loT Security

loT Security

&= SILICON LABS

Using loT Security Features

Getting Started

loT Endpoint Security Fundamentals

Introduction

Overview

No Universal Passwords

Secured Interfaces

Proven Cryptography

Security by Default

Signed Software Updates

Automatically Applied Updates

Vulnerability Reporting Program

Security Expiration Date

Next Steps

Series 2 Device Security Features

Developer's Guide

Overview

Series 2 Secure Debug

Introduction

Series 2 Device Security Features

Introduction To Secure Debug

Secure Engine Subsystem

Debug Lock

Debug Unlock

Examples

Precautions

Failure Analysis

Series 2 TrustZone

Introduction

Series 2 Device Security Features

TrustZone Basics

Bus Level Security (BLS)

Secure And Privileged Programming Model

TrustZone Implementation

Upgrade Existing Application To TrustZone

TrustZone Platform Examples

Production Programming of Series 2 Devices (PDF)

Anti-Tamper Protection Configuration and Use

Copyright © 2025 Silicon Laboratories. All rights reserved.

1/280

https://www.silabs.com/documents/public/application-notes/an1222-efr32xg2x-production-programming.pdf

loT Security ‘5" SILICON LABS

Overview

Series 2 Device Security Features

Introduction

Secure Engine Manager

Tamper Responses

Tamper Sources

Anti-Tamper Configuration

Usage Example

Tamper Disable

Examples

Authenticating Silicon Labs Devices using Device Certificates
Overview

Series 2 Device Security Features

Introduction

Secure Identification on HSE-SVH Devices
Device Certificate Options

Entity Attestation Token (EAT)

Remote Authentication Process

Secure Engine Manager

Examples

Secure Key Storage

Overview

Series 2 Device Security Features

Introduction

HSE Secure Key Storage

TrustZone Secure Key Storage

Secure Key Storage Implementations

Examples
Programming Series 2 Devices Using the DCI and SWD (PDF)
Integrating Crypto Functionality with PSA Crypto vs. Mbed TLS (PDF)
Protocol-Specific Information

Production Guide

Overview

Custom Part Manufacturing Service

Overview

SE Firmware Version

Debug Lock Settings
Secure Boot with RTSL Settings
Tamper Response

Standard Security Keys
Additional Custom Keys

Custom Certificates

Configure Device for Untrusted Environment Example

Import Custom Wrapped Keys Example

Copyright © 2025 Silicon Laboratories. All rights reserved. 2/280

https://www.silabs.com/documents/public/application-notes/an1303-efr32-dci-swd-programming.pdf
https://www.silabs.com/documents/public/application-notes/an1311-mbedtls-psa-crypto-porting-guide.pdf

loT Security ‘-S'“’ SILICON LABS

PKI Recommendations

Copyright © 2025 Silicon Laboratories. All rights reserved. 3/280

Using loT Security Features &= SILICON LABS

Using loT Security Features

Using Silicon Labs loT Security Features

Silicon Labs offers a range of security features depending on the part you are using and your application and production
needs.

The content on these pages is intended for those who want to implement security features as part of your loT device
management. If you are looking for an introduction to Silicon Labs Security features and to security issues that confront
those implementing loT systems, see the Bilabs.com Security paggd.

For details about this release: Links to release notes are available on the Eilabs.com Gecko SDK| page as part of the Gecko
Platform release notes.

For background on security issues in general: JoT_Security Fundamentald explains some security basics.

To get started with implementing security: See the [Getting Started page] for help determining what features you want to
implement based on the series 2 part you are working with. Series 2 devices are the preferred choice for secure system
implementation.

f you are already in development: See the Developer's Guidd for details. Security APIs are documented in the Geckd
Platform APl Reference.

For detailed information about implementing some security features with specific protocols: See the protocol-specifig
ages. An extensive body of other protocol-specific content can be accessed through the Hocs.silabs.com homepage.

Copyright © 2025 Silicon Laboratories. All rights reserved. 4/280

https://www.silabs.com/security
https://www.silabs.com/developers/gecko-software-development-kit
https://docs.silabs.com/iot-security/1.1.1/iot-endpoint-security-fundamentals
https://docs.silabs.com/iot-security/1.1.1/iot-security-getting-started
https://docs.silabs.com/iot-security/1.1.1/iot-security-developers-guide-overview
https://docs.silabs.com/gecko-platform/latest/
https://docs.silabs.com/iot-security/1.1.1/iot-security-protocol-specific
https://docs.silabs.com/

Getting Started &= SILICON LABS

Getting Started

Getting Started with Silicon Labs loT Security
Features on Series 2 Devices

Protecting loT devices against security threats is central to a quality product. Silicon Labs offers several security options to
help developers build secure devices, secure application software, and secure paths of communication to manage those
devices. Silicon Labs’ security offerings were significantly enhanced by the introduction of the Series 2 products that
included a Secure Engine. The Secure Engine is a tamper-resistant component used to securely store sensitive data and
keys, and to execute cryptographic functions and secure services.

On Series 1 devices, the security features are implemented by the TRNG (if available) and CRYPTO peripherals.

On Series 2 devices, the security features are implemented by the Secure Engine and CRYPTOACC (if available). The
Secure Engine may be hardware-based or virtual (software-based). Here the following abbreviations are used:

¢ HSE - Hardware Secure Engine
e VSE - Virtual Secure Engine
e SE - Secure Engine (either HSE or VSE)

Additional security features are provided by Secure Vault. Three levels of Secure Vault feature support are available,
depending on the part and SE implementation, as reflected in the following table:

Security Level

1) SE Support MCU Wireless SoC (2)

Secure Vault N/A EFM32JG1, EFM32PG1, EFM32JG12, EFM32PG12, EFR32xG1, EFR32xG12,

Base (SVB) EFM32GG11, EFM32GG12, EFM32TG11 EFR32xG13, EFR32xG14

Secure Vault VSE (VSE- EFM32PG22 EFR32xG22

Mid (SVM) SVM)

: HSE (HSE- EFM32PG23A EFR32xG21A, EFR32xG23A,
SVM) EFR32xG24A

Secure Vault HSE only EFM32PG23B EFR32xG21B, EFR32xG23B,

High (SVH) (HSE-SVH) EFR32xG24B

Note:

1. The features of different Secure Vault levels can be found in httpsy/www.silabs.com/security] .
2. The xis a letter B, F, M, or Z.

Secure Vault Mid consists of two core security functions:

» Secure Boot: Process where the initial boot phase is executed from an immutable memory (such as ROM) and where code is
authenticated before being authorized for execution.

e Secure Debug access control: The ability to lock access to the debug ports for operational security, and to securely unlock
them when access is required by an authorized entity.

Secure Vault High offers additional security options:

o Secure Key Storage: Protects cryptographic keys by “wrapping” or encrypting the keys using a root key known only to the
HSE-SVH.

o Anti-Tamper protection: A configurable module to protect the device against tamper attacks.

» Device authentication: Functionality that uses a secure device identity certificate along with digital signatures to verify the
source or target of device communications.

Copyright © 2025 Silicon Laboratories. All rights reserved. 5/280

https://www.silabs.com/security

Getting Started

&= SILICON LABS

A Secure Engine Manager and other tools allow users to configure and control their devices both in-house during testing
and manufacturing, and after the device is in the field.

Silicon Labs strongly recommends installing the latest SE firmware on Series 2 devices to support the required security
features. The latest SE firmware image (.seu and .hex) and release notes can be found in these Windows folders of the

GSDK.

C:\Users\<UserName >\Simplicity Studio\SDKs\gecko_sdk\util\se_release\public

f you have not already installed the GSDK, instructions for doing so with Simplicity Studio are available in the Getting
Started section of the Simplicity Studio 5 User's Guide.

Refer to AN1222: Production Programming of Series 2 Devices for guidance on the SE firmware upgrade procedure. The
latest SE firmware shipped with Series 2 devices and modules (if available) at the time of this writing are listed in the

following table:

MCU Series 2 and Wireless SoC Series 2 SE Shipped SE Firmware Version (Device and Module)
EFR32xG21A HSE-SVM 1213

EFM32PG23A HSE-SVM 217

EFR32xG23A HSE-SVM 212 (Rev B), 21.7 (Rev C)

EFR32xG24A HSE-SVM 217

EFR32xG21B HSE-SVH 1213

EFM32PG23B HSE-SVH 217

EFR32xG23B HSE-SVH 212 (Rev B), 21.7 (Rev C)

EFR32xG248B HSE-SVH 217

EFM32PG22 and EFR32xG22 VSE-SVM 1212

In support of these products Silicon Labs offers whitepapers, webinars, and documentation. The following table summarizes

the key security documents:

Document

Beries 2 Secure Debud

Beries 2 Secure Boot with RTS1

Anti-Tamper Protection
Configuration and Use

Summary

How to lock and unlock Series 2 debug access, including background
information about the Secure Engine

Describes the secure boot process on Series 2 devices using Secure
Engine. For information on bootloading with Silicon Labs products, see

Silicon Labs Gecko Bootloader User's Guide for GSDK 4.0 and Highe

series 1 and 2 devices)

A\uthenticating Silicon Labs

Devices using Device Certificated

Becure Key Storagd

AN1222: Production Programming
of Series 2 Devices

AN1303: Programming Series 2
Devices Using the Debug
Challenge Interface (DCI) and
Serial Wire Debug (SWD)

AN1311: Integrating Crypto
Functionality Using PSA Crypto
Compared to Mbed TLS

How to program, provision, and configure the anti-tamper module

How to authenticate a device using secure device certificates and
signatures, at any time during the life of the product

How to securely “wrap” keys so they can be stored in non-volatile
storage

How to program, provision, and configure security information using
Secure Engine during device production

How to provision and configure Series 2 devices through the DCI and
how to program their internal flash memory through the SWD

How to integrate crypto functionality into applications using Silicon
Labs implementation of PSA Crypto compared to Mbed TLS

Copyright © 2025 Silicon Laboratories. All rights reserved.

Applicability

Series 2

Series 2

Series 2
with SVH

Series 2
with SVH

Series 2
with SVH

Series 2

Series 2

Series 1 and
Series 2

6/280

https://docs.silabs.com/simplicity-studio-5-users-guide/5.5.0/ss-5-users-guide-getting-started/install-ss-5-and-software
https://docs.silabs.com/iot-security/1.1.1/series2-secure-debug
https://docs.silabs.com/mcu-bootloader/latest/series2-secure-boot-with-rtsl/index.html
https://docs.silabs.com/mcu-bootloader/latest/bootloader-user-guide-gsdk-4/index.html
https://docs.silabs.com/iot-security/1.1.1/efr32-secure-vault-tamper
https://docs.silabs.com/iot-security/1.1.1/authenticating-devices-using-device-certificates
https://docs.silabs.com/iot-security/1.1.1/efr32-secure-key-storage

Getting Started &= SILICON LABS

Copyright © 2025 Silicon Laboratories. All rights reserved. 71280

loT Endpoint Security Fundamentals &= SILICON LABS

loT Endpoint Security Fundamentals

loT Endpoint Security Fundamentals

NOTE: This section replaces UG703.05: /oT Endpoint Security Fundamentals. Further updates to this user guide will be
provided here.

This guide introduces the security concepts that must be considered when implementing an Internet of Things (loT) system.
Using the ioXt Alliance’s eight security principles as a structure, this guide clearly delineates the solutions Silicon Labs
provides to support endpoint security and what you must do outside of the Silicon Labs framework. Where appropriate,
Silicon Labs’ approach to our own security is offered as an example. This guide is designed for product developers and
managers.

Silicon Labs’ Fundamentals series covers topics that project managers, application designers, and developers should
understand before beginning to work on an embedded networking solution using Silicon Labs chips, networking stacks such
as EmberZNet PRO or Silicon Labs Bluetooth, and associated development tools. These guides can be used as a starting
place for anyone needing an introduction to developing wireless networking applications, or who is new to the Silicon Labs
development environment.

Copyright © 2025 Silicon Laboratories. All rights reserved. 8/280

Overview &= SILICON LABS

Overview

Overview

Securing the 10T is challenging. It is also mission-critical. Threats are continuously evolving, and the demand on product
developers to keep up can be burdensome — particularly in low-cost, resource-constrained loT products. Protecting your
product in a connected world is a necessity, as customer data and modern online business models are increasingly targets
for costly hacks that jeopardize end-user privacy and corporate brand damage. Silicon Labs is committed to working with
the security community, customers, and other experts to bring state-of-the-art technology to help protect your connected
portfolio.

Silicon Labs is a member of the ioXt (Internet of Secure Things) Alliance. The ioXt Alliance was formed to bring together
wireless carriers, leading consumer product manufacturers, standards groups, compliance labs and government organizations
to align baseline security requirements, to set the stage for testing and compatibility certification, and to work together
building global standards for the loT world.

To) 4

internet of secure things

The ioXt alliance has produced the ioXt Security Pledge (https://www.ioxtalliance.org/s/ioXt-SecurityPledge-booklet-
final.odf) The pledge covers eight principles in the areas of Security, Upgradability, and Transparency. Silicon Labs has
adopted these principles in our own operations as well as in the products we provide. Our approach to these principles is
described in this document.

Copyright © 2025 Silicon Laboratories. All rights reserved. 9/280

https://www.ioxtalliance.org/s/ioXt-SecurityPledge-booklet-final.pdf

Overview

NO
UNIVERSAL
PASSWORDS
SECURED PROVEN
INTERFACES CRYPTOGRAPHY

SECURITY

i0X

Intmpatalneue Things

UPGRADABILITY TRANSPARENCY

AUTOMATICALLY VULNERABILITY
APPLIED REPORTING
UPDATES PROGRAM
SIGMNED
SOFTWARE
UPDATES

&= SILICON LABS

SECURITY

BY
DEFAULT

SECURITY

EXPIRATION

DATE

The above image and all pledge language is reproduced from The ioXt Security Pledge: 8 Principles for Consumer Product
Design and Manufacturing to Ensure Security, Upgradability & Transparency (2019).

Copyright © 2025 Silicon Laboratories. All rights reserved.

10/280

No Universal Passwords &= SILICON LABS

No Universal Passwords

No Universal Passwords

The product shall not have a universal password; unique security credentials will be required for operation. Universal
passwords allow an attacker to easily gain access to any device. Therefore, products shall either have a unique password or

require the user to enter a new password immediately upon first use.
It is your responsibility to ensure that your product enforces the creation of a unique password before activation.

Silicon Labs’ products are designed to be configured by the manufacturer before being delivered to customers, and
therefore passwords are outside of our scope. However, Silicon Labs tools are designed to support the various levels of
security provided by the protocol in question. Most protocols offer different security levels, with tradeoffs between
security level and other features such as ease of network formation. You need to review and decide on the level required

by your application. For example:

The EmberZNet Pro SDK supports a highly secure centralized trust-center-controlled method that replaces a device’s

factory-programmed link key with a key that is unique to each device on the network.
o Z-Wave 700 products come with a factory-programmed unique S2 keypair on first power-up, and support SmartStart

commissioning through a package QR code containing the public key.
Bluetooth options range from an unsecured “Just Works” approach to a LE Secure Connections Pairing model. Application

designers can implement additional device authentication methods, such as through the companion smartphone app, to help
ensure secure pairing even for devices without a user interface.

Copyright © 2025 Silicon Laboratories. All rights reserved. 11/280

Secured Interfaces &= SILICON LABS

Secured Interfaces

Secured Interfaces

All product interfaces shall be appropriately secured by the manufacturer.

The interfaces to be secured will vary by product configuration. For example, in an NCP topology the NCP interface must
be secured. Debug interfaces should always be locked. Wireless interfaces should be secured by using strong pairing and
commissioning methods and by enabling encrypted and authenticated transmissions.

While securing the interfaces is in the end your responsibility, Silicon Labs provides the tools to enable that security.

Both Series 1 and Series 2 devices are designed to support securing debug access. For Series 1 devices, that functionality
is provided through writing a Debug Lock word to the device. Unlocking the device erases the main application and the key
material stored in the Lockbits page. For Series 2 devices, securing debug access is done through the device’s Secure
Fngine. Both allow the developer to lock the debug port itself. See Silicon Labs Gecko Bootloader User's Guide for Series 3
pnd Higher, Bilicon Labs Gecko Bootloader User's Guide for GSDK 4.0 and Higher (series 1 and 2 devices), or UG266:
Silicon Labs Gecko Bootloader User’s Guide for GSDK 3.2 and Lower for an overview of securing debug access, and Series 2
Secure Debug for details on the Series 2 implementation. UG104: Testing and Debugging Applications for the Silicon Labs
EFR32MG Platforms provides an overview of the various application testing stages and the debug access (hardware and
software) required in each.

For more information on Wireless interface security in the different protocols, see the following:

.

Bluetooth LE Fundamentald and relevant KBAs

AN1037: Apple HomeKit Over Bluetooth®

UG235.03: Architecture of the Silicon Labs Connect Stack v2.x
UG435.03: Architecture of the Silicon Labs Connect Stack v3.x

Copyright © 2025 Silicon Laboratories. All rights reserved. 12/280

https://docs.silabs.com/mcu-bootloader/latest/bootloader-user-guide-series3-and-higher/
https://docs.silabs.com/mcu-bootloader/latest/bootloader-user-guide-gsdk-4/
https://docs.silabs.com/iot-security/latest/series2-secure-debug/
https://docs.silabs.com/zigbee/latest/zigbee-security/
https://docs.silabs.com/bluetooth/latest/bluetooth-le-fundamentals/

Proven Cryptography &= SILICON LABS

Proven Cryptography

Proven Cryptography

Product security shall use strong, proven, updatable cryptography using open, peer-reviewed methods and algorithms.

An important aspect of any IoT device is how secure the device is when it communicates with other devices, gateways, or
the cloud. This standard mandates using proven cryptographic methods rather than attempting to implement your own.

Developers commonly secure communications such as TCP/IP connections, Bluetooth, Zigbee, or Z-Wave using the
standardized and proven cryptographic methods native to the protocol. However, if a microcontroller sends sensitive
information over a simple interface such as a UART to another microcontroller, it is important to realize that data should
also be secured to prevent someone from snooping the UART line.

Silicon Labs offers a hardware CRYPTO module that provides an efficient acceleration of common cryptographic operations
and allows these to be used efficiently with low CPU overhead. The CRYPTO module includes hardware accelerators for
the Advanced Encryption Standard (AES), Secure Hash Algorithm SHA-1 and SHA-2 (SHA-224 and SHA-256), and modular
multiplication used in ECC (Elliptic Curve Cryptography) and GCM (Galois Counter Mode). The CRYPTO module can
autonomously execute and iterate a sequence of instructions to aid software and speed up complex cryptographic
functions like ECC, GCM, and CCM (Counter with CBC-MAC).

In addition to the CRYPTO module, Silicon Labs includes mbed TLS as part of the Gecko Platform SDK. mbed TLS is open
source software licensed by ARM Limited. It provides an SSL library that makes it easy to use cryptography and SSL/TLS in
applications. mbed TLS supports software implementations of all crypto algorithms that are supported by TLS 1.2 as well as
a build APl that allows hardware drivers to replace the software implementations when cipher accelerators are supported by
the platform. Its modular framework allows for subcomponents like the crypto libraries to be incorporated into a design
independently of the SSL/TLS components, saving valuable code space and runtime RAM. mbed TLS supports SSLv3 up to
TLSv1.2 communication by providing the following:

o TCP/IP communication functions: listen, connect, accept, read/write.
e SSL/TLS communication functions: init, handshake, read/write.

e X.509 functions: CRT, CRL and key handling

¢ Random number generation

* Hashing

» Encryption/decryption

These functions are split up into logical interfaces. They can be used separately to provide any of the above functions or
to mix-and-match into an SSL server/client solution that utilizes a X.509 PKI. Examples of such implementations are
provided with the source code. Components or plugins and APIs provide configuration interfaces accessible through the
various SDK installations.

For more information, see the latest MCU and Peripheral Software Documentation for the target part at
https://docs.silabs.con.

Copyright © 2025 Silicon Laboratories. All rights reserved. 13/280

https://docs.silabs.com/

Security by Default &= SILICON LABS

Security by Default

Security by Default

Product security shall be appropriately enabled by default by the manufacturer.

The state in which a product is shipped is up to the manufacturer. This standard mandates that any security features
provided with the product be enabled before shipping. Customers should not have to turn security on; rather they should
actively have to disable it. For example, Silicon Labs Z-Wave end-nodes and gateway SDKs ship with S2 cryptography and
SmartStart network formation enabled by default.

Silicon Labs believes that product security should be considered during product design, and not as an afterthought. Within
development environments, all Silicon Labs application security features may be enabled or disabled as appropriate during
bpplication development. Security must also be considered during device design and testing. Bringing Up Custom Deviced
for the EFR32MG and EFR32FG Families describes the security tokens (keys, certificates, and so on) that can be
programmed into a custom device to support various types of security, including that provided by the Gecko Bootloader
(see Bigned Software Updated).

Copyright © 2025 Silicon Laboratories. All rights reserved. 14/280

https://docs.silabs.com/zigbee/latest/custom-nodes-efr32/

Signed Software Updates &= SILICON LABS

Signhed Software Updates

Signed Software Updates

The product shall only support signed software updates. While it is critical that all products be updatable, it is just as critical
that these update images be secured. A manufacturer must cryptographically sign update images to prevent tampering
during deployment. The product must not use unsigned updates, as they could be fraudulent.

Silicon Labs development tools support building signed upgrade images and securely updating devices in the field, through
the Silicon Labs Gecko Bootloader. The Gecko Bootloader can be configured to perform a variety of functions, from device
initialization to firmware upgrades. Key features of the bootloader are:

o Useable across Silicon Labs Gecko microcontroller and wireless microcontroller families

o In-field upgradeable

o Configurable

» Enhanced security features, including:

e Secure Boot: When Secure Boot is enabled, the bootloader enforces cryptographic signature verification of the application
image on every boot, using asymmetric cryptography. This ensures that the application was created and signed by a trusted
party.

» Signed upgrade image file: The Gecko Bootloader supports enforcing cryptographic signature verification of the upgrade
image file. This allows the bootloader and application to verify that the application or bootloader upgrade comes from a
trusted source before starting the upgrade process, ensuring that the image file was created and signed by a trusted party.

» Encrypted upgrade image file: The image file can also be encrypted to prevent eavesdroppers from acquiring the plaintext
firmware image.

On Series 1 devices, the Gecko Bootloader has a two-stage design, first stage and main stage, where a minimal first stage
bootloader is used to upgrade the main bootloader. The first stage bootloader only contains functionality to read from and
write to fixed addresses in internal flash. To perform a main bootloader upgrade, the running main bootloader verifies the
integrity and authenticity of the bootloader upgrade image file. The running main bootloader then writes the upgrade image
to a fixed location in internal flash and issues a reboot into the first stage bootloader. The first stage bootloader verifies the
integrity of the main bootloader firmware upgrade image, by computing a CRC32 checksum before copying the upgrade
image to the main bootloader location.

On Series 2 devices, the Gecko Bootloader consists only of the main stage bootloader. The main bootloader is upgradable
through the hardware peripheral Secure Engine. The Secure Engine provides functionality to install an image to address 0x0
in internal flash, by copying from a configurable location in internal flash. To perform a main bootloader upgrade, the running
main bootloader verifies the integrity and authenticity of the bootloader upgrade image file. The running main bootloader
then writes the upgrade image to the upgrade location in flash and requests that the Secure Engine install it. The Secure
Engine is also capable of verifying the authenticity of the main bootloader update image against a root of trust. The Secure
Engine itself is upgradable using the same mechanism.

In summary, Series 2 devices support a hardware root of trust and a Secure Boot process that verifies the authenticity and
integrity of Gecko Bootloader, whereas in Series 1 devices, the authenticity and integrity of Gecko Bootloader are assumed
trusted and are not explicitly checked.

The Gecko Bootloader can enforce application image security on two levels:

o Secure Boot refers to the verification of the authenticity of the application image in main flash on every boot of the device.
When Secure Boot is enabled, the cryptographic signature of the application image in flash is verified on every boot, before
the application is allowed to run. Secure Boot is not enabled by default in the example configurations provided by Silicon
Labs, but enabling it is highly recommended to ensure the validity and integrity of firmware images.

» Secure Firmware Upgrade refers to the verification of the authenticity of an upgrade image before performing a bootload,
and optionally enforcing that upgrade images are encrypted. The Secure Firmware Upgrade process uses symmetric

Copyright © 2025 Silicon Laboratories. All rights reserved. 15/280

Signed Software Updates &= SILICON LABS

encryption to encrypt the upgrade image, and asymmetric cryptography to sign the upgrade image in order to ensure its
integrity and authenticity.

For more information on Silicon Labs’ support for software update security, refer to the following:

Bootloaders in general: Bootloader Fundamentalg

The Gecko Bootloader in general: Bilicon Labs Gecko Bootloader User's Guide for Series 3 and Highel, Silicon Labs Geckd
Bootloader User's Guide for GSDK 4.0 and Higher (series 1 and 2 devices), or UG266: Silicon Labs Gecko Bootloader Userf

Guide for GSDK 3.2 and Lower.

Using the Gecko Bootloader with specific protocols:

o Using the Gecko Bootloader with EmberZzNef
e Using the Gecko Bootloader with Silicon Labs Connect]
» Using the Gecko Bootloader with Silicon Labs Bluetooth Applicationd

Secure Boot on Series 2 devices: Beries 2 Secure Boot with RTSU

Copyright © 2025 Silicon Laboratories. All rights reserved. 16/280

https://docs.silabs.com/mcu-bootloader/latest/bootloader-fundamentals/
https://docs.silabs.com/mcu-bootloader/latest/bootloader-user-guide-series3-and-higher
https://docs.silabs.com/mcu-bootloader/latest/bootloader-user-guide-gsdk-4/
https://docs.silabs.com/zigbee/latest/using-gecko-bootloader-with-zigbee/
https://docs.silabs.com/connect-stack/latest/using-gecko-bootloader-with-connect/
https://docs.silabs.com/bluetooth/latest/using-gecko-bootloader-with-bluetooth-apps/
https://docs.silabs.com/mcu-bootloader/latest/series2-secure-boot-with-rtsl/

Automatically Applied Updates &= SILICON LABS

Automatically Applied Updates

Automatically Applied Updates

The manufacturer will act quickly to apply timely security updates. Whenever a security vulnerability is detected, the
manufacturer will automatically apply a patch to the product. No user intervention will be required.

It is the manufacturer’s responsibility to develop and implement automatic security updates. The design and methodology of
such systems, for example through a Cloud-connected infrastructure or by direct intervention by a service representative,
is up to you.

Silicon Labs will notify you of any security-related updates, as described in Mulnerability Reporting Program]. Your
responsibility is to evaluate the level of risk that vulnerability poses for your particular product and to integrate the update
into your platform as appropriate so that your end users are protected. Updated components might include the protocol
libraries, Secure Engine firmware inside the Series 2 family, or an SDK module such as the Gecko Bootloader that enforces
secure OTA updates and secure boot functionality.

Silicon Labs recommends the following:

» Subscribe to security updates through our Salesforce portal. To review or change your subscriptions, log in to the portal,
click HOME to go to the portal home page and then click the Manage Notifications tile. Make sure that Software/Security
Advisory Notices & Product Change Notices (PCNs) is checked, and that you are subscribed at minimum for your platform
and protocol. Click Save to save any changes.

‘-‘a-; a e
SILICON LABS — o

o Update Prefarence

WHAT EMALLE WOULD ¥OU LIKE Y8 RECEIVEY

PO

SELECT THE PADDUCES T0 RECEVE URDATES FOR

[[] SelectUnsslest 42

[Audoandftadia [Pomercwar Etharnat
[tnzartae [} Sansas:

(] clstion 121 Tolard Vi

[T Modems and i [ke

] Microcantraiges: [wieakss

] Timeng

[ks | i

L1 Talee sl Thea

T W

o Do not turn off Simplicity Studio’s update notification. Within Simplicity Studio, you can download updates and easily access
product release notes.

Copyright © 2025 Silicon Laboratories. All rights reserved. 17/280

Vulnerability Reporting Program &= SILICON LABS

Vulnerability Reporting Program

Vulnerability Reporting Program

The manufacturer shall implement a vuinerability reporting program, which will be addressed in a timely manner. All
companies that offer Internet-connected devices and services shall provide a public point of contact as part of a
vulnerability disclosure policy in order that security researchers and others are able to report issues. Disclosed
vulnerabilities should be acted on in a timely manner.

Manufacturers are responsible for implementing their own program. For any individual vulnerability, you will need to weigh
the value of transparency with your customers against the risk of malicious use of the information to exploit a vulnerability
before it can be addressed. Silicon Labs makes similar decisions about how broadly to report security vulnerabilities
discovered in our products.

Silicon Labs customers and security researchers can report security vulnerabilities in Silicon Labs hardware and software
products on the Silicon Labs website: https://www.silabs.com/security/product-securityl.

Silicon Labs’ Security Vulnerability Disclosure Policy may be found here:

https://www.silabs.com/documents/public/miscellaneous/PS1012-Security_Vulnerability_Disclosure_Policy.pdf

Silicon Labs has a Product Security Incident Response Team (PSIRT) that is dedicated to the case management of reported
security vulnerabilities. The PSIRT works with other Silicon Labs groups including Applications, Developers, Sales, and
Marketing to assess reported vulnerabilities, perform technical analysis and determine an appropriate response. The key
processes for addressing vulnerabilities include:

o Triage: Determines what is needed to reproduce the vulnerability.

« Technical Analysis and Disposition: Confirms the validity of the security vulnerability, its scope, and its impact, and provides a
resolution or disposition decision. Silicon Labs scores incidents according to CVSS 3.1 (Common Vulnerability Scoring
System): low, medium, high, critical.

o Output: Communicates with our customers. The level and method of disclosure beyond the reporting entity depends on the
severity and scope of the vulnerability.

Silicon Labs’ provides broad vulnerability reporting to customers subscribed through our Salesforce portal (see
Rutomatically Applied Updated for information on how to subscribe). A subscribed customer will see Security Advisory
notifications something like the following:

Copyright © 2025 Silicon Laboratories. All rights reserved. 18/280

https://www.silabs.com/security/product-security
https://www.silabs.com/documents/public/miscellaneous/PS1012-Security_Vulnerability_Disclosure_Policy.pdf

Vulnerability Reporting Program

Natification Assignments =
New Notifications » | #

2\, Search this fist.

&= SILICON LABS

CREATED DATE T

1 &/18/2019 5:01 PM

v SUBJECT ~ TYPE

New Security Advisory Security Advisary

2 61072019 5:10 PM

New Security Advisory Security Advisory

Copyright © 2025 Silicon Laboratories. All rights reserved.

v@ Notification

A-00000013

Subject
Test 7/14/2019

Type
Security Advisory

Email Summary

Emall Summary

Product Category
Audlo and RadiosInterface

Body@
Motification Body

0] Fites)

Notification File
Jul 15,2019 = 37KB = pdf

19/280

Security Expiration Date &= SILICON LABS

Security Expiration Date

Security Expiration Date

The manufacturer shall be transparent about the period of time that security updates will be provided. Like a manufacturer’s
product warranty, there shall be transparency around the support period of security updates.

Manufacturers should provide details about product support at various stages and publish security expiration dates. Z-
Wave’s Protocol Lifecycle provides an example.

#r Not recommended for new products MONITORED release

Release to provide eart .
access to n?aw featurﬁy Status of the previous will bf"‘ OBSOLETE after
version, once a new version a period up to 24

and enabling earl
develcpmen?: & tgsting. of the same branch is months.
| e ‘ r No longer supported

& Not for volume production.

MAINTAINED MONITORED OBSOLETE

Status when branch/
release is three or more

* Recommended for volume

duction
prochd generations older than
Matured release for newest ACTIVE branch/
volume production release
Bug-fix releases or additional minor functionality. ' OEM is recommended in upgrading

product(s) to newer branch release

The Lifecycle details in what phases updates will be applied, and to what product branch. For details on the various phases
and how the lifecycle is implemented for specific Z-Wave products, see:

https://www.silabs.com/products/development-tools/software/z-wave/embedded-sdk/life-cyclg]

Copyright © 2025 Silicon Laboratories. All rights reserved. 20/280

https://www.silabs.com/products/development-tools/software/z-wave/embedded-sdk/life-cycle

Next Steps &= SILICON LABS

Next Steps

Next Steps

The Silicon Labs Security web page (https://www.silabs.com/security) contains links to a variety of general security-related
resources. You may wish to bookmark the page, as it will be continually updated with new content, new tools, and new
flows.

If you are already in development, we strongly recommend that you implement the standards described here as you
develop, test, and release your product to customers.

If you are in the early stages of your product design and have not already selected a device or development environment,
we recommend that you include security considerations in your decision. Silicon Labs provides information about the
security features of our devices and development environments. Section EFR32 Series 2 Device Security Featured
highlights the features and their documentation references. In addition, protocol-specific security information is available in
the following documents.

.
o AN1302: Bluetooth® Low Energy Application Security Design Considerations in SDK v3.x and Higher

o AN1329: Using Silicon Labs Secure Vault Features with OpenThread

e Bluetooth LE Fundamentald and relevant Knowledge Base Articles (KBASs)
o UG235.03: Architecture of the Silicon Labs Connect Stack v2.x

o UG435.03: Architecture of the Silicon Labs Connect Stack v3.x

Copyright © 2025 Silicon Laboratories. All rights reserved. 21/280

https://www.silabs.com/security
https://docs.silabs.com/zigbee/latest/zigbee-security/
https://docs.silabs.com/bluetooth/latest/bluetooth-le-fundamentals/

Series 2 Device Security Features &= SILICON LABS

Series 2 Device Security Features

Series 2 Device Security Features

Protecting loT devices against security threats is central to a quality product. Silicon Labs offers several security options to
help developers build secure devices, secure application software, and secure paths of communication to manage those
devices. Silicon Labs’ security offerings were significantly enhanced by the introduction of the Series 2 products that
included a Secure Engine. The Secure Engine is a tamper-resistant component used to securely store sensitive data and
keys, and to execute cryptographic functions and secure services.

On Series 1 devices, the security features are implemented by the TRNG (if available) and CRYPTO peripherals.

On Series 2 devices, the security features are implemented by the Secure Engine and CRYPTOACC (if available). The
Secure Engine may be hardware-based, or virtual (software-based). Throughout this document, the following abbreviations
are used:

e HSE: Hardware Secure Engine
e VSE: Virtual Secure Engine
o SE: Secure Engine (either HSE or VSE)

Additional security features are provided by Secure Vault. Three levels of Secure Vault feature support are available,
depending on the part and SE implementation, as reflected in the following table:

Security Level (1) SE Support MCU Wireless SoC (2)
Secure Vault Base N/A EFM32JG1, EFM32PGT, EFR32xG1, EFR32xG12,
(SVB) EFM32JG12, EFM32PG12, EFR32xG13, EFR32xG14
EFM32GG11, EFM32GG12,
EFM32TGM
Secure Vault Mid VSE (VSE-SVM) EFM32PG22C EFR32xG22C, EFR32xG27C (3)
(SVM)
Secure Vault Mid HSE (HSE-SVM) - EFR32xG21A, EFR32xG21A (Rev
(SVM) C), EFR32MR21A (Rev C),

EFR32xG23A, EFR32xG24A,
EFR32xG25A, EFR32xG28A

Secure Vault High HSE only (HSE-SVH) EFM32PG23B, EFM32PG28B EFR32xG21B, EFR32xG12B (Rev
(SVH) C) EFR32xG23B, EFR32xG24B,
EFR32xG25B, EFR32xG28B

Notes:

1. The features of different Secure Vault levels can be found in https://www.silabs.com/security|
2. The xis a letter B, F, M, or Z.
3. Unlike other VSE-SVM parts, the EFR32xG27C device has a built-in PUF.

Secure Vault Mid consists of two core security functions:

o Secure Boot: Process where the initial boot phase is executed from an immutable memory (such as ROM) and where code is
authenticated before being authorized for execution.

» Secure Debug access control: The ability to lock access to the debug ports for operational security, and to securely unlock
them when access is required by an authorized entity.

Secure Vault High offers additional security options:

« Secure Key Storage: Protects cryptographic keys by “wrapping” or encrypting the keys using a root key known only to the
HSE-SVH.
+ Anti-Tamper protection: A configurable module to protect the device against tamper attacks.

Copyright © 2025 Silicon Laboratories. All rights reserved. 22/280

https://www.silabs.com/security

Series 2 Device Security Features

&= SILICON LABS

Device authentication: Functionality that uses a secure device identity certificate along with digital signatures to verify the
source or target of device communications.

A Secure Engine Manager and other tools allow users to configure and control their devices both in-house during testing
and manufacturing, and after the device is in the field.

Silicon Labs strongly recommends installing the latest SE FW image on Series 2 devices and updating to the latest GSDK to
mitigate security vulnerabilities. The latest SE FW image can be found in this Windows folder for GSDK v4.x:

C\Users\<PC USER NAME >\Simplicity Studio\SDKs\gecko_sdk\util\se_release\public

Refer to ANT222: Production Programming of Series 2 Devices for guidance on the SE firmware upgrade procedure. The
latest SE firmware shipped with Series 2 devices and modules (if available) at the time of this writing are listed in the

following table:

zcustom-table{30%,}

Series 2 MCU and Wireless SoC VSE - SVM

EFM32PG22C
EFR32xG22C
EFR32xG22C (Rev D)
EFR32xG27C

zcustom-table{30%,}

Series 2 Wireless SoC HSE - SVM

EFR32xG21A
EFR32MR21A (Rev C)
EFR32xG21A (Rev C)
EFR32xG23A
EFR32xG24A
EFR32xG25A
EFR32xG28A

z:custom-table{30%,}

Series 2 MCU and Wireless SoC HSE - SVH

EFR32xG21B
EFR32xG21B (Rev C)
EFM32PG23B
EFR32xG23B
EFR32xG24B
EFR32xG25B
EFM32PG28B
EFR32xG28B

1212
1212
1214
2.21

Shipped SE Firmware Version

1213
1.2.16
1216
217
217
221
222

1213
1216
217
217
217
221
222
222

Shipped SE Firmware Version

Shipped SE Firmware Version

In support of these products Silicon Labs offers whitepapers, webinars, and documentation. The following table summarizes

the key security documents:

z:custom-table{30%,50%,20 %}

Copyright © 2025 Silicon Laboratories. All rights reserved.

23/280

Series 2 Device Security Features

Document

Document

Beries 2 Secure Debud

Beries 2 Secure Boot with RTSU

IAnti-Tamper Protection Configuration and Use]

A uthenticating Silicon Labs Devices using
Device Certificates

Becure Key Storagd

AN1222: Production Programming of Series 2
Devices

AN1303: Programming Series 2 Devices Using
the Debug Challenge Interface (DCI) and
Serial Wire Debug (SWD)

AN1311: Integrating Crypto Functionality Using
PSA Crypto Compared to Mbed TLS

Beries 2 TrustZong

&= SILICON LABS

Summary

Summary

How to lock and unlock Series 2 debug access, including
background information about the Secure Engine

Describes the secure boot process on Series 2 devices
using Secure Engine.

How to program, provision, and configure the anti-tamper
module

How to authenticate a device using secure device
certificates and signatures, at any time during the life of
the product

How to securely “wrap” keys so they can be stored in
non-volatile storage

How to program, provision, and configure security
information using Secure Engine during device production

How to provision and configure Series 2 devices through
the DCI and how to program their internal flash memory
through the SWD

How to integrate crypto functionality into applications
using Silicon Labs implementation of PSA Crypto
compared to Mbed TLS

Describes the basics of TrustZone, secure and privileged
programming model, and shows how to upgrade existing
application to TrustZone.

Copyright © 2025 Silicon Laboratories. All rights reserved.

Applicability
Applicability
Series 2
Series 2
Series 2
with SVH
Series 2
with SVH
Series 2
with SVH

Series 2

Series 2

Series 1 and
Series 2

Series 2

24/280

https://docs.silabs.com/iot-security/latest/series2-secure-debug/
https://docs.silabs.com/mcu-bootloader/latest/series2-secure-boot-with-rtsl/
https://docs.silabs.com/iot-security/latest/efr32-secure-vault-tamper/
https://docs.silabs.com/iot-security/latest/authenticating-devices-using-device-certificates/
https://docs.silabs.com/iot-security/latest/efr32-secure-key-storage/
https://docs.silabs.com/mcu-bootloader/latest/series2-trustzone/

Overview &= SILICON LABS

Overview

Silicon Labs loT Security Developer's Guide

The loT Security Developer's Guide offers detailed information on how to implement each of the device security features.
This content is applicable to any protocol that supports the feature described. Additional protocol-specific information for
Bluetooth, Bluetooth Mesh, OpenThread, and Zigbee is available in the protocol-specific sectior].

o [Beries 2 Secure Debug Describes how to lock and unlock the debug access of EFR32 Gecko Series 2 devices. Many
aspects of the debug access, including the secure debug unlock are described. The Debug Challenge Interface (DCI) and
Secure Engine (SE) Mailbox Interface for locking and unlocking debug access are also included.

 Beries 2 TrustZone} Covers the basics of ARMv8-M TrustZone, describes how TrustZone is implemented on Series 2
devices, and provides application examples.

o Production Programming of Series 2 Devices (PDF): Provides details on programming, provisioning, and configuring Series 2
devices in production environments. Covers Secure Engine Subsystem of Series 2 devices, which runs easily upgradeable
Secure Engine (SE) or Virtual Secure Engine (VSE) firmware.

o Anti-Tamper Protection Configuration and Use]: Shows how to program, provision, and configure the anti-tamper module on
EFR32 Series 2 devices with Secure Vault.

« Authenticating Silicon Labs Devices using Device Certificateg Describes how to authenticate an EFR32 Series 2 device
with Secure Vault, using secure device certificates and signatures.

« Becure Key Storage}: Explains how to securely "wrap" keys in EFR32 Series 2 devices with Secure Vault, so they can be
stored in non-volatile storage.

o Programming Series 2 Devices Using the Debug Challenge Interface (DCI) and Serial Wire Debug (SWD) (PDF): Describes
how to provision and configure Series 2 devices through the DCI and SWD.

« Integrating Crypto Functionality Using PSA Crypto Compared to Mbed TLS (PDF): Describes how to integrate crypto
functionality into applications using PSA Crypto compared to Mbed TLS.

Copyright © 2025 Silicon Laboratories. All rights reserved. 25/280

https://docs.silabs.com/iot-security/1.1.1/iot-security-protocol-specific
https://docs.silabs.com/iot-security/1.1.1/series2-secure-debug
https://docs.silabs.com/iot-security/1.1.1/series2-trustzone
https://www.silabs.com/documents/public/application-notes/an1222-efr32xg2x-production-programming.pdf
https://docs.silabs.com/iot-security/1.1.1/efr32-secure-vault-tamper
https://docs.silabs.com/iot-security/1.1.1/authenticating-devices-using-device-certificates
https://docs.silabs.com/iot-security/1.1.1/efr32-secure-key-storage
https://www.silabs.com/documents/public/application-notes/an1303-efr32-dci-swd-programming.pdf
https://www.silabs.com/documents/public/application-notes/an1311-mbedtls-psa-crypto-porting-guide.pdf

Series 2 Secure Debug &= SILICON LABS

Series 2 Secure Debug

Series 2 Secure Debug

NOTE: This section replaces AN7190: Series 2 Secure Debug. Further updates to this application note will be provided
here.

This application note describes how to lock and unlock the debug access of Series 2 devices. Many aspects of the debug
access, including the secure debug unlock, are discussed. The Debug Challenge Interface (DCI) and Mailbox Interface for
locking and unlocking debug access are also included.

The debug locks and unlocks for the Cortex-M33 debug interface are implemented through the Secure Engine on Series 2
devices.

Key Points

» Basic overview of the Secure Engine.

o Debug port access by Debug Challenge Interface (DCI) or Mailbox Interface.
» New locking and unlocking features for Series 2 devices.

Examples for provisioning and Secure Debug Unlock.

Copyright © 2025 Silicon Laboratories. All rights reserved. 26/280

Series 2 Device Security Features &= SILICON LABS

Series 2 Device Security Features

Series 2 Device Security Features

Protecting loT devices against security threats is central to a quality product. Silicon Labs offers several security options to
help developers build secure devices, secure application software, and secure paths of communication to manage those
devices. Silicon Labs’ security offerings were significantly enhanced by the introduction of the Series 2 products that
included a Secure Engine. The Secure Engine is a tamper-resistant component used to securely store sensitive data and
keys and to execute cryptographic functions and secure services.

On Series 1 devices, the security features are implemented by the TRNG (if available) and CRYPTO peripherals.

On Series 2 devices, the security features are implemented by the Secure Engine and CRYPTOACC (if available). The
Secure Engine may be hardware-based, or virtual (software-based). Throughout this document, the following abbreviations
are used:

e HSE - Hardware Secure Engine
e VSE - Virtual Secure Engine
e SE - Secure Engine (either HSE or VSE)

Additional security features are provided by Secure Vault. Three levels of Secure Vault feature support are available,
depending on the part and SE implementation, as reflected in the following table:

Level (1) SE Support Part (2)
Secure Vault High (SVH) HSE only (HSE-SVH) Refer to JoT Endpoint Security Fundamentald
for details on supporting devices.
Secure Vault Mid (SVM) HSE (HSE-SVM) !
! VSE (VSE-SVM) !
Secure Vault Base (SVB) N/A "
Notes:

1. The features of different Secure Vault levels can be found in https://www.silabs.com/security|
2.loT Endpoint Security Fundamentald.

Secure Vault Mid consists of two core security functions:

e Secure Boot: Process where the initial boot phase is executed from an immutable memory (such as ROM) and where code is
authenticated before being authorized for execution.

o Secure Debug access control: The ability to lock access to the debug ports for operational security, and to securely unlock
them when access is required by an authorized entity.

Secure Vault High offers additional security options:

o Secure Key Storage: Protects cryptographic keys by "wrapping" or encrypting the keys using a root key known only to the
HSE-SVH.

» Anti-Tamper protection: A configurable module to protect the device against tamper attacks.

» Device authentication: Functionality that uses a secure device identity certificate along with digital signatures to verify the
source or target of device communications.

A Secure Engine Manager and other tools allow users to configure and control their devices both in-house during testing
and manufacturing, and after the device is in the field.

User Assistance

Copyright © 2025 Silicon Laboratories. All rights reserved. 27/280

https://docs.silabs.com/iot-security/latest/iot-endpoint-security-fundamentals/
https://www.silabs.com/security
https://docs.silabs.com/iot-security/latest/iot-endpoint-security-fundamentals/

Series 2 Device Security Features

&= SILICON LABS

In support of these products, Silicon Labs offers whitepapers, webinars, and documentation. The following table
summarizes the key security documents:

Document

Series 2 Secure Debug (this
application note)

Beries 2 Secure Boot with RTSU

Anti-Tamper Protection
Configuration and Use

Authenticating Silicon Labs
Devices using Device Certificated

Becure Key Storagg

AN1222: Production Programming
of Series 2 Devices

Key Reference

Summary

How to lock and unlock Series 2 debug access,
including background information about the SE

Describes the secure boot process on Series 2
devices using SE

How to program, provision, and configure the anti-
tamper module

How to authenticate a device using secure device
certificates and signatures, at any time during the life
of the product

How to securely ‘wrap' keys so they can be stored in
non-volatile storage.

How to program, provision, and configure security
information using SE during device production

Applicability
Secure Vault Mid and High

Secure Vault Mid and High

Secure Vault High

Secure Vault High

Secure Vault High

Secure Vault Mid and High

Public/Private keypairs along with other keys are used throughout Silicon Labs security implementations. Because
terminology can sometimes be confusing, the following table lists the key names, their applicability, and the documentation

where they are used.

Key Name

Public Sign key (Sign Key Public)

Public Command key (Command
Key Public)

OTA Decryption key (GBL
Decryption key) aka AES-128 Key

Attestation key aka Private Device
Key

SE Firmware

Customer Programmed Purpose

Decrypting GBL payloads used for firmware upgrades

Yes Secure Boot binary authentication and/or OTA
upgrade payload authentication

Yes Secure Debug Unlock or Disable Tamper command
authentication

Yes

No Device authentication for secure identity

Silicon Labs strongly recommends installing the latest SE firmware on Series 2 devices to support the required security
features. Refer to AN1222| for the procedure to upgrade the SE firmware and |oT Endpoint Security Fundamentalg for the
latest SE Firmware shipped with Series 2 devices and modules.

Copyright © 2025 Silicon Laboratories. All rights reserved.

28/280

https://docs.silabs.com/mcu-bootloader/latest/series2-secure-boot-with-rtsl/
https://docs.silabs.com/iot-security/latest/efr32-secure-vault-tamper/
https://docs.silabs.com/iot-security/latest/authenticating-devices-using-device-certificates/
https://docs.silabs.com/iot-security/latest/efr32-secure-key-storage/
https://www.silabs.com/documents/public/application-notes/an1222-efr32xg2x-production-programming.pdf
https://docs.silabs.com/iot-security/latest/iot-endpoint-security-fundamentals/

Introduction To Secure Debug &= SILICON LABS

Introduction To Secure Debug

Introduction to Secure Debug

Debug Lock

All devices require the capability to lock out debug access to the device. This prevents attackers from using the debug
interface to perform the following illegal operations:

* Reprogramming the device
* Interrogating the device
o Interfering with the operation of the device

A fairly standard practice during the board-level test in production is to program, test, and lock the parts.

Three different locks can be enabled on the Series 2 debug interface:

» Btandard-debug-locH
o Permanent-debug-locq
o Becure-debug-locH

Silicon Labs provides [Custom Part Manufacturing Service (CPMS)| to securely configure the debug port of the chip to one
of the three possible locks before the devices leave the factory.

Debug Unlock

Users need to unlock parts under a number of circumstances:

e Code development

o Field failure diagnosis

» Product field service

» Existing inventory reprogramming

Two different unlocks can run on the Series 2 debug interface:

» Btandard-debug-unlocH
o Becure-debug-unlocl

Copyright © 2025 Silicon Laboratories. All rights reserved. 29/280

https://www.silabs.com/developers/custom-part-manufacturing-service

Secure Engine Subsystem &= SILICON LABS

Secure Engine Subsystem

Secure Engine Subsystem

Overview

The HSE refers to a separate security co-processor that provides hardware isolation between security functions and the
host processor.

The VSE refers to a collection of security functions available to the host processor in Root mode if a separate security co-
processor is not provided.

The SE is used to perform a series of cryptographic operations and other secure system operations as described in the
following table.

Operation VSE-SVM HSE-SVM HSE-SVH Description

Unique ID Y Y Y Software can identify every device.
Secure Boot with Y Y Y Only boot authenticated firmware.
RTSL

Secure Debug Y Y Y Allow enhanced failure analysis.

Crypto Engine (1) = Y Y Up to 256-bit ciphers and elliptic curves.
TRNG (1) - Y Y Generate keys for cryptography.

DPA Countermeasures - Y Y Resist side channel attacks.

Secure Key Storage - - Y Protected by PUF technology.

Secure Key = = Y Isolate encrypted keys from application
Management code.

Secure Attestation - - Y Ensure integrity and authenticity.
Anti-Tamper = = Y Detect tamper and protect keys/data.
Advanced Crypto - - Y Up to 512-bit ciphers and 521-bit elliptic

curves.

Note:

1.0n VSE-SVM devices, the crypto engine and TRNG (True Random Number Generator) are implemented by the CRYPTOACC
(Cryptographic Accelerator) peripheral.

To start using the Fecure debug unlocH functionality, the device needs to be provisioned. These steps include writing one-
time-programmable (OTP) settings to the SE to determine which functionality is enabled, and uploading the Public Command
Key to validate a secure debug attempt.

This application note describes how the different device debug locks and unlocks are implemented through the SE on
Series 2 devices.

The secure debug feature is implemented by Root code executed by the HSE Core or by the Cortex-M33 operating in VSE
(Root mode).

Silicon Labs strongly recommends installing the latest SE firmware on Series 2 devices to support the required security
features. The latest SE firmware image (.seu and . hex) and release notes can be found in the Windows folder below.

For GSDK v3.2 and lower:

C:\SiliconLabs\SimplicityStudio\v5\developer\sdks\gecko_sdk_suite\< GSDK VERSION>\util\se_release\public

Copyright © 2025 Silicon Laboratories. All rights reserved. 30/280

Secure Engine Subsystem &= SILICON LABS

For GSDK v4.0 and higher:

C:\Users\<PC USER NAME>\Simplicity Studio\SDKs\gecko_sdk\util\se_release\public

Command Interface

Interaction with the SE is performed over a command interface. The command interface is available through a dedicated
Debug Challenge Interface (DCI) as well as through a mailbox interface from the Cortex-M33.

Some commands may not be available at all times and may not be accessible over both interfaces. The DCI typically only
contains operations for setting up a new device and for locking it down (meant for production processes), while the mailbox
interface also contains commands to support cryptographic operations in HSE.

Mailbox

Mailbox operations should not be performed directly, but rather should be executed through the appropriate functions in
em_se.c of emlib . The em_se.c provides an abstraction of the mailbox interface, allowing message construction and DMA
transfer setup.

On top of emlib , the Secure Engine Manager (SE Manager) provides an abstraction of the Secure Engine's command set.
The SE Manager also provides APIs for cryptographic operations and thread synchronization. The SE Manager is available in
GSDK v3.0 or later.

Secure Engine Manager

Mailbox Interface

Secure Engine

Note: Some functions in em_se.c of emlib are deprecated in GSDK v3.0 and will be removed in a future version
of emlib . All high-level functionality has been moved to the SE Manager.

Debug Challenge Interface (DCI)

The Debug Challenge Interface (DCI) is made available through commands in Simplicity Studio and Simplicity Commander.
This is the easiest way to access and set up the different security options.

FFor more information about DCI, see AN1303: Programming Series 2 Devices using the Debug Challenge Interface (DCI
pnd Serial Wire Debug (SWD).

Copyright © 2025 Silicon Laboratories. All rights reserved. 31/280

https://www.silabs.com/documents/public/application-notes/an1303-efr32-dci-swd-programming.pdf

Debug Lock &= SILICON LABS

Debug Lock

Debug Lock

Overview

The debug access port connected to the Series 2 device's Cortex-M33 processor can be closed by issuing commands to
the SE, either from a debugger over DCI or through the mailbox interface. These three debug lock properties govern the
behavior of the debug lock.

Property Description If Set Default Value
Debug Lock The debug port is kept locked on boot. False (Disabled)
Device Erase The Erase Device command is available. True (Enabled)
Secure Debug Secure debug unlock is available. False (Disabled)

The following sections describe how to interact with these properties and how to enable debug locks using the SE

command interface either over DCI or the mailbox interface. The status of the debug lock can be inspected using the Read

| ock Status command.

Standard Debug Unlock

The device is in standard debug unlock state if the debug lock properties are in default values.

Secure Debug Device Erase Debug Lock Description

Disabled Enabled Disabled (Unlock) All debug operations are allowed.

Standard Debug Lock

With the default properties in the table above, the device can be locked using the command. The typical flow
for this configuration is simply to issue the Apply Lock command after the device has been programmed, either using a DCI

command from the programming debuggel or through the ailbox interface].

Secure Debug Device Erase Debug Lock Description

Disabled Enabled Enabled (Standard) The Erase Device command will wipe the main
flash and RAM, and then a reset will yield an
unlocked device.

The standard debug lock behaves similarly to Series 1 devices. The access port can be closed, but issuing a
wipes the device and opens the debug port again.

Permanent Debug Lock

The command can be disabled, which permanently enables the debug lock. This can be done at any time by
issuing the Pisable Device Erasel command, even after the debug lock has been enabled.

Secure Debug Device Erase Debug Lock Description

Disabled Disabled Enabled (Permanent) The part cannot be unlocked. Devices
with Permanent Debug Lock engaged
cannot be returned for failure analysis.

Secure Debug Lock

Copyright © 2025 Silicon Laboratories. All rights reserved.

32/280

Debug Lock &= SILICON LABS

For secure debug lock, the debug interface can be temporarily enabled by answering a challenge if the
property is enabled before locking.

Secure Debug Device Erase Debug Lock Description

Enabled (1) Disabled (2) Enabled (Secure) Secure debug unlock is enabled, which
makes it possible to securely open the
debug lock temporarily to reprogram or
debug a locked device.

Note:

1. Secure debug is enabled in two steps before the debug lock is enabled:
a. Install the Public Command Key using Bimplicity Studid or Eimplicity Commande] or directly through the EE Manager APJ.
b. Enable secure debug using Simplicity Studio or Simplicity Commander or directly through the SE Manager API.

2. Disable the device erase using Simplicity Studio or Simplicity Commander or directly through the SE Manager API. This is an
IRREVERSIBLE action and should be disabled AFTER the secure debug is enabled.

Debug Lock State Transition

The following figure describes the transitions between different debug lock states.

Permanent

Secure
Debug Lock

Standard Standard

Debug Unlock Debug Lock Debug Lock

Secure
Debug Unlock

1. Btandard debug unlocH can transit to any debug lock state.

2. Btandard debug locK can revert to standard debug unlock via an command (erase the main flash and RAM).
After the device is reset, debug port remains unlocked until it is explicitly locked again.

3. Standard debug lock can transit to permanent debug lock by disabling the property but cannot transit to
secure debug lock.

4. Becure debug locH can use Pebug Unlock Toker] to temporary transit to pecure debug unlocH, which does not erase the
main flash and RAM but enables debug operations. The device reverts to the secure debug lock through a power-on or pin
reset.

5. Secure debug lock can transit to permanent debug lock by disabling the property but cannot transit to
standard debug lock.

6. Permanent debug locH is a terminal state and cannot transit to any debug lock or unlock state.

Debug Lock Command Reference

The commands for debug lock are described in the following table.

DCI Command (1) Mailbox (SE Manager) API (2) Description Availability
Apply Lock sl_se_apply_debug_lock Enables the debug lock for the part. While debug is
unlocked.

Copyright © 2025 Silicon Laboratories. All rights reserved. 33/280

Debug Lock

DCI Command (1)

Read Lock Status

Disable Device Erase

Disable Secure Debug

Enable Secure Debug

Set debug options

Init Pub Key

Read Pub Key

Get Challenge

Notes:

Mailbox (SE Manager) API (2)

sl_se_get_debug_lock_status

sl_se_disable_device_erase

sl_se_disable_secure_debug

sl_se_enable_secure_debug

sl_se_set_debug_options

sl_se_init_otp_key

sl_se_read_pubkey

sl_se_roll_challenge

&= SILICON LABS

Description

Returns the current debug lock status
and configuration.

Disables the Erase Device command.
This command does not lock the debug
interface to the part, but it is an
IRREVERSIBLE action for the part.

Disables the secure debug functionality
that can be used to open a locked
debug port.

Enables the secure debug functionality
that can be used to open a locked
debug port.

Configures the TrustZone access
permissions of the debug interface. (3)

Used to provision a single public key
during device initialization. The public key
cannot be changed once written, and
the command will be unavailable for that
key.

Reads the stored public key.

Used to roll the current challenge value
(16 bytes) to revoke secure debug
access. (4)

1. Performing these commands over DCI is implemented in Simplicity Studio and Simplicity Commander.
2. The sl_se_apply_debug_lock , sl_se_get_debug_lock_status , sl_se_init_otp_key , and sl_se_read_pubkey are available on all Series 2

devices. Other APIs are only available on HSE devices. The SE Manager APl document can be found at

https://docs silabs.com/gecko-platform/latest/service/api/group-sl-se-managel.

3. For more information about debug options, see [[rustZone Debug Authenticatior].
4. A new challenge will only be generated if the current one has been successfully used at least once.

Copyright © 2025 Silicon Laboratories. All rights reserved.

Availability

Always.

Always.

While secure
debug is
enabled.
While debug is
unlocked and
Public
Command Key
is uploaded.

While debug is
unlocked.

Available once
for each key.

Always.

While Public
Command Key
is uploaded.

34/280

https://docs.silabs.com/gecko-platform/latest/service/api/group-sl-se-manager

Debug Unlock &= SILICON LABS

Debug Unlock

Debug Unlock

Overview

The debug access port connected to the Series 2 device's Cortex-M33 processor can be opened by issuing commands to
the SE, either from a debugger over DCI or through the mailbox interface.

New on the Series 2 devices is the addition of pecure debug unlocH functionality. When enabled, it is possible to request a
challenge from the device and, by answering the challenge, disable the debug lock until the next power-on or pin reset.

The status of the debug lock can be inspected using the Read Lock Statugd command.

Standard Debug Unlock

With the properties of the ptandard debug locH or pecure debug lock with Device Erase enabled, the device can be
returned to the ptandard debug unlocH state using the command. This command will wipe the main flash and
RAM and verify they are empty before opening the debug lock. It will not wipe user data and provisioned SE settings.

Secure Engine Debugger Cortex-M33

Check all is erased

Erase lockbit

pen debug access
to Cortex-M33

Erase Device done

Start debugging

Secure Debug Unlock

In a secure debug unlock scenario, the customer, who has control over the Private Command Key for a SE, has programmed
a Public Command Key into the device. The Public Command Key is used to verify the signature on a certificate, telling the
SE what authorization has been given by the owner of the key (customer) to the one issuing the command (customer or
delegate). Authorization can be granted, for example, to unlock only the debug port on the Cortex-M33, or to restore only
specific tamper signals on HSE-SVH devices.

Copyright © 2025 Silicon Laboratories. All rights reserved. 35/280

Debug Unlock &= SILICON LABS

This mode is particularly useful in failure analysis scenarios because it allows devices to be unlocked without losing flash
and RAM contents.

Debug Unlock Token

The elements of the Debug Unlock Token are described in the following figures and table.

Debug access | Command

mmmand]d%\lt&c[™ word
‘Command

™ parameter

|
|
Command
I- payload
command signature :
64 byte
Element Value Description
Debug access command 0xfd010001 The command word of the Debug Unlock Token.
Debug mode request Device-dependent The command parameter of the debug access
command.
Access certificate (1) Device-dependent See section Access Certificate.
Debug access command signature Device-dependent See section Challenge Response.

M

Note:

1. The debug access command payload consists of an pccess certificatd and a pebug access command signature].

Debug Mode Request

g 53 QR |5|&|Q|IZ(R|H|F|RI2|e|=(e|2(Z2|2|¥|z|€|la|o|l~|o|lw|e|n|a]|-|o
=

2

w 2
nu'at:uuvuuutuunvuunﬁnu‘auuuﬁséxégu
clelzlelele|e|glelelele|e|ele|elele|clelelelele|e|c|a|ll8|S|ele
£3$$$$333333333333333REQ%SSZQE:E%S
AR AR A A A A A AL AL AR A A A A AL A LA A AL A AL A A A LA A R = A

Notes:

o Enable debug port - Debug port enabled if set.

. (Non-secure, Invasive debug lock) - The Invasive debug features for the Non-secure state are unlocked if set.

. (Non-secure, Non-invasive debug lock) - The Non-invasive debug features for the Non-secure state are unlocked
if set.

. (Secure, Invasive debug lock) - The Invasive debug features for the Secure state are unlocked if set.

. (Secure, Non-Invasive debug lock) - The Non-invasive debug features for the Secure state are unlocked if set.

o All reserved bits should be 0, and bit 1 must be 1 to access the debug port.

o For the TrustZone-unaware debugging, bits 2 to 5 are irrelevant, so bits 1to 5 are usually set (0x0000003e) to match with
the in the access certificate.

o Forthe TrustZone-aware debugging, bits 2 to 5 are relevant. Refer to [Trust Zone Debug Authentication| for details about
these debug options.

Copyright © 2025 Silicon Laboratories. All rights reserved. 36/280

Debug Unlock

Access Certificate

&= SILICON LABS

The elements of the access certificate are described in the following figures and table.

Element

Magic word

Authorizations

Tamper Authorizations

Serial number

Public Certificate Key (3)

Access certificate signature

Notes:

1. This value allows all to be reset for secure debug.

Magic word
(4 bytes’
Auillonz;i':}ms
(4 bytes)
Tamper
authorizations
(4 bytes)
Serial number
E16 ﬁg
te

64

Value

Oxe5ecce01

0x0000003e (1)

0x00000000 or Oxffffffb6
(2)

Device-dependent

Device-dependent

Device-dependent

Description

A constant value used to identify the access
certificate.

A value used to authorize which bit in the debug
mode request can be enabled for secure debug.

A value used to authorize which bit in the tamper
disable mask can be set to disable the tamper
response.

A number used to compare against the on-chip serial
number for secure debug or tamper disable.

The public key corresponding to the Private
Certificate Key (3) used to generate the signature
(ECDSA-P256-SHA256) in a challenge response.

All the content above is signed (ECDSA-P256-
SHA256) by the Private Command Key
corresponding to the Public Command Key in the SE
OTP.

2. Value that sets available bits in the tamper disable mask for tamper disable (HSE-SVH device only).
3. The Private/Public Certificate Key is a randomly generated key pair. It can be ephemeral or retainable.

The Private Certificate Key can be used repeatedly to generate the signature in a ghallenge responseg on one device until
the Private/Public Certificate Key pair is discarded. This can reduce the frequency of access to the Private Command Key,
allowing more restrictive access control on that key.

For more information about tamper disable, see Anti-Tamper Protection Configuration and Usel.

Copyright © 2025 Silicon Laboratories. All rights reserved.

37/280

https://docs.silabs.com/iot-security/latest/efr32-secure-vault-tamper/

Debug Unlock &= SILICON LABS
a8 |RI8|8 3 RH| 2|2 |e|(e|2|2|¥ |8 la|le | m|lo|lv|lslo|la|-|o
ﬁ
g
B B
mmﬁ-ﬁg
=|E|E|2|8
@@ =
SRR
§§§5§
vD'cvv'u‘cvu‘ouvunuvnvuvnnuu‘oﬁggrégv
SIEIEIZIE|22|E|2|2(2|2|2|2|2|8|2|2|28|2(2|2|8|2|2|2|2|2|3|8|S|e|t
AEAE AR AN
Zglgle|c|d|E|e|g|g|e|d|d|d|e|g|e|e|e|c|&|2|e|S|S|S|E|H|b|Z|o|d|e
Notes:

« Set the bit to enable the corresponding bit in the debug mode request.
e The Debug Unlock Token will reset the corresponding if the same bit is set in Debug mode request and

Authorizations.

Challenge Response

The elements of the challenge response are described in the following figure and table.

Element
Debug access command

Debug mode request

Challenge

Debug access command signature

Notes:

Debug access

command (4 %}
g mo
request [4 bytes)
allenge

(16 bytes)

Debug access
command signature

(64 bytes)

Value

0xfd010001

Device-dependent

Device-dependent (1)

Device-dependent (2)

Signed by
Private
Certificate Key

Description
The command word of the Debug Unlock Token.

The command parameter of the debug access
command.

A random value generated by the SE.

All the content above is signed (ECDSA-P256-
SHA256) by the Private Certificate Key
corresponding to the Public Certificate Key in the
access certificate.

1. The challenge remains unchanged until it is updated to a new random value by folling the challenge] The Private Certificate
Key can be reused for signing when the device challenge is refreshed.
2. This signature is the final argument of the Debug Unlock Toker].

Debug Access Flow

Copyright © 2025 Silicon Laboratories. All rights reserved. 38/280

Debug Unlock

The debug access flow is described in the following figure.

Secure Engine

Get Challenge
Challenge

Authorize debug mode
request to unlock device

Roll Challenge

o

N o o w N -

SE OTP.

oo

Debugger Owner of Private Command Key and Private Certificate Key

Read Senal Mumber
@

Q9

Request access
cerfificate and
challenge response

@

Payload

Siarl debugging

End of secure debug
unlock process

. Get the serial number and challenge from the SE.
. Generate the pccess certificate] with the device serial number.
. Generate the thallenge response] with device challenge.
. Generate the debug access command payload with access certificate and debug access command signature.
. Send the Debug Unlock Toker] to the SE.
. Verify the debug access command signature using the Public Certificate Key in the access certificate.

. Verify the serial number and the access certificate signature using the on-chip serial number and Public Command Key in the

i

Access Cerificale

I
I
I
I
\

Debug Access Command Payload

. Authorize the debug mode request to reset the until the next power-on or pin reset.

9. Roll the challenge to invalidate the current Debug Unlock Token.

TrustZone Debug Authentication

The debug and trace support in the Cortex-M33 devices are based on the architecture, which can be classified
into Invasive and Non-invasive debugging features as described in the following table.

Classification

Invasive

Non-invasive

The separation of Invasive and Non-invasive debug and trace operations in CoreSight architecture can apply to TrustZone
debug authentication, which defines the permission levels of the debug and trace features on Secure and Non-secure

worlds.

The table below describes four debug options in SE to support TrustZone debug authentication. It is possible to restrict the
TrustZone access permissions of the debug interface by setting one or more of the following options.

Debug and Trace Features

Core debug (e.g., single stepping), Breakpoints,
Data watchpoints, Halt mode debugging

Embedded Trace Macrocell (ETM), Micro Trace
Buffer (MTB), Data trace, Instrumentation

Trace Macrocell (ITM), Profiling

Description

Copyright © 2025 Silicon Laboratories. All rights reserved.

These features halt the Cortex-M33 core and
change the program execution flow.

These features have a minor or no impact on
the program execution flow.

&= SILICON LABS

39/280

https://developer.arm.com/documentation/ihi0029/f?lang=en

Debug Unlock

Debug Option
DBGLOCK

NIDLOCK

SPIDLOCK

SPNIDLOCK

Notes:

Description

&= SILICON LAB

Non-secure, Invasive debug lock. If this bit is set, the Invasive debug features for the

Non-secure state are locked.

Non-secure, Non-invasive debug lock. If this bit is set, the Non-invasive debug features

for the Non-secure state are locked.

Secure, Invasive debug lock. If this bit is set, the Invasive debug features for the Secure

state are locked.

Secure, Non-invasive debug lock. If this bit is set, the Non-invasive debug features for

the Secure state are locked.

o Use Bimplicity Commandel or the BE Manager AP| to set the debug options.

* The state of the debug options is stored permanently in SE and can only be reset to the default value (0000) through the

command (if enabled).
e A secure debug lock device (was disabled) can only use the Debug Unlock Toker] to femporarily unlocH (reset)

the debug options to debug the Secure and Non-secure applications.

The following conditions are recommended (1, 2, and 3) or mandatory (4) when setting up the debug options for secure

debug unlock.

1. If SPIDLOCK is unlocked, then DBGLOCK should also be unlocked.

2. 1f SPNIDLOCK is unlocked, then NIDLOCK should also be unlocked.
3. I1f DBGLOCK is unlocked, the NIDLOCK should also be unlocked.

4. 1f SPIDLOCK is unlocked, then SPNIDLOCK is automatically unlocked.

The following table lists the recommended combinations of debug options.

SPNIDLOCK
0

Notes:

SPIDLOCK

0

NIDLOCK DBGLOCK
0 0
0 0
0 1
0 0
0 1

Description

Allows all debug and trace features for both
the Secure and the Non-secure world (default
setting).

Only allows a Non-invasive debug in the
Secure world. Allows both Invasive and Non-
invasive debugs in the Non-secure world.

Only allows a Non-invasive debug in the
Secure and the Non-secure world.

Only allows debug and trace features in the
Non-secure world.

Only allows a Non-invasive debug in the Non-
secure world.

All debug and trace features are disabled.

o [frace Point Interface Unit (TPIU) registers' access faul] will occur and lock the processor in a security assertion if both

ocKk state.

IDLOCK and DBGLOCK in debug option are set (xx11). The device will be unrecoverable if it is in the permanent debud

» The workaround is to avoid using the xx11 debug option or avoid accessing the TPIU registers and upgrade to SE firmware =
v1.2.14 (xG21 and xG22) or = v2.2.1 (other Series 2 devices) so that the debug options cannot be modified after the device

is locked.

The highly recommended setting of debug options is to allow debugging in the Non-secure world while, at the same time,
disabling debugging for the Secure world (1100).

o Secure memories (flash and RAM) are not accessible by the debugger.
o All debug access is blocked from accessing Secure addresses.

Copyright © 2025 Silicon Laboratories. All rights reserved.

S

40/280

https://developer.arm.com/documentation/ka005320/latest

Debug Unlock &= SILICON LABS

The debugger will ignore the vector-catch events generated by the Secure exceptions.
e Trace sources (e.g., ETM) will stop generating instruction/data trace packets when the Cortex-M33 is in a Secure state.
o The debugger can neither halt a Secure application (e.g., breakpoint) nor single step into it.
e The Cortex-M33 will not stop when stepping into the Secure application until it returns to the Non-secure state.

The figure below describes the debug scenario of debug options with 1100 configuration.

X Single step disallowed

Single step allowed

{ 4

Secure Application Single step allowed

Step into Return to
. Secure code Non-secure code
Non-secure Application

< Trace allowed > < Trace disallowed >

The following examples describe the relationship between debug options and debug mode request when performing a
secure debug unlock on Series 2 devices.

Example 1: All debug and trace features for both the Secure and the Non-secure world are allowed (0000)

Debug options after

Debug Options Authorizations Debug Mode Request Secure Debug Unlock

Description
0000 00[1111]10 00]xxxx|10 0000 No action

Example 2: Only debug and trace features in the Non-secure world are allowed (1100)

Debug options after

Debug Options Authorizations Debug Mode Request Secure Debug Unlock Description

1100 00[1111]10 00]00xx[10 1100 No action

1100 00[1111]10 00]10xx[10 0100 Unlock SPNIDLOCK

1100 00[1111]10 00]01xx[10 or 00]11xx|10 0000(reset Unlock SPNIDLOCK
SPIDLOCK will and SPIDLOCK
automatically unlock
SPNIDLOCK)

Notes:

e The bit order of debug options are SPNIDLOCK (MSB), SPIDLOCK, NIDLOCK, and DBGLOCK (LSB).
« Debug optiong: 0 = Unlocked, 1 = Locked
. in the access certificate: 0 = Disable, 1 = Enable
« The authorizations in the access certificate are usually set to 00[1111]10 (0x3e), so the corresponding debug options (bits 2
to 5) can be reset (unlocked) by debug mode request during secure debug unlock.
e Debug mode request (bits 2 to 5) in the Debug Unlock Token:
-0 = No action on the corresponding debug option if it was locked (i.e., 1)
-1 = Reset (unlock) the corresponding debug option from 1 to O if it was locked (ie., 1)
-x = No action (either 0 or 1) on the corresponding debug option if it was unlocked (i.e., 0)
« Debug options return to the original state after power-on or pin reset.

Debug Unlock Command Reference
The commands for debug unlock are described in the following table.

Copyright © 2025 Silicon Laboratories. All rights reserved. 41/280

Debug Unlock

DCI Command (1)

Erase Device

Read Serial Number

Get Challenge

Debug Access

Notes:

Mailbox (SE Manager) API (2)

sl_se_erase_device

sl_se_get_serialnumber

sl_se_get_challenge

sl_se_open_debug

&= SILICON LABS

Description

Performs a device mass erase and
resets the debug configuration to its
initial unlocked state.

Reads out the serial number (16 bytes)
of the Series 2 device.

Reads out the current challenge value
(16 bytes) for Secure debug unlock.

Opens the secure debug access of the
Cortex-M33.

1. Performing these commands over DCI is implemented in Simplicity Studio and Simplicity Commander.
2. These APIs are only available on HSE devices. The SE Manager APl document can be found at

https://docs.silabs.com/gecko-platform/latest/service/api/group-sl-se-managel.

Copyright © 2025 Silicon Laboratories. All rights reserved.

Availability

While Device
Erase is
enabled.

Always.

While Public
Command Key
is uploaded.

Only when
Secure Debug
is enabled.

42/280

https://docs.silabs.com/gecko-platform/latest/service/api/group-sl-se-manager

&= SILICON LABS

Examples

Examples

Overview

The examples for Series 2 debug lock and debug unlock are described in the following table.

Example
Standard debug lock

Standard debug lock and
unlock

Provision Public Command
Key

Secure debug lock

Provision Public Command
Key and secure debug lock

Secure debug unlock and
roll challenge

Secure debug unlock

Permanent debug lock

Note: Unless specified in the example, these examples can be applied to other Series 2 devices.

Using Simplicity Studio

Device (Radio Board)
EFR32MG21A010F1024IM32 (BRD4181A)
EFR32MG21A010F1024IM32 (BRD4181A)

EFR32MG21A010F1024IM32 (BRD4181A)
EFR32MG21A010F1024IM32 (BRD4181A)

EFR32MG21A010F1024IM32 (BRD4181A)
EFR32MG21A010F1024IM32 (BRD4181A)

EFR32MG21A010F1024IM32 (BRD4181A)
EFR32MG21A010F1024IM32 (BRD4181A)

EFR32MG21A010F1024IM32 (BRD4181A)
EFR32MG21A010F1024IM32 (BRD4181A)
EFR32MG21A010F1024IM32 (BRD4181A)
EFR32MG21A010F1024IM32 (BRD4181A)
EFR32MG21A010F1024IM32 (BRD4181A)

SE Firmware
Version 1.2.14
Version 1.2.14

Version 1.2.9
Version 1.2.14

Version 1.2.14
Version 1.2.14

Version 1.2.9
Version 1.2.14

Version 1.2.14
Version 1.2.9
Version 1.2.9
Version 1.2.14
Version 1.2.9

Tool

SE Manager

Simplicity Commander

Simplicity Studio 5
SE Manager

SE Manager

Simplicity Commander

Simplicity Studio 5
SE Manager

Simplicity Commander
Simplicity Studio 5
IAR v8.50.9

Simplicity Commander

Simplicity Studio 5

The security operations are performed in the Security Settings of Simplicity Studio. This application note uses Simplicity
Studio v5.2.11. The procedures and pictures may be different for the other versions of Simplicity Studio 5.

1. Right-click the selected debug adapter RB (ID:J-Link serial number) to display the context menu.

Copyright © 2025 Silicon Laboratories. All rights reserved.

43/280

Examples

2. Click Device configuration... to open the Configuration of device: J-Link Silicon Labs (serial number) dialog box. Click the

&= SILICON LABS

BHEARREBE

v ' EFR32xG21 2.4 GHz 10 dBm RB (ID:440030580)

! Connect
» FA EFR32xG21 2.4 GHz 10 dBm Radio Board (BRD4181A) T
» F5 Wireless Starter Kit Mainboard (BRD400TA Rev AD1)

Start capture

Start capture with options...
Stop capture

Redo last upload

Upload application...
Upload adapter firmware...
Rename

Make a sniffer

=1 Launch Console...
1 spiffer Configurator...
@) Bluetooth NCP Commander..

= Force nlock...
Select Crypto Profile...
Set Unlock Token...
Clear Unlock Token
View Device Certificates

Security Settings tab to get the selected device configuration.

38 J-Link Silicon Labs (440030580)

Configuration of device: J-Link Silicon Labs (440030580)
Device MMNm[Wkaﬁm images_I'Scralam.'.:adl_IPal:ket Trace | Security Settingls Adapter Conﬁgurau‘oﬂ} CfUNE-i_J-LinI: Corrﬁguraticn-.l_

Device Status

Start Provisioning Wizard.-

Crypto Profile: Local Development
SerialNumber; 000000000000000014B457FFFEO45A32
Challenge: F182860173BFSAE786C1TTAERE22F237

Command Key: F9017F1063157564207ACFOCCCDB24610D759923E3B28049EE044AA3181122400CB4EESFATAAEEFBC0354B6A4881"

Sign Key: C4AF4ACEIAAB9512DB50F7AZ6AESB4801183D85417E729A56DA74F4E0BAS62CDEGDT19DEAS411332DCIATA33T2L

SE Certificate: Could not determine unique target subject Cerificate Details..,

Certificate Detal
View..

MCU Certificate: Could not determine unique target subject
Tamper Summary: No Tamper Sources Modified

SE Firmware Version; 1.2.9

Host Firmware Version: 255.255.255

Boot Status: 0x00000020

Secure Boot: Disabled

Roll Challenge | Disable Tamper | Unlock Debug Port Device Erase
Debug Locks
Enable Secure Debug Unlock 3 Enable

Enable Debug Lock: ¥ Enable
Disable Device Erase: ¥ Disable

Copyright © 2025 Silicon Laboratories. All rights reserved.

44/280

Examples ‘S’ SILICON LABS

Using Simplicity Commander

1. This application note uses Simplicity Commander v114.2. The procedures and console output may be different for the other
versions of Simplicity Commander. The latest version of Simplicity Commander can be downloaded from
bttps://www.silabs.com/developers/mcu-programming-optiong.

commander --version

Simplicity Commander 1v14p2b1232
JLink DLL version: 7.70d

Qt 5.12.10 Copyright (C) 2017 The Qt Company Ltd.
EMDLL Version: Ov18p7b669

mbed TLS version: 2.16.6

Emulator found with SN=440048205 USBAddr=0
DONE

2. The Simplicity Commander's Command Line Interface (CLI) is invoked by commander.exe in the Simplicity Commander folder.
The location for Simplicity Studio 5 in Windows is C:\SiliconLabs\SimplicityStudio\v5\developer\adapter_packs\commander . For
ease of use, it is highly recommended to add the path of commander.exe to the system PATH in Windows.

3. If more than one Wireless Starter Kit (WSTK) is connected via USB, the target WSTK must be specified using the --serialno
\<J-Link serial number> option.

4. 1f the WSTK is in debug mode OUT, the target device must be specified using the --device \<device name> option.

For more information about Simplicity Commander, see JG162: Simplicity Commander Reference Guidg].

Using External Tools

1. The gecure debug unlock example] uses the OpenSSL to sign the pccess certificatd and ghallenge responsel The Windows
version of OpenSSL can be downloaded from phttps://slproweb.com/products/Win320penSSL.htm)]. This application note uses
OpenSSL Version 11.1h (Win64).

openssl version

OpenSSL 1.1.1h 22 Sep 2020

The OpenSSL's Command Line Interface (CLI) is invoked by openssl.exe in the OpenSSL folder. The location in Windows
(Win64) is C:\Program Files\OpenSSL-Win64\bin . For ease of use, it is highly recommended to add the path of openssl.exe to
the system PATH in Windows.

2. The pecure debug unlock example] uses the free Hex Editor Neo to edit the binary files generated by Simplicity Commander.
The Windows version of Hex Editor Neo can be downloaded from https://www.hhdsoftware.com/free-hex-editol.

Using Platform Examples

Simplicity Studio 5 includes the BE Manager platform exampled for debug lock, key provisioning, and secure debug unlock.
This application note uses platform examples of GSDK v4.2.1. The console output may be different on other versions of
GSDK.

Refer to the corresponding readme file for details about each SE Manager platform example. This file also includes the
procedures to create the project and run the example.

Standard Debug Lock and Unlock

SE Manager - Debug Lock Platform Example

Click the View Project Documentation link to open the readme file.

Copyright © 2025 Silicon Laboratories. All rights reserved. 45/280

https://www.silabs.com/developers/mcu-programming-options
https://www.silabs.com/documents/public/user-guides/ug162-simplicity-commander-reference-guide.pdf
https://slproweb.com/products/Win32OpenSSL.html
https://www.hhdsoftware.com/free-hex-editor
https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-getting-started/start-a-project#examples

Examples ‘S’ SILICON LABS

Platform - SE Manager Host Firmware Upgrade and Debug Lock

This example project demonstrates the host firmware upgrade and debug lock API of SE Manager. CREA

View Project Documentation

1. Press SPACE then ENTER to select the debug lock operation.

SE Manager Host Firmware Upgrade and Debug Lock Example - Core running at 38000 kHz.
. SE manager initialization... SL_.STATUS_OK (cycles: 10 time: O us)
. Current selection is HOST FIRMWARE UPGRADE.
+ Press SPACE to select HOST FIRMWARE UPGRADE or DEBUG LOCK, press ENTER to run.

+ Current selection is DEBUG LOCK.

. Get debug lock status... SL_STATUS_OK (cycles: 8788 time: 231 us)
+ Debug lock: Disabled

+ Press ENTER to apply debug lock or press SPACE to exit.

2. Press ENTER again to lock the device.

. Apply the debug lock... SL_STATUS_OK (cycles: 52585 time: 1383 us)

+ Get debug lock status... SL_STATUS_OK (cycles: 8769 time: 230 us)

+ Debug lock: Enabled

. Current selection is DEBUG LOCK.

+ Press SPACE to select HOST FIRMWARE UPGRADE or DEBUG LOCK, press ENTER to run.

Simplicity Commander
1. Run the security status command to get the selected device configuration.

commander security status --device EFR32MG21A010F1024 --serialno 440048205

SE Firmware version: 1.2.14

Serial number : 000000000000000014b457fffe045a93
Debug lock : Disabled

Device erase : Enabled

Secure debug unlock : Disabled

Tamper status 0] ¢

Secure boot : Disabled

Boot status :0%x20 - OK

DONE

2. Run the security lock command to lock the selected device.

commander security lock --device EFR32MG21A010F1024 --serialno 440048205

WARNING: Secure debug unlock is disabled. Only way to regain debug access is to run a device erase.
Device is now locked.
DONE

3. Run the security status command again to check the device configuration.

commander security status --device EFR32MG21A010F1024 --serialno 440048205

Copyright © 2025 Silicon Laboratories. All rights reserved. 46/280

Examples ‘S’ SILICON LABS

SE Firmware version: 1.2.14
Serial number : 000000000000000014b457fffe045a93
Debug lock : Enabled
Device erase : Enabled

Secure debug unlock : Disabled
Tamper status 0] ¢

Secure boot : Disabled
Boot status :0%x20 - OK
DONE

4. Run the security erasedevice command to unlock the selected device.

commander security erasedevice --device EFR32MG21A010F1024 --serialno 440048205

Successfully erased device
DONE

Note: Issue a power-on or pin reset to complete the unlock process.

5. Run the security status command again to check the device configuration.

commander security status --device EFR32MG21A010F1024 --serialno 440048205

SE Firmware version: 1.2.14
Serial number : 000000000000000014b457 fffe045a93
Debug lock : Disabled

Device erase : Enabled
Secure debug unlock : Disabled
Tamper status 0] ¢

Secure boot : Disabled
Boot status :0%x20 - OK
DONE

Simplicity Studio

1. Open the Security Settings of the selected device as described in Using Simplicity Studid.
2. Click [Enable] next to Enable Debug Lock: to lock the device. The following Enable Debug Lock Warning is displayed. Click
[Yes] to confirm. This configures standard debug lock.

Copyright © 2025 Silicon Laboratories. All rights reserved. 47/280

Examples &="7 SILICON LABS

3§ J-Link Silicon Labs (440030580) O > ‘

Configuration of device: J-Link Silicon Labs (440030580)
Device hardwar Application image |Scratchpa |Packet Trac | Security Setting - Adapter Configurati | CTUN | J-Link Configuratio |

Read From Device 'Start Provisioning Wizard..
Device Status

Crypto Profile: [ocal Deveiopmant
SerialNumber: 000000000000000014B457FFFEO45A32
Challenge: F182860173BFSAETB6CT TTAEGE22F23T7

Command Enable Debug Lock Warning
Sign Key:
z Secure Debug is not yet enabled. Enabling the debug lock will require a device erase to
SE Certi untock
MCU Certifi
Tamper Sum: "
SE Firmware | Yes || No
Host Fi i
Boot Status: (x00000020

Roll Challenge | Disabe Tamper | Unlock Debug Port | Device Erase
Debug Locks

Enable Secure Debug Unlock X | Enable |

Enable Debug Lock X | Enable |

Disable Device Erase: ¥ | Disable|

[ok]| cancel

The [Enable] controls next to Enable Secure Debug Unlock: and Enable Debug Lock: are grayed out after standard debug
lock is enabled.

Copyright © 2025 Silicon Laboratories. All rights reserved. 48/280

Examples

&= SILICON LABS

3 J-Link Silicon Labs (440030580 O X ‘

Configuration of device: J-Link Silicon Labs (440030580)
Device hardwar _.Apvplicarion image _Smtchpa IPachet Trac f’ﬁecun’ty Seningl' Adapter Configurati -|_CTUN -_I-Llnnk Configuratio -_'

Read From Dew:e Start Provisioning Wizard...
Device Status

Crypto Profile: [ocal Deveiopmant

SerialNumber. 000000000000000014B457FFFEO45A32

Challenge: F182860173BF5AE7B86C17TAEBEZ2F237

Command Key: F9017F10631575642D7ACFOCCCDB24610D759923E3628849EE044AA181122400CB4EESFATAAEEFBCO354BOA4E!
Sign Key:

C4AF4ACBIAABIS12DB50FTAZ6AESBAB01183085417ET29A56DAITAF4EDBAS62CDERD19DEA9411332DCT1ATA33
SE Certificate:

Could not determine unique target subject ifi i
MCU Certificate: Could not determine unique target subject
Tamper Summary: No Tamper Sources Modified View..
SE Firmware Version: 1.29

Host Firmware Version: 255.255.255

Boot Status: 0x00000020

Secure Boot: Disabled

Roll Challenge | Disable Tamper Uriock Debug Port | Device Erase
Debug Locks
Enable Secure Debug Unlock 3 taable

Enable Debug Lock ¥ | Enable

Disable Device Erase: | Disable

[ok]| cancel

3. Click [Device Erase] to unlock the device.

Copyright © 2025 Silicon Laboratories. All rights reserved. 49/280

Examples

&= SILICON LABS

3 J-Link Silicon Labs (440030580) O x I

Configuration of device: J-Link Silicon Labs (440030580)

Device hardwar |Application image |Scratchpa |Packet Trac |Security Setting . Adapter Configurati | CTUN | J-Link Configuratio |

Device Status

Crypto Profile: Local Development
SerialNumber. 000000000000000014B457FFFEO45A32
Challenge: F182860173BFSAETS6C1TTAEGE22F23T

Command Key: F9017F10631575642DTACFOCCCDB2461DDT59923E3828849EE044AA3181122400CB4EESFATAAEEFBCO354BEA4E:

Sign Key: C4AF4ACEIAABIS12DB50FTAZ6AESBAB01183D85417E7T29A56DASTAFAEOBAS62CDERDTIDEAY411332DCTIATAIZ:
SE Certificate: Could not determine unique target subject Certificate Details..
MCU Centificate: Could not determine unigue target subject Centificate Details..
Tamper Summary: No Tamper Sources Modified View,,
SE Firmware Version: 1.29
Host Firmware Version: 255.255.255
Boot Status: 0x00000020
Secure Boot: Disabled
IRolICEIaﬂenge | Dﬂb[e‘{mw | Unlock Debugﬁ:n'_t Device Erase
fiock This aperation performs a device erase and resets the debug
e - configuration to its initial unlocked state. Only available
Enable Secure Debug Unlock ¥ | Enable before DISABLE DEVICE ERASE has been executed. This
 — operation clears and verifies the complete flash and ram of
Enable Debug Lock: the system, excluding the user data pages and one-time
— programmable commissioning infarmation in the secure
Disable Device Erase: ¥ | Disable|

element.

I

4. The device will return to the unlock state. Click [OK] to exit.

Copyright © 2025 Silicon Laboratories. All rights reserved. 50/280

Examples

&= SILICON LABS

3 J-Link Silicon Labs (440030580)

Configuration of device: J-Link Silicon Labs (440030580)

Device hardware | Application images | Scratchpad | Packet Trace Secunty Settings

O X ‘

Adapter Configuration| CTUNE J-Link Configuration

Read From Device

Device Status

Start Provisioning Wizard.

Crypto Profile: Lgcal Development

SerialNumber:
Challenge:

Command Key:
Sign Key:

SE Certificate:

MCU Certificate: Could not determine unique target subject Certificate De
Tamper Summary: No Tamper Sources Modified
SE Firmware Version: 1.29

000000000000000014B457FFFED45A32
F182860173BFSAETBOCT77AEGE22F237

FB017F10631575642D7ACFOCCCDB2461DD759923E3828849EE044AA3181122400CBAEESFATAAEEFBCO354B6A4881°

C4AF4ACEIAABIS12DB50F7AZ6AESB4801183D85417ET29A56DA974F4EDBAS62CDEGD19DEAS411332DCIATA33T72L
Could not determine unique target subject

Certificate Datails

Host Firmware Version: 255.255.255
Boot Status: 0x00000020
Secure Boot: Disabled

Roll Challenge

Debug Locks

Disable Tamper |Unlock Debug Port | Device Erase

Enable Secure Debug Unlock ¥ Enable

Enable Debug Lock: ¥ Enable

Disable Device Erase: ¥ Disable

oK Cancel

Provision Public Command Key and Secure Debug Lock

SE Manager - Key Provisioning Platform Example

Click the View Project Documentation link to open the readme file.

Platform - SE Manager Key Provisioning
This example project demonstrates the key provisioning APl of SE Manager.

CREATE
View Project Documentation

1. Press SPACE to skip the programming of AES-128 key.

SE Manager Key Provisioning Example - Core running at 38000 kHz.
. SE manager initialization... SL_.STATUS_OK (cycles: 9 time: O us)

. Get current SE firmware version... SL_.STATUS_OK (cycles: 3578 time: 94 us)
+ Current SE firmware version (MSB..LSB): 00010209

. Read SE OTP configuration... SL_.STATUS_COMMAND_IS_INVALID (cycles: 3908 time: 102 us)
. Press ENTER to program 128-bit AES key in SE OTP or press SPACE to skip.

. Encrypt 16 bytes plaintext with 128-bit AES OTP key... SL_.STATUS_FAIL (cycles: 4627 time: 121 us)

. Press ENTER to program public sign key in SE OTP or press SPACE to skip.

2. Press SPACE to skip the programming of Public Sign Key.

Copyright © 2025 Silicon Laboratories. All rights reserved. 51/280

Examples ‘S’ SILICON LABS

. Get public sign key... SL_STATUS_FAIL (cycles: 4144 time: 109 us)

. Press ENTER to program public command key in SE OTP or press SPACE to skip.

3. Press ENTER to program the default Public Command Key in flash to the SE OTP.

+ Warning: The public command key in SE OTP cannot be changed once written!
+ Press ENTER to confirm or press SPACE to skip if you are not sure.

4. Press ENTER to confirm the operation.

. Initialize public command key... SL_.STATUS_OK (cycles: 56052 time: 1475 us)
. Get public command key... SL_STATUS_OK (cycles: 7135 time: 187 us)
+ The public command key (64 bytes):
B1 BC 6F 6F AS 66 40 ED 52 2B 2E EO F5 B3 CF 7E
5D 48 F6 OB E8 14 8F OD CO 84 40 FO A4 E1 DC A4
7C 0411 9ED6 A1 BE 31 B7 70 7E 5F 9D 00 1A 65
9A 05 10 O3 E9 5E 1B 93 6F 05 C3 7E A7 93 AD 63
. Press ENTER to initialize SE OTP for secure boot configuration or press SPACE to skip.

5. Press SPACE to skip the secure boot configuration.

. SE manager deinitialization... SL_STATUS_OK (cycles: 7 time: O us)

SE Manager - Secure Debug Platform Example

Click the View Project Documentation link to open the readme file.

Note: The secure debug platform example can only run on the HSE device.

Platform - SE Manager Secure Debug

This example project demonstrates the secure debug API of SE Manager. CREATE

View Project Documentation

1. Use a ptandard debug unlocq device with matched Public Command Key.

Copyright © 2025 Silicon Laboratories. All rights reserved. 52/280

Examples ‘5’ SILICON LABS

SE Manager Secure Debug Example - Core running at 38000 kHz.
. SE manager initialization... SL_.STATUS_OK (cycles: 9 time: O us)
. Get SE status... SL_STATUS_OK (cycles: 8496 time: 223 us)
+ The SE firmware version (MSB..LSB): 0001020E
+ Debug lock: Disabled
+ Device Erase: Enabled
+ Secure debug: Disabled
+ Secure boot: Disabled
+ Debug lock state: Unlocked
+ Non-secure, Invasive debug lock (DBGLOCK) configuration: Unlocked
+ Non-secure, Non-invasive debug lock (NIDLOCK) configuration: Unlocked
+ Secure, Invasive debug lock (SPIDLOCK) configuration: Unlocked
+ Secure, Non-invasive debug lock (SPNIDLOCK) configuration: Unlocked
+ Non-secure, Invasive debug lock (DBGLOCK) current state: Unlocked
+ Non-secure, Non-invasive debug lock (NIDLOCK) current state: Unlocked
+ Secure, Invasive debug lock (SPIDLOCK) current state: Unlocked

+ Secure, Non-invasive debug lock (SPNIDLOCK) current state: Unlocked. The device is in normal state and secure debug is disabled.

+ Exporting a public command key from a hard-coded private command key... SL_STATUS_OK (cycles: 202467 time: 5328 us)
+ Reading the public command key from SE OTP... SL_.STATUS_OK (cycles: 7589 time: 199 us)

+ Comparing exported public command key with SE OTP public command key... OK

+ Press ENTER to enable secure debug or press SPACE to exit.

2. Press ENTER to enable the secure debug.

+ Enable the secure debug... SL_.STATUS_OK (cycles: 48313 time: 1271 us)
+ Press ENTER to lock the device or press SPACE to disable the secure debug and exit.

3. Press ENTER to lock the device with 0x0c .

+ Setting the debug options (0xc)... SL_.STATUS_OK (cycles: 51091 time: 1344 us)
+ Locking the device... SL_.STATUS_OK (cycles: 89683 time: 2360 us)
+ Device erase is enabled, press ENTER to disable device erase (optional if just for testing) or press SPACE to skip.

4. Press ENTER to disable device erase.

+ Warning: This is a ONE-TIME command which PERMANETLY disables device erase!
+ Press ENTER to confirm or press SPACE to skip if you are not sure.

5. Press ENTER to confirm the operation.

. Get SE status... SL_.STATUS_OK (cycles: 8496 time: 223 us)

+ The SE firmware version (MSB..LSB): 0001020E

+ Debug lock: Enabled

+ Device Erase: Disabled

+ Secure debug: Enabled

+ Secure boot: Disabled

+ Debug lock state: Locked

+ Non-secure, Invasive debug lock (DBGLOCK) configuration: Unlocked

+ Non-secure, Non-invasive debug lock (NIDLOCK) configuration: Unlocked
+ Secure, Invasive debug lock (SPIDLOCK) configuration: Locked

+ Secure, Non-invasive debug lock (SPNIDLOCK) configuration: Locked

+ Non-secure, Invasive debug lock (DBGLOCK) current state: Unlocked

+ Non-secure, Non-invasive debug lock (NIDLOCK) current state: Unlocked
+ Secure, Invasive debug lock (SPIDLOCK) current state: Locked

+ Secure, Non-invasive debug lock (SPNIDLOCK) current state: Locked. The device is in secure debug lock state.
+ Press ENTER to issue a secure debug unlock or press SPACE to exit.

6. Press SPACE to exit.

. SE manager deinitialization... SL_STATUS_OK (cycles: 9 time: O us)

Simplicity Commander

1. Run the security status command to get the selected device configuration.

Copyright © 2025 Silicon Laboratories. All rights reserved.

53/280

Examples ‘S’ SILICON LABS

commander security status --device EFR32MG21A010F1024 --serialno 440048205

SE Firmware version : 1.2.14

Serial number : 000000000000000014b457fffe045a93
Debug lock : Disabled

Device erase : Enabled

Secure debug unlock : Disabled

Tamper status : OK

Secure boot : Disabled

Boot status :0%x20 - OK

DONE

2. Run the security writekey command to provision the Public Command Key (e.g., command_pubkey.pem).

commander security writekey --command command_pubkey.pem --device EFR32MG21A010F1024 --serialno 440048205

Device has serial number 000000000000 14b457fffe045a93

Please look through any warnings before proceeding.
THIS IS A ONE-TIME command which permanently ties debug and tamper access to certificates signed by this key.

Type 'continue’ and hit enter to proceed or Ctrl-C to abort:

continue
DONE

Note: The Public Command Key cannot be changed once written.

3. Run the security readkey command to read the Public Command Key from the SE OTP.

commander security readkey --command --device EFR32MG21A010F1024 --serialno 440048205

B1BC6F6FAS6640EDS22B2EEOF5B3CF7ESD48F60BE8148FODC08440F0A4E1DCA4
7C04119EDGATBE31B7707ESFOD0O01A659A051003E95E1B936F05C37EA793AD63
DONE

4. Run the security lockconfig command to enable the secure debug.

commander security lockconfig --secure-debug-unlock enable --device EFR32MG21A010F1024 --serialno 440048205

Secure debug unlock was enabled
DONE

5. a. For the TrustZone-unaware application, run the security lockcommand to lock the selected device.

commander security lock --device EFR32MG21A010F1024 --serialno 440048205

Device is now locked.
DONE

b. For the TrustZone-aware application, run the security lock --trustzone #### command to set the (e,
1100) and lock the selected device. The bit order of #### is SPNIDLOCK (MSB), SPIDLOCK, NIDLOCK, and DBGLOCK
(LSB).

commander security lock --trustzone 1100 --device EFR32MG21A010F1024 --serialno 440048205

Copyright © 2025 Silicon Laboratories. All rights reserved. 54/280

Examples ‘S’ SILICON LABS

Writing debug restriction bits:
DBGLOCK: 0
NIDLOCK: 0
SPIDLOCK: 1

SPNIDLOCK: 1
Device is now locked.
DONE

Notes:
o The --trustzone option for the security lock command requires Simplicity Commander = v1.13.3.
o It is strongly recommended to to SE firmware =z v1.2.14 (xG21 and xG22) or = v2.2.1 (other Series 2 devices)
so that the debug options cannot be modified after the device is locked.
o Use commander security lock without the --trustzone #### option if the default setting of debug options (0000) is
good enough for a TrustZone-aware application.
6. Run the security disabledeviceerase command to disable device erase. This is an IRREVERSIBLE action, and should be the last
step in production.

commander security disabledeviceerase --device EFR32MG21A010F1024 --serialno 440048205

THIS IS A ONE-TIME command which Permanently disables device erase.
If secure debug lock has not been set, there is no way to regain debug access to this device.
Type 'continue’ and hit enter to proceed or Ctrl-C to abort:

continue
Disabled device erase successfully
DONE

Note: The cannot be reset to the default value 0000 (unlock) if the device erase option is
disabled.

7. a. For Simplicity Commander < v1.13.3, run the security status command to check the debug lock status of the device.

commander security status --device EFR32MG21A010F1024 --serialno 440048205

SE Firmware version: 1.2.14

Serial number : 000000000000000014b457fffe045a93
Debug lock : Enabled

Device erase : Disabled

Secure debug unlock : Enabled

Tamper status :OK

Secure boot : Disabled

Boot status : 0x20 - OK

DONE

b. For Simplicity Commander = v1.13.3, run the security status --trustzone command to check the full debug lock status of the
device.

commander security status --trustzone --device EFR32MG21A010F1024 --serialno 440048205

Copyright © 2025 Silicon Laboratories. All rights reserved. 55/280

Examples ‘S’ SILICON LABS

SE Firmware version: 1.2.14

Serial number : 000000000000000014b457fffe045a93
Debug lock : Enabled

Device erase : Disabled

Secure debug unlock : Enabled

Debug lock state: Locked

Non-secure, invasive debug lock (DBGLOCK) : Unlocked
Non-secure, non-invasive debug lock (NIDLOCK) : Unlocked
Secure, invasive debug lock (SPIDLOCK) : Locked

Secure, non-invasive debug lock (SPNIDLOCK): Locked
Non-secure, invasive debug lock state (DBGLOCK) : Unlocked
Non-secure, non-invasive debug lock state (NIDLOCK) : Unlocked
Secure, invasive debug lock state (SPIDLOCK) : Locked
Secure, non-invasive debug lock state (SPNIDLOCK): Locked
Tamper status : OK

Secure boot : Disabled

Boot status :0%x20 - OK

DONE

Simplicity Studio

1. Run the util keytotoken command to convert the Public Command Key file (PEM format) into a text file (command_pubkey.txt).

commander "util keytotoken® command_pubkey.pem -

Writing EC tokens to command_pubkey.txt...
DONE

2. Open Security Settings of the selected device as described in Using Simplicity Studid.
3. Click the WriteKey link next to Command Key: to open a dialog box.

S8 J-Link Silicon Labs (440030580)

Configuration of device: J-Link Silicon Labs (440030580}
Device hardware | Application images | Scratchpad Packet Trace Security Settings - Adapter Configuratio | CTUNE| J-Link Configuration

Read From Device Start Provisioning Wizard...

Device Status

Crypto Profile: Logal pment

SerialNumber: 000000000000000014B457FFFEO45821
Challenge: DADEB6AS4386F20C5093955CA3005CER

Command Key: Mo key written. Writs ¥

Sign Key: No key written. W cusing that Wil Help you wiike your pualic key 1o

SE Certificate: Could not determine ufTGUE Target subject

MCU Certificate: Could not determine unique target subject
SE Firmware Version: 1.2.9

Boot Status: 0x00000020

Secure Boot: Not Provisioned

Roll Challenge | Disable Tamper | Unlock Debug Port. | Device Erase
Debug Locks
Enable Secure Debug Unlock ¥ Enable
Enable Debug Lock ¥ Enable

Disable Device Erase ¥ Disable

4. The Write Command Key dialog box is displayed.

Copyright © 2025 Silicon Laboratories. All rights reserved. 56/280

Examples

&= SILICON LABS

ER write Command Key O x ‘

Command Key: | | Get Local Davelopment Key

Cancel

5. Open the command_pubkey.txt file generated in step 1.

MFG_SIGNED_BOOTLOADER_KEY_X : BIBC6F6FA56640ED522B2EEOFSB3CF7ESD48F60BE8148FODC08440F0A4E1DCA4

MFG_SIGNED_BOOTLOADER_KEY_Y : 7C04119ED6A1BE31B7707E5F9D001A659A051003E95E1B936F05C37EA793AD63

6. Copy Public Command Key (X-point B1BC... first, then Y-point 7C04...) to Command Key: box.

u Write Command Key O x ‘

Command Key: | B1BCGF6FASG640EDS22B2EEDFSBICFTESDAEF60BEB148F0DC | [Get Local Development Key]

| Write | Cancel

7. Click [Write] to provision the Public Command Key.

8. Click [Enable] next to Enable Secure Debug Unlock: to enable the secure debug functionality.

Device hardware | Application images | Scratchpad Packet Trace | Security Settings

Read From Device

Device Status

Crypto Profile: Local Dev

MCU Certificate: Could not determine unique target subject Certificate Dy
SE Firmware Version: 1.2.9

Boot Status: Ox00000020

Secure Boot: Not Provisioned

Roll Challenge | Disable Tamper |Unlock Debug Port
Debug Locks
Enable Secure Debug Unlock 3 |'EI
Enable Debug Lock: ¥ Ena -IE_.',

Disable Device Erase; W Disa ©

38 J-Link Silicon Labs (440030580)

Configuration of device: J-Link Silicon Labs (440030580)

Adapter Configuratio | CTUNE | J-Link Configuration

Start Provisioning Wizard...

pment

SerialNumber: 000000000000000014B8457FFFED45A93

Challenge: E141C63DABOAT4B24B92BTB3D4500729

Command Key. B1BCGFE6FASGE40EDS22B2EEOFSB3CFTESD48FG60BERT14BF0DCOB440FIA4E1DCAATCO4119EDBATBEI1BTTOTESFID0
Sign Key: No key written, Write Key,

SE Certificate;

Could not determine unique target subject

Device Erase

OK Cancel

Copyright © 2025 Silicon Laboratories. All rights reserved. 57/280

Examples

&= SILICON LABS

Click [Enable] next to Enable Debug Lock: to lock the device. This configures secure debug lock.

10. Click [Disable] next to Disable Device Erase: to disable the device erase. The following Disable Device Erase Warning is

38 J-Link Silicon Labs (440030580)

Configuration of device: J-Link Silicon Labs {440030580)

Read From Dew:e Start Provisioning Wizard...

Device Status

Crypto Profile: Local Deveigpment

SerialNumber: 000000000000000014B457FFFEO45A32
Challenge: F182860173BF5AET86CT 7T7TAEBEZ2F237
Command

Enable Debug Lock Warning

Secure Debug is not yet enabled. Enabling the debug lock will require a device erase to
unlock.

Boot Status: 0x00000020
Secure Boot: Disabled

Roll Challenge | Disable Tamper Uiock Debug Port | Device Erase
Debug Locks
Enable Secure Debug Unlocke 3 Enable

Enable Debug Lock ¥ | Enable

Disable Device Erase: ¥ | Disable

Device hardwar _lAaplicaﬁon image St:mtchpa IPachetTrac fﬁemﬁtySeniné- Adapter Configurati .I_CTUN -_l-LI-nk Currﬁguratio._

[ok || concel

displayed. Click [Yes] to confirm.

Copyright © 2025 Silicon Laboratories. All rights reserved.

58/280

Examples

&= SILICON LABS

Configuration of device: J-Link Silicon Labs (440030580)

:'Dewce hardware Application images | Scratchpad 'Packet Trace | Security Settings _Adapter Configuratio | CTUNE | J-Link Conﬂguratioﬁ

Read From Device
Device Status

Crypto Profile: Local Development
Serialhumber: 000000000000000014B45TFFFEO45A93
Challenge:

E Disable Device Erase Warning s

Command Ke| BT70TESFIDO
Sian Key: [This is a PERMANENT operation that may lead to a permanently locked devicel Are you

) sure you want to continue?
SE Cemﬁcaj ficate Details,
MCU Certifi ficate Details.,
SE Firmware Yes No
Boot Status: { -
Secure Boot: Not Provisioned

Roll Challenge | Disable Tamper | | Unlock Debug Port | Device Erase

Debug Locks
Enable Secure Debug Unlock ¥ | Disable
Enable Debug Lock: ¥ | Enable

Disable Device Erase: ¥ Disable

Note: This is an IRREVERSIBLE action, and should be the last step in production.

Secure Debug Unlock and Roll Challenge

SE Manager - Secure Debug Platform Example

Click the View Project Documentation link to open the readme file.

Note: The secure debug platform example can only run on the HSE device.

Platform - SE Manager Secure Debug

This example project demonstrates the secure debug API of SE Manager.

View Project Documentation

Start Provisioning Wizard...

CREATE

1. Use a pecure debug locK device with matched Public Command Key.

Copyright © 2025 Silicon Laboratories. All rights reserved.

59/280

Examples ‘5’ SILICON LABS

. Get SE status... SL_.STATUS_OK (cycles: 8496 time: 223 us)

+ The SE firmware version (MSB..LSB): 0001020E

+ Debug lock: Enabled

+ Device Erase: Disabled

+ Secure debug: Enabled

+ Secure boot: Disabled

+ Debug lock state: Locked

+ Non-secure, Invasive debug lock (DBGLOCK) configuration: Unlocked

+ Non-secure, Non-invasive debug lock (NIDLOCK) configuration: Unlocked
+ Secure, Invasive debug lock (SPIDLOCK) configuration: Locked

+ Secure, Non-invasive debug lock (SPNIDLOCK) configuration: Locked

+ Non-secure, Invasive debug lock (DBGLOCK) current state: Unlocked

+ Non-secure, Non-invasive debug lock (NIDLOCK) current state: Unlocked
+ Secure, Invasive debug lock (SPIDLOCK) current state: Locked

+ Secure, Non-invasive debug lock (SPNIDLOCK) current state: Locked. The device is in secure debug lock state.
+ Press ENTER to issue a secure debug unlock or press SPACE to exit.

2. Press ENTER to unlock the device with 0x3e .

+ Creating a private certificate key in a buffer... SL_.STATUS_OK (cycles: 202354 time: 5325 us)

+ Exporting a public certificate key from a private certificate key... SL_.STATUS_OK (cycles: 199394 time: 5247 us)
+ Read the serial number of the SE and save it to access certificate... SL_.STATUS_OK (cycles: 7084 time: 186 us)
+ Signing the access certificate with private command key... SL_STATUS_OK (cycles: 221849 time: 5838 us)

+ Request challenge from the SE and save it to challenge response... SL_.STATUS_OK (cycles: 4418 time: 116 us)
+ Signing the challenge response with private certificate key... SL_.STATUS_OK (cycles: 220833 time: 5811 us)

+ Creating an unlock token (DEBUG_MODE_REQUEST = 0x3e) to unlock the device... SL_.STATUS_OK (cycles: 935778 time: 24625 us)
+ Get debug status to verify the device is unlocked... SL_STATUS_OK (cycles: 9017 time: 237 us)

+ Success to unlock the device!

. Get SE status... SL_STATUS_OK (cycles: 8683 time: 228 us)

+ The SE firmware version (MSB..LSB): 0001020D

+ Debug lock: Enabled

+ Device Erase: Enabled

+ Secure debug: Enabled

+ Secure boot: Disabled

+ Debug lock state: Unlocked

+ Non-secure, Invasive debug lock (DBGLOCK) configuration: Unlocked

+ Non-secure, Non-invasive debug lock (NIDLOCK) configuration: Unlocked

+ Secure, Invasive debug lock (SPIDLOCK) configuration: Locked

+ Secure, Non-invasive debug lock (SPNIDLOCK) configuration: Locked

+ Non-secure, Invasive debug lock (DBGLOCK) current state: Unlocked

+ Non-secure, Non-invasive debug lock (NIDLOCK) current state: Unlocked

+ Secure, Invasive debug lock (SPIDLOCK) current state: Unlocked

+ Secure, Non-invasive debug lock (SPNIDLOCK) current state: Unlocked. The device is in secure debug unlock state.
+ Issue a power-on or pin reset to re-enable the secure debug lock.

+ Press ENTER to roll the challenge to invalidate the current unlock token or press SPACE to exit.

3. Press ENTER to roll the challenge.

. Check and roll the challenge.
+ Request current challenge from the SE... SL_STATUS_OK (cycles: 4450 time: 117 us)
+ The current challenge (16 bytes):
FA A7 AA 5E EF E6 18 23 E5 2189 84 DB 7E 527D
+ Rolling the challenge... SL_.STATUS_OK (cycles: 19757 time: 519 us)
+ Request rolled challenge from the SE... SL_STATUS_OK (cycles: 4628 time: 121 us)
+ The rolled challenge (16 bytes):
5A7A 81 CC 6E 46 C1 EF B4 A4 CA7A DD A9 85 EB
+ Issue a power-on or pin reset to activate the rolled challenge.
. SE manager deinitialization... SL_STATUS_OK (cycles: 9 time: O us)

Simplicity Commander

The secure debug was designed with three organizations in mind:

Copyright © 2025 Silicon Laboratories. All rights reserved. 60/280

Examples

&= SILICON LABS

e Direct Customer to whom Silicon Labs sells the chip. This chip has the Public Command Key installed in the SE OTP.
e That Direct Customer may be creating a white-labeled product for another company or a sub-component that goes into

another company’s product. The Product Company is the customer of the direct customer.
o The Debug 3rd Party could be anyone, internal or external, that the Product Company decides is qualified to debug the

device.

Because the Public Command Key is installed into the SE OTP of a large number of devices and cannot be changed, the

corresponding Private Command Key must be guarded by a very stringent process. If this Private Command Key is ever
leaked, all the devices programmed with the corresponding Public Command Key will be compromised.

A secure debug unlock user case is described in the following figure.

Silicon Labs
Direct Customer
(e.g- Module
Manufacturer)

Product Company
(e.g. ODM)

Debug 3 Party
(e.g. Silicon Labs)

SILICON LABS
3

EFR32xG2y
Serial #
Challenge 1

Q

Part # Public Certificate Key

Time

Signed by Private
Certificate Key in HSM

Access Certificate
Magic Word

Authorizations O

Tamper Authorizations

Public Serial Number

Command Key
inSEOTP

Public Certificate Key

SHA-256 (Hash)

Sleeby Pivate Access Certificate Signature O

Command Key in HSM

o]

Serial # | Per Device Challenge Response O <
|Generate Prvate Biblic O Debug Access Command Debug sl Llin N LABS
Certificate Key Pair Debug Mode Request Session

EFR32xG2y
Serial #
Challenge 1

Challenge
SHA-256 (Hash)

Debug Access

Read
Challenge 1

Gommand Signature O

Debug Unlock Token

Debug Unlock
Token (Challenge 1)
Debug

Session
Roll Challenge which E
invalidates Token

Debug Access
Command

Debug Mode Request

Access Certificate

Reset the Device —_—

bi lock Tok O 3
Debug Unlock Token
(Challenge 1)

Debug Access
Command Signature Secure Debug Lock
(Challenge 2)
Check Debug Access

Command Signature with
Public Certificate Key in
Access Certificate

& Public

Verify the Serial Number

S in SE OTP
Processing and check the Access
Certificate signature

Unlock Authorized Debug [~ ;

Access Level

Command Key

SILICON LABS

»
EFR32xG2y
Serial #
Challenge 1 to 2

SILICON LABS
)

EFR32xG2y
Sertal #
Challenge 1

The secure debug unlock flow moving across the time axis from left to right is explained below:

Copyright © 2025 Silicon Laboratories. All rights reserved.

L 2

61/280

Examples ‘S’ SILICON LABS

1. The Product Company creates a Private/Public Certificate Key pair for each device. Because the key pair is assigned only to
a single device, the company may not need to protect the Private Certificate Key as securely as the Private Command Key
by the Direct Customer.

In this example, the Private/Public Certificate Key pair (cert_key.pem and cert_pubkey.pem) is generated by running the util
genkey command.

commander util genkey --type ecc-p256 --privkey cert_key.pem --pubkey cert_pubkey.pem

Generating ECC P256 key pair...

Writing private key file in PEM format to cert_key.pem
Writing public key file in PEM format to cert_pubkey.pem
DONE

2. The Public Certificate Key (cert_pubkey.pem) for each device is passed to the Silicon Labs Direct Customer. The part
number and serial number are also required if Direct Customer cannot access the device.
If necessary, run the security status command to get the device serial number.

commander security status --device EFR32MG21A010F1024 --serialno 440048205

SE Firmware version : 1.2.14

Serial number : 000000000000000014b457fffe045a32Debug lock : Enabled
Device erase : Disabled

Secure debug unlock : Enabled

Tamper status : OK

Secure boot : Disabled

Boot status :0%x20 - OK

DONE

3. The Direct Customer then places that Public Certificate Key in the pccess certificate]. The access certificate is per device
because it contains the unique device serial number. This certificate is generated once upon creation of the device, and
thereafter, is generally only modified when the Private/Public Certificate Key pair is changed by the Product Company.
Run the security gencert command with the following parameters from the Product Company to generate an unsigned
access certificate (access_certificate.extsign) in Security Store:

o Device part number
o Device serial number
o Public Certificate Key

commander security gencert --device EFR32MG21A010F1024 --deviceserialno 000000000000000014b457fffe045a32
--cert-pubkey cert_pubkey.pem --extsign

Authorization file written to Security Store:
C:/Users/<username >/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe045a32/certificate_authori

Cert key written to Security Store:
C:/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe045a32/cert_pubkey.pem

Created an unsigned certificate in Security Store:
C:/Users/<username >/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe045a32/access_certificate

DONE

Note:

o The --extsign option to create an unsigned access certificate is only available in Simplicity Commander Version 111.2 or
above.

o The unsigned access certificate is generated with the default certificate authorization file (certificate_authorization.json)

hich uses 0x0000003e for Authorizations and 0x00000000 (HSE-SVM device) for Tamper Authorizations (Tablg

Flements of the Access Certificate on page 12).

4. The signing of the access certificate can be done by passing an unsigned access certificate to a Hardware Security Module
(HSM) containing the Private Command Key.

In this example, the OpenSSL is used to sign the access certificate (access_certificate.extsign) in Security Store with the
Private Command Key (command_key.pem). The pccess certificate signature] is in the cert_signature binfile.

Copyright © 2025 Silicon Laboratories. All rights reserved. 62/280

Examples ‘S’ SILICON LABS

Run the util signcert command with the following parameters to verify the signature and generate the signed access
certificate (access_certificate.bin):

o Unsigned access certificate

o Access certificate signature

o Public Command Key

commander util signcert access_certificate.extsign --cert-type access --signature cert_signature.bin
--verify command_pubkey.pem --outfile access_certificate.bin

R = D97E43FEA278207080D6D0808B46810C1167F123AF1CA9FAF2DEOF4322B97ACE
S = FEDFEA11A3C83AFFCD5293283B13A50580862B9F651AAE08012C2BFB6BASEGS7
Successfully verified signature

Successfully signed certificate

DONE

Notes:
o Put the required files in the same folder to run the command.
o The util signcert command for access certificate is only available in Simplicity Commander Version 111.2 or above.
o The access certificate signature can be in a Raw or Distinguished Encoding Rules (DER) format.

5. The access certificate is passed to the Product Company. The purpose of the access certificate is to grant overall debug
access capabilities to the Product Company and authorize them to allow third parties to debug the device. The Product
Company can now use the access certificate to generate the Debug Unlock Toker]. The same access certificate can be
used to generate as many Debug Unlock Tokens as necessary without having to ever go back to the Direct Customer.

6. To create the Debug Unlock Token, a debug session must be started with the device and the challenge value (which is a
random number Challenge 1 in this example) should be read out to generate the phallenge responsel

Run the security gencommand command to generate the challenge response without Jebug access command signature] and

store it in a file (command_unsign.bin).

commander security gencommand --action debug-unlock--unlock-param 1111 -o command_unsign.bin --nostore
--device EFR32MG21A010F1024 --serialno 440048205

Unsigned command file written to:
command_unsign.bin
DONE

Notes:
o The data in the --unlock-param option are the bits 2 to 5 of febug mode request| in the hallenge response|.
o The default value 1111(reset all debug options) is in place if the security gencommand command does not include the --

unlock-param option.
7. The challenge response is then cryptographically hashed (SHA-256) to create a digest. The digest is then signed by the
Private Certificate Key to generate the debug access command signature.
The signing of the challenge response can be done by passing an unsigned challenge response to a Hardware Security
Module (HSM) containing the Private Certificate Key.
In this example, the OpenSSL is used to sign the challenge response (command_unsign.bin) with the Private Certificate Key
(cert_key.pem). The debug access command signature is in the command_signature.binfile.

openssl dgst -sha256 -binary -sign cert_key.pem -out command_signature.bincommand_unsign.bin

8. Run the security unlock command with the access certificate (access_certificate.bin) from Direct Customer and debug access
command signature (command_signature.bin) in step 7 to generate the Debug Unlock Token.

commander security unlock --cert access_certificate.bin --command-signature command_signature.bin--unlock-param 1111 --device

EFR32MG21A010F1024 --serialno 440048205

Copyright © 2025 Silicon Laboratories. All rights reserved. 63/280

Examples ‘S’ SILICON LABS

Certificate written to Security Store:
C:/Users/<username >/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe045a32/access_certificate

R = 67B51151F1ESF1BB9A49EC8D5885B221BD3D331D53741EEF54F81FOF3CB40455

S = 066C6ABSEDE3AE784DB1F75F44C5CA931736116D5A2104DBF44BC77ED8F49282
Command signature is valid

Secure debug successfully unlocked

Command unlock payload was stored in Security Store

DONE

Notes:
o Put the required files in the same folder to run the command.
o The debug access command signature can be in a Raw or Distinguished Encoding Rules (DER) format.
o It requires Simplicity Commander Version 111.2 or above to support signature in DER format.
o The data in the --unlock-param option are the bits 2 to 5 of febug mode request] in the Debug Unlock Toker]. This value
MUST be equal to the value of --unlock-param option in step 6.
o The default value 1111 (reset all debug options) is in place if the security unlock command does not include the --

unlock-param option.
9. (Alternative) The key protection is not required if the Private Certificate Key is ephemeral. Steps 6 to 8 can be implemented
by running the security unlock command with the access certificate (access_certificate.bin)from the Direct Customer and
Private Certificate Key (cert_key.pem) to generate the Debug Unlock Token.

commander security unlock --cert access_certificate.bin --cert-privkey cert_key.pem--unlock-param 1111
--device EFR32MG21A010F1024 --serialno 440048205

Certificate written to Security Store:
C:/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe045a32/access_certificate

Cert key written to Security Store:
C:/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe045a32/cert_pubkey.pem

Created unsigned unlock command

Signed unlock command using
C:/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe045a32/cert_key.pem
Secure debug successfully unlocked

Command unlock payload was stored in Security Store

DONE

Notes:
o The data in the --unlock-param option are the bits 2 to 5 of febug mode request| in the Debug Unlock Toker].
o The default value 1111 (reset all debug options) is in place if the security unlock command does not include the --

unlock-param option.
10. The Debug Unlock Token (aka Command unlock payload) file (unlock_payload_0000000000111110.bin , where 0000000000111110
is the value of ebug mode request) is stored in the Security Store. The location in Windows is C:\Users\<PC user

name >\AppData\Local\SiliconLabs\commander\SecurityStore\device_\<Serial number>\challenge_\<Challenge value> .

> ThisPC > OSDisk (C:) > Users > amleung > AppData > Local > Siliconlabs > commander > SecurityStore > device 000000000000000014b457fffe045a32 > challenge_8b925526a33b1ad3a95075055246e044

~

[Name Date modified Type Size

[J&> unlock_payload_0000000000111110.bin 6/10/2021 3:37 PM BIN File TKB

Users can also use the security getpathcommand to get the path of the Security Store or a specified device.

commander security getpath

C:/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore
DONE

commander security getpath --deviceserialno 00 00000000014b457fffe045a32

Copyright © 2025 Silicon Laboratories. All rights reserved. 64/280

Examples ‘S’ SILICON LABS

C:/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe045a32

DONE

11. The Debug Unlock Token and the device are now delivered to the Debug 3rd Party.
Run the security gencommand command to create the Security Store to place the Debug Unlock Token file.

commander security gencommand --action debug-unlock --device EFR32MG21A010F1024 --serialno 440048205

Unsigned command file written to Security Store:
C:/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe045a32/challenge_8b9255

Copy the Debug Unlock Token file (unlock_payload_0000000000111110.bin) from Product Company to the Windows Security
Store challenge_\<Challenge value> folder located in C:\Users\<PC user
name >\AppData\Local\SiliconLabs\commander\SecurityStore\device_\<Serial number>\challenge_\<Challenge value> .

12. The device compares the Debug Unlock Token contents with its internal serial number, challenge value, and Public Command
Key to determine the token’s authenticity. If authentic, it will execute the debug access command to unlock the device;
otherwise, it will ignore the command.

Run the security unlock command to unlock the device.

commander security unlock --unlock-param 1111 --device EFR32MG21A010F1024 --serialno 440048205

Unlocking with unlock payload:
C:/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe045a32/challenge_8b9259
debug successfully unlocked

DONE

Notes:
o If the security store has multiple tokens for the selected device, use --unlock-param option to specify which unlock
token is chosen to unlock the device.
o Simplicity Commander will only use the token with value 1111 (error if not available) from the security store to unlock
the device if the security unlock command does not include the --unlock-param option.
13. For Simplicity Commander = v1.13.3, run the security status --trustzone command to check the full debug lock status of the
device.

commander security status --trustzone --device EFR32MG21A010F1024 --serialno 440048205

SE Firmware version : 1.2.14

Serial number : 000000000000000014b457fffe045a32
Debug lock : Enabled

Device erase : Disabled

Secure debug unlock : Enabled

Debug lock state: Unlocked

Non-secure, invasive debug lock (DBGLOCK) : Unlocked
Non-secure, non-invasive debug lock (NIDLOCK) : Unlocked
Secure, invasive debug lock (SPIDLOCK) : Locked

Secure, non-invasive debug lock (SPNIDLOCK): Locked
Non-secure, invasive debug lock state (DBGLOCK) : Unlocked
Non-secure, non-invasive debug lock state (NIDLOCK) : Unlocked
Secure, invasive debug lock state (SPIDLOCK) : Unlocked
Secure, non-invasive debug lock state (SPNIDLOCK): Unlocked
Tamper status : OK

Secure boot : Disabled

Boot status :0%x20 - OK

DONE

14. The Debug 3rd Party can now use this same Debug Unlock Token to unlock the device (step 12), over and over again after
each power-on or pin reset, until they have finished debugging the device.
15. Once the Debug 3rd Party has finished debugging, they will send the device back to the Product Company.

Copyright © 2025 Silicon Laboratories. All rights reserved. 65/280

Examples ‘S’ SILICON LABS

will effectively invalidate any Debug Unlock Token that has been previously given to any third party.

Run the security rolichallenge command and reset the device to invalidate the current Debug Unlock Token. The challenge
cannot be rolled before it has been used at least once — that is, by running the security unlock or security disabletamper
command.

commander security rolichallenge --device EFR32MG21A010F1024 --serialno 440048205

Challenge was rolled successfully.
DONE

The unlock token is invalidated after rolling the challenge because any previously issued Debug Unlock Token now contains
a different challenge value (Challenge 1) than the challenge value currently in the device (Challenge 2).

The validation process of any previously issued Debug Unlock Token will always fail until a new Debug Unlock Token is
issued with a current matching challenge value (Challenge 2).

Note: Direct Customer can directly use the Private Command Key on the connected chip to generate the
Debug Unlock Token in Security Store. But it has a high risk (cannot use HSM) to leak the Private
Command Key to a 3rd party when using this approach.

commander security unlock --command-key command_key.pem--unlock-param 1111 --device EFR32MG21A010F1024
--serialno 440048205

Authorization file written to Security Store:
C:/Users/<username >/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe045a32/certificate_authori

Generating ECC P256 key pair...
Cert public key stored at:
C:/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe045a32/cert_pubkey.pem

Cert private key stored at:

C:/Users/<username >/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe045a32/cert_key.pem
Command public key stored at:
C:/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe045a32/command_pubke

Command private key stored at:
C:/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe045a32/command_key.pe

Certificate was signed with key:
C:/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe045a32/command_key.pe

Certificate written to Security Store:
C:/Users/<username >/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe045a32/access_certificate

Created unsigned unlock command

Signed unlock command using

C:/Users/<username >/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe045a32/cert_key.pem
Secure debug successfully unlocked

Command unlock payload was stored in Security Store

DONE

Simplicity Studio

Use the Debug Unlock Token file (unlock_payload_0000000000111110.bin) generated in [Jsing Simplicity Commandel steps 8
or 9 to unlock the device with Simplicity Studio.

1. Open the unlock_payload_0000000000111110.bin file with the Hex Editor Ned.

Copyright © 2025 Silicon Laboratories. All rights reserved. 66/280

Examples &= SILICON LABS

AP 35 unlock_payload_0000000000111110.0in X
0o000000 00 01 02 03 04 05 06 07 08 0% 0a Ob 0Oc 0d 0Oe 0Of

Q0000000 OO 01 £fd 3= 00 00 00 Ol ce ec &5 3e 00 00 0O 8. .0>....000>...
00000010 00 00 00 0O 00 00 OO0 00 OO0 00 0O 00 OO0 Od €f £f£ficunnnnn ol

00000020 fe O0a 3a 5f b2 7= £f0 b4 47 3c 79 09 04 ab 2d ce 0O.: O~0Oc<y..0-00
00000030 cb 43 28 5 10 07 ba 85 23 c6 e8 ad 77 0f 0Oa 5Sb c (0. .00#00w. . [O0
00000040 al =8 €0 4a <5 12 €5 as 2= cof de €9 2e £95 05 5f “J0.e0>001.0.02w
00000050 S5a 77 47 ed 5a 00 4b 90 =6 2c 08 87 d8 ce €1 2f GOz . KOO, .0O00a/£0
00000060 66 87 Tb 58 56 05 13 ed 33 B8 €3 4% e7 B2 00 Te {XVv. .030cI0. vOO<
00000070 26 eb 3c 92 5d 11 =6 2 22 9d <8 49 49 b5 13 be 0] .00200110.0} €0
00000080 7d 40 £5 5 df 34 £f 63 07 6a &9 bf 10 3a £f &5 O040c . j0. :O020um
00000050 32 b4 75 &d S%c 531 d9% 72 4d 4f b4 a% 25 14 29 4f O0rMoD0%. jo0. 1"
000000a0 B2 00 €9 27 5c el 93 12 20 98 7= 70 d7 ca 4a 3f \OO.O~pO0J7<. 100
000000b0 3c 13 21 87 £5 87 d0 b7 24 8d 57 71 be 13 50 al O=$0wg0. POv~00.R
0000000 76 7= £7 a& 12 52 2f d9% B8f de €3 as 15 43 al 4¢ /¢0c0.cOrFOs-0) 00
00000040 fc 53 2d db 29 90 <7 d0 03 1c 41 1f 41 e= 5Sa 53 O..a.20zs0.&0. . .
000000=0 £4 10 26 £1 cooo

2. Click View to open the context menu, and then select Group By - Double words to convert the token into a little-endian
format.

53 Hex Editor Neo
File Edit BT Select Operations Bookmarks NTFS Streams Tools History Window Help

ol Too! Windows 3 ol 55 A D & °5°* | mwo (il (07

| - VEE PRS2 He| sl
W r-;;, Export Confl_guratl_on...

r-a Import Configuration...

00000000 |) i E 09 Oa Ob Oc 0d Oe Of

00000000 [i7h Reset Configuration l ce =c &5 3= 00 00 00 B. . o>_ .. _ooo>. ..
00000010 Predefined Layouts > D 00O 00 00 00 04 6f £f S mmaie R A OB B el R od
00000020 7 3¢ 7% 09 04 ab 2d ce O.: O~O0G<y..0-00
ooo00030 EH Toggle Tool Windows F11 B cé e8 ad 77 OF 0a 5b C (0..O00FO0Ow.- . [0O0O
00000040) b of de €9 2 £9 05 9f ‘JO.eO>004i.0.0z5w
00000050 Refresh (Disk/Memory) F9 & oo 0B 87 a8 e& 61 2F cOz .XKOO, .O0O0O0a/ £0
00000060 =& ronnect to.. B 88 63 49 e7 B2 00 76 {XV..030cI0O.vOO<
00000070 2 9d c8 49 49 b5 13 be O] .00200II0.0}e€0
00000080 M| Code Pane 7 6a 9 bf 10 3a £f &5 OO040c¢.50. :0020um
00000090 §F Text Pane H 4f b4 a9 25 14 29 4f OeOrMcocOOS%.)oO.ir-
00000020 D 58 7e 70 d7 ca 4a 3f \OO.O~p0O032<. 100
000000b0 Offset > B ad 57 71 be 13 50 al O=50wWgO.°POv~00.R
000000c0 Display As > Edc €3 ae 15 43 al 46 /&0cO.cOrOs-0O)00
00000040 :.JG[OUD'B!F ol BYIE.‘S Ctrl+6 0. .a.a0z=s0.&0. . .
gggggg:g Columns > Words Ctrl+7 A

00000100 Byte Order] Double words Ctrl+8

oooool1o Encoding 5 Quad words Ctrl+9

00000120 | r

3. Select all (Ctrl+A) and copy (Ctrl+C) the Debug Unlock Token to a text editor.

4P| S5 uniock_payload_0000000000111110.bin X|
| 00 o1 02 03 0% 05 e 07 [05 0a b [od e 0f

0 ££6£0400 S5£3a0afe B4£07eb2 09793c47 ce2dabl4 e52843ch §5ba0710 adec623 Sk0alf77
2f6lccd8 5BTbB8766 edl30556 495638833 TE60082e7 S23cebef c2efl15d 4%cB9%d32 belldb545
4£291425 276500b2 1393cl5c 707e5%8e0 3fdacad? 8721133c b7d0B7£5 71578424 al5013be
411c03 535aesed]l f£12610f4

000

O eSeccell o
00000040 4atlebfal ae6512cS 6%decfie S£05£92e cd47775a S04b005a &
00000080 e5£9407d 63£f34df bfe56al7 e3ff3al0 64750432 72d551%¢c a
0000000 aBf7Te76 452f5212 as63doBf 46a14315 db2d53fec d0cTS025 1

™

4. Use the text editor to remove all the spaces from the token.

fd0100010000003ee5ecce010000003e000000000000000000000000ff6f0d0O0...

5. Right-click the selected debug adapter RB (ID:J-Link serial number) to display the context menu.

Copyright © 2025 Silicon Laboratories. All rights reserved. 67/280

Examples &= SILICON LABS

HHETAREB-xEEEET O

. EFR32xG21 2.4 GHz 10 dBm RB (ID:440030580)
» B EFR32xG21 2.4 GHz 10 dBm Radio Board (BRD4181A)
» B Wireless Starter Kit Mainboard (BRD4001A Rev A01)

Connect

Disconnect

Start capture

Start capture with options...
Stop capture

Redo last upload

Upload application...
Upload adapter firmware...
Rename

Make a sniffer

2 Launch Console...
14 spiffer Configurator...
@ Bluetooth NCP Commander..,
3 Device configuration..
wu Force Unlock.
Select Crypto Profile..
Clear Unlock Token
View Device Certificates

6. Click Set Unlock Token to open the Add Debug Unlock Token dialog box. Enter the name (e.g., AN1190 Token) for this
Debug Unlock Token, and copy the content in step 4 to the Debug Unlock Token: box. Click [OK] to confirm and exit.

Bl Add Debug Unlock Token O X ‘

Add pre-generated unlock tokens for this device

Name: | ANT190 Token |

Debug Unlock Token: . !dD'EDﬂDmODDCHBeeSe:ceﬂ1DDCH}OGSmm)mmﬁfﬂdmﬂiaﬂa[Eb4fﬂ?eb209'?93c4?r_e2dabﬂ4e52343cb]

Disable Tamper Token: |

Note: The Simplicity Studio can only keep one Debug Unlock Token on each WSTK.

7. Open Security Settings of the selected device as described in Using Simplicity Studid}.

8. The token added in step 6 should display on the Crypto Profile: field. If not, click the link next to Crypto Profile: to select the
token from the Crypto Profile Manager drop-down list. The Simplicity Studio will automatically add the WSTK J-Link serial
number (-J-Link Silicon Labs (serial number)) to the token's name.

Copyright © 2025 Silicon Laboratories. All rights reserved. 68/280

Examples &= SILICON LABS

3§)-Link Silicon Labs (440030580) O X |

Configuration of device: J-Link Silicon Labs (440030580)

Device hardware | IApplication images_l.Scratchpad _:PachetTracejSecumy Serting;' . Adapter Cprrﬁgwatiur;: ﬂUNé; J-Link CDﬂﬁguF!tiﬂr;!

Read From Device Start Provisioning Wizard...
Device Status
Crypto Profile: 0 i 4 ﬂ Crypto Profile Manager O

SerialNumber: 0000000000000000000D6FFFFEQOA3ASFE

Challenge: 37TAECBAB5B6ED3DTC1525543D310B2ED :
Command Key: B1BCGF6FAS6640EDS22B2EEOFSBICFTESDAsE | Name ke
device Local Development |
d debugUnlock fd0100010000003ee5ecce010000003000000000000C

Crypto Profile: [AN1190 Token-J-Link Silicon Labs (440030580) ~| &/
None

Sign Key: CAAF4ACHIAABSS12DB50FTAZ6AESBA8011
SE Certificate: Could not determine unique target subject

MCU Certificate; Could not determine unique target subject
SE Firmware Version: 1.2.9

Host Firmware Version: 255.255.255

Boot Status: 0x00000020

Secure Boot: Not Provisioned

'Roll Challenge | Disable Tamper | Uniock Debug Port (i
Debug Locks <
Enable Secure Debug Uniock ¥ | Disable |
Enable Debug Lock: v | Enabie | ok | | Cancel |
Disable Device Erase: % Dbl

9. Click [Unlock Debug Port] to use the token in Crypto Profile: to unlock the device (invalid token will display an error
message). The device stays in the unlock state until the next power-on or pin reset. Click [OK] to exit.

Copyright © 2025 Silicon Laboratories. All rights reserved.

69/280

Examples

&= SILICON LABS

a J-Link Silicon Labs (440030580)

Configuration of device: J-Link Silicon Labs (440030580)

Device hardware | Application images | Scratchpad | Packet Trace |‘$ecurity Settings . Adapter Configuratio CTUNE | J-Link Configuration| l.
_' Read From Dew:e' 'Start Provisioning Wizard...

Device Status

Crypto Profile: AN1190 Token-J-Link Silicon Labs (440030580)

SerialNumber: 0000000000000000000D6FFFFEOA3ASF

Challenge: 37AECBAG586ED3DT7C1525543D3108B2ED
Command Key: B1BCOF6FAS6640ED522B2EEDFSB3CF7TESD48FO0BES148FODCOB440F0A4E1DCA4TCO4119EDSATBE31B770TESFIDC

Sign Key: CAAF4ACGIAABI512DB50FTAZ6AESB4801183DB5417ET29A56DA974F4E08AS62CDEBDTIDEAS411332DC1AT4337

SE Certificate: Could not determine unique target subject i il
MCU Certificate: Could not determine unique target subject
SE Firmware Version: 1.29

Host Firmware Version: 255.255.255

Boot Status: Ox00000020

Secure Boot: Not Provisioned

certificate Detai

‘Roll Challenge | Disable Tamper | Unlock Debug Port | Dievice frase.

Debug Locks Temporarily enable access to the debug interface. Debug
access will remain enabled until the next power-on reset.

Enable Secure Debug Unlock ¥ Disable

Enable Debug Lock v | Enable

Disable Device Erase: % | Disable

[ox]I coe

O .X"

10. The Simplicity IDE will automatically use the selected Debug Unlock Token in Crypto Profile for debugging and flashing. For

other IDE, the device should unlock again (step 9) after power-on or pin reset. After finished debugging, open the Security

Settings of the selected device as described in Using Simplicity Studio].
11. Click [Roll Challenge] to generate a new challenge value to invalidate the Debug Unlock Token added in step 6. Click [OK]

to exit.

Copyright © 2025 Silicon Laboratories. All rights reserved.

70/280

Examples &= SILICON LABS

38 J-Link Silicon Labs (440030580) O

Configuration of device: J-Link Silicon Labs (440030580)

[Device hardware | Application images Scratchpad Packet Trace |Security Settings . Adapter Configuration| CTUNE| J-Link Configuration|

Read From Device'
Device Status

Crypto Profile: AN1190 Token-J-Link Silicon Labs (440030580)
SerialNumber: _0000000000000000000D6FFFFEQA3ASE

| Chalienge: CA595350691 C6938C9B23EFGOBD§8A?A]
Command Key: B1BC6F6FAS6640ED522B2EEOFSBICFTESD48FG0BEB148FODCOB440F0A4E1DCA47C04119EDGATBE31B7707ESFID00T

Sign Key: C4AF4ACE9AABI512DBS0F7TAZ6AESB4801183D85417E729A56DAITAF4EOBAS62CDEGOT19DEAS411332DC1AT433720

SE Certificate: Could not determine unigue target subject Certificate Details,.,
MCU Centificate: Could not determine unique target subject
SE Firmware Version: 1.2.9

Host Firmware Version: 255.255.255

Boot Status: 0x00000020

Secure Boot: Not Provisioned

| Roll Challenge || Disable Tamper Uniock Debug Port Device Erase.

ol Challenge to invalidate previously generated tokens.
The challenge value is a secure number used in the

: generation of tokens like the Debug Unlock token. Once a
nable Sec token has been generated, it will be valid as long as the
Enable challenge value remains the same.,

Centificate Detai

Debug Locks

Disable Device Erase: X Disable.

‘Start Provisioning Wizard...

12. Right-click the selected debug adapter RB Board (ID:J-Link serial number) to display the context menu.

Copyright © 2025 Silicon Laboratories. All rights reserved.

71/280

Examples

&= SILICON LABS

HSHUAXEB~yEEEET O

v . EFR32xG21 2.4 GHz 10 dBm RB (ID:440030580)
> F4 EFR32xG21 2.4 GHz 10 dBm Radio Board (BRD41814A)
» B4 Wireless Starter Kit Mainboard (BRD4001A Rev A01)

=
L{fﬂ

Connect

Disconnect

Start capture

Start capture with options...
Stop capture

Redo last upload

Upload application...
Upload adapter firmware...
Rename

Make a sniffer

Launch Console...
Sniffer Configurator...

Bluetooth NCP Commander...

Device configuration...
Force Unlock...

Select Crypto Profile...
Set Unlock Token...

1

gl

View Device Certificates

13. Click [Clear Unlock Token] to delete the WSTK Debug Unlock Token from Simplicity Studio.

IAR

Use the Debug Unlock Token file (unlock_payload_0000000000111110.bin) in the Security Store (Bimplicity Commande] step
11) to unlock the device with IAR (Windows).

1

. The Windows environment variable PATH should include the folder

(C:ASiliconLabs\SimplicityStudio\v5\developer\adapter_packs\commander) that locates the commander.exe of Simplicity

Commander.

. Right-click the project in the workspace, and then click Options....

mmﬁ - ! !
Default v
Files o .
=R Jblink_baremetal - Default ™ = IERE
h pra—— " Options... I
& B Simplicity Configurator
M autogen Make .
M config Comile
M gecko_sdk_320 F' .
app.C Rebuild Al .
— B apph Clean
hlink.c ™
|_ blink.h C-STAT Static Analysis >
main.c : L
i Step Build
— Dblink_baremetal.ipl:f SPL
L& Output Add >
Clblink_baremetal.out L]
Remove
Rename...
Version Control System >
Open Centaining Folder...
File Properties...
Set as Active

Copyright © 2025 Silicon Laboratories. All rights reserved.

721280

Examples &= SILICON LABS

3. Click Build Actions to open the Build Actions Configuration dialog box. Enter the phrase below to the Post-build command
line: box. Click [OK] to exit.

cmd /c "commander security unlock--unlock-param 1111 EFR32MG21A010F1024 --serialno 440048205 > $PROJ_DIR$\log.txt 2>&1"

Options for node "blink_baremetal” x

Categorny:

General Options

Static Analysis

Runtime Checking
C/C++ Compiler Build Actions Configuration
Assembler
Output Converter
Custom Build

. Post-build command line:

Linker emd /¢ "commander security unlock ~unlock-param 1111 EFR32MG2: | ..
Debugger

Simulator
CADI

CMSIS DAP
GDB Server
I-jet
J-Link/3-Trace
Tl Stellaris
Nu-Link

PE micro
ST-LINK
Third-Party Driver
TI MSP-FET
TI XDS

Pre-build command line:

Cancel

4. After building the project, the security unlock in the Post-build command unlocks the device using the Debug Unlock Token
in Security Store. The device stays in the unlock state until the next power-on or pin reset.

Messages ~
sl_system_initc

sl_system_process_sction.c

sl_sleeptimer_hal_rcc.c

startup_efriZmgél.c

system_efr3Zmg2l.c

Linking

hlink_harermetal out

Comverting

Fedarming uild Action

Tatal number of errors: 0
Total number of warnings: 0 w

£ >

Build | Debuglog

Note: If the project is already up-to-date, it will not invoke the Post-build command to unlock the device.
Use a dummy edit (add space or newline) on one of the source files in the project to trigger the build

Copyright © 2025 Silicon Laboratories. All rights reserved. 73/280

Examples ‘S’ SILICON LABS

action.

Messages F

Building configuration: blink_baremetal - Default
Updating build tree...

5. The > $PROJ_DIR$\log.txt 2>&1 redirects the security unlock command output to the log.txt file in the IAR project folder.

log.bxt x -
fo
Unlocking with unlock payload:

C:/Users/amleung/AppData/Local/Siliconlabs/commander/SecurityStore/device_0000000000000000000d6ffffeda3a5f/challenge_3Taechat586ed3d7c1525543d310b2ed/unlock_payload_0000000000111110.bin
re debug successfully unlocked|

DONE

Permanent Debug Lock
Simplicity Commander
1. Run the security status command to get the selected device configuration.

commander security status --device EFR32MG21A010F1024 --serialno 440048205

SE Firmware version : 1.2.14

Serial number : 000000000000000014b457fffe045a32
Debug lock : Disabled

Device erase : Enabled

Secure debug unlock : Disabled

Tamper status : OK

Secure boot : Disabled

Boot status :0%x20 - OK

DONE

2. Run the security lock command to lock the selected device.

commander security lock --device EFR32MG21A010F1024 --serialno 440048205

WARNING: Secure debug unlock is disabled. Only way to regain debug access is to run a device erase.
Device is now locked.
DONE

3. Run the security disabledeviceerase command to disable device erase.

commander security disabledeviceerase --device EFR32MG21A010F1024 --serialno 440048205

THIS IS A ONE-TIME command which Permanently disables device erase.
If secure debug lock has not been set, there is no way to regain debug access to this device.

Type ‘continue’ and hit enter to proceed or Ctrl-C to abort:

Disabled device erase successfully
DONE

Copyright © 2025 Silicon Laboratories. All rights reserved. 74/280

Examples ‘S’ SILICON LABS

Note: This is an IRREVERSIBLE action, and should be the last step in production.

4. Run the security status command again to check the device configuration.

commander security status --device EFR32MG21A010F1 --serialno 440048

SE Firmware version : 1.2.14

Serial number : 000000000000000014b457fffe045a32
Debug lock : Enabled

Device erase : Disabled

Secure debug unlock : Disabled

Tamper status : OK

Secure boot : Disabled

Boot status :0%x20 - OK

DONE

Simplicity Studio

1. Open Security Settings of the selected device as described in [Using Simplicity Studid].

2. Click [Enable] next to Enable Debug Lock: to lock the device. The following Enable Debug Lock Warning is displayed. Click
[Yes] to confirm. This configures standard debug lock.

Configuration of device: J-Link Silicon Labs (440048205)
:Application images _-Device hardware“Security Seﬁings;- Adapter Configuratioﬁ._ CTUNE-: J-Link Configuration._ Scratchpad: Packet Trace”i

Read From Device Start Provisioning Wizard...

Device Status

Crypto Profile: Local Development
SeriaiNumber: 000000000000000014B457FFFEO45B34

Shallenge: ﬂ Enable Debug Lock Warning >
Command Key
Sign Key: f - Secure Debug is not yet enabled. Enabling the debug lock will require a device erase 1o

¥ unlock

SE Certificate: ficate Details...
MCU Certifica ficate Details...
SE Firmware e Ho

Boot Status: O
Secure Boot; Not Provisioned

Roll Challenge | Disable Tamper | | Unlock Debug Port | | Device Erase

Debug Locks
Enable Secure Debug Unlock: 3§ | Enable
Enable Debug Lock: € Enable

Disable Device Erase: + | Disable

Cancel

Copyright © 2025 Silicon Laboratories. All rights reserved. 75/280

Examples

3. Click [Disable] next to Disable Device Erase: to disable the device erase. The following Disable Device Erase Warning is

&= SILICON LABS

displayed. Click [Yes] to confirm. This configures a permanent debug lock.

3% J-Link Silicon Labs (440030580) O X

Configuration of device: J-Link Silicon Labs (440030580)

Device hardwar | Application image |Scratchpa |Packet Trac ;-Security Setting - Adapter Configurati |CTUN |J-Link Configuratio |
|Read From Device ' Start Provisioning Wizard...|
Device Status

Crypto Profile: Local Development

SerialNumber. D00000000000000014B457FFFEQ45A32

Challenge: F182860173BF5AE786C177TAEBEZ2F237

Command Key: FI017F10631575642D7TACFOCCCDB2461DD759923E3828849EE044AA3181122400CB4EESFAT4AEEFBCO354B6A4E:
Sign Key: CAAF4ACEIAABO512DB50FTAZ6AESB4801183085417TET29A56DA0TAF4EDBAS62CDEGD19DEAS411332DCIATAIY
SE Certificate: Could not determine unique target subject Certificate Details..
MCU Certificate: Could not determine unique target subject Certificate Details,,
Tamper Summary: No Tamper Sources Modified View,,

SE Firmware Version: 1.2.9

Host Firmware Version: 255.255.255

Boot Status: 0x00000020

Secure Boot Disabled

(Roll Challenge | Disable Tamper | Uniock Debug Port | Device Erase

This aperation performs a device erase and resets the debug
Debuglocks configuration to its initial unlocked state. Only available
Enable Secure Debug Unlocke 3§ | Enable before DISABLE DEVICE ERASE has been executed. This
- - : operation ciears and verifies the compiete flash and ram of
Enable Debug Lock: o | Enable the system, excluding the user data pages and one-time
Se— programmable commissioning infarmation in the secure

Disable Device Erase: ¥ | Disable elemant.

[ok || concel

Note: This is an IRREVERSIBLE action, and should be the last step in production.

Copyright © 2025 Silicon Laboratories. All rights reserved.

76/280

Precautions

Precautions

&= SILICON LABS

Precautions

Device Erase for Secure Debug

Disable the is mandatory for secure debug as described in the following table.

Secure Debug

Enabled

Enabled

Notes:

Device Erase

Enabled

Disabled (3)

Debug Lock
Enabled

Enabled

1. This state is only for secure debug testing.

2. See [Standard Debug UnlocH.

State

Insecure debug lock

(1)

Secure debug lock

Description

The device will return to the default
debug lock properties after applying the
standard debug unlock. (2)

The device cannot be unlocked using the
Erase Device command. The device will
change to the permanent debug lock
state if disabling the Secure Debug
property. (4)

3. This is an IRREVERSIBLE action and should be disabled AFTER the secure debug is enabled.

4.See Permanent Debug LocH.

commander security lockconfig --secure-debug-unlock disable --device EFR32MG21A010F1024
--serialno 440048205

WARNING: Device erase is disabled and secure debug access is locked.

If disabling secured debug access, there is no way to regain debug access to this device if continuing with this command.
Type 'continue' and hit enter to proceed or Ctrl-C to abort:

continue

Secure debug unlock was disabled

DONE

Secure Boot and Debug Lock

The following table describes the different debug lock scenarios on the secure boot-enabled device.

Secure Debug

Disabled

Disabled

Disabled

Enabled

Device Erase

Enabled

Enabled

Disabled

Disabled

Debug Lock

Disabled

Enabled

Enabled

Enabled

State

Standard debug
unlock

Standard debug lock

Permanent debug lock

Secure debug lock

Recover from Secure Boot Failure

Flash a correctly signed image.

Flash a correctly signed image after
standard debug unlocking the device.

There is no way to recover the device.
Make sure the programmed image is
correctly signed before locking the
device.

Flash a correctly signed image after
secure debug unlocking the device.

Copyright © 2025 Silicon Laboratories. All rights reserved.

771280

Precautions &= SILICON LABS

Note: See section Recover Devices when Secure Boot Fails in Beries 2 Secure Boot with RTSL] to flash a
correctly signed image on different debug lock scenarios.

Copyright © 2025 Silicon Laboratories. All rights reserved. 78/280

https://docs.silabs.com/mcu-bootloader/latest/series2-secure-boot-with-rtsl/

Failure Analysis &= SILICON LABS

Failure Analysis

Failure Analysis

The following table describes the different scenarios when returning a Series 2 device to Silicon Labs for failure analysis.

State Secure Boot Disabled Secure Boot Enabled (2)

Standard debug unlock Device erase is not necessary for failure Device erase is not necessary, but a correctly
analysis. signed image is required to perform failure

analysis.

Standard debug lock Device erase is required to perform Require device erase and correctly signed
failure analysis. image to perform failure analysis.

Permanent debug lock Cannot perform failure analysis. Cannot perform failure analysis.

Secure debug lock (1) Require debug unlock token to perform Require debug unlock token and correctly
failure analysis. signed image to perform failure analysis.

Notes:

1. Follow the procedures in Bimplicity Commande| to generate a valid debug unlock token for each device returned to Silicon
Labs for failure analysis.

2. Secure boot enabled devices, especially with secure boot failure, may limit Silicon Labs' ability to determine the root cause
of failure.

Copyright © 2025 Silicon Laboratories. All rights reserved. 79/280

Series 2 TrustZone &= SILICON LABS

Series 2 TrustZone

Series 2 TrustZone

NOTE: This section replaces AN1374: TrustZone. Further updates to this user guide will be provided here.

ARMvV8-M TrustZone is a technology that provides a foundation for improved system security in embedded applications. It
allows the ARMv8-M to be aware of the security states of the system. Series 2 devices use the Cortex-M33 core to
implement the ARMv8-M TrustZone security extension, which provides the ability to restrict access to peripherals and
memory regions based on the processor security attribute. TrustZone works with the MPU, which controls
privileged/unprivileged execution of code to provide a complete security solution.

ARMv8-M TrustZone is an extensive topic. The references below are publicly available on the ARM Develope
Documentation website.

o ARMV8-M Architecture Reference Manual

« ARMv8-M Architecture Technical Overview

o ARM Cortex-M33 Processor Technical Reference Manual

o Bystem Design with ARMv8-M

e [TrustZone technology for ARMv8-M Architecture]

o ARM Cortex-M33 Devices Generic User Guide]

o Becure software guidelines for ARMv8-M

o Boftware Development in ARMv8-M ArchitecturdReading guides:

e Beginner

« Minimal experience with TrustZone, starting with

 Intermediate - Have a basic understanding of the TrustZone technology, starting with Bus Level Security|
« [Advanced - Developed experience on TrustZone, starting with [TrustZone Implementatior]-Demo - Starting with TrustZone
Platform Examples

Key Points

e TrustZone Basics

o Bus Level Security (BLS)

e Secure and Privileged Programming Model
e TrustZone Implementation

o Upgrade Existing Application to TrustZone
o TrustZone Platform Examples

Copyright © 2025 Silicon Laboratories. All rights reserved. 80/280

https://developer.arm.com/docs
https://developer.arm.com/documentation/ddi0553/latest
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-00-66-90/Whitepaper-_2D00_-ARMv8_2D00_M-Architecture-Technical-Overview.pdf
https://developer.arm.com/documentation/100230/latest
https://developer.arm.com/documentation/100767/0100/System-Design-for-ARMv8-M
https://developer.arm.com/documentation/100690/latest/
https://developer.arm.com/documentation/100235/latest
https://developer.arm.com/documentation/100720/0300
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-01-27-19/ARM-Cortex-_2D00_-session-11-_2D00_-Yiu-_2D00_-Software-Development-in-ARMv8_2D00_M-Architecture.pdf

Series 2 Device Security Features &= SILICON LABS

Series 2 Device Security Features

Series 2 Device Security Features

Protecting loT devices against security threats is central to a quality product. Silicon Labs offers several security options to
help developers build secure devices, secure application software, and secure communication paths to manage those
devices. Silicon Labs’ security offerings were significantly enhanced by the introduction of the Series 2 products that
included a Secure Engine. The Secure Engine is a tamper-resistant component used to securely store sensitive data and
keys, and to execute cryptographic functions and secure services.

On Series 2 devices, the security features are implemented by the Secure Engine and CRYPTOACC (if available). The
Secure Engine may be hardware-based or virtual (software-based). Throughout this document, the following abbreviations
are used:

e HSE - Hardware Secure Engine
e VSE - Virtual Secure Engine
o SE - Secure Engine (either HSE or VSE)

Additional security features are provided by Secure Vault. Three levels of Secure Vault feature support are available,
depending on the part and SE implementation, as reflected in the following table:

Level (1) SE Support Part

Secure Vault High (SVH) HSE only (HSE-SVH) Refer to JoT Endpoint Security Fundamentald
for details on supporting devices.

Secure Vault Mid (SVM) HSE (HSE-SVM) !

Secure Vault Mid (SVM) VSE (VSE-SVM) !

Secure Vault Base (SVB) N/A "

Note: 1. The features of different Secure Vault levels can be found in https://www.silabs.com/security|.

Secure Vault Mid consists of two core security functions:

e Secure Boot: Process where the initial boot phase is executed from an immutable memory (such as ROM) and where code is
authenticated before being authorized for execution.

o Secure Debug Access Control: The ability to lock access to the debug ports for operational security, and to securely unlock
them when access is required by an authorized entity.

Secure Vault High offers additional security options:

e Secure Key Storage: Protects cryptographic keys by "wrapping" or encrypting the keys using a root key known only to the
HSE-SVH.

o Anti-Tamper protection: A configurable module to protect the device against tamper attacks.

« Device authentication: Functionality that uses a secure device identity certificate along with digital signatures to verify the
source or target of device communications.

Series 2 devices require a specific SE_firmware versior to support the TrustZone implementation. Refer to AN1222
Production Programming of Series 2 Devices to learn how to upgrade the SE firmware and loT Endpoint Securit
Fundamentals for the latest SE Firmware shipped with Series 2 devices and modules.

Series 2 devices use Cortex-M33 core to implement the ARMv8-M Mainline TrustZone security extension and refer to
TrustZone as Bus Level Security] The following table lists the configuration of TrustZone related components in the Series
2 Cortex-M33 core.

Copyright © 2025 Silicon Laboratories. All rights reserved. 81/280

https://docs.silabs.com/iot-security/latest/iot-endpoint-security-fundamentals/
https://www.silabs.com/security
https://www.silabs.com/documents/public/application-notes/an1222-efr32xg2x-production-programming.pdf
https://docs.silabs.com/iot-security/latest/iot-endpoint-security-fundamentals/

Series 2 Device Security Features

Component

Security Extension (TrustZone)

Memory Protection Unit (MPU)

Security Attribution Unit (SAU)

Series 2 Configuration

Enabled

16 regions (maximum)

8 regions (maximum)

&= SILICON LABS

Description

The security extension cannot be disabled,
and the entire memory after RESET is Secure
by default.

The MPU regions for both Secure and Non-
secure MPUs.

The SAU regions for Non-secure and Non-
secure Callable.

Copyright © 2025 Silicon Laboratories. All rights reserved. 82/280

TrustZone Basics &= SILICON LABS

TrustZone Basics

TrustZone Basics

Introduction

TrustZone for ARMv8-M adds extra states to the Cortex-M processor operations to ensure there is a Secure and Non-
secure state. These security states are orthogonal to the existing Thread and Handler modes, thereby having both a
Thread and Handler mode in both Secure and Non-secure states. The Thread mode can also be either Privileged or
Unprivileged.

Secure Non-secure

Secure handler Non-secure handler

Handler (Privileged) (Privileged)
Privileged Privileged
Secure thread Non-secure thread
Thread

Unprivileged
Secure thread

Unprivileged
MNon-secure thread

Copyright © 1995-2022 Arm Limited (or its affiliates). All rights reserved.

TrustZone for ARMv8-M is an optional architecture extension. By default, the system starts up in a Secure state if the
processor implements the TrustZone security extension. The division of Secure and Non-secure worlds is memory-map
based (security state depends on the address of the fetched instruction), and the transitions happen automatically. It is also
possible to leave the Non-secure state unused and execute the whole application in the Secure state.

Memory Security Attributes

TrustZone classifies memory into four security attributes as described in the following table.

Security Attribute Processor State Description

Non-secure (NS) Non-secure Non-secure and Secure software can access these memory
regions.

Secure (S) Secure Secure software can access these memory regions. Non-secure

software cannot gain access to the Secure memory.

Non-secure Callable (NSC) Secure Secure memory with an NSC attribute provides entry points for
Secure APIs that can be called from a Non-secure space. It is a
region of memory that contains the Secure Gateway (SG)
veneers that allow Non-secure code to call secure functions that
exist in Secure code. Non-secure software cannot read/write to
an NSC memory but can branch into it if the branch target is an
SG instruction.

Copyright © 2025 Silicon Laboratories. All rights reserved. 83/280

TrustZone Basics &= SILICON LABS

Security Attribute Processor State Description

Exempted Secure/Non-secure Non-secure and Secure software can access these memory
regions (exempted from security checking). Exempted regions are
typically used by debugging components that do not pose any
security risk (e.g., system ROM table) when accessed by the
Non-secure software.

Note: The Non-secure Callabld is also known as Secure Non-secure Callable (Secure NSC) to declare that this
region resides in Secure memory.

Banked Register

The concept of a banked register in ARMv8-M between Secure and Non-secure states means that there are two copies of
the register, and the core automatically uses the copy that belongs to the current security state. When a register is banked,
the _S and _NS suffixes are used in the ARMv8-M architecture to identify whether the resource is for the Secure state or
Non-secure state.

General-Purpose Registers

The Cortex-M processors have 16 general-purpose registers (RO - R15) for data processing (RO - R12) and control. The
Following figure shows the general-purpose register view of the ARMv8-M system with TrustZone. Refer to the ARM
Cortex-M33 Devices Generic User Guide for details about these registers.

RO

RI

R2

R3

R4

RS

R6&

R7

R8

R9

R10

Non-secure RI1
state RI2

MSP_NS R13 (banked) i
(RPN

Stack limit
t PSPLIM_NS | { PSPLIM_S |

Secure state

Copyright © 1995-2022 Arm Limited (or its affiliates). All rights reserved.

The Secure or Non-secure state can access the data processing registers RO - R12 and special usage registers R13 - R15.
The register R13 (banked SP) is the stack pointer alias, and the actual stack pointer (MSP_LNS , PSP_NS, MSP_S, PSP_S)
accessed depends on the state (Secure or Non-secure) and mode (Handler or Thread) as described in the following figure.

n addition, stack limit registers (bgecial registerg) enable hardware to detect stack overflow conditions. Two pairs of staci
imit registers (MSPLIM_NS and PSPLIM_NS , MSPLIM_S and PSPLIM_S) are implemented, one per security state, to protect
the Main Stack Pointer (MSP) and Process Stack Pointer (PSP).

Copyright © 2025 Silicon Laboratories. All rights reserved. 84/280

https://developer.arm.com/documentation/100235/0100/The-Cortex-M33-Processor/Programmer-s-model/Core-registers

TrustZone Basics

Secure

Secure handler
(Privileged)

MSP_S

Privileged
Secure thread

#SP_S

Unprivileged
Secure thread

*SP_S

#SP = MSP or PSP

&= SILICON LABS

Non-secure

Non-secure handler
(Privileged)
MSP_ NS

Privileged
Non-secure thread
#SP_INS

Unprivileged
Non-secure thread

#SP_NS

Copyright © 1995-2022 Arm Limited (or its affiliates). All rights reserved.

In Thread mode, execution can be privileged or unprivileged. The stack pointer used can be the MSP or PSP, depending on
the SPSEL bit in the CONTROL] register. When in Handler mode, the processor is Privileged. The stack pointer is always

MSP.

It is possible to directly the stack pointers (MSP and PSP) and stack limit registers (MSPLIM and PSPLIM), providing
that the processor is in a privileged state. If the processor is in a Secure privileged state, the software can also access the
Non-secure stack pointers (MSP_NS and PSP_NS) through [Core Register Access Functiond in CMSIS-Core.

Special-Purpose Registers

Except for the general-purpose registers, there are several special-purpose registers for conditional flags, interrupt masking,
control, and stack pointer limit. The following figure shows the special-purpose registers view of the ARMv8-M system with
TrustZone. Refer to the ARM Cortex-M33 Devices Generic User Guidg for details about these registers.

Special registers ¢

Low registers

High registers

RO

R1

R2

R3

R4

R5

R&

General purpose registers

R7

RS

R9

R10

Banked stack pointers

R11

R12

PSP_S PSP_NS

.

Active Stack Pointer

Link Register

Program Counter

" Combined Program Status Registers

Exception mask registers

Control Register

Stack Pointer Limit registers {

3P (R13)

vl

MSP_S

MSP_NS

LR (R14)

PC (R15)

xPSR

PRIMASK

PRIMASK_S

PRIMASK_NS

FAULTMASK

FAULTMASK_S

FAULTMASK_ NS

BASIPRI

BASIPRI_S

BASIPRI_NS

CONTROL

CONTROL_S

CONTROL_NS

PSPLIM

PSPLIM_S

PSPLIM_NS

MSPLIM

Y Tr Yy

MSPLIM_S

MSPLIM_NS

Banked special registers

Copyright © 2025 Silicon Laboratories. All rights reserved.

https://arm-software.github.io/CMSIS_5/Core/html/group__Core__Register__gr.html
https://arm-software.github.io/CMSIS_5/Core/html/group__coreregister__trustzone__functions.html
https://developer.arm.com/documentation/100235/0100/The-Cortex-M33-Processor/Programmer-s-model/Core-registers

TrustZone Basics

Image fhttps://documentation-service.arm.com).Copyright © 1995-2022 Arm Limited (or its affiliates). All rights reserved.

The Combined Program Status Register (xPSR) consists of the Application Program Status Register (APSR), Interrupt

Program Status Register (IPSR), and Execution Program St

Some of the special-purpose registers are banked between Secure and Non-secure states. Special-purpose registers are
not memory-mapped and can be using Core Register Access Functions in CMSIS-Core (except for EPSR in xPSR).

Secure privileged software can also access the Non-secure interrupt masking registers (PRIMASK_NS , FAULTMASK_NS , and

&= SILICON LABS

atus Register (EPSR).

Reqister Access Functions in CMSIS-Core.

BASEPRILNS), CONTROL register (CONTROL_NS), and stack limit registers (MSPLIM_NS and PSPLIM_NS) through Coré¢|

System Private Peripheral Bus (PPB)

The banking of registers is usually used to separate the Secure and Non-secure information of the system components
inside the processor. The following figure shows the System Private Peripheral Bus (PPB) registers view of the ARMv8-M

system with TrustZone. Refer to the ARM Cortex-M33 Devices Generic User Guidg for details about the System PPB

registers.

Example memory map

|
Secure view MNon-secure view
I

0xFO000000

OxFFFFFFFF

Off-chip peripherals
0xA0000000

Off-chip memory
0x60000000
e I

Non-secure peripherals

0x40000000
e [

MNon-secure RAM
0x20000000

Non-secure flash
0x00000000 |

System control and debug

|
Secure view Non-secure view
|
!
/ Mon-secure MPU alias

MNaon-secure SCB alias

MNon-secure NVIC alias

Non-secure SysTick alias

0xF0000000

0xE002E000
0xE000F000

Secure MPU

Secure SCB

Secure NVIC

Mon-secure SCB

Secure SysTick

0xE0000000

System components for debugging and trace operations (0xEO000000 to OxEOOO2FFF):

e Instrumentation Trace Macrocell (ITM)
« Data Watch point and Trace unit (DWT)
o Flash Patch and Breakpoint unit (FPB)

System Control Space (SCS):

o The registers in SCS address spaces are memory-mapped and can be accessed using pointers in software

e Secure SCS (0xEOOOEO00 to OxEOOOEFFF) - Secure software using this address space to access the banked Secure SCS

registers (e.g.,, SCB->CPUID)

» Non-secure SCS (0xEOOOEO00 to OxEOOOEFFF) - Non-secure software using this address space to access the banked Non-

secure SCS registers (e.g., SCB->CPUID)

* Non-secure alias SCS (0xE002E000 to OxEOO2EFFF) - Secure software using this address space to access the Non-secure

SCS registers (e.g., SCB_NS->CPUID)

Copyright © 2025 Silicon Laboratories. All rights reserved.

86/280

https://documentation-service.arm.com/static/5e7cd7b67158f500bd5c4eea?token=
https://arm-software.github.io/CMSIS_5/Core/html/group__Core__Register__gr.html
https://arm-software.github.io/CMSIS_5/Core/html/group__coreregister__trustzone__functions.html
https://developer.arm.com/documentation/100235/0100/The-Cortex-M33-Peripherals/About-the-Cortex-M33-peripherals

TrustZone Basics &= SILICON LABS

The following table describes some core peripherals in the SCS and corresponding defined in the CMSIS-
Core header file to access the registers of core peripherals in two SCS address spaces.

Core Peripheral Data Structure for Secure and NS SCS Data Structure for NS Alias SCS
Implementation Control Block SCnSCB (OxEOOOE004) SCnSCB_NS (0xE002E004)
SysTick Timer SysTick (OXEOOOE010) SysTick_ZNS (0xE002E010)
Nested Vectored Interrupt NVIC (OXxEOOOE100) NVIC_NS (OxEO02E100)
Controller
System Control Block SCB (OXEOOOECFC) SCB_NS (OxEO02ECFC)
Memory Protection Unit MPU (OxEOOOED90) MPU_NS (OxEO02ED90)
Security Attribution Unit SAU (OxEOOOEDDO) -
Debug Control Block CoreDebug (OXEOOOEDFO) CoreDebug_NS (OxEOO02EDFO)
Software Interrupt Generation STIR (OXEOOOEF0O) STIR_NS (OXEOO02EF00)
Floating-Point Extension FPU (OXEOOOEF34) FPU_NS (OXEOO2EF34)

Notes:

e« The SCB is a group of system control registers for the various usages below.
o System Control Register (SCR) to configure processor low power mode
o Fault Status Register (xFSR) to provide fault status information
o [ector Table Offset Register (VTOR)| for vector table relocation
e The register is accessible from the Secure state only.
e The STIR register is not physically banked.
o Core peripherals such as SysTick, SCB, and MPU are duplicated. One instance is Secure and the other one is Non-secure.
e Secure software can use the corresponding functions for ARMv8-M in CMSIS-Core to configure the Non-secure and
through the Non-secure alias SCS.

Debug or vendor specific components (0xEO040000 to OXEOOFFFFF):

» Optional debug components (e.g., ETM)
o External Private Peripheral Bus (EPPB)| allows designers to add their own debug or vendor-specific components

o Bystem ROM Tabld is a simple lookup table that enables debug tools to extract the addresses of debug and trace
components

Secure Attribution Unit (SAU), Implementation Defined Attribution Unit (IDAU),
and Memory Protection Unit (MPU)

Two units determine the security attribute of an address:

1. The internal programmable Secure Attribution Unit (SAU).

2. The external Implementation Defined Attribution Unit (IDAU), through the IDAU interface, returns the security attribute and
region number of an address.

Copyright © 2025 Silicon Laboratories. All rights reserved. 87/280

https://arm-software.github.io/CMSIS_5/Core/html/annotated.html
https://arm-software.github.io/CMSIS_5/Core/html/group__nvic__trustzone__functions.html
https://arm-software.github.io/CMSIS_5/Core/html/group__systick__trustzone__functions.html
https://developer.arm.com/documentation/100690/0201/Attribution-units--SAU-and-IDAU-

TrustZone Basics

Inside processor
Address

|
SAU |

]. .Comparel |

Secure | Non-secure

]
I
1
1
I
1
1
1
1
1
1
1
!
L 4 1
!
Security Attribution I
1
1
I
1
1
I
I
I
I
I
!
I
!
I
]

Secure MPU | Non-secure MPU
Access Security

Permission Attribute
Secure/Non-secure

Three possible configurations to define the security attribute of an address:

1. Internal SAU only
2. External IDAU only
3. A combination of the internal and external IDAU

Notes:

o Series 2 devices use configuration 3.
« IDAU in Series 2 devices is the External Secure Attribution Unit (ESAU).

Qutside processor

‘ IDAU Interface :4—} Optional IDAU

&= SILICON LABS

The Memory Protection Unit (MPU)| is a programmable unit that allows privileged software to define memory access
permission. If the TrustZone is enabled, there can be up to two MPUs, one for Secure and one for Non-secure.

e The number of for the Secure and the Non-secure MPU can be different.

o The MPU registers are memory-mapped and are placed in the System Control Space (SCS).

e Secure software can use the MPU Functions for ARMv8-M in CMSIS-Core to configure the Non-secure MPU through the

Non-secure alias SCY (0XEO02ED90 - OXEQ02EDCH4).

Software Non-secure MPU Registers Secure MPU Registers
Non-secure privileged OxEOOOED90 - -
OxXEOOOEDC4
Secure privileged OXEO02ED90 - OXEOOQOED9O0 -
OxEOO2EDCA4 OXEOOOEDCA4

Exceptions and Interrupts

Type of Exceptions

The following table describes the types of exceptions in the TrustZone implemented system.

Section Guidance Type

1(-) Reset Secure only
2 (-14) NMI Configurable
3 (-13) HardFault Configurable
4 (-12) MemManage Fault Banked

BusFault Configurable

Copyright © 2025 Silicon Laboratories. All rights reserved.

MemManage Fault

Non-secure MPU violation

Secure

MPU violation

Default State

Secure
Secure
Secure
Banked

Secure

88/280

https://developer.arm.com/documentation/100699/0100/
https://arm-software.github.io/CMSIS_5/Core/html/group__mpu8__functions.html

TrustZone Basics

&= SILICON LABS

Section Guidance Type Default State
6 (-10) UsageFault Banked Banked

7 (-9) SecureFault Secure only Secure

11 (-5) SVCall Banked Banked

12 (-4) DebugMonitor Configurable Secure

14 (-2) PendSV Banked Banked

15 (-1) SysTick Banked Banked

16 - 495 (0 - 479) IRQO - IRQ479 Configurable Secure
Notes:

e "Secure only" means the system exceptions can only trigger in the Secure state.

» "Configurable" means the system exceptions and interrupts can be configured to target either the Secure state or the Non-
secure state.

« Banked means the system exceptions can have Secure and Non-secure versions. Both can be triggered and executed
independently and have different priority level settings.

Exception Priorities

It may cause a security issue if the Non-secure software uses high priority levels to mask the Secure interrupts. To avoid
this issue, TrustZone introduces a programmable bit in the AIRCR register called PRIS (Prioritize Secure exception) for
Secure software to prioritize, if needed, Secure exceptions and interrupts.

The AIRCR.PRIS is set to O out of reset, which means Secure and Non-secure exceptions/interrupts share the same
configurable programmable priority level space (columns 2 and 3 in the following table). When the AIRCR.PRIS is set to 1, all
Non-secure configurable exceptions/interrupts are placed in the lower half of the priority level space so that Secure
exceptions/interrupts can potentially have higher priorities (columns 2 and 4 in the following table).

Priority Value ST gl;'m-secure Priority (PRIS = ;\I)on-secure Priority (PRIS =
0 0 0 (0x00) 128 (0x80)
1 32 32 (0x20) 144 (0x90)
2 64 64 (0x40) 160 (OxAOQ)
3 96 96 (0x60) 176 (0xBO)
4 128 128 (0x80) 192 (0xCO)
3 160 160 (OxA0) 208 (0xD0)
6 192 192 (0xCO) 224 (OxEQ)
7 224 224 (OxEQ) 240 (OxFO)

Note: This table uses three bits (Bit [7:5]) of the group priority level (AIRCR.PRIGROUP) to limit the maximum
number of preemption levels to 8. A lower priority value indicates a higher priority.

Vector Tables

The following figure shows two vector tables for Secure and Non-secure exceptions and interrupts. The vector table offset
is defined by a Vector Table Offset Register (VTOR at 0xEO00EDOS8), which can only be programmed in the privileged state.

Copyright © 2025 Silicon Laboratories. All rights reserved. 89/280

TrustZone Basics

Exception number IRQ number

495 479
18 2
17 1
16 0
15 -1
14 -2
13
12 -3
1" 5
10
9
]
7 -9
] -10
5 -1
4 -12
3 -13
2 -14
1

Secure Vector Mon-secure Vector Offset
IRQ479 IRQ4T79 lox7BC
IRQ2 IRQ2 0x48
IRQ1 IRQ1 | 0xda
IRQO IRQ0 0x40
SysTick _S SysTick_NS 0x3C
PendSV _S PendSV_NS 038
Reserved Reserved 0x30
Debughionitor DebugMonitor '
SVCall _S SVCall_NS 0x2C
Reserved
Reserved
SecureFault 0x1C
UsageFault_S UsageFault_NS 0x18
BusFault_5 BusFault_NS 0x14
Memianage_S MemManage_NS 0x10
HardFault _S HardFauli_NS 0x0C
NMI _S NMI_NS 0x08
Reset 0x04
Initial SP value 0x00

Image:|Vector Tabld.Copyright © 1995-2022 Arm Limited (or its affiliates). All rights reserved.

Notes:

&= SILICON LABS

o The VTOR.S defines the address of the Secure vector table in Secure memory, and the [Secure Main Stack Pointe|
(MSP_S) is the default stack for the Secure exception handler.

o [The VTORLNS defines the address of the Non-secure vector table in Non-secure memory, and the Non-secure Main Stack
Pointer (MSP_NS) is the default stack for the Non-secure exception handler.

e Secure privileged software can access the VTOR_NS using the Non-secure SCB aliad (OXE002EDOS).
e The Bystem Control Spaceg contains registers for the SysTick timer, NVIC, and SCB.
« The interrupt masking registers (PRIMASK, FAULTMASK, and BASEPRI) are between security states. The priority
level space is shared between the Secure and the Non-secure world, setting an interrupt mask register on one side can
block some, or all, of the exceptions on the other side.
o Interrupts (IRQ0 - IRQ479) are defined as Secure by default. Each interrupt can be configured as Secure or Non-secure and

is determined by the Interrupt Target Non-secure (NVIC_ITNS) register, which is only programmable in the Secure software.

State Transitions in Exceptions and Interrupts

The following figure shows transitions between the in ARMv8-M TrustZone.

Pop All Registers

Switch to
Secure

Runping Secure
ode

| —

Feturn from Intér

Fush All Registers

Zero All Registers
Switch to
Mo Lre

Run Non-Secure
Handler

Image (left): [Switching-between-Secure-and-Non-secure-stated. Copyright © 1995-2022 Arm Limited (or its affiliates). All

rights reserved.

1. Secure Thread - Secure Handler or Non-secure Thread to Non-secure Handler

o No security state transition.

o The exception sequence is almost identical to the exception stacking mechanism of current Cortex-M processors.

Copyright © 2025 Silicon Laboratories. All rights reserved.

90/280

https://developer.arm.com/documentation/100235/0100/The-Cortex-M33-Processor/Exception-model/Vector-table
https://developer.arm.com/documentation/100690/0201/Switching-between-Secure-and-Non-secure-states

TrustZone Basics &= SILICON LABS

o The Interrupt Service Routine (ISR) is executed in the current security state (either Secure or Non-secure).
2. Non-secure Thread - Secure Handler or Non-secure Handler - Secure Handler

o The transition from Non-secure to Secure state.

o The exception sequence is almost identical to the exception stacking mechanism of current Cortex-M processors.

o The ISR is executed in a Secure state.

3. Secure Thread - Non-secure Handler or Secure Handler - Non-secure Handler

o The transition from Secure to Non-secure state.

o To avoid an information leak when transitioning from the Secure to Non-secure state. The processor automatically
pushes all general-purpose registers into the Secure stack and erases the contents of all general-purpose registers
before executing the Non-secure ISR. The processor pops the contents of all general-purpose registers from the
Secure stack when returning from the Non-secure ISR (right side in Eigure 2.6 State Transitions on page 12). It incurs a
slightly longer interrupt latency.

o The ISR is executed in a Non-secure state.

4. Secure Privileged Thread <> Non-secure Privileged Thread or Secure Unprivileged Thread <> Non-secure Unprivileged
Thread
o The transition from Secure to Non-secure state or Non-secure to Secure state.
o The Function calls and returnd can be used when the privileged level remains the same.

Note: Subject to interrupt priority, there are no restrictions regarding whether a Non-secure or Secure interrupt
can occur when the processor runs Non-secure or Secure code.

Switching Between Secure and Non-secure States

The TrustZone allows direct calling between Secure and Non-secure software. The following figure shows how to use an
API function call to trigger security state transitions. The state transitions can also happen because of exceptions and
nterrupts.

BLXNS call
to Non-secure function

-
| BL to SG call |

to entry function

BXNS return
from entry function I

BX to FNC_RETURN return
from MNon-secure function

Image: |Switching-between-Secure-and-Non-secure-stated. Copyright © 1995-2022 Arm Limited (or its affiliates). All rights
reserved.

Switching from Non-secure to Secure State

When the Non-secure program calls a Secure software, the first instruction must be a Secure Gateway (SG) instruction
residing in Non-secure Callable memory. The Secure Gateway entry points (veneers) decouple the address of the SG
instructions in the Non-secure Callable memory region from the rest of the Secure code. It can eliminate the risk of having
inadvertent entry points when the Secure software contains a pattern that matches the opcode of the SG instruction.

Copyright © 2025 Silicon Laboratories. All rights reserved. 91/280

https://developer.arm.com/documentation/100690/0201/Switching-between-Secure-and-Non-secure-states

TrustZone Basics &= SILICON LABS

MNon-secure

ntry Function Non-Secure world Non-Secure Callable (NSC] Secure world
] o
! pre— -
Non-secure = Ty Funcaon J Func‘,»\‘_entw
8 E BL Func_A_entry 56 ; Indicate valld enitry
Code =
B - B Fune A —— = Func_A
L} ® =
\ [

e . w3 Function

nitry Function i BXNS LR

Image (right): Whitepaper - ARMv8-M Architecture Technical Overview. Copyright © 1995-2022 Arm Limited (or its
affiliates). All rights reserved.

The bit 0 of the is cleared to zero by SG instruction to indicate that returning from this function transits
from Secure to Non-secure. The processor is still in the Non-secure state when the SG instruction is executed. The BXNS
LR instruction is used when returning since a normal BX LR instruction interprets it as an unsupported execution mode
change. A exception is triggered if the processor returns to a Secure address. It prevents a hacker from calling
a Secure API with a fake return address pointing to a Secure program location. If bit O of LR is 1, the BXNS LR instruction
behaves like a normal BX LR . Therefore, Secure code can call a Secure APl in the NSC region even it is not a usual

practice.
Program Call Instruction SG Instruction Return Instruction
Non-secure call Non-secure BL or BLX - BX LR (Return to Non-
secure state)
Non-secure call Secure BL or BLX Clear bit 0 of LR BXNS LR (Return to Non-
secure state)
Secure call Secure BL or BLX Set bit 0 of LR BXNS LR (Return to Secure

state)

To help software developers create Secure APIs in C/C++, the Cortex-M Security Extension (CMSE)| defines a C function
attribute called cmse_nonsecure_entry .

o GCC — __attribute__((cmse_nonsecure_entry))

o |[AR — _cmse_nonsecure_entry

Test Target (TT) Instruction

The software can use an ARMv8-M instruction called Test Target (TT) and the region number generated by the SAU or the
IDAU to determine if a contiguous range of memory shares common security attributes and privilege levels.

The TT instruction returns the BAU/IDAY region number, security attributes (S/NS), and MPU region number after passing
the start and end addresses of the memory range to the TT instruction. The software can determine whether the memory
range has required security attributes and resides in the same region number.

Copyright © 2025 Silicon Laboratories. All rights reserved. 92/280

https://developer.arm.com/documentation/ecm0359818/latest

TrustZone Basics &= SILICON LABS

TT check results TT check results

Non-secure memory sl Non-secure memory
S
> Starting and ending addresses g Starting and ending addresses
= _ o are both Non-secure and are both Non-secure but
i Data structure/ar ray same region number. different region number.
- Result: Non-secure. Secure memory __ Result: crossing boundary.
>
5
:53
Secure memory =
> Starting and ending = Starting and ending
g addresses are both Secure addresses are both Secure
' Data structure/array and same region number. ~ N but different region number.
= Result: Secure. < on-secure memory Result: crossing boundary.
S
o

Image: |Test-target-instructior. Copyright © 1995-2022 Arm Limited (or its affiliates). All rights reserved.

This mechanism allows security checking at the beginning of the API service (instead of during the operation) to determine
if the memory referenced by a pointer from Non-secure software points to the Non-secure address. It prevents Non-
secure software from using those APIs in Secure software to access or modify Secure data.

To make these operations easier in a C/C++ programming environment, the Cortex-M Security Extension (CMSE) has
defined a range of for dealing with pointer checks with the TT instructions.

Switching from Secure to Non-secure State

When the Secure program calls a Non-secure software, the Secure program must use a BLXNS <reg> instruction to invoke
the process. If bit O of the <reg> is O, the processor must switch to the Non-secure state when branching to the target

address. During the state transition, the return address and some processor state information are pushed onto the Secure
stack, while the return address on the Link Register (LR) is set to a special value called FNC_RETURN (OXFEFFFFFF).

The Non-secure function completes by performing a branch (BX LR) to the FNC_RETURN address (bit O is 1 to indicate the
function was called from the Secure state). It automatically triggers the unstacking of the actual return address from the
Secure stack and returns to the calling function. The FNC_RETURN hides the return address of the Secure program from the

Non-secure software to avoid the leakage of any secret information. It also prevents Non-secure software from modifying
the Secure return address stored in the Secure stack.

MNon-secure Secure
Func_B Return address push to L
; Function =+——Secure stack, LR set to———— BLXNS RO/* RO=address of Func_B with LSB =0 (NS)*/
FMC_RETURM o
/!‘
L Branch to FNC_RETURN triggers
BX LR ——— unstacking of return address from =

Secure stack

Image: |Switching-between-Secure-and-Non-secure-stated. Copyright © 1995-2022 Arm Limited (or its affiliates). All rights
reserved.

To help software developers declare Non-secure function pointers in C/C++, the [Cortex-M Security Extension (CMSE)
defines a C function attribute called cmse_nonsecure_call .

o GCC: _attribute__((cmse_nonsecure_call))
e |AR: _cmse_nonsecure_call

Copyright © 2025 Silicon Laboratories. All rights reserved. 93/280

https://developer.arm.com/documentation/100690/0201/Test-target-instruction
https://developer.arm.com/documentation/ecm0359818/latest
https://www.keil.com/support/man/docs/armclang_ref/armclang_ref_pge1446715440722.htm
https://developer.arm.com/documentation/100690/0201/Switching-between-Secure-and-Non-secure-states
https://developer.arm.com/documentation/ecm0359818/latest

TrustZone Basics

Software Flow

The following figure describes a software flow example in a TrustZone implemented system.

Image:

Non-secure software

User

[Software Development in ARMvS-M Architecturd Copyright © 1995-2022 Arm Limited (or its affiliates). All rights

reserved.

1. The
o

o

system starts executing code in the Secure state after a power-on or reset (Secure boot).

The Secure (MSP_S) is set from the address of the Secure vector table (VTOR_S).

The Secure Reset Handler pointed by the VTOR_S is called.

Perform various initialization tasks such as C startup code.

Place peripherals and associated interrupts in either Secure or Non-secure applications.

Program to partition the entire memory into Secure, Non-secure Callable, and Non-secure regions.
Program the address of the Non-secure vector table (VTOR_NS).

Initialize the two first entries of the table for the Non-secure stack pointer (MSP_NS) and Reset Handler to emulate a
Non-secure reset.

Secure firmware branches to the entry point (Reset Handler pointed by the VTOR_NS) of the Non-secure application.
The Non-secure software has its Reset Handler.

Perform various initialization tasks such as C startup code and hardware initialization (e.g., Non-secure peripherals).

It does not conflict with initialization from the Secure code as the stack and heap spaces of Secure and Non-secure
code are separated.

3. Ppuring the execution of Non-secure applications, the application could call Secure APIs through the Secure Gateway (SG)
eneer in the Non-secure Callable region.

4. In some cases, Secure APIs might need to call Non-secure call-back functiong (e.g., a hardware driver).

Copyright © 2025 Silicon Laboratories. All rights reserved.

&= SILICON LABS

94/280

https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-01-27-19/ARM-Cortex-_2D00_-session-11-_2D00_-Yiu-_2D00_-Software-Development-in-ARMv8_2D00_M-Architecture.pdf

Bus Level Security (BLS) &= SILICON LABS

Bus Level Security (BLS)

Bus Level Security (BLS)

System Design

The following figure shows two system designs:

« The sample system contains an ARMv8-M processor and the required components to support TrustZone.

o Bus Level Security (BLS) on Series 2 devices implements the concepts introduced in the ARM TrustZone sample system.
BLS enforces Secure and privileged programming models and uses security components (colored blocks) to configure the
security attribute and privileged level of peripherals and Bus Masters.

. Secure regions

Legacy bus Legacy bus . Non-secure regions
master master
TrustZone (Non-Secure) (Secure)

Processor

(ARMv8-M) Spare s Security

Haster Security

wrapper wrapper

AMBA 5 AHBS interconnect

Secure Memory Memory Peripheral AHBS__ to APB
access only Protection Protection q - Protection bridge
Controller Controller Controller

Secure Boot System s:eriphgral
loader Security APR otection

SRAM Controller Controller
Flath Peripherals

(Page based (Watermark level APB
partitioning) based Peripherals
partitioning)
©ARM 2017 ARM

ARMv8-M Processor

The ARMv8M processor is TrustZone capable of Secure and Non-secure states. It has a dedicated internal that is fully
programmable up to 8 different memory regions. Out of reset, the processoris in a Secure state and every transaction is a
Secure transaction.

ARMv8-M Processor in Series 2 devices is the Cortex-M33.
System Security Controller

The system security controller is the central location for all security settings in the system. Each type of controller, IDAU,
and wrapper receives its security configuration and bus response configuration from this block.

System Security Controller in Series 2 devices is the Security Management Unit (SMU).

Implementation Defined Attribution Unit (IDAU)

Copyright © 2025 Silicon Laboratories. All rights reserved.

95/280

Bus Level Security (BLS) &= SILICON LABS

The generates the security attribute for a given address. All IDAUs in the system have the same memory partitioning.
The IDAU is intended only for ARMv8-M cores and utilizes the entire IDAU interface for the core. The lite IDAU uses only
the Secure and Non-secure interface from the IDAU and is intended for Non-ARMv8-M Bus Masters.

IDAU in Series 2 devices is the External Secure Attribution Unit (ESAU)|

Security Wrapper

The Security Wrapper gives a legacy Bus Master the ability to drive security attribution. The security wrapper outputs the
transaction address to the lite IDAU which returns the security attribute of the address. If the wrapper is configured as Non-
secure, any transactions to a Secure address are blocked.

Security Wrapper in Series 2 devices is the Bus Master Protect Unit (BMPU).

Memory Protection Controller (MPC)

MPC has a security configuration for a per block of memory or memory above and below the watermark. If the security
attribute of the block or memory region does not match the security attribute of the address, the transaction is blocked.
This controller is used in a system that alias RAM or flash memory locations. This controller is not needed when the memory
region size is programmable in an IDAU.

Series 2 devices have a programmable flash and RAM region in the (equivalent to IDAU) and are not implementing
this block.

Peripheral Protection Controller (PPC)

PPC has a security configuration for every peripheral. If the security attribute of the selected peripheral does not match the
security attribute of the address, the transaction is blocked. This controller is used in systems that alias the peripheral
memory locations.

PPC in Series 2 devices is the Peripheral Protection Unit (PPU)|.

Hardware security is now extended to the peripheral bus system of the processor. Each component on the bus can verify
and propagate the security level for each bus operation. The following sections describe the individual security component
for BLS on Series 2 devices.

Security Management Unit (SMU)

The SMU is the only user-facing block in the BLS architecture and houses all the configuration and status for the ESAUs
BMPUs, and PPUs.

« Thirteen memory regions (ESAU)

o Per Bus Master privileged and security attribute ()

o Interrupt flag for Bus Master security fault (fault table in BMPU section)

o Per peripheral privileged and security attribute (@)

» Interrupt flags for privileged, security, and instruction peripheral access faults (fault tables in PPU section)
e Separate Secure and Privileged IRQ

The SMU configurations can be down and protected from runaway code. The SMU_LOCK register resets to
UNLOCK. Any write other than the unlock code (OxACCES55) locks all SMU registers from further updates. The SMU_STATUS
register contains a SMULOCK bitfield with the current lock state of the SMU.

The SMU_M33CTRL register can down internal security and privileged configurations below.

e Cortex-M33 SAU

« Non-secure MPU

e Secure MPU

« Non-secure Vector Table Offset Register (VTOR)
e Secure AIRCR register

Copyright © 2025 Silicon Laboratories. All rights reserved. 96/280

Bus Level Security (BLS) &= SILICON LABS

Interrupt flags in the SMU_IF register can generate a Secure or Privileged interrup] in the table below when its
corresponding interrupt enable bit in the SMU_IEN register is set and IRQn is enabled.

Enable Bit in SMU_IEN Register IRQN Interrupt Handler
BMPUSEC, PPUSEC SMU_SECURE_IRQnN SMU_SECURE_IRQHandler()
PPUPRIV, PPUINST SMU_PRIVILEGED_IRQnN SMU_PRIVILEGED_IRQHandler()

Each interrupt flag in the SMULIF register can be cleared by writing 1 to the corresponding bit of the SMULIF_CLR register.

External Secure Attribution Unit (ESAU)

The ESAU is responsible for determining the memory region and pecurity attribute of a given address. Referring to ARMv 8
TrustZone Implementation on page 16, the Cortex-M33 interfaces with an ESAU and the BMPUs of other Bus Masters
interface with lite ESAUs to determine the security attribute of all transactions. The following figure describes the security

attributes of different memory regions defined by the ESAU on Series 2 devices.

[System |
OXFFFF_FFFF — — - - ~ T s - secure
oxFeee_eeee — — - - - L _ MRB = Movable Region Boundary
invalid . B
OXEGOF_F000 — — - S -
o Eoau—ao0e — — IEEECEY NN SorNs
OXE004_4000 — — - - -
OXE000_0000 — — - \ L —
_
OxCO00_0000 — — - ! L =
]
0xBOOO_0000 — — - Device 3 8 R d;g dpif}’g‘;'a s
S
—
OxAG00_0000 — — - L ! - -
— —
0x6000_0000 — — - | L -
e

MCU Peripherals
SE Mailbox

NS
OX5000_0000 — — - o] - -
S
7

e
8x4000_08ee0 — — - -
Invalid
8x3000_08ee0 — — - —
mrb56 -—- -
MCU RAM
mrb4s _— -
8x2000_08eeo — — - g
©x1000_0800 — — - ! —
OxOFEG_0000 — — - b S —
mrbl2 —-—- - -
MAIN FLASH
mrbel ——- i -
0x0000_0000 — _ . . ——

Copyright © 2025 Silicon Laboratories. All rights reserved. 97/280

Bus Level Security (BLS) &= SILICON LABS

Notes:

o For Series 2 devices with base address 0x08000000 in region O, the memory address from 0x0 to Ox07FFFFFF is an invalid
region.

e The invalid regions are deemed as Secure.

« The NSC and Exempted attributes are only available to the ESAU, and all lite ESAUs in the system view these attributes as

> €.
The ESAU divides the memory map into 13 memory regions and has a maximum of 6 Non-secure regions.

o Four Movable Region Boundaries (MRBs) determine the size of 6 regions.

« Two regions have configurable security attributes.

o« Each memory region consists of a base address that specifies the start of the region and a limit address that specifies the
end of the region plus one (+1).

o The address is valid if it falls between the base (= base) and limit (< limit) of a region.

« |f the memory region is not defined, it is deemed invalid and Secure.

The MRBs distinguish the Secure, Non-secure Callable, and Non-secure regions in flash and RAM. The two configurable
regions determine if the Info flash and Cortex-M33 regions are Secure or Non-secure. The MRBs have a specific
programming sequence. Any results in @ SMUPRGERR in the SMU_STATUS register.

ARMv8-M CODE Regions

e Regions 0, 1, and 2 are in the Main space of flash. Region 3 is the info space of flash.

e The mrb0O1 (ESAUMRBO1T in SMU_ESAURMBRO1 register) determines the end of region O and the start of region 1.

e The mrb12 (ESAUMRB12 in SMU_ESAURMBR12 register) determines the end of region 1 and the start of region 2.

e The size of region 3 is device-dependent.

o Three regions' security attributes are static, and one region is configurable. Region 0 is always Secure, region 1is always
Non-secure Callable, and region 2 is always Non-secure. is configurable as either Secure or Non-secure
(ESAUR3NS in SMU_ESAURTYPESO register, default is secure after reset).

o Sizes of regions 0, 1, and 2 are adjusted in 4 kB increments with the lower 12 bits of ESAUMRB## in SMU_ESAURMBR##
ignored.
o The Secure region can be set to size 0 when mbr0O1 = base address of region 0.
o The Non-secure Callable regions can be set to size 0 when mbr01 = mbr12.

o The default value of mbr0O1is equal to base address + 0x02000000 , so the size of region 0 is 32 MB. Out of reset, all flash
is Secure since all Series 2 devices have less than 32 MB of flash.

. - Security

Region Memory Base Address Limit Address Attribute

0 Main flash 0x00000000 or (Ox00000000 or Secure
0x08000000 0x08000000) | mbro1

1 Main flash (0x00000000 or (0x00000000 or Non-secure
0x08000000) | mbro1 0x08000000) | mbri2 Callable

2 Main flash (0x00000000 or OxOFE00000 Non-secure
0x08000000) | mbr12

3 Info flash OxOFEOO00O0 0x10000000 Secure or Non-

ARMv8-M RAM Regions

o Regions 4, 5, and § cover the entire available RAM in the device.

secure

o The mrb45 (ESAUMRB45 in SMU_ESAURMBRA45 register) determines the end of region 4 and the start of region 5.
o The mrb56 (ESAUMRB56 in SMU_ESAURMBR56 register) determines the end of region 5 and the start of region 6.

« All three regions' security attributes are static. Region 4 is always Secure, region 5 is always Non-secure Callable, and region

6 is always Non-secure.

o Sizes of all three regions are adjusted in 4 kB increments with the lower 12 bits of ESAUMRB## in SMU_ESAURMBR##

ignored.

o The Secure region can be set to size 0 when mbr4d5 = base address of region 4.

Copyright © 2025 Silicon Laboratories. All rights reserved.

Bus Level Security (BLS) &= SILICON LABS

The Non-secure Callable region can be set to size 0 when mbr45 = mbr56.
e The default value of mbr45 is equal to 0x02000000 , so the size of region 4 is 32 MB. Out of reset, all RAM is Secure since
all Series 2 devices have less than 32 MB of RAM.

Region Memory Base Address Limit Address ift(;:]t::tye

4 SRAM 0x20000000 0x20000000 | mbr45 Secure

5 SRAM 0x20000000 | mbr45 0x20000000 | mbr56 Non-secure
Callable

6 SRAM 0x20000000 | mbr56 0x30000000 Non-secure

ARMv8-M Peripheral Regions

e These regions are aliases to the hip peripherals and SE mailbo) (a device with HSE).
« Both regions have a fixed size.
» Both regions' security attributes are static. Region 7 is always Secure, and region 8 is always Non-secure.

. - Security
Region Memory Base Address Limit Address Attribute

7 Chip Peripherals 0x40000000 0x50000000 Secure

8 Chip Peripherals 0x50000000 0x60000000 Non-secure

ARMv8-M Device Regions

 These regions are aliases to all radio peripherals and radio RAM.

« Both regions have a fixed size.

« Both regions' security attributes are static. Region 9 is always Secure, and region 10 is always Non-secure.

o From the perspective of the device bus system, the [adio is one peripheral that is either Secure or Non-securg. So any Bus
Master accessing the radio needs to know the security attribute of the radio. From the perspective of the radio, all of its
radio bus peripherals are accessible regardless of the security attribute. However, the radio needs to know the security
attribute of chip bus peripherals to access them through the correct alias.

. - Security
Region Memory Base Address Limit Address Attribute

9 Radio Peripherals OxA0000000 0xB0O0O0O0O00O Secure

10 Radio Peripherals 0xB0O0O0O0O00O 0xC0000000 Non-secure

ARMv8-M System Private Peripheral Bus (PPB) Regions

« Both regions have a fixed size.

. is the Cortex-M33 EPPB memory region and is configurable as either Secure or Non-secure (ESAURTINS in
SMU_ESAURTYPES1 register, default is secure after reset). It is important to note that the Cortex-M33 core is the only Bus
Master that sees these memory regions. All other Bus Masters in the system do not have access to the System PPB, and it
is an invalid region.

e Region 12 has a static security attribute of Exempted. It means that the Cortex-M33 core allows the transaction in all cases.
It permits debuggers to read the system ROM Table regardless of the state of the Cortex-M33 core.

. - Security
Region Memory Base Address Limit Address Attribute
M EPPB OxE0044000 OxEOOFEOOO Secure or Non-
secure
12 System ROM Table OxEOOFEOOO OxEOOFFO000 Exempted
Notes:

e The regions in flash (0/1/2) and RAM (4/5/6) can only create in the order of Secure, Non-secure Callable, and Non-secure.

Copyright © 2025 Silicon Laboratories. All rights reserved. 99/280

Bus Level Security (BLS) &= SILICON LABS

The ESAU and lite ESAU4 handle the transactions of Bus Masters and must have consistent security attribute mapping.
Therefore, configurations in the SMU registers apply to ESAU and lite ESAUs.
« Unlike other Bus Masters using BMPU and lite ESAU, merging the address lookup results from the |nternal SAU and ESAY

determines the pecurity attributg of the Cortex-M33 transaction.

Bus Master Security Attribution
Cortex-M33 SAU and ESAU
Other Lite ESAU

Security Attribution Unit

In Series 2 devices, the combination of the integrated SAU in the Cortex-M33 processor and an ESAU determine the
security attribute of a Cortex-M33 transaction.

The SAU consists of several programmable registerd. These registers are placed in the fystem Control Space (SCS)| and
are only accessible from the Secure privileged state.

« SAU Control Register (SAU.CTRL) — The SAU is disabled after RESET

e SAU Type Register (SAUTYPE) — Indicates the number of (read-only)

o SAU Region Number Register (SMU_RNR) — Assigns a region number

« SAU Region Base Address Register (SAU->RBAR) — Configures selected region base address

o SAU Region Limit Address Register (SAU->RLAR) — Configures selected region limit address and security attribute (NSC or
NS), enable or disable the region

The following figure shows three different SAU configurations for determining the security attribute of a Cortex-M33
transaction.

SAU_CTRL.ENABLE

\L1= The SAU is enabled.

0 = The SAU is disabled.

SAU_CTRL.ALLNS

SAU region matched?

No
0 = All Secure. 1= All Non-secure. SAU_RLAR.NSC
0 = not NSC. 1= NSC.
\ 4 4
Callable
(default)
Notes:

o All address ranges after RESET in SAU are Secure by default.

e The SAU can configure a 32 bytes aligned region as Non-secure or Non-secure Callable. Any address not defined in the
SAU defaults to Secure.

e An can configure or hard-code a region as Secure, Non-secure Callable, Non-secure, or Exempted. An
region enables Non-secure debuggers to access debugging components and establish a debug connection to the processor
before the SAU is configured.

» The processor determines the final attribute of the address based on the higher security attribute (Exempted > S > NSC >
NS) from either the SAU or the ESAU.

Copyright © 2025 Silicon Laboratories. All rights reserved. 100/280

https://developer.arm.com/documentation/100690/0201/SAU-register-summary

Bus Level Security (BLS) &= SILICON LABS

Exempted

Highest

Non-secure (NS)

Lowest

All Secure Configuration
Highlights:

e« SAU is disabled.

e ALLNS bit in the SAU Control register is clear.

* The whole memory is in a Secure state (highest security attribute apart from Exempted).

» All Cortex-M33 transactions in this configuration are Secure or Exempted and give the Cortex-M33 access to all memory
locations through either the Secure or Non-secure alias after RESET.

SAU

Region 0 1 2 3 4 5 8 9 10 1 12

5
s -

Cortex-M33 Final Attribute

(SAU + ESAU) 5 s s s s ER Exempted

o |tis up to the boot procedure in a Secure state to keep the current configuration or use other configurations once the boot
process is complete.

Copyright © 2025 Silicon Laboratories. All rights reserved. 101/280

Bus Level Security (BLS) &= SILICON LABS

All Non-secure Configuration
Highlights:

e SAU is disabled.

e ALLNS bit in the SAU Control register is set.

« The whole memory is in a Non-secure state (lowest security attribute).

o Therefore the ESAU configuratior] determines the security attribute of all Cortex-M33 transactions.

s

s s 1
Somsn wec ENEE [UST [Sn veo NESH (s OENSH (s EESH

Cone (oAU + esauy IISHN nsc ESH SIS vsc SN DSOESN SEEN

Reglon

« Except for the SAUCTRL [egiste] this configuration does not require programming on other SAU registers.

Configurable Configuration
Highlights:

e SAU is enabled.

e ALLNS bit in the SAU Control register can be 0 or 1 (do not care).

« The NSC bit on the SAU_RLAR register determines the security attribute of an address as Non-secure or Non-secure
Callable if an address matches an SAU region.

e The security attribute of an address is Secure by default if the address does not match any SAU region.

e This configuration programg SAU_RNR , SAU_RBAR , and SAU_RLAR registers to correlate the Non-secure regiond in ESAU.

e« The SAU or ESAU the attribute to a pigher security levelif any security attribute mismatch occurs in @ memory
region.

oSN v e IECEDH SN sc (s IEDDDN N e S0 IEEEEE

Cortex-M33 Final Attribute N . .

* The following figure is an example of a configurable configuration with the size of ESAU regions 0 and 5 are set to zero.

s IS

Region 1 4 G I} 8

Cortex-M33 Final Attribute N
sau-esap oSl nsc NS SN TUUSTUUENSN TSUEN [TsTEw Exempled

Copyright © 2025 Silicon Laboratories. All rights reserved. 102/280

Bus Level Security (BLS) &= SILICON LABS

Note: The Cortex-M33 has an internal SAU that defaults all undefined addresses to Secure if enabled. If the
Secure regions do not align between the [Cortex-M33 (SAU + ESAU) and other Bus Masters (lite ESAUY, the
Cortex-M33 treats a memory region as Secure while other Bus Masters treat it as Non-secure. It can lead to
the leaking of secure data if the Cortex-M33 stores secure data in what other Bus Masters think is a Non-
secure area (Main Flash Layout on page 34)).

Bus Master Protection Unit (BMPU)

The BMPU is a security wrapper used for assigning a Bus Master specific security and privileged states. Referring to Figurg
3.1 ARMv8-M TrustZone Implementation on page 16, the BMPU generally lies between the Bus Master and the Advanced
High-performance Bus (AHB) Matrix. BMPU interfaces with a to determine the security attribute of all Bus Master
transactions.

The registers below in SMU configure the pecurityl and privileged state of a Bus Master. The Bus Masters in group 0 are
device-dependent. Out of reset, each Bus Master is Secure and privileged.

Register Description

SMU_BMPUPATDO Bitfields (privileged if set) for privileged attribute configuration on Bus Master group
0

SMU_BMPUSATDO Bitfields (Secure if set) for security attribute configuration on Bus Master group 0

Note: The Bus Master privileged attribute only applies to peripheral accesses. Flash and RAM accesses ignore
the privileged attribute of the Bus Master.

The BMPU generates a security fault when the security attribute of the bus transaction is Secure, and the security
attribute (SMU_BMPUSATDO) for the BMPU is configured as Non-secure.

Below is the security fault table that shows how the security attribute on the bus is driven based on the lite ESAU attribute
and the BMPU security configuration. The interrupt is triggered if BMPUSEC in SMULIEN is set and the SMU_SECURE_IRQn is

enabled.
Lite ESAU Attribute Secure Bus Master Non-secure Bus Master
Non-secure Non-secure Non-secure
Secure Secure FAULT

Upon a BMPU fault, the registers in SMU below notify that a BMPU security fault occurred and on which Bus Master. The
registers also identify the offending fault address. If a fault is detected, the response is Read As Zero (RAZ) or Write
Ignored (WI) and the corresponding interrupt flag is set in the SMU_IF register. The values in SMU_BMPUFS and
SMU_BMPUFSADDR do not change until the BMPU fault (BMPUSEC) in the SMULIF register is cleared by software.

Register Bitfield Fault

SMU_IF BMPUSEC Security Fault if set

SMU_BMPUFS BMPUFSMASTERID ID of the Bus Master that triggered the fault
SMU_BMPUFSADDR BMPUFSADDR Access address that triggered the fault

Note: No privileged fault is generated because all the other Bus Masters in the system do not drive the
privileged attribute.

Copyright © 2025 Silicon Laboratories. All rights reserved. 103/280

Bus Level Security (BLS) &= SILICON LABS

Peripheral Protection Unit (PPU)

The PPU is a security wrapper used for assigning a Bus Slave peripheral specific security and privileged states. Referring to
Eigure 3.1 ARMv8-M TrustZone Implementation on page 16, the PPU comes in the form of a PPU in Advanced High-
performance Bus (AHB) and a PPU in Advanced Peripheral Bus (APB).

e The PPU AHB generally lies between the Bus Matrix and an AHB Bus Slave peripheral.
« The PPU APB lies between the output of an AHB to APB bridge and all of the APB Slaves on that APB bus.

The registers below in SMU configure the pecurity] and privileged state of a peripheral. The peripherals in groups 0 and 1 are
device-dependent. Out of reset, each peripheral is Secure and privileged. While each peripheral in address 0x40000000
(region 7) or 0x50000000 (region 8) can be configured independently, the radio subsystem in 0xA0000000 (region 9) or
0xB0000000 (region 10) is configured as a .

Register Description
SMU_PPUPATDO Bitfields (privileged if set) for privileged access configuration on peripheral group O
SMU_PPUPATD1 Bitfields (privileged if set) for privileged access configuration on peripheral group 0
SMU_PPUSATDO Bitfields (Secure if set) for security access configuration on peripheral group 0
SMU_PPUSATD!1 Bitfields (Secure if set) for security access configuration on peripheral group 1

The PPU can generate three types of faults:

1. Privileged faults occur on unprivileged transactions to privileged peripherals. Below is the privileged fault table that shows
when a privileged fault occurs based on the PPU peripheral privileged configuration and the bus transaction privileged
attribute. The interrupt is triggered if PPUPRIV in SMU_IEN is set and the SMU_PRIVILEGED_IRQn is enabled.

Bus Attribute Privileged Peripheral Unprivileged Peripheral
Privileged SUCCESS SUCCESS
Unprivileged FAULT SUCCESS

2. Security faults occur on Secure transactions to Non-secure peripherals and Non-secure transactions to Secure peripherals.
Below is the security fault table that shows when a security fault occurs based on the PPU Peripheral security configuration
and the bus transaction security attribute. The interrupt is triggered if PPUSEC in SMU_EN is set and the SMU_SECURE_IRQn

is enabled.
Bus Attribute Secure Peripheral Non-secure Peripheral
Secure SUCCESS FAULT
Non-secure FAULT SUCCESS

3. Instruction faults occur on any transaction marked as an instruction fetch. Below is the instruction fault table that shows
when a PPU instruction fault occurs based on the bus transaction instruction attribute. The interrupt is triggered if PPUINST
in SMU_IEN is set and the SMU_PRIVILEGED_IRQn is enabled.

Bus Attribute Secure Peripheral Non-secure Peripheral
Secure SUCCESS FAULT
Non-secure FAULT SUCCESS

Upon a PPU fault, the registers below in notifies which PPU fault occurred and on which peripheral. If a fault is
detected, the response is Read As Zero (RAZ) or Write Ignored (WI) and set the corresponding interrupt flag in the SMULIF
register. The values in SMU_IF and SMU_PPUFS do not change until all PPU faults in the SMU_IF register are cleared by

software.

Register Bitfield Fault

SMU_IF PPUPRIV Privilege Fault if set
SMU_IF PPUSEC Security Fault if set
SMU_IF PPUINST Instruction Fault if set

Copyright © 2025 Silicon Laboratories. All rights reserved. 104/280

Bus Level Security (BLS) &= SILICON LABS

Register Bitfield Fault
SMU_PPUFS PPUFSPERIPHID ID of the peripheral that caused the fault
Compatibility

Secure software usually controls the EYSCFEG and SMU| peripherals to prevent Non-secure software from changing critical
configurations in the Secure domain. It requires switching between Secure and Non-secure states when Non-secure
software wants to update the registers in these peripherals. Therefore dedicated registers for Non-secure access are
added to SYSCFG and SMU peripherals on newer Series 2 devices.

System Configuration (SYSCFG)

Except for EFR32xG21 devices, the following tables apply to all Series 2 devices.

Table: Dedicated Bitfield to Configure Access for Non-secure SYSCFG Registers

Bitfield (Register) Description

SYSCFGCFGNS (SMU_PPUPATDO) Bitfields (privileged if set) for privileged access configuration on NS
SYSCFG registers

SYSCFGCFGNS (SMU_PPUSATDO) Bitfields (Secure if set) for security access configuration on NS
SYSCFG registers

Note: Reset SYSCFGCFGNS bit in SMU_PPUSATDO to allow Non-secure software to access NS SYSCFG
registers.

Table: Dedicated SYSCFG Registers for Non-secure State

SYSCFG Non-secure Registers Description
SYSCFG_CFGNS_CFGNSTCALIB NS SysTick calibration value register
SYSCFG_CFGNS_ROOTNSDATAO NS root data register O
SYSCFG_CFGNS_ROOTNSDATAO NS root data register 1

Security Management Unit (SMU)

Except for EFR32xG21 devices, the following tables apply to all Series 2 devices.

Table: Dedicated Bitfield to Configure Access for Non-secure SMU Registers

Bitfield (Register) Description

SMUCFGNS (SMU_PPUPATD1) Bitfields (privileged if set) for privileged access configuration on NS
SMU registers

SMUCFGNS (SMU_PPUSATD1) Bitfields (Secure if set) for security access configuration on NS
registers

Note: Reset SMUCFGNS bit in SMU_PPUSATD1 to allow Non-secure software to access NS SMU registers.

The SMU_CFGNS register file is for the TrustZone Non-secure state and has its register lock (NSLOCK). It allows hardware
to maintain the privileged assignments for the NS state. The privileged configuration within the NS state is the same as the
Secure state, except it has an "NS" to differentiate the registers.

Table: Dedicated SMU Registers for Non-secure State

Copyright © 2025 Silicon Laboratories. All rights reserved.

105/280

Bus Level Security (BLS)

SMU Non-secure Registers
SMU_CFGNS_NSSTATUS
SMU_CFGNS_NSLCOK
SMU_CFGNS_NSIF

SMU_CFGNS_NSIEN

SMU_CFGNS_PPUNSPATDO

SMU_CFGNS_PPUNSPATD1

SMU_CFGNS_PPUNSFS
SMU_CFGNS_BMPUNSPATDO

Table: Fault Statuses Only for Secure State

Bitfield (Register)

PPUPRIV (SMU_IF)

PPUINST (SMU_IF)

PPUPRIV (SMU_IEN)

PPUINST (SMU_IEN)
PPUFSPERIPHID (SMU_PPUFS)

&= SILICON LABS

Description
Lock status of SMU_CFGNS registers
Lock and unlock the SMU_CFGNS registers

Interrupt flags for NS privilege (PPUNSPRIVIF) and instruction
(PPUNSINSTIF) faults

Interrupt enable flags for NS privilege (PPUNSPRIVIEN) and instruction
(PPUNSINSTIEN) faults

Bitfields (privileged if set) for NS privileged access configuration on
peripheral group 0

Bitfields (privileged if set) for NS privileged access configuration on
peripheral group 1

ID (PPUFSPERIPHID) of the NS peripheral that caused the fault

Bitfields (privileged if set) for privileged attribute configuration on NS
Bus Master group O

Description

Fault status now limited only to Secure state
Fault status now limited only to Secure state
Fault status now limited only to Secure state
Fault status now limited only to Secure state

Fault status now limited only to Secure state

Table Dedicated SMU Interrupt for Non-secure State

Interrupt

SMU_NS_PRIVILEGED_IRQHandler()

Description

An interrupt flag in the SMU_CFGNS_NSIF register can generate an NS
privileged interrupt when its corresponding interrupt enable bit in the
SMU_CFGNS_NSIEN register is set and SMU_NS_PRIVILEGED_IRQn is
enabled, and in which the peripheral (ID) that triggers the fault is in the
SMU_CFGNS_PPUNSFS register.

Copyright © 2025 Silicon Laboratories. All rights reserved.

106/280

Secure And Privileged Programming Model &= SILICON LABS

Secure And Privileged Programming Model

Secure and Privileged Programming Model

The implementation of BLS on Series 2 devices, both flash and RAM, use a programmable watermark to delineate Secure,
Non-secure Callable, and Non-secure regions. On the other hand, peripherals exist in both a Secure and Non-secure alias of
memory.

BLS SMU Programming
Enabling SMU Clock

Except for the EFR32xG21 devices, all Series 2 devices enable the SMU clock in CMU before programming the SMU
registers.

#if (_SILICON_LABS_32B_SERIES_2_CONFIG > 1)
CMU->CLKEN1_SET = CMU_CLKEN1_SMU;
#endif

Cortex-M33 Lock Control

The Cortex-M33 security and privileged configurations can be locked by programming the SMU_M33CTRL register.

// Lock Secure MPU configuration
SMU->M33CTRL |= SMU_M33CTRL_LOCKSMPU;

Locking SMU Configuration

Th entire SMU configuration can be locked down to avoid runaway code. Below is an example of how to lock and unlock
the SMU.

uint32_t lock_status;

// Lock Down SMU

SMU->LOCK = ~SMU_LOCK_SMULOCKKEY_UNLOCK;

// Grab Lock Status

lock_status = (SMU->STATUS & _SMU_STATUS_SMULOCK_MASK) >> _SMU_STATUS_SMULOCK_SHIFT;
// Unlock SMU

SMU->LOCK = SMU_LOCK_SMULOCKKEY_UNLOCK;

Interrupt Control

Each interrupt flag in SMU_IF can generate an interrupt when its corresponding interrupt enable flag in the SMU_IEN register
is set. Each interrupt flag can be cleared by writing the clear alias of the SMULIF register.

Copyright © 2025 Silicon Laboratories. All rights reserved. 107/280

Secure And Privileged Programming Model

// Clear and enable the SMU PPUSEC and BMPUSEC interrupt
NVIC_ClearPendingIRQ(SMU_SECURE_IRQn);

SMU->IF_CLR = SMU_IF_PPUSEC | SMU_IF_BMPUSEC;
NVIC_EnablelRQ(SMU_SECURE_IRQN);

SMU->IEN = SMU_IEN_PPUSEC | SMU_IEN_BMPUSEC;

BLS ESAU Programming

Region Types

&= SILICON LABS

The SMU_ESAURTYESn registers are used to configure memory regions with a specific security attribute. All configurable
memory regions reset to Secure. Below is an example of programming regions 3 and 11 to Non-secure.

/I Region 3 (Info flash) is Non-secure
SMU->ESAURTYPESO = SMU_ESAURT YPESO_ESAUR3NS;
// Region 11 (EPPB) is Non-secure

SMU->ESAURTYPES1 = SMU_ESAURT YPES1_ESAURTINS;

Region Sizes

The code and figure below highlight how to program the Movable Region Boundaries (MRBs) of ESAU.

/I ESAU region 0/1/2 programming

// Boundary01 at 252kB and Boundary12 at 256kB
SMU->ESAUMRBO1 = 0x0003F000U & _SMU_ESAUMRBO1_MASK;
SMU->ESAUMRB12 = 0x00040000U & _SMU_ESAUMRB12_MASK;

// ESAU region 4/5/6 programming

/I Boundary45 at 44kB and Boundary56 at 44kB (region 5 size = 0)
SMU->ESAUMRB45 = 0x0000BO00U & _SMU_ESAUMRB45_MASK;
SMU->ESAUMRBS56 = 0x0000BO00OU & _SMU_ESAUMRB56_MASK;

8x3000_0000 —

mrb56
Ox20eecCeee

mrb45s
ex2000B6080e

@x2000_0600 —

Copyright © 2025 Silicon Laboratories. All rights reserved.

108/280

Secure And Privileged Programming Model &= SILICON LABS

Notes:

o The mrb12 (ESAUMRB12 in SMU_ESAURMBR12) has to be greater than or equal to mrbO71 (ESAUMRB12 in SMU_ESAURMBR12).

o The mrb56 (ESAUMRB56 in SMU_ESAURMBR562) has to be greater than or equal to mrb45 (ESAUMRB45 in
SMU_ESAURMBR45).

o If one of the rules above is violated, the SMU_STATUS.SMUPRGERR is asserted.

o When mrb01 and mrb12 are equal, region 1 (NSC) is a size of 0 and is not seen by the system.

o When mrb45 and mrb56 are equal, region 5 (NSC) is a size of 0 and is not seen by the system.

BLS SAU Programming

All Secure Configuration

Al secure configuratior] is the default state after reset. It clears the SAUCTRL.ENABLE and the SAU_CTRL.ALLNS bits in SAU,
and the entire memory is in a Secure attribute.

All Non-secure Configuration

Al Non-secure Configuration] occurs when the SAU_CTRL.ENABLE bit is cleared, and the SAU_CTRL.ALLNS bit is set. The
ESAU controls the security attribute of a Cortex-M33 transaction.

// Disable SAU (ALLNS = 1) and clear data and instruction pipe
SAU->CTRL = SAU_CTRL_ALLNS_Msk;

_DSB();

_ISB();

Configurable Configuration

Configurable configuratio occurs when the SAU_CTRL.ENABLE bit is set (SAU.CTRL.ALLNS is irrelevant). Both SAU and
determine the security attribute of a Cortex-M33 transaction. The code and figure below highlight how to program
the SAU regions.

/| Define all Non-secure (NS) and Non-secure Callable (NSC) Regions

#define REGIONO_BASE 0x0001EO00UL

#define REGION1_BASE 0x00020000UL

#define REGION2_BASE 0x20004000UL

#define REGIONO_LIMIT 0x0001FFFFUL

#define REGION1_LIMIT OxOOOFFFFFUL

#define REGION2_LIMIT 0x20017FFFUL

// CMSIS calls to enable SAU Regions

/I SAU region O - Flash NSC at 120 kB to 128 kB (0x0001E0Q00 - 0x0001FFFF)
SAU->RNR = (OUL & SAU_RNR_REGION_Msk) ;

SAU->RBAR = (REGIONO_BASE & SAU_RBAR_BADDR_Msk);

SAU->RLAR = (REGIONO_LIMIT & SAU_RLAR_LADDR_Msk) | SAU_RLAR_NSC_Msk \ SAU_RLAR_ENABLE_Msk;
/I SAU region 1 - Flash NS at 128 KB to 1024 kB (0x00020000 - 0xO00FFFFF)
SAU->RNR = (TUL & SAU_RNR_REGION_Msk;

SAU->RBAR = (REGION1_BASE & SAU_RBAR_BADDR_Msk;

SAU->RLAR = (REGIONT_LIMIT & SAU_RLAR_LADDR_Msk) | SAU_RLAR_ENABLE_Msk;
// SAU region 2 - RAM NS at 16 kB to 96 kB (0x20004000 - 0x20017FFF)
SAU->RNR = (2UL & SAU_RNR_REGION_Msk);

SAU->RBAR = (REGION2_BASE & SAU_RBAR_BADDR_Msk);

SAU->RLAR = (REGION2_LIMIT & SAU_RLAR_LADDR_Msk) | SAU_RLAR_ENABLE_Msk;
// CMSIS functions to enable SAU and clear data and instruction pipe
TZ_SAU_Enable();

_DSB();

_ISB();

Copyright © 2025 Silicon Laboratories. All rights reserved. 109/280

Secure And Privileged Programming Model &= SILICON LABS

@x3000_0e0e —

mrb56
ex20eeCene

mrb45s
ex2000B000

@x2000_0e00 —

BLS BMPU Programming

Bus Master Privileged Attribute

A Bus Master can be configured as either privileged (default) or unprivileged by programming the corresponding index in the
SMU_BMPUPATDn register.

/I Configure all odd Bus Masters unprivileged
for (i = 0;i < SMUNUM_BMPUS; i++) {
if (i & 0x01) {
SMU->BMPUPATDO &= ~(1 << i);
}
}

Bus Master Security Attribute

A Bus Master can be configured as either Secure (default) or Non-secure by programming the corresponding index in the
SMU_BMPUPATDnN register. Configure a Bus Master as Non-secure results in the Bus Master only being able to access Non-
secure addresses.

/I Configure all odd Bus Masters Non-secure
for (i = 0;i < SMU_NUM_BMPUS; i++) {
if (i & 0x01) {
SMU->BMPUSATDO &= ~(1 << i);
}
}

Bus Master Fault Status

Copyright © 2025 Silicon Laboratories. All rights reserved.

110/280

Secure And Privileged Programming Model &= SILICON LABS

The Bus Master ID and the address that triggered the fault can be read from the SMU_BMPUFS and SMU_BMPUFSADDR
registers.

uint32_t fs_bmpu_id;

uint32_t fs_bmpu_addr;

uint32_t fs_bmpu_secfault;

// Read Bus Master fault status

fs_bmpu_id = SMU->BMPUFS;

fs_bmpu_addr = SMU->BMPUFSADDR;

fs_bmpu_secfault = (SMU->IF & _SMU_IF_BMPUSEC_MASK) >> _SMU_IF_BMPUSEC_SHIFT;
// Clear the IF to capture a new fault

SMU->IF_CLR = SMU_IF_BMPUSEC;

BLS PPU Programming

Peripheral Privileged Attributes

A peripheral can be configured as either privileged (default) or unprivileged by programming the corresponding index in the
SMU_PPUPATDN register.

/I Configure all odd peripherals unprivileged
for (i = 0;i < SMU_NUM_PPU_PERIPHS; i++) {
if (i & 0x01) {
if (i >= 32){
SMU->PPUPATD1 &= ~(1 << (i-32));
}else {
SMU->PPUPATDO &= ~(1 << i);
}
}
}

Notes:

e The peripherals in SMU_PPUPATDO and SMU_PPUPATDO are device-dependent.
o The privileged attribute of the radio subsystem (AHBRADIO index) is configured as a unit.

Peripheral Security Attributes

A peripheral can be configured as either Secure (default) or Non-secure by programming the corresponding index in the
SMU_PPUSATDn register. The figure below shows the memory map when the ADC, 12C0, USART1, and RADIO are configured
as Non-secure and other peripherals (e.g.,, SMU, RTCC, TIMER1, TIMERO, USARTO..) as Secure.

/I Configure all the Non-secure peripherals
SMU->PPUSATDO &= ~SMU_PPUSATDO_USART1;
SMU->PPUSATD1 &= ~(SMU_PPUSATD1_2CO | SMU_PPUSATD1_IADCO | SMU_PPUSAT D1_AHBRADIO);

Copyright © 2025 Silicon Laboratories. All rights reserved.

111/280

Secure And Privileged Programming Model

M - TR T T
BT

USART1

0x5000_oeee — — ©xBooo_oeee —

RTCC

TIMER1
TIMERO

oxaooe_oose — —H e A ———

Notes:

e The peripherals in SMU_PPUSATDO and SMU->PPUSATD1 are device-dependent.
o The security attribute of the radio subsystem (AHBRADIO index) is configured as a unit.

Peripheral Fault Status

The peripheral ID that triggered the fault can be read from the SMU_PPUFS register.

uint32_t fs_ppu_periph_id;

uint32_t fs_sec_fault;

uint32_t fs_priv_fault;

uint32_t fs_inst_fault;

// Read peripheral fault status

fs_ppu_periph_id = SMU->PPUFS;

fs_sec_fault = (SMU->IF & _SMU_IF_PPUSEC_MASK) >> _SMU_IF_PPUSEC_SHIFT;
fs_priv_fault = (SMU->IF & _SMU_IF_PPUPRIV_MASK) >> _SMU_IF_PPUPRIV_SHIFT;
fs_inst_fault = (SMU->IF & _SMU_IF_PPUINST_MASK) >> _SMU_IF_PPUINST_SHIFT;
/I Clear the IF to capture a new fault

SMU->IF_CLR = SMU_IF_PPUSEC | SMU_IF_PPUPRIV | SMU_IF_PPUINST;

Floating Point Unit (FPU) Programming

If the Non-secure application enables the FPU at initialization, the Secure software needs to set up the NSACR register in

to grant the FPU access for Non-secure software.

// Enable Non-secure access to the FPU
SCB->NSACR |= SCB_NSACR_CP10_Msk + SCB_NSACR_CP11_Msk;

Copyright © 2025 Silicon Laboratories. All rights reserved.

&= SILICON LABS

NTH

FRC RAM

112/280

TrustZone Implementation &= SILICON LABS

TrustZone Implementation

TrustZone Implementation

The goal of TrustZone implementation is to provide Secure Key Storage that can keep access to keys limited to Secure
applications while at the same time allowing Non-secure applications to exercise the keys. It is an added feature for the
SVM devices that do not have dedicated hardware for Secure Key Storagg as in SVH devices.

The is placed in a Secure region to keep key material hidden from the Non-secure application. The exposed
PSA Crypto APIs stay the same while the backend provides persistent key encryption and decryption similar to the key
wrapping and unwrapping functionality of the SVH device.

The following items need to be considered when upgrading the existing system for Secure Key Storage with TrustZone.

« Bystem Configuratior]

» [Gecko Bootloade]

.

e [TrustZone Secure Key Storage
.

.

e Common Vulnerabilities and Exposures (CVE)|

System Configuration

The system configuration includes the following items:

« Enable system exceptions in the Secure state.

o Set the security attributes of different regions in the SAU and ESAU.

« Place peripherals and associated interrupts in either Secure or Non-secure applications.

» Assign the Bus Masters' security attributes.

e The system has two Secure/Non-secure pairs for the bootloader and application. The Secure part of each pair is responsible
for properly configuring the split in its Secure application before branching to the Non-secure application.

Note: The secure application will issue a software reset at startup (fatal error) if the device's SE firmware

version is lower than the that supports TrustZone.

System Exceptions

The following kystem exceptiond are enabled in the Secure state for the bootloader and application.

MemManage Fault
BusFault
UsageFault

e SecureFault

Main Flash Layout

The following figure is an overview of the main flash layout that covers the isolation requirements for the Secure Key
Storage solution. The SAU and ESAU configurations provide the required security to the Cortex-M33 and other Bus
Masters during boot and normal operation.

Copyright © 2025 Silicon Laboratories. All rights reserved. 113/280

https://docs.silabs.com/iot-security/latest/efr32-secure-key-storage/
https://www.silabs.com/documents/public/application-notes/an1311-mbedtls-psa-crypto-porting-guide.pdf

TrustZone Implementation &= SILICON LABS

- Bootioad _ Applicat
Main Flash Layout -
Secure Mon-secure Secure Mon-secure Non-secure Mon-volatile Memory
Bootloader Bootleader/AppLoader Application Callable Application (NVM) Storage

[l

j I
puring Bot MPU_S ! h
P

ESAU NSC

| | | @ | |
————

Other Bus Masters (Lite ESAU)

T T
R P R ! |
e,

| | |
T

i iyl i |
Cortex-M33 isw&mwﬂ NSC —

Other Bus Masters (Lite ESAU)

ESAU NSC

1. Settings:

o The application is set to non-executable (XN) by to avoid any code execution in this area during boot.
o The bootloader is set to non-executable (XN) by Secure MPU to avoid any code execution in this area during normal
operation.

2. The ESAU configuration only uses the NSC section by setting mrb01 to the pase address of region {. The reason is that lite
ESAU in other Bus Masters treats both S and NSC as a Secure attribute. For the Cortex-M33, the SAU upgrades the NSC in
the ESAU to Secure. The 32 bytes region alignment of SAU also relaxes the 4 kB alignment restriction on the start address
of the NSC in ESAU.

3. The whole application area is set to Secure in SAU for Cortex-M33 during boot to hide details from the bootloader NS part.

4. The ESAU cannot mark any region that comes after a Non-secure section as Secure (must be in the order of S/INSC/NS).
Therefore the Secure application area does not align between the Cortex-M33 (SAU + ESAU) and other Bus Masters (lite
ESAU) during boot. The secrets stored in that Secure region expose as Non-secure for other Bus Masters during boot (no
such issue in normal operations). So the application must not save any plaintext secrets in that Secure region to overcome
this limitation during boot.

5. The NVM storage is in the Non-secure region, so the application must the persistent keys before storing them in this
area.

RAM Layout

The following figure is an overview of the RAM layout used for the bootloader and application. The SAU and ESAU are used
to split the RAM into a Secure and Non-secure region (Non-secure Callable is not required).

RAM Layout sau S T
ﬁ‘::?it::‘;?i?;r} & | esavae Alignment +
ESAU

Other Bus Masters (Lite ESAU)

Copyright © 2025 Silicon Laboratories. All rights reserved. 114/280

TrustZone Implementation &= SILICON LABS

In practice, the Secure part (bootloader or application) takes ownership of the amount of RAM it needs from the beginning
of RAM and leaves the rest (up to the ESAU 4 kB alignment requirement) configured as Non-secure.

The bootloader does not know how the application partitions the RAM between Secure and Non-secure. So bootloader
removes any secrets from RAM before handing control to the application.

Info Flash and EPPB

The following figure is an overview of the Info flash and EPPB layout for the application. The Cortex-M33 core is the only
Bus Master that can access the EPPB region.

Info flash & EPPB Info flash EFPPB

(Application) sl s M s W s s

USERDATA DEVINFO CHIPCONFIG

Esau e
Other Bus Masters (Lite ESAU)

Peripheral and Device

The following figure is an overview of the peripheral and device layout for the bootloader and application. The SAU and
ESAU are used to split the peripheral and device into a Secure and Non-secure region.

Peripheral & Device Layout Peripheral Device
(Bootioader & seu S S s
Application)

ESAU
Other Bus Masters (Lite ESAU)

The Secure software is responsible for moving all peripherals and associated interrupts to the Non-secure state at startup,
except for the peripherals and interrupts that need to be Secure. The Non-secure software must not include code that
attempts to directly access any peripheral that is used by the Secure software.

Peripherals owned by the Secure software (application)

1. Security Management Unit (SMU)
o It prevents Non-secure software from changing the configuration for the ESAUs, BMPUs, and PPUs.
o Except for EFR32xG21 devices, some features are also available in the dedicated Non-secure version of SMU registerg
(SMU_CFGNS).
2. CRYPTOACC (VSE devices) or SEMAILBOX (HSE devices)
o The crypto engine is placed in the Secure domain for.
3. System Configuration (SYSCFG)
o It prevents Non-secure software from changing system configurations for Secure software.
o Except for EFR32xG21 devices, some features are also available in the dedicated Non-secure version of SYSCFQ
eqisters (SYSCFG_CFGNS).
4. Memory System Controller (MSC)

o

Copyright © 2025 Silicon Laboratories. All rights reserved. 115/280

TrustZone Implementation &= SILICON LABS

It prevents Non-secure software from writing to Secure flash.
Peripheral interrupts owned by the Secure software:

Table: Secure Peripheral Interrupts (Application)

VSE Device HSE Device
SMU_SECURE_IRQnN SMU_SECURE_IRQN
SYSCFG_IRQnN SYSCFG_IRQN
MSC_IRQn MSC_IRQnN
CRYTOACC_IRQnN SEMBRX_IRQn
TRNG_IRQN SEMBTX_IRQn
PKE_IRQN

The PRIS bit in the AIRCR registeris set to 1to place all Non-secure exceptions/interrupts in Jower priority level spaced].
Therefore any Secure exceptions/interrupts can be programmed with higher priority than Non-secure ones.

The |BMPUSEC | and [PPUSEC] interrupt enable flags in the SMU_IEN register are set to enable the SMU security fault
interrupts (SMU_SECURE_IRQn) on Bus Masters and peripherals.

Floating Point Unit (FPU):

The Secure application does not use the FPU. But the Secure startup code also enables the @ for use by the Non-
secure application.

Bus Masters

To keep all secrets from the Non-secure world, only the Bus Masters in the table below can access data in the Secure
world. For the Bus Masters living in the Secure world, the secure application must configure their corresponding control
interfaces in the peripheral space to Secure. The Cortex-M33 core as a Bus Master is split to run in Secure and Non-
secure contexts.

Table: Secure Bus Masters (Application)

Device Secure Bus Master Control Interface of Bus Master
VSE CRYPTOACC CRYTPOACC
HSE SEDMA or SEEXTDMA SEMAILBOX

Notes:

 Use SMU_BMPUSATDO register to the security attribute of a Bus Master.
« Use SMU_PPUSATDn register to the control interface of Bus Master as a Secure peripheral.
« LDMA is set as a Non-secure Bus Master to make sure it cannot be used to copy out data from the Secure memory.

Application Transitions

The system contains two Secure/Non-secure pairs.

1. The [bootloader pair] (#bootloader pair) has a Secure bootloader and a Non-secure bootloader containing the
communication interfaces.

2. The [application pair] (#application pair) has a Secure application and a Non-secure application consisting of the wireless
stacks (if applicable) and application layers.

As described in the preceding sections, the Secure part of these pairs is responsible for setting the security configurations
of the system during startup. For the handover between Secure/Non-secure pairs, the software must restore the system
so the Secure part of the other pair can execute and reconfigure the system.

The software must reconfigure the following items before transitioning to the next Secure/Non-secure pair:

« Restored all peripherals and interrupts to Secure
o Reset ESAU to default configuration (all configurable regions to Secure)
» Reset SAU to default configuration (Secure for everything)

Copyright © 2025 Silicon Laboratories. All rights reserved. 116/280

TrustZone Implementation &= SILICON LABS

Reset MPU to default configuration (removes any XN)

Gecko Bootloader

The [Gecko bootloadel] ensures the Secure assets are protected during the boot flow and normal operation.

——— Bootloader - Application

Main Flash Layout
Secure Mon-secure Secure Mon-secure MNon-secure Mon-volatile Memory
Bootloader Bootloader/AppLoader Application Callable Application (NVM) Storage
[l
During Boot i l I |
MPU_S eXecute Never (XN)
S S S 5 S S

ESAU

Other Bus Masters (Lite ESAU)

Normal Operation

ESAU NSC_ :
| @ | |

Other Bus Masters (Lite ESAU)

1. The SAU and mark all the flash for application and NVM as Secure and non-executable (XN) during boot. It
guards against bootloader NS code execution branching into the application code.

2. The bootloader needs to split into Secure and Non-secure software to protect secrets in the system. Secure code can
access the entire flash to validate or upgrade the system.

3. For VSE devices, the GBL Decryption Key (AES-128 key) is moved from the NS memory (last page of the main flash) to the
Secure part of the bootloader. The Simplicity Commander v1.13 or higher provides a feature to inject the AES-128 key to the
bootloader binary file.

commander convert <BL image file> --aeskey <decryption key file> --outfile <BL image with decryption key>

4. The bootloader communication interfaces are placed in the NS area to support various fommunication componentd below
for firmware upgrades.
o BGAPI UART
o EZSP-SPI
o UART XMODEM
5. The NS communication functions call into the placed in the bootloader NSC region. The Secure application
all input arguments before processing the request.
6. Before transiting from bootloader to normal operation, it resets the SAU to default configuration to make all the flash for
bootloader as Secure.
7. The Non-secure application software can call through application NSC, and the corresponding Secure
function releases the non-executable (XN) restriction on the bootloader during normal operation.

Secure Library

The goal of the Secure library is to keep the PSA Crypto key| and pttestation toker protected from malicious code on the
NSPE. The following figure overviews multiple components to support the Secure library.

Copyright © 2025 Silicon Laboratories. All rights reserved. 117/280

https://docs.silabs.com/mcu-bootloader/latest/bootloader-user-guide-gsdk-4/
https://www.silabs.com/documents/public/application-notes/an1222-efr32xg2x-production-programming.pdf
https://docs.silabs.com/mcu-bootloader/latest/group-Communication
https://docs.silabs.com/mcu-bootloader/latest/group-Interface
https://docs.silabs.com/mcu-bootloader/latest/group-Interface

TrustZone Implementation &= SILICON LABS

SE Manager Meon-secure Processing
NS Interface Environment (NSPE)
e — . e —— - i i Unchanged
Component
MNew
Component

1. The NS interfaces in NSPE are responsible for packing and passing all input arguments over the functions on wrappers
in SPE.

2. The wrappers in SPE validate all input arguments before calling into the corresponding APIs in different drivers.

3. Because of the system memory layout limitation, the for NVM3 storage is located in the NSPE. Therefore the updated
PSA Internal Trusted Storage (ITS) driver needs to encrypt all crypto keys before storing them in Non-secure NVM.

4. Data stored directly using the NVM3 APIs are not encrypted.

The following table describes the new and updated components of the Secure library.

Component Description

SE Manager NS interface This component contains SE Manager API callable from the NSPE. It packages
the list of input arguments in the appropriate format before calling into the SE
Manager wrapper's NSC functions.

SE manager wrapper This component contains the interface into SE Manager exposed to the
NSPE. These NSC functions grant access to the SE Manager utility APl and
validate all input arguments before calling into SE Manager.

PSA Crypto & Attestation NS interface This component contains PSA Crypto and attestation API callable from the
NSPE. It packages the list of input arguments in the appropriate format before
calling into the PSA Crypto and attestation wrapper's NSC functions.

PSA Crypto & Attestation wrapper This component contains the interface into PSA Crypto and attestation
exposed to the NSPE. These NSC functions grant access to the entire PSA
Crypto and attestation APl and validate all input arguments before calling into
PSA Crypto and attestation.

PSA attestation This component in SPE provides the functionality required by the PSA
attestation specification.

Encrypted PSA ITS The PSA ITS layer builds on top of NVM3. This component is updated to
support encrypted storage to secure stored keys. The encryption is based on
the device's TrustZone Root Key.

NVM3 NS interface This component contains NVM3 API callable from the NSPE. It packages the
list of input arguments in the appropriate format before calling into the NVM3
wrapper's NSC functions.

NVMS3 wrapper This component contains the interface into NVM3 exposed to the NSPE.
These NSC functions grant access to the NVM3 APl and validate all input
arguments before calling into NVMS3.

Notes:

e« The SE Manager NS interface, PSA Crypto NS interface, and NVM3 NS interface in the NSPE provide drop-in replacement
on BE Manager utilityl, PSA Cryptd, and NVMJ3 APIs for existing wireless stacks and user applications.

o The NSC calls can only take a limited number of arguments, so all NSC functions take a pointer to a list of parameters to
support a long list of arguments. All arguments must be validated using the from CMSIS.

TrustZone Secure Key Storage

Copyright © 2025 Silicon Laboratories. All rights reserved. 118/280

https://armmbed.github.io/mbed-crypto/html/about.html
https://docs.silabs.com/gecko-platform/latest/driver/api/group-nvm3

TrustZone Implementation &= SILICON LABS

The TrustZone Secure Key Storage provides a solution to store a user key in Secure RAM or an encrypted form in Non-
secure flash.

The TrustZone Root Key stored in the SE NVM for Secure Key Storage encryption is generated or renewed by following
operations.

e The TrustZone Root Key had already existed if the shipped Series 2 device with BE firmware version] supports this key.
o Generate a TrustZone Root Key when upgrading from a SE firmware version that did not support this key to the one that
does.

e Renew a TrustZone Root Key after performing a .

Note: The TrustZone Root Key cannot be renewed if Device Erase is disabled.

The TrustZone Root Key is not exposable to the NSPE, and access to this key in SPE is different in HSE and VSE devices.

e HSE - The SPE can access the TrustZone Root Key as a built-in non-exportable key in HSE NVM.
e« VSE - The SPE can access the TrustZone Root Key in Secure RAM, which is copied from VSE NVM during boot.

The TrustZone Root Key value after reset is identical to the value before reset. TrustZone Root Keys are unique on each
device. The key allows a user to securely store a key in the Non-secure flash, limiting the number of keys that can be
saved only by the amount of Non-secure storage. The following figure describes using the TrustZone Root Key to encrypt
a plaintext key and store it in Non-secure NVM.

Series 2 TrustZone Secure Key Storage
Non-secure (NSPE)

Flash (NVM)

Encrypted
Key

PSAITS

3

Q RAM q-
F Plaintext Key PSA Crypto
%

Plaintext
User Key

i

1. After power-on, the device's TrustZone Root Key is available for the SPE.

. A user key is generated and imported into the device's Non-secure memory. In this example, the key is imported into Non-
secure RAM for easy deletion, and the key is lost if device power is removed.

. Call PSA Crypto API (psa_import_key() or psa_generate_key()) through SG in NSC to generate a key for crypto operations.

. The plaintext key is passed to the PSA Crypto in SPE, where it is encrypted (AES-GCM) with the TrustZone Root Key.

. The encrypted key is stored to the NVM in NSPE through the PSA ITS and NVM3 drivers.

. The plaintext key can now be deleted from the Non-secure RAM.

. Only the PSA Crypto in SPE can retrieve the encrypted key from NVM in NSPE and decrypt it for crypto operations in SPE.

N

N o o~ ow

Copyright © 2025 Silicon Laboratories. All rights reserved. 119/280

https://docs.silabs.com/iot-security/latest/series2-secure-debug/

TrustZone Implementation

Note: Ignore steps 2 and 6 if the plaintext key is randomly generated by the PSA Crypto.

The following tables describe the storage differences between SVM and SVH devices with and without TrustZone Secure
Key Storage (SKS).

Key Type Storage on SVM Device Storage on SVH Device
Volatile Plaintext (without TrustZone SKS) RAM RAM
Persistent Plaintext (without TrustZone SKS) NVM NVM
Volatile Wrapped (without TrustZone SKS) Not supported RAM (1)
Persistent Wrapped (without TrustZone SKS) Not supported NVM (1)
Key Type Storage on SVM Device Storage on SVH Device
Volatile Plaintext (with TrustZone SKS) Secure RAM (2) Secure RAM
Persistent Plaintext (with TrustZone SKS) Encrypted plaintext key in NS Encrypted plaintext key in NS
NVM (2) NVM
Volatile Wrapped (with TrustZone SKS) Not supported Secure RAM
Persistent Wrapped (with TrustZone SKS) Not supported Encrypted wrapped key in NS
NVM
Notes:

e The NVM or is at the last part of the main flash.
o |t is possible to replace the solution on the SVH device (1) with TrustZone Secure Key Storage on the SVM
device (2), but this is a less secure approach.

PSA Attestation

The device attestation service creates a token that contains a fixed set of device-specific data when requested by the
caller. Each device must have a unique Initial Attestation Key (IAK) pair. The device uses the private IAK to sign the token,
and the caller uses the public IAK to verify the token's authenticity.

The generation of the private IAK is different in SVM and SVH devices.

« SVM - If the private IAK does not exist in NVM3, it is randomly generated when requested from the PSA Attestation driver
and saved to NVM3 through the [TrustZone Secure Key Storagel
e SVH - The private IAK is generated and securely stored in the HSE during chip production.

An Entity Attestation Token (EAT) is a mini-report that is cryptographically signed. An EAT is encoded in either one of two
standardized data formats: a Concise Binary Object Representation () orin the text-based format JSON. A digital
signature is then used to protect its content. The technical specification defining the content of the EAT, which are claims
about the hardware and the software running on a device, is specified by the Internet Engineering Task Force (JETH).

The EAT is a crypto-signed report card with claims. A claim is a data item that is represented as a Key-Value pair. Claims can
relate to the device's pedigree or anything one wants the device to attest. Collected data can originate from the Root of
Trust (RoT), any protected area, or non-protected areas.

The EAT must be signed following the structure of the CBOR Object Signing and Encryption () specification. For
asymmetric key algorithms, the signature structure must be COSE-Sign1. A COSE-Sign1 is a CBOR encoded, self-secured
data blob that contains headers, a payload, and a signature.

The primary need for EAT verification is to check correct formation and signing as for any token. In addition, though, the
verifier can operate a policy where values of some of the claims in this profile can be compared to reference values that
are registered with the verifier for a given deployment, to confirm that the device is endorsed by the manufacturer supply
chain.

Copyright © 2025 Silicon Laboratories. All rights reserved.

&= SILICON LABS

120/280

https://docs.silabs.com/iot-security/latest/efr32-secure-key-storage/
https://www.rfc-editor.org/info/rfc7049
https://datatracker.ietf.org/doc/html/draft-ietf-rats-eat-11
https://www.rfc-editor.org/info/rfc8152

TrustZone Implementation

&= SILICON LABS

The PSA attestation toker (aka Initial Attestation Token - IAT) is a profiled EAT. The Series 2 device will generate this
token by (Nonce claim below) unless the SE OTP is uninitialized or the [SECURE_BOOT_ENABLE| option in SE OTP is disabled.

The following tables describe claims used in the PSA attestation token of the Series 2 device.

Table: Claims of PSA Attestation Token

Key Claim Name (Present) Claim Description Claim Value
265 Profile Definition (Must) The Profile Definition claim encodes the http://arm.com/psa/2.0.0
(-75000) unique identifier corresponds to the EAT
profile.
2394 Client ID (Must) The Client ID claim represents the security See note below (2
(-75001) domain of the caller. byes)
2395 Security Lifecycle (Must) The Security Lifecycle claim represents the Device dependent (2
(-75002) current lifecycle state of the PSA RoT. bytes)
2396 Implementation ID (Must) The Implementation ID claim uniquely Device dependent (32
(-75003) identifies the implementation of the immutable bytes)
PSA RoT.
2397 Boot Seed (Optional) The Boot Seed claim represents a value Device dependent (32
(-75004) created at system boot time that will allow bytes)
differentiation of reports from different boot
sessions.
2399 Software Components (Must) The Software Components claim is a list of See note below
(-75006) software components that includes all the
software loaded by the PSA RoT.
10 Nonce (Must) The Nonce claim is used to carry the Random nonce
(-75008) challenge provided by the caller to (32/48/64 bytes)
demonstrate freshness of the generated
token. The length must be either 32, 48, or
64 bytes.
256 Instance ID (Must) The Instance ID claim represents the unique SHA-256 hash of public
(-75009) identifier of the IAK. The length must be 33 IAK (32 bytes) with
bytes. header Ox01
Notes:

e« Some claims MUST be present in a PSA attestation token.
The keys -7500x were defined in a previous version of the PSA attestation token specification (PSALIOT_PROFILE1 profile)

that is still used in the HSE-SVH firmware.

The actual claims returned from the tokens on the SVH device are HSE firmware version-dependent.
Key 2394:In PSA, a security domain is represented by a signed integer where negative values represent callers from the

NSPE and positive IDs represent callers from the SPE. The value 0 is not permitted.
o Key 2395 (For the definitions of these lifecycle states, refer to the ARM PSA Security Mode):
o UNKNOWN (0x0000 - 0x00ff)
o ASSEMBLY_AND_TEST (0x1000 - Ox10ff)
o PSA_ROT_PROVISIONING (0x2000 - 0x20ff)
o SECURED (0x3000 - 0x30ff)
o NON_PSA_ROT_DEBUG (0x4000 - 0x40ff)
o RECOVERABLE_PSA_ROT_DEBUG (0x5000 - 0x50ff)
o DECOMMISSIONED (0x6000 - 0x60ff)
o Key 2396:
o Word[0]: Die revision
o Word[1]: SE OTP version (return 0 for VSE SE firmware < [1214)
o Word[2]: Security capability (not applicable to HSE-SVH device, always returns 1 in this word)
= 0: Unknown security capability
=]: Security capability not applicable

Copyright © 2025 Silicon Laboratories. All rights reserved. 121/280

https://www.ietf.org/archive/id/draft-tschofenig-rats-psa-token-21.html
https://docs.silabs.com/mcu-bootloader/latest/series2-secure-boot-with-rtsl/
https://developer.arm.com/-/media/Files/pdf/PlatformSecurityArchitecture/Architect/DEN0079_PSA_SM_ALPHA-03_RC01.pdf

TrustZone Implementation &= SILICON LABS

2: Basic security capability

= 3:Root of Trust security capability

= 4: HSE-SVM security capability

= 5:HSE-SVH security capability (run HSE-SVM binary on HSE-SVH device)
o Word[3]: Production version
o Word[4:7]: Reserved (zeros)

o Key 2399: Each software component uses the attributes described in the following table, and some MUST be present in a

software component claim.

Key Attribute (Present) Description Value

1 Measurement Type (Optional) The Measurement Type attribute is a short See note below
string representing the role of this software
component.

2 Measurement Value (Must) The Measurement Value attribute represents a SHA-256 hash (32
hash of the invariant software component in bytes) of the
memory at startup time. firmware

4 Version (Optional) The Version attribute is the issued software A string of 8 bytes

version in the form of a text string.

The following measurement types may be used for Key 1:

e« "BL":a Bootloader

o "PRoT":a component of the PSA Root of Trust

e« "AROT":a component of the Application Root of Trust
* "App":a component of the NSPE application

o "TS":a component of a Trusted Subsystem

The PSA Attestation APl allows access to the PSA attestation token, so an external entity can cryptographically verify the
identity and trust status of the device.

Table: PSA Attestation API

PSA Attestation API Usage

psa_initial_attest_get_token Retrieve the PSA attestation Token.

psa_initial_attest_get_token_size Calculate the size of a PSA attestation Token.
sl_tz_attestation_get_public_key Get the public IAK key for PSA attestation token signature verification.

Note: The sl_tz_attestation_get_public_key is a Silicon Labs custom API.

SE Manager

SE Manager is the foundation for the cryptographic operations on HSE devices. It means that SE Manager
has to move into the SPE.

The following SE Manager APIs are always available in the NSPE.

SE Manager Core API VSE-SVM HSE-SVM HSE-SVH
sl_se_init Y Y Y
sl_se_deinit Y Y Y
sl_se_init_command_context Y Y Y
sl_se_deinit_command_context Y Y Y
sl_se_set_yield Y Y Y

The following SE Manager APIs expose to the NSPE through the NSC interface for the VSE devices.

Copyright © 2025 Silicon Laboratories. All rights reserved. 122/280

https://docs.silabs.com/gecko-platform/latest/service/api/group-sl-se-manager-core
https://docs.silabs.com/gecko-platform/latest/service/api/group-sl-se-manager-core

TrustZone Implementation &= SILICON LABS

SE Manager Core API VSE-SVM HSE-SVM HSE-SVH
sl_se_read_executed_command Y - -
sl_se_ack_command Y - -

The following SE Manager APIs expose to the NSPE through the NSC interface for configuring the security features
of HSE or VSE devices.

SE Manager Utility API VSE-SVM HSE-SVM HSE-SVH
sl_se_check_se_image
sl_se_apply_se_image
sl_se_get_upgrade_status_se_image
sl_se_check_host_image
sl_se_apply_host_image
sl_se_get_upgrade_status_host_image
sl_se_init_otp_key

sl_se_read_pubkey

sl_se_init_otp

sl_se_read_otp

sl_se_get_se_version
sl_se_get_debug_lock_status

sl_se_apply_debug_lock

< < < < <X < < < < < < < =< <

sl_se_get_otp_version

sl_se_write_user_data (EFR32xG21 only) (EFR32xG21 only)

sl_se_erase_user_data - (EFR32xG21 only) (EFR32xG21 only)

sl_se_get_reset_cause - (EFR32xG21 only) (EFR32xG21 only)
sl_se_get_status -
sl_se_get_serialnumber -

sl_se_enable_secure_debug =

< <X < < < < < < < <X < < < < < < < < < < <
<~ < <X <X <X <X < <X <X < < < <X < < < < < < =< =<

sl_se_disable_secure_debug -

SE Manager Utility API VSE-SVM HSE-SVM HSE-SVH
sl_se_set_debug_options -
sl_se_erase_device =
sl_se_disable_device_erase -
sl_se_get_challenge =

sl_se_roll_challenge -

< < < < =< <

sl_se_open_debug =
sl_se_disable_tamper - -

sl_se_read_cert_size = =

< < < < < < =< =< <

sl_se_read_cert - -

Note: The NSPE cannot access the other BE Manager APId for cryptographic and attestation operations.

Copyright © 2025 Silicon Laboratories. All rights reserved. 123/280

https://docs.silabs.com/gecko-platform/latest/service/api/group-sl-se-manager-util
https://docs.silabs.com/gecko-platform/latest/service/api/group-sl-se-manager

TrustZone Implementation &= SILICON LABS

Common Vulnerabilities and Exposures (CVE)

At this writing, the following known TrustZone CVE had been fixed in the current implementation.

e CVE-2020-16273: Stack sealing
o CVE-2021-36469: VLLDM instruction/floating-point vulnerability

Copyright © 2025 Silicon Laboratories. All rights reserved. 124/280

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-16273
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-35465

Upgrade Existing Application To TrustZone &= SILICON LABS

Upgrade Existing Application To TrustZone

Upgrade Existing Application to TrustZone

The main concerns when upgrading existing deployment to the TrustZone solution are:

e The Becure/Non-secure pair for the bootloadel (24 kB) does not fit inside the current allotted bootloader space (16 kB).

o The Becure/Non-secure pair for the applicatior] does not fit inside the current allotted application space.

e The moves from a non-encrypted to an encrypted format, so the existing stored cryptographic keys in NVM3
cannot be reused after upgrading the current application to TrustZone.

The is based on PSA Crypto, so the existing application cannot integrate with the TrustZone if one of the
following conditions is valid.

o Use [SE Manager API{ for cryptographic and attestation operations.
» Use classic Mbed TLS APIs for cryptographic operations (except for X.509 certificate) and Transport Layer Security (TLS)

protocol.

System Requirements

The following table lists the tools and software required for TrustZone development on Series 2 devices.

Tool/Software Required Version Description

GCC v10.31 Fix a bug (ID 99271) on cmse_nonsecure_call attribute.

IAR EWARM v9.20.4 Fix a bug (EWARM-9484) on _cmse_nonsecure_call
attribute.

Segger J-Link > Vv/6.2¢C v7.6.2¢ is the first version to add basic TrustZone support

on Series 2 devices.

Simplicity Studio >v5.6.3.0 v5.6.3.0 is the first version to support TrustZone software
development on Series 2 devices.

Simplicity Commander >v113.3 v113.3 includes a TrustZone-aware flash loader and
supports features required for TrustZone development.

GSDK >2Vv422 GSDK v4.2.2 is the first version to support TrustZone
software development on Series 2 devices.

SE Firmware =v1214 v1.214 is the first version to fully support TrustZone on
xG21 (HSE) and xG22 (VSE) devices.

SE Firmware >v22] v2.21is the first version to fully support TrustZone on
other Series 2 HSE and VSE devices.

Notes:

e Required GCC and IAR EWARM versions are GSDK-dependent.

e Bug list of GCC v10.3

o JAR EWARM release note

Begger J-Link release note

Eimplicity Studio user guide]

o Latest version of Simplicity Commande]

[GSDK release notg

Silicon Labs strongly recommends installing the latest SE firmware on Series 2 devices to support the required TrustZone
features. The latest SE firmware image and release notes after installing the GSDK (Windows folder):

C\Users<PC USER NAME>\SimplicityStudio\SDKs\gecko_sdk\util\se_release\public

Peripheral Addresses in Device Header Files

Copyright © 2025 Silicon Laboratories. All rights reserved. 125/280

https://docs.silabs.com/gecko-platform/latest/service/api/group-sl-se-manager
https://gcc.gnu.org/bugzilla/buglist.cgi?bug_status=RESOLVED&resolution=FIXED&target_milestone=10.3
https://updates.iar.com/?product=EWARM
https://www.segger.com/downloads/jlink/ReleaseNotes_JLink.html
https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-overview/
https://www.silabs.com/developers/mcu-programming-options
https://github.com/SiliconLabs/gecko_sdk/releases

Upgrade Existing Application To TrustZone &= SILICON LABS

The device header files (e.g., efr32mg21b020f1024im32.h) need to be configurable for different situations. The
SL_TRUSTZONE_SECURE and SL_TRUSTZONE_NONSECURE definitions specify whether the compilation is for Secure or Non-
secure applications. The SL_TRUSTZONE_SECURE and SL_TRUSTZONE_NONSECURE should be exclusive. If none of the
definitions are true, the state should be similar to the Non-secure configuration, but the (Systeminit() in
system_*.c) will be responsible for reconfiguring the system.

Define (Software Component) Default Peripheral Pointer Startup Code

SL_TRUSTZONE_SECURE (TrustZone Point to Secure peripherals (*_-BASE = No effect on Systeminit()

Secure) *_S_BASE)

SL_TRUSTZONE_NONSECURE Point to Non-secure peripherals No effect on Systemlnit()

(TrustZone Non-Secure) (*_BASE = *_NS_BASE)

None of the above (-) Point to Non-secure peripherals Systemlnit() moves peripherals to Non-
(*_BASE = *_NS_BASE) secure

When building a Secure application (SL_.TRUSTZONE_SECURE is true), all peripherals shall have their non-suffixed default
address pointing to the Secure location of the peripheral (e.g.,, EMU). But the definitions in sl_trustzone_secure_config.h can
force the addresses of specific peripherals pointing to the Non-secure location.

#ifndef SL_.TRUSTZONE_SECURE_CONFIG_H

#define SL_.TRUSTZONE_SECURE_CONFIG_H

/I Specify security configuration of peripherals. Peripherals that are not

/] included here will automatically have their _-BASE addresses point to their
/] secure address. This might not be true, since most peripherals are configured
/] to be non-secure -- but it's also not a problem if the peripheral is not

/] accessed from the S app.

/] Used in multiple places.

#define SL_.TRUSTZONE_PERIPHERAL_CMU_S (0)

// Used by SE Manager service.

#define SL_.TRUSTZONE_PERIPHERAL_AHBRADIO_S (0)

// Used by MSC service.

#define SL_.TRUSTZONE_PERIPHERAL_LDMA_S (1)

// Used by MSC service.

#define SL_.TRUSTZONE_PERIPHERAL_LDMAXBAR_S (1)

#endif // SL.TRUSTZONE_SECURE_CONFIG_H

#if defined (SLLCATALOG_TRUSTZONE_SECURE_CONFIG_PRESENT)
#include "sl_trustzone_secure_config.h"
#endif
#if ((defined(SL_.TRUSTZONE_SECURE) && !defined(SL_TRUSTZONE_PERIPHERAL_EMU_S))
|| (defined(SL_TRUSTZONE_PERIPHERAL_EMU_S) && (SL_.TRUSTZONE_PERIPHERAL_EMU_S != 0)))
#define EMU_BASE (EMU_S_BASE) /* EMU base address */
#else

In other cases (SL_TRUSTZONE_NONSECURE is true or both SL_TRUSTZONE_SECURE and SL_TRUSTZONE_NONSECURE are
false), all peripherals shall have their non-suffixed default address pointing to the Non-secure location of the peripheral
(e.g., EMU).

#define EMU_BASE (EMU_NS_BASE) /* EMU base address */

Note: Do not install the TrustZone Secure or TrustZone Non-Secure software component to the TrustZone
Lnaware application.

Startup Code

Copyright © 2025 Silicon Laboratories. All rights reserved. 126/280

Upgrade Existing Application To TrustZone &= SILICON LABS

The startup code moves peripherals from Secure to Non-secure to support the pefault peripheral locationd. In a TrustZone-
aware application (either SL_TRUSTZONE_SECURE or SL_TRUSTZONE_NONSECURE is true), this is the application's
responsibility (skip lines 168 to 194 in Systeminit()) and is done in the of the system.

For the TrustZone-unaware application (both SL_TRUSTZONE_SECURE and SL_TRUSTZONE_NONSECURE are false), the
Systeminit() in system_*.c (e.g., system_efr32mg21.c) moves peripherals to the Non-secure location.

o« The Systeminit() sets the accesses of all peripherals to Non-secure except for the and HSE SEMAILBOX (lines 172 to
178).
e The Systeminit() sets the SAU in configuration (lines 180 to 187).
o It ensures Non-secure access to Non-secure peripherals.
o The device component files (e.g., efr32mg21b020f1024im32.slcc) enable the compiler option (-mcmse for GCC and --
cmse for IAR) to pass the condition in line 181 to program the SAU.
o To catch the missing CMSE compiler option, it will generate a preprocessor error (line 186) if the CMSE flag is not set
when manually upgrading a project from GSDK v4.0.x to zv4.1x for the TrustZone-unaware application.
e The Systeminit() does not program the (default Secure flash is 32 MB), so the whole program is run in the Secure
state.
e The Systeminit() also enables the [BMPUSEC]and [PPUSEC] interrupts in the SMU (lines 189 to 193). It ensures the TrustZone-
unaware application catches any violations of Bus Master and peripheral security access permissions.

=
[T Y

void SystemInit (void)
=i

Hi#if defined (VTOR PRESENT) && (VTOR PRESENT == 1U)

R I R
]

[H#if defined (UNALIGNED SUEEPORT DISABLE)

Wl
T

H§if (FPU PRESENT == 1) && (FPU USED == 1)

(5]

E/* secure app takes care of moving betwesn the sscurity states.

8L TRUSTZONE SECURE MACRO is for secure access.

© 5L TRUSTZONE NCNSECURE MACRO is for non-secure access.

- When both the MACROS are not defined, during start—up below code makes sure
that all the peripherals are accessed from non-secure address except SMO,

= as SMU is used to configure the trustzone state of thes system. */

Fl#is !defined (SL. TRUSTZONE SECURE) && !defined(SL TRUSTZONE NCNSECURE) \

&& defined(TZ PRESENT)

{och T T T R T, R Y
]

O S e e

o
P O
T T T T ®

b
Mmooy o
T oLn

oy
-~

W=

[#if (sITICON LABS 32B SERIES 2 CONFIG >= 2)
CMU—>CLKEN1_SET = CMU_CLEEN l_BMU .
—itendif

-1 oy oy

J o] =1
VST S

|

/* config SMU to Secure and other peripherals to Non-Secure. */
SMU->PPUSATDO CLR = _SMU PPUSATDO MASK;
[H#if defined (SEMAILBOX PRESENT)
SMU—)PPUSATD]._C'LR — (_SMU_PPUSA.TDI_MASK & (“'SMU_PPUSATD'L_BMU & “'SMU_PPUSATD]._SEMAILBOX])
felse
SMU->PPUSATD] CLR = (_SMU PPUSATD] MASK & ~SMU PPUSATD] SMU) ;
¥endif

o

el et el el el el el e i i

Sae] <]
(VB R - U

B
1
]

/* BAU treats all accesses as non-secure */
[H#if defined(ARM FEATURE CMSE) && (_ ARM FEATURE CMSE == 3U)
SAU->CTRL = SAU CTRL ALLNS Msk;
__DSB();
__ISB();
felse
ferror "The startup code reguires access to the CMSE toolchain extension to set proper SAU settings."
—iendif /* _ ARM FEATURE CMSE */

/* Clear and Enable the SMU PPUSEC and BMPUSEC interrupt. */
NVIC_ClearPendingIRQ(SMU_SECURE_IRQn];
SMU->IF CLR = SMU_IF PPUSEC | SMU_IF BMPUSEC;
NVIC EnableIRQ(SMU SECURE IRQn) ;
SMU->IEN = SMU_IEN PPUSEC | SMU_IEN BMPUSEC;
F#endif /*SL_TRUSTZONE SECURE */
=1

et el et el il et el el

{0 [T T T TR [

n

e

1
3
4

e

The SMU_BASE and HSE SEMAILBOX_HOST_BASE in device header files must point to the Secure location regardless of the
SL_TRUSTZONE_SECURE and SL_TRUSTZONE_NONSECURE settings to avoid security violations on peripherals in the
TrustZone-unaware application (SMU and HSE SEMAILBOX are set to Secure peripherals).

Copyright © 2025 Silicon Laboratories. All rights reserved. 127/280

https://developer.arm.com/documentation/ecm0359818/latest

Upgrade Existing Application To TrustZone

#if ((defined(SL_.TRUSTZONE_SECURE) && !defined(SL_.TRUSTZONE_PERIPHERAL_SMU_S))
|| (defined(SLLTRUST ZONE_PERIPHERAL_SMU_S) && (SL_.TRUSTZONE_PERIPHERAL_SMU_S != 0)))

#define SMU_BASE (SMU_S_BASE)
#else
#define SMU_BASE (SMU_S_BASE)

/* SMU base address */

/* SMU base address */

#if ((defined (SL_.TRUSTZONE_SECURE) && !defined(SL_.TRUSTZONE_PERIPHERAL_SEMAILBOX_HOST_S))
|| (defined(SLL.TRUST ZONE_PERIPHERAL_SEMAILBOX_HOST_S) && (SL_.TRUSTZONE_PERIPHERAL_SEMAILBOX_HOST_S != 0)))

#define SEMAILBOX_HOST_BASE
#else

#define SEMAILBOX_HOST_BASE

Notes:

(SEMAILBOX_S_HOST_BASE)

(SEMAILBOX_S_HOST_BASE)

/* SEMAILBOX_HOST base address */

/* SEMAILBOX_HOST base address */

&= SILICON LABS

e The CMSE compiler option of GCC is in the Other flagswindow under C/C++ Build - Settings - Tool Settings > GNU ARM C

Compiler- Miscellaneous.

% Tool Settings # Build Steps

Build Artifact Binary Parsers @ Error Parsers

~ B GNU ARM C Compiler
¢ Dialect
2 Preprocessor
Includes
Optimization
#2 Debugging
2 Warnings
Miscellaneous
~ & GNU ARM Assembler
General
Symbols
Includes
2 Warnings
~ B GNU ARM C Linker
General
(& Libraries

~ |[]Verbose (-v)

[] Support ANSI programs (-ansi)

[Position Independent Code (-fPIC)

[Hardening options (-fstack-protector-all -Wformat=2 -Wformat-security -Wstrict-overflow)
] Address randomization (-fPIE)

[]Enable Stack Protection (-fstack-protector)

D Generate Secure ARM Code (-mcmse)

Enable Hardware Floating Point (-mfpu=)

Floating-Point ABI |FPU-specific calling conventions (-mfloat-abi=hard) ~

Other flags €= &8 4l &

-fno-builtin-printf
-fno-builtin-sprintf
-C

v ||-fmessage-length=0

e The CMSE compiler option of IAR is in the Command line options: (one per line) window under Options... > C/C++ Compiler -

Extra Options.

Copyright © 2025 Silicon Laboratories. All rights reserved.

128/280

Upgrade Existing Application To TrustZone &= SILICON LABS

Categony:

General Options] Multi-file Compilation
Static Analysis Discard Unused Publics
Runtime Checking
Language 1 Language 2 Code Optimizations Output
Assembler List Preprocessor Diagnastics Encedings Extra Options
Output Converter
Custom Build <] Use command line options
Build Actions
Linker
Debugger
Simulator
CADI
CMSIS DAP
GDB Server
I-jet
J-Link/J-Trace
TI Stellaris
Nu-Link
PE micro
ST-LINK
Third-Party Driver
TI MSP-FET
TI XDS

Factoiy Settings

Command line options: (one per line)

Linker File

The [template_contribution]| defined in the files of Becure and Non-secure projectd will override the default memory
settings defined in the device component files (e.g, efr32mg210020f1024im32.slcc) to generate the linker files for Eecurd

and Non-securg applications.

Memory Region Default Setting in Device Component Override Setting in

File template_contribution
Flash start address device_flash_addr memory_flash_start
Flash size device_flash_size memory_flash_size
RAM start address device_ram_addr memory_ram_start
RAM size device_ram_size memory_ram_size

[Dcfault setting (efr32mg21b020f1024im32.slcc)} [template_contribution example (Secure) } [lemplate_contribution example (Non—secure)]

- name: device_family template_contribution: template_contribution:
value: efr32mg2l - name: memory flash start - name: memory flash start
- name: device_flash addr value: 0x0 value: 0x2C000
value: 0 - name: memory_flash_size - name: memory flash size
- name: device_flash size value: 0x2C000 value: 0x54000
value: 1048576 - name: memory_ ram start - name: memory ram start
- name: device_flash_page_size value: 0x20000000 value: 0x20003000
value: 8192 - name: memory_ram size - name: memory ram size
- name: device_ram addr value: 0x3000 value: 0x5000

value: 536870912
- name: device_ram size
value: 98304

The sets the flash and RAM start address, so these addresses should be alignment at 4 kB (0x1000). The Secure
project linker file needs to have a section for (Secure Gateway) at the end of the Secure flash section. The sets
the start address of the NSC section, so this section only needs to be 32 bytes aligned.

e GCC NSC: The .gnu.sgstubs region in the Secure application map file (.map)
o |IAR NSC: The Veneer$$CMSE region in the Secure application map file (.map)

Copyright © 2025 Silicon Laboratories. All rights reserved. 129/280

https://siliconlabs.github.io/slc-specification/latest/format/component/template_contribution/
https://siliconlabs.github.io/slc-specification/latest/format/project/

Upgrade Existing Application To TrustZone &= SILICON LABS

The Secure and Non-secure flash and RAM sizes are incremented or decremented in 4 kB. The memory configurations in
Secure and Non-secure applications are correlated, so the flash and RAM settings are in pairs.

flash_start (5}

Imemary_flash_start [NS)

~memory_flash_size [NS)

-'|4 kB alignment

#4—32 byte alignment

start (NS) § ‘

rmemony_flash_size (5)

Main Flash Layout

size (S)

4 kB alignment

2
=
H

~memary_ram_size [M5)]

memary_ram

rmemaory_ram

Note: Users should not directly edit the template_contribution in the slcp file, but rather use the
in Simplicity Studio to update the memory configuration.

Debugger

Simplicity Studio supports two :

« GNU Debugger (GDB) client and SEGGER's GDB server
o Simplicity Studio Debugger

The [TrustZone-unaware| and [TrustZone-aware| applications enable the interrupts in the SMU. The debugger will
trigger the SMU_SECURE_IRQHandler if the [Registers] or [Peripherals] view feature violates peripheral security access
permission.

Simplicity Studio Debugger

The [Registers] view of Simplicity Studio Debugger can only access the Secure location of a peripheral. The following
figure demonstrates the Default_Handler (SMU_SECURE_IRQHandler not defined) is triggered (PPUSEC in SMU->IF = 1) when
viewing the registers of GPIO peripheral (PPUFSPERIPHID = 13) that is set to Non-secure access in the SMU.

The debugger can access the registers of the SMU since this peripheral is set to Secure access in the SMU.

This limitation does not apply to GSDK < v4.1.0 since no peripherals are configured for Non-secure access.

Copyright © 2025 Silicon Laboratories. All rights reserved. 130/280

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-testing-and-debugging/using-the-debugger

Upgrade Existing Application To TrustZone

&= SILICON LABS

A ElEE

375 #pragma clang diagnostic pop
376 ¥endif /* _ ARMCC_VERSION */
377

374 ¥if defined(__ARMCC_VERSION) &% {__ARMCC_VERSION >= 6010050)

[d startup_efr32mg21.c = O | i Registers x|
i R A el e
340 #endif /* _ ARM _FEATURE_CMSE */ ~ || Name Value
341 #endif /* SL_TRUSTZONE SECURE */ v 4 SMU
342 » i IPVERSION 0x0
343 #ifndef _ NO_SYSTEM_INIT it STATUS 00
344 SystemInit(); /¥ CMSIS System Initialization */ . W LOCK 0x0
;32 engLr ~ W 0x10000
347 #ifdef BOOTLOADER ENABLE 24 REPRIY 060
348 SystemInit2(); Hiil PPUINST 0x0
349 #endif /* BOOTLOADER _ENABLE */ i1 PPUSEC 0x1
350 1 BMPUSEC 0x0
351 #if defined (__GNUC_) 8&& defined (_ START) v I EN 0x30000
352 Copy_Table(); m
PPUPRIV 0x0

353 Zero_Table(); f:;
354 START(); :;:; PPUINST 0x0
355 #else ifii PPUSEC 0x1
356 _ PROGRAM_START(); /* Enter PreMain (C library entry point) */ ifii BMPUSEC Oxt
357 #endif /* _ GNUC__ */ » i M33CTRL 0x0
358 } 1 PPUPATDO OxFFFFFFFF
359]

» il PPUPATD1 Ox3FFF
360 #if defined(__ARMCC_VERSION) &% (__ARMCC_VERSION >= 6©10058) 1 PPUSATDO oxt
361 #pragma clang diagnostic push T:‘]‘
362 #pragma clang diagnostic ignored "-Wmissing-noreturn™ » i PPUSATD1 0x2800
363 #endif /* _ ARNCC_VERSION %/ < JLPPUES L3
364 11l PPUFSPERIPHID ~ 0xD
e e e G R e e e e Name : PPUFSPERIPHID
366 * Default Handler for Exce ns / Interrupts o
R /] Hex:@xd)
Sl ElDe Fault_Handler[Q i) | Devimel oty
369 { Dctal.al;

" Binary:eb1101

i;? "}"hﬂ'e (true) { Default:@xD
372 }
373

Description {5

SMU Registers

IP Version

Status Register

Lock Register

Interrupt Flag Register

PPU Privilege Interrupt Flag
PPU Instruction Interrupt Flag
PPU Security Interrupt Flag
BMPU Security Interrupt Flag
Interrupt Enable Register
PPU Privilege Interrupt Flag
PPU Instruction Interrupt Flag
PPU Security Interrupt Flag
BMPU Security Interrupt Flag
M33 Control Settings
Privileged Access

Privileged Access

Secure Access

Secure Access

Fault Status

Peripheral | v

The Simplicity Studio Debugger is not the preferred choice for TrustZone debugging since it has limitations on viewing Non-

secure access peripherals.

GNU Debugger (GDB)

The [Peripherals] view of GNU Debugger can access either the Secure or Non-secure location of the peripheral to avoid
conflicts on security access permission. The following figure shows the registers of GPIO on Secure (GPIO at

0x4003C000) and Non-secure (GPIO_NS at 0x5003C000) addresses. The GPIO peripheral is set to Non-secure access in
the SMU, so the registers in the Secure address are displayed as zero.

Copyright © 2025 Silicon Laboratories. All rights reserved.

131/280

Upgrade Existing Application To TrustZone

&= SILICON LABS

= erpherals x | t@We-o
Peripheral Address Description Lo

0% CMUNS 0x50008000 CMU Registers

[]% DPLLO 0x4001C000 DPLL Registers

[DPLLONS Ox5001C000 DPLL Registers

[]% eMu 0x40004000 EMU Registers

[]'% EMUNS 0x50004000 EMU Registers

[]'% FRC 0xA8004000 FRC Registers

[]% FRCNS 0xBB0O4000 FRC Registers

[J'% FSRCO 0x40018000 FSRCO Registers

%% FSRCONS 0x50018000 FSRCO Registers

[GPCRC 0x40088000 GPCRC Registers

[[]%% GPCRCNS 0x50088000 GPCRC Registers

% GPIO 0x4003C000 GPIO Registers

[[1'% GPIOINS 0x5003C000 GPIO Registers

[[]'% HFRCOO 0x40010000 HFRCO Registers

[[1%, HFRCOO_NS 0x50010000 HFRCO Registers

[HFRCOEM23 0x4A014000 HFRCO Registers

[[]'% HFRCOEM23 0x5A014000 HFRCO Registers

[% HFX00 0x4000C000 SYXO Registers

[[]'% HFXOO_NS 0x5000C000 SYXO Registers

[O% 12co 0x4A010000 12C Registers

[J% 1I2C0NS ~ 0x5A010000 I2C Registers v
Nao details ta disnlav for the cument selection.

tEei~no

Peripheral Address
[J% CMUNS 0x50008000
0% DPLLO 0x4001C000
[DPLLONS 0x5001C000
0% eMu 0x40004000
[J% EMUNS 0x50004000
1% FRC OxAB004000
[J% FRCNS 0xBBO04000
[]%. FSRCO 0x40018000
[J'% FSRCONS 0x50018000
[J% GPCRC 0x40088000
[J% GPCRC_NS 0x50088000
1% Grio 0x4003C000
% GPIONS OxS003C000
[J% HFRCOO 0x40010000

Description ™
CMU Registers
DPLL Registers
DPLL Registers
EMU Registers
EMU Registers
FRC Registers
FRC Registers
FSRCO Registers
FSRCO Registers
GPCRC Registers
GPCRC Registers
GPIO Registers
GPIO Registers
HFRCO Registers

[T]'% HFRCOO_NS 0x50010000
[[]% HFRCOEM23 Ox4A014000

HFRCO Registers
HFRCO Registers
HFRCO Registers

[[]% HFRCOEM22 Dx5A014000
1% HFX00 0x4000C000
[[]% HFXOONS 0x5000€000
[O% 12c0 0x4A010000
[J% 12CONS 0x5A010000

SYXO Registers

SYXO Registers

12C Registers

12C Registers v

B : i § ion.

sy O @Sl s § =0

nmeirMEE &1 -0

2, GPIO: 0x4003C000 % |4# New Renderings...

. GPIO_NS: 0x5003C000 * | % New Renderings...|

Register Address Value il Register Address Value 2
ARG i « % GPIONS s s
~ I PORTA_CTRL 0x4003C000 0x00000000 ~ Wil PORTA_CTRL 0x5003C000 0x00400040
% SLEWRATE [6:4] 0x0 & SLEWRATE [6:4] Ox4
w DINDIS [12] 0x0 # DINDIS [12] 0x0
s SLEWRATEALT [22:20] 0x0 # SLEWRATEALT [22:20] Ox4
v DINDISALT [28] 0x0 & DINDISALT [28] 0x0
> Uil PORTA_MODEL 0x4003C004 0x00000000 > Wi PORTA_MODEL 0x5003C004 0x00004000
> il PORTA_DOUT 0x4003C010 0x00000000 > Wi PORTA_DOUT 0x5003C010 0x00000008
» Wit PORTA_DIN 0x4003C014 0x00000000 > Wit PORTA_DIN 0x5003C014 0x00000008
> i PORTB_CTRL 0x4003C030 0x00000000 > Wit PORTB_CTRL 0x5003C030 0x00400040
» i PORTB_MODEL 0x4003C034 000000000 » Wit PORTB_MODEL 0x5003C034 0x00000000
> il PORTB_DOUT 0x4003C040 0x00000000 > ¥ PORTB_DOUT 0x5003C040 0x00000000
> It PORTB_DIN 0x4003C044 0x00000000 > ¥ PORTB_DIN 0x5003C044 0x00000000
> It PORTC_CTRL 0x4003C060 0x00000000 > ## PORTC_CTRL 0x5003C060 0x00400040
> it PORTC_MODEL 0x4003C064 0x00000000 > ¥ PORTC_MODEL 0x5003C064 0x00000000
» i PORTC_DOUT 0x4003C070 0x00000000 » Wit PORTC_DOUT 0x5003C070 0x00000000
> it PORTC_DIN 0x4003C074 (0x00000000 ¥ > ¥ PORTC_DIN 0x5003C074 0x00000000 ¥l

The GNU Debugger is the preferred choice for TrustZone debugging and is the default debugger for Simplicity Studio =

v5.5.0.0.

Copyright © 2025 Silicon Laboratories. All rights reserved.

132/280

TrustZone Platform Examples &= SILICON LABS

TrustZone Platform Examples

TrustZone Platform Examples

The following TrustZone platform examples located in the C\Users<PC USER
NAME>\Simplicity Studio\SDKs\gecko_sdk\app\common\example folder (Windows) demonstrate the TrustZone
implementation on Series 2 devices. All TrustZone platform examples do not include [Gecko Bootloadel.

TrustZone PSA Attestation

tz_psa_attestation_ws

This example workspace demonstrates TrustZone for PSA Attestation. CREATE

View Project Documentation

SimplicityStudio *» SDKs > gecko_sdk » app » common > example » tz_psa_attestation
~
Mame
tz_psa_attestation_ns
E readme.md
ﬂ' tz_psa_attestation_s.slcp
ﬂ' tz_psa_attestation_ws.slcw

Example Folder Description

tz_psa_attestation The workspace description file (tz_psa_attestation_ws.slcw)
creates the TrustZone PSA Attestation example. The
project description file (tz_psa_attestation_s.slcp)
configures a Secure application that provides the Secure
Library functionality required by the Non-secure application.

tz_psa_attestation_ns The project description file (tz_psa_attestation_ns.slcp)
configures a Non-secure application for the TrustZone PSA
Attestation example.

Notes:

e This example cannot run if the SECURE_BOOT_ENABLE (root of trust of the attestation) option in SE OTP is disabled.

» The combined image of Secure and Non-secure applications is signed by the example_signing_key.pem (private key) in
C\Users<PC USER NAME>\SimplicityStudio\SDKs\gecko_sdk\platform\commonfolder (Windows). The
example_signing_pubkey.pem (public key) in the same folder is installed to the SE OTP to verify the image signature during

Secure Bootl

TrustZone PSA Crypto ECDH

Copyright © 2025 Silicon Laboratories. All rights reserved. 133/280

https://docs.silabs.com/mcu-bootloader/latest/series2-secure-boot-with-rtsl/

TrustZone Platform Examples &= SILICON LABS

tz_psa_crypto_ecdh_ws
This example workspace demonstrates TrustZone for ECDH key agreement. CREATE

View Project Documentation

SimplicityStudio > SDKs > gecko_sdk > app *» common > example > tz_psa_crypto_ecdh 2
Name
tz_psa_crypto_ecdh_ns
E readme.md
ﬂ' tz_psa_crypto_ecdh_s.slcp
H tz_psa_crypto_ecdh_ws.slcw

Example Folder Description

tz_psa_crypto_ecdh The workspace description file (tz_psa_crypto_ecdh_ws.slcw) upgrades the existing Platform -
PSA Crypto ECDH example to TrustZone-aware. The project description file
(tz_psa_crypto_ecdh_s.slcp) configures a Secure application that provides the Secure Library
functionality required by the Non-secure application.

tz_psa_crypto_ecdh_ns The project description file (tz_psa_crypto_ecdh_ns.slcp) configures the existing Platform - PSA
Crypto ECDH example as a Non-secure application. The source code can be reused without
changes.

The following sections use Simplicity Studio v5.6.3.0 and GSDK v4.2.2. The procedures and pictures may be different if
using higher versions of Simplicity Studio 5 and GSDK.

Project Description File

The project description file ([slcp]) contains references to the GSDK used and a list of components to use from these. The
TrustZone-aware application requires separate sicp files for the Secure and Non-secure applications.

Users should not directly edit the slicp files, but rather use the and Post Build Editor in Simplicity Studio to
update the emory configuration] and post-build actions.

Secure Application

The following figure describes which TrustZone software components are installed for the TrustZone Secure library of the
[[rustZone PSA Crypto ECDH example.

Copyright © 2025 Silicon Laboratories. All rights reserved. 134/280

https://siliconlabs.github.io/slc-specification/1.0/format/project/

TrustZone Platform Examples &= SILICON LABS

sa_crypto_ecdh sslcp X
tz_psa_crypto_ecdh_s OVERVIEW SOFTWARE COMPONENTS

Y Filter components by ¢ Configurable |:| @& Installed D 3 Installed by you D

Notes:

e The services p

v TrustZone -
® MSC Service for TrustZone Secure Key Library
® NVM3 Service for TrustZone Secure Key Library
© PSA Attestation Service for TrustZone Secure Key Library
® PSA Crypto Service for TrustZone Secure Key Library
©@ PSA ITS Service for TrustZone Secure Key Library
® SE Manager Service for TrustZone Secure Key Library
© SYSCFG Service for TrustZone Secure Key Library

® TrustZone Secure Key Library

» Status Code
» Toolchain
v TrustZone
TrustZone Non-Secure
) TrustZone Secure

TrustZone Unaware

rovided by the Secure library are standardized.

o The source files for the Secure library will be automatically added to the application when generating the Secure project

from the slcp
recommended.

file. For the current TrustZone implementation, modifications of the source files of the Secure library are not

Non-secure Application

The following figure describes which TrustZone software components are installed for the Non-secure application of the

[lrustZone PSA Crypto ECDH example.

Copyright © 2025 Silicon Laboratories. All rights reserved. 135/280

TrustZone Platform Examples &= SILICON LABS

% tz_psa_crypto_ecdh_nssicp X
tz_psa_crypto_ecdh_ns OVERVIEW SOFTWARE COMPONENTS

Y Filter components by €% Configurable |:| & Installed D 3 Installed by you D

v TrustZone

® MSC Service for TrustZone Secure Key Library
© NVM3 Service for TrustZone Secure Key Library
PSA Attestation Service for TrustZone Secure Key Library
© PSA Crypto Service for TrustZone Secure Key Library
®@ PSA ITS Service for TrustZone Secure Key Library
SE Manager Service for TrustZone Secure Key Library
® SYSCFG Service for TrustZone Secure Key Library

@ TrustZone Secure Key Library

» Status Code
» Toolchain

v TrustZone

@ TrustZone Non-Secure

TrustZone Secure

TrustZone Unaware

Notes:

o The following software components are automatically installed when PSA Crypto and ITS| services are used on the Non-
secure application.
o MSC Service for TrustZone Secure Key Library
o NVM3 Service for TrustZone Secure Key Library
PSA Crypto Service for TrustZone Secure Key Library
o PSAITS Service for TrustZone Secure Key Library
o SYSCFG Service for TrustZone Secure Key Library
» The following software components can be installed to the Non-secure application when those services are required.
o PSA Attestation Service for TrustZone Secure Key Library
o BE Manager Service for TrustZone Secure Key Library

o

Workspace

A workspace is a structure that can contain multiple projects. 'Workspace'is a generic term for this construct. In the context
of Simplicity Studio, where workspace has a different, Eclipse-based, meaning, workspaces are referred to as .

Copyright © 2025 Silicon Laboratories. All rights reserved. 136/280

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-developing-with-project-configurator/project-solutions

TrustZone Platform Examples &= SILICON LABS

The workspace description file ([sicw]) contains references to projects ([slcp]) that make up the workspace. Users should
not directly edit the slcw file, but rather use the Post Build Editor in Simplicity Studio to update the post-build actions.

Memory Configuration

The nemory configurationd in the TrustZone platform examples are based on the Series 2 radio board with minimum flash
(512 kB) and RAM (32 kB), so these configurations can run on all Series 2 radio boards. Users can customize the settings
when more flash and RAM are available on the selected device.

o Memory flash size (total) = memory_flash_size (S) + memory_flash_size (NS) = 512 kB
o Memory RAM size (total) = memory_ram_size (S) + memory_ram_size (NS) = 32 kB

Secure Application

The project description file of the Secure application (*_s.slcp) uses the default memory setting below to generate the

Secure linker filg] (linkerfile.ld for GCC and linkerfile.icf for IAR in the project autogen folder).

The actual memory usage during software development is unknown, so it needs to reserve enough flash (memory_flash_size :
176 kB) and RAM (memory_ram_size : 12 kB) for the Secure part of all TrustZone platform examples. The bigger RAM size
(including stack and heap) is mainly for the software fallback on cryptographic operations in PSA Crypto.

Default Memory Setting (Secure) xG21 and xG22 Devices Other Series 2 Devices

memory_flash_start 0x00000000 0x08000000

memory_flash_size 0x0002C000 (176 kB) 0x0002C000 (176 kB)

memory_ram_start 0x20000000 0x20000000

memory_ram_size 0x00003000 (12 kB) 0x00003000 (12 kB)
MEMORY

{

FLASH (rx) : ORIGIN = 0x0, LENGTH = 0x2c000

RAM (rwx) : ORIGIN = 0x20000000, LENGTH = 0x3000
}

Non-secure Application

The project description files of the Non-secure application (*_ns.slcp) use the default memory setting below to generate
the Non-secure linker fild (linkerfileld for GCC and linkerfile.icf for IAR in the project autogen folder).

The actual memory usage during software development is unknown, so the remaining flash (memory_flash_size : 336 kB) and
RAM (memory_ram_size : 20 kB) should be big enough for the Non-secure part of all TrustZone platform examples.

Default Memory Setting (Non-secure) xG21 and xG22 Devices Other Series 2 Devices

memory_flash_start 0x0002C000 (176 kB) 0x0802C000 (176 kB)

memory_flash_size 0x00054000 (336 kB) 0x00054000 (336 kB)

memory_ram_start 0x20003000 (12 kB) 0x20003000 (12 kB)

memory_ram_size 0x00005000 (20 kB) 0x00005000 (20 kB)
MEMORY

{
FLASH (rx) : ORIGIN = 0x2c000, LENGTH = 0x54000
RAM (rwx) : ORIGIN = 0x20003000, LENGTH = 0x5000
}

Copyright © 2025 Silicon Laboratories. All rights reserved. 137/280

https://siliconlabs.github.io/slc-specification/latest/format/workspace/
https://siliconlabs.github.io/slc-specification/latest/format/project/

TrustZone Platform Examples &= SILICON LABS

Note: The usable flash for Non-secure code should be equal to memory_flash_size - NVM size (default is 40 kB)
if NVM3 storage is required.

Memory Editor

The default memory setting of Securg and Non-secure] applications are good enough for software development and
debugging. The final memory layouts of Secure and Non-secure projects are deduced by inspecting the flash and RAM
usage in the Secure application memory map file (.map).

The in Simplicity Studio 5 is a graphical tool for editing the memory layout (flash and RAM) of the
applications in the workspace. The Memory Editor will update the linker file in the project autogen folder with the custom
settings. the projects to use the new memory configurations in the linker files.

The Memory Editor is located at the Quick Links and CONFIGURATION TOOLS of Secure or Non-secure slcp file.

21 sy s
tz_psa_crypto_ecdh_ns OVERVIEW OFTWARE COMPONENTS

I Target and Tool Settings | Project Details Quick Links

. tz_psa_crypto_ecdh_ns #
Wireless Gecko Tt Mon-gecune part of the spplicution demansisten ow 10 use (Fe

! o Pl 1 bl
Wih The Sacaire apptcation on o warkspace (12_pia_oryptoecdh,wi)

Categor: .
aory Mamory Editor Soltware Companants

> FramalnPintierm

Preferred SDK

Cineka SO Ku0tn v 7 2 Amazen 200012,00, Koot 51 1, Rlsataosm
Whesh 4. 2.0, Ernibser 2het 7,220, Flew 3.6.2.0, MU 8.4,0.0, Mcrum 08
Venal §.14.00 OpenTheesd 2.2.2 0 (GitMub-51 ka1 155, Platlann
4720 UBH T 70 WEEUN T80 0 0 Wave SOK 71920

I
EFR32MG22C224F512IMAD gt Wage a B

Wirakess Storter Kit Mainboed (BRO4001A Rav 4015 Link sdk and zopy project sources -
EFR322GI2 2 4 GHz § 48w Radia Basrd (BROATE2A Rev BOG) maln.c readme md
Selected SDK
&% tz_psa_crypto_ecdh_nsslcp X] = g
tz_psa_crypto_ecdh_ns OVERVIE SOFTWARE COMPONENTS CONFIGURATION TOOLS

Description

Graphical tool for configuring pins on your hardware.

I Memory Editor %% Open

Description

Graphical tool for editing the memory layout of the applications in your workspace

Copyright © 2025 Silicon Laboratories. All rights reserved. 138/280

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-getting-started/start-a-project#memory-editor

TrustZone Platform Examples

The following items will be determined by the flash usage in the Secure application memory map file:

o« memory_flash_size (S)
o memory_flash_start (NS)
o memory_flash_szie (NS)

Memory Editor

®

tz_psa_crypto_ecdh_s

Start

0x 0

Size

0x 2c000

End
0x 2c000

tz_psa_crypto_ecdh_ns

Start

0x 2c000

Size
0x 54000

End
Ox 80000

RAM

>

ish_start (S)

<

memory_fl

&= SILICON LABS

£3 Memory Editor: tz_psa_crypto_ecdh_s x| =8|

B

OPN
EFR32MG22C224F512IM40 ~
B FLASH
) —
: 2 Main Flash
ke E Page Size: 8 kB
= %
0x0 - < 0x80000
2 3
O —
T |
E £
o
tz_psa_crypto_ecdh_s g
£
)
£
& . g
)
2o E
wv
L
T "
Secure Application ¢ B
£
@
£

memory_flash_start (NS)

o
7610]
PR

tz_psa_crypto_ecdh_ns

Non-secure Application

=)

Note: The Memory Editor in Simplicity Studio v5.6.3.0 can only adjust the flash size in 8 kB (page size)
alignment, which may not fit the between the Secure and Non-secure flash boundary.

The following items will be determined by the RAM usage in the Secure application memory map file:

e memory_ram_size (S)
o memory_ram_start (NS)
 memory_ram_szie (NS)

Copyright © 2025 Silicon Laboratories. All rights reserved.

139/280

TrustZone Platform Examples &= SILICON LABS

. OPN
Memory Editor EFR32MG22C224F512IM40 ™ B
RAM @ FLASH
® - RAM
0x20000000) 2 0x20008000
- - €
tz_psa_crypto_ecdh_s - @ ‘E
- = |
Start AR tz_psa_crypto_ecdh_s
0x 20000000 o ﬁ P e g
g a' _
- o wv
Size A = g £
0x 3000 g ® : g
o il
- 524288 kB €
End ~ ©
0x 20003000 . . |
v Secure Application) g
7 £
tz_psa_crypto_ecdh_ns z g
Start A E tz_psa_crypto_ecdh_ns
0x 20003000 o ‘JI
IS
c
Size ~ >|
0x 5000 o g . .
v
0x 20008000 . .
v) Non-secure Application)

Build

The Secure project must be built first to create the Secure object library (trustzone_secure_library.o) with function entries
for the Non-secure project. Both projects need to be rebuilt if any changes in the Secure project. Users can use Simplicity
IDE in Simplicity Studio 5 or IAR EWARM v9.20.4 to build the TrustZone platform examples.

Simplicity IDE

The following procedures are based on the TrustZone PSA Crypto ECDH example on BRD4182A Radio Board
(EFR32MG22C224F512IM40).

1. Use the tz_psa_crypto keyword to search in EXAMPLE PROJECTS & DEMOS tab. Select the tz_psa_crypto_ecdh_ws
example.

OVERVIEW EXAMPLE PROJECTS & DEMOS

Run a pre-compiled demo or create a new projec!

- 18¢

Filter on keywords

1z_psa_crypto

tz_psa_crypto_ecdh_ws
Bt il 2. Click [CREATE] to generate the folutiod.

Copyright © 2025 Silicon Laboratories. All rights reserved. 140/280

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-developing-with-project-configurator/project-solutions

TrustZone Platform Examples &= SILICON LABS

tz_psa_crypto_ecdh_ws
This example workspace demonstrates TrustZone for ECDH key agreement. CREATE

View Project Documentation

3. The Project Configuration dialog shows the Secure and Non-secure projects in the target solution. Click [FINISH] to start
the creation process.

New Project Wizard O X

Project Configuration
Select the project name and location.

° Target, SDK ° Examples o Configuration

Solution name: | tz_psa_crypto_ecdh_ws

Project name: | tz_psa_crypto_ecdh_s

Project name: | tz_psa_crypto_ecdh_ns

Use default location

Location: ~ C:\Users\amleung\SimplicityStudio\v5_workspace ‘ BROWSE ‘

With project files:
(O Link to sources

@ Link sdk and copy project sources

(O copy contents

CANCEL [BACK l ‘ NEXT ‘ FINISH

4. The Simplicity IDE perspective opens after finishing the solution creation. Click Build on the Simplicity IDE perspective
toolbar to build the projects of a selected solution in order (Secure then Non-secure).

Copyright © 2025 Silicon Laboratories. All rights reserved. 141/280

TrustZone Platform Examples

D-EB@ s~ At - ®rifivfl-ePeyo (s S|

2y Welcome D Recent § Tools & Install %% Preferences

&= SILICON LABS

& | # Launcher | {} Simplicity IDE

i Project Bxplorer | 5.yiiq the active configurations of selected projects |2 &~ O | 7 psa cypto_ecdn ssicp | readme.md < [t tz_psa_crypto_ecdh nssicp | readme.md =0
~ [tz psa_crypto_ecdfi ws [Default] N
~ 1 tz_psa_crypto_ecdh_ns [GNU ARM v103.1 - Default] [EFR22MG22C224F512IM4D
S 8 i TrustZone PSA Crypto ECDH (Workspace and Secure
> (= autogen . .
v con application)
> & gecko_sdk 422
> 8 app_inite : . .
> [app_inith The Simplicity IDE uses the tz_psa_crypto_ecdh_ws workspace to create the following Secure and Non-secure
» 14 app_process.c applications for the TrustZone PSA Crypto ECDH example. The post-build action in the workspace will combine the Secure
» 8 app_processh o e . =
and Non-secure binaries into one image for flashing.
» [app_psa_crypto_ecdh.c
> [app_psa_crypto_ecdhh .
R ® tz_psa_crypto_ecdh_s (Secure application)
» 8 app_psa_crypto_keyh * tz_psa_crypto_ecdh_ns (Non-secure application)
> [H app_psa_crypto_macro.h
4 ? Z::m[emd The Secure application makes a TrustZone secure library for running PSA Crypto and Attestation in the Secure world. The
= 'y
B ipes.Gypta sodR e hweont following services are provided to the Non-secure world through the veneers in the Non-secure Callable (NSC).
& tz_psa_crypto_ecdh_nsslep
£3 tz_psa_crypto_ecdh_ns.sipb o Attestation
& 1z_psa_crypto_ecdh_ns.sips o BB
~ & tz_psa_crypto_ecdh_s [GNU ARM v10.3.1 - Default] [EFR32MG22C224F512IMA40 -
> @ Includes o NVM3
» (= autogen
» & config ® PSA Crypto
> & gecko_sdk 422 e PSA ITS
B readme.md
43 tz_psa_crypto_ecdh.s.hweonf ® SE Manager
o tz_psa_crypto_ecdn_sslcp o SYSCFG
3 tz_psa_crypto_ecdh_sslpb
& tzpsa_crypto_ecdh sslps .
£ tz_psa_crypto_ecdh_ws.slcw Getting Sta rted
3 tz_psa_crypto_ecdn_wsslpb
< > 1. Upgrade the kit's firmware to the latest version (see Adapter Firmware under General Device Information in the -

5. The post-build actions (.slpb files) of the Secure project, Non-secure project, and workspace will be processed in
sequence if the solution is successfully built. The combined image (tz_psa_crypto_ecdh_ws-combined.s37) in the Secure
project artifact folder can be used for programming the device or debugging.

~ & tz_psa_crypto_ecdh_s [GNU ARM v10.3.1 - Default] [EFR32MG22C224F512IM40 -

> 4% Binaries

> & Includes

v = artifact
trustzone_secure_library.o
tz_psa_crypto_ecdh_s.s37

tz_psa_crypto_ecdh_ws-combined.s37

6. Use to finalize the memory

layouts of Secure and Non-secure applications and rebuild the solution to update the memory configurations.

Note: The Simplicity IDE can only apply the post-build action to a particular project if multiple Secure or Non-
secure projects exist in the solution.

IAR EWARM

The following procedures are based on the TrustZone PSA Crypto ECDH example on BRD4181A Radio Board

(EFR32MG21A010F1024IM32).

1. Follow steps 1 to 3 in [lrustZone PSA Crypto ECDH| to generate the solution for the tz_psa_crypto_ws . Select the

tz_psa_crypto_ecdh_s.slcp file.

2. The Overview tab shows the Target and Tool Settings card on the left side. Scroll down if necessary and click

[ChangeTarget/SDK/Generators].

Copyright © 2025 Silicon Laboratories. All rights reserved.

142/280

TrustZone Platform Examples &= SILICON LABS

| 12, psa crypto_ecdn ssicp % | o
tz_psa_crypto_ecdh_s OVERVIEW URATI 0
I Target and Tool Settings I Project Details s I Quick Links
tz_psa_crypto_ecdh_s /'
Wireless Gecko The Secure part of the application provides the PSA Crypto and
+ Attestation functionalities in the Secure world. The Secure
application needs to build with the Non-secure application on a
workspace (tz_psa_crypto_ecdh_ws) B @
< N Category readme.md Pin Tool
Example|Platform
Preferred SDK
Gecko SDK Sulte v4.2.2: Amazon 202012.00, Bluetooth 5.1.1,
Bluetooth Mesh 4.2.0, EmberZNet 7.2.2.0, Flex 3.5.2.0, MCU 6.4.0.0,
Micrium OS Kernel 5.14.00, OpenThread 2.2.2.0 (GitHub-
91fa1f455), Platform 4.2.2.0, USB 1.1.1.0, WI-SUN 1.5.1.0, Z-Wave
SDK7.19.20 .
EFR32MG21A010F1024IM32 @ ..
Wireless Starter Kit Mainboard (BRD4001A Rev A01) Import Mode
EFR32xG21 2.4 GHz 10 dBm Radio Board (BRD4181A) Memory Editor Software Components
Link sdk and copy project sources -
Selected SDK
Gecko SDK Suite v4.2.2: Amazon 202012.00, Bluetooth 5.1.1, Bluetooth
Mesh 4.2.0, EmberZNet 7.2.2.0, Flex 3.5.2.0, MCU 6.4.0.0, Micrium 0S
Kermel 5.14.00, OpenThread 2.2.2.0 (GitHub-91fa1{455), Platform 4.2.2.0,
USB 1.1.1.0, WHSUN 1.5.1.0, Z-Wave SDK 7.19.2.0
Project Generators /
Simplicity IDE Project
docs.silabs.com
Change projects target boards, part, ganarator
Change Target/SDK/Generators Generate Project Report
3. Drop down the CHANGE PROJECT GENERATORS list and select IAR Embedded Workbench Project.
o tz_psa_crypto_ecdh_sslep % | [readme.md _.I. t2_psa_crypto_ecdh nsslep | ™ readme.md | =na |

tz_psa_crypto_ecdh_s OVERVIEW f RE COMPONENT ONFIGURATION TOOLS
| Target and Tool Settings | Project Details | Quick Links
Select the board, part and SDK for the project. tz_psa_crypto_ecdh_s /
The Secure part of the application provides the PSA Crypto and
BOARDS Attestation functionalities in the Secure world. The Secure k
application needs to build with the Non-secure application on a
Search or Select - waorkspace (tz_psa_crypto_ecdh_ws). ’
dme.md Pin Tool
Wireless Starter Kit Mainboard (BRD4001A Rev AD1) () readme.m il
Category
EFR32xG21 2.4 GHz 10 dBm Radio Board (BRDA4181A) €3 Example|Platform
PART Preferred SDK
[Gecko SDK Suite v4.2.2: Amazon 202012.00, Bluetooth 5.1.1,
Search or Select > ‘ Bluetooth Mesh 4.2.0, EmberZNet 7.2.2.0, Flex 3.5.2.0,MCU 6.4.0.0,
Micrium S Kernel 5.14.00, OpenThread 2.2.2.0 (GitHub- .
IAR Embedded Workbench Project 91fa1f455), Platform 4.2 2.0, USB 1.1.1.0, Wi-SUN 1.5.1.0, 2-Wave ..
SDK7.19.2.0
Memory Editor Software Components
GCC Makefile
Import Mode
Simplicity IDE Project ‘ Link sdk and copy project sources -

Visual Studio Code Compatible Project (Beta)

Search ot Selec ‘ I }
=

Simplicity IDE Project (]
Cancel | “ Generate Project Report

4. Click [Save] to generate an IAR Secure project (tz_psa_crypto_ecdh_s.ewp).

docs.silabs.com

Copyright © 2025 Silicon Laboratories. All rights reserved. 143/280

TrustZone Platform Examples

é&w x; O readmemd |k tz_psa_crypto_ecdh_nssicp ;’: readme.md

&= SILICON LABS

tz_psa_crypto_ecdh_s OVERVIEW SOFTWARE COMPONENTS CONFIGURATION TOOLS
I Target and Tool Settings I Project Details L
Select the board, part and SDK for the project tz_psa_crypto_ecdh_s »

The Secure part of the application provides the PSA Crypto and
Attestation functionalities in the Secure world. The Secure
application needs to bulld with the Non-secure application ona
Search or Select - ‘ workspace (tz_psa_crypto_ecdh_ws).

BOARDS

Wireless Starter Kit Mainboard (BRD4001A Rev AD1) €3

Category
EFR32xG21 2.4 GHz 10 dBm Radie Board (BRD4181A) £) Example|Platform
PART Preferred SDK
Gecko SDK Suite v4.2.2: Amazon 202012.00, Bluetooth 5.1.1,
Search or Select > ‘ Bluetooth Mesh 4.2.0, EmberZNet 7.2.2.0, Flex 3.5.2.0, MCU 6.4.0.0,
Micrium OS Kernel 5.14.00, OpenThread 2.2.2.0 (GitHub-
EFR32MG21A010F1024IM32 91fa1f455), Platform 4.2.2.0, USB 1.1.1.0, Wi-SUN 1.5.1.0, Z-Wave
SDK 7.19.2.0
CHANGE SDK L3 Manage SDKs Import Mode
Select SDF
Gecko SDK Suite v4.2.2: Amazon 202012.00, Blu 9 ¥ ‘ Link sdk and copy project sources -

CHANGE PROJECT GENERATORS

Search or Select - ‘
simplicity IDE Project (%)
1AR Embedded Workbench Project)

Cancel | m Generate Project Report

I Quick Links

[\
<>

readme.md

&

Memory Editor

4

docs.silabs.com

&

Pin Tool

Software Components

5. Select the tz_psa_crypto_ecdh_ns.slcp file. Repeat steps 2 to 4 to generate an IAR Non-secure* project
(tz_psa_crypto_ecdh_ns.ewp). 6. Use a text editor to create an IAR tz_psa_crypto_ecdh_ws.ewwfile (shown below) to

house the projects (tz_psa_crypto_ecdh_s.ewpand tz_psa_crypto_ecdh_ns.ewp) generated in steps 4 and 5. The location of

the tz_psa_crypto_ecdh_ws.eww is the directory for W SpIR.

<?xml version ="1.0" encoding="is0-8859-1"7?>
<workspace>
<project>
<path>WS_DIR\tz_psa_crypto_ecdh_s\tz_psa_crypto_ecdh_s.ewp</path>
</project>
<project>
<path>WS_DIR\tz_psa_crypto_ecdh_ns\tz_psa_crypto_ecdh_ns.ewp</path>
</project>
<batchBuild/>
</workspace >

> SimplicityStudio » v5_workspace

Name

browser

metadata

outgoing
tz_psa_crypto_ecdh_ns
tz_psa_crypto_ecdh_s

e tz_psa_crypto_ecdh_ws.eww

tz_psa_crypto_ecdh_ws.ewwfile to open the workspace that includes Secure and Non-secure projects.

7. Double-click the

Copyright © 2025 Silicon Laboratories. All rights reserved.

144/280

TrustZone Platform Examples &= SILICON LABS

tz_psa_ciypto_ecdh_s - Default v

Files &
= Ftz_psa_crypto_ecdh_ws
= ®1tz_psa_crypto_ecdh_s - Default* v

M Simplicity Configurator
Dtz_psa_crypto_ecdh_s.ipct
£l @tz_psa_crypto_ecdh_ns - Default* v
B Simplicity Configurator
0 tz_psa_crypto_ecdh_ns.ipct

I Overview 2 _psa_cryp(u_acd’l_sl tz _psa_cup_ta_ecdh_ml

8. Click the tz_psa_crypto_ecdh_s tab to

open the Secure project. Click L (Make) to build. It exports the Secure object library (trustzone_secure_library.o) for
function entries that will be used by the Non-secure project.

Defauit v
Files o
£ @tz_psa_crypto_ecdh_s - Default* v

1 M Simplicity Configurator

M autogen
B config
M gecko_sdk_4.2.2
O readme.md
Oltz_psa_crypto_ecdh_s.slpb
Oltz_psa_crypto_ecdh_ws.slph
- Dtz_psa_crypto_ecdh_s.ipcf

I:Ivowil:wl tz_psa_crypto_ecdh_s tz_psa_ciypto_ecdh_ns

9. Click the tz_psa_crypto_ecdh_ns tab to

open the Non-secure project.

Default =

Files
£l @tz_psa_crypto_ecdh_ns - Default*
—£1 8 Simplicity Configurator
B autogen
B config
—c] Wl gecko_sdk_4.2.2
B tz_psa_crypto_scdh_s
W artifact
e (W}irustzane secure library.o
[£) app_init.c
— [app_inith
[) app_process.c
— [app_process.h
[app_psa_crypto_ecdh.c
— [app_psa_crypto_ecdh h
[app_psa_crypto_key.c
— [app_psa_crypto_key.h
— k) app_psa_crypto_macro h
) main.c
— Dreadme md
— Dtz_pse_crypto_ecdh_ns.slpb
-— tz_psa_crypto_ecdh_ns.ipcf

&

lJvewiewI tz_psa_crypto_ecdh_s ” tz_psa_crypto_ecdh_ns

10. The [SL_TRUSTZONE_NONSECURE
defined in the Non-secure project disables the CMSE compiler optior] (--cmse) regardless of whether the Project -

Copyright © 2025 Silicon Laboratories. All rights reserved.

145/280

TrustZone Platform Examples &= SILICON LABS

Options... > General Options - 32-bit > TrustZone - Mode: setting is Secure or Non-secure. So changing this
configuration from Secure to Non-secure is optional. Click [OK] to exit.

Options for node "tz_psa_crypto_ecdh_ns” x

Categorny:

Static Analysis
Runtime Checking
C/C++ Compiler Library Configuration Library Options 1 Library Options 2
Assembler Target 32-bit 64-bit Output
Output Converter . ; .
Custom Buikd Byte order Floating-point settings
Build Actions Little FPU:
Linker Big
DE.bEJg:gEr RE12 D ragisters 16
Simulator gE3
CADI
CMSIS DAP

GDB Server TrustZone
I-jet [2 DSP Extension

VFPy5 single precision ¥

FLink/JTrace Advanced SIMD (NEON/HELIUM)

AL AEle MNon-secure
Sec
Nu-Link —

PE micra
ST-LINK
Third-Party Driver
TI MSP-FET

TI XDS

Care
11. Click . (Make) to build

the Non-secure project. The post-build actions of the workspace (tz_psa_crypto_ecdh_ws.slpb) will be triggered in IAR to
combine the Secure and Non-secure images (tz_psa_crypto_ecdh_ws-combined.s37) to the artifact folder of
tz_psa_crypto_ecdh_s for programming the device.

* SimplicityStudio * v5_workspace * tz_psa_crypto_ecdh_s * artifact

Eal
Name

H’ trustzone_secure_library.o
@ tz_psa_crypto_ecdh_s.s37

@ tz_psa_crypto_ecdh_ws-combined.s37
12. Use to finalize the
memory layouts of Secure and Non-secure applications and rebuild the Secure and Non-secure projects to update the
memory configurations.

Note: The IAR EWARM can only apply the workspace post-build action to a particular project if multiple Secure
or Non-secure projects exist in the workspace.

Debugging

Users can use Simplicity IDE in Simplicity Studio 5 or IAR EWARM v9.20.4 to debug the TrustZone platform examples.
Building the projects with Optimization Level None (-00) is recommended for debugging.

Simplicity IDE

The TrustZone debugging process on Simplicity IDE is similar to the existing sample projects in Simplicity Studio.

Copyright © 2025 Silicon Laboratories. All rights reserved.

146/280

TrustZone Platform Examples &= SILICON LABS

2. Flash the combined image (tz_psa_crypto_ecdh_ws-combined.s37) generated in to the device.
3. Select the Secure or Non-secure project and use the Debug icon to launch a debug session.

BNyl SRy Bl &y o o~ | A A Welcome
Eﬂm_plomr:x| R ESYE E = O
~ |5 t7_psa_crypto_ecdh_ws [Defauli]
» I tz_psa_crypto_ecdh_ns [GNU ARM v10.3.1 - Default] [EFR32MG22A224F5121M40 -
» &5 tz_psa_crypto_ecdh_s [GNU ARM v10.3.1 - Default] [EFR32MG22A224F512IM40 -

“ 2

4. Follow the instructions in the Using thg
Debugger section in Simplicity Studio 5 User's Guide to debug the Secure or Non-secure application. 5. The debugger
cannot step into the function in a Non-secure application when debugging the Secure application and vice versa. Use the
Program Counter (PC in Secure or Non-secure address) in the Registers window to determine the program status.

16 Registers X LEB|rIe g =0
MName Value Description 6
2 0
i sp 0x20003fe0 <sl_stack+4064>
1 I 185911
i pc 0x2cf98 <app_process_action+1200>
iiil xpsr 1627586560 2

IAR EWARM

Use the tz_psa_crypto_ecdh_ws.eww workspace created in JAR EWARM for the debugger settings. Except for a minor

difference in step 3, the following steps are the same as those to set up the Secure (tz_psa_crypto_ecdh_s) and Non-

secure (tz_psa_crypto_ecdh_ns) projects for debugging.

1. Select Options... in the s it context menu of the Secure or Non-secure project and open the IDE Options
- Stack dialog. Uncheck the Stack pointer(s) not valid until program reaches* checkbox. Click [OK] to exit.

IDE Options 4

- Colors and Fonts
]] Enable graphical stack display and stack usage tracking

- Key Bindings

- Language 90 % stack usage threshold

'f Editor Wam when exceeding stack threshold
- Messages

- Troubleshooti ng] Wam when stack pointer is out of bounds

? Project [] Stack pointer(s) nat valid until program reaches
-~ Source Code Control _
main
-~ Debugger
Wamings
® Log
O Log and alert
[] Limit stack display to 50 bytes
[] o
2.Select
View J-Link
Options... in the context menu of the Secure or Non-secure project and open the window for

Copyright © 2025 Silicon Laboratories. All rights reserved. 147/280

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-testing-and-debugging/using-the-debugger

TrustZone Platform Examples

&= SILICON LABS

Debugger options. Click the Setup tab to open a dialog, and uncheck the Run to - main checkbox. Click the Images tab to

set up another option.

Categony

General Options
Static Analysis
Runtime Checking
C/C++ Compiler
Assembler
Output Converter
Custom Build
Build Actions
Linker
Simulator
CADI
CMSIS DAP
GDB Server
I-jet
J-Link/J-Trace
Tl Stellaris
Nu-Link
PE micro
ST-LINK
Third-Party Driver
TI MSP-FET

Setup Download Images Multicors Extra Options
Driver [Run to
J-Link/J-Trace ki main
Setup macros

Tl Use macro file(s)

Device description file
] Ovemde default

Factory Settings

Plugins

$TOOLKIT_DIRSICONFIG\debugger\SiliconLaboratones\EFR 32

TIXDS

the directory location of the tz_psa_crypto_ecdh_ws.eww workspace file.

Corc

image option. Enter the location of the .out file to Path: with Offset: set to 0. All project relative paths are resolved from

3. Check the ownload extra

Location of Non-secure .out file for Secure project: tz_psa_crypto_ecdh_ns\ewarm-iar\exe\tz_psa_crypto_ecdh_ns.out

Categony:

Options for node "tz_psa_crypto_ecdh_s"

Static Analysis

Assembler

Custom Build
Build Actions
Linker

Simulator
CADI
CMSIS DAP
GDB Server
I-jet

T Stellaris
Nu-Link
PE micro
ST-LINK

TI MSP-FET
TI XDS

General Options

Runtime Checking
C/C++ Compiler

Output Converter

J-Link/3-Trace

Third-Party Driver

Download extra image

Path:

Setup Download Images Multicore Extra Options Plugins

psa_crypto_ecdh_nslewam-iariexe'\tz.

Factary Settings

Offset: 0

[Download extra image
Offset

[Download extra image
Fath

LHzet

[} Debug info only

Debug info only

Debug info only

Copyright © 2025 Silicon Laboratories. All rights reserved.

Cancel

148/280

TrustZone Platform Examples

&= SILICON LABS

Location of Secure .out file for Non-secure project: tz_psa_crypto_ecdh_s\ewarm-iar\exe\tz_psa_crypto_ecdh_s.out

Categony:

General Options
Static Analysis
Runtime Checking
C/C++ Compiler
Assembler
Output Converter
Custom Build
Build Actions
Linker
Simulator
CADI
CMSIS DAP
GDEB Server
I-jet
J-Link/J-Trace
TI Stellaris
Nu-Link
PE micro
ST-LINK
Third-Party Driver
TI MSP-FET
TI XDS

Options for node "tz_psa_crypto_ecdh_ns”

X

Factory Settings

Setup Download Images Multicore Extra Options Plugins
¥ Download extra image

Path: | psa_crypto_ecdh_slewarm-anexe\tz_

Offset. 0] Debug info only

| Download extra image

Offset Debug info only

Dffgel Debug info only

Cancel

4. Click the Extra Options

tab to set up another option. 5. Check the Use command line options. Enter --drv_vector_table_base=0x00000000 to
Command line options: (one per line) window. Click [OK] to exit.

Categony:

General Options
Static Analysis
Runtime Checking
C/C++ Compiler
Assembler
Output Converter
Custom Build
Build Actions
Linker
Simulator
CADI
CMSIS DAP
GDB Server
I-jet
J-Link/J-Trace
TI Stellaris
Nu-Link
PE micro
ST-LINK
Third-Party Driver
TI MSP-FET

Factary Settings

Setup Download Images Multicore Extra Options Plugins
[+ Use command line options

Command line options: (one per line)
\~drv_vector_table_base=0x00000000]

TIXDs

in Secure and Non-secure projects, and click =20 (Download and Debug) in the Secure or Non-secure project to download

(>

Cancel

6. Finish the debug settings

the Secure and Non-secure images for debugging (assume both projects had successfully before). Click < (Go) to

Copyright © 2025 Silicon Laboratories. All rights reserved.

149/280

TrustZone Platform Examples &= SILICON LABS

start running the code in a Secure or Non-secure project. 7. The debugger will automatically switch between Secure and
Non-secure projects when stepping into a function or hitting a breakpoint in a Secure or Non-secure project. Use the
Program Counter (PC in Secure or Non-secure address) or SECURE (0 or 1) in the Registers window to determine the
program status.

v 3 X
Group: Current CPU Registers
MName Yalue ~
|0=0003"05£0
PRIMASK O=0000"0000
BASEPRI O=0000°0000
+ BASEPRI_MAX 0x0000'0000
FAULTHASK 0x0000"0000
CONTROL O=0000°0004
IAPSR O=4000'0000
EAPSR 0x4100'0000
& IEPSR 0x0100'0000
SECURE 0=0000"0000
CYCLECOUNTER | cpryjpe |
CCTIMER1 | ReadWrite | .
CCTIMER2 Security state Ja
CCSTEP 0: Non-Secure |
: 1: Secure ‘
¢ | Right-click for more registers and options |>) o))
8. Click ™ (Stop Debugging) to end the debug session.
Benchmark

The TrustZone implementation will affect the memory footprint and performance of cryptographic operations. The following
comparisons are based on the TrustZone PSA Crypto ECDH example on BRD4182A Radio Board
(EFR32MG22C224F512IM40) with SE firmware v1.214.

Memory Footprint

The memory footprint of a TrustZone project depends on which services (software components in the figure below)
provided by the are used in the Non-secure application (tz_psa_crypto_ecdh_ns project).

Copyright © 2025 Silicon Laboratories. All rights reserved. 150/280

TrustZone Platform Examples &= SILICON LABS

&4 tz_psa_crypto_ecdh_nsslcp X |
tz_psa_crypto_ecdh_ns oV

SOFTWARE COMPONENTS

Y Filter components by €% Configurable D & Installed D 3 Installed by you D

v TrustZone

® MSC Service for TrustZone Secure Key Library
© NVM3 Service for TrustZone Secure Key Library
PSA Attestation Service for TrustZone Secure Key Library
© PSA Crypto Service for TrustZone Secure Key Library
®@ PSA ITS Service for TrustZone Secure Key Library
SE Manager Service for TrustZone Secure Key Library
® SYSCFG Service for TrustZone Secure Key Library

@ TrustZone Secure Key Library

» Status Code
» Toolchain

v TrustZone

@ TrustZone Non-Secure

TrustZone Secure

TrustZone Unaware

The following tables compare the memory footprint of the [[rustZone-unaward (Platform - PSA Crypto ECDH) and TrustZone
pware projects (tz_psa_crypto_ecdh_ws) based on the following conditions.

e The tz_psa_crypto_ecdh_ns reuses the source code from the Platform - PSA Crypto ECDH example without any changes.

« The total size in tz_psa_crypto_ecdh_ns does not consider the on the Secure and Non-secure flash and RAM.
The 4 kB alignment requirement will increase the actual usage of flash and RAM.

o All source code is compiled with Optimize for size (-Os) in Simplicity IDE (GNU ARM v10.3.1) of Simplicity Studio 5.

Table: Flash Size Comparison

Platform Example Secure NSC Non-secure Total
Platform - PSA Crypto 64688 B - - 64688 B
ECDH

tz_psa_crypto_ecdh_ws 79172 B 288 B 29264 B 108724 B

Note: The NSC is part of the Secure code, and the total size does not include the flash for NVM3 storage.

Copyright © 2025 Silicon Laboratories. All rights reserved. 151/280

TrustZone Platform Examples ‘5'“’ SILICON LABS

Table: RAM Size Comparison

Platform Example Secure NSC Non-secure Total
Platform - PSA Crypto 3784 B - - 3764 B
ECDH

tz_psa_crypto_ecdh_ws 2156 B = 1200 B 3356 B

Note: The total size does not include the RAM for the stack and heap. The Secure and Non-secure applications
have their independent stack and heap.

PSA Crypto Performance

The following sections compare the PSA Crypto performance of the [rustZone-unawareg (Platform - PSA Crypto ECDH) and

projects (tz_psa_crypto_ecdh_ws) based on the following conditions.

e The tz_psa_crypto_ecdh_ns reuses the source code from the Platform - PSA Crypto ECDH example without any changes.
o All source code is compiled with Optimize most (-O3) in Simplicity IDE (GNU ARM v10.3.1) of Simplicity Studio 5.

e Use ECC curve SECP256R1 on volatile and persistent keys.

The EFR32MG22C224 runs at 38 MHz HFRCODPLL.

Volatile key ECDH operation on Platform - PSA Crypto ECDH

. ECDH Client

+ Creating a SECP256R1 (256-bit) VOLATILE PLAIN client key... PSA_SUCCESS (cycles: 2928 time: 77 us)

+ Creating a SECP256R1 (256-bit) VOLATILE PLAIN server key... PSA_SUCCESS (cycles: 2960 time: 77 us)

+ Exporting a public key of a SECP256R1 (256-bit) VOLATILE PLAIN server key... PSA_SUCCESS (cycles: 332134 time: 8740 us)
+ Computing client shared secret with a SECP256R1 (256-bit) server public key... PSA_SUCCESS (cycles: 336860 time: 8864 us)

Volatile key ECDH operation on tz_psa_crypto_ecdh_ws

. ECDH Client

+ Creating a SECP256R1 (256-bit) VOLATILE PLAIN client key... PSA_SUCCESS (cycles: 5047 time: 132 us)

+ Creating a SECP256R1 (256-bit) VOLATILE PLAIN server key... PSA_SUCCESS (cycles: 5067 time: 133 us)

+ Exporting a public key of a SECP256R1 (256-bit) VOLATILE PLAIN server key... PSA_SUCCESS (cycles: 333956 time: 8788 us)
+ Computing client shared secret with a SECP256R1 (256-bit) server public key... PSA_SUCCESS (cycles: 338470 time: 8907 us)

Persistent key ECDH operation on Platform - PSA Crypto ECDH

. ECDH Client

+ Creating a SECP256R1 (256-bit) PERSISTENT PLAIN client key... PSA_SUCCESS (cycles: 27489 time: 723 us)

+ Creating a SECP256R1 (256-bit) PERSISTENT PLAIN server key... PSA_SUCCESS (cycles: 27587 time: 725 us)

+ Exporting a public key of a SECP256R1 (256-bit) PERSISTENT PLAIN server key... PSA_SUCCESS (cycles: 332949 time: 8761 us)
+ Computing client shared secret with a SECP256R1 (256-bit) server public key... PSA_SUCCESS (cycles: 337803 time: 8889 us)

Persistent key ECDH operation on tz_psa_crypto_ecdh_ws

. ECDH Client

+ Creating a SECP256R1 (256-bit) PERSISTENT PLAIN client key... PSA_SUCCESS (cycles: 46998 time: 1236 us)

+ Creating a SECP256R1 (256-bit) PERSISTENT PLAIN server key... PSA_SUCCESS (cycles: 45962 time: 1209 us)

+ Exporting a public key of a SECP256R1 (256-bit) PERSISTENT PLAIN server key... PSA_SUCCESS (cycles: 334127 time: 8792 us)
+ Computing client shared secret with a SECP256R1 (256-bit) server public key... PSA_SUCCESS (cycles: 338321 time: 8903 us)

Copyright © 2025 Silicon Laboratories. All rights reserved. 152/280

TrustZone Platform Examples &= SILICON LABS

The overheads on the TrustZone-aware project (tz_psa_crypto_ecdh_ws) are due to the following operations of Securg

| ibrary implementation.

o Packages the list of input arguments in the appropriate format before calling into the NSC function.
« Switches from a Non-secure to a Secure state.

» Validates all input arguments before calling into the function in SPE.

o Encrypts PSA ITS if using a persistent key.

Returns to a Non-secure state.

Copyright © 2025 Silicon Laboratories. All rights reserved. 153/280

Anti-Tamper Protection Configuration and Use &= SILICON LABS

Anti-Tamper Protection Configuration and Use

Anti-Tamper Protection Configuration and Use

Note: This section replaces AN7247: Anti-Tamper Protection Configuration and Use . Further updates to this
application note will be provided here.

This application note describes how to program, provision, and configure the anti-tamper module. Many aspects of the anti-
tamper module, including disabling the anti-tamper response when needed, are discussed.

The anti-tamper module is only available on High devices. The external tamper detect module is available on some Secure
Vault Mid devices (e.g. xG27) and Secure Vault High devices (e.g. xG25B).

Key Points

o Tamper responses

e Tamper sources

o Tamper configuration

e« Tamper disable

o Examples of provisioning and disabling the anti-tamper module

Copyright © 2025 Silicon Laboratories. All rights reserved. 154/280

Series 2 Device Security Features &= SILICON LABS

Series 2 Device Security Features

Series 2 Device Security Features

Protecting loT devices against security threats is central to a quality product. Silicon Labs offers several security options to
help developers build secure devices, secure application software, and secure paths of communication to manage those
devices. Silicon Labs’ security offerings were significantly enhanced by the introduction of the Series 2 products that
included a Secure Engine. The Secure Engine is a tamper-resistant component used to securely store sensitive data and
keys and to execute cryptographic functions and secure services.

On Series 1 devices, the security features are implemented by the TRNG (if available) and CRYPTO peripherals.

On Series 2 devices, the security features are implemented by the Secure Engine and CRYPTOACC (if available). The
Secure Engine may be hardware-based, or virtual (software-based). Throughout this document, the following abbreviations
are used:

e HSE - Hardware Secure Engine
e VSE - Virtual Secure Engine
e SE - Secure Engine (either HSE or VSE)

Additional security features are provided by Secure Vault. Three levels of Secure Vault feature support are available,
depending on the part and SE implementation, as reflected in the following table:

Level (1) SE Support Part (2)
Secure Vault High (SVH) HSE only (HSE-SVH) Refer to JoT Endpoint Security Fundamentald
for details on supporting devices.
Secure Vault Mid (SVM) HSE (HSE-SVM) !
! VSE (VSE-SVM) !
Secure Vault Base (SVB) N/A "
Notes:

1. The features of different Secure Vault levels can be found in https://www.silabs.com/security|
2.loT Endpoint Security Fundamentald.

Secure Vault Mid consists of two core security functions:

e Secure Boot: Process where the initial boot phase is executed from an immutable memory (such as ROM) and where code is
authenticated before being authorized for execution.

o Secure Debug access control: The ability to lock access to the debug ports for operational security, and to securely unlock
them when access is required by an authorized entity.

Secure Vault High offers additional security options:

o Secure Key Storage: Protects cryptographic keys by "wrapping" or encrypting the keys using a root key known only to the
HSE-SVH.

» Anti-Tamper protection: A configurable module to protect the device against tamper attacks.

» Device authentication: Functionality that uses a secure device identity certificate along with digital signatures to verify the
source or target of device communications.

A Secure Engine Manager and other tools allow users to configure and control their devices both in-house during testing
and manufacturing, and after the device is in the field.

User Assistance

Copyright © 2025 Silicon Laboratories. All rights reserved. 155/280

https://docs.silabs.com/iot-security/latest/iot-endpoint-security-fundamentals/
https://www.silabs.com/security
https://docs.silabs.com/iot-security/latest/iot-endpoint-security-fundamentals/

Series 2 Device Security Features &= SILICON LABS

In support of these products Silicon Labs offers whitepapers, webinars, and documentation. The following table summarizes
the key security documents:

Document Summary Applicability

Beries 2 Secure Debud How to lock and unlock Series 2 debug access, Secure Vault Mid and High
including background information about the SE

Beries 2 Secure Boot with RTSU Describes the secure boot process on Series 2 Secure Vault Mid and High
devices using SE

AN1222: Production Programming How to program, provision, and configure security Secure Vault Mid and High
of Series 2 Devices information using SE during device production

Anti-Tamper Protection How to program, provision, and configure the anti- Secure Vault High
Configuration and Use (this tamper module

document)

A\uthenticating Silicon Labs How to authenticate a device using secure device Secure Vault High

Devices using Device Certificated certificates and signatures, at any time during the life
of the product

Becure Key Storage] How to securely 'wrap' keys so they can be stored in Secure Vault High
non-volatile storage.

Key Reference

Public/Private keypairs along with other keys are used throughout Silicon Labs security implementations. Because
terminology can sometimes be confusing, the following table lists the key names, their applicability, and the documentation
where they are used.

Key Name Customer Programmed Purpose

Public Sign key (Sign Key Public) Yes Secure Boot binary authentication and/or OTA
upgrade payload authentication

Public Command key (Command Yes Secure Debug Unlock or Disable Tamper command

Key Public) authentication

OTA Decryption key (GBL Yes Decrypting GBL payloads used for firmware upgrades

Decryption key) aka AES-128 Key

Attestation key aka Private Device No Device authentication for secure identity

Key

SE Firmware

Silicon Labs strongly recommends installing the latest SE firmware on Series 2 devices to support the required security
features. Refer to AN1222| for the procedure to upgrade the SE firmware and JoT Endpoint Security Fundamentalg for the
latest SE Firmware shipped with Series 2 devices and modules.

Copyright © 2025 Silicon Laboratories. All rights reserved. 156/280

https://docs.silabs.com/iot-security/latest/series2-secure-debug/
https://docs.silabs.com/mcu-bootloader/latest/series2-secure-boot-with-rtsl/
https://docs.silabs.com/iot-security/latest/authenticating-devices-using-device-certificates/
https://docs.silabs.com/iot-security/latest/efr32-secure-key-storage/
https://www.silabs.com/documents/public/application-notes/an1222-efr32xg2x-production-programming.pdf
https://docs.silabs.com/iot-security/latest/iot-endpoint-security-fundamentals/

Introduction &= SILICON LABS

Introduction

Introduction

The HSE-SVH Anti-Tamper module is used to hamper or prevent both reverse engineering and re-engineering of proprietary
software systems or applications.

Tamper attacks come from one or more vectors. Common attacks include voltage glitching, magnetic interference, and
forced temperature adjustment. The HSE-SVH Anti-Tamper module provides fast hardware detection of external tamper
signals such as case opening, glitching, and logical attacks allowing analysis and escalation up to and including bricking the
device.

The anti-tamper module connects a number of hardware and software-driven tamper signals to a set of configurable
hardware and software responses. This can be used to program the device to automatically respond to external events that
could signal that someone is trying to tamper with the device, and very rapidly remove secrets stored in the HSE.

The available tamper signals range from signals based on failed authentication and secure boot to specialized glitch
detectors. When any of these signals fire, the tamper block can be configured to trigger several different responses,
ranging from triggering an interrupt to erasing the One-Time-Programmable (OTP) memory, removing all HSE secrets and
resulting in a permanently destroyed device.

Silicon Labs provides [Custom Part Manufacturing Service (CPMS)| to protect the users' privacy by configuring the most
Effective tamper detection features at the Silicon Labs factory. For more information about CPMS, see the Custom Parf
Manufacturing Service User's Guide.

Some SVM devices (e.g. xG25A and xG27) and SVH devices (e.g. xG25B) feature an External Tamper Detect module which
is used to detect signals such as case opening. The ETAMPDET signal on SVH devices is routed to the SE as an Anti-
Tamper module tamper source, in addition to being a stand-alone module. For more information about ETAMPDET operation,
efer to the device reference manual. Examples demonstrating how to use ETAMPDET can be found on the Silicon Labg
eripheral_example github repository.

Copyright © 2025 Silicon Laboratories. All rights reserved. 157/280

https://www.silabs.com/developers/custom-part-manufacturing-service
https://docs.silabs.com/iot-security/latest/iot-security-cpms/
https://github.com/SiliconLabs/peripheral_examples/tree/master/series2/etampdet

Secure Engine Manager

&= SILICON LABS

Secure Engine Manager

Secure Engine Manager

The Secure Engine Manager provides thread-safe APIs for the SE's mailbox interface. The SE Manager APIs related to
tamper operations are listed in the following table.

For the SE's mailbox interface, see section Secure Engine Subsystem in Beries 2 Secure Debud.

SE Manager API

sl_se_init_otp

sl_se_read_otp
sl_se_init_otp_key
sl_se_read_pubkey
sl_se_get_serialnumber
sl_se_get_challenge

sl_se_roll_challenge

sl_se_disable_tamper

sl_se_get_status

sl_se_get_reset_cause

sl_se_get_tamper_reset_cause

sl_se_enter_active_mode

sl_se_exit_active_mode

Notes:

other HSE-SVH devices.

Usage

Initialize SE OTP configuration (including tamper configuration on HSE-SVH
devices).

Read SE OTP configuration (including tamper configuration on HSE-SVH devices).
Used during device initialization to upload the Public Command Key.

Read the stored Public Command Key.

Read out the serial number (16 bytes) of the HSE device.

Read out the current challenge value (16 bytes) for tamper disable.

Used to roll the current challenge value (16 bytes) to invalidate the Disable Tamper
Token.

Temporarily disable tamper configuration using the Disable Tamper Token.

Read the current HSE status (including recorded tamper status on HSE-SVH
devices).

Read the EMU->RSTCAUSE register from HSE devices after a tamper reset.

Read the cached value of the EMU->TAMPERRSTCAUSE register after a tamper
reset.

Force the SE to remain active to enable the detection of glitch tamper events on
the host Cortex-M33 core.(see fourth note below)

Exit active mode and allow the SE to sleep when not performing operations. This
will prevent the detection of glitch tamper events when the SE is sleeping. This API
should only be used if active mode was entered by calling sl_se_enter_active_mode.
If active mode is set through a DCI command, it can only be disabled through a DCI
command. (see fourth note below)

The sl_se_get_reset_cause is only available on EFR32xG21B devices. The EMU->RSTCAUSE register can be directly read on

The sl_se_get_tamper_reset_cause is unavailable on EFR32xG21B devices, and SE firmware = v2.2.1 is required.

jnanager.

The SE Manager APl document can be found at https://docs.silabs.com/gecko-platform/latest/service/api/group-sl-se

Does not apply to EFR32MG21B parts.

Copyright © 2025 Silicon Laboratories. All rights reserved.

158/280

https://docs.silabs.com/iot-security/latest/series2-secure-debug/03-r-secureelement
https://docs.silabs.com/gecko-platform/latest/service/api/group-sl-se-manager

Tamper Responses &= SILICON LABS

Tamper Responses

Tamper Responses

A can lead to a series of different autonomous responses from the HSE. These responses are listed in the
following table.

Level Response Description
0 Ignore No action is taken
1 Interrupt Triggers the SETAMPERHOST interrupt on the host
2 Filter Increases a counter in the tamper filter
4 Reset Resets the device
7 Erase OTP Erases the device's OTP configuration
Notes:

1. Level 3, 5, and 6 are reserved.
2. These responses are cumulative:
o If a filter response is triggered, it will also trigger an interrupt.
o If areset response is triggered, it will supersede the interrupt. The [ilter countel and interrupt flag are clear at reset.
o If an erase OTP response is triggered, it will erase the OTP and reset the device. The device will fail to boot and
become unusable.

Interrupt

If a tamper source is configured to respond with the interrupt response or higher (= level 1), the SETAMPERHOST interrupt
line to the host Cortex-M33 will be pulsed and make the NVIC trigger the corresponding interrupt handler
(SETAMPERHOST_IRQHandler).

After the interrupt has been handled, the tamper status can be found by reading the HSE status (using sl_se_get_status in
the BE_Managel), which contains a list of all the tamper sources that have been triggered since the last time the status was
read. Reading HSE status clears the registered tamper sources.

Note: Enabling the SEMAILBOXHOST clock for the tamper source is required to trigger the SETAMPERHOST
interrupt in most HSE-SVH devices. EFR32xG21B does not require this.

Filter

The HSE has a filter to debounce spurious tamper events. The filter has a counter that is periodically reset. If a tamper
source is configured to the filter response (level 2), when it is triggered, the counter is increased. If the counter value
reaches a configurable threshold, the Filter counter tamper source () is triggered, which can configure to lead to
any other responses (1, 4, or even 7).

Only a single shared filter counter is available, so the cumulative triggering of all tamper sources configured to the filter level
will increase the same counter. The filter can be programmed to use one of the trigger thresholds and reset periods
provided below. The filter counter is zero upon a tamper or normal reset.

Filter Trigger Threshold

e Value (n):0to 7
o Filter Trigger Threshold: 256/2™ (256 to 2)

Copyright © 2025 Silicon Laboratories. All rights reserved. 159/280

Tamper Responses &= SILICON LABS

Filter Reset Period

e Value (n): 0 to 31
o Filter Reset Period: 32 ms * 2™ (32 ms to ~795.4 days)

Example Filter Configuration

For example, consider a device with a Filter Trigger Threshold of 3 and Filter Reset Period of 5. If that device detects 32
(256/23) Filter response events in 1.024 seconds (32 ms * 2°), the Filter counter tamper source (humber 1) will trigger.

Reset

The reset response resets the HSE and Cortex-M33. After a tamper reset, the last reset cause can be directly read from
EMU->RSTCAUSE register or using sl_se_get_rstcause in the BE Managel. In cases where the reset was caused by a tamper
response, the source of the tamper can be determined by calling sl_se_get_tamper_reset_cause in the . (Note
that this APl is not available for EFR32xG21B-based parts). See Table Tamper Sources on Other HSE-SVH Devices for the

list of tamper sources. Tamper reset occurs when the HSE sends a request to the Cortex-M33's EMU, which issues a hard
reset.

If a tamper reset is triggered during boot, this can lead to a boot loop. To debug such a scenario, the HSE has a tamper
reset counter and enters diagnostic mode if the counter reaches a programmable threshold. Users can issue a non-tamper
reset to clear the tamper reset counter before the programmable threshold is reached.

In diagnostic mode, the Cortex-M33 is held in reset and only DCI commands are available. The device will remain in
diagnostic mode until a power-on or pin reset occurs.

For more information on the SE's DCI, see section Secure Engine Subsystem in Beries 2 Secure Debud.

Erase OTP

The Erase OTP response is the strongest reaction the HSE can take, and it will make the device and all wrapped secrets
unrecoverable. After this response, the device will no longer be able to boot or connect to a debugger.

This response should typically only be used in situations where the device believes that it is under an actual attack, for
instance through the detection of several voltage or digital glitches in a short time window.

Copyright © 2025 Silicon Laboratories. All rights reserved. 160/280

https://docs.silabs.com/iot-security/latest/series2-secure-debug/03-r-secureelement

Tamper Sources

Tamper Sources

&= SILICON LABS

Tamper Sources

The following tables list the available tamper sources and the default level on the EFR32xG21B and other HSE-SVH

devices. The tamper sources with the default level higher than O (Ignore) are always in effect even if the user does not

initialize the tamper configuration in HSE OTP. Users can keep or escalate the default tamper responses (= 0 for Ignore
and = 4 for Reset) of any sources when initially the part.

Table: Tamper Sources on the EFR32xG21B Devices

Type Number

SE Hardware 0
. 1

SE Software 7

" 10

! 13
! 14

Hardware

16 - 23

Name
Reserved

Filter counter

SE watchdog
Reserved

SE RAM CRC

SE hard fault

Reserved

SE software assertion

SE secure boot
User secure boot

Mailbox authorization

DCI authorization

OTP read

Reserved

Self test

TRNG monitor

PRSO - 7 [1]

Description

Filter counter reached the configured
threshold value

Internal SE watchdog expired

A 2-bit, non-correctable error in the SE RAM
has occurred.

The SE core has encountered a hard fault
exception indicating that an invalid memory
access was attempted.

SE firmware has triggered an assertion,
indicating that one of several sanity checks
has failed and that normal operation cannot
continue without a reset.

Secure boot of SE firmware failed
Secure boot of host firmware failed

Unauthorized command received over the
Mailbox interface. This can be triggered by
either (1) an incorrectly signed debug unlock or
tamper disable token or (2) attempting to
export a non-exportable key.

Unauthorized command received over the DCI
interface. This can be triggered by either (1) an
incorrectly signed debug un-lock or tamper
disable token or (2) attempting to export a
non-exportable key.

OTP or flash content could not be properly
authenticated.

A check of the integrity of the SE's internal
storage failed during boot up.

The TRNG monitor performs a number of tests
on the collected entropy data. If any of these
tests fail, this tamper source is triggered.

PRS consumer for SE Tamper O - 7 asserted

Copyright © 2025 Silicon Laboratories. All rights reserved.

Default Level

0 (Ignore)

4 (Reset)

4 (Reset)

4 (Reset)

4 (Reset)

4 (Reset)
0 (Ignore)
0 (Ilgnore)

0 (Ignore)

4 (Reset)

4 (Reset)

0 (Ignore)

0 (lgnore)

161/280

Tamper Sources

Type

Number
24
25

26
27
28

28
30
31

Name
Decouple BOD [1]

Temperature sensor

(1]

Voltage glitch falling
Voltage glitch rising

Secure lock

SE debug
Digital glitch
SE ICACHE

Table: Tamper Sources on Other HSE-SVH Devices

Type

SE Hardware

SE Software

Number
0
1

10

1

12

13

Name
Reserved

Filter counter

SE watchdog
Reserved

SE RAM ECC2

SE hard fault

Reserved

SE software assertion

SE secure boot
User secure boot

Mailbox authorization

DCI authorization

OTP read

Reserved

&= SILICON LABS

Description
Decouple Brown-Out-Detector threshold alert

SE temperature is monitored to be within 5
degrees C of the limits for the device. If the
limit is exceeded, this tamper source will be
triggered.

Voltage glitch detector detected a falling glitch
Voltage glitch detector detected a rising glitch

This tamper source indicates that the guarding
mechanism (comparing the locks with their
logical complement) of the debug port locks
has failed

Debug access to SE
Digital glitch detector detected an event

The SE's instruction cache uses a checksum to
verify the integrity of the data. This tamper
source is triggered if the checksum is invalid.

Description

Filter counter reached the configured
threshold value

Internal SE watchdog expired

A 2-bit, non-correctable error in the SE RAM
has occurred.

The SE core has encountered a hard fault
exception indicating that an invalid memory
access was attempted.

SE firmware has triggered an assertion,
indicating that one of several sanity checks
has failed and that normal operation cannot
continue without a reset.

Secure boot of SE firmware failed
Secure boot of host firmware failed

Unauthorized command received over the
Mailbox interface. This can be triggered by
either (1) an incorrectly signed debug unlock or
tamper disable token or (2) attempting to
export a non-exportable key.

Unauthorized command received over the DCI
interface. This can be triggered by either (1) an
incorrectly signed debug unlock or tamper
disable token or (2) attempting to export a
non-exportable key.

OTP or flash content could not be properly
authenticated

Copyright © 2025 Silicon Laboratories. All rights reserved.

Default Level
4 (Reset)

0 (Ignore)

0 (Ignore)
0 (Ignore)
4 (Reset)

0 (Ignore)
0 (Ignore)
4 (Reset)

Default Level

0 (Ignore)

4 (Reset)

4 (Reset)

4 (Reset)

4 (Reset)

4 (Reset)
0 (Ignore)
0 (Ignore)

0 (Ignore)

4 (Reset)

162/280

Tamper Sources

Type Number Name Description Default Level

14 Self test A check of the integrity of the SE's internal 4 (Reset)
storage failed during boot up.

15 TRNG monitor The TRNG monitor performs a number of tests 0 (Ignore)
on the collected entropy data. If any of these
tests fail, this tamper source is triggered.

Hardware 16 Secure lock This tamper source indicates that the guarding 4 (Reset)

mechanism (comparing the locks with their
logical complement) of the debug port locks

has failed.
17 Digital glitch Digital Glitch detector detected an event 0 (Ignore)
18 Voltage glitch Voltage Glitch Detector detected an event 0 (Ignore)
19 SE ICACHE The SE's instruction cache uses a checksum to 4 (Reset)

verify the integrity of the data. This tamper
source is triggered if the checksum is invalid.

20 SE RAM ECC1 SE RAM 1-bit ECC error occurred 0 (Ignore)
21 BOD [1] Brown-Out-Detector threshold alert 4 (Reset)
22 Temperature sensor SE temperature is monitored to be within 5 0 (Ignore)
n degrees C of the limits for the device. If the
limit is exceeded, this tamper source will be
triggered.
23 DPLL fall DPLL lock failed low 0 (Ignore)
24 DPLL rise DPLL lock failed high 0 (Ignore)
25 PRSO or ETAMPDET PRS consumer for SE Tamper 25 or 0 (Ignore)

ETAMPDET asserted.

26 - 31 PRS1 - 6 or PRSO - PRS consumer for SE Tamper 26 - 31 asserted 0 (Ignore)
5[1]

Notes:

o [1] These tamper sources are available down to EM2. Other sources are available in EM1 and above.

In EFR32xG21B devices, hardware tamper sources 24 to 27 can operate down to Energy Mode 3 (EM3), whereas other
hardware tamper sources (16 - 23 and 28 - 31) can be active down to Energy Mode 1 (EM1).
In other HSE-SVH devices, tamper sources 25 to 31 are used for External Tamper Detect (ETAMPDET) if present and PRS
consumers. Devices with ETAMPDET (e.g. EFR32xG25B) will have 6 PRS consumers (26 to 31) and devices without
ETAMPDET will have 7 PRS consumers (25 to 31).
The ETAMPDET source gets triggered when any of the ETAMPDET channels are asserted.
User configuration or kamper disablegl cannot reduce the tamper response below the default Level.
The User secure boot source gets triggered if secure boot is enabled and host image verification fails. It is likely to put the
device in the boot loop if users escalate the tamper response of this source to 4 (Reset).
The Mailbox and DCI authorizations get triggered whenever one of the following conditions has occurred. The
returns SE_RESPONSE_AUTHORIZATION_ERROR , and returns AUTH_ERROR = 2 .

1. A mailbox or DCI command tries to exercise a key that it is not allowed to use (e.g., trying to export a non-exportable

key).

2.A access or request over the mailbox or DCI is invalidly signed.

3. A malformed HSE firmware upgrade over the mailbox or DCl is attempted.
The OTP read gets triggered if there is an issue when decrypting and authenticating settings in HSE OTP or flash.
The HSE has redundancy built into the locking mechanism, and the Secure lock source is used to detect errors in that
redundancy.
PRS inputs can allow user applications to implement additional tamper sources and feed them into the tamper response
mechanism. The PRS tamper sources are under the control of the user application and could be reconfigured or disabled if
the user application is compromised.
The Temperature sensor source is not completely accurate and is generally only suitable for systems that expect to stay
well within the specified temperature range. Users requiring a tighter temperature limit can implement their temperature

Copyright © 2025 Silicon Laboratories. All rights reserved.

&= SILICON LABS

163/280

https://www.silabs.com/documents/public/application-notes/an1303-efr32-dci-swd-programming.pdf
https://docs.silabs.com/iot-security/latest/series2-secure-debug/

Tamper Sources &= SILICON LABS

monitor and provide the results as a tamper source via PRS.
e On EFR32xG23B and later devices, the default behavior is to detect tamper events only when the SE core is active. To
detect tamper events when the SE is not performing operations, call sl_se_enter_active_mode() . This prevents the SE from

sleeping and will result in higher current draw.

Copyright © 2025 Silicon Laboratories. All rights reserved. 164/280

Anti-Tamper Configuration &= SILICON LABS

Anti-Tamper Configuration

Anti-Tamper Configuration

The user can provision the anti-tamper configuration in HSE OTP detailed in the following table through sl_se_init_otp in the
EBE Managel. [[amper configurationd must be programmed with secure boot settings and are immutable once written.

For more information on enabling the OTP tamper configuration along with the secure boot settings, see Enabling Secure
Boot and Tamper Configuration in AN1222: Production Programming of Series 2 Deviced.

Setting Description
Tamper response levels A user response level for each tamper source (1)
Filter settings The tamper filter counter has two settings: trigger threshold and reset period

Digital Glitch Detector Always On Bit 1 of tamper flag: O — Digital glitch detector runs only when the HSE is executing
a command; 1 - Digital glitch detector runs even when the HSE is not performing
any operations (note that this leads to increased energy consumption)

Keep Tamper Alive During Sleep(2) Bit 2 of tamper flag: 0 — The tamper module stops running in sleep mode; 1 - The
tamper module keeps running in sleep mode (down to EM3)

Reset threshold The number of consecutive tamper resets (up to 255) before the part enters
diagnostic mode (3)

Notes:

1. The effective response of a tamper source is the maximum value between the and user level (Active level =
MAX(default level, user level)). If the user sets the response of a tamper source to a level lower than the default level, the
setting will still be saved to HSE OTP but does not take any effect. The HSE returns the user levels instead of active levels
of all tamper sources when reading back () the tamper configuration from the HSE OTP.

2. This flag is not available on EFR32xG21B devices.

3. If the threshold is set to O, the part will never enter the diagnostic mode due to tamper reset.

Copyright © 2025 Silicon Laboratories. All rights reserved. 165/280

https://www.silabs.com/documents/public/application-notes/an1222-efr32xg2x-production-programming.pdf

Usage Example &= SILICON LABS

Usage Example

Usage Example

Several of the available report internal HSE errors. A number of these sources are configured to reset the
device (level 4) by default. Custom handling of internal and external tamper sources (default level 0) can be configured to
trigger an interrupt (level 1) on the Cortex-M33 or trigger an interrupt and increase a counter in the tamper filter (level 2) as
in the following figure for EFR32xG21B devices.

Figure: Custom Handling of Tamper Sources (EFR32xG21B Devices)

Level 1 (Interrupt)
Filter < 1 % errors Health reporting
Filter > 50 9

26 Voltage Glitch Falling

feh el osener MR S e ramper (Resed)
27 Voltage Glitch Rising
30 Digital Glitch Noise filter ;
25 Temperature Sensor =1 min out of specification 4

10 Mailbox Authorization Noise filter

14 TRNG Monitor

- Health reporting
17 PRS Tamper - GPIO
to detect enclosure & 2 Filter counter (Reset)

opening

Level 2 (Filter)

Note: The actions for level 1 on the right side are implemented by the tamper interrupt handler.

Usage example highlights:

e The response of the TRNG monitor depends on the failure rate due to lack of entropy.

« The voltage and digital glitch detectors can see spurious activations. They should typically not be used to drive a high-level
tamper response directly. Instead, they should feed their signals into a tamper interrupt, which activates a high-level action
(e.g., Reset in this example) through PRS tamper if a certain number of detections (noise filter) occur in a short time window.

» The operating conditions decide the time out of the specification filter for the temperature sensor. For some systems, any
time out of specification should trigger a reset.

» Mailbox authorization is handled similarly for voltage and digital glitch detectors.

+ A PRS tamper implements a high-level response for a tamper interrupt, which issues a tamper reset (level 4) to prevent or
slow further attacks.

* In extreme cases, if the system identifies an attack with high confidence, a PRS tamper can be configured as
(level 7) to brick the part and prevent further attacks. This is recommended only when the destruction of parts is acceptable
and where high confidence of an attack can be achieved.

o Another PRS tamper detects enclosure opening from GPIO. This source feeds into the tamper filter counter (level 2), which
will trigger an interrupt (Eumulative effec) and activate a Filter counter (humber 1) response (Reset in this example) if the
filter counter reaches the within the . This filter counter response approach is less flexible

than the interrupt response approach since the trigger threshold and filter reset period are one-time programmable.

Copyright © 2025 Silicon Laboratories. All rights reserved. 166/280

Tamper Disable &= SILICON LABS

Tamper Disable

Tamper Disable

For diagnostic purposes, it may be necessary to disable the tamper response. For example, if a user has configured the part
to on external tamper detection, disabling the tamper response is required to open the unit and perform failure
analysis or field service activities.

After the famper configuratior] has been initialized, users can temporarily restore the tamper response to default for a set
of kamper sourced via a Disable Tamper Toker] authenticated against the Public Command Key in HSE OTP (similar to
secure debug unlock). This is only possible if the Public Command Key| has been provisioned in the device.

Tamper Detection User Tamper Response User Tamper Disable

Returns selected tamper sources to their
Programmable Response (= Default Level) default state upon authentication for

® Filter counter No effect if User Level < Default Level failure analysis purposes

= User secure boot
Mailbox authentication
Programmable = DCl authentication

to Levels 0-7 = TRNG monitor .
= PRSO-7
= Temperature sensor > level

Default Response 0

= Filter counter
———> level 0 Ignore = User secure boot
Mailbox authentication
DCl authentication

= TRNG monitor

= PRSO-7

= Temperature sensor
Voltage glitch falling

Returns to
Interrupt Levels 0

Voltage glitch falling
Voltage glitch rising

= SE debug > Level ° Filter y <
- Digtalgtch [otasesitch ring
= Digital glitch
Default Response 4 > Level o Reset

= SE watchdog = SE watchdog

* SERAMCRC > Level ° Erase OTP * SERAM CRC

= SE hard fault = SE hard fault
Programmable = SE software assertion Returns to = SE software assertion
tolevels4-7 = SEsecure boot Active Level = Max (Default Level, User Level) Lmls; = SEsecure boot

= OTPread = OTPread

= Self test = Self test

= Decouple BOD = Decouple BOD

= Secure lock = Secure lock

= SEICACHE = SEICACHE

Copyright © 2025 Silicon Laboratories. All rights reserved. 167/280

Tamper Disable

Tamper Detection

Programmable
to Levels 0-7

—

Programmable
to Levels 4-7

L

Default Response 0

Filter counter

User secure boot
Mailbox authentication
DCl authentication
TRNG monitor
Digital glitch
Voltage glitch

SE RAM ECC1
Temperature sensor
DPLL fall

DPLL rise

PRSO or ETAMPDET
PRS1-6o0r PRSO-5

Default Response 4

SE watchdog

SE RAM ECC2

SE hard fault

SE software assertion
SE secure boot

OTP read

Self test

Secure lock

SE ICACHE

BOD

Disable Tamper Token

User Tamper Response

Programmable Response (2 Default Level)
No effect if User Level < Default Level

> level 0

' Ignore
! Interrupt

3> Level | 1

——> Level Filter

ﬁ Level

Reset

Erase OTP

> Level

Active Level = Max (Default Level, User Level)

&= SILICON LABS

User Tamper Disable

Returns selected tamper sources to their
default state upon authentication for
failure analysis purposes

= Filter counter
= User secure boot
= Mailbox authentication
= DCl authentication
Returns to = TRNG monitor

Levels 0 = Digital glitch
— = Voltage glitch
= SE RAM ECC1
= Temperature sensor
= DPLL fall
= DPLLrise
= PRSO or ETAMPDET
= PRS1-6o0rPRSO-5

= SE watchdog
= SE RAM ECC2
= SE hard fault
Returns to = SE software assertion

Levels 4
= SE secure boot

—> = OTPread

= Self test

= Secure lock
= SEICACHE
= BOD

The elements of the Disable Tamper Token are described in the following figures and table.

Element
Disable tamper command

Tamper disable mask

Access certificate (1)

Disable tamper command signature

(1)

[Disable tamper | | _ Command
command (4 bytes) | wird
Tamper disable | | _ Command
mask (4 bytes) ;<r- parameter
T 1 I_ Command
payload
command signature | |
. (d4bytes) -
Value Description
0xfd020001

Device-dependent

Device-dependent

Device-dependent

The command word of the Disable Tamper Token.

The command parameter of the Disable Tamper

Token.

See section Access Certificate.

See section Challenge Response.

Note:

1. The disable tamper command payload consists of an pccess certificatel and a fisable tamper command signaturd|.

Copyright © 2025 Silicon Laboratories. All rights reserved.

168/280

Tamper Disable

&= SILICON LABS

Tamper Disable Mask

El—lo|m|a|~| 0| wix || &N~ | D |®(6|~|[W|Ww || |&|— |

DN N NN [N N | N[(N|N|N| ===~ (@~ |D(B|x 0| N[~
—|o|lo|xo|~ | O (lw s | o0 |—- (0 ||~ O(Ww|=x (0|00

mlolc|cd |||l ||| | |m [~~~ |||~ ||| @~ | |||~
g|g|g|8|g|g 8888888 gjg s eegeeseeses
alF|=]la|a|lalsalg(Z|laa|B| SlaFSI2 213 F|IFIl2EZF|313 83|33
ODOOO8000UOODOOOUOSDOOOOODOOOOOD
w|l@|a|e|a W b @ @w| 6 e @@ @B a8 | @|la| @@ |(e|d|6|6|d| @6 a
glg|ls|s|lg | g|e|g|g|la|g|5 5|E|8|8|la|3|8|8|8|g 5 |a|8|8|E|lg|E|E|g|s
blala ol o olo|lo o ala|la alolac|lalala|a
S|5|5|5(5|E|5|5 5|5\ E|5 5|55 6|5 5|5 5|5 5 5|5 5|5 5|5 5|5 5|5 5
Z|F|F|F|F|FIF|F|IFIFIFIFIFIFFIFIFIF|IFIFIFIFIF|IFIF|F|IF|IF|FIF[(F]|F|F=

Note: Set bit to

restore the default response of the corresponding tamper source.

The Disable Tamper Token temporarily reverts all masked tamper sources in the figure above to the hard-coded

Configuration (Eigure 8.1 Tamper Disable on the EFR32xG21B Devices on page 19 and Figure 8.2 Tamper Disable on Othe

HSE-SVH Devices on page 13).

The Disable Tamper Token can only restore the escalated user-level configuration to default. It cannot degrade the default

level of a tamper source.

Access Certificate

The elements of the access certificate are described in the following figure and table.

Element

Magic word

Authorizations

Tamper Authorizations

Serial number

Public Certificate Key (3)

Magic word

(4 bytes)

Authorizations

(4 bytes)

Tamper
authorizations
(4 bytes)

ic
Key (64

Value

Oxe5ecce01

0x0000003e (1)

Oxffffffb6 (2)

Device-dependent

Device-dependent

Serial number
16 bytes

te

Description

A constant value used to identify the access
certificate.

A value used to authorize which bit in the debug
mode request can be enabled for secure debug.

A value used to authorize which bit in the tamper
disable mask can be set to disable the tamper
response.

A number used to compare against the on-chip serial
number for secure debug or tamper disable.

The public key corresponding to the Private
Certificate Key (3) used to generate the signature
(ECDSA-P256-SHA256) in a challenge response.

Copyright © 2025 Silicon Laboratories. All rights reserved.

169/280

Tamper Disable

Element

Access certificate signature

Notes:

1. The value allows all debug options to be reset for secure debug. Note that the commands for debug unlock and tamper

Value

Device-dependent

&= SILICON LABS

Description

All the content above is signed (ECDSA-P256-
SHA256) by the Private Command Key
corresponding to the Public Command Key in the
HSE OTP.

disable are separate, so the secure debug lock will not be disabled when issuing a tamper disable command.
2. Value that sets available bits in the tamper disable mask for tamper disable.
3. The Private/Public Certificate Key is a randomly generated key pair. It can be ephemeral or retainable.

The Private Certificate Key can be used repeatedly to generate the signature in a ghallenge responsg on one device until
the Private/Public Certificate Key pair is discarded. This can reduce the frequency of access to the Private Command Key,

allowing more restrictive access control on that key.

For more information about secure debug, see Beries 2 Secure Debud

Tamper Authorizations

Notes:

B s|22|8|m|8|8|3| 8|8 |ag(g|z|=|g|2|2|2|¥|F |2 o|o|~|o|w|s|e x|~
—|lo|le|lo|l~|lo|lv|v|la|lu|-|c|leo|le|~lo|v|z|n|a|-|o
ald|N|d|d|la|ad|d|d|a|lala|lc|-|r|r|e|m]|em|rlr|[Fle|lo|~|le|v|x|o|lu|~|e
A A AR AR AR AR AR A E AR A E AR AR A E A E A AR AR A A AR AR A A BE AR AR A EE A AR AE
[I O I I I O I T I T I ™ T T ™ T I ™ ™ ™ T ™ ™ O T T O O T T A A A B I B)
uwwmagmmwmmawmmmgmmmmwwmwmmmamma
E|E|E|E|E EIE|E|E|E|E|E|E|E|E E|E|E|E|E|E|E|E|E|E|E|E|E|E|E
L < < - T T T
zlz|z|s|s|lz|le|e|ls|lz|le|le|lz|ls|g|2|e|la|e|e|e|gle|e|le|g|e|e|la|le|elE
[3 m | m q | M| M| M| ¢ (00| M@ (6| 60| M) | (0| M@ (M) (0@ M| Mm|M0; @))@@(M@)) (m))mo|m;) o
BT . TR R R R T R R L R L I TR T
o|T|o|T|D|C|o|o|0o|o|D|o|0|0|D|0o|o|o|o|D|o|D|0|D|To |0 |0|D|T|D|T|D
G| |%|6|60 |6 |6|6|6|5|6|€|%|5|6|%|6|60|C|©|0|6|6|6|C|C|6|6|C|0|6|5

glelg|ojajalajalolalala|e|2|e|a|a|a|ale|a|a|e|e|a|a|a|a|ale|ele|e
i|a|6|5|5|5|5|5|6|5|5|5|6|5|5|5|6|a|a|5a|clG|ca|5a|alc|5|E

gl—l’—I—!—I—l'—l—I—P—I—I—I—I—I—I—F—I—I—P—I—l—l—l—l—l—l’—l—l—l—l—l—l—

e Set the bit to enable the corresponding bit in the famper disable masH.

o The Disable Tamper Token will restore the default response of the corresponding if the same bit is set in the

tamper disable mask and tamper authorizations.

Challenge Response

The elements of the challenge response are described in the following figure and table.

Element
Disable tamper command
Tamper disable mask

Challenge

Disable tamper
command !4 gi%]
amper
mask (4 bytes)
Challenge

(16 bytes)
Disable tamper

command signature

Value
0xfd020001
Device-dependent

Device-dependent (1)

Signed by
Private
Certificate Key

Description

The command word of Disable Tamper Token.

The command parameter of Disable Tamper Token.

A random value generated by the HSE.

Copyright © 2025 Silicon Laboratories. All rights reserved.

170/280

https://docs.silabs.com/iot-security/latest/series2-secure-debug/

Tamper Disable &= SILICON LABS

Element Value Description

Disable tamper command signature Device-dependent (2) All the content above is signed (ECDSA-P256-
SHA256) by the Private Certificate Key
corresponding to the Public Certificate Key in the
access certificate.

Notes:

1. The challenge remains unchanged until it is updated to a new random value by folling the challenge] The Private Certificate
Key can be reused for signing when device challenge is refreshed.
2. This signature is the final argument of the Disable Tamper Token.

Tamper Disable Flow

The tamper disable flow is described in the following figure.

HSE Debugger ‘Owner of Private Command Key and Private Certificate Key

T
Read Serial Number / R
Serial number

Q

Get Challenge
Challengs

cartificate and

Request access I
«challenge responss |

| Restore default levels on Q
tamper disable mask

.) |
Response [LD W L
@ Start debugging <l Py
Chak End of tamper
B disable process Disabie Tamper Command Payload

1. Get the serial number and challenge from the HSE.

2. Generate the pccess certificate] with device serial number.

3. Generate the ghallenge response] with device challenge.

4. Generate the disable tamper command payload with access certificate and disable tamper command signature.

5. Send the Disable Tamper Toker] to the HSE.

6. Verify the disable tamper command signature using the Public Certificate Key in the access certificate.

7. Verify the serial number and the access certificate signature using the on-chip serial number and Public Command Key in the
HSE OTP.

8. Restore default levels on famper disable_masK until the next power-on or pin reset.

9. to invalidate the current Disable Tamper Token.

Note: Refer to the Bimplicity Commander examplg for details on how to follow this flow using Simplicity
Commander.

Copyright © 2025 Silicon Laboratories. All rights reserved. 171/280

Examples ‘-S"’ SILICON LABS

Examples

Overview

The examples for HSE-SVH Anti-Tamper module are described in the following table.

Example Device (Radio Board) HSE Firmware Tool

Provision Tamper EFR32MG21B010F1024IM32 Version 1.2.9 SE Manager

configuration (BRD4181C)

Provision Public Command EFR32MG21B010F1024IM32 Version 1.2.9 Simplicity Commander

Key & Tamper configuration (BRD4181C)

! EFR32MG21B010F1024IM32 Version 1.2.9 Simplicity Studio 5
(BRD4181C)

Tamper disable and Roll EFR32MG21B010F1024IM32 Version 1.2.9 SE Manager

challenge (BRD4181C)

! EFR32MG21B010F1024IM32 Version 1.2.9 Simplicity Commander
(BRD4181C)

Roll challenge EFR32MG21B010F1024IM32 Version 1.2.9 Simplicity Studio 5
(BRD4181C)

Note: Unless specified in the example, these examples can be applied to other HSE-SVH devices.

Using a Platform Example

Simplicity Studio 5 includes the FE Manager platform examplg for tamper. This application note uses platform examples of
GSDK v4.1.0. The console output may be different on the other version of GSDK.

Refer to the corresponding readme file for details about each SE Manager platform example. This file also includes the
procedures to create the project and run the example.

Using Simplicity Commander

1. This application note uses Simplicity Commander v114.6. The procedures and console output may be different on other
versions of Simplicity Commander. The latest version of Simplicity Commander can be downloaded from .

commander --version

Simplicity Commander 1v14p6b1289

JLink DLL version: 7.70d

Qt 5.12.10 Copyright (C) 2017 The Qt Company Ltd.
EMDLL Version: Ov18p9b677
mbed TLS version: 2.16.6

DONE

2. The Simplicity Commander's Command Line Interface (CLI) is invoked by commander.exe in the Simplicity Commander folder.
The location for Simplicity Studio 5 in Windows is C:\SiliconLabs\SimplicityStudio\vb\developer\adapter_packs\commander . For
ease of use, it is highly recommended to add the path of commander.exe to the system PATH in Windows.

Copyright © 2025 Silicon Laboratories. All rights reserved. 172/280

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-getting-started/start-a-project#examples

Examples

If more than one Wireless Starter Kit (WSTK) is connected via USB, the target WSTK must be specified using the --serialno

\<J-Link serial number> option.

4. If the WSTK is in debug mode OUT, the target device must be specified using the --device \<device name> option.

For more information about Simplicity Commander, see the Simplicity Commander Reference Guidg].

Using Simplicity Studio

The security operations are performed in the Security Settings of Simplicity Studio. This application note uses Simplicity
Studio v5.4.0.0. The procedures and pictures may be different on the other version of Simplicity Studio 5.

1. Right-click the selected debug adapter RB (ID:J-Link serial number) to display the context menu.

A REEBRRO-EEBEE"O

w o EFR32xG21B 2.4 GHz 10 dBrn RB (1D:440048205)
> [/ EFR32xG21B 2.4 GHz 10 dBm Radio Board (BRD4181C)
> Eﬂ Wireless Starter Kit Mainboard (BRD400TA Rev AD1T)

E‘
L(“'

Rename

Connect

Discennect

Start capture

Start capture with options...
Stop capture

Redo last upload

Upload application...
Upload adapter firmware...
Make a sniffer

Launch Console...
Sniffer Configurator...

Aoh Analyzer

Bluetooth MCP Commander...

Force Unlock...

Select Crypto Profile..,
Set Unlock Token...
Clear Unlock Token
View Device Certificates

2. Click Device configuration... to open the Configuration of device: J-Link Silicon Labs (serial number) dialog box. Click the

Security Settings tab to get the selected device configuration.

Copyright © 2025 Silicon Laboratories. All rights reserved.

&= SILICON LABS

173/280

https://docs.silabs.com/simplicity-commander/latest/simplicity-commander-start/

Examples

&= SILICON LABS

8 I-Link Silicon Labs (440048205)

Configuration of device: J-Link Silicon Labs {440048205)
fbevir_e hardware | Application images 5' Scratchpad | Packet Trace [

Read From Device

Device Status

Security Settingﬁ' _Adapter Con‘f_ig_uration.'g CTUNE__ J-Link Cenfiguration |
Start Provisioning Wizard...

Crypto Profile: Local Development
SerialNumber: 00DO0ODOOO0OO0000588EE1FFFETD350D
Challenge: S6BZTT2ET3A4ESETT35597CEREALD 109

Command Key: Mo key written, Write Key.

Sign Key: Mo key written, Write Key.

SE Certificate: Validated Successfully Certificate Details...
MCU Certificate: Validated Successfully
SE Firmware Version: 1.2.9

Host Firmware Version: 255.255.255
Boot Status: (x00000020

Secure Boot: Mot Provisioned

Certificate Details..,

Roll Challenge | | Disable Tamper | | Unlock Debug Port | | Device Erase

Debug Locks
Enable Secure Debug Unlock: $§ | Enable
Enable Debug Lock: 3€ | Enable

Disable Device Erase: g Disable

OK Cancel

Using an External Tool

The kamper disable examplg uses OpenSSL to sign the pccess certificatd and Ehallenge responsg. The Windows version of
OpenSSL can be downloaded from Bhining Light Productiond. This application note uses OpenSSL Version 111h (Win64).

openssl version

OpenSSL 1.1.1h 22 Sep 2020

The OpenSSL's Command Line Interface (CLI) is invoked by openssl.exe in the OpenSSL folder. The location in Windows

(Win64) is C:\Program Files\OpenSSL-Win64\bin . For ease of use, it is highly recommended to add the path of openssl.exe to
the system PATH in Windows.

Provision Public Command Key and Tamper Configuration

The Public Command Key pair can be generated from the "unsafe" private key delivered with Simplicity Studio, by Simplicity
Commander, or by a Hardware Security Module (HSM). Using an HSM is recommended for production systems.

Generated from "Unsafe" Key

External tools such as openssl can be used to generate a public key from the reference private key provided in Simplicity
Studio. Note that this private key is well known and should not be used in production devices.

Run the opensslec command to generate the Public Command Key from the Private Command Key.

openssl ec -in /c/SiliconLabs/SimplicityStudio/v5/developer/adapter_packs/secmgr/scripts/offline/cmd-unsafe-
privkey.pem -pubout -out cmd-unsafe-pubkey.pem

Generated Using Simplicity Commander

Copyright © 2025 Silicon Laboratories. All rights reserved. 174/280

https://slproweb.com/products/Win32OpenSSL.html

Examples ‘S’ SILICON LABS

Run the util genkey command to generate the Public Command Key pair (command_key.pem and command_pubkey.pem)
and Public Command Key token file (command_pubkey.txt).

commander util genkey --type ecc-p256 --privkey command_key.pem --pubkey command_pubkey.pem --tokenfile command_pubkey.txt

Generating ECC P256 key pair...

Writing private key file in PEM format to command_key.pem
Writing public key file in PEM format to command_pubkey.pem
Writing EC tokens to command_pubkey.txt...

DONE

SE Manager - Tamper Platform Example

Click the View Project Documentation link to open the file for instructions on creating the project and running the
example.

Platform - SE Manager Tamper

This example project demonstrates the tamper feature of Secure Vault High device. CREATE

View Project Documentation

1. Press ENTER two times to program the secure boot and tamper configuration to the HSE OTP of an uninitialized device.

SE Manager Tamper Example - Core running at 38000 kHz.
. SE manager initialization... SL_.STATUS_OK (cycles: 7 time: O us)
. Read EMU RSTCAUSE register... SL_.STATUS_OK (cycles: 3728 time: 98 us)
+ The EMU RST CAUSE register (MSB..LSB): 00000043
. Read SE OTP configuration... SL_STATUS_NOT_INITIALIZED (cycles: 7487 time: 197 us)
+ Cannot read SE OTP configuration.

+ Press ENTER to initialize SE OTP for tamper configuration or press SPACE to abort.

+ Warning: The OTP configuration cannot be changed once written!

+ Press ENTER to confirm or press SPACE to abort if you are not sure.

+ Initialize SE OTP for tamper configuration... SL_.STATUS_OK (cycles: 267256 time: 7033 us)
+ Issue a power-on or pin reset to activate the new tamper configuration.

. SE manager deinitialization... SL_STATUS_OK (cycles: 9 time: O us)

Note: This example does not enable the secure boot.

2. Press the RESET button on the WSTK to restart the program. It will display the current tamper configuration of the device.

Copyright © 2025 Silicon Laboratories. All rights reserved. 175/280

Examples ‘5’ SILICON LABS

SE Manager Tamper Example - Core running at 38000 kHz.
. SE manager initialization... SL_.STATUS_OK (cycles: 10 time: O us)
. Read EMU RSTCAUSE register... SL_.STATUS_OK (cycles: 3736 time: 98 us)
+ The EMU RST CAUSE register (MSB..LSB): 00000043
. Read SE OTP configuration... SL_.STATUS_OK (cycles: 7174 time: 188 us)
+ Secure boot: Disabled
+ Tamper source level
Filter counter 01
SE watchdog 4
SE RAM CRC : 4
SE hard fault 1 4
SE software assertion : 4
SE secure boot t 4
User secure boot : 0
Mailbox authorization : 1
DCl authorization : 0
OTP read 14
Self test ;4
TRNG monitor
PRSO
PRS1
PRS2
PRS3
PRS4
PRS5
PRS6
PRS7
Decouple BOD 4
Temperature sensor : 2
Voltage glitch falling : 2
Voltage glitch rising : 2
Secure lock : 4
SE debug : 0
Digital glitch 12
SE ICACHE : 4
+ Reset period for the tamper filter counter: ~32 ms x 1024
+ Activation threshold for the tamper filter: 4
+ Digital glitch detector always on: Disabled
+ Tamper reset threshold: 5

NNBABADNDDND =

. Current tamper test is NORMAL.
+ Press SPACE to select NORMAL or TAMPER DISABLE, press ENTER to run.

Simplicity Commander

1. Run the security writekey command to provision the Public Command Key (e.g.,, command_pubkey.pem).

commander security writekey --command **command_pubkey.pem** --device EFR32MG21B010F1024 --serialno 440030580

Device has serial number 000000000000000014b457fffe0f77ce

Please look through any warnings before proceeding.
THIS IS A ONE-TIME command which permanently ties debug and tamper access to certificates signed by this key.
Type 'continue’ and hit enter to proceed or Ctrl-C to abort:

continue
DONE

Copyright © 2025 Silicon Laboratories. All rights reserved. 176/280

Examples ‘S’ SILICON LABS

Note: The Public Command Key cannot be changed once written.

2. Run the security readkey command to read the Public Command Key from the HSE OTP for verification with the key in step
1.

commander security readkey --command --device EFR32MG21B010F1024 --serialno 440030580

B1BC6F6FA56640EDS522B2EEOF5B3CF7ESD48F60BE8148FODC08440F0A4E1DCA4
7C04119EDGATBE31B7707ESFOD0O01A659A051003E95E1B936F05C37EA793AD6G3
DONE

3. Run the security genconfig command to generate a default user_configurationjsonfile for secure boot and tamper
configuration.

commander security genconfig --nostore -o user_configuration.json --device EFR32MG21B010F1024 --serialno 440030580

Configuration file written to user_configuration.json
DONE

Note: Simplicity Commander Version 114.6 or above is required to support tamper configuration for all HSE-
SVH devices.

4. Use a text editor to modify the default tamper responses in user_configuration.json to the desired configuration as below.

Copyright © 2025 Silicon Laboratories. All rights reserved. 177/280

Examples

"OPN": "EFR32MG21B010F1024",

"VERSION": "1.0.0",
"mcu_flags": {

&= SILICON LABS

"SECURE_BOOT_ANTI_ROLLBACK": false,

"SECURE_BOOT_ENABLE": false,

"SECURE_BOOT_PAGE_LOCK_FULL": false,
"SECURE_BOOT_PAGE_LOCK_NARROW": false,
"SECURE_BOOT_VERIFY_CERTIFICATE": false

h

"tamper_filter": {
"FILTER_PERIOD": 10,
"FILTER_.THRESHOLD": 6,
"RESET_THRESHOLD": 5

B

"tamper_flags": {
"DGLITCH_ALWAYS_ON": false

h

"tamper_levels": {
"DCI_AUTH": O,
"DECOUPLE_BOD": 4,
"DGLITCH": 2,
"FILTER_.COUNTER": 1,
"MAILBOX_AUTH": 1,
"OTP_READ": 4,
"PRS0": 1,
"PRS1":
"PRS2":
"PRS3":
"PRS4":
"PRS5":
"PRS6": 7,
"PRS7": 7,
"SECURE_LOCK": 4,
"SELF_TEST": 4,
"SE_CODE_AUTH": 4,
"SE_DEBUG": 0,
"SE_HARDFAULT": 4,
"SE_ICACHE": 4,
"SE_RAM_CRC": 4,
"SOFTWARE_ASSERTION": 4,
"TEMP_SENSOR": 2,
"TRNG_MONITOR": 1,
"USER_CODE_AUTH": 0,
"VGLITCH_FALLING": 2,
"VGLITCH_RISING": 2,
"WATCHDOG": 4

ARANNS

~N

Note: This example does not enable the secure boot.

5. Run the security writeconfig command to program the secure boot and tamper configuration to the HSE OTP. This command

can be executed once per device.

commander security writeconfig --configfile user_configuration.json --device EFR32MG21B010F1024 --serialno 440030580

Copyright © 2025 Silicon Laboratories. All rights reserved.

178/280

Examples ‘5’ SILICON LABS

THIS IS A ONE-TIME configuration: Please inspect file before confirming:
user_configuration.json
Type ‘continue’ and hit enter to proceed or Ctrl-C to abort:

continue
DONE

6. Run the security readconfig command to check the secure boot and tamper configuration of the device.

commander security readconfig --serialno 440030580

MCU Flags

Secure Boot : Disabled

Secure Boot Verify Certificate : Disabled
Secure Boot Anti Rollback : Disabled
Secure Boot Page Lock Narrow : Disabled
Secure Boot Page Lock Full : Disabled

Tamper Levels
FILTER_COUNTER
WATCHDOG 14
SE_RAM_CRC 14
SE_HARDFAULT 14
SOFTWARE_ASSERTION : 4
SE_CODE_AUTH 14
USER_CODE_AUTH :0
MAILBOX_AUTH
DCILAUTH

OTP_READ

SELF_TEST
TRNG_MONITO

PRSO 1

PRS1

PRS2

PRS3

PRS4

PRS5

PRS6

PRS7 :
DECOUPLE_BOD
TEMP_SENSOR

VGLIT CH_FALLING
VGLITCH_RISING
SECURE_LOCK
SE_DEBUG

DGLITCH

SE_ICACHE

Tamper Filter

Filter Period :10
Filter Threshold : 6
Reset Threshold : 5

Tamper Flags
Digital Glitch Detector Always On: Disabled
DONE

Simplicity Studio

This example focuses on provisioning the Public Command Key and tamper configuration. It skips the procedures for
provisioning of the Public Sign Key and Secure Boot Enabling.

1. Run the util keytotoken command to convert the Public Command Key file (PEM format) into a text file
(command_pubkey.txt).

Copyright © 2025 Silicon Laboratories. All rights reserved. 179/280

Examples

keytotoken command_pubkey. file command_pubkey.txt

Writing EC tokens to command_pubkey.txt...
DONE

2. Open the Security Settings of the selected device as described in Using Simplicity Studio.

3. Click [Start Provisioning Wizard...] in the upper right corner to display the Secure Initialization dialog box.

&= SILICON LABS

Secure Initialization

This page enables you to configure non-reconfigurable
settings related to device secunty.

[+] Enable Writing One-Time-Programmable (OTP) Data
OTP Data:

Tamper Summary:
No Tamper Sources Modified

Filter Period: OxFF
Filter Threshold: OxFF
Flags: 0x00
Reset Threshold: 0x00

D \.I'erlfy intermediate certificate before secure boot
[] Enable Version Rollback Prevention of Host Image

4. Click [Edit] to open the Tamper Source Configuration dialog box. Use the dropdown menus to modify the default tamper

responses to the desired configuration. Click [OK] to exit.

Copyright © 2025 Silicon Laboratories. All rights reserved.

Edit

Cancel

180/280

Examples

&= SILICON LABS

H Tamper Source Configuration O
Select Tamper Response for each Tamper Source
|Gé'nelate Interrupt V= Filter Counter
|System Reset ~ | Watchdog
| System Reset “| SERAM CRC
| System Reset + | SEHardfault
|S_ys£m Reset 3 I Software Assertion
System Reset v| SECodenuth
|.Ignm'e s i UserCodeluth
|Genelaié Interrupt V| MailboxAuth
|ignore ~| DClAuth
| System Reset «| OTP Read
Ignore | AutoCodehuth
System Reset v | self-test
|Gme{aie Interrupt VI TRNG monitor
|_Gene1§ie Interrupt v| PRS0
|Gem=_rate Interrupt b i PRS 1
| Increment filter counter £ | PRS2
| Increment filter counter ~ : PR3 3
| System Reset v| pRS4
| System Reset ~| PRSS
| Erase OTP | PRS§
|Erase OTP | PRST
System Reset v| DECOUPLE BOD
|1ncrem£nt filter counter v i TempSensor
|{ncreme'rtt filter counter N | VGlitch Falling
| Increment filter counter A : YGlitch Rising
|System Reset v| SecureLock
| Ignore vi SE Debug
| Increment filter counter VE DGlitch
| System Reset ~ | SEICACHE
| Ox0A | Tamper filter period configuration
| 0x06 | Tamper filter threshold configuration
| Ox00 | Tamper flags
| 0x09| | Tamper reset threshold

ok || Cancel

5. Click [Next >]. The Security Keys dialog box is displayed.

Copyright © 2025 Silicon Laboratories. All rights reserved.

181/280

Examples &= SILICON LABS

5 | O X ‘

Security Keys

This page enables you to install your public keys into
One Time Programmable memory. This is a one-time operation.

Crypta Profile: Local Develop

[Enable Writing Command Key

Get Local Development Key

[[] Enable Writing Sign Key

Sign Key:
Key: | Get Lacal Development Key

6. Using a text editor, open the command_pubkey.txt file generated in step 1.

MFG_SIGNED_BOOTLOADER_KEY_X : BIBC6F6FAS56640ED522B2EEOFSB3CF7ESD48F60BE8148FODC08440F0A4ET1DCA4

MFG_SIGNED_BOOTLOADER_KEY_Y : 7C04119ED6A1BE31B7707E5F9D001A659A051003E95E1B936F05SC37EA793AD63

7. Check Enable Writing Command Key. Copy the Public Command Key (X-point B1BC... first, then Y-point 7C04...) to the Key:
box under Command Key:.

si | O ®

Security Keys

This page enables you to install your public keys into
One Time Programmable memaory. This is a one-time operation.

Crypto Profile: Local Development

Enable Writing Command Key
Command Key:

Key: | B1BC6FEFASE640ED52282EE0F SECFTESDABFE0BER148FODC, Get Local Development Key

[[] Enable Writing Sign Key

Sign Key:
Key: | | Get Local Development Key

Note: This example does not enable the secure boot (not checking Enable Writing Sign Key option).

8. Click [Next >]. The Secure Locks dialog box is displayed. The Debug locks are set by default. Uncheck Enable secure debug
unlock and Enable debug lock.

Copyright © 2025 Silicon Laboratories. All rights reserved. 182/280

Examples &= SILICON LABS

5 | O X ‘
Secure Locks

This page allows you to enable the secunity features of your device.
No changes will be made on your device until the final wizard page,

Debug Locks:

[C] Enable secure debug unlock
["] Enable debug lock
[] Disable device erase (This is 8 PERMANENT action)

@ < Back Next > Finish Cancel

9. Click [Next >] to display the Summary dialog box. Verify the tamper configuration and Public Command Key in the
Provisioning Summary are correct.

a8 O x

Summary

The following changes will be made to your device.
Press the "Provision" button to continue

Provisicning Summary:
One Time Programmable memory will be written.
Tamper Bytes:404404101404070477442211420422240500060A
Writing Command Key: b1bctf6fa56640ed322b2eclf b3 cfTe5d48f60bed148f0d c08440flade1dcad7cld1 19edbalbe3 1bT707e3f9d0012659a051003e95e1b936f05c37ea793adb3
Mo Sign key will be written.
Debug Lock States:

® MNext > Provision | | Cancel

10. If the information displayed is correct, click [Provision]. Click [Yes] to confirm.

si | O e

Summary

. h ﬂ One Time Device Provisioning *
The following changes will be made to .
Press the "Provision" button to continu

This is a OME TIME operation and it will perfform a device erase! Are you sure you

Provisicning Summary: want to continue?

One Time Programmakble memory will b
Tamper Bytes: 4044041 014040104774

Writing Command Key: b1bc6f6fa36640

Mo Sign key will be written.

Debug Lock States:

003e95e1b936f05c37ea793ad63
Yes I |

® Mext > Provision I | Cancel

Note: The Public Command Key and tamper configuration cannot be changed once written.

11. The Provisioning Status is displayed in the Summary dialog box.

Copyright © 2025 Silicon Laboratories. All rights reserved. 183/280

Examples

&= SILICON LABS

Summary

The following changes will be made to your device.
Press the "Provision" button to continue

Provisioning Status

Preparing to write Command key.
Preparing Init OTP command with flags)
Executing Write Command Key command.
Executing Init OTP command.

Executing Device Erase command.

Provisicning Summary:
One Time Programmakble memery will be written,
Tamper Bytes:404404101404010477442211420422240500060A
Writing Command Key: b1bcff6fa56640ed322b2eelf b3 cfTe5d48f60bed148f0d c08440f0adedcad7cld4 19edbalbe3 1bT707e3f9d0012659a051003e95e1 b936f05c37ea793adb3
Mo Sign key will be written.
Debug Lock States:

@

< Back Mext = Cancel

12. Click [Done] to exit the provisioning process. The device configuration is updated.

38 J-Link Silicon Labs (440048205)

Configuration of device: J-Link Silicon Labs (440048205)

Device hardware (Application images (Scratchpad (Packet Trace (Security Settings

Read From Device

Device Status

Adapter Com‘iguratiorﬂ CTUNE] J-Link Configuration}

Start Provisioning Wizard...

Crypto Profile: Local Development
SerialMumber: 0000000000000000588E81FFFET0350D
Challenge: FC535C3413EF19800157ECIFBA5C0IBE

Command Key: B1BCBFEFAS6640EDS522B2EE0FSB3CFTESD48FA0BES148F0DCOS440FDA4ETDCA4TCO4119EDEATBEST1BTTO7ESFIDO0TAGBSIA05T

Sign Key: Mo key written. Write Key.
SE Certificate: Walidated Successfully Certificate Details...
MCU Certificate: Validated Successfully

Certificate Details...
Tamper Summary: 16 Tamper Sources Medified

View...
SE Firmware Version: 1.2.9
Host Firmware Version: 235.235.255
Boot Status: 0x00000020
Secure Boot: Disabled
Roll Challenge | | Disable Tamper | | Unlock Debug Port | | Device Erase
Debug Locks
Enable Secure Debug Unlock: 3§ | Enable
Enable Debug Lock: 3 | Enable
Disable Device Erase: W Disable
OK Cancel

13. Click the View... link to check the tamper configuration or click [OK] to exit.

Tamper Disable and Roll Challenge

PRS Tamper Sources

Copyright © 2025 Silicon Laboratories. All rights reserved. 184/280

Examples &= SILICON LABS

The tamper configuration in the BE Manager Tamper platform exampld is used to demonstrate the tamper disable on HSE-
SVH devices. The following tables list the PRS tamper source usage on EFR32xG21B and other HSE-SVH devices on this
example. The push buttons PBO and PB1 are on the Wireless Starter Kit (WSTK) Mainboard.

Table: PRS Tamper Source Usage on EFR32xG21B Devices

Default Level Tamper Disable

Source (Bit) User Level (Response) = PRS Producer

(Response) Mask (1)
PRS0 (16) 0 (Ignore) 1 (Interrupt) Push button PBO 0
PRS1 (17) 0 (Ilgnore) 1 (Interrupt) - 1
PRS2 (18) 0 (Ignore) 2 (Filter) Push button PBO 0
PRS3 (19) 0 (lgnore) 2 (Filter) = 1
PRS4 (20) 0 (Ignore) 4 (Reset) Push button PB1 1
PRS5 (21) 0 (lgnore) 4 (Reset) Software (2) 1
PRS6 (22) 0 (Ignore) 7 (Erase OTP) - 1
PRS7 (23) 0 (Ignore) 7 (Erase OTP) = 1

Notes:

1. The famper disable masH is 0x00fa0000 to restore the tamper sources PRS1, PRS3, PRS4, PRS5, PRS6, and PRS7 to default
response (lgnore).

2. The Software PRS triggers the tamper source PRS5 to reset the device if the filter counter reaches the (4)
within the (~32 ms x 1024).

Table: PRS Tamper Source Usage on Other HSE-SVH Devices

Default Level Tamper Disable

Source (Bit) (1) User Level (Response) PRS Producer

(Response) Mask (2)
PRSO (25 or 26) 0 (Ignore) 1 (Interrupt) - 1
PRS1 (26 or 27) 0 (Ignore) 1 (Interrupt) Push button PBO 0
PRS2 (27 or 28) 0 (Ignore) 2 (Filter) Push button PBO 0
PRS3 (28 or 29) 0 (Ignore) 2 (Filter) - 1
PRS4 (29 or 30) 0 (Ignore) 4 (Reset) Push button PB1 1
PRS5 (30 or 31) 0 (Ignore) 4 (Reset) Software (3) 1
PRS6 (31 or -) 0 (Ignore) 7 (Erase OTP) - 1

Notes:

1. The HSE-SVH devices with ETAMPDET peripheral only have PRSO (bit 26) to PRS5 (bit 31).
2. The famper disable masl depends on whether the HSE-SVH device has an ETAMPDET peripheral.
1. Without ETAMPDET peripheral, the tamper disable mask is 0xf2000000 to restore the tamper sources PRS0, PRS3,
PRS4, PRS5, and PRS6 to default response (Ignore).
2. With ETAMPDET peripheral, the tamper disable mask is 0xe4000000 to restore the tamper sources PRS0, PRS3, PRS4,
and PRS5 to default response (Ignore).
3. The Software PRS triggers the tamper source PRS5 to reset the device if the filter counter reaches the (4)
within the (~32 ms x 1024).

SE Manager - Tamper Platform Example

Click the View Project Documentation link to open the readme file for instructions on creating the project and running the
example.

Copyright © 2025 Silicon Laboratories. All rights reserved. 185/280

Examples ‘S’ SILICON LABS

Platform - SE Manager Tamper

This example project demonstrates the tamper feature of Secure Vault High device. CREATE

View Project Documentation

Follow the procedures in BE Manager - Tamper Platform Example] if the HSE OTP is uninitialized. The following sections
describe an initialized device that runs in Normal and Tamper Disable modes.

Normal
1. Press ENTER to run the NORMAL tamper demo. Follow the instructions to go through the example.

. Current tamper test is NORMAL.
+ Press SPACE to select NORMAL or TAMPER DISABLE, press ENTER to run.

. Normal tamper test instructions:

+ Press PBO to increase filter counter and tamper status is displayed.

+ PRS will issue a tamper reset if filter counter reaches 4 within ~32 ms x 1024.
+ Press PB1 to issue a tamper reset.

+ Device will enter diagnostic mode if tamper reset reaches 5.

2. Press PBO to trigger PRSO (Interrupt) and PRS2 (Filter)| to issue an interrupt. The active tamper sources (0x00050000) of the
EFR32xG21B device are PRSO (bit 16) and PRS2 (bit 18).

. Get tamper status... SL_STATUS_OK (cycles: 11937 time: 314 us)
+ Recorded tamper status (MSB..LSB): 00050001
+ Currently active tamper sources (MSB..LSB): 00050000

3. Press PBO (Filter on PRS2) 4 times within ~32 ms x 1024 to trigger an interrupt when reaching the filer counter threshold.
The program will use software PRS to issue a tamper reset through the tamper source. The active tamper sources
(0x00050002) of the EFR32xG21B device are Filter (bit2), PRSO (bit 16), and PRS2 (bit 18).

. Get tamper status... SL_STATUS_OK (cycles: 11725 time: 308 us)
+ Recorded tamper status (MSB..LSB): 00050002

+ Currently active tamper sources (MSB..LSB): 00050002

+ Tamper filter threshold is reached, issue a reset through PRS

4. Press PB1 to trigger PRS4 (Reset) to issue a tamper reset.

5. After a tamper reset, the SETAMPER (bit 13) in EMU->RSTCAUSE register is set. Note that bit 1 indicates a pin reset and will
also be set.

. Read EMU RSTCAUSE register... SL_.STATUS_OK (cycles: 4071 time: 107 us)

+ The EMU RST CAUSE register (MSB..LSB): 00002002
+ The tamper reset is observed

6. After five consecutive tamper resets (feset threshold in this example), the device will enter diagnostic mode until a power-
on or pin reset.

Tamper Disable

This example uses the famper disable masK (0x00fa0000) to restore the tamper sources PRS1, PRS3, PRS4, PRS5, PRS6
bnd PRS7 of EFR32xG21B device to default response (lgnore).

1. Press SPACE to select TAMPER DISABLE , press ENTER to run.

Copyright © 2025 Silicon Laboratories. All rights reserved. 186/280

Examples ‘S’ SILICON LABS

. Current tamper test is NORMAL.
+ Press SPACE to select NORMAL or TAMPER DISABLE, press ENTER to run.

+ Current tamper test is TAMPER DISABLE.

2. This example will prompt to program the default Public Command Key in flash to the HSE OTP if this key does not exist.
Press ENTER two times to confirm and ENTER again to restore the default tamper level. Follow the instructions shown in
step 3 to go through the example (steps 4 to 6).

. Verify the device public command key in SE OTP.

+ Exporting a public command key from a hard-coded private command key... SL_STATUS_OK (cycles: 210999 time: 5552 us)
+ Reading the public command key from SE OTP... SL_.STATUS_NOT_INITIALIZED (cycles: 7763 time: 204 us)

+ Press ENTER to program public command key in SE OTP or press SPACE to abort.

+ Warning: The public command key in SE OTP cannot be changed once written!

+ Press ENTER to confirm or press SPACE to skip if you are not sure.

+ Programming a public command key to SE OTP... SL_STATUS_OK (cycles: 79656 time: 2096 us)

+ Press ENTER to disable tamper signals or press SPACE to exit.

3. Press ENTER to restore the default tamper level if the default Public Command Key in flash matches with the key in the HSE
OTP. Follow the instructions to go through the example (steps 4 to 6).

. Verify the device public command key in SE OTP.

+ Exporting a public command key from a hard-coded private command key... SL_STATUS_OK (cycles: 200804 time: 5284 us)
+ Reading the public command key from SE OTP... SL_.STATUS_OK (cycles: 7134 time: 187 us)

+ Comparing exported public command key with SE OTP public command key... OK

+ Press ENTER to disable tamper signals or press SPACE to exit.

. Start the tamper disable processes.

+ Creating a private certificate key in a buffer... SL_.STATUS_OK (cycles: 214059 time: 5633 us)

+ Exporting a public certificate key from a private certificate key... SL_.STATUS_OK (cycles: 206545 time: 5435 us)
+ Read the serial number of the SE and save it to access certificate... SL_.STATUS_OK (cycles: 7930 time: 208 us)
+ Signing the access certificate with private command key... SL_STATUS_OK (cycles: 222650 time: 5859 us)

+ Request challenge from the SE and save it to challenge response... SL_.STATUS_OK (cycles: 4208 time: 110 us)
+ Signing the challenge response with private certificate key... SL_.STATUS_OK (cycles: 223559 time: 5883 us)

+ Creating a tamper disable token to disable tamper signals... SL_.STATUS_OK (cycles: 946431 time: 24906 us)

+ Success to disable the tamper signals!

. Tamper disable test instructions:

+ Press PBO to increase filter counter and tamper status is displayed.

+ PRS will NOT issue a tamper reset even filter counter reaches 4 within ~32 ms x 1024.

+ Press PB1 will NOT issue a tamper reset.

+ Issue a power-on or pin reset to re-enable the tamper signals.

+ Press ENTER to roll the challenge to invalidate the current tamper disable token or press SPACE to exit.

4. Press PBO to verify tamper sources PRSO (Interrupt) and PRS2 (Filter) of EFR32xG21B device can still issue an interrupt.

. Get tamper status... SL_STATUS_OK (cycles: 11259 time: 296 us)
+ Recorded tamper status (MSB..LSB): 00050001

+ Currently active tamper sources (MSB..LSB): 00050000

5. The tamper source (configured as Reset) was restored to the default (Ignore), so it cannot issue a tamper reset even
if users press PBO (Filter on PRS2) 4 times within ~32 ms x 1024.

6. The tamper source (configured as Reset) was restored to the default (Ignore), so it cannot issue a tamper reset even
if users press PB1.

7. 1ssue a power-on or pin reset to exit the tamper disable state or press ENTER to roll the challenge.

Copyright © 2025 Silicon Laboratories. All rights reserved. 187/280

Examples ‘5"’ SILICON LABS

. Check and roll the challenge.
+ Request current challenge from the SE... SL_.STATUS_OK (cycles: O time: O us)
+ The current challenge (16 bytes):
AA C179 FC FC C5 78 8E A0 3F 91 AB 5D A9 C5 04
+ Rolling the challenge... SL_.STATUS_OK (cycles: O time: O us)
+ Request rolled challenge from the SE... SL_.STATUS_OK (cycles: O time: O us)
+ The rolled challenge (16 bytes):
OF 639C 44 46 E4 7C B2 C9 CA 66 13 34 34 92 8E
+ Issue a power-on or pin reset to activate the rolled challenge.

. SE manager deinitialization... SL_STATUS_OK (cycles: O time: O us)

Simplicity Commander

The tamper disable was designed with three organizations in mind:

1. The Direct Customer to whom Silicon Labs sells the chip. This chip has the Public Command Key installed in the SE OTP.

2. The Product Company is a customer of the Direct Customer. This is applicable if the Direct Customer is creating a white-
labeled product for another company or a sub-component that goes into another company’s product.

3. The Debug 3rd Party could be anyone, internal or external, that the Product Company decides is qualified to debug the
device.

Because the Public Command Key is installed into the SE OTP of a large number of devices and cannot be changed, the
corresponding Private Command Key must be guarded by a very stringent process. If this Private Command Key is ever
leaked, all the devices programmed with the corresponding Public Command Key will be compromised.

A tamper disable use case is described in the following figure, and the signing process is performed by a Hardware Security
Module (HSM).

Access Certificate

Magic Word

Authorizations Q

Tamper Authorizations

SILICON LABS Public Serial Number
Silicon Labs B Command Key Public Certificate Key
: in HSE OTP
Direct Customer EFR32xG2y in =
(e.g. Module | Serial # A
Manufacturer) Challengs 1

Signed by Private

Gornmmand Keyin | i5M Access Certificate Signature O

Q

Part# | PublicCertificate Key 5 Drsabis [ampeas
Serial # | Per Device i
Challenge Response O ‘3’ Disable Tamper Token Token (Challenge 1) :
e O Disable Tamper Command oo sl EP” Niees | Disable Tamper Debu | ra— 4
Certificate Key Pair Tamper Disable Mask Session Command Roll Challenge which Session SILICON LABS
Product Company Challenge EFRSZ):GZy Tamper Disable Mask invalidates Token — > »
Read Serial # \) EFR32
5 xG2y
(e.5. ODM) SHA-256 (Hash) Challenge 1 Challenge 1 e — | b
¥ Challenge 1 to 2
Signed by Private Disable Tamper Disable Tamper

Certificate Key in HSM Command Signature Command Signature User Tamper Response
O (Challenge 2)
o
Check Disable Tamper \«)
Command Signature with
Public Certificate Key in
~ Access Certificate
Debug 3 Party Disable Tamper _>\) ¥ pusic
> commandkey [N _
(e.g. Silicon Labs) Token (Challenge 1) st Verify the Serial Number inHSE OTP siLicon Lags
) and check the Access ! »
Processing Certificate signature
EFR32xG2y
¥] Serial #
Restore defaultlevelson (" Challenge 1
. Tamper Disable Mask \)
Time

The tamper disable flow moving across the time axis from left to right is explained below:

1. The Product Company creates a Private/Public Certificate Key pail for each device. Because the key pair is assigned only to
a single device, the company may not need to protect the Private Certificate Key as securely as the Private Command Key
by the Direct Customer.

In this example, the Private/Public Certificate Key pair (cert_key.pemand and cert_pubkey.pem) is generated by running the
util genkey command.

Copyright © 2025 Silicon Laboratories. All rights reserved. 188/280

Examples ‘S’ SILICON LABS

commander util genkey --type ecc-p256 --privkey cert_key.pem --pubkey cert_pubkey.pem

Generating ECC P256 key pair...

Writing private key file in PEM format to cert_key.pem
Writing public key file in PEM format to cert_pubkey.pem
DONE

2. The Public Certificate Key (cert_pubkey.pem) for each device is passed to the Silicon Labs Direct Customer. The part
number and serial number are also required if Direct Customer cannot access the device.
Run the security status command to get the device serial number. The --serialno option is for the P-Link serial numbel of the

WSTK.

commander security status --device EFR32MG21B010F1024 --serialno 440030580

SE Firmware version :1.2.9
Serial number : 000000000000000014b457fffe0f77ce
Debug lock : Disabled
Device erase : Enabled
Secure debug unlock : Disabled
Tamper status 0] ¢

Secure boot : Disabled
Boot status :0%x20 - OK
Command key installed : True
Sign key installed : False

DONE

3. The Direct Customer then places that Public Certificate Key in the pccess certificate]. The access certificate is per device
because it contains the unique device serial number. This certificate is generated once upon creation of the device, and
thereafter, is generally only modified when the Private/Public Certificate Key pair is changed by the Product Company.
The following two steps are OPTIONAL for customization of Authorizations and Tamper Authorizations.

a. (Optional) Run the security genauth command to generate the default certificate authorization file

(certificate_authorization.json).

commander security genauth -o certificate_authorizations.json --nostore --serialno 440030580

DONE

b. (Optional) Use a text editor to modify the default Authorizations and Tamper Authorizationd in the json file.
Run the security gencert command with the following parameters from the Product Company to generate an unsigned

access certificate (access_certificate.extsign) in Security Store:
o Device part number
o Device serial number
o Public Certificate Key

commander security gencert --device EFR32MG21B010F1024 --deviceserialno 000000000000000014b457 fffe0f77ce
--cert-pubkey cert_pubkey.pem --extsign

Authorization file written to Security Store:
C:/Users/<username >/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe0f7 7ce/certificate_authorij

Cert key written to Security Store:
C:/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe0f77ce/cert_pubkey.pem

Created an unsigned certificate in Security Store:
C:/Users/<username >/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe0f77ce/access_certificate

DONE

Notes:
o The --extsign option to create an unsigned access certificate is only available in Simplicity Commander Version 111.2 or

above.

Copyright © 2025 Silicon Laboratories. All rights reserved. 189/280

Examples ‘S’ SILICON LABS

Elements of the Access Certificate on page]).
o (Optional) Use --authorization option if the customized json file generated in the above optional steps (a) and (b) is
used.

commander security gencert --device EFR32MG21B010F1024 --authorization certificate_authorizations.json

--deviceserialno 000000000000000014b457fffe0f77ce --cert-pubkey cert_pubkey.pem --extsign

4. The signing of the access certificate can be done by passing an unsigned access certificate to a Hardware Security Module
(HSM) containing the Private Command Key.
In this example, the OpenSSL is used to sign the access certificate (access_certificate.extsign) in Security Store with the
Private Command Key (command_key.pem). The pccess certificate signature] is in the cert_signature.bin file.

openssl dgst -sha256 -binary -sign command_key.pem -out cert_signhature.binaccess_certificate.extsign

Run the util signcert command with the following parameters to verify the signature and generate the signed access
certificate (access_certificate.bin):

o Unsigned access certificate

o Access certificate signature

o Public Command Key

commander util signcert access_certificate.extsign --cert-type access --signature cert_signature.bin
--verify command_pubkey.pem --outfile access_certificate.bin

R = 76CDC5BA18E5248FDA5418002F250F149B449829A005D6F07 26268016 CC53ED4
S = E4B8ABA2CF742B0OE6CC5BA2C1023D7 6BEEF3C4A11DA97 CC4D23459F32237A206
Successfully verified signature

Successfully signed certificate

DONE

Notes:
o Put the required files in the same folder to run the command.
o The util signcert command for access certificate is only available in Simplicity Commander Version 111.2 or above.
o The access certificate signature can be in a Raw or Distinguished Encoding Rules (DER) format.

5. The access certificate is passed to the Product Company. The purpose of the access certificate is to grant overall debug
access capabilities to the Product Company and authorize them to allow third parties to debug the device. The Product
Company can now use the access certificate to generate the Disable Tamper Token. The same access certificate can be
used to generate as many Disable Tamper Tokens as necessary without having to ever go back to the Direct Customer.

6. To create the Disable Tamper Token, a debug session must be started with the device and the challenge value (which is a
random number Challenge 1 in this example) should be read out to generate the phallenge response
Run the security gencommandcommand to generate the challenge response without Hisable tamper command signature] and
store it in a file (command_unsign.bin).

commander security gencommand --action disable-tamper --disable-param 0x00fa0000 -o command_unsign.bin
--nostore --device EFR32MG21B010F1024 --serialno 440030580

Unsigned command file written to:
command_unsign.bin
DONE

o [The ftamper disable masK (0x00fa0000) is based on the Tamper platform example on EFR32xG21B devices (Table PRS
Tamper Source Usage on EFR32XxG21B Devices).
o If the --disable-param option is not provided, it will restore all tamper sources (Oxffffffb6) by default.
7. The challenge response is then cryptographically hashed (SHA-256) to create a digest. The digest is then signed by the
Private Certificate Key to generate the disable tamper command signature.
The signing of the challenge response can be done by passing an unsigned challenge response to a Hardware Security
Module (HSM) containing the Private Certificate Key.
In this example, the OpenSSL is used to sign the challenge response (command_unsign.bin) with the Private Certificate Key
(cert_key.pem). The disable tamper command signature is in the command_signature.bin file.

Copyright © 2025 Silicon Laboratories. All rights reserved. 190/280

Examples ‘S’ SILICON LABS

openssl dgst -sha256 -binary -sign cert_key.pem -out command_signature.bincommand_unsign.bin

8. Run the security disabletamper command with the access certificate (access_certificate.bin) from Direct Customer and disable
tamper command signature (command_signature.bin) in step 7 to generate the Disable Tamper Token.

commander security disabletamper --disable-param 0x00fa0000 --cert access_certificate.bin
--command-signature command_signature.bin EFR32MG21B010F1024 --serialno 440030580

Certificate written to Security Store:
C:/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe 0f77ce/access_certificate

R = A70834D97640A92510D151765FOEED6C6A05CB8BE8TEO6E905C230ED24E71659
S = 9B69C113C2B7DEEGOBFOBC7D72719F7F9465840D68EADBBB4FOBCE7A1267B936
Command signature is valid

Tamper successfully disabled.

Command disable tamper payload was stored in Security Store

DONE

Notes:
o Put the required files in the same folder to run the command.
o The disable tamper command signature can be in a Raw or Distinguished Encoding Rules (DER) format.
o Simplicity Commander Version 1.11.2 or above is required to support signature in DER format.
9. (Alternative) Key protection is not required if the Private Certificate Key is ephemeral. Steps 6 to 8 can be implemented by
running the security disabletamper command with the access certificate (access_certificate.bin) from the Direct Customer and
Private Certificate Key (cert_key.pem) to generate the Disable Tamper Token.

commander security disabletamper --disable-param 0x00fa0000 --cert access_certificate.bin --cert-privkey cert_key.pem --device
EFR32MG21B010F1024 --serialno 440030580

Certificate written to Security Store:
C:/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe0f77ce/access_certificate

Cert key written to Security Store:
C:/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe0f77ce/cert_pubkey.pem

Created unsigned disable tamper command

Signed disable tamper command using
C:/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe0f77ce/cert_key.pem
Tamper successfully disabled.

Command disable tamper payload was stored in Security Store

DONE

10. The Disable Tamper Token (aka Command disable tamper payload) file (tamper_payload_111110100000000000000000.bin , where
111110100000000000000000 is 0x00fa0000 for famper disable masH) is stored in the Security Store. The location in Windows

is C:\Users\<PC user name>\AppData\Local\SiliconLabs\commander\SecurityStore\device_<Serial number>\challenge_<Challenge value> .

> This PC > 0SDisk(C) » Users » amleung > AppData * Local * Siliconlabs *> commander > SecurityStore * device_000000000000000014b457ffe0f77ce * challenge_8e7f73e6322eddaltb62997155334f29

~

0 Name Date modified Type Size

&5 tamper_payload_111110100000000000000000.bin ~ 8/9/2021 11:19 PM BIN File TKB

Users can also use the security getpath command to get the path of the Security Store or a specified device.

commander security getpath

C:/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore
DONE

commander security getpath --deviceserialno 0000000000000000588e81fffe70350d

Copyright © 2025 Silicon Laboratories. All rights reserved. 191/280

Examples ‘S’ SILICON LABS

C:/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_0000000000000000588e81fffe70350d

DONE

11. The Disable Tamper Token and the device are now delivered to the Debug 3rd Party.
Run the security gencommand command to create the Security Store to place the Disable Tamper Token file.

commander security gencommand --action disable-tamper --disable-param 0x00fa0000 --device EFR32MG21B010F1024 --serialno
440030580

Unsigned command file written to Security Store:
C:/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe0f77ce/challenge_8e7f7 34

DONE

Copy the Disable Tamper Token file (tamper_payload_111110100000000000000000.bin) from Product Company to the Windows
Security Store challenge_<Challenge value> folder located in C:\Users\<PC
username>\AppData\Local\SiliconLabs\commander\SecurityStore\device_<Serial number>\challenge_<Challenge value> .

12. The device compares the Disable Tamper Token contents with its internal serial number, challenge value, and Public
Command Key to determine the token’s authenticity. If authentic, it will execute the Hisable tamper command to restore the
default levels on the famper disable masK (0xfa000000) ; otherwise, it will ignore the command.

Run the security disabletamper command to disable the tamper.

commander security disabletamper --disable-param 0x00fa0000 --device EFR32MG21B010F1024 --serialno 440030580

Disabling tamper with tamper payload:

C:/Users/<username>/AppData/Local/SiliconLabs/commander/SecurityStore/device_000000000000000014b457fffe0f77ce/challenge_8e7f7 34
successfully disabled.
DONE

Note: Users can verify the Disable Tamper Token by following steps 4 to 6 in if the
EFR32xG21B device is running in the mode of the SE Manager Tamper platform example.

13. The Debug 3rd Party can now use this same Disable Tamper Token to disable the tamper (step 12), over and over again
after each power-on or pin reset, until they have finished debugging the device.

14. Once the Debug 3rd Party has finished debugging, they will send the device back to the Product Company.

15. Once the Product Company receives the device, they willimmediately start a debug session to roll the challenge (from
Challenge 1 to Challenge 2 in this example). Rolling the challenge will effectively invalidate any Disable Tamper Token that
has been previously given to any third party.

Run the security rolichallenge command and reset the device to invalidate the current Disable Tamper Token. The challenge

cannot be rolled before it has been used at least once — that is, by running the security disabletamper or security unlock
command.

commander security rolichallenge --device EFR32MG21B010F1024 --serialno 440030580

Challenge was rolled successfully.
DONE

The unlock token is invalidated after rolling the challenge because any previously issued Disable Tamper Token now contains
a different challenge value (Challenge 1) than the challenge value currently in the device (Challenge 2).

The validation process of any previously issued Disable Tamper Token will always fail until a new Disable Tamper Token is
issued with a current matching challenge value (Challenge 2).

Copyright © 2025 Silicon Laboratories. All rights reserved. 192/280

Examples

&= SILICON LABS

Note: Direct Customer can directly use the Private Command Key on the connected chip to generate the

Disable Tamper Token in Security Store. But it has a high risk (cannot use HSM) to leak the Private Command
Key to a 3¢ party when using this approach.

commander security disabletamper --disable-param 0x00fa0000 --command-key command_key.pem

--device EFR32MG21B010F1024 --serialno 440030580

Simplicity Studio

1. Open Security Settings of the selected device as described in Using Simplicity Studid}.

2. Click [Roll Challenge] to generate a new challenge value to invalidate the Disable Tamper Token for tamper disable. Click
[OK] to exit.

o8 J-Link Silicon Labs (440048205)

Configuration of device: J-Link Silicon Labs (440048205)

Device hardware ‘Arpplication images Scratchpad Packet Trace Security Settings . Adapter Configurationl‘CTUNEv: J-Link Conﬁguratioh

Read From Device

Device Status

Start Provisioning Wizard...

Crypto Profile: Local Development
SerialNumber: __0000000000000000588E81FFFE70350D

Challenge: B49E63FD497D9B8F26DB219ESCCCS5FF]

Command Key: B1BC6F6FA56640ED522B2EEOFSB3CF7ESD48F60BES148F0DCO8440F0A4E1DCA47C04119EDBATBE31B7707E5FIDO0TABSIAL
Sign Key: No key written. Write Key.
SE Certificate: Validated Successfully

MCU Certificate: Validated Successfully
Tamper Summary: 16 Tamper Sources Modified

Certificate Details...

Certificate Details...

View...
SE Firmware Version: 1.2.9
Host Firmware Version: 255.255.255
Boot Status: 0x00020020
Secure Boot: Disabled
Roll Challenge || Disable Tamper ' Unlock Debug Port | Device Erase
Debug Locks Roll Challenge to invalidate previously generated tokens.
The challenge value is a secure number used in the
Enable Secy 9eneration of tokens like the Debug Unlock token. Once a
token has been generated, it will be valid as long as the
Enable Deby challenge value remains the same.
Disable Device Erase: V Disable
oK Cancel

Copyright © 2025 Silicon Laboratories. All rights reserved. 193/280

Authenticating Silicon Labs Devices using Device Certificates &= SILICON LABS

Authenticating Silicon Labs Devices using Device Certificates

Authenticating Silicon Labs Devices Using Device
Certificates

Note: This section replaces AN7268: Authenticating Silicon Labs Devices Using Device Certificates. Further updates to
this application note will be provided here.

This application note describes how to authenticate a device as a genuine Silicon Labs product at any time during its life.

The digital certificates for secure identity are stored in the device and the Silicon Labs Server. This secure identity feature
is only available on Secure Vault High devices.

Key Points

e Secure identity on Secure Vault High devices
o Device certificate options

o Entity Attestation Token (EAT)

« Remote authentication process

« Examples for certificate chain verification and remote authentication

Copyright © 2025 Silicon Laboratories. All rights reserved. 194/280

Series 2 Device Security Features &= SILICON LABS

Series 2 Device Security Features

Series 2 Device Security Features

Protecting loT devices against security threats is central to a quality product. Silicon Labs offers several security options to
help developers build secure devices, secure application software, and secure paths of communication to manage those
devices. Silicon Labs’ security offerings were significantly enhanced by the introduction of the Series 2 products that
included a Secure Engine. The Secure Engine is a tamper-resistant component used to securely store sensitive data and
keys and to execute cryptographic functions and secure services.

On Series 1 devices, the security features are implemented by the TRNG (if available) and CRYPTO peripherals.

On Series 2 devices, the security features are implemented by the Secure Engine and CRYPTOACC (if available). The
Secure Engine may be hardware-based, or virtual (software-based). Throughout this document, the following abbreviations
are used:

e HSE - Hardware Secure Engine
e VSE - Virtual Secure Engine
e SE - Secure Engine (either HSE or VSE)

Additional security features are provided by Secure Vault. Three levels of Secure Vault feature support are available,
depending on the part and SE implementation, as reflected in the following table:

Level (1) SE Support Part (2)

Secure Vault High (SVH) HSE only (HSE-SVH) EFR32xG2yB (3)

Secure Vault Mid (SVM) HSE (HSE-SVM) EFR32xG2yA (3)

! VSE (VSE-SVM) EFR32xG2y, EFM32PG2y (4)

Secure Vault Base (SVB) N/A MCU Series 1 and Wireless SoC Series 1
Notes:

1. The features of different Secure Vault levels can be found in phttps://www.silabs.com/security|
2. The x is a letter (B, F, M, or Z).

3. At the time of this writing, the y is a digit (1, 3, or 4).

4. At the time of this writing, the y is a digit (2).

Secure Vault Mid consists of two core security functions:

o Secure Boot: Process where the initial boot phase is executed from an immutable memory (such as ROM) and where code is
authenticated before being authorized for execution.

« Secure Debug access control: The ability to lock access to the debug ports for operational security, and to securely unlock
them when access is required by an authorized entity.

Secure Vault High offers additional security options:

« Secure Key Storage: Protects cryptographic keys by "wrapping" or encrypting the keys using a root key known only to the
HSE-SVH.

o Anti-Tamper protection: A configurable module to protect the device against tamper attacks.

« Device authentication: Functionality that uses a secure device identity certificate along with digital signatures to verify the
source or target of device communications.

A Secure Engine Manager and other tools allow users to configure and control their devices both in-house during testing
and manufacturing, and after the device is in the field.

User Assistance

Copyright © 2025 Silicon Laboratories. All rights reserved. 195/280

https://www.silabs.com/security

Series 2 Device Security Features

In support of these products Silicon Labs offers whitepapers, webinars, and documentation. The following table summarizes

the key security documents:

Document

Beries 2 Secure Debud

Beries 2 Secure Boot with RTSU

Anti-Tamper Protection Configuration

bnd Use

Authenticating Silicon Labs Devices
using Device Certificates (this
document)

Becure Key Storagg

AN1222: Production Programming of
Series 2 Devices

Key Reference

&= SILICON LABS

Summary

How to lock and unlock Series 2 debug access, including
background information about the SE

Describes the secure boot process on Series 2 devices using
SE

How to program, provision, and configure the anti-tamper
module

How to authenticate a device using secure device certificates
and signatures, at any time during the life of the product

How to securely 'wrap' keys so they can be stored in non-
volatile storage.

How to program, provision, and configure security information
using SE during device production

Applicability

Secure Vault
Mid and High
Secure Vault
Mid and High
Secure Vault
High

Secure Vault
High

Secure Vault
High

Secure Vault
Mid and High

Public/Private keypairs along with other keys are used throughout Silicon Labs security implementations. Because
terminology can sometimes be confusing, the following table lists the key names, their applicability, and the documentation

where they are used.

Key Name

Public Sign key (Sign Key Public)

Public Command key (Command
Key Public)

OTA Decryption key (GBL
Decryption key) aka AES-128 Key

Attestation key aka Private Device
Key

Device Compatibility

Customer Programmed Purpose

Yes

Yes

Yes

No

Secure Boot binary authentication and/or OTA

upgrade payload authentication

Secure Debug Unlock or Disable Tamper command

authentication

Decrypting GBL payloads used for firmware upgrades

Device authentication for secure identity

This application note applies to Series 2 HSE-SVH device families. Refer to JoT _Endpoint Security Fundamentald for details

on supporting devices.

Copyright © 2025 Silicon Laboratories. All rights reserved.

196/280

https://docs.silabs.com/iot-security/latest/series2-secure-debug/
https://docs.silabs.com/mcu-bootloader/latest/series2-secure-boot-with-rtsl/
https://docs.silabs.com/iot-security/latest/efr32-secure-vault-tamper/
https://docs.silabs.com/iot-security/latest/efr32-secure-key-storage/
https://docs.silabs.com/iot-security/latest/iot-endpoint-security-fundamentals/

Introduction &= SILICON LABS

Introduction

Introduction

One of the biggest challenges for connected devices is post-deployment authentication. Silicon Labs’ factory trust
provisioning service with optional secure programming provides a secure device identity certificate, analogous to a birth
certificate, for each individual silicon die during integrated circuit (IC) manufacturing. This enables post-deployment security,
authenticity, and attestation-based health checks. The device certificate guarantees the authenticity of the device for its
lifetime. When the certificate is checked, a digital signature confirms that the certificate received has not been tampered
with.

Certificates can now be used to authenticate Internet of Things (loT) devices as well as Internet servers, now that Silicon
Labs’ HSE-SVH devices have both cryptographic acceleration in hardware and tamper-resistant storage to handle digital
certificate operations.

The digital signature and certificates are major cryptographic tools to verify the device is authentic. These tools are
described in the following sections.

Digital Signature
The digital signature is used to protect integrity and authenticity of an electronic message.

Digital Signature Example

Alice wants to give data to Bob, and Bob wants to make sure that the data came from Alice and has not been tampered
with. Alice has a private/public key pair, and has previously given Bob her public key.

HASH:
Hash 4516ECA38F2
Function 011D09B6D00
0C0781BC3

Sign
with
Private
Key

Signature:
AEB84C8395D
C11DOB7FCB6

1140119C4A

Hash
Function

Signature:
AEB84C8395D
C11DOB7FCB6

1140119C4A

Alice’s Public Key ‘a O
| s’l

HASH:
4516EC438F2
011D09B6DO0O
0C0781BC3

Verify
Signature

1. Alice generates the hash (for example SHA256) of the data.

2. Alice's private key is used to sign the hash to create a signature. The hash is signed instead of the data itself because the
signing operation is slow. Therefore it is more efficient to sign the hash instead of the arbitrarily large data.

3. The signature is attached to the end of the data.

4. The data and signature are given to Bob.

Copyright © 2025 Silicon Laboratories. All rights reserved. 197/280

Introduction

5. Bob independently generates the hash of the data.

6. The signature is verified with the hash and Alice’s public key, which results in a true or false outcome indicating if the data is

valid.

Note: This scheme requires distribution of Alice's public key.

Digital Certificates and Chain of Trust

In Digital Signature Example], Bob already had access to Alice’s public key, which he trusted. However, it is not always
feasible to pre-share a public key with everyone for secure identity verification, and no mechanism exists to revoke or

inactivate the public key in case it gets stolen.

A digital certificate is simply a small, verifiable data file that contains identity credentials and a public key. That data is then
signed either with the corresponding private key, or a different private key. The digital certificate can be used to prove the

ownership of a public key.

o [f it is signed using the corresponding private key, it is called a self-signed certificate.
o If it is signed by another private key, the owner of that private key is acting as a Certificate Authority (CA).
o A Certificate Authority (CA) is a trusted third party by both the owner and party relying on the certificate.

Concatenation of digital certificates builds a chain of trust.

« At the root of the chain is a self-signed certificate called a root certificate or a CA certificate.
* The root or CA certificate can be used to sign another certificate.

CA Certificate Device Certificate
Name: Silicon Labs Authority Name: Wireless SoC
Organization: Silicon Labs Organization: Silicon Labs
Country: United States Country: United States
State: Texas State: Texas
Valid From: 1/1/2010-12/31/2030 Valid From: 1/1/2016-12/31/2019
Issued By: Silicon Labs Authority < Issued By: Silicon Labs Authority

Public CA Key Public Device Key

Signature: 3748A9... Signature: F56423...

Self-signed

Private CA Key Private Device Key

Note: The private key is never included as part of the certificate — it must be stored separately and kept
private. The security of the scheme relies on protecting the private keys.

Digital Certificates Verification

This section illustrates the process shown in Digital Signature Example}, but using digital certificates.

Copyright © 2025 Silicon Laboratories. All rights reserved.

&= SILICON LABS

198/280

Introduction &= SILICON LABS

Digital Certificates Verification Example

Alice wants to give data to Bob, signed with her private key. Alice has a digital certificate signed by a trusted third party
(CA) in addition to her private key. Bob has a certificate from the trusted CA but nothing else is previously shared.

Q

CA Cert i Alice’s Cert

Public Key in Alice’s cert

—
M Signature: . O ‘;
— > — =N
1468AE... ',
Alice’s Private Key

Data Data

—
1468AE...

1. Alice uses her private key to sign the data.

2. Alice gives the data, signature, and her certificate to Bob.

3. Bob first verifies that Alice's certificate is valid, to prove Alice is the owner of the certificate's public key. This is done by
verifying that Alice's certificate contains a valid signature created by the CA.

4. Bob then verifies the signature of the data using the public key in Alice's certificate.

Note: The hash process in Digital Signature Example] is skipped in this example.

Copyright © 2025 Silicon Laboratories. All rights reserved. 199/280

Secure Identification on HSE-SVH Devices &= SILICON LABS

Secure ldentification on HSE-SVH Devices

Secure ldentification on HSE-SVH Devices

The goal of secure identification is to prove the ownership of a device's unique public key to an external service. It enables
the external service to identify the device as legitimate and to authenticate device-generated data or messages.

Chain of Trust

The chain of trust on HSE-SVH devices is illustrated in the following figure.

A
Silicon Labs Server

&
Factory Cert FactoryCert | e o e S
(]
- < 4 S
£ 2 ¢ 3T
o 2 &+ <
Batch Cert :
L N N] 1]
o~
On Device 2

» Silicon Labs is a Certificate Authority (CA).

o The root certificate and factory certificate are stored in the Silicon Labs Server.

« The factory certificate is static per factory.

« The batch certificate and device certificate are stored on the device.

e The batch certificate is rolled per production batch.

e The device certificate is a unique cryptographic identity.

o All certificates are X.509 standard format.
o TLS-compliant: Standard endpoint authentication methods are used in internet communications
o Signature algorithm: ECDSA-prime256v1 with SHA256

« Each certificate in the chain is signed by the certificate above it (Bigning and Verification figure]).

Note: A certificate can be revoked if needed, for instance if security issues arise. The certificate revocation
lists are stored in the Silicon Labs Server.

Device Certificate

The device certificate example is described in the following figure.

Copyright © 2025 Silicon Laboratories. All rights reserved. 200/280

Secure Identification on HSE-SVH Devices &= SILICON LABS

?;';tt:":ate' All data is hashed using the algorithm (SHA256) specified in the certificate
$erial Number:
§2:59:94:21:76:1e:81:be:2b:ba:dd:09:1e:f2:fb:74:46:2¢:20:h3
ignature Algorithm: ecdsa-with-SHA256
Es fer: CN = Batch 1001317, O 3 Silicon Labs Inc,, €= US
alldity

]\Io Before: Nov 19 14:30:15 2019 GMT
Nog After : Nov 19 14:30:15 2119 GMT
Eu bject: C = US, O =Silicen Labs Inc., CN = EUL:14BAS7FFFEOF7777 DMB:086AEC3CEGS0543EE73568DA S:SE0 ID:MCU

ubject Public Key Info:
ublic Key Alzorithm: id-ecPublicKey
: (256 bit)

1]4 :bd:7H:3b:3f:2b:de:9e:91:07:92:00:26:b5:25:
Ee:Sa. :27:ac:48:89:¢3:0d:c3:27:31:96:19:3e:
a:07:181:0b:e5:b1:34:6b:53:9a:52:76:2e:63:7d:

5T CURVE: P-256
093 extensions:
k509v3 Basic Constraints: critical

ENI OID: prime256vl
I

[CA:FALSE
09v3 Key Usage: critical
igital Signature, Non Repudiation, Key Encipherment
09v3 Extended Key Usage: critical
LS Web Client Authentication

ignature Algorithm: ecdsa-with-SHAZ56
0:46:02:21:00:9e:7a:65:a%:a4:be:e3:a3:00:77:d6:d0:68:
f:64:9a:e0:4F:9¢:f3:1b:4b:58:f8:75:55:f8:48f5:de:9a:
3:02:21:00:c3:49:be:4d:54:07:22:95:f1:c3:84:72:f0:17:
f:92:1a:cf:6d:b3:ea:89:fa:af: 11:55:c8:0e:d2:ac:e0:a0

The hash is signed (ECDSA)
using the Issuer’s private key

o The device certificate is in X.509 DER format (~0.5 kB).

o The device certificate is stored in HSE one-time programmable memory (OTP). It cannot be modified once programmed.
e The batch number (Issuer: CN = Batch field) identifies the factory and batch in which the device was produced.

» The validity period is 100 years from device manufacture date.

e The device 64-bit hard-coded unique ID (EUI) is encoded in the Subject: CN field, which blinds this certificate to the device.

o The device-specific public key is embedded in the device certificate and the corresponding private key is securely stored in
the Secure Key Storage on the chip.
e The Issuer's private key is used to sign the hash of the certificate data to create a device certificate signature.

Signhing and Verification

Signing and verification for certificates on HSE-SVH devices are described in the following figures.

Copyright © 2025 Silicon Laboratories. All rights reserved.

201/280

Secure Identification on HSE-SVH Devices &= SILICON LABS

Subject: Root CA On Device

|
|
|
|
|
Factory Certificate |
Self-Signed Issuer: Root CA :
Subject: Factory |
Public Factory Key |
@ |
T | | lssuer Factory
Private Factory Key | Subject: Batch
|
Silicon Labs Server |
| | lssuer. Batch
| -
l Subject: Device
|
|
|
|
i I
' .
| On Device
Issuer Root CA Factory Certificate |
Subject- Root CA || Issuer Root CA | _
|
= Subject Factory | Issuer: Factory
o iect: Issuer: Batch
= Public Factory Key | Subject: Batch |
| Subject: Device
| Batch Certificate
Silicon Labs Server [Signature
|

Copyright © 2025 Silicon Laboratories. All rights reserved. 202/280

Device Certificate Options &= SILICON LABS

Device Certificate Options

Device Certificate Options

The HSE-SVH devices are each programmed with a device certificate during IC production. The device certificate is signed
with a Public Device Key, using a Private Batch Key that can be validated against a Silicon Labs certificate chain
Verification for Certificated and [Certificate Chain Verificatior]. The device private key never leaves the Secure Key Storage
on the chip. Customers can create their own device certificates during their production.

Three device certificate options (standard, modified, and external) are provided to meet different requirements. Silicon Labs
provides [Custom Part Manufacturing Service (CPMS)| to program custom certificates on your chips at the Silicon Labs
factories. For more information about CPMS, see [JG519: Custom Part Manufacturing Service User's Guide]

Standard Device Certificate

o Comes standard with HSE-SVH devices.

o Cryptographically proves the device is an authentic Silicon Labs device.
» Does not protect against overproduction or counterfeit products that are built with authentic Silicon Labs devices.

o Signed to a Silicon Labs Certificate Authority (CA).

* The device can prove that it possesses the private key associated with the public key in its certificate by signing the
esponse to a given challenge (Remote Authentication Procesd and Certificate Chain Verification and Remotg]
A uthentication).

a

Root
Certificate

...__2‘

Batch

Certificate

.nJ‘
Device

Certificate

Copyright © 2025 Silicon Laboratories. All rights reserved. 203/280

https://www.silabs.com/developers/custom-part-manufacturing-service
https://www.silabs.com/documents/public/user-guides/ug519-cpms-user-guide.pdf

Device Certificate Options &= SILICON LABS

Modified Device Certificate

o Available as a customization service on HSE-SVH devices (OEM custom part number).

« Cryptographically proves the device is an authentic Silicon Labs device that was produced for a specific OEM.
o Protects against overproduction by Contract Manufacturer (CM).

o Device Certificate X.509 fields can be specified, with restrictions.

« Signed to a Silicon Labs Certificate Authority (CA).

a

Root
Certificate

.n__:‘

Batch
Certificate

Device
Certificate

External Device Certificate

o Available as a customization service on HSE-SVH devices (OEM custom part number).

» Cryptographically proves the device is an authentic Silicon Labs device that was produced for a specific OEM.
o Protects against overproduction by Contract Manufacturer (CM).

o Factory Certificate is custom for each OEM.

o Device Certificate and Factory Certificate X.509 fields can be specified, with restrictions.

o Signed to a OEM Certificate Authority (CA).

« Root Certificate Authority is OEM-specified and is optional.

» Electronic delivery of all batch and device certificates signed under this OEM factory certificate is supported.

Copyright © 2025 Silicon Laboratories. All rights reserved. 204/280

Device Certificate Options &= SILICON LABS

Root
Certificate

OEM

Batch

Certificate

Device
Certificate

Copyright © 2025 Silicon Laboratories. All rights reserved. 205/280

Entity Attestation Token (EAT) &= SILICON LABS

Entity Attestation Token (EAT)

Entity Attestation Token (EAT)

The device attestation service creates a token that contains a fixed set of device-specific data when requested from the
caller. The device must contain an attestation key pair, which is unique per device, to sign the token. The HSE-SVH device
uses the Private Device Key| (aka attestation key) to sign the token, and the caller uses the Public Device Key to verify the
token's authenticity.

An Entity Attestation Token (EAT) is a mini-report that is cryptographically signed. An EAT is encoded in either one of two
standardized data formats: a Concise Binary Object Representation () orin the text-based format JSON. A digital
signature is then used to protect its content. The technical specification defining the content of the EAT, which are claims
about the hardware and the software running on a device, is specified by the Internet Engineering Task Force (JETH).

An EAT is a collection of Key ID-Value pairs relating to device pedigree or any other information one wants the device to
attest. Collected data can originate from the Root of Trust (RoT), any protected area, or non-protected areas.

The EAT must be signed following the structure of the CBOR Object Signing and Encryption () specification. For
asymmetric key algorithms, the signature structure must be COSE-Sign1. A COSE-Sign1is a CBOR encoded, self-secured
data blob that contains headers, a payload, and a signature.

The primary need for EAT verification is to check correct formatting and verify signatures as for any token. In addition,
though, the verifier can operate a policy where values of some of the claims in this profile can be compared to reference
values, registered with the verifier for a given deployment, to confirm that the device is endorsed by the manufacturer
supply chain.

The HSE can generate the PSA attestation token or security configuration toker] when requested from the caller with a
Challengd] (Auth challenge claim below). The following tables describe EAT claims that are used in the PSA attestation]
foken and security configuration token.

Note: The actual claims returned from the tokens are HSE firmware version dependent.

Claims of PSA Attestation Token

Key ID Claim Description Value
-75000 Profile definition Name of a document that describes the profile of the report. PSA_IOT_PROFILE
-75001 Client ID Represents the Partition ID of the caller. See note below
-75002 Security Represents the current life cycle stage of the PSA RoT. Device dependent
lifecycle
-75003 Implementation Uniquely identifies the underlying immutable PSA RoT. Device dependent
D (32 bytes)
-75004 Boot seed Represents a random value created at system boot time. Random bytes (32
bytes)
-75006 Software A list of Software components represents all the software loaded by See the software
components PSA RoT. components table
below.
-75008 Auth challenge Input object from the caller. For example, this can be a cryptographic Random bytes or
nonce or a hash of locally attested data. The length must be 32, 48, or hash (32/48/64
64 bytes. bytes)

Copyright © 2025 Silicon Laboratories. All rights reserved. 206/280

https://www.rfc-editor.org/info/rfc7049
https://datatracker.ietf.org/doc/html/draft-ietf-rats-eat-11#ref-RATS.Architecture
https://www.rfc-editor.org/info/rfc8152
https://www.ietf.org/archive/id/draft-tschofenig-rats-psa-token-08.txt

Entity Attestation Token (EAT)

Key ID
-75009

Note

an

Key

Claim

Instance ID

on-secure master.

Description Value

&= SILICON LABS

Unique identifier of the instance. Device EUI-64 unique ID with type byte 0x06 (9 bytes)

o Key ID 75001: Client ID if present. Otherwise the value 1 for a token requested by a secure bus master and -1 for

o Key ID 75002 (For the definitions of these lifecycle states, please refer to the ARM Platform Security Mode)):

o UNKNOWN (0x0000)
o ASSEMBLY_AND_TEST (0x1000)
o PSA_ROT_PROVISIONING (0x2000)
o SECURED (0x3000)
o NON_PSA_ROT_DEBUG (0x4000)
o RECOVERABLE_PSA_ROT_DEBUG (0x5000)
o DECOMMISSIONED (0x6000)
e Key ID 75003:
o Word[0]: Die revision
o Word[1]: HSE OTP version
o Word[2]: Bit indicating it is an HSE-SVH device
o Word[3]: Production version
o Word[4:7]: Reserved (zeros)

Software Components

D Type Description Value

1 Measurement A short string represents the role of this software component. See note

type below

2 Measurement Represents a hash of the invariant software component in memory at See note

value startup time. below

4 Version The issued software version is in the form of a text string. See note

below
Notes:
o KeyID 1

o HSE always exists — PRoT

o If secure booted Gecko Bootloader exists at flash starting address — BL

o If secure booted application exists at flash starting address — ARoT

o Key ID 2: SHA-256 hash (32 bytes) of the firmware (HSE, Gecko Bootloader, or application)
o Key ID 4: Version of the firmware (HSE, Gecko Bootloader, or application)
Claims of Security Configuration Token

Key ID Claim Description Value

-75000 Profile definition Name of a document that describes the profile of the report. SILABS_1

-75008 Auth challenge Input object from the caller. For example, this can be a Random bytes or hash

cryptographic nonce or a hash of locally attested data. The (32 bytes)
length must be 32 bytes.

-75009 Instance ID Unique identifier of the instance. Device EUI-64 unique 1D
with type byte 0x06 (9
bytes)

-76000 SE status Device HSE status. Device dependent (36
bytes)

Copyright © 2025 Silicon Laboratories. All rights reserved.

207/280

https://developer.arm.com/documentation/den0128/0100/

Entity Attestation Token (EAT) &= SILICON LABS

Key ID Claim Description Value
-76001 OTP Device HSE OTP configuration if provisioned. Device dependent (24 bytes)
configuration
-76002 Sign Key Public Sign Key in HSE OTP if provisioned. Device dependent (64 bytes)
-76003 Command Key Public Command Key in HSE OTP if provisioned. Device dependent (64 bytes)
-76004 Tamper settings Current applied tamper settings. Device dependent (16 bytes)
Notes:

o All custom Silicon Labs claims will have a base of 76000.
o Key ID 76000: Refer to section "Get Status" in AN1303: Programming Series 2 Devices using the Debug Challenge Interface
DCI) and Serial Wire Debug (SWD) for the description (HSE-SVH) of the value.

o Key ID 76001: Refer to section "Read User Configuration" in AN1303: Programming Series 2 Devices using the Debud
Challenge Interface (DCI) and Serial Wire Debug (SWD) for the description (HSE-SVH) of the value.
« Key ID 76002 and 76003: Refer to for Public Sign Key and Public Command Key.

o Key ID 76004: One nibble per tamper source. Refer to section "Anti-Tamper Configuration" in AN1303: Programming Series 2
Devices using the Debug Challenge Interface (DCI) and Serial Wire Debug (SWD) for the description of the value.

Copyright © 2025 Silicon Laboratories. All rights reserved. 208/280

https://www.silabs.com/documents/public/application-notes/an1303-efr32-dci-swd-programming.pdf
https://www.silabs.com/documents/public/application-notes/an1303-efr32-dci-swd-programming.pdf
https://www.silabs.com/documents/public/application-notes/an1303-efr32-dci-swd-programming.pdf

Remote Authentication Process &= SILICON LABS

Remote Authentication Process

Remote Authentication Process

Remote authentication is used to manage attestation by requesting that the device sign a challenge or based on its
secure identity.

. The remote device requests the device certificate and batch certificate from the HSE-SVH device.

. The remote device looks up the factory certificate and root certificate from the Silicon Labs Server.

. The remote device validates each certificate in the chain using the public key of each Issuer (lerification for Certificated).

. The remote device then sends an attestation challenge (random number) to the HSE-SVH device. The HSE-SVH device
uses the Private Device Key in the Secure Key Storage on the chip to sign the challenge or EAT and sends the signature of
challenge or EAT to the remote device.

5. The remote device requires a small library to validate the signature of challenge or EAT using the Public Device Key in the

device certificate.

N w N -

Copyright © 2025 Silicon Laboratories. All rights reserved. 209/280

Secure Engine Manager &= SILICON LABS

Secure Engine Manager

Secure Engine Manager

The Secure Engine Manager provides thread-safe APIs for the SE's mailbox interface. The following table lists the SE
Manager APIs related to secure identity. The SE Manager APl document can be found at https://docs.silabs.com/gecko
latform/latest/service/api/group-sl-se-manager.

For the SE's mailbox interface, see section Secure Engine Subsystem in Beries 2 Secure Debud.

SE Manager API for Security Identity

SE Manager API Usage

sl_se_read_pubkey Read stored Public Device Key in the HSE-SVH device.
sl_se_read_cert Read stored certificates (DER format) in the HSE-SVH device.
sl_se_read_cert_size Read the size of stored certificates in the HSE-SVH device.
sl_se_attestation_get_psa_iat_token Get the PSA attestation token from the HSE with the given nonce.

sl_se_attestation_get_psa_iat_token_size Get the size of a PSA attestation token with the given nonce.
sl_se_attestation_get_config_token Get the security configuration token from the HSE with the given nonce.

sl_se_attestation_get_config_token_size Get the size of a security configuration token with the given nonce.

Copyright © 2025 Silicon Laboratories. All rights reserved. 210/280

https://docs.silabs.com/gecko-platform/latest/service/api/group-sl-se-manager
https://docs.silabs.com/iot-security/latest/series2-secure-debug/03-r-secureelement

Examples

&= SILICON LABS

Examples

Overview

The secure device authentication examples are described in the following table.

Example

Certificate chain verification
Certificate chain verification
Certificate chain verification
Certificate chain verification & Remote
authentication

Entity Attestation Token (EAT)

Entity Attestation Token (EAT)

Device (Radio Board)

EFR32MG21B010F1024IM32
(BRD41810C)

EFR32MG21B010F1024IM32
(BRD4181C)

EFR32MG21B010F1024IM32
(BRD4181C)

EFR32MG21B010F1024IM32
(BRD4181C)

EFR32MG21B010F1024IM32
(BRD4181C)

EFR32MG21B010F1024IM32
(BRD4181C)

Secure Device Authentication Examples

HSE
Firmware

Version
12.9

Version
1.2.9

Version
129

Version
12.9

Version
12.9

Version
12.9

Tool

Simplicity Commander and
OpenSSL

Simplicity Commander
Simplicity Studio 5

SE Manager and Mbed TLS

SE Manager

Simplicity Commander

Note: Unless specified in the example, these examples can apply to other HSE-SVH devices.

Users can download the device root certificate (Device-Root-CA-chain.pem) and factory certificate (Factory-chain.pem)

from phttps://www silabs.com/certificate-authority.

Copyright © 2025 Silicon Laboratories. All rights reserved.

211/280

https://www.silabs.com/certificate-authority

Examples ‘S’ SILICON LABS

‘5’ SILICON LABS Products & Platforms Applications Partners Learn & Support Company

// Certificate Authority

Certificate Practice Statement

Active Public Certificates:

T
)

For Simplicity Studio v5.3.0.0 and higher, the device root certificate (device-root-prod.pem) and factory certificate (factory-
prod.pem) can be found in the Window folder below.

CA\SiliconLabs\SimplicityStudio\v5\offline\common\certificates
Using Simplicity Commander

1. This application note uses Simplicity Commander v1.11.2. The procedures and console output may be different on the other
versions of Simplicity Commander. The latest version of Simplicity Commander can be downloaded from
https://www.silabs.com/developers/mcu-programming-optiong.

commander --version

Simplicity Commander 1v11p2b998

JLink DLL version: 6.94d

Qt 5.12.1 Copyright (C) 2017 The Qt Company Ltd.
EMDLL Version: Ov17p18b581
mbed TLS version: 2.6.1

2. The Simplicity Commander's Command Line Interface (CLI) is invoked by commander.exe in the Simplicity Commander folder.
The location for Simplicity Studio 5 in Windows is C:\SiliconLabs\SimplicityStudio\v5\developer\adapter_packs\commander . For
ease of use, it is highly recommended to add the path of commander.exe to the system PATH in Windows.

3. If more than one Wireless Starter Kit (WSTK) is connected via USB, the target WSTK must be specified using the --serialno
\<J-Link serial number> option.

4. 1f the WSTK is in debug mode OUT, the target device must be specified using the --device \<device name> option.

For more information about Simplicity Commander, see UG162: Simplicity Commander Reference Guidg].

Using an External Tool

The kertificate chain verificatior] example uses the OpenSSL to validate the certificate chain. The Windows version of
OpenSSL can be downloaded from pttps://slproweb.com/products/Win320penSSL.html This application note uses OpenSSL

Copyright © 2025 Silicon Laboratories. All rights reserved.

212/280

https://www.silabs.com/developers/mcu-programming-options
https://www.silabs.com/documents/public/user-guides/ug162-simplicity-commander-reference-guide.pdf
https://slproweb.com/products/Win32OpenSSL.html

Examples ‘S’ SILICON LABS

Version 111h (Win64).

openssl version

OpenSSL 1.1.1h 22 Sep 2020

The OpenSSL's Command Line Interface (CLI) is invoked by openssl.exe in the OpenSSL folder. The location in Windows
(Win64) is C:\Program Files\OpenSSL-Win64\bin . For ease of use, it is highly recommended to add the path of openssl.exe to
the system PATH in Windows.

Using Platform Examples

Simplicity Studio 5 includes the BE Manager platform exampled for secure identity and attestation. This application note
uses platform example of GSDK v3.2.3. The console output may be different on the other versions of GSDK.

Refer to the corresponding readme.html file for details about each SE Manager platform example. This file also includes the
procedures to create the project and run the example.

Certificate Chain Verification

Certificate chain verification is the process of making sure a given certificate chain is well-formed, valid, properly signed,
bnd trustworthy. The certificate signature is verified using the public key in the issuer certificate (Verification fo
Certificates).

Simplicity Commander and OpenSSL

1. Run the security readcert command to save the batch certificate in PEM format.

commander security readcert batch -o batch.pem --serialno 440030580

Writing certificate to batch.pem...
DONE

2. Run the security readcert command to save the device certificate in PEM format.

commander security readcert mcu -o device.pem --serialno 440030580

Writing certificate to device.pem...
DONE

3. Get the root certificate (device-root-prod.pem) and factory certificate (factory-prod.pem) from the certificate folder in
Simplicity Studid.

4. Use OpenSSL to display the certificate information (e.g., device.pem)

openssl x509 -in device.pem -text -noout

Copyright © 2025 Silicon Laboratories. All rights reserved. 213/280

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-getting-started/start-a-project#examples

Examples ‘S’ SILICON LABS

Certificate:
Data:
Version: 3 (0x2)
Serial Number:
66:f8:5a:e6:b4:ef:6e:49:d3:36:95:63:c9:¢3:99:13:4:71:93:f6
Signature Algorithm: ecdsa-with-SHA256
Issuer: CN = Batch 1001317, O = Silicon Labs Inc., C = US
Validity
Not Before: Nov 19 15:10:33 2019 GMT
Not After : Nov 19 15:10:33 2119 GMT
Subject: C = US, O = Silicon Labs Inc., CN = EU:14B457FFFEOF77 CE DMS:086AEC3C645836BFB04D312F S:SEQ ID:MCU
Subject Public Key Info:
Public Key Algorithm: id-ecPublicKey
Public-Key: (256 bit)
pub:
04:5c:4b:c9:b0:b3:ff:fa:99:81:¢5:99:be:ff:ae:
77:74:1a:f4:30:f1:1e:0e:2d:df:96:4b:ff:d2:46:
fa:fa:e7:23:4b:79:cb:0a:c7:71:13:fa:7¢:39:5f:
e2:18:9e:4e:06:43:88:a7:9¢:65:53:f3:a3:a1:06:
81:€6:06:f2:11
ASN1 OID: prime256v1
NIST CURVE: P-256
X509v3 extensions:
X509v3 Basic Constraints: critical
CA:FALSE
X509v3 Key Usage: critical
Digital Signature, Non Repudiation, Key Encipherment
X509v3 Extended Key Usage: critical
TLS Web Client Authentication
Signature Algorithm: ecdsa-with-SHA256
30:44:02:20:57:12:24:84:d8:37:b8:c0:44:8f:16:ac:c1:a3:
be:a9:f1:16:38:9f:b9:a2:57:€6:12:49:bf:96:29:29:d2:b8:
02:20:5f:ae:22:f5:00:05:49:b1:da:ee:4a:84:48:70:27:97:
1¢:40:2d:85:5f:f2:12:b3:8b:4a:d7:9a:ee:60:81:7¢

5. Use OpenSSL to verify the certificate chain from steps 1to 3.

openssl verify -show_chain -CAfile device-root-prod.pem -untrusted factory-prod.pem -untrusted batch.pemdevice.pem

device.pem: OKChain:

depth=0: C = US, O = Silicon Labs Inc., CN = EUI:14B457FFFEOF7777 DMS:086AEC3CE650543EE7 3568DA S:SEOQ ID:MCU (untrusted)
depth=1: CN = Batch 1001317, O = Silicon Labs Inc., C = US (untrusted)

depth=2: CN = Factory, O = Silicon Labs Inc., C = US (untrusted)

depth=3: CN = Device Root CA, O = Silicon Labs Inc., C = US

Simplicity Commander

Run the security readcert command to display the key information about the on-chip certificates (e.g., mcu).

commander security readcert mcu --serialno 440030580

Copyright © 2025 Silicon Laboratories. All rights reserved. 214/280

Examples ‘S’ SILICON LABS

Version 03

Subject : C=US O=Silicon Labs Inc. CN=EUI:14B457FFFEQF77CE DMS:086AEC3C645836BFB04D312F S:SEO ID:MCU
Issuer : CN=Batch 1001317 O=Silicon Labs Inc. C=US

Valid From : November 19 2019

Valid To : November 19 2119

Signature algorithm: SHA256

Public Key Type :ECDSA

Public key : 5¢c4bc9b0b3fffa9981c599beffae77741af430f11e0e2ddf964bffd246fafae7
234b79cb0ac77113fa7c395fe2189e4e064388a79¢c6553f3a3a10681e606f211

DONE

Run the security attestation command to verify the on-chip batch and device certificates with root and factory certificates.

commander security attestation --serialno 440030580

Certificate chain successfully validated up to Silicon Labs device root certificate.

-75008 ARM PSA nonce : 05a88aeef627dd663058e3d758fe9a827942da0793da7 2af81c79a4f60fa9824

-75000 ARM PSA Profile ID : SILABS_1

-75009 ARM PSA/IETF EAT UEID : 0614b457fffe0f77ce

-76000 SE status : 000000010000000000000000000003a90000002000010209ffffffff0000002500000000

-76001 OTP configuration :00000000100444400401041411224477242204420a060005

-76002 MCU sign key : c4af4ac69aab9512db50f7a26ae5b4801183d85417e729a56da974f4e08a562¢c
de6019dea9411332dc1a743372d170b436238a34597c410ea177024de20fc819

-76003 MCU command key : b1bc6f6fa56640ed522b2ee0f5b3cf7e5d48f60be8148f0dc08440f0adeldcasd
7c04119ed6albe31b7707e5f9d001a6592051003e95e1b936f05c37ea793ad63

-76004 Current applied tamper settings : 15044440040104141122447714220442

Successfully validated signature of attestation token.

DONE

Simplicity Studio

This application note uses Simplicity Studio v5.2.1.1. The procedures and pictures may be different on the other versions of
Simplicity Studio 5.

1. Right-click the selected debug adapter RB (ID:J-Link serial number) to display the context menu.

Copyright © 2025 Silicon Laboratories. All rights reserved. 215/280

Examples &= SILICON LABS

SHT AN ER-EEEE"O

~ ' EFR32xG21B 2.4 GHz 10 dBm RB (ID:440030580)

Connect
» F4 EFR32xG21B 2.4 GHz 10 dBm Radio Board (BRD4181C) Disconnect
» B4 Wireless Starter Kit Mainboard (BRD4001A Rev A01T)
Start capture

Start capture with options...
Stop capture

Redo last upload

Upload application...
Upload adapter firmware...
Rename

Make a sniffer

= Launch Console...
Wt sniffer Configurator..
@ Bluetooth NCP Commander...

im Forece Unlock.
Select Crypto Profile...
Set Unlock Token...
Clear Unlock Token
View Device Certificates

2. Click Device configuration... to open the Configuration of device: J-Link Silicon Labs (serial number) dialog box. Click the
Security Settings tab to get the selected device configuration.
3. The MCU Certificate: will display Validated Successfully if it passed the certificate chain verification process.

Copyright © 2025 Silicon Laboratories. All rights reserved. 216/280

Examples

&= SILICON LABS

38 J-Link Silicon Labs (440030580)

Configuration of device: J-Link Silicon Labs (440030580)

Application images Device hardware| Security Settings

J-Link Configuran'or; | Scratchpad_ Packet Tracé Adapter Conﬁguratioﬁ, CTUNé

Read From Device Start Provisioning Wizard...
Device Status

Crypto Profile: Local Development

SerialNumber: 000000000000000014B457FFFEQOF77CE

Challenge: 1B5559C2B501F8686CC342BFCOF57C38
Command Key: B1BC6F6FAS6640ED522B2EEOFSB3CFTESD48F60BEB148FODCO8440F0A4E1DCA4ATCO4119EDBATBE31B7707ESFOD001A

Sign Key: CAAF4ACE9AABI512DB50F7TAZ6AESB4801183D85417ET29A56DA9T4F4E08AS62CDEGDT19DEAS411332DCTIAT43372D1
SE Certificate: Validated Successfully

ifi il
[Mcu certificate: validated Successfully |

Tamper Summary: 16 Tamper Sources Modified View.
SE Firmware Version: 1.2.9
Host Firmware Version: 255.255.255
Boot Status: 0x00000020
Secure Boot: Disabled
Roll Challenge | Disable Tamper Unlock Debug Port Device Erase.
Debug Locks
Enable Secure Debug Unlock ¥ ' Enable
Enable Debug Lock % Enable
Disable Device Erase: v Disabie
oK Cancel

4. Click Certificate Details... to browse the details of different certificates (e.g., Device MCU Certificate in the figure below).

BB MCU Certificate Validation Status

~ Root Certificate
w Factory Certificate
~ Device Batch Certificate
Device MCU Certificate

Version: 3

Serial Number: 587855562044449711353480597085008327226963366902

Subject: CN=EUI14B457FFFEOFT7CE DMS:086AEC3C645836BFB04D312F S:SED ID:MCU, O=S5ilicon Labs Inc, C=US
Issuer: C=Us, O=5ilicon Labs Inc, CN=Batch 1001317

Algorithm: SHA256withECDSA

Sun EC public key, 256 bits

Public K public x coord: 4174668761444 1408699189039034156888681183260548544341582753493180500342930151
524 public y coord: 15964303815585005985401367418170722197270761728445246807067387246089653907985
parameters; secp256r1 [NIST P-256, X9.62 prime256v1] (1.2.840.10045.3.1.7)

[k || cancel

Copyright © 2025 Silicon Laboratories. All rights reserved. 217/280

Examples ‘S’ SILICON LABS

Certificate Chain Verification and Remote Authentication

The SE Manager Secure Identity platform example uses APIs in and Mbed TLS to emulate the processes in
Remote Authentication Procesd.

Click the View Project Documentation link to open the readme.html file.

Platform - SE Manager Secure Identity

This example project demonstrates the secure identity of Secure Vault High device. CREATE

View Project Documentation

The HSE-SVH device simulates the operations in the remote device to eliminate the communications between different
parties in this example. The factory certificate and root certificate are hard-coded in the app_mbedtls_x509.c file.

The Private Device Key in the Secure Key Storage on the chip is used to sign the challenge from the remote device.
Therefore this example can only run on a chip with the Btandard Device Certificate].

Step 1inthe Remote Authentication Process

SE Manager Secure Identity Example - Core running at 38000 kHz.
. SE manager initialization... SL_.STATUS_OK (cycles: 6 time: O us)

. Secure Vault High device:

+ Read size of on-chip certificates... SL_.STATUS_OK (cycles: 5296 time: 139 us)

+ Read on-chip device certificate... SL_STATUS_OK (cycles: 5138 time: 135 us)

+ Parse the device certificate (DER format)... SL_.STATUS_OK (cycles: 167043 time: 4395 us)
+ Get the public device key in device certificate... OK

+ Read on-chip batch certificate... SL_.STATUS_OK (cycles: 5080 time: 133 us)

+ Parse the batch certificate (DER format)... SL_.STATUS_OK (cycles: 173151 time: 4556 us)

Steps 2 and 3 in the Remote Authentication Process (certificate chain printout is disabled)

. Remote device:
+ Parse the factory certificate (PEM format)... SL_.STATUS_OK (cycles: 5373122 time: 141 ms)

+ Parse the root certificate (PEM format)... SL_.STATUS_OK (cycles: 5448802 time: 143 ms)
+ Verify the certificate chain with root certificate... SL_STATUS_OK (cycles: 958730 time: 25229 us)

Steps 2 and 3 in the Remote Authentication Process (certificate chain printout is enabled)

Copyright © 2025 Silicon Laboratories. All rights reserved. 218/280

Examples ‘5’ SILICON LABS

. Remote device:
+ Parse the factory certificate (PEM format)... SL_.STATUS_OK (cycles: 5373935 time: 141 ms)
+ Parse the root certificate (PEM format)... SL_.STATUS_OK (cycles: 5449622 time: 143 ms)
+ Verify requested for (Depth 3) ... OK
cert. version :3
serial number :12:E6:A2:A5:9C:AA:27:F9
issuer name : CN=Device Root CA, O=Silicon Labs Inc., C=USsubject name : CN=Device Root CA, O=Silicon Labs Inc., C=US
issued on : 2018-10-10 17:32:00
expires on 1 2118-09-16 17:32:00
signed using : ECDSA with SHA256
EC key size : 256 bits
basic constraints : CA=true, max_pathlen=2
key usage : Digital Signature, Key Cert Sign, CRL Sign
+ Verify requested for (Depth 2) ... OK
cert. version :3
serial number :24:DC:7B:40:0C:32:9C:0A
issuer name : CN=Device Root CA, O=Silicon Labs Inc., C=USsubject name : CN=Factory, O=Silicon Labs Inc., C=US
issued on :2018-10-10 17:33:00
expires on 1 2118-09-16 17:32:00
signed using : ECDSA with SHA256
EC key size : 256 bits
basic constraints : CA=true, max_pathlen=1
key usage : Digital Signature, Key Cert Sign, CRL Sign
+ Verify requested for (Depth 1) ... OK
cert. version :3
serial number :23:09:DA:39:B4:78:05:AA
issuer name : CN=Factory, O=Silicon Labs Inc., C=USsubject name : CN=Batch 1001317, O=Silicon Labs Inc., C=US
issued on :2019-10-17 21:20:20
expires on 1 2118-09-16 17:32:00
signed using : ECDSA with SHA256
EC key size : 256 bits
basic constraints : CA=true, max_pathlen=0
key usage : Digital Signature, Key Cert Sign
+ Verify requested for (Depth 0) ... OK
cert. version :3
serial number : 66:F8:5A:E6:B4:EF:6E:49:D3:36:95:63:C9:C3:99:13:E4:71:93:F6
issuer name : CN=Batch 1001317, O=Silicon Labs Inc., C=USsubject name : C=US, O=Silicon Labs Inc., CN=EUI:14B457FFFEOF77CE
DMS:086AEC3C645836BFB04D312F S:SEO ID:MCU
issued on :2019-11-19 15:10:33
expires on :2119-11-19 15:10:33
signed using : ECDSA with SHA256
EC key size : 256 bits
basic constraints : CA=false
key usage : Digital Signature, Non Repudiation, Key Encipherment
ext key usage : TLS Web Client Authentication
+ Verify the certificate chain with root certificate... SL.STATUS_OK (cycles: 9703861 time: 255 ms)

Note: The longer processing time (255 ms) is due to the certificate chain printout.

Steps 4 and 5 (signature of a challenge) in the Remote Authentication Process

. Remote authentication:
+ Create a 16 bytes challenge (random number) in remote device for signing... SL_.STATUS_OK (cycles: 3700 time: 97 us)
+ Sign challenge with private device key in Secure Vault High device... SL_.STATUS_OK (cycles: 221983 time: 5841 us)
+ Get public device key in Secure Vault High device... SL_STATUS_OK (cycles: 199788 time: 5257 us)
+ Verify signature with public device key in Secure Vault High device... SL_STATUS_OK (cycles: 229054 time: 6027 us)
+ Verify signature with public device key in remote device... SL_STATUS_OK (cycles: 230442 time: 6064 us)

. SE manager deinitialization... SL_STATUS_OK (cycles: 6 time: O us)

Copyright © 2025 Silicon Laboratories. All rights reserved. 219/280

Examples ‘S’ SILICON LABS

Entity Attestation Token (EAT)
These examples demonstrate how to retrieve the from the HSE-SVH device.
SE Manager - Attestation Platform Example

The SE Manager Attestation platform example uses APIs in to retrieve the PSA attestation token and security
configuration token from the HSE.

Click the View Project Documentation link to open the readme.html file.

Platform - SE Manager Attestation

This example project demonstrates how to get attestation tokens using the SE Manager Attestation API and
printing them in a human-readable format. CREATE

View Project Documentation

Press SPACE to cycle the challenge size for the PSA attestation token. Press ENTER to make a selection and run the
program.

SE Manager Attestation Example - Core running at 38000 kHz.
Initializing SE Manager...
SL_STATUS_OK (cycles: 10 time: O us)

Select nonce size for the IAT token (32, 48 or 64 bytes).
Press SPACE to cycle through the options.
Press ENTER to make a selection.
Current nonce size: 32
Selected nonce size: 32
Calling sl_se_attestation_get_psa_iat_token...

SL_STATUS_OK (cycles: 661072 time: 17396 us)

PSA Attestation Token (Entity Attestation Token (EAT) and Entity Attestation Token (EAT))

Copyright © 2025 Silicon Laboratories. All rights reserved. 220/280

Examples ‘5’ SILICON LABS

PSA IAT token

Raw token:
d28443a10126a058e4a83a000124ff58204ca14d0bc8601cad2e511de1964e93
9338b6fc20f8231aa178ca79519b0ffae732a000124f7715053415f494f545f50
524f46494c455f313a00012500490614b457fffe0f77ce3a000124f8013a0001
24f919200032000124fa5820011c00010600000001000000f2030f0000000000
0000000000000000000000003a000124fb58204922b7bbd31c0c81c9b0485ccf
b5396ec24ffa877ece441e11c947b791218cf83a000124fd81a3016450526f54
046830303031303230390258206d39caedbal29297062b820ba6d85b3e432c44
3c8a8a31d3c6232be6906d38dc584030f9d61523204793965fc9eb2be788db9d
2b02692d87767 3c86ebffbfb6769984515d2f1a287a92d2¢c134c1024f20f018d
be952a2ccae7ed2980a9f242d02c9c

COSE_Sign1 structure:
d2 ;tag(18)
84 ;array(4)
43 ; byte_str(3)
a10126
a0 ;map(0)
58 ;byte_str(228)
a83a000124ff58204cal14d0bc8601cad2e511de1964e939338b6fc20f8231aal
78ca79519b0ffae73a000124f7715053415f494f545f50524f46494c455f313a
00012500490614b457fffe0f77ce3a000124f8013a000124f919200032000124
fa5820011c00010600000001000000f2030f0000000000000000000000000000
00000032000124fb58204922b7bbd31c0c81c9b0485ccfb5396ec24ffa877ece
441e11¢c947b791218cf83a000124fd81a3016450526f54046830303031303230
390258206d39caedbal29297062b820babd85b3e432c443c8a8a31d3c6232beb
906d38dc
58 ;byte_str(64)
30f9d61523204793965fc9eb2be788db9d2b02692d87767 3c86ebffbfb676998
4515d2f1a287a92d2c134¢1024f20f018dbe952a2ccae7ed2980a9f242d02¢c9c

Token claims:
a8 ;map(8)
3a ;int(-75008)
58 ;byte_str(32)
4cal4d0bc8601cad2e511de1964e939338b6fc20f8231aa178ca79519b0ffae7
3a ;int(-75000)
71 ;text_str(17)
"PSA_IOT_PROFILE_1"
3a ;int(-75009)
49 ;byte_str(9)
0614b457fffe0f77ce
3a ;int(-75001)
01 ;int(1)
3a ;int(-75002)
19 ;int(8192)
3a ;int(-75003)
58 ;byte_str(32)
011c00010600000001000000f2030f0000000000000000000000000000000000
3a ;int(-75004)
58 ;byte_str(32)
4922b7bbd31c0c81c9b0485ccfb5396ec24ffa877eced41e11c947b791218¢cf8
3a ;int(-75006)
81 ;array(1)
a3 ;map(3)
01 ;int(1)
64 ;text_str(4)
"PRoT"
04 ;int(4)
68 ;text_str(8)
"00010209"
02 ;int(2)
58 ;byte_str(32)

Copyright © 2025 Silicon Laboratories. All rights reserved. 221/280

Examples ‘S’ SILICON LABS

List of claims printed with human-friendly names:
ARM PSA Nonce, Claim ID: 75008
58; byte_str(32)
4cal4d0bc8601cad2e511de1964e939338b6fc20f8231aa178ca79519b0ffae7

ARM PSA Profile ID, Claim ID: 75000
71; text_str(17)"PSA_IOT_PROFILE1"

ARM PSA / [ETF EAT UEID, Claim ID: -75009
49; byte_str(9)
0614b457fffe0f77ce

ARM PSA Partition ID, Claim ID: -75001
01 ;int(1)

ARM PSA Lifecycle, Claim ID: -75002
19;int(8192)

ARM PSA Implementation ID, Claim ID: -75003
58; byte_str(32)
011c00010600000001000000f2030f0000000000000000000000000000000000

ARM PSA Boot seed, Claim ID: -75004
58; byte_str(32)
4922b7bbd31c0c81c9b0485ccfb5396ec24ffa877eced41e11¢c947b791218cf8

ARM PSA Software components, Claim ID: -75006
81; array(1)
a3 ;map(3)
01 ;int(1)64; text_str(4)"PRoT"
04 ;int(4)68; text_str(8)"00010209"
02 ;int(2)58; byte_str(32)
6d39caedbal29297062b820babd85b3e432c443c8a8a31d3c6232be6906d38dc

Security Configuration Token (Entity Attestation Token (EAT))

Copyright © 2025 Silicon Laboratories. All rights reserved. 222/280

Examples ‘5’ SILICON LABS

Calling sl_se_attestation_get_config_token...
SL_STATUS_OK (cycles: 541281 time: 14244 us)

Config token

Raw token:
d28443a10126a0590133a83a000124f5820c3e3664dcc47711bf81734bc95f0
87d81dd841d7 3fc805fc9237¢c7b3dfa25c503a000124f76853494c4142535f31
3a00012500490614b457fffe0f77ce3a000128df582400000001000000000000
0000000000000000002000010209ffffffff00000025000000003a000128e058
1800000000100444400401041411224477242204420a0600053a000128e15840
cdafdac69aab9512db50f7a26ae5b4801183d85417e729a56da974f4e08a562¢c
de6019dea9411332dc1a743372d170b436238a34597c410ea177024de20fc819
3a000128e25840b1bc6f6fa56640ed522b2ee0f5b3cf7e5d48f60be8148f0dcO
8440f0adel1dcad7c04119ed6albe31b7707e5f9d001a659a051003e95e1b936f
05¢37ea793ad6332a000128e350150444400401041411224477142204425840b7
47d98be9cef8a91af0292a479a3fa499527018b97ac1188ddefbOfabfcb9b3d1
d4159240a8663c8803a2ef7cebdf7644fa3394cf1057d612e1b3977d9de92d

COSE_Sign1 structure:

d2 ;tag(18)

84 ;array(4)

43 ; byte_str(3)

a10126

a0 ;map(0)

59 ;byte_str(307)
2832000124ff5820c3e3664dcc47711bf81734bc95f087d81dd841d7 3fc805fc
9237¢7b3dfa25c503a000124f76853494c4142535f313a00012500490614b457
fffe0f77ce3a000128df58240000000100000000000000000000000000000020
00010209ffffffff00000025000000003a000128e05818000000001004444004
01041411224477242204420a06000532000128e15840c4af4ac69aab9512db50
f7a262e5b4801183d85417e729a56da974f4e08a562cde6019dea9411332dc1a
743372d170b436238a34597c410ea177024de20fc8193a000128e25840b1bc6f
6fa56640ed522b2ee0f5b3cf7e5d48f60be8148f0dc08440f0adeldcad7c0411
9ed6albe31b7707e5f9d001a659a051003e95e1b936f05¢c37ea793ad6332a0001
28e35015044440040104141122447714220442

58 ;byte_str(64)
b747d98be9cef8a91af0292a479a3fa499527018b97ac1188ddefbOfabfch9b3
d1d4159240a8663c8803a2ef7cebdf7644fa3394cf1057d612e1b3977d9de92d

Token claims:
a8 ;map(8)

3a ;int(-75008)

58 ;byte_str(32)
c3e3664dcc47711bf81734bc95f087d81dd841d7 3fc805fc9237¢c7b3dfa25¢c50

3a ;int(-75000)

68 ;text_str(8)

"SILABS1"

3a ;int(-75009)

49 ; byte_str(9)
0614b457fffe0f77ce

3a ;int(-76000)

58 ; byte_str(36)
000000010000000000000000000000000000002000010209ffffffff0000002500000000

3a ;int(-76001)

58 ;byte_str(24)
00000000100444400401041411224477242204420a060005

3a ;int(-76002)

58 ;byte_str(64)
c4af4ac69aab9512db50f7a26ae5b4801183d85417e729a56da974f4e08a562¢c
de6019dea9411332dc1a743372d170b436238a34597¢c410ea177024de20fc819

3a ;int(-76003)

58 ;byte_str(64)

Copyright © 2025 Silicon Laboratories. All rights reserved. 223/280

Examples ‘S’ SILICON LABS

7¢04119ed6albe31b7707e5f9d001a659a051003e95e1b936f05¢c37ea793ad63
3a ;int(-76004)50; byte_str(16)15044440040104141122447714220442

List of claims printed with human-friendly names:
ARM PSA Nonce, Claim ID: -75008
58; byte_str(32)
c3e3664dcc47711bf81734bc95f087d81dd841d7 3fc805fc9237c7b3dfa25¢c50

ARM PSA Profile ID, Claim ID: -75000
68; text_str(8)"SILABS_1"

ARM PSA / [ETF EAT UEID, Claim ID: -75009
49; byte_str(9)
0614b457fffe0f77ce

SE Status, Claim ID: -76000
58; byte_str(36)
000000010000000000000000000000000000002000010209ffffffff0000002500000000

OTP Configuration, Claim ID: 76001

58; byte_str(24)
00000000100444400401041411224477242204420a060005

OTP MCU Boot key, Claim ID: -76002

58; byte_str(64)
c4af4ac69aab9512db50f7a26ae5b4801183d85417e729a56da974f4e08a562¢c
de6019dea9411332dc1a743372d170b436238a34597¢c410ea177024de20fc819

OTP MCU Auth key, Claim ID: -76003

58; byte_str(64)
b1bc6f6fa56640ed522b2ee0f5b3cf7e5d48f60be8148f0dc08440f0adeldcasd
7¢04119ed6albe31b7707e5f9d001a659a051003e95e1b936f05c37ea793ad63

Current applied tamper settings, Claim ID: 76004
50; byte_str(16)15044440040104141122447714220442

Exiting...
SL_STATUS_OK (cycles: 8 time: 0 us)

Note: The reserved tamper source in ID 76004 returns a value of 0 or 5.

Simplicity Commander

Run the security attestation command to retrieve and validate the security configuration token (Entity Attestation Toker]
EAT)) from the HSE.

commander security attestation --serialno 440030580

Copyright © 2025 Silicon Laboratories. All rights reserved.

224/280

Examples ‘S’ SILICON LABS

Certificate chain successfully validated up to Silicon Labs device root certificate.

-75008 ARM PSA nonce : 05a88aeef627dd663058e3d758fe9a827942da0793da7 2af81c79a4f60fa9824

-75000 ARM PSA Profile ID : SILABS1

-75009 ARM PSA/IETF EAT UEID : 0614b457fffe0f77ce

-76000 SE status : 000000010000000000000000000003a90000002000010209ffffffff0000002500000000

-76001 OTP configuration :00000000100444400401041411224477242204420a060005

-76002 MCU sign key : c4af4ac69aab9512db50f7a26ae5b4801183d85417e729a56da974f4e08a562¢c
de6019dea9411332dc1a743372d170b436238a34597c410ea177024de20fc819

-76003 MCU command key : b1bc6f6fa56640ed522b2ee0f5b3cf7e5d48f60be8148f0dc08440f0adeldcasd
7c04119ed6albe31b7707e5f9d001a659a051003e95e1b936f05¢c37ea793ad63

-76004 Current applied tamper settings : 15044440040104141122447714220442

Successfully validated signature of attestation token.
DONE

Note: The reserved tamper source in ID 76004 returns a value of 0 or 5.

Copyright © 2025 Silicon Laboratories. All rights reserved. 225/280

Secure Key Storage &= SILICON LABS

Secure Key Storage

Secure Key Storage

Note: This section replaces AN7271: Secure Key Storage. Further updates to this application note will be provided here.

Secure Key Storage is a feature in High devices that allows for the protection of cryptographic keys by key wrapping. User
keys are encrypted by the device's root key for non-volatile storage for later usage. This prevents the need for a key to be
stored in plaintext format on the device, preventing attackers from gaining access to the keys through traditional flash-
extraction or application attacks, and allowing for a potentially unlimited number of keys to be securely stored in any
available storage.

Series 2 devices can use TrustZone to implement Secure Key Storage, so this feature is now also available on Mid devices.
This document describes the operation and usage of this feature, and provides comparisons with other key storage

methods.

Key Points

o Keys are encrypted or 'wrapped' with a root key

e root key is not stored on the device, instead it is generated on each reset

» Wrapped keys are confidential to the , and can be stored in non-volatile memory safely
* Wrapped keys can be cached into for usage at a later time

e TrustZone Secure Key Storage

Copyright © 2025 Silicon Laboratories. All rights reserved. 226/280

Series 2 Device Security Features &= SILICON LABS

Series 2 Device Security Features

Series 2 Device Security Features

Protecting loT devices against security threats is central to a quality product. Silicon Labs offers several security options to
help developers build secure devices, secure application software, and secure paths of communication to manage those
devices. Silicon Labs’ security offerings were significantly enhanced by the introduction of the Series 2 products that
included a Secure Engine. The Secure Engine is a tamper-resistant component used to securely store sensitive data and
keys and to execute cryptographic functions and secure services.

On Series 1 devices, the security features are implemented by the TRNG (if available) and CRYPTO peripherals.

On Series 2 devices, the security features are implemented by the Secure Engine and CRYPTOACC (if available). The
Secure Engine may be hardware-based, or virtual (software-based). Throughout this document, the following abbreviations
are used:

e HSE - Hardware Secure Engine
e VSE - Virtual Secure Engine
e SE - Secure Engine (either HSE or VSE)

Additional security features are provided by Secure Vault. Three levels of Secure Vault feature support are available,
depending on the part and SE implementation, as reflected in the following table:

Level (1) SE Support Part (2)

Secure Vault High HSE only (HSE- Refer to |oT Endpoint Security Fundamentalg for details on supporting
(SVH) SVH) devices.

Secure Vault Mid HSE (HSE-SVM) "

(SVM)

! VSE (VSE-SVM) !

Secure Vault Base N/A !

(SVB)
Notes:

1. The features of different Secure Vault levels can be found in https:y//www.silabs.com/security|.
2. 1oT Endpoint Security Fundamentald.

Secure Vault Mid consists of two core security functions:

e Secure Boot: Process where the initial boot phase is executed from an immutable memory (such as ROM) and where code is
authenticated before being authorized for execution.

o Secure Debug access control: The ability to lock access to the debug ports for operational security, and to securely unlock
them when access is required by an authorized entity.

Secure Vault High offers additional security options:

o Secure Key Storage: Protects cryptographic keys by "wrapping" or encrypting the keys using a root key known only to the
HSE-SVH.

o Anti-Tamper protection: A configurable module to protect the device against tamper attacks.

» Device authentication: Functionality that uses a secure device identity certificate along with digital signatures to verify the
source or target of device communications.

A Secure Engine Manager and other tools allow users to configure and control their devices both in-house during testing
and manufacturing, and after the device is in the field.

User Assistance

Copyright © 2025 Silicon Laboratories. All rights reserved. 227/280

https://docs.silabs.com/iot-security/latest/iot-endpoint-security-fundamentals/
https://www.silabs.com/security
https://docs.silabs.com/iot-security/latest/iot-endpoint-security-fundamentals/

Series 2 Device Security Features

In support of these products Silicon Labs offers whitepapers, webinars, and documentation. The following table summarizes

the key security documents:

Document

Beries 2 Secure Debud

Beries 2 Secure Boot with RTSU

AN1222: Production Programming
of Series 2 Devices

Anti-Tamper Protection
Configuration and Use

Authenticating Silicon Labs
Devices using Device Certificated

Secure Key Storage (this
document)

Key Reference

&= SILICON LABS

Summary

How to lock and unlock Series 2 debug access, including
background information about the SE

Describes the secure boot process on Series 2 devices using SE

How to program, provision, and configure security information using
SE during device production

How to program, provision, and configure the anti-tamper module

How to authenticate a device using secure device certificates and
signatures, at any time during the life of the product

How to securely 'wrap' keys so they can be stored in non-volatile
storage.

Applicability

Secure Vault
Mid and High
Secure Vault
Mid and High
Secure Vault
Mid and High
Secure Vault
High

Secure Vault
High

Secure Vault
High

Public/Private keypairs along with other keys are used throughout Silicon Labs security implementations. Because

terminology can sometimes be confusing, the following table lists the key names, their applicability, and the documentation

where they are used.

Key Name
Public Sign key (Sign Key Public)

Public Command key (Command
Key Public)

OTA Decryption key (GBL
Decryption key) aka AES-128 Key

Attestation key aka Private Device
Key

SE Firmware

Customer Programmed Purpose

Yes Secure Boot binary authentication and/or OTA

upgrade payload authentication

Yes Secure Debug Unlock or Disable Tamper command

authentication

Yes Decrypting GBL payloads used for firmware upgrades

No Device authentication for secure identity

Silicon Labs strongly recommends installing the latest SE firmware on Series 2 devices to support the required security
features. Refer to AN1222| for the procedure to upgrade the SE firmware and |oT Endpoint Security Fundamentalg for the
latest SE Firmware shipped with Series 2 devices and modules.

Copyright © 2025 Silicon Laboratories. All rights reserved.

228/280

https://docs.silabs.com/iot-security/latest/series2-secure-debug/
https://docs.silabs.com/mcu-bootloader/latest/series2-secure-boot-with-rtsl/
https://docs.silabs.com/iot-security/latest/efr32-secure-vault-tamper/
https://docs.silabs.com/iot-security/latest/authenticating-devices-using-device-certificates/
https://www.silabs.com/documents/public/application-notes/an1222-efr32xg2x-production-programming.pdf
https://docs.silabs.com/iot-security/latest/iot-endpoint-security-fundamentals/

Introduction &= SILICON LABS

Introduction

Introduction

The HSE isolates cryptographic functions and data from the host Cortex-M33 core. It is used to accelerate cryptographic
operations as well as to provide a method to securely store keys. This application note will cover the Secure Key Storage
feature of the HSE-SVH devices.

The HSE contains one-time programmable memory (OTP) key storage slots for three specific keys:

1. The Public Sign Key, used for Secure Boot and Secure Upgrades
2. The Public Command Key, used for Secure Debug unlock and tamper disable
3. The Symmetric OTA Decryption Key, used for Over-The-Air updates

These keys are one-time programmable, and, after programming, are persistent for the lifetime of the device.

HSE-SVH devices also contain four volatile storage slots for any other user keys. These slots are not persistent through a
reset. In the case where a key needs persistent storage, the key must be stored outside of the HSE in non-volatile
storage. After a device reset, the key can be loaded into the HSE volatile key storage for usage by index, or used in-place
(passed to the HSE on every requested operation). Without any secure key storage mechanism, the user key stored in
non-volatile storage is opened to storage-extraction attacks (such as gaining access to and downloading device flash), as
well as application-level attacks (i.e., taking control of the user application or privileges in a manner that allows access to
the keys).

With Secure Key Storage, a user can only access a key from the HSE in a 'wrapped' format. In this format, the key is
encrypted by a device-unique root key, only available to the HSE. This allows a user to store a key confidentially in non-
volatile storage to provide key persistence. Using Secure Key Storage, the plaintext key is never stored in non-volatile
memory, preventing storage-extraction attacks from obtaining the key. After a device reset, the wrapped key can be
loaded into the HSE for usage without ever exposing the plaintext key to the application, which also prevents application-
level attacks from exposing the key.

SVM devices can only support Secure Key Storage through the use of . GSDK v4.2.2 is the first version to
support TrustZone software development on Series 2 devices.

Silicon Labs provides [Custom Part Manufacturing Service (CPMS)| to inject custom secret keys on the chips during
manufacturing. For more information about CPMS, see the [Custom Part Manufacturing Service User's Guidg].

Copyright © 2025 Silicon Laboratories. All rights reserved. 229/280

https://www.silabs.com/developers/custom-part-manufacturing-service
https://docs.silabs.com/iot-security/latest/iot-security-cpms/

HSE Secure Key Storage &= SILICON LABS

HSE Secure Key Storage

HSE Secure Key Storage

The following sections demonstrate three methods for key storage: ARM® TrustZone®, plaintext, and Secure Key Storage.

Note: In the following examples, AES key usage is demonstrated. However, any other key types supported by
the device can also be used for key storage.

Key Generation and Usage

In HSE-SVH devices, cryptographic functions are performed by the HSE. In order to perform these functions, the HSE must
have access to any user keys needed. Keys can be generated and used by the HSE in multiple ways:

1. External storage, in-place usage:
1. A user generates a plaintext key and stores it in device memory.
2. The user provides a key descriptor to the HSE that points to this key for a specific cryptographic operation.
3. The HSE performs the cryptographic operation using this key, but does not store it in any HSE volatile storage slot.
2. External storage with HSE import:
1. A user generates a plaintext key and stores it in device memory.
2. The user provides a key descriptor to the HSE that points to this key, as well as a slot number to store the key.
3. The HSE imports this key into a volatile key storage slot or can optionally save it in wrapped form in device memory.
4. The user requests that the HSE performs a cryptographic function by providing the index of the storage slot or a
pointer to the wrapped key in device memory.
3. Internal HSE key generation:
1. The user commands the HSE to generate a new key within one of the HSE's volatile key slots or can optionally save it
in wrapped form in device memory.
2. The user requests that the HSE performs a cryptographic function by providing the index of the storage slot or a
pointer to the wrapped key in device memory.

Notes:

e In each case, to provide persistent storage for the key, the key must be stored in non-volatile memory.
« Plain Kev Storagg and Becure Key Storagg provide details on key generation and usage with HSE-SVH device.

Plaintext Key Storage
Plaintext Key Import

The simplest manner to store a key is to save it in plaintext form. The steps to store and use a key stored in plaintext form
are as follows:

1. A user key is generated and imported into device memory. For persistent storage, this must be non-volatile storage, such as
device flash.

2. After a device reset, the HSE volatile key storage will be empty. The plaintext key is imported () into a slot for
usage. Alternatively, the key could be used in place () from non-volatile storage on a per-operation basis.

Copyright © 2025 Silicon Laboratories. All rights reserved. 230/280

HSE Secure Key Storage &= SILICON LABS

HSE-SVH Device

Plaintext Key

Plaintext Key

Slot 2
Plaintext User Slot 3
Key Slot 4

Encrypted
Data

Plaintext Key Usage
In order to use the key for a cryptographic operation, the following procedure is used.

1. The user passes data to be processed (in this specific example, AES encrypted data) to the HSE.

2. The user requests that a cryptographic operation be performed on this data using one of the keys stored in the HSE volatile
key storage slots (). Alternatively, the key can be passed to the HSE directly for a singular cryptographic operation
(lnethod 1).

3. The HSE performs the cryptographic operation.

4. The output of the cryptographic operation is passed back to the user for processing.

HSE-5WH Device

Plaintext Ke
Y 2 | Plaintext Key

Slot 2
Slot 3
Slot 4

Encrypted
Data

Decrypted
Data q’

This method exposes the keys to two major vulnerabilities:

1. Access to device storage gives access to the keys. In this case, an attack that gains access to the flash contents will

expose the user key.

2. Since the application has access to the keys, compromising the application or device privileges can compromise the keys.
Such an attack might not directly access device memory, but take control of the application in a way that causes the
application to expose the key to an attacker.

Copyright © 2025 Silicon Laboratories. All rights reserved. 231/280

HSE Secure Key Storage &= SILICON LABS

Secure Key Storage

With Secure Key Storage, the user key, using the HSE, can be accessed in an encrypted, or 'wrapped' form. Only the HSE
has access to the HSE root key used to decrypt, or 'unwrap', the wrapped key. This HSE root key is not stored on the
device during power-down, but rather reconstructed after each reset. Key wrapping allows a user to securely store a key in
non-volatile memory, limiting the number of keys that can be stored only by the amount of storage the user has available.

Note: The reconstructed root key after each reset is IDENTICAL and UNIQUE on each HSE-SVH device.

Wrap an External Key

To wrap an externally-generated key:

1. After power-on, the device's unique root key is reconstructed with output from the Physically Unclonable Function (PUF).

2. A user key is generated and imported into device memory. In this example, the key is imported into RAM for easy deletion,
and the added security that, if device power is removed, the key will be lost.

3. The user key is passed to the HSE, where it is encrypted with the HSE's root key.

4. The wrapped key is passed back to the user application for storage in non-volatile memory (in this case, device flash).

5. The plaintext key can now be deleted from the device. From this point forward, only the HSE will have access to the
plaintext key.

HSE-5VH Device

Wrapped Key

Plaintext Key

Plaintext User
Key

Generate an Internal Wrapped Key

Instead of importing an external key, the HSE can generate a new key directly into one of its volatile key storage slots. This
key can then be exported in wrapped form for secure persistent storage.

1. The user requests that the HSE generates a new key into one of its storage slots using the True Random Number Generator
(TRNG).

2. The key is encrypted with the HSE's root key.
3. The wrapped key is passed back to the user application for non-volatile storage (flash, in this case).

Copyright © 2025 Silicon Laboratories. All rights reserved. 232/280

HSE Secure Key Storage &= SILICON LABS

HSE-5VH Device

Wrapped Key 3 “1

Plaintext Key
Slot 2
Slot 3
Slot 4

Wrapped Key Import

In order to import a wrapped key into the HSE for usage:

1. The wrapped key is passed to the HSE.
2. The wrapped key is decrypted ("unwrapped") with the HSE's root key.
3. The plaintext key is stored in a volatile key storage slot.

HSE-5VH Device

Wrapped Ke: (|
ee Y @ | Plaintext L

Slot 2
Slot 3
Slot 4

Wrapped Key Usage

In order to use the key for a cryptographic operation, the same steps are followed as when using a plaintext key that has
been imported into the HSE:

1. The user passes data to be processed (in this specific example, AES encrypted data) to the HSE.

Copyright © 2025 Silicon Laboratories. All rights reserved. 233/280

HSE Secure Key Storage &= SILICON LABS

2. The user requests that a cryptographic operation be performed on this data using one of the keys stored in the HSE volatile
key storage slots. Alternatively, the wrapped key can be passed to the HSE directly for a singular cryptographic operation. In
this case, the key will be unwrapped before being used, but will not be stored for future operations.

3. The HSE performs the cryptographic operation.

4. The output of the cryptographic operation is passed back to the user for processing.

HSE-5VH Device

Wrapped Key Q

Plaintext Key
Slot 2
Slot 3
Slot 4

Encrypted
Data

Decrypted
Data

Secure Key Storage Advantages

Secure Key Storage confers the following benefits over other key storage methods:

1. Access to device memory does not expose user keys.

2. Compromising the user application does not expose user keys, since the user application itself does not have access to the
plaintext keys.

3. The number of user keys that can be securely stored is only limited by the amount of storage available to the user, including
external storage.

Operation Details

Root Key Generation

Secure Key Storage depends on the HSE to encrypt / decrypt (wrap / unwrap) user keys with its own symmetric root key.
The symmetric key used for this wrapping and unwrapping must be highly secure as it can expose all other key material in
the system. The HSE key Management system uses a Physically Unclonable Function (PUF) to generate a persistent
device-unique seed on power up to dynamically reconstruct this critical root key. The key is only visible to the AES
encryption engine, and it is not retained when the device loses power.

Access a Wrapped Key

By default, a key in an HSE storage slot can be exported to the application as a plaintext key. To prevent this, the user can
use the key descriptor to set a user key to . This option prevents any request to export the wrapped key in
plaintext from HSE, so the user application can only access the key encrypted by the HSE's root key. The HSE also tags
the key with information to identify the wrapped key. Since only the HSE can access the root key to unwrap the user key,
the plaintext key is non-accessible to the user application.

Note: Wrapped keys are slightly larger than the equivalent plaintext key, as some additional metadata is required
to identify the wrapped key to the HSE.

Copyright © 2025 Silicon Laboratories. All rights reserved. 234/280

HSE Secure Key Storage &= SILICON LABS

Wrapped Key Storage and Usage

Once a key has been wrapped, it can be safely stored anywhere - device flash, RAM, external storage, etc. The number of
keys that can be securely stored is only limited by the available storage space. A wrapped key can later be imported into a
HSE volatile storage slot for usage, or used in-place. Once the key is wrapped and stored, the plaintext key available to the
application can be deleted. From here, only the HSE will have the ability to unwrap and use the key.

With access to the wrapped key, the HSE can use this key in one of two ways:

1. A user can request that a cryptographic operation be performed using the key stored in memory. In this case, the HSE will
import the key, unwrap it, and then perform the cryptographic operation. The key will not be stored within the HSE.

2. A user can import the wrapped key into a HSE volatile storage slot. In this case, the key is unwrapped by the HSE and
stored in plaintext in a volatile slot. The user can then later request that a cryptographic function be performed by the HSE
by referencing the volatile slot index. This provides a performance increase over using wrapped keys in place, as the HSE
does not need to import and unwrap the key on each requested operation.

Password Protection

When defining a key descriptor for a new key, or when importing an existing key into HSE, the user can choose to require a
password to allow use of the key. The password field in the key descriptor structure is eight bytes in length. If unspecified,
the key will use the default password of all zeros.

After importing a key with a password, failing to provide the correct password when performing a cryptographic operation
will result in HSE returning an invalid credentials error, and no operation will be performed.

Copyright © 2025 Silicon Laboratories. All rights reserved. 235/280

TrustZone Secure Key Storage &= SILICON LABS

TrustZone Secure Key Storage

TrustZone Secure Key Storage

In Series 2 devices, key management can be handled by a feature called TrustZone. TrustZone divides the device memory
map into a Secure Processing Environment (SPE) and a Non-secure Processing Environment (NSPE). User code is
executed from the NSPE, which cannot access any part of the SPE. The SPE is used to store cryptographic keys securely
and to control other Secure operations.

The following sections describe using TrustZone on Series 2 devices for Secure Key Storage. Refer to Beries 2 TrustZong|
for details about TrustZone implementation on Series 2 devices.

TrustZone Root Key Generation (HSE and VSE)

SE Firmware Upgrade
or Device Erase

1. The TrustZone Root Key (TRK) is generated by the True Random Number Generator (TRNG) in Series 2 devices.
2. The PUF-derived key (HSE and xG27 VSE devices) or padded unique device serial number (xG22 VSE devices) is used to
wrap (AES-GCM) the TRK.
3. The wrapped TRK is stored in the SE Non-volatile memory (NVM), and the TRK in RAM is deleted.
o The wrapped TRK already existed if the shipped Series 2 device with SE firmware version supports this key.
o The wrapped TRK will be generated when upgrading from a SE firmware version that did not support this key to the one
that does.
o The wrapped TRK will be renewed after performing a Device Erase.

Note: The Physically Unclonable Function (PUF) is not retained when the device loses power, so the TRK
wrapped by the PUF-derived key is not vulnerable to a storage-extraction attack.

TrustZone Root Key Usage (HSE)

Copyright © 2025 Silicon Laboratories. All rights reserved. 236/280

https://docs.silabs.com/mcu-bootloader/latest/series2-trustzone/

TrustZone Secure Key Storage &= SILICON LABS

HSE Cryptographic Operations Host (Cortex-M33) Secure Application

1. The Secure application in the host uses a non-exportable built-in key to access the wrapped TRK in HSE NVM for
cryptographic operations.

2. The PUF-derived key is used to decrypt (AES-GCM) the wrapped TRK in HSE NVM.

3. The unwrapped TRK in the HSE is the master key of a Key Derivation Function (KDF).

4. The encryption key in SPE for Secure Key Storage is derived from the KDF CMAC.

Notes:

» All cryptographic operations are performed by the HSE (security co-processor).
o Only the HSE can access the unwrapped TRK for KDF, so this key will not expose the Secure application in the host.

TrustZone Root Key Usage (VSE)

VSE Root Mode Operation VSE User Mode - Secure Application

1. The wrapped TRK in VSE NVM is accessed by the VSE Root mode firmware.

2. The PUF-derived key (xG27) or padded unique device serial number (xG22) is used to decrypt (AES-GCM) the wrapped TRK
in VSE NVM.

3. Unwrapped TRK is transferred to the shared RAM when switching from VSE Root mode to User mode. The VSE user mode
Secure application stores this key to the Secure RAM in SPE and deletes this key in the shared RAM.

4. The unwrapped TRK in the Secure RAM is the master key of a Key Derivation Function (KDF).

5. The encryption key in SPE for Secure Key Storage is derived from the KDF CMAC.

Note: On VSE devices, all cryptographic operations are performed by the Cryptographic Accelerator
(CRYPTOACC) peripheral.

For more information about the HSE and VSE, refer to the section Secure Engine Subsystem in Beries 2 Secure Debud.

TrustZone Secure Key Storage (HSE and VSE)

The TRK allows a user to securely store a key in the Non-secure flash, limiting the number of keys that can be saved only
by the amount of Non-secure storage. The following figure describes using the TRK to encrypt a plaintext key and store it

Copyright © 2025 Silicon Laboratories. All rights reserved.

237/280

https://docs.silabs.com/iot-security/latest/series2-secure-debug/03-r-secureelement

TrustZone Secure Key Storage &= SILICON LABS

Series 2 TrustZone Secure Key Storage

Non-secure (NSPE)

Flash (NVM)

Encrypted
Key

PSAITS

Q RAM ’-"
F Plaintext Key PSA Crypto
Plaintext
User Key

"R

1. After power-on, the device's TRK (wrapped in HSE NVM and unwrapped in VSE Secure RAM) is available for the SPE.

2. A user key is generated and imported into the device's Non-secure memory. In this example, the key is imported into Non-
secure RAM for easy deletion, and the key is lost if device power is removed.

3. Call the PSA Crypto API (psa_import_key() or psa_generate_key()) through the Secure Gateway (SG) in Non-secure Callable
(NSC) memory to generate a key for crypto operations.

4. The plaintext key is passed in the PSA Crypto API to the SPE, where it is encrypted (AES-GCM) with the encryption key
derived (KDF CMAC) from the TRK.

5. The encrypted key is stored to the NVM region in the NSPE through the PSA Internal Trusted Storage (ITS) and
drivers.

6. The plaintext key can now be deleted from the Non-secure RAM.

7. 0nly the PSA Crypto APl in the SPE can retrieve the encrypted key from NVM in the NSPE and decrypt it for crypto
operations in the SPE.

in Non-secure NVM.

Note: Ignore steps 2 and 6 if the plaintext key is randomly generated by the PSA Crypto.

Copyright © 2025 Silicon Laboratories. All rights reserved. 238/280

https://docs.silabs.com/gecko-platform/latest/driver/api/group-nvm3

Secure Key Storage Implementations

Secure Key Storage Implementations

&= SILICON LABS

Secure Key Storage Implementations

Users can use Secure Engine Manager (SE Manager) or PSA Crypto in the following figure to access the secure key

storage on HSE-SVH devices. SE Manager APIs for secure key storage and crypto are usually not considered external APIs.

PSA Crypto API abstracts the entropy sources, crypto primitives, and even advanced security features like secure key
storage from the calling functions.

Silicon Labs recommends using PSA Crypto API for secure key storage and cryptography whenever possible. It makes the
solution more portable and hardware agnostic. In some cases, however, setting up tamper and initializing the secure boot
can only be implemented by the SE Manager APIs.

Component

EMLIB (em_se.c)
SE Manager
PSA Accelerator
Drivers

PSA Crypto API

PSA ITS Driver

St i
acks/Apps using —)
PSA Crypto APl for F-._ Wireless Stacks
cryptographic needs T &
Applications
API for non-PSA HSE e
features (tamper, |~
secure boot, etc)
PSA Crypto API
—>
In case of persistent PSAAccelerator
key usage drivers
A 4
3
OS |« 5| SEManager
=
EMLIB
PSAITS
driver x
NVM3 default
instance HSE

Functionality

Abstracts the mailbox interface: how to construct, send and receive low-level HSE mailbox
commands.

On top of EMLIB, it abstracts the HSE command set: translates function calls into mailbox
messages. The SE Manager also provides thread synchronization.

A translation layer to map the PSA Crypto HSE interface and crypto acceleration calls to SE
Manager calls.

Platform independent cryptographic hardware acceleration support by implementing standardized
APlIs.

The key management functionality in PSA Crypto needs access to non-volatile memory for
persistent storage of plaintext or wrapped keys. NVM3 gets wrapped by this translation layer,
mapping the PSA ITS (Internal Trusted Storage) interface to NVM3 calls.

For the SE's mailbox interface, see section Secure Engine Subsystem in Beries 2 Secure Debud.

For more information about NVM3, see https://docs.silabs.com/gecko-platform/latest/driver/api/group-nvm3.

Copyright © 2025 Silicon Laboratories. All rights reserved.

239/280

https://docs.silabs.com/iot-security/latest/series2-secure-debug/03-r-secureelement
https://docs.silabs.com/gecko-platform/latest/driver/api/group-nvm3

Secure Key Storage Implementations &= SILICON LABS

For more information about PSA Crypto, see AN1311: Integrating Crypto Functionality Using PSA Crypto Compared to Mbed
TLS.

SE Manager API

The following table lists the SE Manager APIs related to Secure Key Storage operations. The SE Manager APl document
can be found at https://docs.silabs.com/gecko-platform/latest/service/api/group-sl-se-managel.

SE Manager API Usage
sl_se_generate_key Generate a new key and store it either in a volatile HSE storage slot or as a wrapped key.
sl_se_import_key Import a plaintext key and store it either in a volatile HSE storage slot or as a wrapped key.

sl_se_export_key Export a volatile or wrapped key back to plaintext if allowed. It will fail for a key that has been
flagged as SL_SE_KEY_FLAG_NON_EXPORTABLE.

sl_se_transfer_key Transfer a volatile or wrapped key to another storage option (volatile HSE storage slot or a
wrapped key) if allowed.

sl_se_delete_key Delete a key from a volatile HSE storage slot.

PSA Crypto API

The following table lists the PSA Crypto APIs related to Secure Key Storage operations. The PSA Crypto APl document can
be found at https://docs.silabs.com/mbed-tls/latest).

F-or more information about PSA Crypto APIs on Secure Key Storage, see AN1311: Integrating Crypto Functionality Usingd
PSA Crypto Compared to Mbed TLS.

PSA Crypto API Usage
psa_generate_key Generate a new plaintext or wrapped key and store it either in volatile or non-volatile memory.

psa_import_key Import a plaintext key and save it in plaintext or wrapped form. It can store either in volatile or non-
volatile memory.

psa_export_key Export a key back to plaintext if allowed. The policy on the key must have the usage flag
PSA_KEY_USAGE_EXPORT set.

psa_copy_key Copy key material from one location to another, which may have a different lifetime (e.g., volatile to
non-volatile).

psa_destroy_key Destroy a key from both volatile memory and, if applicable, non-volatile storage.

SE Manager API Versus PSA Crypto API

The following table compares the SE Manager APIs with PSA Crypto APIs on Secure Key Storage.

Iltem SE Manager API PSA Crypto API

Availability Only on HSE devices Platform independent

API Silicon Labs proprietary Standardized by ARM®

Key Storage Volatile (RAM) memory only Volatile (RAM) or non-volatile (flash) memory
Wrapped Key Cache Can use a volatile HSE storage slot Not yet implemented

Password Protection Can define in a key descriptor Not yet defined in PSA Crypto

Custom ECC Curve Can define in a key descriptor Not yet defined in PSA Crypto

PSA Crypto Key Types with TrustZone Secure Key Storage

The following tables describes the storage differences between key storage with and without TrustZone on SVM and SVH
devices.

Copyright © 2025 Silicon Laboratories. All rights reserved. 240/280

https://www.silabs.com/documents/public/application-notes/an1311-mbedtls-psa-crypto-porting-guide.pdf
https://docs.silabs.com/gecko-platform/latest/service/api/group-sl-se-manager
https://docs.silabs.com/mbed-tls/latest/
https://www.silabs.com/documents/public/application-notes/an1311-mbedtls-psa-crypto-porting-guide.pdf

Secure Key Storage Implementations

Table: TrustZone Secure Key Storage (SKS) on SVM Devices

Key Type Storage without TrustZone SKS
Volatile Plaintext RAM

Persistent Plaintext NVM

Volatile Wrapped Not supported

Persistent Wrapped Not supported

Table: TrustZone Secure Key Storage (SKS) on SVH Devices

Key Type Storage without TrustZone SKS
Volatile Plaintext Plaintext key in RAM
Persistent Plaintext Plaintext key in NVM

Volatile Wrapped Wrapped key in RAM (1)
Persistent Wrapped Wrapped key in NVM (1)
Notes:

e The NVM or NS NVM is at the last part of the main flash.

o |t is possible to replace the wrapped key solution on the SVH device (1) with TrustZone Secure Key Storage on the SVM

device (2), but this is a less secure approach.

&= SILICON LABS

Storage with TrustZone SKS
Secure RAM (2)

Encrypted in NS NVM (2)
Not supported

Not supported

Storage with TrustZone SKS
Plaintext key in Secure RAM
Encrypted plaintext key in NS NVM
Wrapped key in Secure RAM
Encrypted wrapped key in NS NVM

Copyright © 2025 Silicon Laboratories. All rights reserved.

241/280

Examples &= SILICON LABS

Examples

Simplicity Studio 5 includes the BE Manager and PSA Crypto platform exampled for Secure Key Storage. Refer to the
corresponding readme file for details about each SE Manager and PSA Crypto platform example. This file also includes the
procedures to create the project and run the example.

Table: Platform Examples for Secure Key Storage

Category SE Manager Platform Example PSA Crypto Platform Example

Key Handling SE Manager Symmetric Key Handling PSA Crypto Symmetric Key
SE Manager Asymmetric Key Handling PSA Crypto Asymmetric Key

Symmetric Key Usage SE Manager Block Cipher PSA Crypto AEAD

PSA Crypto Cipher
PSA Crypto KDF
PSA Crypto MAC

Asymmetric Key Usage SE Manager Digital Signature (ECDSA and EdDSA) PSA Crypto DSA

SE Manager Key Agreement (ECDH) PSA Crypto ECDH
X.509 Certificate - PSA Crypto X.509
TrustZone Secure Key Storage = tz_psa_crypto_ecdh_ws

Copyright © 2025 Silicon Laboratories. All rights reserved. 242/280

https://docs.silabs.com/simplicity-studio-5-users-guide/latest/ss-5-users-guide-getting-started/start-a-project#examples

Protocol-Specific Information &= SILICON LABS

Protocol-Specific Information

Protocol-Specific Security References

The pages in this section offer protocol-specific information. For general content applicable to any protocol that supports
the feature, see the main development sectior].

Bluetooth

Bluetooth Low Energy Application Security Design Considerations in SDK v3.x and Higher (PDF)}: Provides details on
designing Bluetooth Low Energy applications with security and privacy in mind.

Certificate-Based Bluetooth Authentication and Pairing (PDF): Describes the theoretical background of certificate-based

authentication and pairing, and demonstrates the usage of the related sample applications that can be found in Silicon Labs'
Bluetooth SDK.

Bluetooth Mesh

Bluetooth Mesh Certificate-Based Provisioning (PDF) Describes how certificates are used to establish the authenticity of
devices wishing to join a mesh network.

OpenThread

Using Silicon Labs Secure Vault Features with OpenThread (PDF): Describes how Secure Vault features are leveraged in

OpenThread applications. Focuses on specific PSA features and emphasizes how these are integrated into the OpenThread
stack.

Zigbee

: Introduces some basic security concepts, including network layer security, trust centers, and application
support layer security features. It then discusses the types of standard security protocols available in EmberZNet PRO.
Coding requirements for implementing security are reviewed in summary. Finally, information on implementing Zigbee Smart
Energy security is provided.

Copyright © 2025 Silicon Laboratories. All rights reserved. 243/280

https://docs.silabs.com/iot-security/1.1.1/iot-security-developers-guide-overview
https://www.silabs.com/documents/public/application-notes/an1302-bluetooth-application-security-design-considerations.pdf
https://www.silabs.com/documents/public/application-notes/an1396-bluetooth-certificates.pdf
https://www.silabs.com/documents/public/application-notes/an1386-bluetooth-mesh-certificate-based-provisioning.pdf
https://www.silabs.com/documents/public/application-notes/an1329-using-secure-vault-openthread.pdf
https://docs.silabs.com/zigbee/latest/zigbee-security/

Overview &= SILICON LABS

Overview

Silicon Labs IoT Security Production Guide

Securing an loT device is a highly complicated and costly process. You must generate public and private keys for secure
boot and secure debug, sign code with a private key, store all the private keys in an HSM, place the public keys for secure
boot and secure debug in one-time-programmable (OTP) memory, flip OTP bits for secure boot and secure debug, and flash
the encrypted code and identity certificates within the hardware.

CPMS streamlines the programming part of this process for you. Even the most advanced security features, certificates,
and identities can be programmed in a secure, fast, and cost-efficient way at the Silicon Labs factories. This section
provides details on CPMS, in addition to Public Key Infrastructure (PKI) Recommendations.

o [Custom Part Manufacturing Service: Explains the process for ordering custom Series 2 parts through the CPMS, including
details on security settings and use cases for configuring a device for an untrusted manufacturing environment and importing
custom wrapped keys.

« PKIRecommendationg: Outlines the recommended establishment, management, and security of PKI for business partners
and customers of Silicon Labs.

Copyright © 2025 Silicon Laboratories. All rights reserved. 244/280

https://docs.silabs.com/iot-security/1.1.1/iot-security-cpms/
https://docs.silabs.com/iot-security/1.1.1/iot-security-pki-recommendations/

Custom Part Manufacturing Service &= SILICON LABS

Custom Part Manufacturing Service

Custom Part Manufacturing Service

This section explains the process for ordering custom Series 2 parts through the Custom Part Manufacturing Service
(CPMS). Instructions for customizing device identity security certificates and wrapping custom keys are also included. For
more information on Silicon Labs’ security offerings on Series 2 devices, refer to JoT_Endpoint Security Fundamentald.

What is CPMS?

Custom Part Manufacturing Service (CPMS) allows you to customize Silicon Labs hardware — wireless SoCs, modules,
MCUs — at the factory. The CPMS self-service web portal guides you through the customization process and its various
customizable features and settings. You can place orders for customized test and production units to our factories securely
via the CPMS portal.

Unlike traditional flash programming, CPMS is a secure provisioning service that enables you to customize your chips with
several highly advanced features such as secure boot, secure debug, encrypted OTA, public, private and secret keys,
secure identity certificates, and more.

The custom features, identities, and certificates are injected on the hardware securely, quickly, and cost-efficiently at the
world's safest place, the Silicon Labs factories.

Why Choose CPMS?

Securing an loT device is a highly complicated and costly process. You must:

o Generate public and private keys for secure boot and secure debug

e Sign code with a private key

o Store all the private keys in a Hardware Security Module (HSM)

* Place the public keys for secure boot and secure debug in one-time-programmable (OTP) memory
o Flip OTP bits for secure boot and secure debug

» Flash the encrypted code and identity certificates within the hardware

CPMS streamlines the programming part of this process for you. Even the most advanced security features, certificates,
and identities can be programmed in a secure, fast, and cost-efficient way at the Silicon Labs factories.

Copyright © 2025 Silicon Laboratories. All rights reserved. 245/280

https://docs.silabs.com/iot-security/1.1.1/iot-endpoint-security-fundamentals

SE Firmware Version &= SILICON LABS

SE Firmware Version

SE Firmware Version

Selecting the latest SE version available is recommended to stay up to date on bug fixes and security patches. It is also
recommended to continue updating the SE Firmware as new versions are released. Instructions for implementing field
upgrades of the SE Firmware can be found in JAN1222: Production Programming of Series 2 Deviceq.

Copyright © 2025 Silicon Laboratories. All rights reserved. 246/280

https://www.silabs.com/documents/public/application-notes/an1222-efr32xg2x-production-programming.pdf

Debug Lock Settings &= SILICON LABS

Debug Lock Settings

Debug Lock Settings

Four debug lock settings are available for selection in CPMS for this required field. These settings are standard debug lock,
secure debug lock, permanent lock, and unlocked. A public Command Key will be required if the Secure Debug setting is
selected. CPMS will provision the public command key to the device, if required, and enable any debug settings specified
here. More information on each debug lock setting can be found in Series 2 Secure Debud.

Copyright © 2025 Silicon Laboratories. All rights reserved. 247/280

https://docs.silabs.com/iot-security/1.1.1/series2-secure-debug

Secure Boot with RTSL Settings

Secure Boot with RTSL Settings

&= SILICON LABS

Secure Boot with RTSL Settings

Secure Boot with RTSL is a security setting available to Silicon Labs’ Series 2 devices that is used to validate the integrity
and authenticity of each piece of firmware before the firmware is allowed to run on these devices. Setting up a full root of
trust includes enabling secure boot settings in the device’s OTP as well as in the user-generated bootloader. The setting
stored in device OTP will enforce the first stage bootloader in the Secure Engine to perform a signature check on the
second stage bootloader, which is generated and signed by a user. The next link in the chain is established by enabling
secure boot in the second stage bootloader, which will enforce a check on the application image signature.

In CPMS, you can configure the OTP settings for secure boot quickly and easily. These OTP setting are irreversible, so it is

recommended to read about each setting in detail before making selections. The OTP settings for Secure Boot with RTSL

are the enable bit, Certificates required bit, Anti-Rollback enable bit, and flash page locking settings. Each of these settings
is covered in detail in Series 2 Secure Boot with RTSL|. Once these settings are selected, CPMS will prompt you to provide

a secure boot key, also known as a public sign key. This key will be used to sign the firmware to be verified during the

secure boot process. For more information on the public sign key, see [Secure Boot Key).

Q Configure Secure Boot and Tamper Response Settings TASKS

Please correct the following tasks.

These configurations can only be made at one time and are irreversible once they are made. Read more about secure boot with

RTSL and production programming O Please flash at least a bootloader

(because Debug Lock is not
Unlocked)

Enable Secure Boot with RTSL O Provide a public command key
If set, authenticates the first code image in flash memory, which is typically the second stage bootloader, before (because Secure Debug Lock is
allowing that code to run. Enabling secure boot will ensure that the device will only boot code that has been properly selected)
signed by you.

O Provide a public sign key (because
secure boot is enabled)

[:] Require Verify Certificate before secure boot
The Verify intermediate certificate before secure boot option provisions the Public Sign Key to enable certificate-
based Secure Boot. Enabling this reduces the need to access the OTP signing key allowing more stringent access
restrictions. It also provides the ability to roll the intermediate key in the event it is compromised.

Complete all tasks before submitting order.

[] Enable Anti Rollback
We recommend enabling anti-rollback. If set, the first stage bootloader will compare the version of the first image in
flash memory, which is typically the second stage bootloader, to the version of the image that has been staged for
upgrade. If the staged image has a version that is greater than the current image, the upgrade will succeed.
Otherwise the upgrade operation will be ignored.

[} Enable Flash Page Locking
This feature write/erase locks flash pages starting at 0 that have been validated by the first stage bootloader
signature check. This will prevent flash modification of the locked pages by any means other than through the
hardware secure engine (write/erase attempts from the CPU or from the debug port will be ignored).

"Full" - locks from page 0 up to and including the page containing the signature. This may lock flash bytes that are

As mentioned previously, to establish the full root of trust for secure boot, secure boot must also be enabled in the
bootloader that is uploaded as part of the firmware programming to CPMS. If the OTP setting for secure boot with RTSL
was enabled, and the secure boot setting was not enabled in the bootloader, no signature check would be performed on
the application image; only a signature check would be performed on the bootloader image. It is recommended to establish
a full root of trust to narrow the attack surface of the device. Refer to [Generating the Bootloadel for instructions on
creating a bootloader project with secure boot enabled.

Enabling Secure Boot with RTSL on a VSE Device

A few extra steps are required to establish a full root of trust when enabling secure boot on a Virtual SE (VSE) device in
CPMS. As outlined previously, the secure boot settings in OTP will need to be enabled and a public signing key should be
uploaded to CPMS as the first steps to enable secure boot. This public signing key will be provisioned in the device’s OTP
memory by CPMS and will be used by the device to verify the signature on the second stage bootloader. For the second
stage bootloader to verify the signature on the application on a VSE part, the bootloader will use the public signing key

Copyright © 2025 Silicon Laboratories. All rights reserved.

248/280

https://docs.silabs.com/mcu-bootloader/latest/series2-secure-boot-with-rtsl/index.html

Secure Boot with RTSL Settings &= SILICON LABS

stored in the top page of main flash. Refer to Series 2 Secure Boot with RTSI] for more information on enabling secure
boot with RTSL on a VSE device.

Follow the steps outlined in this section to place the public signing key in flash using a token file.

1. When creating a public and private signing key pair for secure boot, use the --tokenfile flag to write the public signing key to
the token file. Refer to Bection 6.18.3 of UG162 for more information on this command.

commander util genkey --type ecc-p256 --privkey
sign_privkey.pem --pubkey sign_pubkey.pem --tokenfile
sign_pubkey.txt

2. Flash the token file to the device by running the flash command. Refer to Section 6.1.6 of UG162 for more information on
this command.

commander flash --tokenfile sign_pubkey.txt

3. Once the token file is flashed to the device, the signed bootloader and application images should be flashed to the device
using the same command listed in step 2. To generate and sign a bootloader and application image, follow the steps listed in
Section 3.1.2 and 3.1.3.

4. Dump the flash contents (which contains the token file, signed bootloader, and signed application firmware) to a hex file
using the readmem command. Refer to section 6.3.2 of UG162 for more information.

commander readmem --region @mainflash --outfile all.hex

5. Upload the file all.hex to CPMS using the App and Bootloader selection in the Flash Programming section. As mentioned,
this hex image should contain the token file, signed bootloader, and signed application. This will establish a full root of trust
on the VSE device, ensuring that only authentic firmware can run on the device.

o Flash Programming

Flash Programming invelves the addition of customer specific code to a standard product. Customer code in INTEL HEX format is required.

Firmware

Fill Character

Ox FF @

We will fill unused or unspecified addresses of the flash with the byte you provide here.

Upload new Intel HEX files
Select Firmware Type

App only Bootloader only @ App and Bootloader
Standard File Input

@ CLICK HERE OR DRAG & DROP TO UPLOAD A FILE

Copyright © 2025 Silicon Laboratories. All rights reserved. 249/280

https://docs.silabs.com/mcu-bootloader/latest/series2-secure-boot-with-rtsl/index.html
https://www.silabs.com/documents/public/user-guides/ug162-simplicity-commander-reference-guide.pdf
https://www.silabs.com/documents/public/user-guides/ug162-simplicity-commander-reference-guide.pdf

&= SILICON LABS

Tamper Response

Tamper Response

Tamper Response

In CPMS, the default tamper configuration will be automatically displayed for HSE SVH (Secure Vault High) parts,
customization is available for each of these configurations for Secure Vault High parts only. The anti-tamper protection
feature is only available on SVH devices. Each tamper configuration can be set to one of five different tamper response
levels, ranging from ignore the tamper event to erase OTP of the affected device. CPMS will require a public command key
to be uploaded when tamper is configured on a HSE-SVH device. For more information on anti-tamper protection, refer to

IAnti-Tamper Protection Configuration and Use].

Copyright © 2025 Silicon Laboratories. All rights reserved. 250/280

https://docs.silabs.com/iot-security/1.1.1/efr32-secure-vault-tamper

Standard Security Keys &= SILICON LABS

Standard Security Keys

Standard Security Keys

The following subsections will address the different security keys that are accepted by CPMS. Note that only public keys
should be uploaded to CPMS. Silicon Labs strongly recommends that each key be generated using robust methods, that
private keys are not shared with unauthorized parties, and that keys be stored in a well-managed and protected hardware
security module (HSM).

Secure Boot Key

The secure boot key, also known as the public signing key, is used for authenticating the signature on a bootloader or

application image. CPMS will accept this key in .pem or .der format. This key should be generated as a public/private key
pair, and only the public key should be provided to CPMS. For more information on this key pair, refer to Series 2 Securg]
Boot with RTSL.

Command Key

The command key is used for disabling tamper responses and performing a secure debug unlock. CPMS will accept this key
in .pem or .der format. This key should be generated as a public/private key pair and only the public key should be provided
ko CPMS. For more information on this key pair and how to use it, refer to Beries 2 Secure Debud and Anti-Tampe
Protection Configuration and Use.

OTA Decryption Key

The OTA Decryption Key, also known as the GBL Decryption Key, is used for decrypting GBL payloads used for firmware
upgrades. This key will only be required if you enable “require encrypted firmware upgrade files” in the bootloader. Refer to
Eilicon Labs Gecko Bootloader User's Guide] for more information. An example of creating a bootloader with encrypted
upgrades required is shown in [Generating the Bootloadel.

On an HSE device, a 16-byte decryption key can be provided to CPMS to be provisioned to the device. On a VSE part, this
key can only be provided to CPMS in a token file, like the public sign key used for secure boot on a VSE part.

OTA Decryption Key for VSE Devices

A few additional steps are required to setup a VSE device to use an OTA Decryption Key in CPMS. Refer to Section 7.2 of
AN1222 for more information.

1. Generate the key using the util genkey command.

commander util genkey --type aes-ccm --outfile aes_key.txt

2. 0nce the key is generated, it needs to be written to a place accessible to the bootloader. This key can be placed in either
the app properties struct of the GBL, or in the top page of main flash. Only one of these methods need to be used.
To write the OTA Decryption key into the Application properties struct of the bootloader project, use the following
command.

commander convert bootloader.hex --aeskey aes_key.txt --outfile bootloader-keys.hex

Note when using this method:
o The --aeskey option for the convert command requires Simplicity Commander v112.3 or above.
o The GBL Decryption Key can only be added to the GBL with Application Properties Struct v1.2 or higher (GSDK v4.1.0 or
higher).
o This procedure must be implemented before signing the GBL image for Secure Boot.
To write the OTA Decryption Key to the top page of flash on a VSE device, use the following command.

Copyright © 2025 Silicon Laboratories. All rights reserved. 251/280

https://docs.silabs.com/mcu-bootloader/latest/series2-secure-boot-with-rtsl/index.html
https://docs.silabs.com/iot-security/1.1.1/series2-secure-debug
https://docs.silabs.com/iot-security/1.1.1/efr32-secure-vault-tamper
https://docs.silabs.com/mcu-bootloader/latest/bootloader-user-guide-gsdk-4/
https://www.silabs.com/documents/public/application-notes/an1222-efr32xg2x-production-programming.pdf

Standard Security Keys &= SILICON LABS

commander flash --tokenfile aes_key.txt

Copyright © 2025 Silicon Laboratories. All rights reserved. 252/280

Additional Custom Keys

Additional Custom Keys

&= SILICON LABS

Additional Custom Keys

Key Wrapping

Secure Vault High devices support Key Wrapping, which is a feature where keys are encrypted using a Physically
Unclonable Function (PUF) key. A PUF key is secret, random, and unique to each individual device. PUF keys do not live in
flash and are not vulnerable to flash extraction attacks.

CPMS allows customers to provide their own keys, which will be wrapped by the secure element and stored on the device.

This means that the firmware image does not need to contain the key at any point in production.

To use this feature, you need to provide CPMS with four fields:

1.

Additional Custom Keys

UserKey1 T[J
Key Auth

0x
Auth data for key (must be 8 bytes)
Key Value
0x
Value of the key to be wrapped (max 200 bytes)
Key Metadata
ox
4 bytes of metadata
Key Address

ox

Address in user flash to which the key should be programmed

® ADD CUSTOM KEY

Copyright © 2025 Silicon Laboratories. All rights reserved.

Key Auth: An 8-byte password that must be provided by software whenever the key is used. This password can be disabled
by setting the Key Auth to 0x0000000000000000.

. Key Value: The value of the key to be wrapped (max 200 bytes).
. Key Metadata: 4 bytes of key metadata, including information such as the type of key, allowed uses, length, etc. More

information on how to generate this value for an existing key can be found in [mporting Custom Wrapped Keyyd.
. Key Address: The address in user flash to which the key should be programmed.

253/280

Custom Certificates &= SILICON LABS

Custom Certificates

Custom Certificates

CPMS allows you to customize the device identity certificate chain. The certificates use the X.509 format and must
Conform to REC-328d. For an example of a Silicon Labs device certificate, refer to Authenticating Silicon Labs Devices
Lsing Device Certificates. Currently, CPMS supports customization of four fields in the device certificate:

1. Common name: User-defined, 30-character name that will terminate with the 64-bit EUl of the device (example is
"EULXXXXXXXXXXXXXXXX" and will terminate with " S:SEQ ID:MCU" or " S:FLO ID:MCU" depending on if the device is a Secure
Vault High device or not.)

2. Organization: User-defined, 64-character company name

3. Country: Must be a legitimate country code letter pair (e.g., US)

4. Organizational Unit: User-defined field of up to 64 characters

If there are other certificate customizations you would like to implement, specify them in the Special Instructions section in
the CPMS.

° Custom Identity

Custom Identity allows customers to extend the default Silicon Labs certificate identity cert chain to provide your own. This is an
advanced feature which requires additional charges. Please contact a Silicon Labs sales representative for details.

Read more about secure identity

Scope of Customization

© Device certificate only The certificate chain

Special Instructions

Copyright © 2025 Silicon Laboratories. All rights reserved. 254/280

https://datatracker.ietf.org/doc/html/rfc3280
https://docs.silabs.com/iot-security/1.1.1/authenticating-devices-using-device-certificates/03-r-secureidentity

Configure Device for Untrusted Environment Example

&= SILICON LABS

Configure Device for Untrusted Environment Example

Configuring a Device for an Untrusted
Manufacturing Environment Example

This example will show how to order a custom part that is secure from the moment it leaves Silicon Labs. It has secure
boot, secure debug lock, and encrypted upgrades enabled so that an untrusted contract manufacturer cannot access the

debug port or upload un- signed and/or unencrypted applications.

This example uses an EFR32MG21B, which is a Secure Vault High part. Secure Vault Base or Mid parts do not have the
same customization options, so some sections of this example will not be applicable to such devices.

CPMS

This section provides detailed information on starting a new custom part in CPMS and configuring the debug lock and

Secure Boot.

1.In a browser, open CPMS at https://console.silabs.com/cpmg.

&<="7 SILICON LABS

S cénsole

Login with a Silabs Community account

Sign up for a Community account -

' — Your window into the Silicon Labs product ecosystem. Gain access to Silicon Labs

development tooling to simplify your development journey.

Unlock a Leaner Supply Chain with CPMS

With Silicon Labs' Custom Part Manufacturing Service (CPMS), you can customize your parts direct from the factory. Order
those parts through your own Orderable Part Number (OPN) from third-party vendors as you need them. Choose the features

below that best represent your product customization needs.
Custom Programming

Secure by Default

Custom Marking

Get Started with CPMS

&= SILICON LABS

Stay Connected With Us

Plug into the latest on Silicon Labs products, including product releases and
resources, documentation updates, PCN notifications, upcoming evants, and
more.

Enter Your Email 4

Copyright & 2025 Silicon Laboratories. All rights reservad.

2. Log in using your account credentials.

About Us
Carsers
Community
Contact Us

Caokies

Carporale Responsibility
Investor Relations

Press Room

Privacy and Terms

Site Feedback

Copyright © 2025 Silicon Laboratories. All rights reserved. 255/280

https://console.silabs.com/cpms
http://www.silabs.com/

Configure Device for Untrusted Environment Example &= SILICON LABS

Custom Part Manufacturing Service (CPMS)

Start your customization by selecting a part and giving that part a name to be used in CPMS.

Give your part a name.

Find a Base Part to customize.

Create New Customization

a. Name: Enter Example-1. This name will be used within CPMS to help differentiate between custom devices.

Custom Part Manufacturing Service (CPMS)

Start your customization by selecting a part and giving that part a name to be used in CPMS.

Give your part a name.
Example-1 0

Find a Base Part to customize.

‘ EFR32MG21B (V)
EFR32MG21B010F10241M32-B ZigBee and Thread 1024kB Wireless
EFR32MG21B010F1024IM32-D ZigBee and Thread 1024kB Wireless
EFR32MG21B010F512IM32-B ZigBee and Thread 512kB Wireless
EFR32ZMG21B010F512IM32-D ZigBee and Thread 512kB Wireless
EFR32MG21B010F768IM32-B ZigBee and Thread 768kB Wireless
EFRRPMG21BNINE7ARIMAZ-N 7inBea and Thraad 7RRKR Wiralass

b. Part: Select any Secure Vault Mid or High part. In this example, select the part EFR32MG21B010F1024IM32-B. As you
begin to type your part, the list will filter the part list based on your entry.

Copyright © 2025 Silicon Laboratories. All rights reserved. 256/280

Configure Device for Untrusted Environment Example &= SILICON LABS

Custom Part Manufacturing Service (CPMS)

Start your customization by selecting a part and giving that part a name to be used in CPMS.

Give your part a name.
Example-1 0

Find a Base Part to customize.

EFR32MG21B010F512IM32-D (]

ate New Customizati

c. Once you have successfully entered a name for your order and selected the part to be customized, the Create New
Customization button is enabled. You can begin to customize this part for your sample order.

4. Click Create New Customization. This takes you to the part customization page. Change the following configurations
(configurations not listed can be left as the default):
a. Debug Lock: Select Secure.

Security Options
Y¥R TASKS

Please correct the following tasks.
SE Version v1.2.16 (latest) #*

‘We recommend using the latest SE version to ensure all patches are in place. We further recommend that you implement the ability
to apply SE updates in your manufacturing line and over the air in the event new vulnerabilities are patched.

O Please flash at least a bootloader
(because Debug Lock is not

Unlocked)
Debug Lock O Provide a public command key
(because Secure Debug Lock is
Standard @ Secure Permanent Unlocked selected)

The debug access port connected to the Series 2 device's Cortex-M33 processor can be clesed by issuing commands to the o
Secure Element, either from a debugger over DCI or through the mailbox interface. Three properties govern the behavior of the Complete all tasks before submitting order.
debug lock. Locking the part reduces the general attack surface and prevents information leakage post Silicon Labs
manufacturing.

Read more about secure debug

b. Configure Secure Boot, Flash Lock, and Tamper Settings: On. Turn off Require Verify Certificate before secure boot,
since this example will not use certificates.

Copyright © 2025 Silicon Laboratories. All rights reserved. 257/280

Configure Device for Untrusted Environment Example &= SILICON LABS

9 Configure Secure Boot and Tamper Response Settings TASKS

Please correct the following tasks.

These configurations can only be made at one time and are irreversible once they are made. Read more about secure boot with

RTSL and production programming O Please flash at least a bootloader

(because Debug Lock is not

Unlocked)
Enable Secure Boot with RTSL O Provide a public command key
If set, authenticates the first code image in flash memory, which is typically the second stage bootloader, before (because Secure Debug Lock is

allowing that code to run. Enabling secure boot will ensure that the device will only boot code that has been properly selected)
signed by you.

O Provide a public sign key (because
secure boot is enabled)

[] Require Verify Certificate before secure boot
The Verify intermediate certificate before secure boot option provisions the Public Sign Key to enable certificate-
based Secure Boot. Enabling this reduces the need to access the OTP signing key allowing more stringent access
restrictions. It also provides the ability to roll the intermediate key in the event it is compromised.

Complete all tasks before submitting order.

(] Enable Anti Rollback
We recommend enabling anti-rollback. If set, the first stage bootloader will compare the version of the first image in
flash memory, which is typically the second stage bootloader, to the version of the image that has been staged for
upgrade. If the staged image has a version that is greater than the current image, the upgrade will succeed.
Otherwise the upgrade operation will be ignored.

[] Enable Flash Page Locking
This feature write/erase locks flash pages starting at 0 that have been validated by the first stage bootloader
signature check. This will prevent flash modification of the locked pages by any means other than through the
hardware secure engine (write/erase attempts from the CPU or from the debug port will be ignored).

"Full" - locks from page 0 up to and including the page containing the signature. This may lock flash bytes that are

c. Before you enter the keys and images, you need to generate them. This is covered in the following sections.

Generating the Application

Follow the instructions below to generate and configure an application.

1. Open Simplicity Studio.

2.In the Launcher view, click EXAMPLE PROJECTS & DEMOS.

3. Search for blink, and select the Platform - Blink Bare-metal project.

4. Click Finish.

5. There should now be a blink_baremetal project open in the Simplicity IDE view. Open blink_baremetal.slcp .

blink_baremetal OVERVIEW SOFTWARE COMPONENTS CONFIGURATION TOOLS

Target and SDK Selection Project Details Project Generators

Simplicity IDE Project

Wireless Gecko blink_baremetal /
Hz This example project shows how to blink an LED in a bare-metal A simplicity IDE project supporting builds for MCUs
X configuration. using C/C++ and assembly files.
Category
< > Example|Platform
Preferred SDK
Gecko SDK Suite: Amazon, Bluetooth 3.2.2, Bluetooth Mesh 2.1 2,
EmberZNet 6.10.2.0, Flex 3.2.2.0, HomeKit 1.0.2.0, MCU 6.1.2.0,
Micrium OS Kernel, OpenThread 1.2.2.0 (GitHub-485129e74),
Platform 3.2.1.0, Wi-SUN 1.1.1.0, Z-Wave SDK 7.16.2.0
EFR32MG21B010F1024IM32 Import Mode

Link sdk and copy project sources -
EFR32xG21B 2.4 GHz 10 dBm Radio Board (BRD4181C)

Wireless Starter Kit Mainboard (BRD4001A Rev A01)

6. Click on the SOFTWARE COMPONENTS tab.
7.In the Search bar, search for boot/oader.
8. Click Platform > Bootloader > Bootloader Application Interface, and click Install.

Copyright © 2025 Silicon Laboratories. All rights reserved. 258/280

Configure Device for Untrusted Environment Example &= SILICON LABS

blink_baremetal OVERVIEW SOFTWARE COMPONENTS CONFIGURATION TOOLS
h keyword: t
Y Filter: Configurable Components [] Installed Components [] Components Installed by You [_] Seézo\l]za;;:g—mne“ sreme (]
v Connect I Bootloader Application Interface Install
v OTA
QTA Broadcast Bootloader Client e
Description
OTA Broadcast Bootloader Server o P
This component must be added to & project in order to use the Gecko Bootloader. When this component is
OTA Unicast Bootloader Client O part of a project a part of flash memory will be reserved for Bootloader usage in the application linker
file. This component alsc prowides a bootloader interface for interacting with the Gecko Bootloader.
OTA Unicast Bootloader Server e
Quality
v Test PRODUCTION
OTA Bootloader Test Common
OTA Broadcast Bootloader Test Open in Browser
OTA Unicast Bootloader Test App"cation |nterface
OTA Bootloader Interface
v Platform Description
v Bootloader o
Application interface to the bootloader.
Bootloader Application Interface . : S 3 " : w 5
The application interface consists of functions that can be included in the customer application that and will communicate
with the bootloader through the MainBootloaderTable t . This table contains function pointers to the bootloader. The
v Services 10th word of the bootloader contains a pointer to this struct, allowing any application to easily locate it. To access the

9. The application image will need an application_properties.c file as shown below to enable secure boot. The .cert pointeris
set to NULL to disable the application certificate option. The signatureType and signatureLocation fields are filled by
Simplicity Commander when signing the application image using the convert command.

ok blink_baremetal.slcp % bootloader-storage-internal-single.isc IIE application_properties.c
1

#include <stddef.h>
#include "application_properties.h"

[/ Application version number (uint32_t) for anti-rogllback
#define APP_PROPERTIES_VERSION (@UL)

// Application properties for secure boot

const ApplicationProperties t s1 app properties = {

.magic = APPLICATION_ PROPERTIES MAGIC,

D00~ O N

18 .structVersion = APPLICATION_PROPERTIES_VWERSION,
11 .signatureType = APPLICATION SIGNATURE_MONE,

12 .signaturelLocation = @,

13 .app = {

14 _type = APPLICATION_TYPE_MCU,

15 .wersion = APP_PROPERTIES_VERSION,

16 .capabilities = QUL,

17 _productId = { @U },

18 },

19 .cert = NULL,

20 .longTokenSectionAddress = NULL,
21 .55

22

10. Now that the configuration is set, "Build" the project. This will generate binaries for the project.

BrlG -~ R~~~ 0Oy~ MiS|8|E
lLfJPIQJQCt Explarer 23| Build 'GNU ARM v10.2.1 - Default’ for project ‘blink_baremetal’ i

Generating the Bootloader

Copyright © 2025 Silicon Laboratories. All rights reserved. 259/280

Configure Device for Untrusted Environment Example &= SILICON LABS

Follow the steps below to generate and configure a bootloader.

1. Now go back to the Launcher and search for boot/oader.

2. Locate and Create the Internal Storage Bootloader (single image on TMB device) example.
3. Open bootloader-storage-internal-single.slcp.

4. Click the Software Components tab, search for Bootloader Core and then click Configure.
5. Click Require encrypted firmware upgrade files and Enable Secure Boot.

Bootloader Core Pin Tool | | <[> View Source X

Bootloader Core Configuration

Require signed firmware upgrade files Require encrypted firmware upgrade Use symmetric key stored in Secure Use symmietric key stored in
- files Element storage Application Properties Struct
] L m
Allow use of public key from Prevent bootloader write/erase Upgrade SE without using the staging Base address of bootloader upgrade
manufacturing token storage » area image
B » ~ | oxs000

Bootloader Version Main Customer

~

a

v

Enable secure boot @

Prevent write/erase of verified application

6. Build the project (if the build button is greyed out, you may need to click on the project in the Project Explorer).

Generating the Sign Key, the Command Key, and the OTA Decryption Key

Enabling secure boot and secure debug requires importing public keys. Ideally, these keys would be generated and
managed by an HSM. This example will use Commander.

1. Create a sign key pair for secure boot.

commander util genkey --type ecc-p256 --privkey cpms-sign-priv.pem -- pubkey cpms-sign-pub.pem

Generating ECC P256 key pair...

Writing private key file in PEM format to cpms-sign-priv.pem
Writing public key file in PEM format to cpms-sign-pub.pem
DONE

2. Create a command key pair for secure debug:

commander util genkey --type ecc-p256 --privkey cpms-cmd-priv.pem -- pubkey cpms-cmd-pub.pem

Copyright © 2025 Silicon Laboratories. All rights reserved. 260/280

Configure Device for Untrusted Environment Example ‘5'“’ SILICON LABS

Generating ECC P256 key pair...

Writing private key file in PEM format to cpms-cmd-priv.pem
Writing public key file in PEM format to cpms-cmd-pub.pem
DONE

3. Create an OTA decryption/encryption key for GBL upgrades:

commander util genkey --type aes-ccm --outfile cpms-gbl.txt

Using Windows’ Cryptographic random number generator
DONE

Signing and Merging the Application and Bootloader Images

We now need to prepare our application and bootloader for CPMS. First, we need to sign the images. Then, since CPMS
requires the firmware image to be in one file, we need to merge the signed hex files. We will do this using the Simplicity
Commander command line interface.

1. Open a terminal and navigate to your Simplicity Studio workspace.
2. Sign the bootloader:

commander convert internal-storage-bootloader-single .hex --secureboot --keyfile cpms-sign-priv.pem --outfile cpms-btl-signed.hex

Parsing file internal-storage-bootloader-single .hex...

Found Application Properties at 0x000024a8

Writing Application Properties signature pointer to point to 0x000025e0

Setting signature type in Application Properties: 0x00000001

Image SHA256: ca36debc860cdb720aabe9fdd37dc730172fe34571aedc452b52f9ef5a824264
R = 3E8E58AF660F769FE25E9262E6899188B61716723352367FOEC96DF6C7133B20

S = 5C36A7B3124F320C9B9B56B80D2F1AT1D8B3593BC0O08E11B50015E3BEE4638537

Writing to cpms-btl-signed.hex

DONE

This will create the cpms-btl-signed.hex signed image file in your workspace.
3. Sign the application:

commander convert blink_baremetal.hex --secureboot --keyfile cpms-sign-priv.pem --outfile cpms-app-signed.hex

Parsing file blink_baremetal.hex...

Found Application Properties at 0x000061bc

Writing Application Properties signature pointer to point to 0x000064d8

Setting signature type in Application Properties: 0x00000001

Image SHA256: 030b8cdb43e7666b1a015ada8a658a96169be086177548b692a385edb5840295
R = 0C64B8ECOFEFDO81EFEBFO8E0744A13CA606BD654C1A6B108AF2F5CO6AECD5AT

S = CA9DE6279F50C86CD317365FD98380D097D907 64A9EDEFE06623FE9126763844

Writing to cpms-app-signed.hex

DONE

This will create the cpms-app-signed.hex signed image file in your workspace.
4. Merge the signed hex files:

commander convert cpms-app-signed.hex cpms-btl-signed.hex -o cpms-merged.hex

Parsing file cpms-app-signed.hex...
Parsing file cpms-btl-sgined.hex...
Writing to cpms-merged.hex...
DONE

This will create cpms-merged.hex in your workspace.

Copyright © 2025 Silicon Laboratories. All rights reserved. 261/280

Configure Device for Untrusted Environment Example &= SILICON LABS

Programming the Keys and Flash Memory

This section describes how to upload the public sign key and the merged signed hex file.

1. In CPMS, return to the Standard Security Keys section.
2. Click the blue upload button in the Public Sign Key field. In the file explorer pop-up, find and select the cpms-sign-pub.pem

file.
Standard Security Keys TASKS
Please correct the following tasks.
Public Sign Key (O Please flash at least a bootloader
r 1 (because Debug Lock is not
0x 049FCBO06DD4F282715C048C82FES3A0BOCOEN438216E67AG3D4495E399278797 P+ Y ‘ Unlocked)
This key is used for binary authentication and/or OTA upgrade payload authentication. If you enabled secure boot, you must provide the public part of the key rovide a publi[: command key
you used to sign your bootloader or application image here. [eg. 0%04123456789.. ABCEDF, total 85 bytes. You can also upload a pem, .der, or .pub file} (because Secure Debug Lock is

selected)
Public Command Key
ox a

This key is used for Secure Debug Unlock or Disable Tamper command authentication. If you chose secure debug lock, you must provide the public part of your
command key here. (eg. 0x04123456789...ABCEDF total 65 bytes. You can also upload a .pem, .der, or .pub file)

Complete all tasks before submitting order.

3. Click the blue upload button in the Public Command Key field. In the file explorer pop-up, find and select the cpms-cmd-

pub.pem file.
Standard Security Keys TASKS
Please correct the following tasks.
Public Sign Key (O Please flash at least a bootloader
(because Debug Lock is not
0x 049FCBO06DD4F282715C049CE2FEB3AOBOCOEO438216E67A63D4495E399278797 O ‘ Unlocked)

This key is used for binary authentication andfor OTA upgrade payload authentication. If you enabled secure boot, you must provide the public part of the key
you used to sign your bootloader or application image here. (eg. 0%04123456789.. ABCEDF, total 65 bytes. You can also upload a .pem, .der, or .pub file)

Complete all tasks before submitting order.

Public Command Key

0x 8CFE1457BA79ES5E92EBESO5E57832321C627E07BDDD7602C7D493000FBBI43C0 “ ‘

This key is used for Secure Debug Unlock or Disable Tamper command authentication. If you chose secure debug lock, you must provide the public part of your
command key here. (eg. 0x04123456789...ABCEDF total 65 bytes. You can also upload a .pem, .der, or .pub file)

4. For the OTA Decryption Key, copy the key value (in hex) from cpms-gbl.txt into the OTA Decryption Key field.

OTA Decryption Key
0x D374A83C7BC6A115D8F51D287C633165
This key is used for decrypting GBL payloads used for firmware upgrades. (eg. 0=0123456789.. ABCEDF total 16 bytes.)

5. Scroll down to the Flash Programming section.

Copyright © 2025 Silicon Laboratories. All rights reserved.

262/280

Configure Device for Untrusted Environment Example &= SILICON LABS

9 Flash Programming

Firmware

Fill Character

Flash Programming involves the addition of customer specific code to a standard product. Customer code in INTEL HEX format is required.

Ox FF @

We will fill unused or unspecified addresses of the flash with the byte you provide here.

Upload new Intel HEX files
Select Firmware Type

App only Bootloader only @ App and Bootloader
Standard File Input

@& CLICK HERE OR DRAG & DROP TO UPLOAD A FILE

6. Click CLICK HERE OR DRAG DROP TO UPLOAD A FILE.

7. Navigate to your workspace. On Windows this will be in C:/Users/<username>/SimplicityStudio/v5_workspace.
8. Select cpms-merged.hex and click Open. CPMS only accepts Intel Hex files for firmware images.

9. You should now be able to see the binary added to your customization in CPMS.

@ Flash Programming

Flash Programming involves the addition of customer specific code to a standard product. Customer code in INTEL HEX format is required.

Firmware

Fill Character

Ox FF ©

We will fill unused or unspecified addresses of the flash with the byte you provide here.

Upload new Intel HEX files
Select Firmware Type

App only Bootloader only @ App and Bootloader
Standard File Input

& CLICK HERE OR DRAG & DROP TO UPLOAD A FILE o

AN1363.hex has been uploaded

Uploaded Files

AM1363.hex App and Bootloader o

10. Scroll to the top of the page, and click Review Order.

Copyright © 2025 Silicon Laboratories. All rights reserved.

263/280

Configure Device for Untrusted Environment Example &= SILICON LABS

Title: Example-1

(] Congratulations! Your OPN
Base Part: EFR32MG21B010F1024IM32-B

programming data is valid and ready to

be reviewed for sample programming.
You can leave this page and return at
any time to complete your order.
Incomplete orders are retained 30 days

Select Part Customize Review Payment Processing Shipping Complete
from last access. Show less
T . :
Izt Customize Your Part Review Order
JElE
T

Use the form below to configure your custom part. Your input is autosaved and you can
leave this page and come back at any time to complete it. Incomplete orders are retained
for 30 days from last access.

Security Options

SE Version v1.216 (latest) #

We recommend using the latest SE version to ensure all patches are in place. We further recommend
that you implement the ability to apply SE updates in your manufacturing line and over the air in the
event new vulnerabilities are patched.

Debug Lock
Standard © Secure Permanent Unlocked

The debug access port connected to the Series 2 device's Cortex-M33 processor can be closed by
issuing commands to the Secure Element, either from a debugger over DCI or through the mailbox
interface. Three properties govern the behavior of the debug lock. Locking the part reduces the
general attack surface and prevents information leakage post Silicon Labs manufacturing.

11.You can now review the pricing for the custom part and the security configurations you've entered.

Copyright © 2025 Silicon Laboratories. All rights reserved.

264/280

Import Custom Wrapped Keys Example &= SILICON LABS

Import Custom Wrapped Keys Example

Importing Custom Wrapped Keys Example

To import custom wrapped keys into CPMS, you need four fields: value, address, auth, and metadata. The following
examples will show how to get the metadata value for an asymmetric and a symmetric key.

Example #1: Importing Custom Wrapped Asymmetric Keys

1. In Simplicity Studio, in the Launcher view, click EXAMPLE PROJECTS & DEMOS.
2. Search for SE Manager.
3. Create a project from the Platform - SE Manager Digital Signature (ECDSA and EdDSA) example.

EFR32xG21B 2.4 GHz 10 dBm RB, WSTK Mainboard (ID: 000440169815)
OVERVIEW EXAMPLE PROJECTS & DEMOS DOCUMENTATION COMPATIBLE TOOLS
Run a pre-compiled demo or create a new project based on a software example.

16 resources found

Filter on keywords ()
SR Platform - SE Manager Asymmetric Key Handling Platform - SE Manager Block Cipher
This example project demonstrates the asymmetric key handling API This example project demonstrates the block cipher API of SE
Denos . of SE Manager. Manager.
Example Projects - View Project Documentation 3 View Project Documentation 4
a ‘What are Demo and Example Projects?
Platform - SE Manager Digital Signature (ECDSA and Platform - SE Manager Hash
A TechnologyType @il LSt gehgitalSigpaturey 9

This example project demonstrates the Hash API of SE Manager. CREATE
] Amazon (0) This example project demonstrates the digital signature (ECDSA and CREATE

View Project Documentation (5
EdDSA) API of SE Manager.

[] Bluetooth (0) . . "
View Project Documentation 3

[] Bluetooth Mesh (0)

4. CPMS will automatically wrap your key and write it into flash. To emulate that for testing, use the Memory System Controller
to write the key into flash. To enable the MSC, first open se_manager_signature.sicp.

5. Open the SOFTWARE COMPONENTS tab.

6. Search for msc.

7. Click the MSC Peripheral and click Install.

Copyright © 2025 Silicon Laboratories. All rights reserved. 265/280

Import Custom Wrapped Keys Example &= SILICON LABS

blink_baremetal R SOFTWARE COMPONENTS
Search keywords, ts p
Y Filter: Configurable Components [] Installed Components [] Components Installed by You [_] beé;;;ﬁ;a;:rg“mw e (]
v Connect I Bootloader Application Interface Install
v OTA
QTA Broadcast Bootloader Client e
OTA Broadcast Bootloader Server o Description
This component must be added to & project in order to use the Gecko Bootloader. When this component is
OTA Unicast Bootloader Client O part of a project a part of flash memory will be reserved for Bootloader usage in the application linker
file. This component alsc prowides a bootloader interface for interacting with the Gecko Bootloader.
OTA Unicast Bootloader Server e
Quality
v Test PRODUCTION
OTA Bootloader Test Common
OTA Broadcast Bootloader Test Open in Browser
OTA Unicast Bootloader Test App"cation |nterface
OTA Bootloader Interface
v Platform Description
v Bootloader o
Application interface to the bootloader.
Bootloader Application Interface . : S 3 " : w 5
The application interface consists of functions that can be included in the customer application that and will communicate
with the bootloader through the MainBootloaderTable t . This table contains function pointers to the bootloader. The
v Services 10th word of the bootloader contains a pointer to this struct, allowing any application to easily locate it. To access the

8. Modify the "create_wrap_asymmetric_key" function of app_se_manager_signature.c to use our "CPMS key". Instead of
generating a key, we will import our ecc key. In app_se_manager_signature.c line 255, replace the lines:

print_error_cycle(sl_se_generate_key(&cmd_ctx, &asymmetric_key_desc), &md_ctx);
with the following:

// YOUR KEY VALUE GOES HERE:

static uint8_t user_key[64] =

{
0x79, 0x7D, 0x86, OXE3, 0x5B, OxAA, 0x03, 0xA5,
OxEE, 0x09, 0xAB, 0x5E, 0x7E, 0xB1, 0x2D, OxC3,
0x92, OxFC, OxCE, 0xDC, 0xDO, 0%2A, 0xBO, 0xF7,
0x56, 0x5E, 0x73, 0x30, 0x86, 0x1D, OXAE, 0xD5,
0xDD, 0x8A, 0x84, 0xA2, 0x87, 0x0F, OxCC, 0x2B,
0x70, 0x66, OXAE, OXEO, 0x88, 0x44, 0x2C, 0xCC,
0x0C, 0x53, 0xCE, 0x9D, 0x26, 0xBB, 0xB3, 0x04,
0xA8, 0xB7, 0xB9, OxES5, 0x20, 0x43, 0x62, OXAE

sl_se_key_descriptor_t plaintext_desc = {
type = key_type,
flags = SL_SE_KEY_FLAG_ASYMMET RIC_BUFFER_HAS_PRIVATE_KEY
| SL_SE_KEY_FLAG_ASYMMMETRIC_SIGNING_ONLY,
.storage.method = SL_SE_KEY_STORAGE_EXTERNAL_PLAINTEXT,
.storage.location.buffer.pointer = user_key,
.storage location.buffer.size = 64

if (sl_se_import_key(&cmd_ctx, &plaintext_desc, &asymmetric_key_desc) != SL_STATUS_OK) return SL_STATUS_FAIL;

This code will import your key into the Secure Engine, wrap it, then store the wrapped key to the asymmetric_key_buf that
asym- metric_key_desc.storage.location.buffer.pointer is pointing to.

Copyright © 2025 Silicon Laboratories. All rights reserved. 266/280

Import Custom Wrapped Keys Example &= SILICON LABS

247 // The size of the wrapped key buffer must have space for the overhead of the
248 // key wrapping

249 if (sl _se_wvalidate_key(&asymmetric_key_desc) != SL_STATUS_OK

250 || s1_se _get storage size(&asymmetric_key desc, &req size) l= SL_STATUS OK
251 || asymmetric_key desc.storage.location.buffer.size < req_size) {
252 return SL_STATUS_FAIL;

253 }

254

255 // YOUR KEY VALUE GOES HERE:

256 static uint8_t user_key[64] =

257 {

258 0x79, 0x7D, Ox86, ©OxE3, Ox5B, OxAA, 0x03, OxA5,

259 OxEE, ©0x09, OxAB, ©x5E, @x7E, @xBl, @x2D, @x(3,

260 0x92, OxFC, OxCE, ©xDC, @xD@, @x2A, 0xBO, OxF7,

261 0x56, Ox5E, Ox73, 0x30, 0x86, @0x1D, OxAE, @xD5,

262 0xDD, Ox8A, Ox84, ©OxA2, 0x87, @0x@F, @xCC, 0x2B,

263 @x70, Ox66, OXAE, ©xEQ, Ox88, 0x44, 0x2C, OxCC,

264 @x0C, Bx53, OXCE, ex9D, 0x26, OxBB, OxB3, 0x04,

265 OxAS, OxB7, OxB9, exE5, 0x20, 0x43, 0x62, OxXAE

266 };

267

268 sl _se_key_descriptor_t plaintext_desc = {

269 .type = key_type,

270 .flags = SL_SE_KEY_FLAG_ASYMMETRIC_BUFFER_HAS_PRIVATE KEY

271 | SL_SE_KEY_FLAG_ASYMMMETRIC_SIGNING_OMNLY,

272 .storage.method = SL_SE_KEY_STORAGE_EXTERNAL_PLAINTEXT,

273 .storage.location.buffer_pointer = user_key,

274 .storage.location.buffer._size = 64

275 };

276

277 if (s1_se_import_key(&cmd_ctx, &plaintext_desc, &asymmetric_key desc) != SL_STATUS_OK)
278 return 5L45TATU57FAILﬂ

279 }

280

282 * Generate a non-exportable asymmetric key into a volatile SE key slot.

9. Next, write the wrapped key blob into flash. Add the following lines to create_wrap_asymmetric_key:

// YOUR KEY ADDRESS GOES HERE:
unsigned int wrapped_key_address = 0x00080000;

printf("\nWriting key into flash at 0x%08x...\n", wrapped_key_address);
// Clear out the old wrapped key MSC_ErasePage ((uint32_t*)wrapped_key_address);
// Flash the new wrapped key MSC_WriteWord ((uint32_t*) wrapped_key_address, asymmetric_key_buf, sizeof(asymmetric_key_buf));

// Update the key descriptor to point to the key in flash asymmetric_key_desc.storage.location.buffer.pointer =
(uint8_t*)wrapped_key_address;

10. Next, print out the keyspec needed for CPMS. Add the following lines to create_wrap_asymmetric_key:

Copyright © 2025 Silicon Laboratories. All rights reserved. 267/280

Import Custom Wrapped Keys Example &= SILICON LABS

275 };

276

277 if (sl_se_import_key(&cmd_ctx, &plaintext_desc, &asymmetric_key desc) != SL_STATUS_OK)
278 return SL_STATUS_FAIL;

279

280 // YOUR KEY ADDRESS GOES HERE:

281 unsigned int wrapped_key_address = @x00030000 ;

282

283 printf("\nWriting key into flash at @x%@8x...\n", wrapped_key_ address);
284

285 // Clear out the old wrapped key

286 MSC_ErasePage((uint32_t*)wrapped_key_address);

287

288 // Flash the new wrapped key

289 MSC_WriteWord((uint32_ t*)wrapped_key address, asymmetric_key buf, sizeof(asymmetric_key buf));
290

201 // Update the key descriptor to point to the key in flash

202 asymmetric_key desc.storage.location.buffer.pointer = (uint8_t*)wrapped_key_address;
293 unsigned int keyspec;

294

205 if (sli_se_key to keyspec(&asymmetric_key desc, &keyspec) != SL_STATUS_OK)
206 return SL_STATUS_FAIL;

297

208 printf("\nKeyspec: @x%@8x\n", keyspec);

299

308 return S5L_STATUS_OK;

301 }

3ez2

363= /4’-4’-*4’-**4’-*4’-4’-*4’-**4’-*4’-4’-*4’-**4’-*4’-4’-*4’-**4’-*4’-4’-*4’-**4’-*4’-4’-*4’-**4’-*4’-4’-*#’-**4’-*4’-******************/’/**

unsigned int keyspec;

if (sli_se_key_to_keyspec(&asymmetric_key_desc, &keyspec) != SL_.STATUS_OK) return SL_STATUS_FAIL;

printf("\nKeyspec: 0x%08x\n", keyspec);

return SL_LSTATUS_OK;

11. Keys imported using CPMS use a different bus master than the CPU, so the key descriptor needs to be updated. In
create_wrap_symmetric_key, edit the symmetric_key_desc.flags field to remove SL_SE_FLAG_ASYMMETRIC_BUF-
FER_HAS_PUBLIC_KEY and add SL_SE_KEY_FLAG_ALLOW_ANY_ACCESS (line 229):

asymmetric_key_desc.flags = SL_SE_KEY_FLAG_ASYMMET RIC_BUFFER_HAS_PRIVAT E_KEY
| SL_SE_KEY_FLAG_ASYMMMETRIC_SIGNING_ONLY
| SL_SE_KEY_FLAG_NON_EXPORTABLE
| SL_SE_KEY_FLAG_ALLOW_ANY_ACCESS;

asymmetric_key_desc.type = key_type;
asymmetric_key desc.flags = SL_SE_KEY FLAG_ASYMMETRIC_BUFFER_HAS PRIVATE_KEY

| SL_SE_KEY_FLAG_ASYMMMETRIC_SIGNING_ONLY

| SL_SE_KEY FLAG_NON_EXPORTABLE

| SL_SE_KEY_FLAG_ALLOW_ANY_ACCESS;
asymmetric_key desc.storage.method = SL_SE_KEY STORAGE_EXTERNAL_WRAPPED;
// Set pointer to a RAM buffer to support key generation
asymmetric_key desc.storage.location.buffer.pointer = asymmetric_key buf;
asymmetric_key_desc.storage.location.buffer.size = sizeof(asymmetric_key_buf);

12. Build the project.

Copyright © 2025 Silicon Laboratories. All rights reserved. 268/280

Import Custom Wrapped Keys Example &= SILICON LABS

File Edit Source Refactor Mavigate Search Project Run Window Help
O HRI®~Rvig~Q i vilvoovov s @ on
!'Lﬁ Project Explorer i3 ” Build 'GNU ARM v10.2.1 - Default’ for project 'se_manager_signature’

13. Flash to the target device.

~ 1= se_manager_signature [GNU ARM v10.2 B3 Browse Files Here Suite; Amazon,
v ¥ Binaries @ Open Command Line Here

» %5 se_manager_signature.axf - [arm, 58 Flash to Device..
0 se_manager_signature.bin - [unkr z
- il _g : Properties Alt+Enter
» €2 se_manager_signature.hex - [unki .
» {2 se_manager_signature.s37 - [unknown/le]

14. In the Debug Adapters window, right click on the adapter for your device and click Launch Console.

» l¢ app_se_manager_signature.c

; Launch Console...
» [W app_se_manager_signature.h : ;
Bimaine 5(“' Sniffer Configurator...
@ readme.html © AcA Analyzer
e y - @ Bluetooth NCP Commander..
i se_manager_signature.pintool
&L se_manager_signature.sicp & Device configuration..
< Force Unlock..

'W- o = : Select Crypto Profile...
e SRR = Outline Set Unlock Token...

EFR32xG21 2.4 GHz 20 dBm RE (IP:
EFR32xG21 2.4 GHz 20 dBm RB (IP: Vo Device Cortificatos
EFR32xG21B 2.4 GHz 10 dBm RB (IL-=r+orosoray

Clear Unlock Token

15. Click the Serial 1 tab, and then send Enter to start the console.
16. Reset the device. The program will first ask which type of key you want to use: plaintext, wrapped, or volatile. Type a space,
and then press Enter to select the second option, wrapped.

=& Serial 0 == Serial 1 = Admin <= Debug

. Current asymmetric key algorithm i= ECC Weierstra=ss Prime.
+ Pre== SPACE to =select asymmetric key algorithm (ECC Weierstrass PrimesECC EdDSA (Ed25519)). press ENTER to next option.

SE Manager Digital Signature (ECDSA and EdDSA) Example — Core running at 38000 kHz.
SE manager initialization... SL_STATUS_OK {cycles: 9 time: 0 us
+ Fill 4096 bytes plain message buffer with random number ... SL_STATUS_OK {cycles: 68068 time: 1791 us)

. Current asymmetric key i= a plaintext key.
+ Pre== SPACE to =select a plaintext or wrapped or wolatile key, press EHNTER to next option.
+ Current asymmetric key i= a wrapped key.

. Current asymmetric key algorithm i= ECC Weierstra=ss Prime.
+ Pre== SPACE to =select asymmetric key algorithm (ECC Weierstrass PrimesECC EdDSA (Ed25519)). press ENTER to next option.

17. Press Enter four more times to see the keyspec printed to the console. When entering a custom wrapped key into CPMS,
this value is the Key Metadata value.

Copyright © 2025 Silicon Laboratories. All rights reserved. 269/280

Import Custom Wrapped Keys Example &= SILICON LABS

. Digital signature

+ ECC Weierstrass Prime - ECC P192

+ Generate a non-exportable wrapped asymmetric kev. ..
Writing key into flash at 0=z00080000. ..

Key=spec: 0=x8900c417
+ Sign 256 bytes message with SHA1 and wrapped private key. .. SL_STATUS QK (cycles: 131246 time: 3453 us)
+ Ezport public key from private key... SL_STATUS OK {cycles: 118968 time: 3130 us)
+ Verify signature with SHAl and wrapped public key. .. SL_STATUS_OK {cycles: 121817 time: 3205 us)

. Current asymnetric key is a wrapped kevy.
+ Press SPACE to =select a plaintext or wrapped or wolatile key. press ENTER to next option.

18. Now that the key is wrapped and stored in flash, you want to see that the program can use it without having the plaintext
key anywhere in the application. Go back to app_se_manager_signhature.c and comment out lines 255 to 278 and lines 283
to 289.

return SL_STATUS_FAIL;
¥

255=// // YOUR KEY VALUE GOES HERE:

// static uint8_t user_key[64] =

/1A

I/ 0x79, @x7D, Ox86, BxE3, Ox5B, GxAA, 0x03, OXAS,
/! OxEE, 0x09, OxAB, Bx5E, @x7E, @xB1l, 0x2D, 0x(3,
7/ 0x92, OxFC, OxCE, OxDC, OxDO, Ox2A, 0xBO, OxF7,
I/ 0x56, Ox5E, Ox73, Bx30, Ox86, @x1D, OxAE, OxDS5,
/! 0xDD, Ox8A, 0x84, BxA2, @x87, @xOF, 0xCC, Ox2B,
I/ 0x70, Ox66, OxAE, BxEQ, @x88, @x44, 0x2C, 0xCC,
I/ 0x0C, ©x53, OxCE, ©x9D, Ox26, @xBB, 0xB3, 0x04,
/! OxA8, OxB7, 0xBY, BOxE5, @x20, @x43, 0x62, OxAE
I}

[/ s1_se_key descriptor_t plaintext_desc = {

/! -type = key_type,

I/ .flags = SL_SE_KEY_FLAG_ASYMMETRIC BUFFER_HAS_PRIVATE_KEY
I/ | SL_SE_KEY_FLAG_ASYMMMETRIC_SIGNING_OMLY,

// .storage.method = SL_SE_KEY_STORAGE_EXTERNAL_PLAINTEXT,
I/ .storage.location.buffer.pointer = user_key,

I/ .storage.location.buffer.size = 64

VU ¥

/!

[/ if (s1_se_import_key(&cmd ctx, &plaintext desc, &asymmetric key desc) != SL_STATUS_OK)
I/ return SL_STATUS_FAIL;

// YOUR KEY ADDRESS GOES HERE:

unsigned int wrapped_key_address = 9x00030000;

=// printf("\nWriting key into flash at @x%@8x...\n", wrapped_key_address);

1

// /[Clear out the old wrapped key

// MSC _ErasePage((uint32 t*)wrapped key address);

/!

[/ /[Flash the new wrapped key

/f MSC WriteWord((uint32 t*)wrapped kev address, asymmetric_key buf, sizeof(asymmetricmkeymbuf))ﬂ

// Update the key descriptor to point to the key in flash
asymmetric_key_desc.storage.location.buffer.pointer = (uint8_t*)wrapped_key_ address;
unsigned int keyspec;

19. Now the application simply sets up the key descriptor to point to where we wrote the wrapped key in flash, without knowing
the value of the key.

20. Repeat steps 12 to 17 to verify that the wrapped key can still be used. Note that if the flash is erased (by a commander
device unlock command, for instance), this application will fail. It needs the wrapped key to be stored in flash by a previous
process.

Copyright © 2025 Silicon Laboratories. All rights reserved. 270/280

Import Custom Wrapped Keys Example &= ? SILICON LABS

SE Manager Digital Signature (ECDSA and EdDSA) Example — Core runnlng at 38000 kHz
SE manager initialization SIL_STATUS 0K (cycles: 9 time: 0
+ Fill 4096 bytes plain message buffer with random number. . . SL_STATUS_OK {ocycles: 68674 time: 1B07 us)

Current asymmetric key is a plaintext key

+ Press SPACE to select a plaintext or wrapped or volatile key. press ENTER to next option

+ Current asymmetric key iz a wrapped kevw.

. Current asymmetric key algorithm is ECC Weierstrass Primne.

+ Press SPACE to select asymmetric key algorithm (ECC Weierstrass Frime<ECC EdDSA (Ed25519)). press ENTER to next option.

. Current ECC Weierstrass Prime key is ECC F192

+ Press SPACE to select ECC Weierstrass Prime key (ECC P192/ECC P256-ECC P384-ECC P521/ECC Custom (secp256kl in this example)). press ENTER to next option
Current Hash algorithm for signature is

+ Press SPACE to select Hash algorithm (5HA1/224/256/384/512) for signature. press ENTER to next option

. Current data length i=s 256 bytes.

+ Press SPACE to select data length (256 or 1024 or 4096). press ENTER to run

. Digital signature
+ ECC Veierstrass Prime — ECC P192
+ Generate a non—exportable wrapped asynnetric key.
Kevspec: 0=8900c417
+ Sign 256 bytes message with SHAL and wrapped private key. .. SL_STATUS OK (cycles: 125919 time: 3313 us)
+ Exzport public key from private key SL_STATUS_OKE (cycles: 115894 time: 3049 us)
+ Verify signature with SHAl and wrapped public key. .. SL_STATUS_ QK (cvcles: 122195 time: 3215 us)

. Current asymmetric key is a wrapped key.
+ Press SPACE to select a plaintext or wrapped or volatile key, press ENTER to next option

Example #2: Importing Custom Wrapped Symmetric Keys

1. In Simplicity Studio, in the Launcher view, click EXAMPLE PROJECTS & DEMOS.
2. Search for SE Manager.
3. Create a project from the Platform - SE Manager Block Cipher example:

EFR32xG21B 2.4 GHz 10 dBm RB, WSTK Mainboard (ID: 000440169815)
OVERVIEW EXAMPLE PROJECTS & DEMOS DOCUMENTATION COMPATIBLE TOOLS
Run a pre-compiled demo or create a new project based on a software example.

16 resources found

Eelianagsie Platform - SE Manager Asymmetric Key Handling Platform - SE Manager Block Cipher

This example project demonstrates the asymmetric key handling API This example project demonstrates the block cipher API of SE

Deros . of SE Manager. Manager.

Example Projects [] View Project Documentation (4 View Project Documentation &

o What are Demeo and Example Projects?
Platform - SE Manager Digital Signature (ECDSA and Platform - SE Manager Hash

A Technology Type © ClearFilter

9y Typ Ed DSA) This example project demonstrates the Hash API of SE Manager.
This example project demonstrates the digital signature (ECDSA and
[Amazon (0) pepral graisg (View Project Documentation 4

EdDSA) API of SE Manager.
[] Bluetooth (0) . . .
View Project Documentation 5

[Bluetooth Mesh (0)

4. CPMS will automatically wrap your key and write it into flash. To emulate that for testing, use the Memory System Controller

to write the key into flash. To enable the MSC, first open se_manager_block_cipher.slcp.
5. Open the SOFTWARE COMPONENTS tab.
6. Search for msc.
7. Click the MSC Peripheral and click Install.

Copyright © 2025 Silicon Laboratories. All rights reserved.

271/280

Import Custom Wrapped Keys Example &= SILICON LABS

ok se_manager_block ciphersicp £ 1 @ readme.html ‘ S)
se_manager_block_cipher OVERVIEW SOFTWARE COMPONENTS ~ CONFIGURAT
Y Filter: Configurable Components D Installed Components D Components Installed by You D Se;,;:;‘s"ms'mmonfmqam 6
v Platform | MscC m
v Peripheral
MSC
Description

lash cont

Quality
PRODUCTION

MSC - Memory System Controller

Description

Memory System Controller API.

Contains functions to control the MSC, primarily the Flash. Users can perform Flash memory write and erase
operations, as well as optimization of the CPU instruction fetch interface for the application. Available
instruction fetch features depends on the MCU or SoC family, but features such as instruction pre-fetch, cache,
and configurable branch prediction are typically available.

Note
Flash wait-state configuration is handled by cvu - c1

Management Unit. When core clock
confiauration is chanaed hv a call to functions such as ClockSelectSet ().0r ha

View Dependencies

8. Modify the "create_wrap_symmetric_key" function of app_se_manager_block_cipher.c to use the "CPMS key". Instead of
generating a key, import the aes key. In app_se_manager_block_cipher.c line 259, replace the lines:

print_error_cycle(sl_se_generate_key(&cmd_ctx, &symmetric_key_desc), &cmd_ctx);
with the following:

// YOUR KEY VALUE GOES HERE:

static uint8_t user_key[16] =

{

0x70, 0xF4, 0x82, 0x4E, 0x49, 0xBD, 0x97, OXAB,
0x65, 0x65, 0x32, 0x22, 0xA0, 0x70, 0xB5, 0x16
b

sl_se_key_descriptor_t plaintext_desc = {

type = SL_SE_KEY_TYPE_AES_128,

flags = 0,

.storage.method = SL_SE_KEY_STORAGE_EXTERNAL_PLAINTEXT,
.storage.location.buffer.pointer = user_key,
.storage.location.buffer.size = 16

b

if (sl_se_import_key(&cmd_ctx, &plaintext_desc, &symmetric_key_desc) != SL_.STATUS_OK) return SL_STATUS_FAIL;

This code will import your key into the Secure Engine, wrap it, and then store the wrapped key to the symmetric_key_buf
that symmetric_key_desc.storage.location.buffer.pointer is pointing to.

Copyright © 2025 Silicon Laboratories. All rights reserved. 272/280

Import Custom Wrapped Keys Example &= SILICON LABS

43 {
44 uint32_t req_size;

46 symmetric_key_desc.type = key_type;

47 symmetric_key desc.flags = SL_SE_KEY FLAG_NOM_EXPORTABLE;

48 symmetric_key desc.storage.method = SL _SE_KEY STORAGE_EXTERNAL_ WRAPPED;

49 symmetric_key desc.storage.location.buffer.pointer = symmetric_key buf;

50 symmetric_key_desc.storage.location.buffer.size = sizeof(symmetric_key buf);

52 if ((sl_se validate key(&symmetric_key desc) != SL_STATUS OK)
53 || (sl _se get storage size(&symmetric_key desc,

54 &req_size) != SL_STATUS_OK)
55 || (sizeof(symmetric_key buf) < reg_size)) {

56 return SL_STATUS_FAIL;

57 }

59 // YOUR KEY VALUE GOES HERE:
60 static uint8 t user_key[1l6] =

61 {

62 Ox70, OxF4, @x82, OxAE, Ox49, BxBD, @x97, OxAB,

63 Ox65, 0x65, Ox32, 0x22, OxA@, 0x78, 0xB5, 0Ox16

64 ¥

65

66 sl se key descriptor_t plaintext desc = {

67 .type = SL_SE_KEY TYPE_AES 128,

68 .flags = @,

69 .storage.method = SL_SE _KEY STORAGE EXTERNAL PLAINTEXT,
70 .storage.location.buffer.pointer = user_key,

71 .storage.location.buffer.size = 16

72}

73

74 if (sl _se_import_key(&cmd_ctx, &plaintext desc, &symmetric_key desc) != SL_STATUS_OK)
75 return 5L_5TATUS_FAIL;|

9. Next, write the wrapped key blob into flash. Add the following lines to create_wrap_symmetric_key:

// YOUR KEY ADDRESS GOES HERE:
unsigned int wrapped_key_address = 0x00080000;

printf("Writing key into flash at 0x%08x...\n", wrapped_key_address);
// Clear out the old wrapped key MSC_ErasePage ((uint32_t*)wrapped_key_address);

// Flash the new wrapped key
MSC_WriteWord ((uint32_t*) wrapped_key_address, symmetric_key_buf, sizeof(symmetric_key_buf));

// Update the key descriptor to point to the key in flash symmetric_key_desc.storage.location.buffer.pointer =
(uint8_t*)wrapped_key_address;

10. Next, we'll print out the keyspec that we need for CPMS. Add the following lines to create_wrap_symmetric_key:
unsigned int keyspec;

if (sli_se_key_to_keyspec(&symmetric_key_desc, &keyspec) != SL_.STATUS_OK) return SL_.STATUS_FAIL;

printf("\nKeyspec: 0x%08x\n", keyspec);

return SL_LSTATUS_OK;

Copyright © 2025 Silicon Laboratories. All rights reserved. 273/280

Import Custom Wrapped Keys Example

274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299 }

11. Keys imported using CPMS use a different bus master than the CPU, so the key descriptor needs to be updated. In cre-
ate_wrap_symmetric_key, edit the symmetric_key_desc flags field to include SL_SE_KEY_FLAG_ALLOW_ANY_ACCESS (line

247):

if (sl se_import_key(&cmd ctx, &plaintext desc, &symmetric_key desc) != SL_STATUS 0OK)
return SL_STATUS_FAIL;

// YOUR KEY ADDRESS GOES HERE:
unsigned int wrapped_key address = 0x00080000;

printf("Writing key into flash at @x%@8x...\n", wrapped key address);

// Clear out the old wrapped key
MSC_ErasePage((uint32_t*)wrapped_key address);

// Flash the new wrapped key
MSC_WriteWord((uint32 t*)wrapped key address, symmetric_key buf, sizeof(symmetric_key buf));

// Update the key descriptor to point to the key in flash
symmetric_key desc.storage.location.buffer.pointer = (uint8_t*)wrapped_key_address;

unsigned int keyspec;

if (sli_se _key to keyspec(&symmetric_key desc, &keyspec) != SL_STATUS_OK)
return SL_STATUS_FAIL;

printf("\nKeyspec: @x%08x\n", keyspec);

return SL_STATUS_OK;|

symmetric_key_desc.flags = SL_SE_KEY_FLAG_NON_EXPORTABLE | SL_SE_KEY_FLAG_ALLOW_ANY_ACCESS;

symmetric_key desc.type = key type;

symmetric_key desc.flags = SL_SE_KEY_FLAG_NON_EXPORTABLE | SL_SE_KEY FLAG_ALLOW_ANY ACCESS;
symmetric_key desc.storage.method = SL_SE_KEY_STORAGE_EXTERMAL_WRAPPED;

symmetric_key desc.storage.location.buffer.pointer = symmetric_key buf;

symmetric_key desc.storage.location.buffer.size = sizeof(symmetric_key buf);

12. Build the project.

File Edit Source Refactor Mavigate Search Project Run Window Help
HnBAENETN-RACE SRR A I SRR AR ACRCE SV Alw S N ECAR T, A1
3 Project Explorer & Build 'GNU ARM v10.2.1 - Default’ for project 'se_manager_block_cipher' |

13. Flash to the target device.

Copyright © 2025 Silicon Laboratories. All rights reserved.

&= SILICON LABS

274/280

Import Custom Wrapped Keys Example &= SILICON LABS

v &% se_manager_block_cipher [GNU ARM v10.2.1 - T F9 Browse Files Here Ame
« # Binaries @ Open Command Line Here
#5 se_manager_block_cipher.axf - [arm/le] ¥ Flash to Device...
2 se_manager_block_cipher.bin - [unknown/ Properties Alt+Enter

2 se_manager_block_cipher.hex - [unknown/ ey
2 se_manager_block_cipher.s37 - [unknown/le]
e Includes
= autogen
= config
= gecko_sdk_3.2.2

14.In the Debug Adapters window, right click on the adapter for your device and click Launch Console.

= autogen
= config Rename
= gecko_sdk_3.2.2 Connect
= GNU ARM v10.2.1 - Default Disconnect
> [€ app_init.c Start capture
[H app_inith Start capture with options...
[¢ app_process.c Stop capture
I app_process.h Redo last upload
19 app_se_manager_block_cipher.c Upload application...
(1) app_se_manager_block_cipherh Upload adapter firmware...
[W app_se_manager_macro.h Make Atsnitter
[€ main.c
@ readme.html | Launch Console...
H: se_manager_block_cipher.pintool L(‘" Sniffer Configurator...
&% se_manager_block_cipher.slcp @& AoA Analyzer
=/ se_manager_block_cipher.sips @ Bluetooth NCP Commander...
< R . % Device configuration... |t T)
= T : Force Unlock... =
Debug Adapters: 117 2 | 3= Outline 4 ~EBEDE
9 P D : Select Crypto Profile... F ® & =i

EFR32xG21 2.4 GHz 10 dBm RB (IF:10. 12 Z Set Unlock Token...
EFR32xG21 2.4 GHz 10 dBm RB (IP:10.12.2

Clear Unlock Token
EFR32x%G21 2.4 GHz 20 dBm RB (IP:10.12.2 - ! o

View Device Certificates

¢ EFR32xG21B 2.4 GHz 10 dBm RB (ID:4401 -

EFR32xG21B 2.4 GHz 10 dBm RB (IP:10.12.240.153)

15. Click the Serial 1 tab, and then reset the device. The program will first ask which type of key you want to use: plaintext,
wrapped, or volatile. Type a space, and then press Enter to select the second option, wrapped.

<% Serial 0 == Serial 1 2 Admin <& Debug

SE Manager Block Cipher Examnple — Core running at 38000 kHz.

SE manager initialization... SL STATUS OK {(cycles: 10 time: 0 us)

. Fill buffers for block cipher operations.

+ Filling 16 bytes IV buffer with random number. .. SL _STATUS O {(cycle=: 3777 time: 99 us)

+ Filling 32 bytes associated data buffer with random number ... SL_STATUS QK {(cycles: 3765 time: 99 us)

+ Filling 409: bytes plain message buffer with random number ... SL_STATUS QK {(cycles: 69629 time: 1832 u=)

. Current symmetric key is a plaintext key.
+ Press SPACE to select a plaintext or wrapped or wolatile key, press ENTER to next option.
+ Current symmetric key i= a wrapped key.

. Current symmetric key length i=s 128-bit.
+ Pre=s= SPACE to select symmetric key length (128 or 192 or 256). press ENTER to next option.

Copyright © 2025 Silicon Laboratories. All rights reserved. 275/280

Import Custom Wrapped Keys Example

16. Press Enter once more to see the keyspec printed to the console. When entering a custom wrapped key into CPMS, this

value is the "Key Metadata" value.

17. Press Enter two more times to verify that the key can be used without error. Note that if you press Enter after this, the

Current symmetric kev length is 128-bit.

&="7 SILICON LABS

+ Pres= SPACE to select symmetric key length (128 or 192 or 256). press ENTER to next option.

+ Generating a 128-bit non—ezportable symmetric wrapped kev. . .

Keyspec: 0=09008010

Current data length i= 256 bytes.

+ Press SPACE to select data length (256 or 1024 or 4096).

program will try to use that key as a ChaCha20-Poly1305 key, and it will fail.

Keyspec: 0=z09008010

4+ Ht++ FE+ A+ F A

+ o+t

18. Now that the key is wrapped and stored in flash, you want to see that the program can use it without having the plaintext
key anywhere in the application. Go back to app_se_manager_block_cipher.c and comment out lines 259 to 275 and lines

Current data length iz 256 bytes.

Press SPACE to select data length (256 or 1024 or 4096).

Current Hash algorithm for HHAC is SHAL.

Writing key into flash at 0=x00080000. ..

press ENTER to next option.

press ENTER to next option.

Press SPACE to select Hash algorithm (SHA1-224-256-384.-512) for HMAC, press ENTER to run.

AES ECE test

Encrypting 256 bytes plaintext with 128 bit key. ..
Decrypting 256 bytes cipherte=t with 128 bit kev. ..

Conparing decrypted message with plain message. . .

AES CTR test

Encrypting 256 bytes plaintext with 128 bit key. ..
Decrypting 256 bytes cipherte=zt with 128 bit key. ..

Comparing decrvypted message with plain message. . .

AES CCH test

Encrypting 256 bytes plaintext with 128 bit key. ..
Decrypting 256 bytes cipherte=xt with 128 bit key. ..

Comparing decrvpted message with plain message. . .

AES GCH test

Encrypting 256 bytes plaintext with 128 bit key. ..
Decrypting 256 bytes cipherte=t with 128 bit kev. ..

Comparing decrypted messzage with plain message. . .

AES CBC test

Encrypting 256 bytes plaintext with 128 bit key. ..
Decrypting 256 bytes ciphertext with 128 bit kev. ..

Comparing decrypted messzage with plain message. . .

AES CFBE test

Encrypting 256 bytes plaintext with 128 bit key. ..
Decrypting 256 bytes ciphertext with 128 bit kev. ..

Comparing decrvpted message with plain message. . .

AES CFE128 test

Encrypting 256 bytes plaintext with 128 bit key. ..
Decrypting 256 byte=s ciphertext with 128 bit kev. ..

Comparing decrvpted message with plain message. . .

AES CHAC test

Generating 1 bytes CHAC on 256 bytes message with 128 bit key. . .

HHAC test

Generating SHAL HHAC on 256 bytes message with 128 bit key. ..

280 to 286.

SL_STATUS QK (cyvcles:

SL STATUS QK (cycles:
OK

SL STATUS QK (cycles:
OK

SL _STATUS OK (cycles:
O

SL STATUS QK (cycles:
O

SL_STATUS QK (cycles:
oK

SL_STATUS QK (cycles:
oK

SL STATUS QK (cycles:

SL STATUS QK (cycles:

SL_STATUS QK (cycles:

SL_STATUS QK (cycles:

SL_STATUS QK (cycles:

SL_STATUS QK (cycles:

SL_STATUS QK (cycles:

SL_STATUS_ QK (cycles:

15379 time: 404 us)
15507 time: 408 us)

155827 time: 408 us)
15476 time: 407 us)

16101 time: 423 us)
17067 time: 449 us)

16333 time: 429 us)
16504 time: 434 us)

15333 time: 403 us)
15137 time: 398 us=)

3985747 time: 104 m=)
3985039 time: 104 m=)

15403 time: 405 us)
15528 time: 408 us=)

SL STATUS QK (cycles: 14388 time:

Copyright © 2025 Silicon Laboratories. All rights reserved.

154591 time:

276/280

Import Custom Wrapped Keys Example

257

258

250e //
268 //
261 //
262 //
263 //
204 //
265 //
266 //
267 //
268 //
269 //
270 //
271 //
272 [/
273 //
274 //
275 [/
276

277

278

279

280= //
281 //
282 //
283 //
284 [/
285 //
286 //
287

288

289

// YOUR KEY VALUE GOES HERE:
static uint8_t user_key[16] =
{
@x70, OxF4, 0x82, Ox4E, 0x49, 0xBD, 0x97, 0xAB,
@x65, @x65, ©x32, Ox22, OxAQ, Ox70, OxB5, 0x16
IS

s]1_se key descriptor_t plaintext_desc = {

.type = SL_SE_KEY_TYPE_AES_128,

.flags = @,

.storage.method = SL_SE_KEY_STORAGE_EXTERNAL_PLAINTEXT,
.storage.location.buffer.pointer = user_key,
.storage.location.buffer.size = 16

}J

if (sl_se_import_key(&cmd ctx, &plaintext desc, &symmetric key desc) != SL_S
return SL_STATUS_FAIL;

// YOUR KEY ADDRESS GOES HERE:
unsigned int wrapped_key_address = @x00030000;

printf("Writing key into flash at 0x%@8x...\n", wrapped_key_address);

// Clear out the old wrapped key
MSC_ErasePage((uint32 t*)wrapped key address);

// Flash the new wrapped key

// Update the key descriptor to point to the key in flash
symmetric_key_desc.storage.location.buffer.pointer = (uint8_t*)wrapped_key_add

&= SILICON LABS

TATUS_OK)

etric key buf));

ress;

19. Now the application simply sets up the key descriptor to point to where you wrote the wrapped key in flash, without
knowing the value of the key.

20. Repeat steps 11 to 15 to verify that the wrapped key can still be used. Note that if the flash is erased (by a commander
device unlock command, for instance), this application will fail. It needs the wrapped key to be stored in flash by a previous

process.

Copyright © 2025 Silicon Laboratories. All rights reserved.

2771280

Import Custom Wrapped Keys Example

+
+

R SRR O SRR T SO SR e S

o+

Current symmetric key
Press SPACE to =select
Current symnsetric lkey

Current symnetric key

&="? SILICON LABS

iz a plainte=t key.
a plaintext or wrapped or wolatile key, press EHTER to next option.
iz a wrapped key.

length i= 128-bit.

Press SPACE to select symmetric key length {128 or 192 or 256).

Generating a 128-bit non-exportable symmetric wrapped key. ..
Keyspec: 0x09008010

Current data length is 256 bytes.

Press SPACE to select data length (256 or 1024 or 4096).

Current Hash algorithm for HHMAC is SHAL.

press ENTER to next option.

Press SPACE to select Hash algorithm (SHA1-224-256-384-512) for HMAC, press ENTER to

AES ECE test

Encrypting 256 bytes plaintext with 128 bit key. ..
Decrypting 256 byte=s ciphertext with 128 bit kev. ..

Comparing decrvpted message with plain message. . .

AES CTR test

Encrypting 256 bytes plaintext with 128 bit key. ..
Decrypting 256 bytes ciphertext with 128 bit kev. ..

Comparing decrvypted message with plain message. . .

AES CCH test

Encrypting 256 byte=s plaintext with 128 bit key. ..
Decrypting 256 bytes ciphertext with 128 bit kev. ..

Conparing decrvypted message with plain message. ..

AES GCH test

Encrypting 256 byte=s plaintext with 128 bit key. ..
Decrypting 256 bytes ciphertegt with 128 bit kev. ..

Conparing decrvypted message with plain message. . .

AES CBC test

Encrypting 256 bytes plaintext with 128 bit key. ..
Decrypting 256 bytes cipherte=t with 128 bit kev. ..

Conparing decrypted message with plain message. . .

AES CFBS test

Encrypting 256 bytes plaintext with 128 bit key. .. SL_STATUS_OK {(cycles: 3985565 time: 104 m=)
Decrypting 256 bytes cipherte=zt with 128 bit key... SL_STATUS OK {cycles: 3978599 time: 104 m=)
Comparing decrypted message with plain message. .. OK

AES CFE128 test

Encrypting 256 bytes plaintext with 128 bit key. .. SL_STATUS OK (cycles: 15176 time: 399 us)
Decrypting 256 bytes cipherte=t with 128 bit key. .. SL_STATUS OK {(cycles: 15550 time: 409 us)
Conparing decrypted message with plain message. .. OK

AES CHAC test

Generating 16 bytes CHAC on 256 bytes message with 128 bit key. .. SL_STATUS O (cycles: 15370 time:
HHAC test

Generating SHA1 HMAC on 256 bytes message with 128 bit key. .. SL_STATUS OK (cycles: 14034 time:

SL_STATUS QK (cycles:
9]¢

SL_STATUS QK (cycles:
224

SL_STATUS QK (cycles:
024

SL_STATUS QK (cycles:

SL_STATUS QK (cycles:
oK

SL_STATUS QK (cycles:

SL_STATUS QK (cycles:

SL_STATUS QK (cycles:

SL_STATUS OK (cyvcles:

SIL_STATUS QK (cycles:

13905 time:

15018 time:

15474 time:

15532 time:

16497 time:

16856 time:

16159 time:

16464 time:

15469 time:

15106 time:

Copyright © 2025 Silicon Laboratories. All rights reserved.

press ENTER to next option.

run.

365 u=)
395 u=)

407 u=)
408 u=)

434 u=)
443 u=)

425 u=)
433 u=)

407 u=)
397 us)

278/280

PKI Recommendations &= SILICON LABS

PKI Recommendations

PKlI Recommendations

This section outlines the recommended establishment, management, and security of Public Key Infrastructure (PKI) for
business partners and customers of Silicon Labs. PKI plays a pivotal role in ensuring secure communication, data integrity,
and authentication within our business ecosystem. This document sets forth recommended practices for the creation,
management, and protection of secret keys and certificates by our partners and customers.

Scope

These recommendations apply to all business partners and customers involved in transactions, communications, or
collaborations with Silicon Labs and Silicon Labs Services that necessitate the use of PKI technology.

Responsibilities
Business Partners and Customers Responsibilities

» Creation of Secret Keys and Certificates: Business partners and customers should generate their secret keys securely and
procure associated digital certificates from reputable Certificate Authorities (CAs) or generating their own digital certificates
in accordance with the recommendations in this document. It is imperative that secret keys are generated using robust
methods and are not shared with unauthorized parties.

* Protection of Secret Keys: Business partners and customers should implement comprehensive security measures to
safeguard their secret keys against unauthorized access, loss, or theft. This encompasses encryption, access controls,
regular key rotation where applicable, and employing secure storage methodologies. Backup and recovery of the secret keys
is essential, and should be considered in case of disaster recovery needs. Keys should be stored in a well-managed and
protected hardware security module (HSM).

» Revocation and Renewal: Business partners and customers should promptly revoke compromised or no longer required
certificates and renew certificates before expiration to maintain ongoing security. Affected parties should have a way to
determine status of certificate revocation and/or renewal through a hosted certificate revocation list (CRL) or online
certificate status protocol (OCSP).

« Ensure Internal Security: In addition to the material security, business partners and customers should also maintain effective
security around their organization and it's operations, staff and contractors. This means maintaining endpoints and
infrastructure in a secure way, such as patching operating systems and applications, hardening user applications and
restricting administrative privileges. People in the organization and those managing the keys and certificates should be
verified as trusted and secure.

o Audits: Business partners and customers should conduct regular audits of PKI and CA infrastructure and operations to
confirm adherence to these recommendations and industry standards.

Security Controls

NIST (National Institute of Standards and Technology) is an indispensable tool to navigate and strengthen cybersecurity
systems and can be referenced as a guide for further recommendation on these Security Controls.

e Access Controls: Business partners and customers should implement access controls to limit access to secret keys and
certificates to authorized personnel exclusively. This includes implementing role-based access control (RBAC) and
conducting regular access reviews to ensure that only essential individuals have access to sensitive cryptographic materials.

« Encryption: All secret keys and sensitive certificate information should be encrypted during transmission and storage using
robust cryptographic algorithms and protocols.

« Key Management: Business partners and customers should adopt robust key management practices, encompassing key
generation, storage, rotation, and destruction, in accordance with industry best practices and standards.

Copyright © 2025 Silicon Laboratories. All rights reserved. 279/280

PKI Recommendations &= SILICON LABS

» Monitoring and Auditing: Business partners and customers should implement monitoring and auditing mechanisms to monitor
access to secret keys and certificates, detect unauthorized activities, and generate audit trails for compliance purposes.

Revision History

This document will undergo periodic review and updates as necessary to reflect changes in technology, security
requirements, or regulatory mandates.

Contact Information

For inquiries or concerns regarding these recommendations, contact gertificateauthority@silabs.conj.

Copyright © 2025 Silicon Laboratories. All rights reserved. 280/280

mailto:certificateauthority@silabs.com

	Using IoT Security Features
	Getting Started
	IoT Endpoint Security Fundamentals
	Introduction
	Overview
	No Universal Passwords
	Secured Interfaces
	Proven Cryptography
	Security by Default
	Signed Software Updates
	Automatically Applied Updates
	Vulnerability Reporting Program
	Security Expiration Date
	Next Steps
	Series 2 Device Security Features

	Developer's Guide
	Overview
	Series 2 Secure Debug
	Introduction
	Series 2 Device Security Features
	Introduction To Secure Debug
	Secure Engine Subsystem
	Debug Lock
	Debug Unlock
	Examples
	Precautions
	Failure Analysis

	Series 2 TrustZone
	Introduction
	Series 2 Device Security Features
	TrustZone Basics
	Bus Level Security (BLS)
	Secure And Privileged Programming Model
	TrustZone Implementation
	Upgrade Existing Application To TrustZone
	TrustZone Platform Examples

	Anti-Tamper Protection Configuration and Use
	Overview
	Series 2 Device Security Features
	Introduction
	Secure Engine Manager
	Tamper Responses
	Tamper Sources
	Anti-Tamper Configuration
	Usage Example
	Tamper Disable
	Examples

	Authenticating Silicon Labs Devices using Device Certificates
	Overview
	Series 2 Device Security Features
	Introduction
	Secure Identification on HSE-SVH Devices
	Device Certificate Options
	Entity Attestation Token (EAT)
	Remote Authentication Process
	Secure Engine Manager
	Examples

	Secure Key Storage
	Overview
	Series 2 Device Security Features
	Introduction
	HSE Secure Key Storage
	TrustZone Secure Key Storage
	Secure Key Storage Implementations
	Examples

	Protocol-Specific Information

	Production Guide
	Overview
	Custom Part Manufacturing Service
	Overview
	SE Firmware Version
	Debug Lock Settings
	Secure Boot with RTSL Settings
	Tamper Response
	Standard Security Keys
	Additional Custom Keys
	Custom Certificates
	Configure Device for Untrusted Environment Example
	Import Custom Wrapped Keys Example

	PKI Recommendations

