

NVIDIA GB200 NVL Partition

User Guide

 DU-12143-001 | April 2025

https://manuals.plus/m/add8325b85398558d22865b03e53908575fcc8b2208b07ec1479354e4f92a1a2

Document History
DU-12143-001

Version Date Authors Description of Change

0.1 February 21, 2025 MG and the
MNNVL team

The initial release.

0.2 April 22, 2025 Updates to Trunk Link Fault handling, NVOS CLI, Multicast
recommendation

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 2

Table of Contents
1. Overview..6

1.1 Introduction...6
1.2 Platform Location Information.. 9

2. NVLink Partitioning..11
2.1 Overview...11
2.1 Types of Partitions... 13

2.1.1 Location-Based GPUs.. 13
2.1.2 GPU UID-Based Partitions..13
2.1.3 Zero-GPU Partitions..14

3. Creating a Default Partition... 14
3.1 UID-Based Default Partition...15

3.1.1 Inter-Chassis UID-Based Default Partition... 15
3.2 Location-Based Default Partition.. 16

4. Administrator-Defined Partitions..16
4.1 GRPC APIs..17

4.1.1 Basic APIs..17
4.1.1.1 Topology and Domain APIs... 17

4.1.1.1.1 GetDomainProperties.. 17
4.1.1.1.2 GetDomainStateInfo.. 18

4.1.2 Compute Nodes and the GPU APIs..20
4.1.2.1 GetComputeNodeCount..20
4.1.2.2 GetComputeNodeLocationList... 22
4.1.2.3 GetComputeNodeInfoList...23
4.1.2.4 GetGpuInfoList...24

4.1.3 Switch Node and Switch APIs.. 26
4.1.3.1 GetSwitchNodeInfoList..26

4.3.2 GetSwitchInfoList..27
4.1.4 Partition APIs...28

4.1.4.1 GetPartitionCount.. 28
4.1.4.2 GetPartitionIdList... 30
4.1.4.3 GetPartitionInfoList... 30
4.1.4.4 CreatePartition.. 33
4.1.4.5 DeletePartition...35
4.1.4.6 Modifying the Partition (AddGpusToPartition/RemoveGpusFromPartition).
35

4.2 NVOS CLIs..36
4.2.1 Creating SDN Partitions..37

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 3

4.2.2 Adding GPUs To a Partition... 37
4.2.3 Removing GPUs From a Partition..38
4.2.4 Viewing the SDN Partition... 38
4.2.5 Deleting an SDN Partition..39

5. Control Plane Software High Availability.. 40
5.1 Persistence and Recovery Overview...40
5.2 Partition Metadata Availability..41
5.3 Restarting Fabric Manager for Established Partitions... 41
5.4 Restarting Fabric Manager During Ongoing Partition Operations.................................... 42
5.5 GFM Restart and a Partition Wipeout..43
5.6 Default Partition and Fabric Mode Restart..43

6. Partition Fault Handling...44
6.1 GPU...44
6.2 Access Link..45
6.3 Trunk Link.. 45

6.3.1 Faulty Trunk Link..45
6.3.2 Miswired Trunk Links..46

6.4 Compute Tray... 47
6.5 Switch Tray/Switch...48

7. Maintenance...48
7.1 Maintenance Flow for a Compute Tray..49

7.1.1 Maintenance in a Default Partition.. 49
7.1.2 Maintenance in a User Partition..50

7.1.2.1 Location-Based User Partition.. 50
7.1.2.1.1 Using A Zero-GPU OFR Partition... 50
7.1.2.1.2 Using A Location-Based OFR Partition... 50

7.1.2.2 UID-Based User Partition...50
7.1.3 Additional Maintenance Flows... 51

7.1.3.1 Location-Based Partition...51
7.1.3.2 UID-Based Partition... 52

7.1.4 OFR Partition Example...52
7.2 Maintenance Flow for Trunk Link Failures..53
7.3 Maintenance Flow for Switch Trays.. 53
7.4 Maintenance Flow for Cable Cartridge..53

8. EGM Support..54
8.1 Security Considerations...54

9. Multi-Cast Support..56
9.1 Reserving Partitions.. 56

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 4

9.2 Suggested Sizing.. 56
9.3 Administrator Notification..57

10. Admin and Tenant Workflows...57
10.1 Platform-Location Information.. 58

10.1.1 Tenant View... 58
10.1.2 Admin View.. 58

10.2 NVLink State.. 58
10.2.1 Admin View.. 58
10.2.2 Tenant View... 58

10.3 GPU Fabric State..59
10.3.1 Admin View.. 59
10.3.2 Tenant View... 59

10.4 GPU Recovery State..60
10.4.1 Tenant View... 60

10.5 GPU Probe and Recovery Actions... 61
10.6 Virtualization..63

11. FAQs...64
12. Appendix..65

12.1 Partitioning Examples.. 65
12.1.1 Common Code..65
12.1.2 Creating a GetGpuInfoList-Based Partition... 68
12.1.3 Creating a GetComputeLocationList-Based Partition...70
12.1.4 Deleting the Default Partition... 72
12.1.5 Adding or Removing GPUs from the Default Partition... 73
12.1.6 Printing Currently Active Partitions.. 74
12.1.7 OFR Partition...75

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 5

1. Overview
This chapter provides an overview of partitions in NVIDIA® GB200 NVL systems.

1.1 Introduction
NVIDIA NVLink™ is a high-speed interconnect that allows multiple GPUs to communicate
directly. NVLink Multi-Node is an NVLink network where multiple systems are
interconnected to form a large GPU memory fabric also known as an NVLink Domain.

 NVLink Multi-Node is implemented using the NVIDIA GB200 reference architecture, and
the architecture designs are provided in Table 3.

Table 1. Supporting Documentation and References

Term Description

NVLink A high-speed link to enable GPU-to-GPU communication.

Compute Node An OS instance with at least one GPU.

Switch Node An OS instance with at least one NVLink switch.

Access Link An NVLink between an NVIDIA NVSwitch™ and a GPU.

Trunk Link An NVLink between NVSwitches.

NVLink Domain A set of nodes that can communicate over NVLink.

FM Fabric Manager

The NVLink Network Control Plane service is provided by the FM
service.

SM/NVLSM NVLink Subnet Manager

A service that originates from NVIDIA InfiniBand Switches and
has the modifications to effectively manage NVSwitches.

NMX-C NMX-Controller

Service that provides management capabilities for an NVLink
domain.

Control Plane The software suite that includes FM, SM, and NMX-C.

Tenant A user or job scheduler that runs an NVIDIA CUDA® job.

Admin Entity that is responsible for allocating partitions to a tenant.

NVLink Partition A subset of GPUs in a hardware isolation boundary.

Default Partition A Control Plane created an NVLink partition that allows all GPUs
in the NVLink Domain to communicate.

User Partition An NVLink partition that is created and managed by an admin.

Inter-Chassis Partition A partition that uses switch-to-switch NVLinks (also known as
trunk links).

Intra-Chassis Partition A partition that uses switch-to-GPU NVLinks (also known as
access links).

Partition Id Logical identifier for a partition in an NVLink domain.

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 6

Term Description

NVOS NVIDIA Networking OS, which was previously known as MLNX-OS.

NVOS is used as the Switch OS for L1 NVSwitch Trays.

OFR Out For Repair.

Chassis Id Unique logical identifier of a chassis in an NVLink Domain.

Slot Number Unique identifier of a slot in a chassis.

Host ID Logical identifier of a CPU instance in a slot.

Gpu ID Logical identifier of a GPU in a host.

Gpu UID Unique identifier of a GPU.

Gpu Location Location of a GPU in an NVLink Domain that includes chassisId,
slotNumber, HostId, and GpuId.

Table 2 provides a list of supporting documentation that are referred to in this guide.

Table 2. Supporting Documentation and References

No Document Title Documentation

1. NMX-Controller gRPC APIs Documentation https://docs.nvidia.com/networki
ng/networking-nvlink/index.html

2. NVIDIA GB200 NVL System Bring-up Guide for 0.9.00 Software Contact your OEM vendor for
support.

3. Grace-Hopper I/O Virtualization Reference Code Release Notes Contact your OEM vendor for
support.

4. NVIDIA NVOS User Manual:

● QS version
● PS version

https://docs.nvidia.com/networki
ng/networking-nvlink/index.html

5. NVIDIA GB200 NVL Service Flow User Guide Contact your OEM vendor for
support.

Table 3. GB200 Reference Architecture Designs

NVLink Domain # Compute
trays per
chassis

Switch
Trays per
chassis

Number of
CPUs/GPUs in a
tray

Chassis

GB200 NVL36x2 9 9 C2G4 2

GB200 NVL36x2 18 9 C1G2 2

GB200 NVL72 18 9 C2G4

1

Figure 1 shows the GB200 2xNVL36 platform with 18 compute trays and nine switch trays
per chassis.

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 7

https://docs.nvidia.com/networking/networking-nvlink/index.html
https://docs.nvidia.com/networking/networking-nvlink/index.html
https://docs.nvidia.com/networking/networking-nvlink/index.htm
https://docs.nvidia.com/networking/networking-nvlink/index.htm

Figure 1. The GB200 NVL36x2 Platform with 18 Compute Trays and Nine
Switch Trays Per Chassis

Figure 2 shows the GB200 NVL72 platform with 18 compute trays and nine switch trays.

Figure 2. The GB200 NVL72 Platform with 18 Compute Trays and Nine Switch
Trays

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 8

1.2 Platform Location Information
NVLink Multi-Node uses the platform location information as a building block to identify
resources. Figure 3 illustrates the taxonomy of this information.

Figure 3. GB200 Platform Location Information

The platform location information is composed of layers of the following identifiers:

● Chassis
○ Serial Number

■ Unique identifier of a chassis.
The serial number is read from an EEPROM on the cable cartridge in the
backplane.

○ ID
■ A logical ID that maps to a chassis serial number.

If users do not provide this optional mapping during provisioning, the Control
Plane assigns the map during the resource discovery phase.

● Switch tray
○ Slot Number/ID

Absolute physical number of a slot.
○ Tray Index

Relative physical number of a slot according to its type(switch/compute).
○ UID

Unique identifier of a switch tray.
○ Host ID

Unique identifier of an OS domain that is running in the switch tray. This ID
represents a switch node.

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 9

○ Switch ID
Logical identifier of a switch ASIC in a switch node.

○ Switch UID
Unique identifier of a switch ASIC in a switch node.

○ Switch Port Number
Unique identifier of a switch port in the ASIC.

● Compute tray
○ Slot Number/ID

Absolute physical number of a slot.
○ Tray Index

Relative physical number of a slot according to its type(switch/compute).
○ UID

Unique identifier of a compute tray.
○ Host ID

Unique identifier of an OS domain that is running in the compute tray. This ID
represents a compute node.

○ GPU ID
Logical identifier of a GPU in a compute node.

○ GPU UID
Unique identifier of a GPU in a compute node.

○ GPU Port Number
Unique identifier of a port in the GPU.

The following links provide additional information about the Platform Location:

● nvidia-smi
● NVOS CLI
● NMX-C GRPC API

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 10

2. NVLink Partitioning
This chapter provides information about NVLink Partitioning.

2.1 Overview
NVLink Partitioning allows an NVLink domain to be divided into at least one hardware
isolation domain, and each domain is referred to as an NVLink Partition, and isolation is
configured by the Control Plane. The routing and fabric address assignment are configured
on the GPUs so that memory transactions between the GPUs in the partition are confined
to the partition boundary. NVLink Partitioning offers several use cases:

● The GPU fabric can be fragmented and used for small, medium, and large-sized
workloads.

● Offers multi-tenancy.

NVLink Partitioning has the following properties:

● Ensures that data paths are isolated in each partition.
● Each NVLink is allocated to one tenant, which ensures exclusive access.
● Isolation is configured and is managed by the Control Plane.
● NVLinks are not shared across different partitions.
● Partitions can be created with an arbitrary set of nodes in the NVLink domain.

○ Partitions created with trunk links are called Inter-Chassis partitions.
○ Partitions created without trunk links are called Intra-Chassis partitions.

● Partitions cannot span across NVLink domains.
● A GPU belongs to only one partition at a time.
● Partitions can exist without any GPUs allocated to them.

Here are the limits of an NVLink Partition:

● Partitions can exist with no resources allocated to them, so the maximum number of
partitions in an NVLink Domain is the number of supported partitionIds.
For GB200 platforms, this value is set to 32766(0x1- 0x7FFE).

● For partitions that are created with at least one GPU, the maximum number of
partitions in an NVLink Domain is the total number of GPUs in the NVLink Domain.
On a NVL36x2 system, for example, the maximum number of partitions of size one GPU
is 72 because the NVLink Domain supports 72 GPUs.

● The size of the largest partition is the maximum number of GPUs in that NVLink
Domain.
In this case, one partition is assigned with all the GPUs in the NVLink domain. On a
NVL36x2 system, for example, the largest partition is one with 72 GPUs because the
NVLink Domain supports 72 GPUs.

Figure 4 illustrates an example of how partitions can be created in a Multi-Node NVLink
Domain that has two chassis with 36 GPUs per rack. Chassis 1 and 2 host an Inter-Chassis

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 11

partition where multiple green VMs and one per compute node are spawned and are
allocated to Tenant 1. Chassis 1 also hosts a partition where the orange VM is assigned to
Tenant 2. Chassis 2 also hosts a partition where the purple VM is assigned to Tenant 3.
Figure 4 illustrates how NVLink partitioning supports a multi-tenancy model that efficiently
allocates resources in the rack.

Figure 4. Multi-Node NVLink Domain

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 12

2.1 Types of Partitions
A partition type indicates how the resources that belong to a partition are identified. Here
are the partition types:

● Location Based
● GPU UID Based
● Zero GPU

When using the same partition type to manage a partition, there are strict rules (refer to
Modify the Partition (AddGpusToPartition/RemoveGpusFromPartition).

2.1.1 Location-Based GPUs
Each GPU is uniquely identified by its Location Information (refer to Platform Location
Information), which is a hierarchy of identifiers that are used to uniquely identify the GPU.
Here is a list of the identifiers:

● Chassis ID
● Slot Number
● Host ID
● Gpu ID

A location-based partition is bound to the resources in the assigned location. The location
is static, but the resources in the location are dynamic. This implies that if a compute tray
that belongs to a partition is moved to a different slot, the partition loses the GPUs that
migrated with the compute tray.

A location-based partition can also be created before GPUs are discovered in that location.
However, GPUs are allocated to the partition, and routing is configured after discovery and
initialization is complete.

2.1.2 GPU UID-Based Partitions
A GPU has a Unique Identifier (UID), which is a 64-bit value, assigned while it is
manufactured. This is different from the GPU UUID, which is alphanumeric. A GPU
UID-based partition is bound to the GPU UIDs when the UIDs move in the NVLink domain.
The GPU location is only used to track the association of the GPU UIDs to its physical
location. A UID must be assigned to the GPU before adding it to a partition.

Note Here is some additional information:

● To manage an NVLink Domain’s partitions, we recommend that you stick to one
partition type (Location or UID based).

This helps an admin streamline partition workflows.

● When a compute tray moves from a UID-based partition to a created location-based
partition, the tray is assigned to the location-based partition and the UID-based
partition loses the compute tray (refer to Maintenance Flow for a Compute Tray for
more information about these scenarios.

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 13

● Location-based partitions can identify a partition that uses the location information of
its resources.

GPU UID-based partitions can identify a partition using a specific list of GPUs. Selecting
a partition type depends on the requirement of the application that manages
partitions.

2.1.3 Zero-GPU Partitions
A partition can also be created with no GPUs, for example, without specifying UIDs or
locations. The GPUs can be allocated to it later by specifying the type. When you create the
partition, the partition type is undefined, but after the partition is allocated with a
resource, the type is updated to UID or location depending on how users allocate
resources. This also provides a transition path for a partition type from location-based to
UID-based and vice versa. Users can modify a partition to make it a zero-GPU partition and
switch its type after this point.

The primary use case for a zero-GPU partition is to facilitate compute tray maintenance. A
partition that is reserved for compute tray maintenance is referred to as an Out For Repair
(OFR) partition. Refer to Maintenance Flow for a Compute Tray for more information about
OFR partitions.

3. Creating a Default Partition
An NVLink Domain can be configured to boot up with a Default Partition, so that all GPUs
can communicate with each other. This special partition encompasses all GPUs in the
NVLink Domain so that GPUs can share memory. The Default Partition can be modified or
deleted using the NMX-C GRPC API or NVOS (refer to GRPC APIs and NVOS CLIs for more
information).

The following Fabric Manager configurations are used to manage the Default Partition:

● MNNVL_ENABLE_DEFAULT_PARTITION (Default is 1)
○ Determines whether a Default Partition needs to be created at boot up.
○ Allowed values:

■ 0: Do not create a Default Partition.
■ 1: Create a Default Partition.

● MNNVL_DEFAULT_PARTITION_TYPE (Default is 2)
○ Sets the type of the Default Partition
○ Allowed values:

■ 1: Use GPU Location.
■ 2: Use GPU UID.

● MNNVL_DEFAULT_RESILIENCY_MODE (Default is 2)
○ Determines the resiliency mode for a Default Partition and when it is unspecified on

a user partition.
○ Allowed values:

■ RESILIENCY_MODE_FULL_BANDWIDTH (1)
■ RESILIENCY_MODE_ADAPTIVE_BANDWIDTH (2)
■ RESILIENCY_MODE_USER_ACTION_REQ (3)

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 14

Refer to Partition Fault Handling for more information about the impact of selecting a
resiliency mode based on the partition behavior.

The Default Partition automatically accumulates GPUs as they are discovered, and this is
the active phase of the Default Partition. When the system boots, the partition does not
need to have any of its compute trays populated. Compute trays might be inserted later
and kickstart the active phase, which ensures that the inserted compute trays are allocated
to the Default Partition.

In a multi-chassis NVLink domain, the Default Partition becomes an Inter-Chassis partition
where all trunk links are already allocated to this partition. A trunk link addition, removal, or
failure can disrupt the CUDA applications that are running in the partition. The
preallocation of trunk links ensures that traffic disruption does not happen through the
active phase.

The Default Partition is location-based or GPU UID-based.

3.1 UID-Based Default Partition
The partition accumulates GPUs (active phase) as new compute trays are discovered.

During the active phase, if no compute trays are discovered, the Default Partition can be an
Undefined type. The addition of a discovered compute tray updates the type to UID based
type. An API request to create, delete, or modify a partition halts the active phase of the
partition.

The partition now enters the passive phase. In this phase, newly discovered GPUs are not
allocated to the Default Partition and cannot be used to run a workload until they are
allocated to a partition. When a zero-GPU OFR partition is created with a Default Partition,
the Default Partition transitions to the passive phase.

3.1.1 Inter-Chassis UID-Based Default Partition
A Default Partition can span multiple chassis like an Inter-Chassis partition. In this case,
the partition is allocated with the available trunk links in the NVLink domain after the first
GPU is discovered. The allocation ensures that as additional compute trays are discovered,
they are allocated to the Default Partition without having to adjust the required trunk links
to maintain optimum bandwidth. This helps existing CUDA applications to continue running
their workloads as more compute trays are added to the Default Partition. When a
zero-GPU partition is created with a Default Partition, the partition transitions to the
passive phase. The compute trays discovered from this point do not belong to a partition
and must be explicitly added to one. If an Inter-chassis partition is created out of these
compute trays, they might not have an adequate number of trunk links for optimum
bandwidth. In this scenario, the admin explicitly runs a reroute operation (refer to Modify
Partition (AddGpusToPartition/RemoveGpusFromPartition) on the Default Partition to
adjust the number of trunk links again and free the unused ones to be used with the newly
created partition.

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 15

Note This operation will disrupt CUDA applications that are running in the Default
Partition.

3.2 Location-Based Default Partition
The partition accumulates GPUs (active phase) as new compute trays are discovered.

The partition never enters a passive phase because all resources (locations) were already
created for this partition. Newly discovered GPUs are allocated to the Default Partition
because of their location. As a result, when a zero-GPU OFR partition is created, the Default
Partition continues to accumulate GPUs. In certain scenarios, a location-based Default
Partition might be more suitable because the Default Partition always operates in the
active phase.

Note In Maintenance Flow for a Compute Tray, allocating GPUs to the zero-gpu OFR
partition requires sending requests to the Control Plane to remove a tray from the Default
Partition and add a tray to the OFR partition.

4. Administrator-Defined Partitions
This chapter provides information about administrator-defined partitions.

When MNNVL_ENABLE_DEFAULT_PARTITION is set to 0, the NVLink domain is configured to not
have any GPUs communicate with each other at boot time. In this configuration, memory
sharing access is disabled. To enable memory access, the system must complete the
Partition Creation flow, and memory sharing is limited based on the partition boundary.
Partitions created this way are referred to as Administrator-Defined Partitions or
User-Defined Partitions.

To manage partitions, the system must reach a certain state where managing partitions is
allowed. When the system boots, Fabric Manager (FM) initiates the GPU and the switch
discovery process. After being discovered and configured, FM declares the initialization as
complete and makes the partitioning service available to the client, and the Control Plane
State is set to NMX_CONTROL_PLANE_STATE_CONFIGURED.

To manage partitions, the client can make gRPC API requests to the NMX Controller. This
section provides information about the GRPC APIs in the context of partition management.
The detailed GRPC API specification, the REST APIs and the NVOS CLI support to manage
partitions are also available.

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 16

Note We recommend that you use the Default or the User Partitions to manage an NVLink
Domain but not both types simultaneously. This provides better control over partition
behavior.

The User Partition can exist with the Default Partition when maintenance needs to be
performed on the compute trays in a Default Partition.

4.1 GRPC APIs
This section provides information about the GRPC APIs.

4.1.1 Basic APIs
This section provides information about the Basic GRPC APIs.

4.1.1.1 Topology and Domain APIs

This section provides information about the Topology and Domain GRPC APIs.

4.1.1.1.1 GetDomainProperties

This API provides an overall view of the resources expected in the NVLink domain and
provides the maximum number of expected resources (including but not limited to GPUs,
switches, compute nodes, switch nodes, partitions, and NVLinks).

Here is the GRPC response message:

protobuf

message DomainProperties {

uint32 maxComputeNodes

uint32 maxComputeNodesPerChassis

uint32 maxGpusPerComputeNode

uint32 maxGpuNvLinks

uint32 lineRateMBps

uint32 maxSwitchNodes

uint32 maxSwitchNodesPerChassis

uint32 maxSwitchesPerSwitchNode

uint32 maxSwitchNvLinks

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 17

uint32 maxNumPartitions

uint32 maxNumAlids

uint32 maxMulticastGroups

uint32 maxNumPorts

}

● maxMulticastGroups

This is the maximum number of multicast groups that are available in the NVLink
domain. During partition creation (refer to Compute Nodes and the GPU APIs), this field
helps the admin set a limit to the number of multicast groups that are available to a
partition.

● maxNumPartitions

This is the maximum number of partitions of size at least one GPU that can be created
in the NVLink domain. This is a useful upper limit to determine how many partitions can
be created.

4.1.1.1.2 GetDomainStateInfo
This API provides dynamic state information about the NVLink domain.

GRPC response message:

protobuf

message DomainStateInfo{
 ControlPlaneState controlPlaneState
 uint32 availableMulticastGroups
 string configStatusDescription
 }

● controlPlaneState

Provides the state of the Control Plane and the states that are relevant to the user
partition:

● NMX_CONTROL_PLANE_STATE_STANDBY

When the controller state is Standby, the Control Plane does not initiate resource
discovery. In this state, Partition operations are unsupported.

The return code is NMX_ST_NOT_CONFIGURED.

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 18

● NMX_CONTROL_PLANE_STATE_UNCONFIGURED

When the controller state is Unconfigured, the Control Plane is not ready to initiate
resource discovery because the expected user configuration is pending. In this
state, Partition operations are not ready to be supported.

The return code is NMX_ST_NOT_READY.

● NMX_CONTROL_PLANE_STATE_ERROR

When the controller state is Error, the Control Plane is not ready to initiate resource
discovery until the incorrect configuration is addressed. In this state, Partition
operations are not available.

The return code is NMX_ST_NOT_CONFIGURED.

● NMX_CONTROL_PLANE_STATE_DEGRADED

When the controller state is Degraded, the Control Plane operates with limited
capability. In this state Partition operations are not ready to be supported.

The return code is NMX_ST_NOT_READY.
● NMX_CONTROL_PLANE_STATE_CONFIGURED

When the controller state is Configured, the Control Plane operates in normal
capacity. In this state, partition operations are supported, and an appropriate return
code is returned.

The API availability based on the Control Plane state is summarized in Table 4

Table 4. Control Plane State and API Support

Control Plane State Available APIs Return Codes For
Unavailable APIs

NMX_CONTROL_PLANE_STATE_UNCONFIG
URED

Subscribe

GetDomainStateInfo

NMX_ST_NOT_READY

NMX_CONTROL_PLANE_STATE_DEGRADED GetDomainProperties

GetDomainStateInfo

GetTopologyInfo

GetComputeNodeCount

GetComputeNodeLocationLi
st

GetComputeNodeInfoList

GetGpuInfoList

GetSwitchNodeCount

GetSwitchNodeLocationList

GetSwitchNodeInfoList

GetSwitchInfoList

GetPartitionCount

NMX_ST_NOT_READY

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 19

Control Plane State Available APIs Return Codes For
Unavailable APIs

GetPartitionIdList

GetPartitionInfoList

GetConnCount

GetConnInfoList

GetConnInfoCombined

NMX_CONTROL_PLANE_STATE_ERROR

NMX_CONTROL_PLANE_STATE_ERROR

GetDomainStateInfo NMX_ST_NOT_CONFIGURED

● availableMulticastGroups

Provides the available multicast groups in the NVLink domain. This value varies because
partitions with non-zero multicast group limits are created and destroyed.

● configStatusDescription

Read with controlPlaneState, it provides a descriptive string for the Control Plane state.

Here are a few examples:
● NMX_CONTROL_PLANE_STATE_UNCONFIGURED

● CONFIG_PENDING_UUID
● CONFIG_PENDING_TOPOLOGY
● CONFIG_PENDING_CHASSIS_ID_MAPPING

● NMX_CONTROL_PLANE_STATE_ERROR
● CONFIG_ERROR_MISSING_CHASSIS
● CONFIG_ERROR_DUPLICATE_CHASSIS_SERIAL_NUMBER
● CONFIG_ERROR_CHASSIS_ID_MAPPING_OUT_OF_RANGE
● CONFIG_ERROR_INCORRECT_TOPOLOGY_FILE
● CONFIG_ERROR_CHASSIS_ID_MAPPING_COUNT
● CONFIG_ERROR_ADDITIONAL_CHASSIS_DETECTED

● NMX_CONTROL_PLANE_STATE_DEGRADED
● CONFIG_ERROR_MISWIRED_TRUNK_PORTS

The GRPC API specification contains more information about these states and description
strings.

Refer to Miswired Trunk Links for more information about the
NMX_CONTROL_PLANE_STATE_DEGRADED state with the CONFIG_ERROR_MISWIRED_TRUNK_PORTS
description.

4.1.2 Compute Nodes and the GPU APIs
These APIs gather nuanced information about devices in the expected and discovered
topology, which allows users to determine the number of devices that are discovered and
online.

4.1.2.1 GetComputeNodeCount
This API queries the number of compute nodes based on several filters.

protobuf

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 20

message GetComputeNodeCountRequest {
 ComputeNodeAttr attr
 uint64 chassisId
 ComputeNodeHealth nodeHealth
}

Compute Node Attributes (attr)

Here are the filtering options:

● NMX_COMPUTE_NODE_ATTR_ALL

Another way of specifying “No filter”. This option allows all compute nodes to match.

● NMX_COMPUTE_NODE_ATTR_FREE

This filter matches only completely free compute nodes. If there are GPUs attached to
a compute node that are part of a partition, the nodes will not be included in the count.

● NMX_COMPUTE_NODE_ATTR_FULLY_ALLOCATED

Only matches nodes that have all of their GPUs assigned to a partition. This does not
mean that the nodes belong to the same partition but that every GPU on the compute
node is assigned to a partition.

● NMX_COMPUTE_NODE_ATTR_PARTIALLY_ALLOCATED

Only matches nodes that have some GPUs free and some GPUs allocated to a partition.
This can help narrow a search when users request a GPU partition. It might be
beneficial to have two users share the same compute node.

Chassis ID
This is an optional field to limit searching to one chassis ID, and this ID is meaningful in
multi-chassis systems. To allow all chassis to be included in the search, set the value to 0.

Node Health
Optional additional filter to only include compute nodes with specific health states in the
result.
● NMX_COMPUTE_NODE_HEALTH_UNKNOWN

Use this value if you do not want to filter on compute node health, and this is the
default value.

● NMX_COMPUTE_NODE_HEALTH_HEALTHY
This is used for filtering on compute nodes where the GPUs report that they have full
NVLink capability. If a GPU is degraded, the compute node will no longer be healthy,
and this will filter those compute nodes out of the result.

● NMX_COMPUTE_NODE_HEALTH_DEGRADED
This filter gets compute nodes in which at least one, but not all of the GPUs, are in an
unhealthy state.

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 21

● NMX_COMPUTE_NODE_HEALTH_UNHEALTHY
This health state indicates that all GPUs on the compute node are unhealthy and
cannot participate in NVLink traffic.

Here is the response message:

protobuf

message GetComputeNodeCountResponse {
 uint32 numNodes
}

Num Nodes

Returns the number of nodes that matched the filter that was specified by the parameters
above.

4.1.2.2 GetComputeNodeLocationList
For this filter, many of the filters stay the same as the Count version above.

protobuf

message GetComputeNodeLocationListRequest {
 ComputeNodeAttr attr
 ComputeNodeHealth nodeHealth
 uint64 chassisId
 uint32 numNodes
}

The only new parameter is numNodes.

Num Nodes
In this context, numNodes limits the number of returned locations to the specified value.

Here is the response:

protobuf

message GetComputeNodeLocationListResponse {
 repeated Location locList
}

The difference between this API and the Count version is that this API returns the actual
locations that were filtered for instead of just a count of the locations.

LocList
This specifies a list of Platform Location Information (for example chassisId, slotNumber,
and hostId) to uniquely identify each compute node.

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 22

4.1.2.3 GetComputeNodeInfoList

This API provides a more detailed view of each compute node.

The request is structured so that you pass a list of locations and get more information for
those locations.

protobuf

message GetComputeNodeInfoListRequest {
 repeated Location locList
}

LocList
This is a list of locations used as input to gather the information for each compute node.

For the response message, a parallel list of ComputeNodeInfo structures is returned:

protobuf

message ComputeNodeInfo {
 LocationInfo loc
 uint32 numGpus
 ComputeNodeHealth nodeHealth
 repeated PartitionId partitionIdList
}

message GetComputeNodeInfoListResponse {
 repeated ComputeNodeInfo nodeInfoList
}

Loc (LocationInfo)
In addition to having the normal chassisId, slotNumber, and hostId information, the
LocationInfo structure also contains the chassis serial number and tray index for easy
identification.

Num GPUs
This parameter defines the number of GPUs in this compute node. This will be the same as
the maximum number of GPUs per compute node in the DomainProperties (refer to
GetDomainProperties).

Compute Node Health
The realized health value on a compute node (refer to GetComputeNodeCount).

Partition ID List
This is a complete list of all partitions that touch the current compute node. A partition ID
of 0 indicates the end of the list. For example, if partition ID 1 was on the first GPU in the
compute node, and ID 2 was on the second, and the rest of the GPUs were unallocated, the
list will be 1,2, and 0.

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 23

This information can locate affected partitions when a tray needs to be taken offline for
maintenance. A list with only zeroes corresponds to NMX_COMPUTE_NODE_ATTR_FREE.

Extra Notes on Discovered/Undiscovered Compute Nodes
When a compute node is not discovered, it will have compute node health
NMX_COMPUTE_NODE_HEALTH_UNKNOWN (0). The partition ID list can still be populated with an
existing location-based partition.

4.1.2.4 GetGpuInfoList
This is the fundamental API that identifies the appropriate GPUs that can be allocated to a
new partition. Many of the parameters to the request act as a filter for finding the correct
GPUs.

Here is the request structure:

protobuf

message GetGpuInfoListRequest {
 GpuAttr attr
 uint32 numGpus
 Location loc
 PartitionId partitionId
}

GpuAttr (attr)
This attribute works like a selector on the location and partition ID parameters.

● NMX_GPU_ATTR_ALL

Works as a “No Filter”, which allows all GPUs regardless of their location or partition ID.

● NMX_GPU_ATTR_LOCATION

Only shows GPUs that match a specified location in the loc parameter.

● NMX_GPU_ATTR_PARTITION_ID

Only shows GPUs that are assigned to a partition. When you specify this filter with
partition ID 0, GPUs are not assigned to a partition.

Num GPUs
A limit on the number of GPUs returned.

Loc (Location)
An indicator that the only interesting GPUs should be from a compute node and must be
used with the NMX_GPU_ATTR_LOCATION attribute.

PartitionId
An indicator that the only interesting GPUs should be from a partition ID and must be used
with the NMX_GPU_ATTR_PARTITION_ID attribute.

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 24

Here is the response:

protobuf

message GpuInfo {
 LocationInfo loc
 uint32 gpuId
 uint64 gpuUid
 GpuHealth gpuHealth
 PartitionId partitionId
}

message GetGpuInfoListResponse {
 repeated GpuInfo gpuInfoList
}

Location and GPU ID
This information fully qualifies a GPU’s location. If you need to add a GPU to a
location-based partition, this information allows you to construct a GpuLocation structure.

GPU UID
This is a unique identifier for a GPU and can be used as an alternate way to specify
partition creation.

GPU Health
This parameter can be used to ensure that only healthy GPUs are added to the partition
you create and can also be used as an indicator for maintenance activities:

● NMX_GPU_HEALTH_HEALTHY

The GPU is visible on the fabric and has all of its links in a working state.

● NMX_GPU_HEALTH_DEGRADED

The GPU is seen and some, but not all, of its links are down.

● NMX_GPU_HEALTH_NO_NVLINK

The GPU is unable to participate in NVLink partitioning.

● NMX_GPU_HEALTH_DEGRADED_BW

The GPU can participate in NVLink partitioning but with degraded bandwidth.

Partition ID
Indicates the partition (if any) to which the GPU belongs. If the GPU is available and free,
the value is set to 0.

Extra Notes on Discovered/Undiscovered GPUs
When a GPU is not yet visible on the fabric (undiscovered), the health state will be
NMX_GPU_HEALTH_UNKNOWN (0), and the gpuUid will be set to 0. The partition ID can still be set
when there is an existing user-based partition.

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 25

4.1.3 Switch Node and Switch APIs
The switch (node) APIs provide insight into the state of the switch hardware. The
information includes health states and the partitions that the switch node helps to
maintain. The relevant APIs for partitioning are the switch node and switch information
lists.

4.1.3.1 GetSwitchNodeInfoList
This API contains detailed information about each switch node and to which partitions it
participates when routing traffic.

protobuf

message GetSwitchNodeInfoListRequest {
 repeated Location locList
}

Location List
If you do not provide this list, all switch node information will appear in the response. If a
more specific set of locations is required, the locations can be set here and found using
GetSwitchNodeCount/GetSwitchNodeLocationList, which is not in the scope of this guide (refer
to the NMX-Controller gRPC API Guide, which is a part of the Switch Tray firmware package,
for more information.

The response includes a list of SwitchNodeInfo structures:

protobuf

message SwitchNodeInfo {
 LocationInfo loc
 uint32 numSwitches
 SwitchNodeHealth nodeHealth
 repeated PartitionId partitionIdList
}

message GetSwitchNodeInfoListResponse {
 repeated SwitchNodeInfo nodeInfoList
}

Switch Node Health
This parameter indicates the ability of a switch to route traffic and support the partitions
in its partition ID list.

● NMX_SWITCH_NODE_HEALTH_HEALTHY

The switch is discovered on the fabric and has all its NVLinks up in a working state.

● NMX_SWITCH_NODE_HEALTH_MISSING_NVLINK

At least one NVLink is down in the switch node

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 26

● NMX_SWITCH_NODE_HEALTH_UNHEALTHY

No NVLinks are healthy in the switch node.

Partition ID List
Similar to the ComputeNodeInfo’s partition ID list, this array is finalized by the size or a
terminating partition ID of 0. In a single-chassis environment, all partitions are probably
affected by all switch nodes. In a multi-chassis environment, however, a partition might be
limited to the switches on one chassis.

Extra Notes on Discovered/Undiscovered Switch Nodes
When a switch node is undiscovered, it will have a node health of
NMX_SWITCH_NODE_HEALTH_UNKNOWN. The partition list might have an entry in this scenario
because all switch nodes on the same chassis, as an allocated GPU, facilitate NVLink traffic.

4.3.2 GetSwitchInfoList
For each switch node, there might be multiple switch ASICs. This API provides information
about each ASIC on each switch node. A relation between partition and switch ASIC in the
switch information list does not exist, but the information can narrow down which ports
are causing issues for which partitions.

Here is the request:

protobuf

message GetSwitchInfoListRequest {
 Location loc
 uint32 numSwitches
}

If no parameters are provided, the API will return information about the known switches:

protobuf
message SwitchInfo {
 Location loc
 uint32 switchId
 uint64 switchUid
 uint32 numPorts
 SwitchHealth health
}

message GetSwitchInfoListResponse {
 repeated SwitchInfo switchInfoList
}

Location and Switch ID
Specifies the device on the switch node that is being referenced.

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 27

Switch UID
The unique identifier for a switch ASIC. To narrow the issues, this UID can be correlated
with topology information.

Switch Health
A high-level overview of each switch’s ability to route traffic. This parameter is more useful
when diagnosing issues with partition communication and should be used as a deeper look
into a switch node with a known partition ID list.

● NMX_SWITCH_HEALTH_HEALTHY

The switch is discovered on the fabric and has all of its NVLinks up in a working state.

● NMX_SWITCH_HEALTH_MISSING_NVLINK

Some, but not all, NVLinks are down for the ASIC.

● NMX_SWITCH_HEALTH_UNHEALTHY

No NVLinks are healthy in the switch.

Extra Notes on Discovered/Undiscovered Switches
An undiscovered switch has its health set to NMX_SWITCH_HEALTH_UNKNOWN (0) and its
switchUid set to 0.

4.1.4 Partition APIs
This section provides information about the APIs that you can use to view partition states
and how to manage these partitions.

4.1.4.1 GetPartitionCount
This API queries for partition counts based on a filter.

protobuf
message GetPartitionCountRequest {
 PartitionInfoAttr infoAttr
 uint32 numGpus
 uint32 numNodes
 PartitionHealth health
}

Partition Information Attributes
This parameter selects the parameters that can be used as a filter.

● NMX_PARTITION_INFO_ATTR_ALL

This acts like a “No Filter” and allows partitions of any criteria to pass through to the
response.

● NMX_PARTITION_INFO_ATTR_NUM_GPUS

Only shows information for partitions that contain a certain number of GPUs.

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 28

● NMX_PARTITION_INFO_ATTR_NUM_COMPUTE_NODES

Only shows information for partitions that touch a specified number of compute nodes.
This attribute does not allow you to filter on chassis where those compute nodes are
located.

Partition Health
This is used as a supplementary filter to the above attributes. If specified, it will only allow
partitions that are in the specified health state to be counted.

● NMX_PARTITION_HEALTH_UNKNOWN
A partition that does not have any discovered GPUs will start with this option as the
initial value. This is used as a “No filter” and partitions of any health state will be passed
as part of the result. This is the default value.

● NMX_PARTITION_HEALTH_HEALTHY

A partition where all the available GPUs can communicate at full bandwidth. To maintain
bandwidth, in this state, no GPUs are intentionally excluded from the fabric. This filter
only counts partitions in this state.

● NMX_PARTITION_HEALTH_DEGRADED_BANDWIDTH
A partition that operates with a subset of required trunk links (applies only to
Inter-chassis partitions). This means that the cross-chassis traffic will have a lower
bandwidth than optimal. This filter only counts partitions in this state.

● NMX_PARTITION_HEALTH_DEGRADED
A partition is operating with intentionally excluded GPUs. The GPUs are excluded from
the NVLink fabric because of trunk link failures and to maintain full bandwidth. This
filter only counts partitions in this state.

● NMX_PARTITION_HEALTH_UNHEALTHY
A partition where the fabric health is detected as unhealthy, so traffic might not pass.
This state is considered non-operational.

The partition can go into this state in scenarios including trunk miswirings, unhandled
trunk failures (specifically in user action required resiliency mode), and other internal
failures. This filter only counts partitions in this state.

In the response, only a numPartitions parameter is considered:

protobuf

message GetPartitionCountResponse {
 uint32 numPartitions
}

Num Partitions
The returned number of partitions that match the filter that was provided in the request.

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 29

4.1.4.2 GetPartitionIdList

This API is similar to the Count API above except in two key areas:

protobuf
message GetPartitionIdListRequest {
 PartitionInfoAttr infoAttr
 uint32 numGpus
 uint32 numNodes
 uint32 numPartitions
 PartitionHealth health
}

Num Partitions
This is the only parameter on the request that is different from the GetPartitionCount API
in GetPartitionCount. It limits the number of partition IDs to a maximum value in the
response.

The response returns the realized list of partition IDs based on the filter instead of their
count:

protobuf
message Partition {
 PartitionId partitionId
 uint32 numGpus
}

message GetPartitionIdListResponse {
 repeated Partition partitionList
}

Partition ID
The partition ID is defined as a uint32 because of limitations in protobuf. There is no uint16
representation in the language, the limited pool of partition IDs is 1 to 0x7FFD, and the ID
0x7FFE is reserved only for the Default Partition.

Num GPUs
This is the number of GPUs in the partition as specified by the ID.

4.1.4.3 GetPartitionInfoList
This API provides detailed and more useful information on each partition, and the request
provides a list that will be filled in with specified partition IDs:

protobuf

message GetPartitionInfoListRequest {
 repeated PartitionId partitionIdList

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 30

}

Partition ID List
If this list is empty, the full unfiltered list of all partitions is returned in the response.

The response is defined by the following structures:

protobuf

message PartitionAttr {
 ResiliencyMode resiliencyMode
 uint32 multicastGroupsLimit
}

message PartitionInfo {
 PartitionId partitionId
 string name
 uint32 numGpus
 repeated GpuLocation gpuLocationList
 repeated uint64 gpuUidList
 PartitionHealth health
 PartitionType partitionType
 uint32 numAllocatedMulticastGroups
 PartitionAttr attr
}

message GetPartitionInfoListResponse {
 repeated PartitionInfo partitionInfoList
}

Partition ID
Refer to GetPartitionIdList for more information about the partition ID

Partition Name
The partition name is a unique string that can be used as an alternate way to associate
data to a partition.

Num GPUs
This is the number of GPUs in the partition, and it is the size of the gpuUidList (UID-based)
or the gpuLocationList (location-based) depending on whether the partition is UID-based
or location-based.

GPU Location List
The locations that are associated with a partition. This parameter is populated for location-
and GPU UID-based partitions and is treated as a parallel array with the GPU UID List
parameter. In a location-based partition, this array will remain constant, but the other
might change.

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 31

GPU UID List
This is the unique identifier for the GPU in the location slot as specified by the parallel
location list array. In a GPU UID-based partition, this array remains relatively constant (refer
to GPU UID-Based Partitions), while the other might change.

Partition Health
This is the realized value of the partition health (refer to GetPartitionCount for more
information).

Partition Type
This is an important indicator for a partition and its behavior, and here are the partition
types:

● NMX_PARTITION_TYPE_UNDEFINED

Refer to Zero-GPU Partitions for more information about this partition type.

● NMX_PARTITION_TYPE_LOCATION_BASED

Refer to Location-Based Partition for more information about this partition type.

● NMX_PARTITION_TYPE_GPUUID_BASED

Refer to GPU UID-Based Partitions, for more information about this partition type.

Num Allocated Multicast Groups
This is the real-time indicator of how many multicast groups are active for a partition.

Multicast Groups Limit
There is a hardware limit of 1024 total multicast groups that can be on the fabric at a time.
This parameter specifies how many multicast groups were reserved for this partition out of
the pool of 1024 for all partitions (refer to Multi-Cast Support for more information).

Resiliency Mode
Depending on the resiliency mode for the partition, the partition can enter one of the
following health states:

● Full Bandwidth Mode:

○ NMX_PARTITION_HEALTH_HEALTHY: When the partition is marked as healthy, it is
expected to be in full bandwidth and in a full compute capacity state.
This is the optimal state.

○ NMX_PARTITION_HEALTH_DEGRADED: In this state, some of the GPUs might be marked as
“parked” and their GPU health might be NO_NVLINK.
In this state, the rest of the GPUs will be able to communicate with full bandwidth,
and this is an operational state.

○ NMX_PARTITION_HEALTH_UNHEALTHY: There might be various reasons that cause a
partition to enter an unhealthy state such as the loss of a switch or other internal
failures.

This state is not an operational state.

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 32

● Adaptive Bandwidth Mode:
○ NMX_PARTITION_HEALTH_HEALTHY: When the partition is marked as healthy, it is

expected to be in full bandwidth and in a full compute capacity state.
This is the optimal state.

○ NMX_PARTITION_HEALTH_DEGRADED_BANDWIDTH: In this state, some of the trunk links
might be missing.
However, all of the operational GPUs will be able to communicate with each other in
a degraded bandwidth capacity. This is an operational state.

○ NMX_PARTITION_HEALTH_UNHEALTHY: There might be various reasons that cause a
partition to go into an unhealthy state such as the loss of a switch or other internal
failures.
This is not an operational state.

● User Action Required Mode:
○ NMX_PARTITION_HEALTH_HEALTHY: When the partition is marked as healthy, it is

expected to be in full-bandwidth and full compute capacity state.
This state is considered to be optimal.

● NMX_PARTITION_HEALTH_UNHEALTHY: Here are some of the reasons why a partition might
enter an unhealthy (and non-operational) state:
○ There might be a loss of a switch or other internal failures.
○ In this resiliency mode, the unhealthy state might be a result of an unhandled trunk

link failure.
When a trunk link fails, if the control plane cannot find spare links to restore full
bandwidth, it will immediately go to this state. To reduce the number of required
links, recovery actions include fixing or freeing trunk links or removing GPUs from
this partition

For a partition that is in the DEGRADED, DEGRADED_BANDWIDTH, or UNHEALTHY state due to a trunk
failure, after the required trunk links are available, a manual reroute operation can be used
to restore the partition to a healthy state (refer to Modify the Partition
(AddGpusToPartition) for more information.

Refer to Partition Fault Handling for more information about this parameter.

4.1.4.4 CreatePartition
Before you can use inter-GPU traffic over an NVLink, you need to create a partition .

Here is the request:

protobuf
message GpuLocation {
 Location loc
 uint32 gpuId
}

message GpuResourceId {
 oneof resourceId {
 GpuLocation gpuLocation
 uint64 gpuUid
 }
}

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 33

message CreatePartitionRequest {
 string name
 repeated GpuResourceId gpuResourceId
 PartitionAttr attr
 PartitionId partitionId
}

Partition Name
Name your partition something unique so that you can correlate it to another item in your
database.

Note Unique partition names are currently enforced.

In general, the Default Partition name is reserved.

GPU Resource ID
This parameter is used to identify a GPU by its location, or by its GPU UID, and only one
type of specification is allowed at a time. The list cannot contain mixed locations and UIDs
because homogeneity determines the partition type. The behavior of a partition is
determined by its type (refer to Switch Node and Switch API for more information).

You can create a partition with 0 GPUs by not specifying any partitions in the lists, and the
partition type will be UNDEFINED until the partition is modified. The partition takes on the
type of the modification. When removing GPUs, a partition type can transition back to
UNDEFINED.

Partition Attributes (attr)
The attributes of a partition are specified once at creation. The attributes are the same as
the attributes in GetPartitionInfoList.

Partition ID
Users can also specify the partition ID, but this partition ID must be unique across the
domain.

Return Codes
Refer to the GRPC APIs for more information.

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 34

4.1.4.5 DeletePartition
Deleting a partition is the release of associated partition resources such as GPUs, a unique
name (if specified), multicast reservations, and the partition ID.

protobuf

message DeletePartitionRequest {
 PartitionId partitionId

 string name
}

message DeletePartitionResponse {
 PartitionId partitionId
}

Partition ID
To ensure that the correct partition ID is deleted, the ID is specified in the request and
response.

Name
An alternate way to specify the partition that will be deleted.

Return Codes
Refer to the NMX-Controller gRPC API Guide, which is a part of the Switch Tray firmware
package, for more information.

4.1.4.6 Modifying the Partition
(AddGpusToPartition/RemoveGpusFromPartition)

You can create a partition or change the partition to add or remove GPU resources.

Here is an example of how to update a partition:

protobuf

message UpdatePartitionRequest {
 PartitionId partitionId
 repeated GpuLocation locationList
 repeated uint64 gpuUid

 string name

 bool reroute
}

message UpdatePartitionResponse {
 PartitionId partitionId

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 35

}

Partition ID
This ID specifies the partition that needs to be modified.

Location List
This list is only specified when the partition ID refers to a location-based partition and
describes the locations that need to be added or removed from the partition.

GPU UID List
This list is only specified when the partition ID refers to a GPU UID-based partition and
describes which GPUs to add or remove from the partition.

Name
An alternate way to specify the partition that needs to be updated.

Rerouting
This flag is set to true by default and is only set to false in certain maintenance scenarios.
True means that the trunk links between chassis for multi-chassis partitions will be
allocated again to provide full bandwidth for the GPUs or free up excess trunk links from
this partition. During a reroute, existing cross-chassis traffic will be affected (refer to
Maintenance for more information). The Rerouting flag is used only with Inter-Chassis
partitions.

A special invocation of this request involves specifying a partition ID but leaving the
locationList and gpuUid empty. This instructs the Control Plane to perform a reroute and
evaluate the assigned trunk links for this partition again without modifying the GPUs in the
partition. This is useful in maintenance scenarios such as restoring the partitions to an
optimal state.

4.2 NVOS CLIs
This section provides information about partition NVOS CLIs.

Note NVOS CLI commands are asynchronous, so after a command is initiated, the
operation might continue running in the background. Ensure you verify the status or
completion of the process before proceeding with any dependent tasks.

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 36

4.2.1 Creating SDN Partitions
Partitions can be created to define the allocation of GPUs with attributes such as the
following:

admin@nvos:~$ nv action create sdn partition <partition-id> name <name>
resiliency-mode <resiliency-mode> mcast- limit <mcast-limit> [uuid <uuid>] [location
<location-id>]

$ nv action create sdn partition 1 name example_partition1 resiliency-mode
adaptive_bandwidth mcast-limit 0
Action executing ...
Creating a partition: 1
Action executing ...
Partition 1 is successfully created
Action succeeded

A known limitation of the partition creation CLI is that only a single resource such as the
uuid or the location-id can be specified. If a partition needs to be created with multiple
resources, you must add GPUs to the partition.

 4.2.2 Adding GPUs To a Partition
You can add GPUs to a partition in one of the following ways:

Location-based
admin@nvos:~$ nv action update sdn partition <partition-id> location <location-id>

[no-reroute]

UUID-based
admin@nvos:~$ nv action update sdn partition <partition-id> uuid <uuid> [no-reroute]

Here is the output:
$ nv action update sdn partition 1 uuid 12655913173760303306
Action executing ...
Updating uuid 12655913173760303306 in partition 1
Action executing ...
Partition 1 uuid 12655913173760303306 has been successfully updated
Action succeeded

$ nv show sdn partition 1
 operational
--------------- ------------------
name example_partition1
num-gpus 1
health healthy
resiliency-mode adaptive_bandwidth
mcast-limit 0

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 37

partition-type gpuuid_based

locations
============
 GPU Location UUID
 ------------ --------------------
 1.1.1.1 12655913173760303306

Note The GPU UUID used for partition manipulations must be specified in decimal format.
If you currently have a hexadecimal GPU UUID, please convert it to decimal before
proceeding.

4.2.3 Removing GPUs From a Partition
You can remove GPUs from a partition in one of the following ways:

Location-based
 admin@nvos:~$ nv action restore sdn partition <partition-id> location <location-id>
[no-reroute]

UUID-based
admin@nvos:~$ nv action restore sdn partition <partition-id> uuid <uuid> [no-reroute]

Here is the output:
$ nv action restore sdn partition 32766 uuid 12655913173760303306
Action executing ...
Restoring uuid 12655913173760303306 in partition 32766
Action executing ...
Partition 32766 uuid 12655913173760303306 has been successfully restored
Action succeeded

4.2.4 Viewing the SDN Partition
To display all partitions with details such as resiliency mode, multicast limit, and type, run
the following command:

admin@nvos:~$ nv show sdn partition

Here is the output:

$ nv show sdn partition

ID Name Num of GPUs Health Resiliency mode Multicast groups
limit Partition type Summary

----- ----------------- ----------- ------- ------------------
---------------------- -------------- -------

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 38

32766 Default Partition 64 healthy adaptive_bandwidth 1024
gpuuid_based

To display detailed information about a specific partition, including associated GPUs and
health status, run the following command:

admin@nvos:~$ nv show sdn partition <partition-id>

Here is the output:
$ nv show sdn partition 32766
 operational
--------------- ------------------
name Default Partition
num-gpus 64
health healthy
resiliency-mode adaptive_bandwidth
mcast-limit 1024
partition-type gpuuid_based

locations
============
 GPU Location UUID
 ------------ --------------------
 1.1.1.1 12655913173760303306
 1.1.1.2 13251666084076697626
 1.1.1.3 176434441350953703
 1.1.1.4 5485166907021013365
 1.2.1.1 1450422857593169538
 1.2.1.2 6627118739306428495
 1.2.1.3 7806904066629993257
 1.2.1.4 6716622511424029579
 1.3.1.1 10529188649349609227
 1.3.1.2 2262711745376834792

4.2.5 Deleting an SDN Partition
To delete an existing partition.

admin@nvos:~$ nv action delete sdn partition <partition-id>

Here is the output:

$ nv action delete sdn partition 1

Action executing ...

Deleting a partition: 1

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 39

Action executing ...

Partition 1 is successfully deleted

Action succeeded

This section will be updated in a future release with the NVOS CLIs that are relevant to
partition management.

5. Control Plane Software High
Availability
This chapter provides information about high availability.

5.1 Persistence and Recovery Overview
Here are some of the reasons why the NMX-Controller (NMX-C) and its FM service can go
down:

● A planned NMX-C restart.
● An NMX-C hosting switch tray reboot.
● A FM crash/restart.

To provide continuity of service, if FM crashes, it is automatically restarted and recovers its
previous settings. This is achieved by saving the metadata that was generated during its
runtime and restoring the metadata by using the database infrastructure provided by
NMX-C.

The runtime metadata includes all aspects in FM including the partition metadata, which is
the information that describes a partition's configurations and states (partition ID, list of
GPUs, health state, multicast teams, and so on).

Figure 5 shows an example of partition metadata.

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 40

Figure 5. Partition Metadata

5.2 Partition Metadata Availability
In the TTM phase, metadata is stored locally on the switch tray where FM was running and
is used by FM when it is restarted on the same switch tray.

Note: The NMX-C/FM that is restarted on another switch tray cannot reconstruct its
configurations using the previously saved metadata.

5.3 Restarting Fabric Manager for
Established Partitions
Default, or user partitions that existed before FM went down are recreated based on the
saved partition metadata after FM restarts. Obsolete configurations or states will be
refreshed.

Here is some additional information:

● NMX-C restarts, FM crashes, and restarts.
○ The existing CUDA app unicast and multicast NVLink traffic are not disrupted during

the NMX-C/FM restart.

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 41

○ Multicast teams are created by tenants that use GPUs.
○ After FM restarts, the established multicast teams are restored in FM.

● An NMX-C hosting switch tray reboots.

If the switch tray reboots, it is disruptive to existing unicast and multicast NVLink
traffic through the impacted switch trays.

● The existing CUDA application aborts.
Unicast NVLink traffic can be restarted after NMX-C/FM restarts, and the GPU is reset.

● Multicast teams cannot continue to function.
After NMX-C/FM is restarted, the broken multicast teams are eventually destroyed. You
can restart the tenants’ applications and recreate the multicast teams.

5.4 Restarting Fabric Manager During
Ongoing Partition Operations
The NMX-C/FM can go down when partition operations, such as partition creation or
deletion and GPU addition or removal.

Partition operations are handled as transactions, and partitions are always restored to a
consistent state after a FM restart., Depending on the timing and operation type,
unfinished operations are continued or rolled back. Administrators can query the latest
settings after NMX-C/FM restart.

Here is some information about creating partitions or handling GPU addition requests:

● If FM goes down before it starts the transaction, the request will time out, but no
changes are made.
After FM restarts, the administrator can retry the failed requests.

● If FM goes down during the transaction, the request will time out.
After FM restarts, FM rolls back the partitions to the state before the transaction, and
the administrator can retry the failed requests.

● If FM goes down after the transaction finishes, but before the request is
acknowledged, there will be a request time out.
After FM restarts and the administrator queries the current list of partitions, the
updated partitions are displayed. No additional action is needed.

Here is some additional information about deleting partitions or handling GPU removal
requests:

● If FM goes down before it starts the transaction, the request will time out, but no
changes are made.
After FM restarts, the administrator can retry the failed requests.

● If FM goes down during the transaction, the request will time out.
After FM restarts, FM replays the previous failed transaction. The administrator queries
the current list of partitions, and the updated partitions are displayed. No additional
action is needed.

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 42

● If FM goes down after the transaction finishes, but before the request is
acknowledged, the request will time out.
After FM restarts, the administrator queries the current list of partitions, and the
updated partitions are shown. No additional action is needed.

5.5 GFM Restart and a Partition Wipeout
By default, FM recovers partition configurations after a restart. When the FM static
configuration option FABRIC_MODE_RESTART is set to 1, it follows the default behavior. If users
expect the partition and other runtime configurations to be wiped out after restart, they
should set FABRIC_MODE_RESTART to 0 in the FM static configuration.

Description: Restart Fabric Manager after exit

This can always be set to 1. If persisted runtime data is to be
deleted, then set it to 0

Possible Values:

0 - Start Fabric Manager and erase persisted runtime data

1 - (Recommended) Start Fabric Manager and try to restore system state on
restart and dynamically handles first time boot

FABRIC_MODE_RESTART=1

To wipe out runtime configurations:

1. Set FABRIC_MODE_RESTART=0 in FM static configuration.
2. Stop NMX-C.
3. Start NMX-C.
4. (Optional) If users expect a one-off operation, set FABRIC_MODE_RESTART=1.

5.6 Default Partition and Fabric Mode Restart
Table 5 captures the interaction between the MNNVL_ENABLE_DEFAULT_PARTITION and
FABRIC_MODE_RESTART configurations and documents the GFM behavior in various restart
scenarios.

Table 5. Interaction Between Two Configurations

GFM Init Time Config Admin Runtime Action Impact on the Default
Partition After a GFM Restart

MNNVL_ENABLE_DEFAULT_PART
ITION = 1

FABRIC_MODE_RESTART = 1

Delete Default Partition The Default partition is not
created.

Create User Partition The Default Partition is created
but will not operate in the active
phase.

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 43

GFM Init Time Config Admin Runtime Action Impact on the Default
Partition After a GFM Restart

Set
MNNVL_ENABLE_DEFAULT_PARTITION
= 0

The Default Partition is created

and continues to operate in the
active phase.

MNNVL_ENABLE_DEFAULT_PART
ITION = 0

FABRIC_MODE_RESTART = 1

Create User Partition and set
MNNVL_ENABLE_DEFAULT_PARTITION
= 1

The Default Partition is not
created.

Set
MNNVL_ENABLE_DEFAULT_PARTITION
= 1

The Default Partition is created.

MNNVL_ENABLE_DEFAULT_PART
ITION = 1

FABRIC_MODE_RESTART = 0

Set
MNNVL_ENABLE_DEFAULT_PARTITION
= 0

The Default Partition is not
created.

No action The Default Partition is created.

MNNVL_ENABLE_DEFAULT_PART
ITION = 0

FABRIC_MODE_RESTART = 0

Create User Partition and set
MNNVL_ENABLE_DEFAULT_PARTITION
= 1

The Default Partition is created
and the user partition is deleted.

6. Partition Fault Handling
Hardware faults can happen at any time during the lifetime of a partition. This chapter
provides information about the types of hardware faults and their impact on a partition.

6.1 GPU
Here is how partition fault handling is managed in a GPU:

1. A GPU failure causes a workload that is running in a partition to fail.
2. The Control Plane detects the failure and marks the GPU health as NO_NVLINK.

Use the GetGpuInfoList GRPC API to determine the health of the GPU.
3. The state of the GPU on the compute node is available through the tools described in

GPU Fabric State.

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 44

4. After determining that the failed GPU is in NO_NVLINK state, the administrator can use
the partition to run workloads on the remaining NVLink capable GPUs

6.2 Access Link
Here is how partition fault handling is managed in an access link:

1. An access link failure causes the GPU in the partition to lose NVLink connectivity
This causes the workload in the partition to run into errors.

2. The Control Plane detects the failure through GPU link down events and that causes
the GPU health to be marked NO_NVLINK.

3. After determining that the failed GPU is in NO_NVLINK state, the administrator can use
the partition to run workloads on the healthy GPUs.

Note When a GPU is reset, the handling of the health state update is the same as when it
experiences an access link failure. However, a GPU reset typically lasts for a few seconds
after which the GPU is rediscovered into the NVLink fabric. In both cases, the partition
health remains unchanged.

6.3 Trunk Link
When the trunk link that is assigned to a partition fails, the partition behavior is
determined by the resiliency mode in which it operates. Trunk link failures will cause
interruptions in cross-chassis workload in the partition.

6.3.1 Faulty Trunk Link
Depending on the resiliency mode that you selected for the partition, here is how the
partition will react when a trunk link failure occurs:

● Full Bandwidth Mode
○ If spare trunk links are found, a replacement trunk link will be assigned to the

partition.
■ The partition health will be marked as healthy.
■ The partition will continue to operate with all the present GPUs and at full

bandwidth.
○ If replacement trunk links are not found, at least one GPU will be excluded from the

NVLink fabric to maintain full bandwidth for the remaining GPUs.

■ The partition health is set to degraded to show that at least one GPU has been
excluded from the fabric.

■ The number of excluded GPUs is proportional to the number of trunk links that
are lost.

■ The excluded GPUs will be marked as NVLink disabled.
■ To minimize the total number of excluded GPUs, the excluded GPUs will be

selected from the chassis with a lower number of GPUs.

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 45

■ After enough trunk links are available, a manual reroute operation can be used to
restore the partition to a healthy state (refer to Modify the Partition
(AddGpusToPartition/RemoveGpusFromPartition) for more information). .

● Adaptive Bandwidth Mode
○ If spare trunk links are found, a replacement trunk link will be assigned to the

partition.
■ The partition health will be marked as healthy.
■ The partition will continue to operate with full bandwidth and with all the

present GPUs.
○ If replacement trunk links are not found, the GPUs in the partition will operate with

a degraded bandwidth.
■ The partition health will be set to DEGRADED_BANDWIDTH to show that the partition

is operating with all the available GPUs but with limited bandwidth.
■ The GPUs in the partition will also be marked as having DEGRADED_BANDWIDTH.
■ After enough trunk links are available, a manual reroute operation can be used to

restore the partition to a healthy state (refer to Modify the Partition
(AddGpusToPartition) for more information.

● User Action Required Mode

○ If spare trunk links are found, a replacement trunk link will be assigned to the
partition.
■ The partition health will be marked as healthy.
■ The partition will continue to operate with all the present GPUs and at full

bandwidth.
○ If replacement trunk links are not found, the partition will go into a non-operational

state which requires user action to recover.
■ The partition health will be marked as unhealthy.
■ Cross-rack traffic will likely fail in this scenario.
■ All the GPUs in the partition will be notified that the fabric is unhealthy.
■ After enough trunk links are available, a manual reroute operation can be used to

restore the partition to a healthy state (refer to Modify the Partition
(AddGpusToPartition) for more information.

 6.3.2 Miswired Trunk Links
Here is the pattern for trunk link wiring in topologies with multiple chassis:

● The slot number of the switches connected using trunk links shall match.
This means that the second switch tray of the first chassis can only be connected to
the second switch tray of the second chassis.

● Cage numbers 1-9 on one side of the trunk cable can only be connected to cage
numbers 1-9 on the other side.

● Cage numbers 10-18 on one side of the trunk cable can only be connected to cage
numbers 10-18 on the other side.

● A switch tray can not be connected to itself.

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 46

Figure 6. Trunk Link Miswiring

Examples of trunk miswiring are shown in Figure 6.

From a control plane perspective, if any of the guidelines are not followed, the control plane
state (refer to GetDomainStateInfo) will be marked NMX_CONTROL_PLANE_STATE_DEGRADED with
the CONFIG_ERROR_MISWIRED_TRUNK_PORTS description.

In this state, the control plane can be considered mostly non-operational. Partitioning API
calls such as CreatePartition, AddGpusToPartition, and RemoveGpusToPartition will be
rejected by FM. Additionally, all existing partitions will be marked
NMX_PARTITION_HEALTH_UNHEALTHY (refer to 4.1.4.1 GetPartitionCount).

FM will continue to monitor any changes in trunk link connections until the miswiring is
fixed before enabling the APIs evaluating the health of the partitions again. After the
miswiring is fixed, all the intra-chassis partitions are expected to become healthy, and each
partition will be evaluated based on the latest state of the trunk links. A manual reroute
(refer to 4.1.4.6 Modifying the Partition (AddGpusToPartition/RemoveGpusFromPartition))
operation might be required to return the inter-chassis partitions to a healthy state after
the trunk link is fixed.

If FM detects the miswiring during the initialization, it will continue to monitor changes in
trunk link connections until the miswiring is fixed. In such a state, the administrator must
fix the trunk ports before the control plane can continue its operation.

6.4 Compute Tray
Here is how partition fault handling is managed in a compute tray:

1. When one of the compute trays assigned to a partition fails, it causes errors on the
partition workload.

2. The Control Plane detects the failure that causes the health of all GPUs in the tray to
be marked NO_NVLINK.

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 47

3. The health of the compute tray is marked UNHEALTHY and the health of the partition
remains unchanged.

4. After determining that the failed GPUs are in NO_NVLINK state, the administrator can use
the partition to run workloads on the GPUs from the remaining compute trays

Note When a compute tray is rebooted, the handling of the health state update is the
same as when the compute tray fails. However, a reboot typically lasts for a few seconds
after which the compute tray is rediscovered in the NVLink fabric.

6.5 Switch Tray/Switch
Here are the differences between single-chassis and inter-/intra-chassis platforms:
● In single-chassis platforms that consist of only Intra-Chassis partitions, a switch

tray/switch failure causes all GPUs in all partitions to lose NVLink connectivity.
● In multi-chassis platforms that consist of Intra- and Inter-Chassis partitions, a switch

tray/switch failure affects all GPUs in all partitions in the chassis on which the failure
occurs.
If trunk ports on the failed switch are part of a partition, partitions on other chassis are
affected.

Note: A partition that does not use the affected switch will not get affected.

Here is how partition fault handling is managed in a switch tray or switch:

1. The failure causes the workload in the partition to experience errors.
2. The Control Plane detects the failure through GPU link down events and that causes

the health of all GPUs connected to the switch to be marked NO_NVLINK.
3. The partition health is set to UNHEALTHY to show that none of the GPUs are NVLink

capable.
4. Administrators cannot use the partition to run workloads that use NVLink.

They can use standalone GPUs in the partition to run workloads.

7. Maintenance
Hardware faults can impact the partition’s ability to run workloads. Performing
maintenance on faulty hardware helps users identify the potential root cause, take
corrective action, and in certain cases, isolate the failure. After the failure is addressed, or a
replacement hardware is found, users can resume the normal workflow.

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 48

This chapter discusses maintenance workflows for several use cases and provides
information about their impact on partition management..

7.1 Maintenance Flow for a Compute Tray
After a faulty compute tray is identified, it needs to be isolated from the partition by using
an Out for Repair (OFR) partition. An OFR partition’s life cycle can be managed in one of the
following ways based on your maintenance flow:

● A zero-gpu OFR partition.
1. A zero-gpu partition is created using CreatePartition and is unallocated without any

resources.
2. When a maintenance flow is initiated, the partition is allocated with GPUs or a

compute tray using AddGpusToPartition.
3. After the maintenance flow is completed, the GPUs or a compute tray are removed

using RemoveGpusFromPartition.
4. The OFR partition becomes a zero-gpu partition again.

● A location- or UID-based OFR partition.
1. When a maintenance flow is initiated, an OFR partition is created using

CreatePartition and is allocated with a location or GPU UIDs.
2. When a maintenance flow is completed, an OFR partition is deleted using

DeletePartition.

7.1.1 Maintenance in a Default Partition
In a UID-based default partition, the active phase stops when a user partition is created for
maintenance purposes.
1. If the Active Phase needs to be preserved, the Default Partition type must be set to

Location Based.
2. During NMX-C initial provisioning, set the following configurations:

● MNNVL_ENABLE_DEFAULT_PARTITION=1 to enable the Default Partition.
● MNNVL_DEFAULT_PARTITION_TYPE=1 to make it location based.

To preserve the active phase:
1. Create an OFR partition with zero GPUs using CreatePartition(numGpus=0).
2. When a faulty compute tray needs to be isolated, remove the faulty tray from the

Default Partition using RemoveGpusFromPartition(Location, reroute=false).
3. Add the tray to the OFR partition using AddGpusToPartition(Location).
4. (Optional) Power off the compute tray and remove it from the slot.
5. (Optional) Insert the tray back into the same slot and power on the tray.
6. Remove the faulty tray from OFR partition using RemoveGpusFromPartition(Location).
7. Add the tray back to the Default Partition using AddGpusToPartition(Location,

reroute=false).

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 49

7.1.2 Maintenance in a User Partition
This section provides information about the maintenance process in a user partition.

7.1.2.1 Location-Based User Partition
This section provides information about maintaining location-based user partitions.

7.1.2.1.1 Using A Zero-GPU OFR Partition
1. Create an OFR partition with numgpus=0 using CreatePartition(numGpus=0).
2. When a faulty compute tray needs to be isolated, remove the tray from the partition

using RemoveGpusFromPartition(Location, reroute=false).
3. Add the tray to the OFR partition using AddGpusToPartition(Location).
4. (Optional) Power off the compute tray and remove it from the slot.
5. (Optional) Insert the tray back into the same slot and power on the tray
6. After you complete the maintenance, complete the following tasks:

1. Remove the faulty tray from the OFR partition using
RemoveGpusFromPartition(Location).

2. Add the tray back to the Default Partition using AddGpusToPartition(Location,
reroute=false).

7.1.2.1.2 Using A Location-Based OFR Partition
1. When a faulty compute tray needs to be isolated, remove the faulty tray from the

partition using RemoveGpusFromPartition(Location, reroute=false).
2. Create an OFR partition with the location of the faulty compute tray using

CreatePartition(Location).
3. (Optional) Power off the compute tray and remove the tray from the slot.
4. (Optional) Insert the tray back into the same slot and power on the tray
5. After you complete the maintenance, complete the following tasks:

1. Delete the OFR partition using DeletePartition(Location).
2. Add the tray back to the Default Partition using AddGpusToPartition(Location,

reroute=false).

7.1.2.2 UID-Based User Partition
1. Create an OFR partition with numgpus=0 using CreatePartition(numGpus=0).
2. When a faulty compute tray needs to be isolated, remove the tray from the partition

using RemoveGpusFromPartition(UID, reroute=false).
3. Add the tray to the OFR partition using AddGpusToPartition(UID).
4. (Optional) Power off the compute tray and remove it from the slot.
5. (Optional) Insert the tray back into the same slot and power on the tray.
6. After you complete the maintenance, complete the following tasks:

1. Power off the compute tray in the OFR partition.
2. Remove from OFR partition using RemoveGpusFromPartition(UID).
3. Add tray back to Default Partition using AddGpusToPartition(UID, reroute=false).

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 50

7.1.3 Additional Maintenance Flows
Compute trays can be moved and/or replaced when Control Plane is up or down, and the
Control Plane might go down for the following reasons:

● The switch tray/chassis that hosts the Control Plane is powered down.
● An NMX-C crash or restart.
● A GFM crash or restart.

A replacement action involves the following sequence:
1. (Optional) Power off one or more compute trays.
2. Removing and/or moving the tray to other available slots.
3. (Optional) Insert another compute tray into a slot from which a compute tray was

removed.
4. (Optional) Power on the affected compute trays.

If the Control Plane is up when the replacement action is performed, it is notified about the
events that pertain to the addition and removal of the compute trays. If the Control Plane
is down when the replacement action is performed, it needs to come back up and reconcile
the newly discovered topology with the snapshot of the topology it had saved before going
down. In both scenarios, the Control Plane refreshes the state of the resources in the
partition.

To better understand the impact, the following assumptions are made:

● Associated partitions are healthy before the compute trays are powered off.
● All GPUs in the tray are healthy.

7.1.3.1 Location-Based Partition
This section provides information about location-based partitions.

Replacement action: Remove the compute tray

● The removed UIDs continue to belong to the partition information and are tagged to
their existing locations.

● The health of the removed GPU locations is set to NO_NVLINK.
● Partition Health is healthy.

Replacement action: Remove the compute tray from the existing location and insert a new
tray in the same location.

● The removed GPUs are replaced with the GPUs from the new compute tray in the
partition information.

● The locations are updated with the UIDs that correspond to the new compute tray.
● The health of the locations to which new GPUs were added is set to Healthy.
● The partition is healthy.

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 51

Replacement action: Remove the compute tray from the existing location and insert the
tray into another partition.

● The UIDs of the removed GPUs are set to invalid (zero) against their locations in the
original partition information.

● The health of the removed GPU locations is set to NO_NVLINK.
● The partition is healthy.

Replacement action: Remove the compute tray from the existing location and insert the
tray into another location in the same partition.

● The UIDs of the removed GPUs are set to invalid (zero) against their locations in the
partition information.

● The UIDs of the GPUs in their new locations are updated in the partition information.
● The health of the removed GPU locations is set to NO_NVLINK.
● The health of the GPUs new locations is set to Healthy.
● The partition is healthy.

7.1.3.2 UID-Based Partition
This section provides information about UIU-based partitions.

Replacement action: Remove compute tray
● The removed UIDs continue to belong to the partition information and are tagged to

their existing locations.
● The health of the removed GPU UIDs is set to NO_NVLINK.
● The partition is healthy.

Replacement action: Remove the compute tray from the existing location and insert the
new tray into the same location.
● The locations of the removed GPUs are set to invalid(zero) against their UIDs in the

partition information.
● The health of the removed GPU UIDs is set to NO_NVLINK.
● The partition is healthy.

Replacement action: Remove the compute tray from the existing location and insert the
tray into a new location that does not belong to a partition.
● The locations of the moved GPUs are updated in the partition information.
● The health of the moved GPU UIDs is set to Healthy.
● The partition is healthy.

Replacement action: Remove compute tray from existing location and insert the tray into a
location that belongs to another partition.

● GPUs that moved are no longer in the original partition.
● The locations and UIDs of the moved GPUs are erased from the partition information
● The partition is healthy.

7.1.4 OFR Partition Example
Refer to OFR Partition for more information.

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 52

7.2 Maintenance Flow for Trunk Link Failures
This section will be updated in a future release of the guide.

7.3 Maintenance Flow for Switch Trays
Before you start to maintain the switch tray, ensure that all partitions in the NVLink
domain are deleted. After a replacement switch tray is installed, the partitions need to be
recreated. This section will be updated in a future release of the guide.

7.4 Maintenance Flow for Cable Cartridge
Before you start to maintain the cable cartridges, ensure that all partitions in the NVLink
domain are deleted. After a replacement cable cartridge is installed, the partitions need to
be recreated. This section will be updated in a future release of the guide.

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 53

8. EGM Support
Starting from the NVIDIA Hopper™, LPDDR5X memory is attached to the NVIDIA Grace™
CPU chiplet, which operates as a memory controller and is attached to NVIDIA GH100
using a chip-to-chip GRS interconnect. This allows the GPU to access the host memory
carveout for the GPU. The feature is known as Extended GPU Memory (EGM), and it
provides an increase in per-GPU memory capacity over what the HBM vidmem that is
attached to GPU can provide.

Figure 7. A GB200 compute tray

8.1 Security Considerations
In NVIDIA GB200, the two NVIDIA Blackwell GPUs that are connected to the same Grace
CPU using a C2C link, have access to this CPU’s EGM carveout, which bypasses the stage 2
SMMU translation. As a result, if the two GPUs are isolated from each other because they
are from different VMs, and/or because they are part of different NVL partitions, the
isolation boundary is violated.

While the local C2C link access does not go through NVLink, we recommend that you use
NVL partition as the security boundary and assign these two GPUs to the same NVLink
partition when EGM is enabled. If security is a concern, VMs should also be aligned with
NVLink partition boundaries.

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 54

Table 6 shows the recommended EGM configuration based on security constraints for
partitions that are based on the number of compute trays/GPUs allocated to the
configuration.

Table 6. The Recommended EGM Configuration

Partition Contains Partition is at the
Compute Tray
Boundary

Recommended EGM
Setting

Example
Configuration
(x denotes a GPU)

Fully allocated Compute
Trays

Yes Enable GB200 NVL72:
4x, 8x, 12x, ...

Partially allocated
Compute Trays

No Disable
GB200 NVL72:

1x, 2x, 3x

Note EGM can be enabled or disabled on each compute tray using the BIOS Redfish API.

To enable EGM:
curl -k -X PATCH \
 -u "[username]:[password]" \
 -H "Content-Type: application/json" \
 -H "Accept: application/json" \
 -d '{"Attributes": {"EGM":false}}' \
 "https://[BMC IP address]/redfish/v1/Systems/System_0/Bios/Settings"

To disable EGM:
curl -k -X PATCH \
 -u "[username]:[password]" \
 -H "Content-Type: application/json" \
 -H "Accept: application/json" \
 -d '{"Attributes": {"EGM":false}}' \
 "https://[BMC IP address]/redfish/v1/Systems/System_0/Bios/Settings"

On compute tray, to check the EGM status of each GPU:

nvidia-smi –q

...

GPU 00000008:01:00.0

....

 Capabilities
 EGM : enabled

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 55

...

9. Multi-Cast Support
This chapter provides information about multi-cast support.

The GB200 system supports setting up 1,024 multicast teams, and this is a global resource
that has to be shared across all the partitions. To manage how these resources are shared,
you can reserve resources against each partition. After resources are reserved, applications
running in the partition can allocate the reserved teams.

9.1 Reserving Partitions
When the partition is created, the administrator can specify the number of available
groups to be used by applications in the partition by specifying multicastGroupsLimit (refer
to Administrator-Defined Partitions). This value must be 0 or a multiple of 4, and the
partitioning request will fail if an invalid value is specified or if there are no available
resources to reserve. The partition information will show the current groups reserved to
each partition of the domain.

admin@nvos:~$ nv show sdn partition

ID Name Num of GPUs Health Resiliency mode Multicast groups
limit Partition type Summary

----- ----------------- ----------- ------- ------------------
---------------------- -------------- -------

32766 Default Partition 36 healthy adaptive_bandwidth 1024
gpuuid_based

Note For Default Partition users, the partition defaults to the pre-allocation of all 1,024
multicast teams. To allow user partitions to be created with pre-allocated teams, the
Default Partition should be deleted and user partitions be created.

9.2 Suggested Sizing
The number of teams to reserve to a partition is determined on the expected usage by the
partition’s tenant. Smaller partitions should be allocated fewer multicast groups than
larger partitions. The performance benefit with multicast teams is limited for smaller sized
partitions. For example, partitions that have less than or equal to four GPUs will not benefit
from multicast and can accomplish all traffic through unicast.

Here is a simple allocation algorithm for each partition:

floor(3.55*NGPUs) * 4

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 56

In this case, the allocation increases proportional to the number of GPUs in the partition.
For example, a 72-GPU partition will get 1024 allocations, a 68-GPU partition will get 964
allocations, and a 64-GPU partition will get 908 allocations, and so on.

9.3 Administrator Notification
The currently consumed multicast groups can be polled from GetPartitionInfoList:
allocatedMulticastGroups (refer to GetPartitionInfoList).

10. Admin and Tenant Workflows
An NVLink domain is configured and managed by an administrator. For example, the
administrator creates partitions and performs maintenance operations, but a tenant uses
the resources that the admin provides to run CUDA workloads. The tenants and admins
have different views of the GPU memory fabric, and they use different tools that serve
their workflows.

An admin uses the following tools to create and manage partitions and check resource
states:

● NVOS CLI
● GRPC API

These tools allow the admin to look at Platform Location information, GPU, switch and
partition states from the fabric side.

A tenant uses the following tools to check the availability of GPUs including their fabric
state and association to partitions:

● nvidia-smi
● NVML API

These tools allow the tenant to look at Platform Location information, GPU states on the
compute nodes.

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 57

10.1 Platform-Location Information
This section provides information about platform-location information.

10.1.1 Tenant View
Run the following command:

$ nvidia-smi -q | grep -A6 "Platform"

 Platform Info

 Chassis Serial Number : 1783724160070

 Slot Number : 3

 Tray Index : 2

 Host ID : 1

 Peer Type : Switch Connected

 Module Id : 2

 GPU Fabric GUID : 0x168b9f9b49c971b2

10.1.2 Admin View
Run one of the following commands:

● NVOS CLI: nv show platform chassis-location
● GRPC API: LocationInfo field in GetGpuInfoList()

10.2 NVLink State
This section provides information about the state of NVLink.

10.2.1 Admin View
GRPC API: Health field in GetGpuInfoList.

10.2.2 Tenant View
Run the following command:

$ nvidia-smi nvlink -s

GPU 0: NVIDIA Graphics Device (UUID: GPU-7f32a571-50ca-6915-b01d-90369ce50c9d)

 Link 0: 50 GB/s

 Link 1: 50 GB/s

 Link 2: 50 GB/s

 Link 3: 50 GB/s

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 58

 Link 4: 50 GB/s

 Link 5: 50 GB/s

 Link 6: 50 GB/s

 Link 7: 50 GB/s

 Link 8: 50 GB/s

 Link 9: 50 GB/s

 Link 10: 50 GB/s

 Link 11: 50 GB/s

 Link 12: 50 GB/s

 Link 13: 50 GB/s

 Link 14: 50 GB/s

 Link 15: 50 GB/s

 Link 16: 50 GB/s

 Link 17: 50 GB/s

10.3 GPU Fabric State
This section provides information about the GPU fabric state.

10.3.1 Admin View
Admins cannot query the fabric state of the GPU, but they can determine whether the
GPU is part of a partition using the partitionId field in the GetGpuInfoList API. A GPU that
is part of a partition is set to a non-zero value for this field. The ClusterUUID state can also
be determined from the uuid field of the GetDomainStateInfo API.

10.3.2 Tenant View
Run the following command:

$ nvidia-smi -q | grep -A9 "Fabric"

 Fabric

 State : Completed

 Status : Success

 CliqueId : 32766

 ClusterUUID : e951cfb5-f8d8-4226-b3e4-24e31cfdee9e

 Health

 Bandwidth : N/A

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 59

 Route Recovery : N/A

 Route Unhealthy : N/A

 Access Timeout Recovery : N/A

● State
o Indicates the state of the fabric probe completion.
o Here is a list of the possible values:

▪ Completed
▪ In Progress
▪ Not Started
▪ Not Supported

● Status
● Status of the fabric probe response from FM.
● Here is a list of the possible values:

▪ Success
▪ Not Supported
▪ Insufficient Resources

● Clique Id
Clique to which this GPU belongs. Indicates NVLink Partition ID.

● Cluster UUID
UUID of NVLink Domain to which this GPU belongs.

● GPU Health
o Bandwidth: Is the fabric bandwidth degraded?

The possible values are True or False.
o Route Recovery: Is route recovery in progress?

The possible values are True or False.
o Route Unhealthy: Did the Fabric rerouting fail or abort, or did any other fabric error

occur?
The possible values are True or False.

o Access Timeout Recovery: Is timeout recovery happening on the NVLink Fabric?
The possible values are True or False.

10.4 GPU Recovery State
This section provides information about the GPU recovery state.

10.4.1 Tenant View
Here is the tenant view:

$ nvidia-smi -q | grep "GPU Recovery"

 GPU Recovery Action : None

 GPU Recovery Action : None

 GPU Recovery Action : None

 GPU Recovery Action : None

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 60

● GPU Recovery Action
o Possible Values

▪ None
 No recovery action is needed.

▪ GPU_RESET
● A reset is required.
● Do not restart the application without completing a GPU reset.

▪ DRAIN_AND_RESET
● We recommend a reset.
● It is safe to restart the application (memory capacity will be reduced

because of dynamic page offlining), but you need to eventually reset (to get
row remap).

▪ NODE_REBOOT
● A compute node reboot is required.
● The application cannot restart without a node reboot.
● A warm reboot is sufficient, and a power cycle is not necessary.

▪ DRAIN_P2P
● Disable job scheduling and stop all applications when convenient.
● If persistence mode is enabled, disable it.
● If the recovery action is still DRAIN_P2P, complete a GPU reset.

10.5 GPU Probe and Recovery Actions
Table 7 provides information about the GPU probe and the recovery actions.

Table 7. GPU Probe and Recovery Actions

Scenario NVLink State Fabric State
(State:Status)

Recovery
State

Recommended
Action from the
User

GPUs are not part of
any partitions.

All NVLinks are down. Not Started: Not
Started

None N/A

 One or more NVLinks
are inactive.

In Progress: N/A None N/A

GPUs are part of an
active partition

(after partition
creation).

All NVLinks are down. Not Started: N/A None Reset the GPU

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 61

Scenario NVLink State Fabric State
(State:Status)

Recovery
State

Recommended
Action from the
User

 Some NVLinks are
inactive.

Completed:
Insufficient
resources

None Check NVLink state
using the following
command:

nvidia-smi nvlink -s

 A missing GPU
configuration.

In Progress:

N/A

None Reset the GPU

 All NVLinks are active. Completed:

Success

None N/A

GPUs are part of an
active partition

(during run-time).

Some NVLinks go
down as the result of
a switch tray reboot.

Completed:

Success

(Stale)

Reset

Reset the GPU

All NVLinks are active
after a GPU reset.

Completed:

Success

None N/A

GPU hits an internal
error.

Completed:

Success

(Stale)

Drain_and_Re
set

Reset the GPU

All NVLinks are active
after a GPU reset.

Completed:

Success

None N/A

During rerouting

Completed:

Success

(Stale)

None

N/A

Reroute is automatic in
all resiliency modes

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 62

Scenario NVLink State Fabric State
(State:Status)

Recovery
State

Recommended
Action from the
User

Route Recovery:
Yes

Route Unhealthy:
N/A

Bandwidth: N/A

After rerouting Route Recovery:
N/A

Route Unhealthy:
N/A

Bandwidth: N/A

None N/A

GPUs are deleted or
removed from a
partition

All NVLinks are active. Completed:

Success

(Stale)

None N/A

Note

● Rerouting can be initiated for reasons such as a failed trunk link in a partition,
recovering a partition, or updating a partition.

● After rerouting, Route Unhealthy: can be set to Yes to indicate a routing plane loss,
an internal failure during rerouting, a parked GPU (only in the Full Bandwidth Mode),
non-optimal trunk link allocation (only in User Action Required Mode).

Bandwidth: can be set to Degraded (only in Adaptive Bandwidth mode) to indicate a
non-optimal trunk link allocation.

10.6 Virtualization
This section will be updated in future versions with additional information.

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 63

11. FAQs
1. Can a partition exist with zero GPUs?

Yes, a partition can exist without any resources (location or gpu UIDs) associated with
it.

2. Do partitions have specific features that can be enabled or disabled per tenant?
Partition creation allows attributes like the resiliency policy, number of multicast
groups, and so on to be configured. This applies to the lifetime of the partition and
cannot be changed.

3. Are partitions isolated to a chassis?
Partitions can be contained in a chassis (only access links are configured) or across
chassis (access and trunk links are configured).

4. Can partitions span across NVLink domains?
No. A Control Plane (NMX-C, SM, and FM) manages partitions in an NVLink domain.

5. What is the guideline for maximum partitions per chassis?
The theoretical limit for the number of partitions in a chassis is the number of
maximum GPUs in that chassis.

6. Is there a REST API exposed for partition management?
Yes. Refer to GRPC APIs for more information.

7. Is storage partitioning supported?
The scope of NVLink partitioning is at the GPU memory fabric.

8. Is Kubernetes supported?
Users can select any technology for GPU workload orchestration.

9. Can partitions share a CPU?

No. More information will be available in the next release of this guide.

10. How is isolation enforced in a partition?
Control Plane configures routing on the GPUs and switches so that the memory access
of the GPUs is limited to the partition boundary.

11. Does a partition become a NVLink domain of its own?
No

12. Does a partition appear as one node or as a cluster?
Partitions can be configured to span a group of nodes or one node.

13. How long does it take to create or set up a partition?
It takes a few seconds to set up a partition.

14. Is there a default software stack for a partition to start functioning?
At the minimum, we recommend that you have a virtual machine (VM) that has the
GPUs assigned to it with the GPU driver.

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 64

15. What happens to the compute nodes and links when a partition is deleted?

The resources in the partition are reclaimed and are no longer available to run
workloads.

16. Is running a VM required for isolation or recommended?
TBD. More information will be available in the next release of this guide.

17. What is the smallest granularity for creating a partition?
TBD. More information will be available in the next release of this guide.

18. What is the underlying mechanism of isolation through partition?
To enforce isolation, GPUs are associated with Pkeys. Only GPUs that belong to the
same Pkey can communicate.

19. After a partition ID is created, can it be modified?

No.

20. What happens when a GPU dies in a partition?
The GPU continues to be part of the partition until it is explicitly removed for servicing.

21. How can I get the partition properties?
Use the GetPartitionInfoList GRPC API.

22. What aspects of a partition can be updated?
In a partition, you can add or remove GPUs, which causes it to allocate/deallocate a
proportional number of NVLinks (access and trunk).

23. What happens when a compute or switch tray is replaced in a partition?
Metadata from the old compute tray is purged from the partition, and the partition is
updated with the metadata from the new compute tray (refer to Maintenance).

24. Can traffic in one partition affect another?
No.

12. Appendix
The appendix provides additional information for this guide.

12.1 Partitioning Examples
This section provides information about partitioning examples.

12.1.1 Common Code
Here is the common code:

// gRPC client used to talk with NMX-C

#include <iostream>

// Assumes implementation of service functions from the proto file

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 65

#include <grpc-client.h> // Assumes defined global stub grpc ptr to do calls

#define UID_BASED true

int initAndWaitForConfigured()

{

 // Initial RPC call for handshake

 ServerHello sh = grpc->Hello();

 if(sh.serverheader().returncode() != NMX_ST_SUCCESS)

 return sh.serverheader().returncode();

 // Subscribe to state change notifications (optional)

 // This is a stream and needs to be handled accordingly,

 // As this is a partitioning document that is not covered here

 ServerNotification sn = grpc->Subscribe();

 // Sleep until fabric reaches config done state (can be polled or found from the
stream above)

 bool configured = false;

 do {

 GetDomainStateInfoRequest dsiRequest;

 DomainStateInfo dsiResp = grpc->GetDomainStateInfo(dsiRequest);

 configured = dsiResp.serverheader().returncode() == NMX_ST_SUCCESS

 && dsiResp.controlplanestate() ==
NMX_CONTROL_PLANE_STATE_CONFIGURED;

 if(!configured)

 sleep(10);

 } while(!configured);

 return NMX_ST_SUCCESS;

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 66

}

// Filter examples

// This filter allows through all healthy GPUs

// makes a big single partition for all discovered unallocated GPUs

bool filterAllHealthy(const GpuInfo & gpu)

{

 return gpu.health() == NMX_GPU_HEALTH_HEALTHY;

}

// Filter to make a partition for a single compute node

// will make a partition local only to 1/2/1 chassis/slot/host

bool filterOnlyOneComputeNode(const GpuInfo & gpu)

{

 const uint32_t chassis = 1;

 const uint32_t slot = 2;

 const uint32_t host = 1;

 auto & location = gpu.loc().location();

 return location.chassisid() == chassis && location.slotNumber() == slot &&
location.hostid() == host;

}

// This filter makes a cross chassis partition by ignoring the chassisId

// the resulting partition will have trunk links allocated to it

bool filterSmallInterChassis(const GpuInfo & gpu)

{

 // Purposefully ignore chassis so we get chassis 1 and 2

 const uint32_t slot = 2;

 const uint32_t host = 1;

 auto & location = gpu.loc().location();

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 67

 return location.slotNumber() == slot && location.hostid() == host;

}

12.1.2 Creating a GetGpuInfoList-Based Partition
Here is an example of how to create a GetGpuInfoList-based partition:

// GetGpuInfoList Based partition creation

int main() {

 // Do Init specified above

 int ret = initAndWaitForConfigured();

 if(ret != NMX_ST_SUCCESS)

 return ret;

 // Get all GPU info

 GetGpuInfoListRequest gpuInfoReq;

 gpuInfoReq.set_attr(NMX_GPU_ATTR_ALL);

 GetGpuInfoListResponse gpuInfoResp = grpc->GetGpuInfoList(gpuInfoReq);

 if(gpuInfoResp.serverheader().returncode() != NMX_ST_SUCCESS)

 return gpuInfoResp.serverheader().returncode();

 CreatePartitionRequest createPartitionReq;

 // Start filling up createPartitionReq with all the free GPUs

 for(int i = 0; i < gpuInfoResp.gpuinfolist_size(); i++) {

 auto & currGpu = gpuInfoResp.gpuinfolist(i);

 // Filter out all GPUs that are already allocated (they cannot be used)

 if(currGpu.partitionid() != 0)

 continue;

 // Write filter implementation here if desired.

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 68

 // Examples are given below should return true if we want GPU in the partition

 if(filter(currGpu))

 {

 GpuResourceId * res = createPartitionReq.add_gpuresourceid();

 if(UID_BASED)

 res->gpuUid = currGpu.gpuuid();

 else {

 GpuLocation * gpuloc = new GpuLocation;

 Location * nodeLoc = new Location;

 nodeLoc->set_chassisid(currGpu.loc().location().chassisid());

 nodeLoc->set_slotNumber(currGpu.loc().location().slotNumber());

 nodeLoc->set_hostid(currGpu.loc().location.hostid());

 gpuLoc->set_loc(nodeLoc);

 gpuLoc->set_gpuid(currGpu.gpuid());

 res->set_gpulocation(gpuloc);

 }

 }

 }

 // Do actual create partition call

 CreatePartitionResponse createPartitionResp =
grpc->CreatePartition(createPartitionReq);

 if(createPartitionResp.serverheader().returncode() != NMX_ST_SUCCESS)

 return createPartitionResp.serverheader().returncode();

 std::cout << "Created partition: " << createPartitionResp.partitionid() <<
std::endl;

 return 0;

}

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 69

12.1.3 Creating a GetComputeLocationList-Based
Partition
Here is an example of how to create a GetComputeLocationList-based partition:

// Alternate way to find GPUs by just looking at compute node free lists

int main() {

 // Do Init specified above

 int ret = initAndWaitForConfigured();

 if(ret != NMX_ST_SUCCESS)

 return ret;

 // Get number of gpus per compute node

 GetDomainPropertiesRequest dpRequest;

 DomainProperties dp = grpc->GetDomainProperties(dpRequest);

 if(dp.serverheader().returncode() != NMX_ST_SUCCESS)

 return dp.serverheader().returncode();

 uint32_t gpusPerCn = dp.maxgpuspercomputenode();

 // Get compute node list filtering on free compute nodes that are healthy

 GetComputeNodeLocationListRequest cnlRequest;

 cnlRequest.set_attr(NMX_COMPUTE_NODE_ATTR_FREE);

 cnlRequest.set_health(NMX_COMPUTE_NODE_HEALTH_HEALTHY);

 // Optional if you only want nodes from chassis 1

 cnlRequest.set_chassisid(1);

 // Do the actual request

 GetComputeNodeLocationListResponse cnlResp =
grpc->GetComputeNodeLocationList(cnlRequest);

 if(cnlResp.serverheader().returncode() != NMX_ST_SUCCESS)

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 70

 return cnlResp.serverheader().returncode();

 CreatePartitionRequest cpRequest;

 for(size_t i = 0; i < cnlResp.loclist_size(); i++)

 {

 auto & loc = cnlResp.loclist(i);

 // Write filter implementation here if desired.

 // return true if we want the location in the partition

 if(filter(loc))

 {

 for(uint32_t j = 0; j < gpusPerCn; j++)

 {

 GpuResourceId * res = createPartitionReq.add_gpuresourceid();

 GpuLocation * gpuloc = new GpuLocation;

 Location * nodeLoc = new Location;

 nodeLoc->set_chassisid(loc.chassisid());

 nodeLoc->set_slotNumber(loc.slotNumber());

 nodeLoc->set_hostid(loc.hostid());

 gpuLoc->set_loc(nodeLoc);

 gpuLoc->set_gpuid(j);

 res->set_gpulocation(gpuloc);

 }

 }

 }

 // Create Partition

 CreatePartitionResponse createPartitionResp =
grpc->CreatePartition(createPartitionReq);

 if(createPartitionResp.serverheader().returncode() != NMX_ST_SUCCESS)

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 71

 return createPartitionResp.serverheader().returncode();

 std::cout << "Created partition: " << createPartitionResp.partitionid() <<
std::endl;

 return 0;

}

12.1.4 Deleting the Default Partition
Here is an example of deleting a Default Partition:

// Delete partition example

#define DEFAULT_PARTITION_ID (0x7FFF - 1)

int main() {

 // Do Init specified above

 int ret = initAndWaitForConfigured();

 if(ret != NMX_ST_SUCCESS)

 return ret;

 // Set partition id to Default Partition

 DeletePartitionRequest dpReq;

 dpReq.set_partitionid(DEFAULT_PARTITION_ID);

 // Do the actual deletion call

 DeletePartitionResponse dpResp = grpc->DeletePartition(dpReq);

 if(dpResp.serverheader().returncode() != NMX_ST_SUCCESS)

 return dpResp.serverheader().returncode();

}

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 72

12.1.5 Adding or Removing GPUs from the Default
Partition
Here is an example of adding or removing GPUs from the Default Partition:

// Add/Remove GPUs from location based Default Partition example

#define DEFAULT_PARTITION_ID (0x7FFF - 1)

int main() {

 // Do Init specified above

 int ret = initAndWaitForConfigured();

 if(ret != NMX_ST_SUCCESS)

 return ret;

 // Assume we want to remove a specific GPU from a location based Default Partition

 // Want to remove 1/1/1/2 (chassis/slot/host/gpu)

 UpdatePartitionRequest upReq;

 upReq.set_partitionid(DEFAULT_PARTITION_ID);

 GpuLocation * gpuLoc = upReq.add_locationlist();

 Location * nodeLoc = new Location;

 nodeLoc->set_chassisid(1);

 nodeLoc->set_slotNumber(1);

 nodeLoc->set_hostid(1);

 gpuLoc->set_loc(nodeLoc);

 gpuLoc.set_gpuid(2);

 // Remove the location from the location based Default Partition

 UpdatePartitionResponse upResp = grpc->RemoveGpusFromPartition(upReq);

 if(upResp.serverheader().returncode() != NMX_ST_SUCCESS)

 return upResp.serverheader().returncode();

 // Add the location back

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 73

 upResp = grpc->AddGpusToPartition(upReq);

 if(upResp.serverheader().returncode() != NMX_ST_SUCCESS)

 return upResp.serverheader().returncode();

}

12.1.6 Printing Currently Active Partitions
Here is an example of printing the current, active partitions:

// List current partitions

int main() {

 // Do Init specified above

 int ret = initAndWaitForConfigured();

 if(ret != NMX_ST_SUCCESS)

 return ret;

 GetPartitionInfoListRequest pilReq;

 // Note that you can specify which IDs you want as part of the request,

 // but specifying empty list returns all partitions

 // Do the actual request

 GetPartitionInfoListResponse pilResp = grpc->GetPartitionInfoList(pilReq);

 for(size_t i = 0; i < pilResp.partitioninfolist_size(); i++)

 {

 auto & info = pilResp.partitioninfolist(i);

 static const char* healthStr[] = {"Unknown", "Healthy", "Degraded", "No
NVLink", "Unhealthy"};

 static const char* typeStr[] = {"Undefined", "Location", "GPU UID"};

 static const char* resiliencyStr[] = {"Undefined", "Full Bandwidth", "Adaptive
Bandwidth", "User Action Required"};

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 74

 std::cout << "Printing partition ID " << info.partitionid().partitionid() <<
std::endl

 << "\tName: " << (info.has_name() ? info.name() : std::string("N/A")) <<
std::endl

 << "\tNum GPUs: " << info.numgpus() << std::endl

 << "\tHealth: " << healthStr[info.health()] << std::endl

 << "\tType: " << typeStr[info.type()] << std::endl

 << "\tResiliency Mode: " << resiliencyStr[info.attr().resiliencymode()] <<
std::endl

 << "\tMax Multicast Groups: " << info.attr().multicastgrouplimit() <<
std::endl

 << "\tAllocated Multicast Groups: " << info.numallocatedmulticastgroups()
<< std::endl

 << "\tGPU\tLocation\tUID" << std::endl;

 for(size_t j = 0; j < info.gpulocationlist_size(); j++)

 {

 auto & gpuLoc = info.gpulocationlist(j);

 std::cout << "\t" << j

 << "\t" << gpuLoc.loc().chassisid() << "/" <<
gpuLoc.loc().slotNumber() << "/" << gpuLoc.loc().hostid() << "/" << gpuLoc.gpuid()

 << "\t" << info.gpuuidlist(j) << std::endl;

 }

 }

}

12.1.7 OFR Partition
Here is an example of of an OFR partition:

// Out For Repair (OFR) Partition example (assumes all gpus are in location based
Default Partition)

#define DEFAULT_PARTITION_ID (0x7FFF - 1)

int main() {

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 75

 // Do Init specified above

 int ret = initAndWaitForConfigured();

 if(ret != NMX_ST_SUCCESS)

 return ret;

 // Get number of gpus per compute node

 GetDomainPropertiesRequest dpRequest;

 DomainProperties dp = grpc->GetDomainProperties(dpRequest);

 if(dp.serverheader().returncode() != NMX_ST_SUCCESS)

 return dp.serverheader().returncode();

 uint32_t gpusPerCn = dp.maxgpuspercomputenode();

 // Create Partition with 0 GPUs

 CreatePartitionRequest ofrRequest;

 CreatePartitionResponse ofrResp = grpc->CreatePartition(ofrRequest);

 if(ofrResp.serverheader().returncode() != NMX_ST_SUCCESS)

 return ofrResp.serverheader().returncode();

 const uint32_t ofrPartitionId = ofrResp.partitionid();

 std::cout << "Created OFR partition: " << ofrPartitionId << std::endl;

 // Create a structure to compare the grpc structs (basically so we can use an
std::set)

 struct LocationWithOps {

 uint32_t chassisId;

 uint32_t slotNumber;

 uint32_t hostId;

 bool operator<(const LocationWithOps & rhs) const

 {

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 76

 if(chassisId != rhs.chassisId)

 return chassisId < rhs.chassisId;

 if(slotNumber != rhs.slotNumber)

 return slotNumber < rhs.slotNumber;

 return hostId < rhs.hostId;

 }

 }

 // Loop forever looking for compute nodes that need maintainence

 while(true)

 {

 // std::set to get healthy compute nodes (no filter for multiple non-healthy
health states)

 std::set<LocationWithOps> healthyComputeNodes;

 // Request all compute nodes first

 GetComputeNodeLocationListRequest cnlRequest;

 GetComputeNodeLocationListResponse cnlAll =
grpc->GetComputeNodeLocationList(cnlRequest);

 if(cnlAll.serverheader().returncode() != NMX_ST_SUCCESS)

 return cnlAll.serverheader().returncode();

 // Request healthy compute nodes only

 cnlRequest.set_health(NMX_COMPUTE_NODE_HEALTH_HEALTHY);

 GetComputeNodeLocationListResponse cnlHealthy =
grpc->GetComputeNodeLocationList(cnlRequest);

 if(cnlHealthy.serverheader().returncode() != NMX_ST_SUCCESS)

 return cnlHealthy.serverheader().returncode();

 // Insert all the healthy compute nodes to a set

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 77

 for(uint32_t i = 0; i < cnlHealthy.loclist_size(); i++)

 {

 auto & node = cnlHealthy.loclist(i);

 healthyComputeNodes.insert({node.chassisid(), node.slotNumber(),
node.hostid()});

 }

 // Loop through all the compute nodes

 for(uint32_t i = 0; i < cnlAll.loclist_size(); i++)

 {

 auto & node = cnlAll.loclist(i);

 LocationWithOps currLoc = {

 node.chassisid(), node.slotNumber(), node.hostid()

 };

 // If the compute node is in healthy list we dont need to perform
maintainence

 // Just skip it.

 if(cnlHealthy.count(currLoc) != 0)

 continue;

 // Make an update request with all the gpus in the unhealthy location

 UpdatePartitionRequest upReq;

 upReq.set_partitionid(DEFAULT_PARTITION_ID);

 for(uint32_t j = 0; j < gpusPerCn; j++)

 {

 GpuLocation * gpuLoc = upReq.add_locationlist();

 Location * nodeLoc = new Location;

 nodeLoc->set_chassisid(node.chassisid());

 nodeLoc->set_slotNumber(node.slotNumber());

 nodeLoc->set_hostid(node.hostid());

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 78

 gpuLoc->set_loc(nodeLoc);

 gpuLoc.set_gpuid(j);

 }

 // Remove the unhealthy location from the location based Default Partition

 UpdatePartitionResponse upResp = grpc->RemoveGpusFromPartition(upReq);

 if(upResp.serverheader().returncode() != NMX_ST_SUCCESS)

 return upResp.serverheader().returncode();

 // Change partition id to OFR and add same GPUs that were just removed

 upReq.set_partitionid(ofrPartitionId);

 upResp = grpc->AddGpusToPartition(upReq);

 if(upResp.serverheader().returncode() != NMX_ST_SUCCESS)

 return upResp.serverheader().returncode();

 // Actually perform the maintainence here

 do_maintainence_for_ofr();

 // Remove GPUs from the OFR partition (maintainence is done)

 upResp = grpc->RemoveGpusFromPartition(upReq);

 if(upResp.serverheader().returncode() != NMX_ST_SUCCESS)

 return upResp.serverheader().returncode();

 // Add them back to the Default Partition (should be healthy now)

 upReq.set_partitionid(DEFAULT_PARTITION_ID);

 upResp = grpc->AddGpusToPartition(upReq);

 if(upResp.serverheader().returncode() != NMX_ST_SUCCESS)

 return upResp.serverheader().returncode();

 }

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 79

 }

 return 0;

NVIDIA GB200 NVL Partition User’s Guide DU-12143-001 | 80

Notice
This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a
product. NVIDIA Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the
information contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the
consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This
document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time
without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless
otherwise agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby
expressly objects to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this
document. No contractual obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in
applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or
environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such
inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of
each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information
contained in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the
application in order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and
reliability of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this document.
NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA
product in any manner that is contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this
document. Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or
other intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full
compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,
STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE
FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES,
HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s
aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms of Sale for the
product.

Trademarks
NVIDIA, the NVIDIA logo, Grace, Hopper, NVLink, NVSwitch, and CUDA are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S.
and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

VESA DisplayPort
DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and DisplayPort Compliance Logo for Active
Cables are trademarks owned by the Video Electronics Standards Association in the United States and other countries.

HDMI
HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

Arm
Arm, AMBA, and ARM Powered are registered trademarks of Arm Limited. Cortex, MPCore, and Mali are trademarks of Arm Limited. All other brands or
product names are the property of their respective holders. ʺArmʺ is used to represent ARM Holdings plc; its operating company Arm Limited; and
the regional subsidiaries Arm Inc.; Arm KK; Arm Korea Limited.; Arm Taiwan Limited; Arm France SAS; Arm Consulting (Shanghai) Co. Ltd.; Arm
Germany GmbH; Arm Embedded Technologies Pvt. Ltd.; Arm Norway, AS, and Arm Sweden AB.

OpenCL
OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Copyright
© 2025 NVIDIA Corporation. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	
	
	
	NVIDIA GB200 NVL Partition
	User Guide
	
	
	
	
	1. Overview
	1.1 Introduction
	1.2 Platform Location Information

	2. NVLink Partitioning
	2.1 Overview
	2.1 Types of Partitions
	2.1.1 Location-Based GPUs
	2.1.2 GPU UID-Based Partitions
	2.1.3 Zero-GPU Partitions

	3. Creating a Default Partition
	3.1​​UID-Based Default Partition
	3.1.1​Inter-Chassis UID-Based Default Partition

	3.2​​Location-Based Default Partition

	4. Administrator-Defined Partitions
	4.1 GRPC APIs
	4.1.1 Basic APIs
	4.1.1.1 Topology and Domain APIs
	4.1.1.1.1 GetDomainProperties
	4.1.1.1.2 GetDomainStateInfo

	4.1.2 Compute Nodes and the GPU APIs
	4.1.2.1 GetComputeNodeCount
	4.1.2.2 GetComputeNodeLocationList
	4.1.2.3 GetComputeNodeInfoList
	4.1.2.4 GetGpuInfoList

	4.1.3 Switch Node and Switch APIs
	4.1.3.1 GetSwitchNodeInfoList

	4.3.2 GetSwitchInfoList
	4.1.4 Partition APIs
	4.1.4.1 GetPartitionCount
	4.1.4.2 GetPartitionIdList
	4.1.4.3 GetPartitionInfoList
	4.1.4.4 CreatePartition
	4.1.4.5 DeletePartition
	4.1.4.6 Modifying the Partition (AddGpusToPartition/RemoveGpusFromPartition)

	4.2 NVOS CLIs
	4.2.1 Creating SDN Partitions
	 4.2.2 Adding GPUs To a Partition
	4.2.3 Removing GPUs From a Partition
	4.2.4 Viewing the SDN Partition
	

	4.2.5 Deleting an SDN Partition

	5. Control Plane Software High Availability
	5.1 Persistence and Recovery Overview
	5.2 Partition Metadata Availability
	5.3 Restarting Fabric Manager for Established Partitions
	5.4 Restarting Fabric Manager During Ongoing Partition Operations
	5.5 GFM Restart and a Partition Wipeout
	5.6 Default Partition and Fabric Mode Restart

	6. Partition Fault Handling
	6.1 GPU
	6.2 Access Link
	6.3 Trunk Link
	6.3.1 Faulty Trunk Link
	 6.3.2 Miswired Trunk Links

	6.4 Compute Tray
	6.5 Switch Tray/Switch

	7. Maintenance
	7.1 Maintenance Flow for a Compute Tray
	7.1.1 Maintenance in a Default Partition
	7.1.2 Maintenance in a User Partition
	7.1.2.1 Location-Based User Partition
	7.1.2.1.1 Using A Zero-GPU OFR Partition
	7.1.2.1.2 Using A Location-Based OFR Partition

	7.1.2.2 UID-Based User Partition

	7.1.3 Additional Maintenance Flows
	7.1.3.1 Location-Based Partition
	7.1.3.2 UID-Based Partition

	7.1.4 OFR Partition Example

	7.2 Maintenance Flow for Trunk Link Failures
	7.3 Maintenance Flow for Switch Trays
	7.4 Maintenance Flow for Cable Cartridge

	8. EGM Support
	8.1 Security Considerations

	9. Multi-Cast Support
	9.1 Reserving Partitions
	9.2 Suggested Sizing
	9.3 Administrator Notification

	10. Admin and Tenant Workflows
	10.1 Platform-Location Information
	10.1.1 Tenant View
	10.1.2 Admin View

	10.2 NVLink State
	10.2.1 Admin View
	10.2.2 Tenant View

	10.3 GPU Fabric State
	10.3.1 Admin View
	10.3.2 Tenant View

	10.4 GPU Recovery State
	10.4.1 Tenant View

	10.5 GPU Probe and Recovery Actions
	10.6 Virtualization

	11. FAQs
	12. Appendix
	12.1 Partitioning Examples
	12.1.1 Common Code
	12.1.2 Creating a GetGpuInfoList-Based Partition
	12.1.3 Creating a GetComputeLocationList-Based Partition
	12.1.4 Deleting the Default Partition
	12.1.5 Adding or Removing GPUs from the Default Partition
	12.1.6 Printing Currently Active Partitions
	12.1.7 OFR Partition

