
28 Terminal Programs

28.1 Introduction
Terminal programs seem to be quite simple: They do not have a graphical user interface
and are therefore ideally suited as an introduction to Java programming. But even in the
professional field there is always a need for programs for which the expense of a graphical
interface is not worthwhile.

Programs without
graphical user interface are called

terminal programs. They are called so,
because their user interface is a terminal

(e.g. the Windows command prompt). Mostly
they are started by parameters like

the example of this chapter –
a copy program.

Figure 28.1 Professor Roth is a fan of terminal programs.



2 28 Terminal Programs

28.2 Requirements
The Transfer program is to copy part of a file tree from one directory to another (Figu-
re 28.2). The program should be able to transfer the directory tree recursively. Recursive
means that the program should also copy all subdirectories with the complete contents.
Source and target directory should be passed via command line parameters. The program
must perform a minimal error check so that nonsensical entries do not lead to loss of data.

Subdirectory 1

Source directory

Subdirectory 1.1

Subdirectory 1.1.1

Subdirectory 1.1.2

Subdirectory 1.1.3

Subdirectory 2

File 1

File 2

Source

Subdirectory 1

Destination directory

Subdirectory 1.1

Subdirectory 1.1.1

Subdirectory 1.1.2

Subdirectory 1.1.3

Subdirectory 2

File 1

File 2

Destination

Figure 28.2 The requirement is that the program should copy complete directory trees.

If the user has not entered any parameters, the program should search for a configuration
file in which the copy parameters are stored. The program shall create a backup copy of
the work done during the day. It is therefore not started manually, but when the user wants
to shut down his operating system (system shutdown). Summa summarum: Transfer is a
program that creates a backup copy of a complete directory tree at the end of a working
day.

28.3 Analysis and Design
The program is divided into three technically different areas: reading in the configuration,
the copy logic and the event control. Let’s start with reading the configuration.



28.3 Analysis and Design 3

28.3.1 Reading the Configuration

A Java program like this copy program must be built in such a way that the source and target
directory is not hard coded in the program. Instead, you have to build the program in such
a way that it reads in the source and target directories in a suitable way. For example, the
configuration can be injected into the program via the command line using parameters.
Another possibility is to read in a configuration file. The copy program should realize both.
There are three main cases, which are shown in the process diagram in Figure 28.3 .

Start copy
process

Show error
message

Case 3.1: Source = Destination

Case 1: No parameter

Parameters available?

Case 1.2: Source =
Destination

Case 1.3: Source ≠
Destination

Case 3.2: Source ≠
Destination

Case 3: Two parametersCase 2: One parameter

Case 1.1: File
not found

Figure 28.3 The process diagram of the overall flow.

The process diagram distinguishes three main cases: In case 1 in the middle of the diagram,
the user has not entered any parameters. This is either because he does not know the pro-
gram and has simply started without parameters. However, this can also be due to the fact
that he wants to read in the start parameters via a configuration file. In this case the pro-
gram tries to find the configuration file and to evaluate the copy parameters stored in it. If
the file cannot be found or is destroyed (Case 1.1), the program issues an error message and
says goodbye. If the parameters are set so that the source is equal to the destination (Case
1.2), the program also issues an error message and exits. Only if the source is not equal to
the destination, Transfer starts the copy process.



4 28 Terminal Programs

Case 2 is easier to handle: Here, the user has entered only one parameter. The program
interprets this as an operating error, issues a corresponding message and says goodbye.
In Case 3, the user has entered two parameters. If the source is the same as the destinati-
on (Case 3.1), the program issues an error message and also exits. However, if source and
destination are different (case 3.2), the program starts the copying process.

28.3.2 Copy Logic

For the solution of the copy problem it is necessary to use file streams introduced by chap-
ter 22, »Class Libraries«. To avoid the need for intermediate storage, the program should
first read the source directory and then immediately write the destination directory. The
entire copying process should run in a recursive algorithm.

28.4 Implementation

28.4.1 Main Class »TransferApp«

Start Eclipse With a New Workspace
Now please launch Eclipse and select the workspace named Terminal_Programs when the
ECLIPSE IDE LAUNCHER appears.

Launch Eclipse with this workspace

/users/bsteppan/Java-Projects/Java_Eclipse_Beginner/Terminal_Programs

Workspace »Terminal_Programs«

Figure 28.4 Select a new workspace.

Open the Dialog »New Java Project«
Then open the wizard for creating a new Java project (Figure 28.5). In this dialog, enter the
title »Transfer« as the project name. Then check whether the dialog shows at least Java 13
as the Java Runtime Environment (JRE).



28.4 Implementation 5

Transfer

/users/bsteppan/projects/Java_Eclipse_Beginner/Terminal_Programs

Figure 28.5 Create new Java project.

Deselect Modules
On the second page of the dialog you have to deselect the option CREATE MODULE-
INFO.JAVA FILE. It is not needed for this example. The remaining settings of the dialog can
be left as they are displayed in the development environment. Afterwards please create the
project by clicking on FINISH.

Call the Dialog »New Java Class«
Now please expand the new project in the PACKAGE EXPLORER on the left side of Eclipse.
Inside the project you will find the node SRC. Since you have not yet created a class the
directory is still empty, of course. To change this, right-click on the directory. Then select
the menu command NEW � CLASS (Figure 28.6).



6 28 Terminal Programs

Transfer

Figure 28.6 The menu command for calling the »New Java Class« dialog.

Package Structure
The class TransferApp belongs to the package programmingcourse. For a project like Trans-
fer, which consists of only two classes, further subdivision is unnecessary. Also superfluous
are object or class variables.

Used Classes
Only three direct class imports from the pool of the Java class libraries are needed. These
used classes are used to read in the property file. If this fails, a IOException is thrown. It will
be caught by the program, of course.

Create New Class »TransferApp«
The dialog for creating a class contains a field in the upper area called SOURCE FOLDER. This
is the directory of the source code where Eclipse will store the new class. The second field
denotes the name of the package to which the new class should belong. Please choose here
the package name programmingcourse. The next field ENCLOSING TYPE is not important
for this exercise and can be left empty. In the next field you have to enter the name of the
class TransferApp. Use the radio buttons named MODIFIERS to set the access level of the
new class. You can leave the default value public as it is here. The default public value makes
the class accessible outside the package from any other class.



28.4 Implementation 7

Terminal_Programs/src

programmingcourse

TransferAppClass name

Method »main()«

Directory source code
Package name

Figure 28.7 Create the new class »TransferApp« with a method »main()«.

Finally, select that Eclipse creates the method main(). If you have set this option, please
click FINISH now to close the dialog and create the class. The class is of course still empty.
It should first get a constructor.

Constructor
The constructor of the TransferApp class consists of two parts: the call to the copy method
of the class CopyLogic and the exception handling if this call fails. The exception handling
catches an error of the type IOException, which can occur whenever an operation for input
or output fails.

Listing 28.1 The constructor creates the transfer program.

16 public TransferApp(String source, String destination) {
17 try {
18 CopyLogic.copy(source, destination);
19 } catch (IOException exception) {
20 System.out.println("Error while copying (directories correct?)"
21 + ": " + exception.getMessage());
22 exception.printStackTrace();
23 }
24 }



8 28 Terminal Programs

Method »showHelp()«
The method showHelp() is used to help the user by providing information. It is called whe-
never there is an error input by the user or within the property file. It simply outputs a help
text and then calls the method exit() of the class System, which immediately terminates the
program. Via parameter 1 the method conveys that it was not a normal program end. A
normal program end is signaled with the return value 0.

Listing 28.2 The method »showHelp()« outputs information about the correct program start.

26 private static void showHelp() {
27 System.out.println(
28 "Please use two different parameters\n");
29 System.out.println("TransferApp <Source> <Destination\n");
30 System.out.println("or the following properties file:\n");
31 System.out.println("<TransferApp directory>/App.properties\n");
32 System.out.println("with the following entries:\n");
33 System.out.println("Source <Source directory>");
34 System.out.println("Destination <Destination directorys>");
35 System.exit(1);
36 }

Methode »main()«
This method implements the process diagram from Figure 28.3. At the beginning, the me-
thod creates a String object for the warning that the program issues in case of equal para-
meters. Then it creates an object of class Properties which will read the parameters from a
control file in case the user has not entered any parameters from the command line.

Listing 28.3 The method »main()« starts the transfer program

38 public static void main(String args[]) {
39 switch (args.length) {
40 case 0: //Case 1: No parameter => try to load the properties file
41 String source = null;
42 String destination = null;
43 try {
44 System.out.println("Installation directory:\n\n"
45 + System.getProperty("user.dir")+ "\n");
46 Properties configuration = new Properties();
47 configuration.load(new FileInputStream("App.properties"));
48 source = configuration.getProperty("Source");
49 destination = configuration.getProperty("Destination");
50 } catch (IOException exception) { //Case 1.1: Properties file not

found
51 System.out.println("Properties file not found: " + exception);
52 showHelp(); //Show help
53 };
54
55 if ((source != null) && (destination != null)) {



28.4 Implementation 9

56 if (source.equals(destination)) { //Case 1.2: Source =
Destination

57 System.err.println("Error: Source = Destination\n");
58 showHelp(); //Show help
59 } else { //Case 1.3: Source != Destination
60 new TransferApp(source, destination);
61 }
62 } else {
63 System.err.println("Error: Properties file not correct\n");
64 showHelp(); //Show help
65 }
66 break; //Case 1
67
68 case 1: //Case 2: Too few parameters
69 System.err.println("\nError: Too few parameters\n");
70 showHelp();
71 break;
72
73 case 2: //Case 3: 2 Parameters
74 if (args[0].equals(args[1])) { //Case 3.1: Source = Destination
75 System.err.println("Error: Source = Destination\n");
76 showHelp();
77 }
78 new TransferApp(args[0], args[1]); //Case 3.2: Source !=

Destination
79 break;
80
81 // Exercise on my website:
82 default: //Case 4: Too many parameters
83 System.err.println("\nError: Too many parameters\n");
84 showHelp();
85 break;
86 }
87 }

This is followed by the said case decision, which is handled by a case statement. The com-
mand line parameters enter the method main() through a string array named args. Each
string array has a method called length that can be used to determine its length. If the
length is 0, no parameter was passed, if it is 1, a parameter was passed, and so on.

Figure 28.8 shows again the overall flow of the Transfer program in a sequence diagram.
After calling the Main function (point 1 of the diagram), the program analyzes the user
input (points 1.2 to 1.8) to decide immediately whether it makes sense to start the copy
operation. If the user input makes sense, the program creates an object of the class Transfer.
The constructor of this class creates an object of the class copy logic and starts the copy
process.



10 28 Terminal Programs

main()

TransferApp

1

CopyLogic

Case 0, 1:2

Case 2: copy3

Configuration
incorrect

End of program

End of program

Figure 28.8 The sequence diagram of the overall flow.

28.4.2 Class »CopyLogic«

Package Structure
The class CopyLogic is assigned the same package as the main class of the application.

Used Classes
The class CopyLogic needs only classes of the Java IO library to copy files and directories.
The copy method has only two variables to remember the source and destination directory.

Copy Methods
The copy method rcopy() is the core of the program algorithm. It ensures that both files
and subdirectories are copied. For this purpose two objects of the type File are passed to
it. Subsequently, the method determines whether a directory or a file is to be copied. If it is
a directory (Case 1), a new directory with the same name is created in the target path, the
source directory is read in and converted into an array. The method processes this array
recursively, i.e. it calls itself again and again until the entire directory tree has been copied.

Listing 28.4 The method »rcopy« performs the copy operation.

38 private static void rcopy(File source, File destination) throws
IOException {

39 logger.info("Copy from:\n\n" + source + "\n\nto:\n\n" + destination);
40 if (source.isDirectory()) { //Is the source a directory?
41 destination.mkdir(); //Create directory in the destination path
42 String[] directoryEntry = source.list(); // List of directory

entries
43 for (int i = 0; i < directoryEntry.length; i++) {



28.4 Implementation 11

44 String entry = directoryEntry[i];
45 logger.info("\nCopy ".concat(String.valueOf(
46 String.valueOf(entry)))); //Debug info
47 rcopy(new File(source, entry), //Recursively copy all source

directories
48 new File(destination, entry)); //... to the destination
49 }
50 }
51 else { //No? Then the source is a file!
52 int numberOfBytes;
53 byte[] buffer = new byte[32768];
54 FileInputStream in = new FileInputStream(source);
55 FileOutputStream out = new FileOutputStream(destination);
56 while ((numberOfBytes = in.read(buffer)) > 0) {
57 out.write(buffer, 0, numberOfBytes);
58 }
59 in.close(); //Close file input stream
60 out.close(); //Close file output stream
61 }
62 }

By the fact that the method makes a case distinction at the beginning whether a file or a
directory is to be copied, the following is achieved with a renewed run: If case 2 occurs and
a file is recognized, this is copied. This continues until the method has also copied the last
file.

28.4.3 Properties File

To prevent the program from producing errors due to an accidental start, the source direc-
tory and destination directory parameters of the properties file initially have no values after
them. If the program is started accidentally, it performs a comparison and issues an error
message because both parameters are the same (Case 1.2).

Listing 28.5 The properties provide the parameters for the transfer program.

1 #=================================================
2 #Program: Transfer
3 #Description: Book "Getting Started With Java Using Eclipse"
4 #Copyright: (c) 2023 by Bernhard Steppan
5 #Autor Bernhard Steppan
6 #Version 1.0
7 #=================================================
8 #
9 #========= Correct path for Windows ==============

10 #Source=C:/Source
11 #Destination=U:/Destination
12 #=================================================
13 #
14 #===== Correct path for Unix (Linux, MacOS) ======
15 #Source=/source



12 28 Terminal Programs

16 #Destination=/destination
17 #=================================================
18 #
19 #================= Preferences ===================
20 #Source
21 #Destination
22 #=================================================

In this way, the user should be forced to consciously edit the file and fill it with meaningful
values. Comments are introduced in properties files with a double cross. You can use them,
for example, to remember multiple source and destination directories.

28.5 Test
To test the program start the program from the Eclipse development environment. To crea-
te a startup configuration, now right-click on the main class Transfer. Then select RUN AS

� JAVA APPLICATION from the context menu. It makes sense to have several start configu-
rations to check the effect of the case discrimination of the method main.

When experimenting with the Transfer program, keep in mind that copy programs can do
great damage if they have not been tested sufficiently and carefully. Therefore, work on-
ly with directories that do not contain important information until you are sure that the
program works without errors.

28.6 Deployment
Deployment is the final step in using a Java program as the user is accustomed to using
other programs that come with the operating system, for example. Although the program is
small, it can also be delivered in an archive so that the individual components are bundled.
To do this, perform archiving with the Eclipse tool (Chapter 20, »Development Processes«).

Listing 28.6 This batch file starts the transfer program without Eclipse.

1 @echo off
2 REM
3 REM Programm: Transfer
4 REM Description: Book "Getting Started With Java Using Eclipse"
5 REM Copyright: (c) 2023 by Bernhard Steppan
6 REM Author: Bernhard Steppan
7 REM Version 1.0
8 REM
9 REM Please enter here the correct path to the bin directory of the JDK:

10 java -jar Transfer.jar
11 @echo on



28.7 Summary 13

After that you have to write a batch file (Windows) or a shell script (Unix) for starting the
application. How such a batch file looks like can be seen in Listing 28.6).

28.7 Summary
Terminal programs are programs without a graphical user interface. This program has
the task to copy a directory tree completely to another place. It proceeds recursively. This
means that the copy method calls itself.

I hope you enjoyed
this excursion into the world

of terminal programs and this bonus chapter.
If you have any questions,

please write to us.

Figure 28.9 If you have any questions, please write to us.

The copy program is a good example of error handling. It is controlled by input parameters.
If these are not available, it searches for a batch file. If this cannot be found either, it prints
an error message on the terminal.


	28 Terminal Programs
	28.1 Introduction
	28.2 Requirements
	28.3 Analysis and Design
	28.3.1 Reading the Configuration
	28.3.2 Copy Logic

	28.4 Implementation
	28.4.1 Main Class »TransferApp«
	28.4.2 Class »CopyLogic«
	28.4.3 Properties File

	28.5 Test
	28.6 Deployment
	28.7 Summary


