ignore) 4 (Reset) Push button PB1 1

PRS5 (30 or 31) 0 (Ignore) 4 (Reset) Software (3) 1

PRS6 (31 or -) 0 (Ignore) 7 (Erase OTP) - 1

Notes:

ò The HSE-SVH devices with ETAMPDET peripheral only have PRS0 (bit 26) to PRS5 (bit 31).

ó The tamper disable mask depends on whether the HSE-SVH device has an ETAMPDET peripheral.

ò Without ETAMPDET peripheral, the tamper disable mask is 0xf2000000 to restore the tamper sources PRS0, PRS3,

PRS4, PRS5, and PRS6 to default response (Ignore).

ó With ETAMPDET peripheral, the tamper disable mask is 0xe4000000 to restore the tamper sources PRS0, PRS3, PRS4,

and PRS5 to default response (Ignore).

ô The Software PRS triggers the tamper source PRS5 to reset the device if the filter counter reaches the trigger threshold (4)

within the filter reset period (~32 ms x 1024).

SE Manager - Tamper Platform Example

Click the View Pro ject Documentation link to open the readme file for instructions on creating the project and running the

example.

Copyright © 2025 Silicon Laboratories. All rights reserved. 185/280

Examples

Follow the procedures in SE Manager - Tamper Platform Example if the HSE OTP is uninitialized. The following sections

describe an initialized device that runs in Normal and Tamper Disable modes.

Normal

ò Press ENTER to run the NORMAL tamper demo. Follow the instructions to go through the example.

. Current tamper test is NORMAL.

 + Press SPACE to select NORMAL or TAMPER DISABLE, press ENTER to run.

. Normal tamper test instructions:

 + Press PB0 to increase filter counter and tamper status is displayed.

 + PRS will issue a tamper reset if filter counter reaches 4 within �32 ms x 1024.

 + Press PB1 to issue a tamper reset.

 + Device will enter diagnostic mode if tamper reset reaches 5.

ó Press PB0 to trigger PRS0 (Interrupt) and PRS2 (Filter) to issue an interrupt. The active tamper sources (0x00050000) of the

EFR32xG21B device are PRS0 (bit 16) and PRS2 (bit 18).

. Get tamper status... SL_STATUS_OK (cycles: 11937 time: 314 us)

 + Recorded tamper status (MSB..LSB): 00050001

 + Currently active tamper sources (MSB..LSB): 00050000

ô Press PB0 (Filter on PRS2) 4 times within ~32 ms x 1024 to trigger an interrupt when reaching the filer counter threshold.

The program will use software PRS to issue a tamper reset through the PRS5 tamper source. The active tamper sources

(0x00050002) of the EFR32xG21B device are Filter (bit 2), PRS0 (bit 16), and PRS2 (bit 18).

. Get tamper status... SL_STATUS_OK (cycles: 11725 time: 308 us)

 + Recorded tamper status (MSB..LSB): 00050002

 + Currently active tamper sources (MSB..LSB): 00050002

 + Tamper filter threshold is reached, issue a reset through PRS

õ Press PB1 to trigger PRS4 (Reset) to issue a tamper reset.

ö After a tamper reset, the SETAMPER (bit 13) in EMU->RSTCAUSE register is set. Note that bit 1 indicates a pin reset and will

also be set.

. Read EMU RSTCAUSE register... SL_STATUS_OK (cycles: 4071 time: 107 us)

 + The EMU RSTCAUSE register (MSB..LSB): 00002002

 + The tamper reset is observed

÷ After five consecutive tamper resets (reset threshold in this example), the device will enter diagnostic mode until a power-

on or pin reset.

Tamper Disable

This example uses the tamper disable mask (0x00fa0000) to restore the tamper sources PRS1, PRS3, PRS4, PRS5, PRS6,

and PRS7 of EFR32xG21B device to default response (Ignore).

ò Press SPACE to select TAMPER DISABLE , press ENTER to run.

Copyright © 2025 Silicon Laboratories. All rights reserved. 186/280

Examples

. Current tamper test is NORMAL.

 + Press SPACE to select NORMAL or TAMPER DISABLE, press ENTER to run.

 + Current tamper test is TAMPER DISABLE.

ó This example will prompt to program the default Public Command Key in flash to the HSE OTP if this key does not exist.

Press ENTER two times to confirm and ENTER again to restore the default tamper level. Follow the instructions shown in

step 3 to go through the example (steps 4 to 6).

. Verify the device public command key in SE OTP.

 + Exporting a public command key from a hard-coded private command key... SL_STATUS_OK (cycles: 210999 time: 5552 us)

 + Reading the public command key from SE OTP... SL_STATUS_NOT_INITIALIZED (cycles: 7763 time: 204 us)

 + Press ENTER to program public command key in SE OTP or press SPACE to abort.

 + Warning: The public command key in SE OTP cannot be changed once written!

 + Press ENTER to confirm or press SPACE to skip if you are not sure.

 + Programming a public command key to SE OTP... SL_STATUS_OK (cycles: 79656 time: 2096 us)

 + Press ENTER to disable tamper signals or press SPACE to exit.

ô Press ENTER to restore the default tamper level if the default Public Command Key in flash matches with the key in the HSE

OTP. Follow the instructions to go through the example (steps 4 to 6).

. Verify the device public command key in SE OTP.

 + Exporting a public command key from a hard-coded private command key... SL_STATUS_OK (cycles: 200804 time: 5284 us)

 + Reading the public command key from SE OTP... SL_STATUS_OK (cycles: 7134 time: 187 us)

 + Comparing exported public command key with SE OTP public command key... OK

 + Press ENTER to disable tamper signals or press SPACE to exit.

. Start the tamper disable processes.

 + Creating a private certificate key in a buffer... SL_STATUS_OK (cycles: 214059 time: 5633 us)

 + Exporting a public certificate key from a private certificate key... SL_STATUS_OK (cycles: 206545 time: 5435 us)

 + Read the serial number of the SE and save it to access certificate... SL_STATUS_OK (cycles: 7930 time: 208 us)

 + Signing the access certificate with private command key... SL_STATUS_OK (cycles: 222650 time: 5859 us)

 + Request challenge from the SE and save it to challenge response... SL_STATUS_OK (cycles: 4208 time: 110 us)

 + Signing the challenge response with private certificate key... SL_STATUS_OK (cycles: 223559 time: 5883 us)

 + Creating a tamper disable token to disable tamper signals... SL_STATUS_OK (cycles: 946431 time: 24906 us)

 + Success to disable the tamper signals!

. Tamper disable test instructions:

 + Press PB0 to increase filter counter and tamper status is displayed.

 + PRS will NOT issue a tamper reset even filter counter reaches 4 within �32 ms x 1024.

 + Press PB1 will NOT issue a tamper reset.

 + Issue a power-on or pin reset to re-enable the tamper signals.

 + Press ENTER to roll the challenge to invalidate the current tamper disable token or press SPACE to exit.

õ Press PB0 to verify tamper sources PRS0 (Interrupt) and PRS2 (Filter) of EFR32xG21B device can still issue an interrupt.

. Get tamper status... SL_STATUS_OK (cycles: 11259 time: 296 us)

 + Recorded tamper status (MSB..LSB): 00050001

 + Currently active tamper sources (MSB..LSB): 00050000

ö The PRS5 tamper source (configured as Reset) was restored to the default (Ignore), so it cannot issue a tamper reset even

if users press PB0 (Filter on PRS2) 4 times within ~32 ms x 1024.

÷ The PRS4 tamper source (configured as Reset) was restored to the default (Ignore), so it cannot issue a tamper reset even

if users press PB1.

ø Issue a power-on or pin reset to exit the tamper disable state or press ENTER to roll the challenge.

Copyright © 2025 Silicon Laboratories. All rights reserved. 187/280

Examples

. Check and roll the challenge.

 + Request current challenge from the SE... SL_STATUS_OK (cycles: 0 time: 0 us)

 + The current challenge (16 bytes):

 AA C1 79 FC FC C5 78 8E A0 3F 91 AB 5D A9 C5 04

 + Rolling the challenge... SL_STATUS_OK (cycles: 0 time: 0 us)

 + Request rolled challenge from the SE... SL_STATUS_OK (cycles: 0 time: 0 us)

 + The rolled challenge (16 bytes):

 0F 63 9C 44 46 E4 7C B2 C9 CA 66 13 34 34 92 8E

 + Issue a power-on or pin reset to activate the rolled challenge.

. SE manager deinitialization... SL_STATUS_OK (cycles: 0 time: 0 us)

Simplicity Commander

The tamper disable was designed with three organizations in mind:

ò The Direct Customer to whom S ilicon Labs sells the chip. This chip has the Public Command Key installed in the SE OTP.

ó The Product Company is a customer of the Direct Customer. This is applicable if the Direct Customer is creating a white-

labeled product for another company or a sub-component that goes into another company ’s product.

ô The Debug Party could be anyone, internal or external, that the Product Company decides is qualified to debug the

device.

Because the Public Command Key is installed into the SE OTP of a large number of devices and cannot be changed, the

corresponding Private Command Key must be guarded by a very stringent process. If this Private Command Key is ever

leaked, all the devices programmed with the corresponding Public Command Key will be compromised.

A tamper disable use case is described in the following figure, and the signing process is performed by a Hardware Security

Module (HSM).

The tamper disable flow moving across the time axis from left to right is explained below:

ò The Product Company creates a Private/Public Certificate Key pair for each device. Because the key pair is assigned only to

a single device, the company may not need to protect the Private Certificate Key as securely as the Private Command Key

by the Direct Customer.

In this example, the Private/Public Certificate Key pair (cert_key.pemand and cert_pubkey.pem) is generated by running the

util genkey command.

Copyright © 2025 Silicon Laboratories. All rights reserved. 188/280

Examples

commander util genkey --type ecc-p256 --privkey cert_key.pem --pubkey cert_pubkey.pem

Generating ECC P256 key pair...

Writing private key file in PEM format to cert_key.pem

Writing public key file in PEM format to cert_pubkey.pem

DONE

ó The Public Certificate Key (cert_pubkey.pem) for each device is passed to the S ilicon Labs Direct Customer. The part

number and serial number are also required if Direct Customer cannot access the device.

Run the security status command to get the device serial number. The --serialno option is for the J-Link serial number of the

WSTK.

commander security status --device EFR32MG21B010F1024 --serialno 440030580

SE Firmware version : 1.2.9

Serial number : 000000000000000014b457fffe0f77ce

Debug lock : Disabled

Device erase : Enabled

Secure debug unlock : Disabled

Tamper status : OK

Secure boot : Disabled

Boot status : 0�20 - OK

Command key installed : True

Sign key installed : False

DONE

ô The Direct Customer then places that Public Certificate Key in the access certificate. The access certificate is per device

because it contains the unique device serial number. This certificate is generated once upon creation of the device, and

thereafter, is generally only modified when the Private/Public Certificate Key pair is changed by the Product Company.

The following two steps are OPTIONAL for customization of Authorizations and Tamper Authorizations.

a. (Optional) Run the security genauth command to generate the default certificate authorization file

(certificate_authorization.json).

commander security genauth -o certificate_authorizations.json --nostore --serialno 440030580

DONE

b. (Optional) Use a text editor to modify the default Authorizations and Tamper Authorizations in the json file.

Run the security gencert command with the following parameters from the Product Company to generate an unsigned

access certificate (access_certificate .extsign) in Security Store:

Device part number

Device serial number

Public Certificate Key

commander security gencert --device EFR32MG21B010F1024 --deviceserialno 000000000000000014b457fffe0f77ce

--cert-pubkey cert_pubkey.pem --extsign

Authorization file written to Security Store:

C�/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe0f77ce/certificate_authoriz

Cert key written to Security Store:

C�/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe0f77ce/cert_pubkey.pem

Created an unsigned certificate in Security Store:

C�/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe0f77ce/access_certificate.

DONE

Notes:

The --extsign option to create an unsigned access certificate is only available in S implicity Commander Version 1.11.2 or

above.

Copyright © 2025 Silicon Laboratories. All rights reserved. 189/280

Examples

Elements of the Access Certificate on page).

(Optional) Use --authorization option if the customized json file generated in the above optional steps (a) and (b) is

used.

commander security gencert --device EFR32MG21B010F1024 --authorization certificate_authorizations.json

--deviceserialno 000000000000000014b457fffe0f77ce --cert-pubkey cert_pubkey.pem --extsign

õ The signing of the access certificate can be done by passing an unsigned access certificate to a Hardware Security Module

(HSM) containing the Private Command Key.

In this example, the OpenSSL is used to sign the access certificate (access_certificate .extsign) in Security Store with the

Private Command Key (command_key.pem). The access certificate signature is in the cert_signature .bin file.

openssl dgst -sha256 -binary -sign command_key.pem -out cert_signature.binaccess_certificate.extsign

Run the util signcert command with the following parameters to verify the signature and generate the signed access

certificate (access_certificate .bin):

Unsigned access certificate

Access certificate signature

Public Command Key

commander util signcert access_certificate.extsign --cert-type access --signature cert_signature.bin

--verify command_pubkey.pem --outfile access_certificate.bin

R = 76CDC5BA18E5248FDA5418002F250F149B449829A005D6F0726268016CC53ED4

S = E4B8ABA2CF742B0E6CC5BA2C1023D76BEEF3C4A11DA97CC4D23459F32237A206

Successfully verified signature

Successfully signed certificate

DONE

Notes:

Put the required files in the same folder to run the command.

The util signcert command for access certificate is only available in S implicity Commander Version 1.11.2 or above.

The access certificate signature can be in a Raw or Distinguished Encoding Rules (DER) format.

ö The access certificate is passed to the Product Company. The purpose of the access certificate is to grant overall debug

access capabilities to the Product Company and authorize them to allow third parties to debug the device. The Product

Company can now use the access certificate to generate the Disable Tamper Token. The same access certificate can be

used to generate as many Disable Tamper Tokens as necessary without having to ever go back to the Direct Customer.

÷ To create the Disable Tamper Token, a debug session must be started with the device and the challenge value (which is a

random number Challenge 1 in this example) should be read out to generate the challenge response.

Run the security gencommandcommand to generate the challenge response without disable tamper command signature and

store it in a file (command_unsign.bin).

commander security gencommand --action disable-tamper --disable-param 0�00fa0000 -o command_unsign.bin

--nostore --device EFR32MG21B010F1024 --serialno 440030580

Unsigned command file written to:

command_unsign.bin

DONE

The tamper disable mask (0x00fa0000) is based on the Tamper platform example on EFR32xG21B devices (Table PRS

Tamper Source Usage on EFR32xG21B Devices).

If the --disable-param option is not provided, it will restore all tamper sources (0xffffffb6) by default.

ø The challenge response is then cryptographically hashed (SHA-256) to create a digest. The digest is then signed by the

Private Certificate Key to generate the disable tamper command signature.

The signing of the challenge response can be done by passing an unsigned challenge response to a Hardware Security

Module (HSM) containing the Private Certificate Key.

In this example, the OpenSSL is used to sign the challenge response (command_unsign.bin) with the Private Certificate Key

(cert_key.pem). The disable tamper command signature is in the command_signature .bin file.

Copyright © 2025 Silicon Laboratories. All rights reserved. 190/280

Examples

openssl dgst -sha256 -binary -sign cert_key.pem -out command_signature.bincommand_unsign.bin

ù Run the security disabletamper command with the access certificate (access_certificate .bin) from Direct Customer and disable

tamper command signature (command_signature .bin) in step 7 to generate the Disable Tamper Token.

commander security disabletamper --disable-param 0�00fa0000 --cert access_certificate.bin

--command-signature command_signature.bin EFR32MG21B010F1024 --serialno 440030580

Certificate written to Security Store:

C�/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe0f77ce/access_certificate.

R = A70834D97640A92510D151765F0EED6C6A05CB8BE81E06E905C230ED24E71659

S = 9B69C113C2B7DEE60BF0BC7D72719F7F9465840D68EADBBB4F9BCE7A1267B936

Command signature is valid

Tamper successfully disabled.

Command disable tamper payload was stored in Security Store

DONE

Notes:

Put the required files in the same folder to run the command.

The disable tamper command signature can be in a Raw or Distinguished Encoding Rules (DER) format.

S implicity Commander Version 1.11.2 or above is required to support signature in DER format.

ú (Alternative) Key protection is not required if the Private Certificate Key is ephemeral. Steps 6 to 8 can be implemented by

running the security disabletamper command with the access certificate (access_certificate .bin) from the Direct Customer and

Private Certificate Key (cert_key.pem) to generate the Disable Tamper Token.

commander security disabletamper --disable-param 0�00fa0000 --cert access_certificate.bin --cert-privkey cert_key.pem --device

EFR32MG21B010F1024 --serialno 440030580

Certificate written to Security Store:

C�/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe0f77ce/access_certificate.

Cert key written to Security Store:

C�/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe0f77ce/cert_pubkey.pem

Created unsigned disable tamper command

Signed disable tamper command using

C�/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe0f77ce/cert_key.pem

Tamper successfully disabled.

Command disable tamper payload was stored in Security Store

DONE

òñ The Disable Tamper Token (aka Command disable tamper payload) file (tamper_payload_111110100000000000000000.bin , where

111110100000000000000000 is 0x00fa0000 for tamper disable mask) is stored in the Security Store. The location in Windows

is C:\Users\<PC user name>\AppData\Local\SiliconLabs\commander\SecurityStore\device_<Serial number>\challenge_<Challenge value> .

Users can also use the security getpath command to get the path of the Security Store or a specified device.

commander security getpath

C�/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore

DONE

commander security getpath --deviceserialno 0000000000000000588e81fffe70350d

Copyright © 2025 Silicon Laboratories. All rights reserved. 191/280

Examples

C�/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_0000000000000000588e81fffe70350d

DONE

òò The Disable Tamper Token and the device are now delivered to the Debug Party.

Run the security gencommand command to create the Security Store to place the Disable Tamper Token file.

commander security gencommand --action disable-tamper --disable-param 0�00fa0000 --device EFR32MG21B010F1024 --serialno

440030580

Unsigned command file written to Security Store:

C�/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe0f77ce/challenge_8e7f73e

DONE

Copy the Disable Tamper Token file (tamper_payload_111110100000000000000000.bin) from Product Company to the Windows

Security Store challenge_<Challenge value> folder located in C:\Users\<PC

username>\AppData\Local\SiliconLabs\commander\SecurityStore\device_<Serial number>\challenge_<Challenge value> .

òó The device compares the Disable Tamper Token contents with its internal serial number, challenge value, and Public

Command Key to determine the token’s authenticity. If authentic, it will execute the disable tamper command to restore the

default levels on the tamper disable mask (0xfa000000) ; otherwise, it will ignore the command.

Run the security disabletamper command to disable the tamper.

commander security disabletamper --disable-param 0�00fa0000 --device EFR32MG21B010F1024 --serialno 440030580

Disabling tamper with tamper payload:

C�/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe0f77ce/challenge_8e7f73e

 successfully disabled.

DONE

Note: Users can verify the Disable Tamper Token by following steps 4 to 6 in Tamper Disable if the

EFR32xG21B device is running in the Normal mode of the SE Manager Tamper platform example.

òô The Debug Party can now use this same Disable Tamper Token to disable the tamper (step 12), over and over again

after each power-on or pin reset, until they have finished debugging the device.

òõ Once the Debug Party has finished debugging, they will send the device back to the Product Company.

òö Once the Product Company receives the device, they will immediately start a debug session to roll the challenge (from

Challenge 1 to Challenge 2 in this example). Rolling the challenge will effectively invalidate any Disable Tamper Token that

has been previously given to any third party.

Run the security ro llchallenge command and reset the device to invalidate the current Disable Tamper Token. The challenge

cannot be rolled before it has been used at least once — that is, by running the security disabletamper or security unlock

command.

commander security rollchallenge --device EFR32MG21B010F1024 --serialno 440030580

Challenge was rolled successfully.

DONE

The unlock token is invalidated after rolling the challenge because any previously issued Disable Tamper Token now contains

a different challenge value (Challenge 1) than the challenge value currently in the device (Challenge 2).

The validation process of any previously issued Disable Tamper Token will always fail until a new Disable Tamper Token is

issued with a current matching challenge value (Challenge 2).

Copyright © 2025 Silicon Laboratories. All rights reserved. 192/280

Examples

Note: Direct Customer can directly use the Private Command Key on the connected chip to generate the

Disable Tamper Token in Security Store. But it has a high risk (cannot use HSM) to leak the Private Command

Key to a party when using this approach.

commander security disabletamper --disable-param 0�00fa0000 --command-key command_key.pem

--device EFR32MG21B010F1024 --serialno 440030580

Simplicity Studio

ò Open Security Settings of the selected device as described in Using S implicity Studio.

ó Click [Roll Challenge] to generate a new challenge value to invalidate the Disable Tamper Token for tamper disable. Click

[OK] to exit.

Copyright © 2025 Silicon Laboratories. All rights reserved. 193/280

Authenticating Silicon Labs Devices using Device Certificates

Authenticating Silicon Labs Devices using Device Certificates

Authenticating Silicon Labs Devices Using Device
Certificates

Note: This section replaces AN1268: Authenticating Silicon Labs Devices Using Device Certificates. Further updates to

this application note will be provided here.

This application note describes how to authenticate a device as a genuine S ilicon Labs product at any time during its life.

The digital certificates for secure identity are stored in the device and the S ilicon Labs Server. This secure identity feature

is only available on Secure Vault High devices.

Key Points

Secure identity on Secure Vault High devices

Device certificate options

Entity Attestation Token (EAT)

Remote authentication process

Examples for certificate chain verification and remote authentication

Copyright © 2025 Silicon Laboratories. All rights reserved. 194/280

Series 2 Device Security Features

Series 2 Device Security Features

Series 2 Device Security Features
Protecting IoT devices against security threats is central to a quality product. S ilicon Labs offers several security options to

help developers build secure devices, secure application software, and secure paths of communication to manage those

devices. S ilicon Labs’ security offerings were significantly enhanced by the introduction of the Series 2 products that

included a Secure Engine. The Secure Engine is a tamper-resistant component used to securely store sensitive data and

keys and to execute cryptographic functions and secure services.

On Series 1 devices, the security features are implemented by the TRNG (if available) and CRYPTO peripherals.

On Series 2 devices, the security features are implemented by the Secure Engine and CRYPTOACC (if available). The

Secure Engine may be hardware-based, or virtual (software-based). Throughout this document, the following abbreviations

are used:

HSE - Hardware Secure Engine

VSE - Virtual Secure Engine

SE - Secure Engine (either HSE or VSE)

Additional security features are provided by Secure Vault. Three levels of Secure Vault feature support are available,

depending on the part and SE implementation, as reflected in the following table:

Level �1� SE Support Part �2�

Secure Vault High (SVH) HSE only (HSE-SVH) EFR32xG2yB (3)

Secure Vault Mid (SVM) HSE (HSE-SVM) EFR32xG2yA (3)

" VSE (VSE-SVM) EFR32xG2y, EFM32PG2y (4)

Secure Vault Base (SVB) N/A MCU Series 1 and Wireless SoC Series 1

Notes:

ò The features of different Secure Vault levels can be found in https://www.silabs.com/security.

ó The x is a letter (B, F, M, or Z).

ô At the time of this writing, the y is a digit (1, 3, or 4).

õ At the time of this writing, the y is a digit (2).

Secure Vault Mid consists of two core security functions:

Secure Boot: Process where the initial boot phase is executed from an immutable memory (such as ROM) and where code is

authenticated before being authorized for execution.

Secure Debug access control: The ability to lock access to the debug ports for operational security, and to securely unlock

them when access is required by an authorized entity.

Secure Vault High offers additional security options:

Secure Key Storage: Protects cryptographic keys by "wrapping" or encrypting the keys using a root key known only to the

HSE-SVH.

Anti-Tamper protection: A configurable module to protect the device against tamper attacks.

Device authentication: Functionality that uses a secure device identity certificate along with digital signatures to verify the

source or target of device communications.

A Secure Engine Manager and other tools allow users to configure and control their devices both in-house during testing

and manufacturing, and after the device is in the field.

User Assistance

Copyright © 2025 Silicon Laboratories. All rights reserved. 195/280

https://www.silabs.com/security

Series 2 Device Security Features

In support of these products S ilicon Labs offers whitepapers, webinars, and documentation. The following table summarizes

the key security documents:

Document Summary Applicability

Series 2 Secure Debug How to lock and unlock Series 2 debug access, including

background information about the SE

Secure Vault

Mid and High

Series 2 Secure Boot with RTSL Describes the secure boot process on Series 2 devices using

SE

Secure Vault

Mid and High

Anti-Tamper Protection Configuration

and Use

How to program, provision, and configure the anti-tamper

module

Secure Vault

High

Authenticating S ilicon Labs Devices

using Device Certificates (this

document)

How to authenticate a device using secure device certificates

and signatures, at any time during the life of the product

Secure Vault

High

Secure Key Storage How to securely 'wrap' keys so they can be stored in non-

volatile storage.

Secure Vault

High

AN1222: Production Programming of

Series 2 Devices

How to program, provision, and configure security information

using SE during device production

Secure Vault

Mid and High

Key Reference

Public/Private keypairs along with other keys are used throughout S ilicon Labs security implementations. Because

terminology can sometimes be confusing, the following table lists the key names, their applicability, and the documentation

where they are used.

Key Name Customer Programmed Purpose

Public S ign key (S ign Key Public) Yes Secure Boot binary authentication and/or OTA

upgrade payload authentication

Public Command key (Command

Key Public)

Yes Secure Debug Unlock or Disable Tamper command

authentication

OTA Decryption key (GBL

Decryption key) aka AES-128 Key

Yes Decrypting GBL payloads used for firmware upgrades

Attestation key aka Private Device

Key

No Device authentication for secure identity

Device Compatibility

This application note applies to Series 2 HSE-SVH device families. Refer to IoT Endpoint Security Fundamentals for details

on supporting devices.

Copyright © 2025 Silicon Laboratories. All rights reserved. 196/280

https://docs.silabs.com/iot-security/latest/series2-secure-debug/
https://docs.silabs.com/mcu-bootloader/latest/series2-secure-boot-with-rtsl/
https://docs.silabs.com/iot-security/latest/efr32-secure-vault-tamper/
https://docs.silabs.com/iot-security/latest/efr32-secure-key-storage/
https://docs.silabs.com/iot-security/latest/iot-endpoint-security-fundamentals/

Introduction

Introduction

Introduction
One of the biggest challenges for connected devices is post-deployment authentication. S ilicon Labs’ factory trust

provisioning service with optional secure programming provides a secure device identity certificate, analogous to a birth

certificate, for each individual silicon die during integrated circuit (IC) manufacturing. This enables post-deployment security,

authenticity, and attestation-based health checks. The device certificate guarantees the authenticity of the device for its

lifetime. When the certificate is checked, a digital signature confirms that the certificate received has not been tampered

with.

Certificates can now be used to authenticate Internet of Things (IoT) devices as well as Internet servers, now that S ilicon

Labs’ HSE-SVH devices have both cryptographic acceleration in hardware and tamper-resistant storage to handle digital

certificate operations.

The digital signature and certificates are major cryptographic tools to verify the device is authentic. These tools are

described in the following sections.

Digital Signature

The digital signature is used to protect integrity and authenticity of an electronic message.

Digital Signature Example

Alice wants to give data to Bob, and Bob wants to make sure that the data came from Alice and has not been tampered

with. Alice has a private/public key pair, and has previously given Bob her public key.

ò Alice generates the hash (for example SHA256) of the data.

ó Alice's private key is used to sign the hash to create a signature. The hash is signed instead of the data itself because the

signing operation is slow. Therefore it is more efficient to sign the hash instead of the arbitrarily large data.

ô The signature is attached to the end of the data.

õ The data and signature are given to Bob.

Copyright © 2025 Silicon Laboratories. All rights reserved. 197/280

Introduction

ö Bob independently generates the hash of the data.

÷ The signature is verified with the hash and Alice ’s public key, which results in a true or false outcome indicating if the data is

valid.

Note: This scheme requires distribution of Alice's public key.

Digital Certificates and Chain of Trust

In Digital S ignature Example, Bob already had access to Alice ’s public key, which he trusted. However, it is not always

feasible to pre-share a public key with everyone for secure identity verification, and no mechanism exists to revoke or

inactivate the public key in case it gets stolen.

A digital certificate is simply a small, verifiable data file that contains identity credentials and a public key. That data is then

signed either with the corresponding private key, or a different private key. The digital certificate can be used to prove the

ownership of a public key.

If it is signed using the corresponding private key, it is called a self-signed certificate.

If it is signed by another private key, the owner of that private key is acting as a Certificate Authority (CA).

A Certificate Authority (CA) is a trusted third party by both the owner and party relying on the certificate.

Concatenation of digital certificates builds a chain of trust.

At the root of the chain is a self-signed certificate called a root certificate or a CA certificate.

The root or CA certificate can be used to sign another certificate.

Note: The private key is never included as part of the certificate – it must be stored separately and kept

private. The security of the scheme relies on protecting the private keys.

Digital Certificates Verification

This section illustrates the process shown in Digital S ignature Example, but using digital certificates.

Copyright © 2025 Silicon Laboratories. All rights reserved. 198/280

Introduction

Digital Certificates Verification Example

Alice wants to give data to Bob, signed with her private key. Alice has a digital certificate signed by a trusted third party

(CA) in addition to her private key. Bob has a certificate from the trusted CA but nothing else is previously shared.

ò Alice uses her private key to sign the data.

ó Alice gives the data, signature, and her certificate to Bob.

ô Bob first verifies that Alice's certificate is valid, to prove Alice is the owner of the certificate's public key. This is done by

verifying that Alice's certificate contains a valid signature created by the CA.

õ Bob then verifies the signature of the data using the public key in Alice's certificate.

Note: The hash process in Digital S ignature Example is skipped in this example.

Copyright © 2025 Silicon Laboratories. All rights reserved. 199/280

Secure Identification on HSE�SVH Devices

Secure Identification on HSE�SVH Devices

Secure Identification on HSE�SVH Devices
The goal of secure identification is to prove the ownership of a device's unique public key to an external service. It enables

the external service to identify the device as legitimate and to authenticate device-generated data or messages.

Chain of Trust

The chain of trust on HSE-SVH devices is illustrated in the following figure.

S ilicon Labs is a Certificate Authority (CA).

The root certificate and factory certificate are stored in the S ilicon Labs Server.

The factory certificate is static per factory.

The batch certificate and device certificate are stored on the device.

The batch certificate is rolled per production batch.

The device certificate is a unique cryptographic identity.

All certificates are X.509 standard format.

TLS-compliant: Standard endpoint authentication methods are used in internet communications

S ignature algorithm: ECDSA-prime256v1 with SHA256

Each certificate in the chain is signed by the certificate above it (S igning and Verification figure).

Note: A certificate can be revoked if needed, for instance if security issues arise. The certificate revocation

lists are stored in the S ilicon Labs Server.

Device Certificate

The device certificate example is described in the following figure.

Copyright © 2025 Silicon Laboratories. All rights reserved. 200/280

Secure Identification on HSE�SVH Devices

The device certificate is in X.509 DER format (~0.5 kB).

The device certificate is stored in HSE one-time programmable memory (OTP). It cannot be modified once programmed.

The batch number (Issuer: CN = Batch field) identifies the factory and batch in which the device was produced.

The validity period is 100 years from device manufacture date.

The device 64-bit hard-coded unique ID (EUI) is encoded in the Subject: CN field, which blinds this certificate to the device.

The device-specific public key is embedded in the device certificate and the corresponding private key is securely stored in

the Secure Key Storage on the chip.

The Issuer's private key is used to sign the hash of the certificate data to create a device certificate signature.

Signing and Verification

S igning and verification for certificates on HSE-SVH devices are described in the following figures.

Copyright © 2025 Silicon Laboratories. All rights reserved. 201/280

Secure Identification on HSE�SVH Devices

Copyright © 2025 Silicon Laboratories. All rights reserved. 202/280

Device Certificate Options

Device Certificate Options

Device Certificate Options
The HSE-SVH devices are each programmed with a device certificate during IC production. The device certificate is signed

with a Public Device Key, using a Private Batch Key that can be validated against a S ilicon Labs certificate chain

Verification for Certificates and Certificate Chain Verification. The device private key never leaves the Secure Key Storage

on the chip. Customers can create their own device certificates during their production.

Three device certificate options (standard, modified, and external) are provided to meet different requirements. S ilicon Labs

provides Custom Part Manufacturing Service (CPMS) to program custom certificates on your chips at the S ilicon Labs

factories. For more information about CPMS, see UG519: Custom Part Manufacturing Service User's Guide.

Standard Device Certificate

Comes standard with HSE-SVH devices.

Cryptographically proves the device is an authentic S ilicon Labs device.

Does not protect against overproduction or counterfeit products that are built with authentic S ilicon Labs devices.

S igned to a S ilicon Labs Certificate Authority (CA).

The device can prove that it possesses the private key associated with the public key in its certificate by signing the

response to a given challenge (Remote Authentication Process and Certificate Chain Verification and Remote

Authentication).

Copyright © 2025 Silicon Laboratories. All rights reserved. 203/280

https://www.silabs.com/developers/custom-part-manufacturing-service
https://www.silabs.com/documents/public/user-guides/ug519-cpms-user-guide.pdf

Device Certificate Options

Modified Device Certificate

Available as a customization service on HSE-SVH devices (OEM custom part number).

Cryptographically proves the device is an authentic S ilicon Labs device that was produced for a specific OEM.

Protects against overproduction by Contract Manufacturer (CM).

Device Certificate X.509 fields can be specified, with restrictions.

S igned to a S ilicon Labs Certificate Authority (CA).

External Device Certificate

Available as a customization service on HSE-SVH devices (OEM custom part number).

Cryptographically proves the device is an authentic S ilicon Labs device that was produced for a specific OEM.

Protects against overproduction by Contract Manufacturer (CM).

Factory Certificate is custom for each OEM.

Device Certificate and Factory Certificate X.509 fields can be specified, with restrictions.

S igned to a OEM Certificate Authority (CA).

Root Certificate Authority is OEM-specified and is optional.

Electronic delivery of all batch and device certificates signed under this OEM factory certificate is supported.

Copyright © 2025 Silicon Laboratories. All rights reserved. 204/280

Device Certificate Options

Copyright © 2025 Silicon Laboratories. All rights reserved. 205/280

Entity Attestation Token �EAT�

Entity Attestation Token �EAT�

Entity Attestation Token �EAT�
The device attestation service creates a token that contains a fixed set of device-specific data when requested from the

caller. The device must contain an attestation key pair, which is unique per device, to sign the token. The HSE-SVH device

uses the Private Device Key (aka attestation key) to sign the token, and the caller uses the Public Device Key to verify the

token's authenticity.

An Entity Attestation Token (EAT) is a mini-report that is cryptographically signed. An EAT is encoded in either one of two

standardized data formats: a Concise Binary Object Representation (CBOR) or in the text-based format JSON. A digital

signature is then used to protect its content. The technical specification defining the content of the EAT, which are claims

about the hardware and the software running on a device, is specified by the Internet Engineering Task Force (IETF).

An EAT is a collection of Key ID-Value pairs relating to device pedigree or any other information one wants the device to

attest. Collected data can originate from the Root of Trust (RoT), any protected area, or non-protected areas.

The EAT must be signed following the structure of the CBOR Object S igning and Encryption (COSE) specification. For

asymmetric key algorithms, the signature structure must be COSE-S ign1. A COSE-S ign1 is a CBOR encoded, self-secured

data blob that contains headers, a payload, and a signature.

The primary need for EAT verification is to check correct formatting and verify signatures as for any token. In addition,

though, the verifier can operate a policy where values of some of the claims in this profile can be compared to reference

values, registered with the verifier for a given deployment, to confirm that the device is endorsed by the manufacturer

supply chain.

The HSE can generate the PSA attestation token or security configuration token when requested from the caller with a

challenge (Auth challenge claim below). The following tables describe EAT claims that are used in the PSA attestation

token and security configuration token.

Note: The actual claims returned from the tokens are HSE firmware version dependent.

Claims of PSA Attestation Token

Key ID Claim Description Value

-75000 Profile definition Name of a document that describes the profile of the report. PSA_IOT_PROFILE_1

-75001 Client ID Represents the Partition ID of the caller. See note below

-75002 Security

lifecycle

Represents the current life cycle stage of the PSA RoT. Device dependent

-75003 Implementation

ID

Uniquely identifies the underlying immutable PSA RoT. Device dependent

(32 bytes)

-75004 Boot seed Represents a random value created at system boot time. Random bytes (32

bytes)

-75006 Software

components

A list of Software components represents all the software loaded by

PSA RoT.

See the software

components table

below.

-75008 Auth challenge Input object from the caller. For example, this can be a cryptographic

nonce or a hash of locally attested data. The length must be 32, 48, or

64 bytes.

Random bytes or

hash (32/48/64

bytes)

Copyright © 2025 Silicon Laboratories. All rights reserved. 206/280

https://www.rfc-editor.org/info/rfc7049
https://datatracker.ietf.org/doc/html/draft-ietf-rats-eat-11#ref-RATS.Architecture
https://www.rfc-editor.org/info/rfc8152
https://www.ietf.org/archive/id/draft-tschofenig-rats-psa-token-08.txt

Entity Attestation Token �EAT�

Key ID Claim Description Value

-75009 Instance ID Unique identifier of the instance. Device EUI-64 unique ID with type byte 0x06 (9 bytes)

Note:

Key ID 75001: Client ID if present. Otherwise the value 1 for a token requested by a secure bus master and -1 for

a non-secure master.

Key ID 75002 (For the definitions of these lifecycle states, please refer to the ARM Platform Security Model):

UNKNOWN (0x0000)

ASSEMBLY_AND_TEST (0x1000)

PSA_ROT_PROVISIONING (0x2000)

SECURED (0x3000)

NON_PSA_ROT_DEBUG (0x4000)

RECOVERABLE_PSA_ROT_DEBUG (0x5000)

DECOMMISSIONED (0x6000)

Key ID 75003:

Word[0]: Die revision

Word[1]: HSE OTP version

Word[2]: Bit indicating it is an HSE-SVH device

Word[3]: Production version

Word[4:7]: Reserved (zeros)

Software Components

Key
ID

Type Description Value

1 Measurement

type

A short string represents the role of this software component. See note

below

2 Measurement

value

Represents a hash of the invariant software component in memory at

startup time.

See note

below

4 Version The issued software version is in the form of a text string. See note

below

Notes:

Key ID 1:

HSE always exists — PRoT

If secure booted Gecko Bootloader exists at flash starting address — BL

If secure booted application exists at flash starting address — ARoT

Key ID 2: SHA-256 hash (32 bytes) of the firmware (HSE, Gecko Bootloader, or application)

Key ID 4: Version of the firmware (HSE, Gecko Bootloader, or application)

Claims of Security Configuration Token

Key ID Claim Description Value

-75000 Profile definition Name of a document that describes the profile of the report. SILABS_1

-75008 Auth challenge Input object from the caller. For example, this can be a

cryptographic nonce or a hash of locally attested data. The

length must be 32 bytes.

Random bytes or hash

(32 bytes)

-75009 Instance ID Unique identifier of the instance. Device EUI-64 unique ID

with type byte 0x06 (9

bytes)

-76000 SE status Device HSE status. Device dependent (36

bytes)

Copyright © 2025 Silicon Laboratories. All rights reserved. 207/280

https://developer.arm.com/documentation/den0128/0100/

Entity Attestation Token �EAT�

Key ID Claim Description Value

-76001 OTP

configuration

Device HSE OTP configuration if provisioned. Device dependent (24 bytes)

-76002 S ign Key Public S ign Key in HSE OTP if provisioned. Device dependent (64 bytes)

-76003 Command Key Public Command Key in HSE OTP if provisioned. Device dependent (64 bytes)

-76004 Tamper settings Current applied tamper settings. Device dependent (16 bytes)

Notes:

All custom S ilicon Labs claims will have a base of 76000.

Key ID 76000: Refer to section "Get Status" in AN1303: Programming Series 2 Devices using the Debug Challenge Interface

(DCI) and Serial Wire Debug (SWD) for the description (HSE-SVH) of the value.

Key ID 76001: Refer to section "Read User Configuration" in AN1303: Programming Series 2 Devices using the Debug

Challenge Interface (DCI) and Serial Wire Debug (SWD) for the description (HSE-SVH) of the value.

Key ID 76002 and 76003: Refer to Key Reference for Public S ign Key and Public Command Key.

Key ID 76004: One nibble per tamper source. Refer to section "Anti-Tamper Configuration" in AN1303: Programming Series 2

Devices using the Debug Challenge Interface (DCI) and Serial Wire Debug (SWD) for the description of the value.

Copyright © 2025 Silicon Laboratories. All rights reserved. 208/280

https://www.silabs.com/documents/public/application-notes/an1303-efr32-dci-swd-programming.pdf
https://www.silabs.com/documents/public/application-notes/an1303-efr32-dci-swd-programming.pdf
https://www.silabs.com/documents/public/application-notes/an1303-efr32-dci-swd-programming.pdf

Remote Authentication Process

Remote Authentication Process

Remote Authentication Process
Remote authentication is used to manage attestation by requesting that the device sign a challenge or EAT based on its

secure identity.

ò The remote device requests the device certificate and batch certificate from the HSE-SVH device.

ó The remote device looks up the factory certificate and root certificate from the S ilicon Labs Server.

ô The remote device validates each certificate in the chain using the public key of each Issuer (Verification for Certificates).

õ The remote device then sends an attestation challenge (random number) to the HSE-SVH device. The HSE-SVH device

uses the Private Device Key in the Secure Key Storage on the chip to sign the challenge or EAT and sends the signature of

challenge or EAT to the remote device.

ö The remote device requires a small library to validate the signature of challenge or EAT using the Public Device Key in the

device certificate.

Copyright © 2025 Silicon Laboratories. All rights reserved. 209/280

Secure Engine Manager

Secure Engine Manager

Secure Engine Manager
The Secure Engine Manager provides thread-safe APIs for the SE's mailbox interface. The following table lists the SE

Manager APIs related to secure identity. The SE Manager API document can be found at https://docs.silabs.com/gecko-

platform/latest/service/api/group-sl-se-manager.

For the SE's mailbox interface, see section Secure Engine Subsystem in Series 2 Secure Debug.

SE Manager API for Security Identity

SE Manager API Usage

sl_se_read_pubkey Read stored Public Device Key in the HSE-SVH device.

sl_se_read_cert Read stored certificates (DER format) in the HSE-SVH device.

sl_se_read_cert_size Read the size of stored certificates in the HSE-SVH device.

sl_se_attestation_get_psa_ iat_token Get the PSA attestation token from the HSE with the given nonce.

sl_se_attestation_get_psa_ iat_token_size Get the size of a PSA attestation token with the given nonce.

sl_se_attestation_get_config_token Get the security configuration token from the HSE with the given nonce.

sl_se_attestation_get_config_token_size Get the size of a security configuration token with the given nonce.

Copyright © 2025 Silicon Laboratories. All rights reserved. 210/280

https://docs.silabs.com/gecko-platform/latest/service/api/group-sl-se-manager
https://docs.silabs.com/iot-security/latest/series2-secure-debug/03-r-secureelement

Examples

Examples

Examples

Overview

The secure device authentication examples are described in the following table.

Secure Device Authentication Examples

Example Device �Radio Board)
HSE
Firmware

Tool

Certificate chain verification EFR32MG21B010F1024IM32

(BRD4181C)

Version

1.2.9

S implicity Commander and

OpenSSL

Certificate chain verification EFR32MG21B010F1024IM32

(BRD4181C)

Version

1.2.9

S implicity Commander

Certificate chain verification EFR32MG21B010F1024IM32

(BRD4181C)

Version

1.2.9

S implicity Studio 5

Certificate chain verification & Remote

authentication

EFR32MG21B010F1024IM32

(BRD4181C)

Version

1.2.9

SE Manager and Mbed TLS

Entity Attestation Token (EAT) EFR32MG21B010F1024IM32

(BRD4181C)

Version

1.2.9

SE Manager

Entity Attestation Token (EAT) EFR32MG21B010F1024IM32

(BRD4181C)

Version

1.2.9

S implicity Commander

Note: Unless specified in the example, these examples can apply to other HSE-SVH devices.

Users can download the device root certificate (Device-Root-CA-chain.pem) and factory certificate (Factory-chain.pem)

from https://www.silabs.com/certificate-authority.

Copyright © 2025 Silicon Laboratories. All rights reserved. 211/280

https://www.silabs.com/certificate-authority

Examples

For S implicity Studio v5.3.0.0 and higher, the device root certificate (device-root-prod.pem) and factory certificate (factory-

prod.pem) can be found in the Window folder below.

C:\S iliconLabs\S implicityStudio\v5\offline\common\certificates

Using Simplicity Commander

ò This application note uses S implicity Commander v1.11.2. The procedures and console output may be different on the other

versions of S implicity Commander. The latest version of S implicity Commander can be downloaded from

https://www.silabs.com/developers/mcu-programming-options.

commander --version

Simplicity Commander 1v11p2b998

JLink DLL version: 6.94d

Qt 5.12.1 Copyright (C) 2017 The Qt Company Ltd.

EMDLL Version: 0v17p18b581

mbed TLS version: 2.6.1

DONE

ó The S implicity Commander's Command Line Interface (CLI) is invoked by commander.exe in the S implicity Commander folder.

The location for S implicity Studio 5 in Windows is C:\SiliconLabs\SimplicityStudio\v5\developer\adapter_packs\commander . For

ease of use, it is highly recommended to add the path of commander.exe to the system PATH in Windows.

ô If more than one Wireless Starter K it (WSTK) is connected via USB, the target WSTK must be specified using the --serialno

\<J-Link serial number> option.

õ If the WSTK is in debug mode OUT, the target device must be specified using the --device \<device name> option.

For more information about S implicity Commander, see UG162: S implicity Commander Reference Guide.

Using an External Tool

The certificate chain verification example uses the OpenSSL to validate the certificate chain. The Windows version of

OpenSSL can be downloaded from https://slproweb.com/products/Win32OpenSSL.html. This application note uses OpenSSL

Copyright © 2025 Silicon Laboratories. All rights reserved. 212/280

https://www.silabs.com/developers/mcu-programming-options
https://www.silabs.com/documents/public/user-guides/ug162-simplicity-commander-reference-guide.pdf
https://slproweb.com/products/Win32OpenSSL.html

Examples

Version 1.1.1h (Win64).

openssl version

OpenSSL 1.1.1h 22 Sep 2020

The OpenSSL's Command Line Interface (CLI) is invoked by openssl.exe in the OpenSSL folder. The location in Windows

(Win64) is C:\Program Files\OpenSSL-Win64\bin . For ease of use, it is highly recommended to add the path of openssl.exe to

the system PATH in Windows.

Using Platform Examples

S implicity Studio 5 includes the SE Manager platform examples for secure identity and attestation. This application note

uses platform example of GSDK v3.2.3. The console output may be different on the other versions of GSDK.

Refer to the corresponding readme .html file for details about each SE Manager platform example. This file also includes the

procedures to create the project and run the example.

Certificate Chain Verification

Certificate chain verification is the process of making sure a given certificate chain is well-formed, valid, properly signed,

and trustworthy. The certificate signature is verified using the public key in the issuer certificate (Verification for

Certificates).

Simplicity Commander and OpenSSL

ò Run the security readcert command to save the batch certificate in PEM format.

commander security readcert batch -o batch.pem --serialno 440030580

Writing certificate to batch.pem...

DONE

ó Run the security readcert command to save the device certificate in PEM format.

commander security readcert mcu -o device.pem --serialno 440030580

Writing certificate to device.pem...

DONE

ô Get the root certificate (device-root-prod.pem) and factory certificate (factory-prod.pem) from the certificate folder in

S implicity Studio.

õ Use OpenSSL to display the certificate information (e.g., device .pem).

openssl x509 -in device.pem -text -noout

Copyright © 2025 Silicon Laboratories. All rights reserved. 213/280

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-getting-started/start-a-project#examples

Examples

Certificate:

 Data:

 Version: 3 (0�2)

 Serial Number:

66:f8�5a:e6:b4:ef:6e:49:d3�36�95�63:c9:c3�99�13:e4�71�93:f6

 Signature Algorithm: ecdsa-with-SHA256

 Issuer: CN = Batch 1001317, O = Silicon Labs Inc., C = US

 Validity

 Not Before: Nov 19 15�10�33 2019 GMT

 Not After : Nov 19 15�10�33 2119 GMT

 Subject: C = US, O = Silicon Labs Inc., CN = EUI�14B457FFFE0F77CE DMS�086AEC3C645836BFB04D312F S�SE0 ID�MCU

 Subject Public Key Info:

 Public Key Algorithm: id-ecPublicKey

 Public-Key: (256 bit)

 pub:

 04�5c:4b:c9:b0:b3:ff:fa:99�81:c5�99:be:ff:ae:

77�74�1a:f4�30:f1�1e:0e:2d:df:96�4b:ff:d2�46�

 fa:fa:e7�23�4b:79:cb:0a:c7�71�13:fa:7c:39�5f:

 e2�18�9e:4e:06�43�88:a7�9c:65�53:f3:a3:a1�06�

81:e6�06:f2�11

 ASN1 OID� prime256v1

 NIST CURVE� P�256

 X509v3 extensions:

 X509v3 Basic Constraints: critical

 CA�FALSE

 X509v3 Key Usage: critical

 Digital Signature, Non Repudiation, Key Encipherment

 X509v3 Extended Key Usage: critical

 TLS Web Client Authentication

 Signature Algorithm: ecdsa-with-SHA256

30�44�02�20�57�12:a4�84:d8�37:b8:c0�44�8f:16:ac:c1:a3�

 be:a9:f1�16�38�9f:b9:a2�57:e6�12�49:bf:96:a9:a9:d2:b8�

 02�20�5f:ae:22:f5�00�05�49:b1:da:ee:4a:84�48�70�27�97�

 1c:40�2d:85�5f:f2�12:b3�8b:4a:d7�9a:ee:60�81�7c

ö Use OpenSSL to verify the certificate chain from steps 1 to 3.

openssl verify -show_chain �CAfile device-root-prod.pem -untrusted factory-prod.pem -untrusted batch.pemdevice.pem

device.pem: OKChain:

depth=0: C = US, O = Silicon Labs Inc., CN = EUI�14B457FFFE0F7777 DMS�086AEC3CE650543EE73568DA S�SE0 ID�MCU (untrusted)

depth=1: CN = Batch 1001317, O = Silicon Labs Inc., C = US (untrusted)

depth=2: CN = Factory, O = Silicon Labs Inc., C = US (untrusted)

depth=3: CN = Device Root CA, O = Silicon Labs Inc., C = US

Simplicity Commander

Run the security readcert command to display the key information about the on-chip certificates (e.g., mcu).

commander security readcert mcu --serialno 440030580

Copyright © 2025 Silicon Laboratories. All rights reserved. 214/280

Examples

Version : 3

Subject : C=US O=Silicon Labs Inc. CN=EUI�14B457FFFE0F77CE DMS�086AEC3C645836BFB04D312F S�SE0 ID�MCU

Issuer : CN=Batch 1001317 O=Silicon Labs Inc. C=US

Valid From : November 19 2019

Valid To : November 19 2119

Signature algorithm: SHA256

Public Key Type : ECDSA

Public key : 5c4bc9b0b3fffa9981c599beffae77741af430f11e0e2ddf964bffd246fafae7

 234b79cb0ac77113fa7c395fe2189e4e064388a79c6553f3a3a10681e606f211

DONE

Run the security attestation command to verify the on-chip batch and device certificates with root and factory certificates.

commander security attestation --serialno 440030580

Certificate chain successfully validated up to Silicon Labs device root certificate.

�75008 ARM PSA nonce : 05a88aeef627dd663058e3d758fe9a827942da0793da72af81c79a4f60fa9824

�75000 ARM PSA Profile ID : SILABS_1

�75009 ARM PSA/IETF EAT UEID : 0614b457fffe0f77ce

�76000 SE status : 000000010000000000000000000003a90000002000010209ffffffff0000002500000000

�76001 OTP configuration : 00000000100444400401041411224477242204420a060005

�76002 MCU sign key : c4af4ac69aab9512db50f7a26ae5b4801183d85417e729a56da974f4e08a562c

 de6019dea9411332dc1a743372d170b436238a34597c410ea177024de20fc819

�76003 MCU command key : b1bc6f6fa56640ed522b2ee0f5b3cf7e5d48f60be8148f0dc08440f0a4e1dca4

 7c04119ed6a1be31b7707e5f9d001a659a051003e95e1b936f05c37ea793ad63

�76004 Current applied tamper settings : 15044440040104141122447714220442

Successfully validated signature of attestation token.

DONE

Simplicity Studio

This application note uses S implicity Studio v5.2.1.1. The procedures and pictures may be different on the other versions of

S implicity Studio 5.

ò Right-click the selected debug adapter RB (ID:J-Link serial number) to display the context menu.

Copyright © 2025 Silicon Laboratories. All rights reserved. 215/280

Examples

ó Click Device configuration... to open the Configuration of device: J-Link Silicon Labs (serial number) dialog box. Click the

Security Settings tab to get the selected device configuration.

ô The MCU Certificate: will display Validated Successfully if it passed the certificate chain verification process.

Copyright © 2025 Silicon Laboratories. All rights reserved. 216/280

Examples

õ Click Certificate Details... to browse the details of different certificates (e.g., Device MCU Certificate in the figure below).

Copyright © 2025 Silicon Laboratories. All rights reserved. 217/280

Examples

Certificate Chain Verification and Remote Authentication

The SE Manager Secure Identity platform example uses APIs in SE Manager and Mbed TLS to emulate the processes in

Remote Authentication Process.

Click the View Pro ject Documentation link to open the readme .html file.

The HSE-SVH device simulates the operations in the remote device to eliminate the communications between different

parties in this example. The factory certificate and root certificate are hard-coded in the app_mbedtls_x509.c file.

The Private Device Key in the Secure Key Storage on the chip is used to sign the challenge from the remote device.

Therefore this example can only run on a chip with the Standard Device Certificate.

Step 1 in the Remote Authentication Process

SE Manager Secure Identity Example - Core running at 38000 kHz.

. SE manager initialization... SL_STATUS_OK (cycles: 6 time: 0 us)

. Secure Vault High device:

 + Read size of on-chip certificates... SL_STATUS_OK (cycles: 5296 time: 139 us)

 + Read on-chip device certificate... SL_STATUS_OK (cycles: 5138 time: 135 us)

 + Parse the device certificate (DER format)... SL_STATUS_OK (cycles: 167043 time: 4395 us)

 + Get the public device key in device certificate... OK

 + Read on-chip batch certificate... SL_STATUS_OK (cycles: 5080 time: 133 us)

 + Parse the batch certificate (DER format)... SL_STATUS_OK (cycles: 173151 time: 4556 us)

Steps 2 and 3 in the Remote Authentication Process (certificate chain printout is disabled)

. Remote device:

 + Parse the factory certificate (PEM format)... SL_STATUS_OK (cycles: 5373122 time: 141 ms)

 + Parse the root certificate (PEM format)... SL_STATUS_OK (cycles: 5448802 time: 143 ms)

 + Verify the certificate chain with root certificate... SL_STATUS_OK (cycles: 958730 time: 25229 us)

Steps 2 and 3 in the Remote Authentication Process (certificate chain printout is enabled)

Copyright © 2025 Silicon Laboratories. All rights reserved. 218/280

Examples

. Remote device:

 + Parse the factory certificate (PEM format)... SL_STATUS_OK (cycles: 5373935 time: 141 ms)

 + Parse the root certificate (PEM format)... SL_STATUS_OK (cycles: 5449622 time: 143 ms)

 + Verify requested for (Depth 3) ... OK

 cert. version : 3

 serial number : 12�E6�A2�A5�9C�AA�27�F9

 issuer name : CN=Device Root CA, O=Silicon Labs Inc., C=USsubject name : CN=Device Root CA, O=Silicon Labs Inc., C=US

 issued on : 2018�10�10 17�32�00

 expires on : 2118�09�16 17�32�00

 signed using : ECDSA with SHA256

 EC key size : 256 bits

 basic constraints : CA=true, max_pathlen=2

 key usage : Digital Signature, Key Cert Sign, CRL Sign

 + Verify requested for (Depth 2) ... OK

 cert. version : 3

 serial number : 24�DC�7B�40�0C�32�9C�0A

 issuer name : CN=Device Root CA, O=Silicon Labs Inc., C=USsubject name : CN=Factory, O=Silicon Labs Inc., C=US

 issued on : 2018�10�10 17�33�00

 expires on : 2118�09�16 17�32�00

 signed using : ECDSA with SHA256

 EC key size : 256 bits

 basic constraints : CA=true, max_pathlen=1

 key usage : Digital Signature, Key Cert Sign, CRL Sign

 + Verify requested for (Depth 1) ... OK

 cert. version : 3

 serial number : 23�09�DA�39�B4�78�05�AA

 issuer name : CN=Factory, O=Silicon Labs Inc., C=USsubject name : CN=Batch 1001317, O=Silicon Labs Inc., C=US

 issued on : 2019�10�17 21�20�20

 expires on : 2118�09�16 17�32�00

 signed using : ECDSA with SHA256

 EC key size : 256 bits

 basic constraints : CA=true, max_pathlen=0

 key usage : Digital Signature, Key Cert Sign

 + Verify requested for (Depth 0) ... OK

 cert. version : 3

 serial number : 66�F8�5A�E6�B4�EF�6E�49�D3�36�95�63�C9�C3�99�13�E4�71�93�F6

 issuer name : CN=Batch 1001317, O=Silicon Labs Inc., C=USsubject name : C=US, O=Silicon Labs Inc., CN=EUI�14B457FFFE0F77CE

DMS�086AEC3C645836BFB04D312F S�SE0 ID�MCU

 issued on : 2019�11�19 15�10�33

 expires on : 2119�11�19 15�10�33

 signed using : ECDSA with SHA256

 EC key size : 256 bits

 basic constraints : CA=false

 key usage : Digital Signature, Non Repudiation, Key Encipherment

 ext key usage : TLS Web Client Authentication

 + Verify the certificate chain with root certificate... SL_STATUS_OK (cycles: 9703861 time: 255 ms)

Note: The longer processing time (255 ms) is due to the certificate chain printout.

Steps 4 and 5 (signature of a challenge) in the Remote Authentication Process

. Remote authentication:

 + Create a 16 bytes challenge (random number) in remote device for signing... SL_STATUS_OK (cycles: 3700 time: 97 us)

 + Sign challenge with private device key in Secure Vault High device... SL_STATUS_OK (cycles: 221983 time: 5841 us)

 + Get public device key in Secure Vault High device... SL_STATUS_OK (cycles: 199788 time: 5257 us)

 + Verify signature with public device key in Secure Vault High device... SL_STATUS_OK (cycles: 229054 time: 6027 us)

 + Verify signature with public device key in remote device... SL_STATUS_OK (cycles: 230442 time: 6064 us)

. SE manager deinitialization... SL_STATUS_OK (cycles: 6 time: 0 us)

Copyright © 2025 Silicon Laboratories. All rights reserved. 219/280

Examples

Entity Attestation Token �EAT�

These examples demonstrate how to retrieve the EAT tokens from the HSE-SVH device.

SE Manager - Attestation Platform Example

The SE Manager Attestation platform example uses APIs in SE Manager to retrieve the PSA attestation token and security

configuration token from the HSE.

Click the View Pro ject Documentation link to open the readme .html file.

Press SPACE to cycle the challenge size for the PSA attestation token. Press ENTER to make a selection and run the

program.

SE Manager Attestation Example - Core running at 38000 kHz.

Initializing SE Manager...

SL_STATUS_OK (cycles: 10 time: 0 us)

Select nonce size for the IAT token (32, 48 or 64 bytes).

Press SPACE to cycle through the options.

Press ENTER to make a selection.

 Current nonce size: 32

 Selected nonce size: 32

Calling sl_se_attestation_get_psa_iat_token...

SL_STATUS_OK (cycles: 661072 time: 17396 us)

PSA Attestation Token (Entity Attestation Token (EAT) and Entity Attestation Token (EAT))

Copyright © 2025 Silicon Laboratories. All rights reserved. 220/280

Examples

PSA IAT token

=============

Raw token:

d28443a10126a058e4a83a000124ff58204ca14d0bc8601cad2e511de1964e93

9338b6fc20f8231aa178ca79519b0ffae73a000124f7715053415f494f545f50

524f46494c455f313a00012500490614b457fffe0f77ce3a000124f8013a0001

24f91920003a000124fa5820011c00010600000001000000f2030f0000000000

0000000000000000000000003a000124fb58204922b7bbd31c0c81c9b0485ccf

b5396ec24ffa877ece441e11c947b791218cf83a000124fd81a3016450526f54

046830303031303230390258206d39caedba129297062b820ba6d85b3e432c44

3c8a8a31d3c6232be6906d38dc584030f9d61523204793965fc9eb2be788db9d

2b02692d877673c86ebffbfb6769984515d2f1a287a92d2c134c1024f20f018d

be952a2ccae7ed2980a9f242d02c9c

COSE_Sign1 structure:

d2 ; tag(18)

84 ; array(4)

43 ; byte_str(3)

 a10126

 a0 ; map(0)

58 ; byte_str(228)

 a83a000124ff58204ca14d0bc8601cad2e511de1964e939338b6fc20f8231aa1

 78ca79519b0ffae73a000124f7715053415f494f545f50524f46494c455f313a

 00012500490614b457fffe0f77ce3a000124f8013a000124f91920003a000124

 fa5820011c00010600000001000000f2030f0000000000000000000000000000

 0000003a000124fb58204922b7bbd31c0c81c9b0485ccfb5396ec24ffa877ece

 441e11c947b791218cf83a000124fd81a3016450526f54046830303031303230

 390258206d39caedba129297062b820ba6d85b3e432c443c8a8a31d3c6232be6

 906d38dc

58 ; byte_str(64)

 30f9d61523204793965fc9eb2be788db9d2b02692d877673c86ebffbfb676998

 4515d2f1a287a92d2c134c1024f20f018dbe952a2ccae7ed2980a9f242d02c9c

Token claims:

a8 ; map(8)

 3a ; int(�75008)

58 ; byte_str(32)

 4ca14d0bc8601cad2e511de1964e939338b6fc20f8231aa178ca79519b0ffae7

 3a ; int(�75000)

71 ; text_str(17)

"PSA_IOT_PROFILE_1"

 3a ; int(�75009)

49 ; byte_str(9)

 0614b457fffe0f77ce

 3a ; int(�75001)

 01 ; int(1)

 3a ; int(�75002)

19 ; int(8192)

 3a ; int(�75003)

58 ; byte_str(32)

 011c00010600000001000000f2030f0000000000000000000000000000000000

 3a ; int(�75004)

58 ; byte_str(32)

 4922b7bbd31c0c81c9b0485ccfb5396ec24ffa877ece441e11c947b791218cf8

 3a ; int(�75006)

81 ; array(1)

 a3 ; map(3)

 01 ; int(1)

64 ; text_str(4)

"PRoT"

 04 ; int(4)

68 ; text_str(8)

"00010209"

 02 ; int(2)

58 ; byte_str(32)

Copyright © 2025 Silicon Laboratories. All rights reserved. 221/280

Examples

List of claims printed with human-friendly names:

 ARM PSA Nonce, Claim ID� �75008

58; byte_str(32)

 4ca14d0bc8601cad2e511de1964e939338b6fc20f8231aa178ca79519b0ffae7

 ARM PSA Profile ID, Claim ID� �75000

71; text_str(17)"PSA_IOT_PROFILE_1"

 ARM PSA / IETF EAT UEID, Claim ID� �75009

49; byte_str(9)

 0614b457fffe0f77ce

 ARM PSA Partition ID, Claim ID� �75001

 01 ; int(1)

 ARM PSA Lifecycle, Claim ID� �75002

19; int(8192)

 ARM PSA Implementation ID, Claim ID� �75003

58; byte_str(32)

 011c00010600000001000000f2030f0000000000000000000000000000000000

 ARM PSA Boot seed, Claim ID� �75004

58; byte_str(32)

 4922b7bbd31c0c81c9b0485ccfb5396ec24ffa877ece441e11c947b791218cf8

 ARM PSA Software components, Claim ID� �75006

81; array(1)

 a3 ; map(3)

 01 ; int(1)64; text_str(4)"PRoT"

 04 ; int(4)68; text_str(8)"00010209"

 02 ; int(2)58; byte_str(32)

 6d39caedba129297062b820ba6d85b3e432c443c8a8a31d3c6232be6906d38dc

Security Configuration Token (Entity Attestation Token (EAT))

Copyright © 2025 Silicon Laboratories. All rights reserved. 222/280

Examples

Calling sl_se_attestation_get_config_token...

SL_STATUS_OK (cycles: 541281 time: 14244 us)

Config token

============

Raw token:

d28443a10126a0590133a83a000124ff5820c3e3664dcc47711bf81734bc95f0

87d81dd841d73fc805fc9237c7b3dfa25c503a000124f76853494c4142535f31

3a00012500490614b457fffe0f77ce3a000128df582400000001000000000000

0000000000000000002000010209ffffffff00000025000000003a000128e058

1800000000100444400401041411224477242204420a0600053a000128e15840

c4af4ac69aab9512db50f7a26ae5b4801183d85417e729a56da974f4e08a562c

de6019dea9411332dc1a743372d170b436238a34597c410ea177024de20fc819

3a000128e25840b1bc6f6fa56640ed522b2ee0f5b3cf7e5d48f60be8148f0dc0

8440f0a4e1dca47c04119ed6a1be31b7707e5f9d001a659a051003e95e1b936f

05c37ea793ad633a000128e350150444400401041411224477142204425840b7

47d98be9cef8a91af0292a479a3fa499527018b97ac1188ddefb0fa6fcb9b3d1

d4159240a8663c8803a2ef7cebdf7644fa3394cf1057d612e1b3977d9de92d

COSE_Sign1 structure:

d2 ; tag(18)

84 ; array(4)

43 ; byte_str(3)

 a10126

 a0 ; map(0)

59 ; byte_str(307)

 a83a000124ff5820c3e3664dcc47711bf81734bc95f087d81dd841d73fc805fc

 9237c7b3dfa25c503a000124f76853494c4142535f313a00012500490614b457

 fffe0f77ce3a000128df58240000000100000000000000000000000000000020

 00010209ffffffff00000025000000003a000128e05818000000001004444004

 01041411224477242204420a0600053a000128e15840c4af4ac69aab9512db50

 f7a26ae5b4801183d85417e729a56da974f4e08a562cde6019dea9411332dc1a

 743372d170b436238a34597c410ea177024de20fc8193a000128e25840b1bc6f

 6fa56640ed522b2ee0f5b3cf7e5d48f60be8148f0dc08440f0a4e1dca47c0411

 9ed6a1be31b7707e5f9d001a659a051003e95e1b936f05c37ea793ad633a0001

 28e35015044440040104141122447714220442

58 ; byte_str(64)

 b747d98be9cef8a91af0292a479a3fa499527018b97ac1188ddefb0fa6fcb9b3

 d1d4159240a8663c8803a2ef7cebdf7644fa3394cf1057d612e1b3977d9de92d

Token claims:

a8 ; map(8)

 3a ; int(�75008)

58 ; byte_str(32)

 c3e3664dcc47711bf81734bc95f087d81dd841d73fc805fc9237c7b3dfa25c50

 3a ; int(�75000)

68 ; text_str(8)

"SILABS_1"

 3a ; int(�75009)

49 ; byte_str(9)

 0614b457fffe0f77ce

 3a ; int(�76000)

58 ; byte_str(36)

 000000010000000000000000000000000000002000010209ffffffff0000002500000000

 3a ; int(�76001)

58 ; byte_str(24)

 00000000100444400401041411224477242204420a060005

 3a ; int(�76002)

58 ; byte_str(64)

 c4af4ac69aab9512db50f7a26ae5b4801183d85417e729a56da974f4e08a562c

 de6019dea9411332dc1a743372d170b436238a34597c410ea177024de20fc819

 3a ; int(�76003)

58 ; byte_str(64)

Copyright © 2025 Silicon Laboratories. All rights reserved. 223/280

Examples

7c04119ed6a1be31b7707e5f9d001a659a051003e95e1b936f05c37ea793ad63

 3a ; int(�76004)50; byte_str(16)15044440040104141122447714220442

List of claims printed with human-friendly names:

 ARM PSA Nonce, Claim ID� �75008

58; byte_str(32)

 c3e3664dcc47711bf81734bc95f087d81dd841d73fc805fc9237c7b3dfa25c50

 ARM PSA Profile ID, Claim ID� �75000

68; text_str(8)"SILABS_1"

 ARM PSA / IETF EAT UEID, Claim ID� �75009

49; byte_str(9)

 0614b457fffe0f77ce

 SE Status, Claim ID� �76000

58; byte_str(36)

 000000010000000000000000000000000000002000010209ffffffff0000002500000000

 OTP Configuration, Claim ID� �76001

58; byte_str(24)

 00000000100444400401041411224477242204420a060005

 OTP MCU Boot key, Claim ID� �76002

58; byte_str(64)

 c4af4ac69aab9512db50f7a26ae5b4801183d85417e729a56da974f4e08a562c

 de6019dea9411332dc1a743372d170b436238a34597c410ea177024de20fc819

 OTP MCU Auth key, Claim ID� �76003

58; byte_str(64)

 b1bc6f6fa56640ed522b2ee0f5b3cf7e5d48f60be8148f0dc08440f0a4e1dca4

 7c04119ed6a1be31b7707e5f9d001a659a051003e95e1b936f05c37ea793ad63

 Current applied tamper settings, Claim ID� �76004

50; byte_str(16)15044440040104141122447714220442

Exiting...

SL_STATUS_OK (cycles: 8 time: 0 us)

Note: The reserved tamper source in ID 76004 returns a value of 0 or 5.

Simplicity Commander

Run the security attestation command to retrieve and validate the security configuration token (Entity Attestation Token

(EAT)) from the HSE.

commander security attestation --serialno 440030580

Copyright © 2025 Silicon Laboratories. All rights reserved. 224/280

Examples

Certificate chain successfully validated up to Silicon Labs device root certificate.

�75008 ARM PSA nonce : 05a88aeef627dd663058e3d758fe9a827942da0793da72af81c79a4f60fa9824

�75000 ARM PSA Profile ID : SILABS_1

�75009 ARM PSA/IETF EAT UEID : 0614b457fffe0f77ce

�76000 SE status : 000000010000000000000000000003a90000002000010209ffffffff0000002500000000

�76001 OTP configuration : 00000000100444400401041411224477242204420a060005

�76002 MCU sign key : c4af4ac69aab9512db50f7a26ae5b4801183d85417e729a56da974f4e08a562c

 de6019dea9411332dc1a743372d170b436238a34597c410ea177024de20fc819

�76003 MCU command key : b1bc6f6fa56640ed522b2ee0f5b3cf7e5d48f60be8148f0dc08440f0a4e1dca4

 7c04119ed6a1be31b7707e5f9d001a659a051003e95e1b936f05c37ea793ad63

�76004 Current applied tamper settings : 15044440040104141122447714220442

Successfully validated signature of attestation token.

DONE

Note: The reserved tamper source in ID 76004 returns a value of 0 or 5.

Copyright © 2025 Silicon Laboratories. All rights reserved. 225/280

Secure Key Storage

Secure Key Storage

Secure Key Storage
Note: This section replaces AN1271: Secure Key Storage. Further updates to this application note will be provided here.

Secure Key Storage is a feature in High devices that allows for the protection of cryptographic keys by key wrapping. User

keys are encrypted by the device's root key for non-volatile storage for later usage. This prevents the need for a key to be

stored in plaintext format on the device, preventing attackers from gaining access to the keys through traditional flash-

extraction or application attacks, and allowing for a potentially unlimited number of keys to be securely stored in any

available storage.

Series 2 devices can use TrustZone to implement Secure Key Storage, so this feature is now also available on Mid devices.

This document describes the operation and usage of this feature, and provides comparisons with other key storage

methods.

Key Points

Keys are encrypted or 'wrapped' with a root key

root key is not stored on the device, instead it is generated on each reset

Wrapped keys are confidential to the , and can be stored in non-volatile memory safely

Wrapped keys can be cached into for usage at a later time

TrustZone Secure Key Storage

Copyright © 2025 Silicon Laboratories. All rights reserved. 226/280

Series 2 Device Security Features

Series 2 Device Security Features

Series 2 Device Security Features
Protecting IoT devices against security threats is central to a quality product. S ilicon Labs offers several security options to

help developers build secure devices, secure application software, and secure paths of communication to manage those

devices. S ilicon Labs’ security offerings were significantly enhanced by the introduction of the Series 2 products that

included a Secure Engine. The Secure Engine is a tamper-resistant component used to securely store sensitive data and

keys and to execute cryptographic functions and secure services.

On Series 1 devices, the security features are implemented by the TRNG (if available) and CRYPTO peripherals.

On Series 2 devices, the security features are implemented by the Secure Engine and CRYPTOACC (if available). The

Secure Engine may be hardware-based, or virtual (software-based). Throughout this document, the following abbreviations

are used:

HSE - Hardware Secure Engine

VSE - Virtual Secure Engine

SE - Secure Engine (either HSE or VSE)

Additional security features are provided by Secure Vault. Three levels of Secure Vault feature support are available,

depending on the part and SE implementation, as reflected in the following table:

Level �1� SE Support Part �2�

Secure Vault High

(SVH)

HSE only (HSE-

SVH)

Refer to IoT Endpoint Security Fundamentals for details on supporting

devices.

Secure Vault Mid

(SVM)

HSE (HSE-SVM) "

" VSE (VSE-SVM) "

Secure Vault Base

(SVB)

N/A "

Notes:

ò The features of different Secure Vault levels can be found in https://www.silabs.com/security.

ó IoT Endpoint Security Fundamentals.

Secure Vault Mid consists of two core security functions:

Secure Boot: Process where the initial boot phase is executed from an immutable memory (such as ROM) and where code is

authenticated before being authorized for execution.

Secure Debug access control: The ability to lock access to the debug ports for operational security, and to securely unlock

them when access is required by an authorized entity.

Secure Vault High offers additional security options:

Secure Key Storage: Protects cryptographic keys by "wrapping" or encrypting the keys using a root key known only to the

HSE-SVH.

Anti-Tamper protection: A configurable module to protect the device against tamper attacks.

Device authentication: Functionality that uses a secure device identity certificate along with digital signatures to verify the

source or target of device communications.

A Secure Engine Manager and other tools allow users to configure and control their devices both in-house during testing

and manufacturing, and after the device is in the field.

User Assistance

Copyright © 2025 Silicon Laboratories. All rights reserved. 227/280

https://docs.silabs.com/iot-security/latest/iot-endpoint-security-fundamentals/
https://www.silabs.com/security
https://docs.silabs.com/iot-security/latest/iot-endpoint-security-fundamentals/

Series 2 Device Security Features

In support of these products S ilicon Labs offers whitepapers, webinars, and documentation. The following table summarizes

the key security documents:

Document Summary Applicability

Series 2 Secure Debug How to lock and unlock Series 2 debug access, including

background information about the SE

Secure Vault

Mid and High

Series 2 Secure Boot with RTSL Describes the secure boot process on Series 2 devices using SE Secure Vault

Mid and High

AN1222: Production Programming

of Series 2 Devices

How to program, provision, and configure security information using

SE during device production

Secure Vault

Mid and High

Anti-Tamper Protection

Configuration and Use

How to program, provision, and configure the anti-tamper module Secure Vault

High

Authenticating S ilicon Labs

Devices using Device Certificates

How to authenticate a device using secure device certificates and

signatures, at any time during the life of the product

Secure Vault

High

Secure Key Storage (this

document)

How to securely 'wrap' keys so they can be stored in non-volatile

storage.

Secure Vault

High

Key Reference

Public/Private keypairs along with other keys are used throughout S ilicon Labs security implementations. Because

terminology can sometimes be confusing, the following table lists the key names, their applicability, and the documentation

where they are used.

Key Name Customer Programmed Purpose

Public S ign key (S ign Key Public) Yes Secure Boot binary authentication and/or OTA

upgrade payload authentication

Public Command key (Command

Key Public)

Yes Secure Debug Unlock or Disable Tamper command

authentication

OTA Decryption key (GBL

Decryption key) aka AES-128 Key

Yes Decrypting GBL payloads used for firmware upgrades

Attestation key aka Private Device

Key

No Device authentication for secure identity

SE Firmware

S ilicon Labs strongly recommends installing the latest SE firmware on Series 2 devices to support the required security

features. Refer to AN1222 for the procedure to upgrade the SE firmware and IoT Endpoint Security Fundamentals for the

latest SE Firmware shipped with Series 2 devices and modules.

Copyright © 2025 Silicon Laboratories. All rights reserved. 228/280

https://docs.silabs.com/iot-security/latest/series2-secure-debug/
https://docs.silabs.com/mcu-bootloader/latest/series2-secure-boot-with-rtsl/
https://docs.silabs.com/iot-security/latest/efr32-secure-vault-tamper/
https://docs.silabs.com/iot-security/latest/authenticating-devices-using-device-certificates/
https://www.silabs.com/documents/public/application-notes/an1222-efr32xg2x-production-programming.pdf
https://docs.silabs.com/iot-security/latest/iot-endpoint-security-fundamentals/

Introduction

Introduction

Introduction
The HSE isolates cryptographic functions and data from the host Cortex-M33 core. It is used to accelerate cryptographic

operations as well as to provide a method to securely store keys. This application note will cover the Secure Key Storage

feature of the HSE-SVH devices.

The HSE contains one-time programmable memory (OTP) key storage slots for three specific keys:

ò The Public S ign Key, used for Secure Boot and Secure Upgrades

ó The Public Command Key, used for Secure Debug unlock and tamper disable

ô The Symmetric OTA Decryption Key, used for Over-The-Air updates

These keys are one-time programmable, and, after programming, are persistent for the lifetime of the device.

HSE-SVH devices also contain four volatile storage slots for any other user keys. These slots are not persistent through a

reset. In the case where a key needs persistent storage, the key must be stored outside of the HSE in non-volatile

storage. After a device reset, the key can be loaded into the HSE volatile key storage for usage by index, or used in-place

(passed to the HSE on every requested operation). Without any secure key storage mechanism, the user key stored in

non-volatile storage is opened to storage-extraction attacks (such as gaining access to and downloading device flash), as

well as application-level attacks (i.e., taking control of the user application or privileges in a manner that allows access to

the keys).

With Secure Key Storage, a user can only access a key from the HSE in a 'wrapped' format. In this format, the key is

encrypted by a device-unique root key, only available to the HSE. This allows a user to store a key confidentially in non-

volatile storage to provide key persistence. Using Secure Key Storage, the plaintext key is never stored in non-volatile

memory, preventing storage-extraction attacks from obtaining the key. After a device reset, the wrapped key can be

loaded into the HSE for usage without ever exposing the plaintext key to the application, which also prevents application-

level attacks from exposing the key.

SVM devices can only support Secure Key Storage through the use of TrustZone. GSDK v4.2.2 is the first version to

support TrustZone software development on Series 2 devices.

S ilicon Labs provides Custom Part Manufacturing Service (CPMS) to inject custom secret keys on the chips during

manufacturing. For more information about CPMS, see the Custom Part Manufacturing Service User's Guide.

Copyright © 2025 Silicon Laboratories. All rights reserved. 229/280

https://www.silabs.com/developers/custom-part-manufacturing-service
https://docs.silabs.com/iot-security/latest/iot-security-cpms/

HSE Secure Key Storage

HSE Secure Key Storage

HSE Secure Key Storage
The following sections demonstrate three methods for key storage: ARM® TrustZone®, plaintext, and Secure Key Storage.

Note: In the following examples, AES key usage is demonstrated. However, any other key types supported by

the device can also be used for key storage.

Key Generation and Usage

In HSE-SVH devices, cryptographic functions are performed by the HSE. In order to perform these functions, the HSE must

have access to any user keys needed. Keys can be generated and used by the HSE in multiple ways:

ò External storage, in-place usage:

ò A user generates a plaintext key and stores it in device memory.

ó The user provides a key descriptor to the HSE that points to this key for a specific cryptographic operation.

ô The HSE performs the cryptographic operation using this key, but does not store it in any HSE volatile storage slot.

ó External storage with HSE import:

ò A user generates a plaintext key and stores it in device memory.

ó The user provides a key descriptor to the HSE that points to this key, as well as a slot number to store the key.

ô The HSE imports this key into a volatile key storage slot or can optionally save it in wrapped form in device memory.

õ The user requests that the HSE performs a cryptographic function by providing the index of the storage slot or a

pointer to the wrapped key in device memory.

ô Internal HSE key generation:

ò The user commands the HSE to generate a new key within one of the HSE's volatile key slots or can optionally save it

in wrapped form in device memory.

ó The user requests that the HSE performs a cryptographic function by providing the index of the storage slot or a

pointer to the wrapped key in device memory.

Notes:

In each case, to provide persistent storage for the key, the key must be stored in non-volatile memory.

Plain Key Storage and Secure Key Storage provide details on key generation and usage with HSE-SVH device.

Plaintext Key Storage

Plaintext Key Import

The simplest manner to store a key is to save it in plaintext form. The steps to store and use a key stored in plaintext form

are as follows:

ò A user key is generated and imported into device memory. For persistent storage, this must be non-volatile storage, such as

device flash.

ó After a device reset, the HSE volatile key storage will be empty. The plaintext key is imported (method 2) into a slot for

usage. Alternatively, the key could be used in place (method 1) from non-volatile storage on a per-operation basis.

Copyright © 2025 Silicon Laboratories. All rights reserved. 230/280

HSE Secure Key Storage

Plaintext Key Usage

In order to use the key for a cryptographic operation, the following procedure is used.

ò The user passes data to be processed (in this specific example, AES encrypted data) to the HSE.

ó The user requests that a cryptographic operation be performed on this data using one of the keys stored in the HSE volatile

key storage slots (method 2). Alternatively, the key can be passed to the HSE directly for a singular cryptographic operation

(method 1).

ô The HSE performs the cryptographic operation.

õ The output of the cryptographic operation is passed back to the user for processing.

This method exposes the keys to two major vulnerabilities:

ò Access to device storage gives access to the keys. In this case, an attack that gains access to the flash contents will

expose the user key.

ó S ince the application has access to the keys, compromising the application or device privileges can compromise the keys.

Such an attack might not directly access device memory, but take control of the application in a way that causes the

application to expose the key to an attacker.

Copyright © 2025 Silicon Laboratories. All rights reserved. 231/280

HSE Secure Key Storage

Secure Key Storage

With Secure Key Storage, the user key, using the HSE, can be accessed in an encrypted, or 'wrapped' form. Only the HSE

has access to the HSE root key used to decrypt, or 'unwrap', the wrapped key. This HSE root key is not stored on the

device during power-down, but rather reconstructed after each reset. Key wrapping allows a user to securely store a key in

non-volatile memory, limiting the number of keys that can be stored only by the amount of storage the user has available.

Note: The reconstructed root key after each reset is IDENTICAL and UNIQUE on each HSE-SVH device.

Wrap an External Key

To wrap an externally-generated key:

ò After power-on, the device's unique root key is reconstructed with output from the Physically Unclonable Function (PUF).

ó A user key is generated and imported into device memory. In this example, the key is imported into RAM for easy deletion,

and the added security that, if device power is removed, the key will be lost.

ô The user key is passed to the HSE, where it is encrypted with the HSE's root key.

õ The wrapped key is passed back to the user application for storage in non-volatile memory (in this case, device flash).

ö The plaintext key can now be deleted from the device. From this point forward, only the HSE will have access to the

plaintext key.

Generate an Internal Wrapped Key

Instead of importing an external key, the HSE can generate a new key directly into one of its volatile key storage slots. This

key can then be exported in wrapped form for secure persistent storage.

ò The user requests that the HSE generates a new key into one of its storage slots using the True Random Number Generator

(TRNG).

ó The key is encrypted with the HSE's root key.

ô The wrapped key is passed back to the user application for non-volatile storage (flash, in this case).

Copyright © 2025 Silicon Laboratories. All rights reserved. 232/280

HSE Secure Key Storage

Wrapped Key Import

In order to import a wrapped key into the HSE for usage:

ò The wrapped key is passed to the HSE.

ó The wrapped key is decrypted ("unwrapped") with the HSE's root key.

ô The plaintext key is stored in a volatile key storage slot.

Wrapped Key Usage

In order to use the key for a cryptographic operation, the same steps are followed as when using a plaintext key that has

been imported into the HSE:

ò The user passes data to be processed (in this specific example, AES encrypted data) to the HSE.

Copyright © 2025 Silicon Laboratories. All rights reserved. 233/280

HSE Secure Key Storage

ó The user requests that a cryptographic operation be performed on this data using one of the keys stored in the HSE volatile

key storage slots. Alternatively, the wrapped key can be passed to the HSE directly for a singular cryptographic operation. In

this case, the key will be unwrapped before being used, but will not be stored for future operations.

ô The HSE performs the cryptographic operation.

õ The output of the cryptographic operation is passed back to the user for processing.

Secure Key Storage Advantages

Secure Key Storage confers the following benefits over other key storage methods:

ò Access to device memory does not expose user keys.

ó Compromising the user application does not expose user keys, since the user application itself does not have access to the

plaintext keys.

ô The number of user keys that can be securely stored is only limited by the amount of storage available to the user, including

external storage.

Operation Details

Root Key Generation

Secure Key Storage depends on the HSE to encrypt / decrypt (wrap / unwrap) user keys with its own symmetric root key.

The symmetric key used for this wrapping and unwrapping must be highly secure as it can expose all other key material in

the system. The HSE key Management system uses a Physically Unclonable Function (PUF) to generate a persistent

device-unique seed on power up to dynamically reconstruct this critical root key. The key is only visible to the AES

encryption engine, and it is not retained when the device loses power.

Access a Wrapped Key

By default, a key in an HSE storage slot can be exported to the application as a plaintext key. To prevent this, the user can

use the key descriptor to set a user key to non-exportable. This option prevents any request to export the wrapped key in

plaintext from HSE, so the user application can only access the key encrypted by the HSE's root key. The HSE also tags

the key with information to identify the wrapped key. S ince only the HSE can access the root key to unwrap the user key,

the plaintext key is non-accessible to the user application.

Note: Wrapped keys are slightly larger than the equivalent plaintext key, as some additional metadata is required

to identify the wrapped key to the HSE.

Copyright © 2025 Silicon Laboratories. All rights reserved. 234/280

HSE Secure Key Storage

Wrapped Key Storage and Usage

Once a key has been wrapped, it can be safely stored anywhere - device flash, RAM, external storage, etc. The number of

keys that can be securely stored is only limited by the available storage space. A wrapped key can later be imported into a

HSE volatile storage slot for usage, or used in-place. Once the key is wrapped and stored, the plaintext key available to the

application can be deleted. From here, only the HSE will have the ability to unwrap and use the key.

With access to the wrapped key, the HSE can use this key in one of two ways:

ò A user can request that a cryptographic operation be performed using the key stored in memory. In this case, the HSE will

import the key, unwrap it, and then perform the cryptographic operation. The key will not be stored within the HSE.

ó A user can import the wrapped key into a HSE volatile storage slot. In this case, the key is unwrapped by the HSE and

stored in plaintext in a volatile slot. The user can then later request that a cryptographic function be performed by the HSE

by referencing the volatile slot index. This provides a performance increase over using wrapped keys in place, as the HSE

does not need to import and unwrap the key on each requested operation.

Password Protection

When defining a key descriptor for a new key, or when importing an existing key into HSE, the user can choose to require a

password to allow use of the key. The password field in the key descriptor structure is eight bytes in length. If unspecified,

the key will use the default password of all zeros.

After importing a key with a password, failing to provide the correct password when performing a cryptographic operation

will result in HSE returning an invalid credentials error, and no operation will be performed.

Copyright © 2025 Silicon Laboratories. All rights reserved. 235/280

TrustZone Secure Key Storage

TrustZone Secure Key Storage

TrustZone Secure Key Storage
In Series 2 devices, key management can be handled by a feature called TrustZone. TrustZone divides the device memory

map into a Secure Processing Environment (SPE) and a Non-secure Processing Environment (NSPE). User code is

executed from the NSPE, which cannot access any part of the SPE. The SPE is used to store cryptographic keys securely

and to control other Secure operations.

The following sections describe using TrustZone on Series 2 devices for Secure Key Storage. Refer to Series 2 TrustZone

for details about TrustZone implementation on Series 2 devices.

TrustZone Root Key Generation �HSE and VSE�

ò The TrustZone Root Key (TRK) is generated by the True Random Number Generator (TRNG) in Series 2 devices.

ó The PUF-derived key (HSE and xG27 VSE devices) or padded unique device serial number (xG22 VSE devices) is used to

wrap (AES-GCM) the TRK.

ô The wrapped TRK is stored in the SE Non-volatile memory (NVM), and the TRK in RAM is deleted.

The wrapped TRK already existed if the shipped Series 2 device with SE firmware version supports this key.

The wrapped TRK will be generated when upgrading from a SE firmware version that did not support this key to the one

that does.

The wrapped TRK will be renewed after performing a Device Erase.

Note: The Physically Unclonable Function (PUF) is not retained when the device loses power, so the TRK

wrapped by the PUF-derived key is not vulnerable to a storage-extraction attack.

TrustZone Root Key Usage �HSE�

Copyright © 2025 Silicon Laboratories. All rights reserved. 236/280

https://docs.silabs.com/mcu-bootloader/latest/series2-trustzone/

TrustZone Secure Key Storage

ò The Secure application in the host uses a non-exportable built-in key to access the wrapped TRK in HSE NVM for

cryptographic operations.

ó The PUF-derived key is used to decrypt (AES-GCM) the wrapped TRK in HSE NVM.

ô The unwrapped TRK in the HSE is the master key of a Key Derivation Function (KDF).

õ The encryption key in SPE for Secure Key Storage is derived from the KDF CMAC.

Notes:

All cryptographic operations are performed by the HSE (security co-processor).

Only the HSE can access the unwrapped TRK for KDF, so this key will not expose the Secure application in the host.

TrustZone Root Key Usage �VSE�

ò The wrapped TRK in VSE NVM is accessed by the VSE Root mode firmware.

ó The PUF-derived key (xG27) or padded unique device serial number (xG22) is used to decrypt (AES-GCM) the wrapped TRK

in VSE NVM.

ô Unwrapped TRK is transferred to the shared RAM when switching from VSE Root mode to User mode. The VSE user mode

Secure application stores this key to the Secure RAM in SPE and deletes this key in the shared RAM.

õ The unwrapped TRK in the Secure RAM is the master key of a Key Derivation Function (KDF).

ö The encryption key in SPE for Secure Key Storage is derived from the KDF CMAC.

Note: On VSE devices, all cryptographic operations are performed by the Cryptographic Accelerator

(CRYPTOACC) peripheral.

For more information about the HSE and VSE, refer to the section Secure Engine Subsystem in Series 2 Secure Debug.

TrustZone Secure Key Storage �HSE and VSE�

The TRK allows a user to securely store a key in the Non-secure flash, limiting the number of keys that can be saved only

by the amount of Non-secure storage. The following figure describes using the TRK to encrypt a plaintext key and store it

Copyright © 2025 Silicon Laboratories. All rights reserved. 237/280

https://docs.silabs.com/iot-security/latest/series2-secure-debug/03-r-secureelement

TrustZone Secure Key Storage

in Non-secure NVM.

ò After power-on, the device's TRK (wrapped in HSE NVM and unwrapped in VSE Secure RAM) is available for the SPE.

ó A user key is generated and imported into the device's Non-secure memory. In this example, the key is imported into Non-

secure RAM for easy deletion, and the key is lost if device power is removed.

ô Call the PSA Crypto API (psa_import_key() or psa_generate_key()) through the Secure Gateway (SG) in Non-secure Callable

(NSC) memory to generate a key for crypto operations.

õ The plaintext key is passed in the PSA Crypto API to the SPE, where it is encrypted (AES-GCM) with the encryption key

derived (KDF CMAC) from the TRK.

ö The encrypted key is stored to the NVM region in the NSPE through the PSA Internal Trusted Storage (ITS) and NVM3

drivers.

÷ The plaintext key can now be deleted from the Non-secure RAM.

ø Only the PSA Crypto API in the SPE can retrieve the encrypted key from NVM in the NSPE and decrypt it for crypto

operations in the SPE.

Note: Ignore steps 2 and 6 if the plaintext key is randomly generated by the PSA Crypto.

Copyright © 2025 Silicon Laboratories. All rights reserved. 238/280

https://docs.silabs.com/gecko-platform/latest/driver/api/group-nvm3

Secure Key Storage Implementations

Secure Key Storage Implementations

Secure Key Storage Implementations
Users can use Secure Engine Manager (SE Manager) or PSA Crypto in the following figure to access the secure key

storage on HSE-SVH devices. SE Manager APIs for secure key storage and crypto are usually not considered external APIs.

PSA Crypto API abstracts the entropy sources, crypto primitives, and even advanced security features like secure key

storage from the calling functions.

S ilicon Labs recommends using PSA Crypto API for secure key storage and cryptography whenever possible. It makes the

solution more portable and hardware agnostic. In some cases, however, setting up tamper and initializing the secure boot

can only be implemented by the SE Manager APIs.

Component Functionality

EMLIB (em_se.c) Abstracts the mailbox interface: how to construct, send and receive low-level HSE mailbox

commands.

SE Manager On top of EMLIB, it abstracts the HSE command set: translates function calls into mailbox

messages. The SE Manager also provides thread synchronization.

PSA Accelerator

Drivers

A translation layer to map the PSA Crypto HSE interface and crypto acceleration calls to SE

Manager calls.

PSA Crypto API Platform independent cryptographic hardware acceleration support by implementing standardized

APIs.

PSA ITS Driver The key management functionality in PSA Crypto needs access to non-volatile memory for

persistent storage of plaintext or wrapped keys. NVM3 gets wrapped by this translation layer,

mapping the PSA ITS (Internal Trusted Storage) interface to NVM3 calls.

For the SE's mailbox interface, see section Secure Engine Subsystem in Series 2 Secure Debug.

For more information about NVM3, see https://docs.silabs.com/gecko-platform/latest/driver/api/group-nvm3.

Copyright © 2025 Silicon Laboratories. All rights reserved. 239/280

https://docs.silabs.com/iot-security/latest/series2-secure-debug/03-r-secureelement
https://docs.silabs.com/gecko-platform/latest/driver/api/group-nvm3

Secure Key Storage Implementations

For more information about PSA Crypto, see AN1311: Integrating Crypto Functionality Using PSA Crypto Compared to Mbed

TLS.

SE Manager API

The following table lists the SE Manager APIs related to Secure Key Storage operations. The SE Manager API document

can be found at https://docs.silabs.com/gecko-platform/latest/service/api/group-sl-se-manager.

SE Manager API Usage

sl_se_generate_key Generate a new key and store it either in a volatile HSE storage slot or as a wrapped key.

sl_se_ import_key Import a plaintext key and store it either in a volatile HSE storage slot or as a wrapped key.

sl_se_export_key Export a volatile or wrapped key back to plaintext if allowed. It will fail for a key that has been

flagged as SL_SE_KEY_FLAG_NON_EXPORTABLE.

sl_se_transfer_key Transfer a volatile or wrapped key to another storage option (volatile HSE storage slot or a

wrapped key) if allowed.

sl_se_delete_key Delete a key from a volatile HSE storage slot.

PSA Crypto API

The following table lists the PSA Crypto APIs related to Secure Key Storage operations. The PSA Crypto API document can

be found at https://docs.silabs.com/mbed-tls/latest/.

For more information about PSA Crypto APIs on Secure Key Storage, see AN1311: Integrating Crypto Functionality Using

PSA Crypto Compared to Mbed TLS.

PSA Crypto API Usage

psa_generate_key Generate a new plaintext or wrapped key and store it either in volatile or non-volatile memory.

psa_ import_key Import a plaintext key and save it in plaintext or wrapped form. It can store either in volatile or non-

volatile memory.

psa_export_key Export a key back to plaintext if allowed. The policy on the key must have the usage flag

PSA_KEY_USAGE_EXPORT set.

psa_copy_key Copy key material from one location to another, which may have a different lifetime (e.g., volatile to

non-volatile).

psa_destroy_key Destroy a key from both volatile memory and, if applicable, non-volatile storage.

SE Manager API Versus PSA Crypto API

The following table compares the SE Manager APIs with PSA Crypto APIs on Secure Key Storage.

Item SE Manager API PSA Crypto API

Availability Only on HSE devices Platform independent

API S ilicon Labs proprietary Standardized by ARM®

Key Storage Volatile (RAM) memory only Volatile (RAM) or non-volatile (flash) memory

Wrapped Key Cache Can use a volatile HSE storage slot Not yet implemented

Password Protection Can define in a key descriptor Not yet defined in PSA Crypto

Custom ECC Curve Can define in a key descriptor Not yet defined in PSA Crypto

PSA Crypto Key Types with TrustZone Secure Key Storage

The following tables describes the storage differences between key storage with and without TrustZone on SVM and SVH

devices.

Copyright © 2025 Silicon Laboratories. All rights reserved. 240/280

https://www.silabs.com/documents/public/application-notes/an1311-mbedtls-psa-crypto-porting-guide.pdf
https://docs.silabs.com/gecko-platform/latest/service/api/group-sl-se-manager
https://docs.silabs.com/mbed-tls/latest/
https://www.silabs.com/documents/public/application-notes/an1311-mbedtls-psa-crypto-porting-guide.pdf

Secure Key Storage Implementations

Table: TrustZone Secure Key Storage (SKS) on SVM Devices

Key Type Storage without TrustZone SKS Storage with TrustZone SKS

Volatile Plaintext RAM Secure RAM (2)

Persistent Plaintext NVM Encrypted in NS NVM (2)

Volatile Wrapped Not supported Not supported

Persistent Wrapped Not supported Not supported

Table: TrustZone Secure Key Storage (SKS) on SVH Devices

Key Type Storage without TrustZone SKS Storage with TrustZone SKS

Volatile Plaintext Plaintext key in RAM Plaintext key in Secure RAM

Persistent Plaintext Plaintext key in NVM Encrypted plaintext key in NS NVM

Volatile Wrapped Wrapped key in RAM (1) Wrapped key in Secure RAM

Persistent Wrapped Wrapped key in NVM (1) Encrypted wrapped key in NS NVM

Notes:

The NVM or NS NVM is at the last part of the main flash.

It is possible to replace the wrapped key solution on the SVH device (1) with TrustZone Secure Key Storage on the SVM

device (2), but this is a less secure approach.

Copyright © 2025 Silicon Laboratories. All rights reserved. 241/280

Examples

Examples

Examples
S implicity Studio 5 includes the SE Manager and PSA Crypto platform examples for Secure Key Storage. Refer to the

corresponding readme file for details about each SE Manager and PSA Crypto platform example. This file also includes the

procedures to create the project and run the example.

Table: Platform Examples for Secure Key Storage

Category SE Manager Platform Example PSA Crypto Platform Example

Key Handling SE Manager Symmetric Key Handling PSA Crypto Symmetric Key

SE Manager Asymmetric Key Handling PSA Crypto Asymmetric Key

Symmetric Key Usage SE Manager Block Cipher PSA Crypto AEAD

PSA Crypto Cipher

PSA Crypto KDF

PSA Crypto MAC

Asymmetric Key Usage SE Manager Digital S ignature (ECDSA and EdDSA) PSA Crypto DSA

SE Manager Key Agreement (ECDH) PSA Crypto ECDH

X.509 Certificate - PSA Crypto X.509

TrustZone Secure Key Storage - tz_psa_crypto_ecdh_ws

Copyright © 2025 Silicon Laboratories. All rights reserved. 242/280

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-getting-started/start-a-project#examples

Protocol-Specific Information

Protocol-Specific Information

Protocol-Specific Security References
The pages in this section offer protocol-specific information. For general content applicable to any protocol that supports

the feature, see the main development section.

Bluetooth

Bluetooth Low Energy Application Security Design Considerations in SDK v3.x and Higher (PDF): Provides details on

designing Bluetooth Low Energy applications with security and privacy in mind.

Certificate-Based Bluetooth Authentication and Pairing (PDF): Describes the theoretical background of certificate-based

authentication and pairing, and demonstrates the usage of the related sample applications that can be found in S ilicon Labs'

Bluetooth SDK.

Bluetooth Mesh

Bluetooth Mesh Certificate-Based Provisioning (PDF): Describes how certificates are used to establish the authenticity of

devices wishing to join a mesh network.

OpenThread

Using Silicon Labs Secure Vault Features with OpenThread (PDF): Describes how Secure Vault features are leveraged in

OpenThread applications. Focuses on specific PSA features and emphasizes how these are integrated into the OpenThread

stack.

Zigbee

Zigbee Security: Introduces some basic security concepts, including network layer security, trust centers, and application

support layer security features. It then discusses the types of standard security protocols available in EmberZNet PRO.

Coding requirements for implementing security are reviewed in summary. Finally, information on implementing Zigbee Smart

Energy security is provided.

Copyright © 2025 Silicon Laboratories. All rights reserved. 243/280

https://docs.silabs.com/iot-security/1.1.1/iot-security-developers-guide-overview
https://www.silabs.com/documents/public/application-notes/an1302-bluetooth-application-security-design-considerations.pdf
https://www.silabs.com/documents/public/application-notes/an1396-bluetooth-certificates.pdf
https://www.silabs.com/documents/public/application-notes/an1386-bluetooth-mesh-certificate-based-provisioning.pdf
https://www.silabs.com/documents/public/application-notes/an1329-using-secure-vault-openthread.pdf
https://docs.silabs.com/zigbee/latest/zigbee-security/

Overview

Overview

Silicon Labs IoT Security Production Guide
Securing an IoT device is a highly complicated and costly process. You must generate public and private keys for secure

boot and secure debug, sign code with a private key, store all the private keys in an HSM, place the public keys for secure

boot and secure debug in one-time-programmable (OTP) memory, flip OTP bits for secure boot and secure debug, and flash

the encrypted code and identity certificates within the hardware.

CPMS streamlines the programming part of this process for you. Even the most advanced security features, certificates,

and identities can be programmed in a secure, fast, and cost-efficient way at the S ilicon Labs factories. This section

provides details on CPMS, in addition to Public Key Infrastructure (PKI) Recommendations.

Custom Part Manufacturing Service: Explains the process for ordering custom Series 2 parts through the CPMS, including

details on security settings and use cases for configuring a device for an untrusted manufacturing environment and importing

custom wrapped keys.

PKI Recommendations: Outlines the recommended establishment, management, and security of PKI for business partners

and customers of S ilicon Labs.

Copyright © 2025 Silicon Laboratories. All rights reserved. 244/280

https://docs.silabs.com/iot-security/1.1.1/iot-security-cpms/
https://docs.silabs.com/iot-security/1.1.1/iot-security-pki-recommendations/

Custom Part Manufacturing Service

Custom Part Manufacturing Service

Custom Part Manufacturing Service
This section explains the process for ordering custom Series 2 parts through the Custom Part Manufacturing Service

(CPMS). Instructions for customizing device identity security certificates and wrapping custom keys are also included. For

more information on S ilicon Labs’ security offerings on Series 2 devices, refer to IoT Endpoint Security Fundamentals.

What is CPMS?

Custom Part Manufacturing Service (CPMS) allows you to customize S ilicon Labs hardware – wireless SoCs, modules,

MCUs – at the factory. The CPMS self-service web portal guides you through the customization process and its various

customizable features and settings. You can place orders for customized test and production units to our factories securely

via the CPMS portal.

Unlike traditional flash programming, CPMS is a secure provisioning service that enables you to customize your chips with

several highly advanced features such as secure boot, secure debug, encrypted OTA, public, private and secret keys,

secure identity certificates, and more.

The custom features, identities, and certificates are injected on the hardware securely, quickly, and cost-efficiently at the

world’s safest place, the S ilicon Labs factories.

Why Choose CPMS?

Securing an IoT device is a highly complicated and costly process. You must:

Generate public and private keys for secure boot and secure debug

S ign code with a private key

Store all the private keys in a Hardware Security Module (HSM)

Place the public keys for secure boot and secure debug in one-time-programmable (OTP) memory

Flip OTP bits for secure boot and secure debug

Flash the encrypted code and identity certificates within the hardware

CPMS streamlines the programming part of this process for you. Even the most advanced security features, certificates,

and identities can be programmed in a secure, fast, and cost-efficient way at the S ilicon Labs factories.

Copyright © 2025 Silicon Laboratories. All rights reserved. 245/280

https://docs.silabs.com/iot-security/1.1.1/iot-endpoint-security-fundamentals

SE Firmware Version

SE Firmware Version

SE Firmware Version
Selecting the latest SE version available is recommended to stay up to date on bug fixes and security patches. It is also

recommended to continue updating the SE Firmware as new versions are released. Instructions for implementing field

upgrades of the SE Firmware can be found in AN1222: Production Programming of Series 2 Devices.

Copyright © 2025 Silicon Laboratories. All rights reserved. 246/280

https://www.silabs.com/documents/public/application-notes/an1222-efr32xg2x-production-programming.pdf

Debug Lock Settings

Debug Lock Settings

Debug Lock Settings
Four debug lock settings are available for selection in CPMS for this required field. These settings are standard debug lock,

secure debug lock, permanent lock, and unlocked. A public Command Key will be required if the Secure Debug setting is

selected. CPMS will provision the public command key to the device, if required, and enable any debug settings specified

here. More information on each debug lock setting can be found in Series 2 Secure Debug.

Copyright © 2025 Silicon Laboratories. All rights reserved. 247/280

https://docs.silabs.com/iot-security/1.1.1/series2-secure-debug

Secure Boot with RTSL Settings

Secure Boot with RTSL Settings

Secure Boot with RTSL Settings
Secure Boot with RTSL is a security setting available to S ilicon Labs’ Series 2 devices that is used to validate the integrity

and authenticity of each piece of firmware before the firmware is allowed to run on these devices. Setting up a full root of

trust includes enabling secure boot settings in the device ’s OTP as well as in the user-generated bootloader. The setting

stored in device OTP will enforce the first stage bootloader in the Secure Engine to perform a signature check on the

second stage bootloader, which is generated and signed by a user. The next link in the chain is established by enabling

secure boot in the second stage bootloader, which will enforce a check on the application image signature.

In CPMS, you can configure the OTP settings for secure boot quickly and easily. These OTP setting are irreversible, so it is

recommended to read about each setting in detail before making selections. The OTP settings for Secure Boot with RTSL

are the enable bit, Certificates required bit, Anti-Rollback enable bit, and flash page locking settings. Each of these settings

is covered in detail in Series 2 Secure Boot with RTSL. Once these settings are selected, CPMS will prompt you to provide

a secure boot key, also known as a public sign key. This key will be used to sign the firmware to be verified during the

secure boot process. For more information on the public sign key, see Secure Boot Key.

As mentioned previously, to establish the full root of trust for secure boot, secure boot must also be enabled in the

bootloader that is uploaded as part of the firmware programming to CPMS. If the OTP setting for secure boot with RTSL

was enabled, and the secure boot setting was not enabled in the bootloader, no signature check would be performed on

the application image; only a signature check would be performed on the bootloader image. It is recommended to establish

a full root of trust to narrow the attack surface of the device. Refer to Generating the Bootloader for instructions on

creating a bootloader project with secure boot enabled.

Enabling Secure Boot with RTSL on a VSE Device

A few extra steps are required to establish a full root of trust when enabling secure boot on a Virtual SE (VSE) device in

CPMS. As outlined previously, the secure boot settings in OTP will need to be enabled and a public signing key should be

uploaded to CPMS as the first steps to enable secure boot. This public signing key will be provisioned in the device ’s OTP

memory by CPMS and will be used by the device to verify the signature on the second stage bootloader. For the second

stage bootloader to verify the signature on the application on a VSE part, the bootloader will use the public signing key

Copyright © 2025 Silicon Laboratories. All rights reserved. 248/280

https://docs.silabs.com/mcu-bootloader/latest/series2-secure-boot-with-rtsl/index.html

Secure Boot with RTSL Settings

stored in the top page of main flash. Refer to Series 2 Secure Boot with RTSL for more information on enabling secure

boot with RTSL on a VSE device.

Follow the steps outlined in this section to place the public signing key in flash using a token file.

ò When creating a public and private signing key pair for secure boot, use the --tokenfile flag to write the public signing key to

the token file. Refer to Section 6.18.3 of UG162 for more information on this command.

commander util genkey --type ecc-p256 --privkey

sign_privkey.pem --pubkey sign_pubkey.pem --tokenfile

sign_pubkey.txt

ó Flash the token file to the device by running the flash command. Refer to Section 6.1.6 of UG162 for more information on

this command.

commander flash --tokenfile sign_pubkey.txt

ô Once the token file is flashed to the device, the signed bootloader and application images should be flashed to the device

using the same command listed in step 2. To generate and sign a bootloader and application image, follow the steps listed in

Section 3.1.2 and 3.1.3.

õ Dump the flash contents (which contains the token file, signed bootloader, and signed application firmware) to a hex file

using the readmem command. Refer to section 6.3.2 of UG162 for more information.

commander readmem --region @mainflash --outfile all.hex

ö Upload the file all.hex to CPMS using the App and Bootloader selection in the Flash Programming section. As mentioned,

this hex image should contain the token file, signed bootloader, and signed application. This will establish a full root of trust

on the VSE device, ensuring that only authentic firmware can run on the device.

Copyright © 2025 Silicon Laboratories. All rights reserved. 249/280

https://docs.silabs.com/mcu-bootloader/latest/series2-secure-boot-with-rtsl/index.html
https://www.silabs.com/documents/public/user-guides/ug162-simplicity-commander-reference-guide.pdf
https://www.silabs.com/documents/public/user-guides/ug162-simplicity-commander-reference-guide.pdf

Tamper Response

Tamper Response

Tamper Response
In CPMS, the default tamper configuration will be automatically displayed for HSE SVH (Secure Vault High) parts,

customization is available for each of these configurations for Secure Vault High parts only. The anti-tamper protection

feature is only available on SVH devices. Each tamper configuration can be set to one of five different tamper response

levels, ranging from ignore the tamper event to erase OTP of the affected device. CPMS will require a public command key

to be uploaded when tamper is configured on a HSE-SVH device. For more information on anti-tamper protection, refer to

Anti-Tamper Protection Configuration and Use .

Copyright © 2025 Silicon Laboratories. All rights reserved. 250/280

https://docs.silabs.com/iot-security/1.1.1/efr32-secure-vault-tamper

Standard Security Keys

Standard Security Keys

Standard Security Keys
The following subsections will address the different security keys that are accepted by CPMS. Note that only public keys

should be uploaded to CPMS. S ilicon Labs strongly recommends that each key be generated using robust methods, that

private keys are not shared with unauthorized parties, and that keys be stored in a well-managed and protected hardware

security module (HSM).

Secure Boot Key

The secure boot key, also known as the public signing key, is used for authenticating the signature on a bootloader or

application image. CPMS will accept this key in .pem or .der format. This key should be generated as a public/private key

pair, and only the public key should be provided to CPMS. For more information on this key pair, refer to Series 2 Secure

Boot with RTSL.

Command Key

The command key is used for disabling tamper responses and performing a secure debug unlock. CPMS will accept this key

in .pem or .der format. This key should be generated as a public/private key pair and only the public key should be provided

to CPMS. For more information on this key pair and how to use it, refer to Series 2 Secure Debug and Anti-Tamper

Protection Configuration and Use.

OTA Decryption Key

The OTA Decryption Key, also known as the GBL Decryption Key, is used for decrypting GBL payloads used for firmware

upgrades. This key will only be required if you enable <require encrypted firmware upgrade files= in the bootloader. Refer to

S ilicon Labs Gecko Bootloader User’s Guide for more information. An example of creating a bootloader with encrypted

upgrades required is shown in Generating the Bootloader.

On an HSE device, a 16-byte decryption key can be provided to CPMS to be provisioned to the device. On a VSE part, this

key can only be provided to CPMS in a token file, like the public sign key used for secure boot on a VSE part.

OTA Decryption Key for VSE Devices

A few additional steps are required to setup a VSE device to use an OTA Decryption Key in CPMS. Refer to Section 7.2 of

AN1222 for more information.

ò Generate the key using the util genkey command.

commander util genkey --type aes-ccm --outfile aes_key.txt

ó Once the key is generated, it needs to be written to a place accessible to the bootloader. This key can be placed in either

the app properties struct of the GBL, or in the top page of main flash. Only one of these methods need to be used.

To write the OTA Decryption key into the Application properties struct of the bootloader project, use the following

command.

commander convert bootloader.hex --aeskey aes_key.txt --outfile bootloader-keys.hex

Note when using this method:

The --aeskey option for the convert command requires S implicity Commander v1.12.3 or above.

The GBL Decryption Key can only be added to the GBL with Application Properties Struct v1.2 or higher (GSDK v4.1.0 or

higher).

This procedure must be implemented before signing the GBL image for Secure Boot.

To write the OTA Decryption Key to the top page of flash on a VSE device, use the following command.

Copyright © 2025 Silicon Laboratories. All rights reserved. 251/280

https://docs.silabs.com/mcu-bootloader/latest/series2-secure-boot-with-rtsl/index.html
https://docs.silabs.com/iot-security/1.1.1/series2-secure-debug
https://docs.silabs.com/iot-security/1.1.1/efr32-secure-vault-tamper
https://docs.silabs.com/mcu-bootloader/latest/bootloader-user-guide-gsdk-4/
https://www.silabs.com/documents/public/application-notes/an1222-efr32xg2x-production-programming.pdf

Standard Security Keys

commander flash --tokenfile aes_key.txt

Copyright © 2025 Silicon Laboratories. All rights reserved. 252/280

Additional Custom Keys

Additional Custom Keys

Additional Custom Keys

Key Wrapping

Secure Vault High devices support Key Wrapping, which is a feature where keys are encrypted using a Physically

Unclonable Function (PUF) key. A PUF key is secret, random, and unique to each individual device. PUF keys do not live in

flash and are not vulnerable to flash extraction attacks.

CPMS allows customers to provide their own keys, which will be wrapped by the secure element and stored on the device.

This means that the firmware image does not need to contain the key at any point in production.

To use this feature, you need to provide CPMS with four fields:

ò Key Auth: An 8-byte password that must be provided by software whenever the key is used. This password can be disabled

by setting the Key Auth to 0x0000000000000000.

ó Key Value: The value of the key to be wrapped (max 200 bytes).

ô Key Metadata: 4 bytes of key metadata, including information such as the type of key, allowed uses, length, etc. More

information on how to generate this value for an existing key can be found in Importing Custom Wrapped Keys.

õ Key Address: The address in user flash to which the key should be programmed.

Copyright © 2025 Silicon Laboratories. All rights reserved. 253/280

Custom Certificates

Custom Certificates

Custom Certificates
CPMS allows you to customize the device identity certificate chain. The certificates use the X.509 format and must

conform to RFC-3280. For an example of a S ilicon Labs device certificate, refer to Authenticating S ilicon Labs Devices

using Device Certificates. Currently, CPMS supports customization of four fields in the device certificate:

ò Common name: User-defined, 30-character name that will terminate with the 64-bit EUI of the device (example is

"EUI:xxxxxxxxxxxxxxxx" and will terminate with " S:SE0 ID:MCU" or " S:FL0 ID:MCU" depending on if the device is a Secure

Vault High device or not.)

ó Organization: User-defined, 64-character company name

ô Country: Must be a legitimate country code letter pair (e.g., US)

õ Organizational Unit: User-defined field of up to 64 characters

If there are other certificate customizations you would like to implement, specify them in the Special Instructions section in

the CPMS.

Copyright © 2025 Silicon Laboratories. All rights reserved. 254/280

https://datatracker.ietf.org/doc/html/rfc3280
https://docs.silabs.com/iot-security/1.1.1/authenticating-devices-using-device-certificates/03-r-secureidentity

Configure Device for Untrusted Environment Example

Configure Device for Untrusted Environment Example

Configuring a Device for an Untrusted
Manufacturing Environment Example

This example will show how to order a custom part that is secure from the moment it leaves S ilicon Labs. It has secure

boot, secure debug lock, and encrypted upgrades enabled so that an untrusted contract manufacturer cannot access the

debug port or upload un- signed and/or unencrypted applications.

This example uses an EFR32MG21B, which is a Secure Vault High part. Secure Vault Base or Mid parts do not have the

same customization options, so some sections of this example will not be applicable to such devices.

CPMS

This section provides detailed information on starting a new custom part in CPMS and configuring the debug lock and

Secure Boot.

ò In a browser, open CPMS at https://console.silabs.com/cpms.

ó Log in using your www.silabs.com account credentials.

Copyright © 2025 Silicon Laboratories. All rights reserved. 255/280

https://console.silabs.com/cpms
http://www.silabs.com/

Configure Device for Untrusted Environment Example

a. Name: Enter Example-1. This name will be used within CPMS to help differentiate between custom devices.

b. Part: Select any Secure Vault Mid or High part. In this example, select the part EFR32MG21B010F1024IM32-B. As you

begin to type your part, the list will filter the part list based on your entry.

Copyright © 2025 Silicon Laboratories. All rights reserved. 256/280

Configure Device for Untrusted Environment Example

c. Once you have successfully entered a name for your order and selected the part to be customized, the Create New

Customization button is enabled. You can begin to customize this part for your sample order.

õ Click Create New Customization. This takes you to the part customization page. Change the following configurations

(configurations not listed can be left as the default):

a. Debug Lock: Select Secure.

b. Configure Secure Boot, Flash Lock, and Tamper Settings: On. Turn off Require Verify Certificate before secure boot,

since this example will not use certificates.

Copyright © 2025 Silicon Laboratories. All rights reserved. 257/280

Configure Device for Untrusted Environment Example

c. Before you enter the keys and images, you need to generate them. This is covered in the following sections.

Generating the Application

Follow the instructions below to generate and configure an application.

ò Open S implicity Studio.

ó In the Launcher view, click EXAMPLE PROJECTS & DEMOS.

ô Search for blink, and select the Platform - Blink Bare-metal project.

õ Click Finish.

ö There should now be a blink_baremetal project open in the S implicity IDE view. Open blink_baremetal.slcp .

÷ Click on the SOFTWARE COMPONENTS tab.

ø In the Search bar, search for bootloader.
ù Click Platform > Bootloader > Bootloader Application Interface, and click Install.

Copyright © 2025 Silicon Laboratories. All rights reserved. 258/280

Configure Device for Untrusted Environment Example

ú The application image will need an application_properties.c file as shown below to enable secure boot. The .cert pointer is

set to NULL to disable the application certificate option. The signatureType and signatureLocation fields are filled by

S implicity Commander when signing the application image using the convert command.

òñ Now that the configuration is set, "Build" the project. This will generate binaries for the project.

Generating the Bootloader

Copyright © 2025 Silicon Laboratories. All rights reserved. 259/280

Configure Device for Untrusted Environment Example

Follow the steps below to generate and configure a bootloader.

ò Now go back to the Launcher and search for bootloader.
ó Locate and Create the Internal Storage Bootloader (single image on 1MB device) example.

ô Open bootloader-storage-internal-single.slcp.

õ Click the Software Components tab, search for Bootloader Core and then click Configure.

ö Click Require encrypted firmware upgrade files and Enable Secure Boot.

÷ Build the project (if the build button is greyed out, you may need to click on the project in the Project Explorer).

Generating the Sign Key, the Command Key, and the OTA Decryption Key

Enabling secure boot and secure debug requires importing public keys. Ideally, these keys would be generated and

managed by an HSM. This example will use Commander.

ò Create a sign key pair for secure boot.

commander util genkey --type ecc-p256 --privkey cpms-sign-priv.pem -- pubkey cpms-sign-pub.pem

Generating ECC P256 key pair…

Writing private key file in PEM format to cpms-sign-priv.pem

Writing public key file in PEM format to cpms-sign-pub.pem

DONE

ó Create a command key pair for secure debug:

commander util genkey --type ecc-p256 --privkey cpms-cmd-priv.pem -- pubkey cpms-cmd-pub.pem

Copyright © 2025 Silicon Laboratories. All rights reserved. 260/280

Configure Device for Untrusted Environment Example

Generating ECC P256 key pair…

Writing private key file in PEM format to cpms-cmd-priv.pem

Writing public key file in PEM format to cpms-cmd-pub.pem

DONE

ô Create an OTA decryption/encryption key for GBL upgrades:

commander util genkey --type aes-ccm --outfile cpms-gbl.txt

Using Windows’ Cryptographic random number generator

DONE

Signing and Merging the Application and Bootloader Images

We now need to prepare our application and bootloader for CPMS. First, we need to sign the images. Then, since CPMS

requires the firmware image to be in one file, we need to merge the signed hex files. We will do this using the S implicity

Commander command line interface.

ò Open a terminal and navigate to your S implicity Studio workspace.

ó S ign the bootloader:

commander convert internal-storage-bootloader-single.hex --secureboot --keyfile cpms-sign-priv.pem --outfile cpms-btl-signed.hex

Parsing file internal-storage-bootloader-single.hex…

Found Application Properties at 0�000024a8

Writing Application Properties signature pointer to point to 0�000025e0

Setting signature type in Application Properties: 0�00000001

Image SHA256: ca36debc860cdb720aabe9fdd37dc730172fe34571aedc452b52f9ef5a824264

R = 3E8E58AF660F769FE25E9262E6899188B61716723352367F0EC96DF6C7133B20

S = 5C36A7B3124F320C9B9B56B80D2F1A1D8B3593BC008E11B50015E3BEE4638537

Writing to cpms-btl-signed.hex

DONE

This will create the cpms-btl-signed.hex signed image file in your workspace.

ô S ign the application:

commander convert blink_baremetal.hex --secureboot --keyfile cpms-sign-priv.pem --outfile cpms-app-signed.hex

Parsing file blink_baremetal.hex…

Found Application Properties at 0�000061bc

Writing Application Properties signature pointer to point to 0�000064d8

Setting signature type in Application Properties: 0�00000001

Image SHA256: 030b8cdb43e7666b1a015ada8a658a96169be086177548b692a385edb5840295

R = 0C64B8EC9FEFD081EFEBF08E0744A13CA606BD654C1A6B108AF2F5C06AECD5A1

S = CA9DE6279F50C86CD317365FD98380D097D90764A9EDEFE06623FE9126763844

Writing to cpms-app-signed.hex

DONE

This will create the cpms-app-signed.hex signed image file in your workspace.

õ Merge the signed hex files:

commander convert cpms-app-signed.hex cpms-btl-signed.hex -o cpms-merged.hex

Parsing file cpms-app-signed.hex…

Parsing file cpms-btl-sgined.hex…

Writing to cpms-merged.hex…

DONE

This will create cpms-merged.hex in your workspace.

Copyright © 2025 Silicon Laboratories. All rights reserved. 261/280

Configure Device for Untrusted Environment Example

Programming the Keys and Flash Memory

This section describes how to upload the public sign key and the merged signed hex file.

ò In CPMS, return to the Standard Security Keys section.

ó Click the blue upload button in the Public Sign Key field. In the file explorer pop-up, find and select the cpms-sign-pub.pem

file.

ô Click the blue upload button in the Public Command Key field. In the file explorer pop-up, find and select the cpms-cmd-

pub.pem file.

õ For the OTA Decryption Key, copy the key value (in hex) from cpms-gbl.txt into the OTA Decryption Key field.

ö Scroll down to the Flash Programming section.

Copyright © 2025 Silicon Laboratories. All rights reserved. 262/280

Configure Device for Untrusted Environment Example

÷ Click CLICK HERE OR DRAG DROP TO UPLOAD A FILE.

ø Navigate to your workspace. On Windows this will be in C:/Users/<username>/SimplicityStudio/v5_workspace.

ù Select cpms-merged.hex and click Open. CPMS only accepts Intel Hex files for firmware images.

ú You should now be able to see the binary added to your customization in CPMS.

òñ Scroll to the top of the page, and click Review Order.

Copyright © 2025 Silicon Laboratories. All rights reserved. 263/280

Configure Device for Untrusted Environment Example

òò You can now review the pricing for the custom part and the security configurations you've entered.

Copyright © 2025 Silicon Laboratories. All rights reserved. 264/280

Import Custom Wrapped Keys Example

Import Custom Wrapped Keys Example

Importing Custom Wrapped Keys Example
To import custom wrapped keys into CPMS, you need four fields: value, address, auth, and metadata. The following

examples will show how to get the metadata value for an asymmetric and a symmetric key.

Example #1� Importing Custom Wrapped Asymmetric Keys

ò In S implicity Studio, in the Launcher view, click EXAMPLE PROJECTS & DEMOS.

ó Search for SE Manager.
ô Create a project from the Platform - SE Manager Digital Signature (ECDSA and EdDSA) example.

õ CPMS will automatically wrap your key and write it into flash. To emulate that for testing, use the Memory System Controller

to write the key into flash. To enable the MSC, first open se_manager_signature.slcp.

ö Open the SOFTWARE COMPONENTS tab.

÷ Search for msc.
ø Click the MSC Peripheral and click Install.

Copyright © 2025 Silicon Laboratories. All rights reserved. 265/280

Import Custom Wrapped Keys Example

ù Modify the "create_wrap_asymmetric_key" function of app_se_manager_signature.c to use our "CPMS key". Instead of

generating a key, we will import our ecc key. In app_se_manager_signature.c line 255, replace the lines:

print_error_cycle(sl_se_generate_key(&cmd_ctx, &asymmetric_key_desc), &cmd_ctx);

with the following:

// YOUR KEY VALUE GOES HERE�

static uint8_t user_key[64] =

{

0�79, 0�7D, 0�86, 0xE3, 0�5B, 0xAA, 0�03, 0xA5,

0xEE, 0�09, 0xAB, 0�5E, 0�7E, 0xB1, 0�2D, 0xC3,

0�92, 0xFC, 0xCE, 0xDC, 0xD0, 0�2A, 0xB0, 0xF7,

0�56, 0�5E, 0�73, 0�30, 0�86, 0�1D, 0xAE, 0xD5,

0xDD, 0�8A, 0�84, 0xA2, 0�87, 0�0F, 0xCC, 0�2B,

0�70, 0�66, 0xAE, 0xE0, 0�88, 0�44, 0�2C, 0xCC,

0�0C, 0�53, 0xCE, 0�9D, 0�26, 0xBB, 0xB3, 0�04,

0xA8, 0xB7, 0xB9, 0xE5, 0�20, 0�43, 0�62, 0xAE

};

sl_se_key_descriptor_t plaintext_desc = {

.type = key_type,

.flags = SL_SE_KEY_FLAG_ASYMMETRIC_BUFFER_HAS_PRIVATE_KEY

| SL_SE_KEY_FLAG_ASYMMMETRIC_SIGNING_ONLY,

.storage.method = SL_SE_KEY_STORAGE_EXTERNAL_PLAINTEXT,

.storage.location.buffer.pointer = user_key,

.storage.location.buffer.size = 64

};

if (sl_se_import_key(&cmd_ctx, &plaintext_desc, &asymmetric_key_desc) !� SL_STATUS_OK) return SL_STATUS_FAIL;

This code will import your key into the Secure Engine, wrap it, then store the wrapped key to the asymmetric_key_buf that

asym- metric_key_desc.storage.location.buffer.pointer is pointing to.

Copyright © 2025 Silicon Laboratories. All rights reserved. 266/280

Import Custom Wrapped Keys Example

ú Next, write the wrapped key blob into flash. Add the following lines to create_wrap_asymmetric_key:

// YOUR KEY ADDRESS GOES HERE�

unsigned int wrapped_key_address = 0�00080000;

printf("\nWriting key into flash at 0x%08x...\n", wrapped_key_address);

// Clear out the old wrapped key MSC_ErasePage((uint32_t*)wrapped_key_address);

// Flash the new wrapped key MSC_WriteWord((uint32_t*)wrapped_key_address, asymmetric_key_buf, sizeof(asymmetric_key_buf));

// Update the key descriptor to point to the key in flash asymmetric_key_desc.storage.location.buffer.pointer =

(uint8_t*)wrapped_key_address;

òñ Next, print out the keyspec needed for CPMS. Add the following lines to create_wrap_asymmetric_key:

Copyright © 2025 Silicon Laboratories. All rights reserved. 267/280

Import Custom Wrapped Keys Example

unsigned int keyspec;

if (sli_se_key_to_keyspec(&asymmetric_key_desc, &keyspec) !� SL_STATUS_OK) return SL_STATUS_FAIL;

printf("\nKeyspec: 0x%08x\n", keyspec);

return SL_STATUS_OK;

òò Keys imported using CPMS use a different bus master than the CPU, so the key descriptor needs to be updated. In

create_wrap_symmetric_key, edit the symmetric_key_desc.flags field to remove SL_SE_FLAG_ASYMMETRIC_BUF-

FER_HAS_PUBLIC_KEY and add SL_SE_KEY_FLAG_ALLOW_ANY_ACCESS (line 229):

asymmetric_key_desc.flags = SL_SE_KEY_FLAG_ASYMMETRIC_BUFFER_HAS_PRIVATE_KEY

| SL_SE_KEY_FLAG_ASYMMMETRIC_SIGNING_ONLY

| SL_SE_KEY_FLAG_NON_EXPORTABLE

| SL_SE_KEY_FLAG_ALLOW_ANY_ACCESS;

òó Build the project.

Copyright © 2025 Silicon Laboratories. All rights reserved. 268/280

Import Custom Wrapped Keys Example

òô Flash to the target device.

òõ In the Debug Adapters window, right click on the adapter for your device and click Launch Console.

òö Click the Serial 1 tab, and then send Enter to start the console.

ò÷ Reset the device. The program will first ask which type of key you want to use: plaintext, wrapped, or volatile. Type a space,

and then press Enter to select the second option, wrapped.

òø Press Enter four more times to see the keyspec printed to the console. When entering a custom wrapped key into CPMS,

this value is the Key Metadata value.

Copyright © 2025 Silicon Laboratories. All rights reserved. 269/280

Import Custom Wrapped Keys Example

òù Now that the key is wrapped and stored in flash, you want to see that the program can use it without having the plaintext

key anywhere in the application. Go back to app_se_manager_signature.c and comment out lines 255 to 278 and lines 283

to 289.

òú Now the application simply sets up the key descriptor to point to where we wrote the wrapped key in flash, without knowing

the value of the key.

óñ Repeat steps 12 to 17 to verify that the wrapped key can still be used. Note that if the flash is erased (by a commander

device unlock command, for instance), this application will fail. It needs the wrapped key to be stored in flash by a previous

process.

Copyright © 2025 Silicon Laboratories. All rights reserved. 270/280

Import Custom Wrapped Keys Example

Example #2� Importing Custom Wrapped Symmetric Keys

ò In S implicity Studio, in the Launcher view, click EXAMPLE PROJECTS & DEMOS.

ó Search for SE Manager.
ô Create a project from the Platform - SE Manager Block Cipher example:

õ CPMS will automatically wrap your key and write it into flash. To emulate that for testing, use the Memory System Controller

to write the key into flash. To enable the MSC, first open se_manager_block_cipher.slcp.

ö Open the SOFTWARE COMPONENTS tab.

÷ Search for msc.
ø Click the MSC Peripheral and click Install.

Copyright © 2025 Silicon Laboratories. All rights reserved. 271/280

Import Custom Wrapped Keys Example

ù Modify the "create_wrap_symmetric_key" function of app_se_manager_block_cipher.c to use the "CPMS key". Instead of

generating a key, import the aes key. In app_se_manager_block_cipher.c line 259, replace the lines:

print_error_cycle(sl_se_generate_key(&cmd_ctx, &symmetric_key_desc), &cmd_ctx);

with the following:

// YOUR KEY VALUE GOES HERE�

static uint8_t user_key[16] =

{

0�70, 0xF4, 0�82, 0�4E, 0�49, 0xBD, 0�97, 0xAB,

0�65, 0�65, 0�32, 0�22, 0xA0, 0�70, 0xB5, 0�16

};

sl_se_key_descriptor_t plaintext_desc = {

.type = SL_SE_KEY_TYPE_AES_128,

.flags = 0,

.storage.method = SL_SE_KEY_STORAGE_EXTERNAL_PLAINTEXT,

.storage.location.buffer.pointer = user_key,

.storage.location.buffer.size = 16

};

if (sl_se_import_key(&cmd_ctx, &plaintext_desc, &symmetric_key_desc) !� SL_STATUS_OK) return SL_STATUS_FAIL;

This code will import your key into the Secure Engine, wrap it, and then store the wrapped key to the symmetric_key_buf

that symmetric_key_desc.storage.location.buffer.pointer is pointing to.

Copyright © 2025 Silicon Laboratories. All rights reserved. 272/280

Import Custom Wrapped Keys Example

ú Next, write the wrapped key blob into flash. Add the following lines to create_wrap_symmetric_key:

// YOUR KEY ADDRESS GOES HERE�

unsigned int wrapped_key_address = 0�00080000;

printf("Writing key into flash at 0x%08x...\n", wrapped_key_address);

// Clear out the old wrapped key MSC_ErasePage((uint32_t*)wrapped_key_address);

// Flash the new wrapped key

MSC_WriteWord((uint32_t*)wrapped_key_address, symmetric_key_buf, sizeof(symmetric_key_buf));

// Update the key descriptor to point to the key in flash symmetric_key_desc.storage.location.buffer.pointer =

(uint8_t*)wrapped_key_address;

òñ Next, we'll print out the keyspec that we need for CPMS. Add the following lines to create_wrap_symmetric_key:

unsigned int keyspec;

if (sli_se_key_to_keyspec(&symmetric_key_desc, &keyspec) !� SL_STATUS_OK) return SL_STATUS_FAIL;

printf("\nKeyspec: 0x%08x\n", keyspec);

return SL_STATUS_OK;

Copyright © 2025 Silicon Laboratories. All rights reserved. 273/280

Import Custom Wrapped Keys Example

òò Keys imported using CPMS use a different bus master than the CPU, so the key descriptor needs to be updated. In cre-

ate_wrap_symmetric_key, edit the symmetric_key_desc.flags field to include SL_SE_KEY_FLAG_ALLOW_ANY_ACCESS (line

247):

symmetric_key_desc.flags = SL_SE_KEY_FLAG_NON_EXPORTABLE | SL_SE_KEY_FLAG_ALLOW_ANY_ACCESS;

òó Build the project.

òô Flash to the target device.

Copyright © 2025 Silicon Laboratories. All rights reserved. 274/280

Import Custom Wrapped Keys Example

òõ In the Debug Adapters window, right click on the adapter for your device and click Launch Console.

òö Click the Serial 1 tab, and then reset the device. The program will first ask which type of key you want to use: plaintext,

wrapped, or volatile. Type a space, and then press Enter to select the second option, wrapped.

Copyright © 2025 Silicon Laboratories. All rights reserved. 275/280

Import Custom Wrapped Keys Example

ò÷ Press Enter once more to see the keyspec printed to the console. When entering a custom wrapped key into CPMS, this

value is the "Key Metadata" value.

òø Press Enter two more times to verify that the key can be used without error. Note that if you press Enter after this, the

program will try to use that key as a ChaCha20-Poly1305 key, and it will fail.

òù Now that the key is wrapped and stored in flash, you want to see that the program can use it without having the plaintext

key anywhere in the application. Go back to app_se_manager_block_cipher.c and comment out lines 259 to 275 and lines

280 to 286.

Copyright © 2025 Silicon Laboratories. All rights reserved. 276/280

Import Custom Wrapped Keys Example

òú Now the application simply sets up the key descriptor to point to where you wrote the wrapped key in flash, without

knowing the value of the key.

óñ Repeat steps 11 to 15 to verify that the wrapped key can still be used. Note that if the flash is erased (by a commander

device unlock command, for instance), this application will fail. It needs the wrapped key to be stored in flash by a previous

process.

Copyright © 2025 Silicon Laboratories. All rights reserved. 277/280

Import Custom Wrapped Keys Example

Copyright © 2025 Silicon Laboratories. All rights reserved. 278/280

PKI Recommendations

PKI Recommendations

PKI Recommendations
This section outlines the recommended establishment, management, and security of Public Key Infrastructure (PKI) for

business partners and customers of S ilicon Labs. PKI plays a pivotal role in ensuring secure communication, data integrity,

and authentication within our business ecosystem. This document sets forth recommended practices for the creation,

management, and protection of secret keys and certificates by our partners and customers.

Scope

These recommendations apply to all business partners and customers involved in transactions, communications, or

collaborations with S ilicon Labs and S ilicon Labs Services that necessitate the use of PKI technology.

Responsibilities

Business Partners and Customers Responsibilities

Creation of Secret Keys and Certificates: Business partners and customers should generate their secret keys securely and

procure associated digital certificates from reputable Certificate Authorities (CAs) or generating their own digital certificates

in accordance with the recommendations in this document. It is imperative that secret keys are generated using robust

methods and are not shared with unauthorized parties.

Protection of Secret Keys: Business partners and customers should implement comprehensive security measures to

safeguard their secret keys against unauthorized access, loss, or theft. This encompasses encryption, access controls,

regular key rotation where applicable, and employing secure storage methodologies. Backup and recovery of the secret keys

is essential, and should be considered in case of disaster recovery needs. Keys should be stored in a well-managed and

protected hardware security module (HSM).

Revocation and Renewal: Business partners and customers should promptly revoke compromised or no longer required

certificates and renew certificates before expiration to maintain ongoing security. Affected parties should have a way to

determine status of certificate revocation and/or renewal through a hosted certificate revocation list (CRL) or online

certificate status protocol (OCSP).

Ensure Internal Security: In addition to the material security, business partners and customers should also maintain effective

security around their organization and it's operations, staff and contractors. This means maintaining endpoints and

infrastructure in a secure way, such as patching operating systems and applications, hardening user applications and

restricting administrative privileges. People in the organization and those managing the keys and certificates should be

verified as trusted and secure.

Audits: Business partners and customers should conduct regular audits of PKI and CA infrastructure and operations to

confirm adherence to these recommendations and industry standards.

Security Controls

NIST (National Institute of Standards and Technology) is an indispensable tool to navigate and strengthen cybersecurity

systems and can be referenced as a guide for further recommendation on these Security Controls.

Access Controls: Business partners and customers should implement access controls to limit access to secret keys and

certificates to authorized personnel exclusively. This includes implementing role-based access control (RBAC) and

conducting regular access reviews to ensure that only essential individuals have access to sensitive cryptographic materials.

Encryption: All secret keys and sensitive certificate information should be encrypted during transmission and storage using

robust cryptographic algorithms and protocols.

Key Management: Business partners and customers should adopt robust key management practices, encompassing key

generation, storage, rotation, and destruction, in accordance with industry best practices and standards.

Copyright © 2025 Silicon Laboratories. All rights reserved. 279/280

PKI Recommendations

Monitoring and Auditing: Business partners and customers should implement monitoring and auditing mechanisms to monitor

access to secret keys and certificates, detect unauthorized activities, and generate audit trails for compliance purposes.

Revision History

This document will undergo periodic review and updates as necessary to reflect changes in technology, security

requirements, or regulatory mandates.

Contact Information

For inquiries or concerns regarding these recommendations, contact certificateauthority@silabs.com.

Copyright © 2025 Silicon Laboratories. All rights reserved. 280/280

mailto:certificateauthority@silabs.com

	Using IoT Security Features
	Getting Started
	IoT Endpoint Security Fundamentals
	Introduction
	Overview
	No Universal Passwords
	Secured Interfaces
	Proven Cryptography
	Security by Default
	Signed Software Updates
	Automatically Applied Updates
	Vulnerability Reporting Program
	Security Expiration Date
	Next Steps
	Series 2 Device Security Features

	Developer's Guide
	Overview
	Series 2 Secure Debug
	Introduction
	Series 2 Device Security Features
	Introduction To Secure Debug
	Secure Engine Subsystem
	Debug Lock
	Debug Unlock
	Examples
	Precautions
	Failure Analysis

	Series 2 TrustZone
	Introduction
	Series 2 Device Security Features
	TrustZone Basics
	Bus Level Security (BLS)
	Secure And Privileged Programming Model
	TrustZone Implementation
	Upgrade Existing Application To TrustZone
	TrustZone Platform Examples

	Anti-Tamper Protection Configuration and Use
	Overview
	Series 2 Device Security Features
	Introduction
	Secure Engine Manager
	Tamper Responses
	Tamper Sources
	Anti-Tamper Configuration
	Usage Example
	Tamper Disable
	Examples

	Authenticating Silicon Labs Devices using Device Certificates
	Overview
	Series 2 Device Security Features
	Introduction
	Secure Identification on HSE-SVH Devices
	Device Certificate Options
	Entity Attestation Token (EAT)
	Remote Authentication Process
	Secure Engine Manager
	Examples

	Secure Key Storage
	Overview
	Series 2 Device Security Features
	Introduction
	HSE Secure Key Storage
	TrustZone Secure Key Storage
	Secure Key Storage Implementations
	Examples

	Protocol-Specific Information

	Production Guide
	Overview
	Custom Part Manufacturing Service
	Overview
	SE Firmware Version
	Debug Lock Settings
	Secure Boot with RTSL Settings
	Tamper Response
	Standard Security Keys
	Additional Custom Keys
	Custom Certificates
	Configure Device for Untrusted Environment Example
	Import Custom Wrapped Keys Example

	PKI Recommendations

