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ABSTRACT

As AI systems scale into decentralized, multi-agent deployments, emergent vulnerabilities challenge
our ability to evaluate and manage systemic risks. In this work, we adapt classical epidemiological
modeling (specifically SEIR compartment models) to model adversarial behavior propagation in AI
agents. By solving systems of ODEs describing the systems with physics-informed neural networks
(PINNs), we analyze stable and unstable equilibria, bifurcation points, and the effectiveness of
interventions. We estimate parameters from real-world data (e.g., adversarial success rates, detection
latency, patching delays) and simulate attack propagation scenarios across 8 sectors (enterprise, retail,
trading, development, customer service, academia, medical, and critical infrastructure AI tools). Our
results demonstrate how agent population dynamics interact with architectural and policy design
interventions to stabilize the system. This framework bridges concepts from dynamical systems and
cybersecurity to offer a proactive, quantitative toolbox on AI safety. We argue that epidemic-style
monitoring and tools grounded in interpretable, physics-aligned dynamics can serve as early warning
systems for cascading AI agentic failures.

Keywords Physics-informed AI safety · your specific physics approach · AI safety problem area · your methodology

1 Introduction

Language-based AI agents are increasingly deployed across domains, from customer support to autonomous trading
agents.

According to KMPG’s survey 5,161 businesses with $1 billion or more in revenue reviles that 12% of respondents have
deployed AI agents for use across their organizations, another 37% are piloting AI agents, and roughly half (51%)
of organizations are exploring the use of AI agents. More than 80% of respondents identified risk management as a
significant concern in their generative AI strategies.

However, the widespread deployment of these AI agents has also exposed fundamental vulnerabilities in their reli-
ability [Boisvert et al., 2025]. They can be compromised by adversarial inputs (e.g. prompt injections), propagate
misinformation learned from uncurated data, or miscommunicate in multi-agent settings [Nie et al., 2024, Lin et al.,
2021, Sun et al., 2022]. While traditional robustness evaluations focus on static benchmarks or single-turn prompt
testing, real-world deployments demand systematic, multi-faceted assessment under both intentional attacks and
emergent errors [Boisvert et al., 2025]. Moreover, existing evaluation frameworks seldom address interactions among
agents or leverage domain-driven priors to improve resilience [Sun et al., 2022].
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2 Methods

To model the propagation of adversarial behavior in large AI agent populations, we adapt a well-known technique from
epidemiology: the SEIR compartmental model. We treat agents as elements of a dynamic system whose states change
according to interactions with other agents, external adversaries, and intervention policies. See 2.1

We use Physics-Informed Neural Networks (PINNs) to learn the solution trajectories of the governing differential
equations. PINNs are well-suited for this task because they allow us to encode known physical structure. See 2.2

Beyond simply tracking number of malignant agents, we investigate the systems’ phase spaces and stability properties.

These help us answer key questions such as: What are current parameters of the system? At what parameter values does
the system transition from a unsafe to safe regime? What are the long-term equilibrium states? How sensitive are these
outcomes to intervention timing and scale? See ??

2.1 Theoretical Framework: Epidemiological Model Adaptation

We reinterpret the SEIR model (originally developed for biological epidemics) as a way to track how adversarial
behavior spreads among AI agents.

Figure 1: AI Agent SEIR Epidemiological Model

dS

dt
= νR− βSI/N − αS + µ(N − S) (1)

dE

dt
= βSI/N + αS − σE − µE (2)

dI

dt
= σE − γI − µI (3)

dR

dt
= γI − νR− µR (4)
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Where:

• S(t): Susceptible agents (vulnerable to attacks)
• E(t): Exposed agents (compromised but not actively malicious)
• I(t): Infected agents (exhibiting malignant behavior)
• R(t): Removed agents (isolated, patched, or immunized)

The key parameters for AI-specific dynamics:

• β: Attack transmission rate (depends on ASR and connectivity)
• σ: Incubation rate (exposed → infected transition)
• γ: Detection/isolation rate (mean time to detection)
• ν: Immunization/patching rate
• α: External attack pressure
• µ: Agent turnover rate (system refresh/replacement)

It’s sometimes convenient to think of rates as probabilities of an agent transition from one state to another during time
dt.

2.2 Technical Implementation: Physics-Informed Neural Network Implementation

We implement a SEIR-PINN solver using the PINNsFormer architecture [Zhao et al., 2023] to capture complex
nonlinear dynamics while enforcing physical constraints. The loss function combines data fitting (when available) with
physics constraints:

L = Ldata + λphysicsLphysics + λboundaryLboundary (5)

The physics loss enforces the SEIR differential equations:

Lphysics =

Nphysics∑
i=1
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∂t
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)2

+

(
∂Ê

∂t
− fE

)2

+

(
∂Î

∂t
− fI

)2

+

(
∂R̂

∂t
− fR

)2
 (6)

Our numerical solver lets us explore the system’s phase space, spot bifurcation points, and predict when things might
tip into failure cascades.

Figure 2: Systems’ dynamics analysis of their phase spaces

Most importantly, it can allow to monitor and implement effective interventions when basic reproduction rate R0

exceeds the critical threshold.
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Figure 3: System’s phase space S-E-I prjection (R0 = 5.00) Disease-free (unstable) Endemic (stable) states

Figure 4: System’s reaction on intervention. Before Intervention R0 = 5.00, after intervention R0 = 0.357

2.3 Experimental Design: Emperical Parameter Estimation

We combined vulnerability data from multiple sources to adjust our model to real-world observations.
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• DoomArena Boisvert et al. [2025]: for GPT-4o from 22.7% fro airlines scenario with defence to 78.6%Zhang
et al. [2024] vulnerability on OSWorld (Computer-Use), and for Claude-3.5 from 0.7% to 22.9%Zhang et al.
[2024] respectively

• Web3 Context ManipulationPatlan et al. [2025]: 65% vulnerability (ASR) across 500+ test cases

• Medical AI ResearchQiu et al. [2025]: 55% vulnerability in healthcare agents

• Industry Cybersecurity ReportsEdgesca [2023], Chakrabarty [2025]: Mean Time to Detect (MTTD), Mean
Time to Remediate (MTTR), and breach statistics

We estimated parameters by weighting vulnerability sources by confidence and sample size, convert vulnerability rates
to transmission rates using connectivity factors (guestimation here), detection rates were taken from cybersecurity
reports (MTTR, MTTD), progression rates from cyber kill chain modelHoffmann [2019], and constrained parameters
against epidemic thresholds and realism

0.1 ≤ R0 =
β

γ + µ
≤ 10.0 (7)

(8)

Table 1: Empirical Parameter Estimates for AI Agent Epidemiology
Parameter Range Interpretation Data Source

β 0.002-0.055 day−1 Daily transmission probability DoomArena, Web3 studies
γ 0.01-0.3 day−1 Daily detection rate Industry MTTD benchmarks
σ 0.02-1.0 day−1 Activation rate Cyber kill chain model
ν 0.0005-0.05 day−1 Patching rate Software lifecycle
α 0.0001-0.005 day−1 External attack rate Threat intelligence
µ 0.0001-0.01 day−1 System turnover rate Infrastructure data

Based on analysis of publicly available data from DoomArena, academic research, and industry reports, we’ve derived
realistic epidemiological parameters for AI agent security modeling.

Table 2: Population of different AI Agent Deployment Scenarios
AI agent purpose Population

Enterprise Assistants 4,855 +3

Development Tools 854

Retail bots 2M5

Customer Service 17,333 6

Research/Academic 3,0007

Web3/Blockchain/Autonomous Trading 200K8

Medical AI 2239

Critical Infrastructure (airlines, banks, telecoms)10 32,000

3 Results

Using the trained PINNs, we simulated time-series curves, estimated long-term prevalence under no intervention, and
tested the effectiveness of countermeasures (such as increasing γ or ν). The results helped visualize when a given
system might approach criticality and how to reduce the risk.

Analysis of 8 realistic deployment AI agentic scenarios reveals significant variation in epidemic potential.

Our empirical analysis revealed that some agent deployments (especially in research and medical contexts) lie close to
or above the R0 = 1 threshold, meaning the need monitoring tools and risk-mitigation frameworks.
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3.1 Empirical Findings: System Dynamics and Phase Portraits

Using the trained PINNs, we plotted system trajectories in the S-I and S-E-I phase space to better understand the
structure of the dynamical system. We observed that:

• In low R0 regimes (R0 < 1), the system tends toward disease-free equilibria.
• In high R0 regimes (R0 > 1), adversarial behavior persists and may saturate large parts of the agent population.
• Some systems exhibit bifurcation behavior: a critical point in the parameters where stability flips.

Figure 5: Estimates for current AI agent epidemiological parameters based on empirical data from cybersecurity
research and industry deployments statistics

Table 3: Risk Assessment Across AI Agent Deployment Scenarios
AI Agent Purpose Population R0 Risk Level Data Source

Enterprise Assistants 4,855 0.276 LOW DoomArena airline scenarios
Development Tools 85 0.075 LOW DoomArena computer-use
Retail Bots 2M 0.136 LOW DoomArena retail scenarios
Customer Service 17,333 0.469 LOW DoomArena retail with de-

fense
Research/Academic 3,000 2.353 LOW DoomArena web navigation
Web3/Blockchain/Trading 200K 0.282 LOW Web3 context manipulation
Medical AI 223 1.293 MODERATE Medical AI vulnerability
Critical Infrastructure 32,000 0.002 LOW NIST cybersecurity

Enhance monitoring and detection (γ) is most effective parameter for reducing R0, network segmentation and model
isolation (β) reduce attack transmission between agents, immunization by introducing guardian model ν, as well and
regular updates reduce susceptible population.
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Figure 6: trained PINNs predictions of AI agent epidemiological situation evolvement

(a) Phase space for Medical AI agents (b) Phase space for Research AI agents

Figure 7: Phase portraits of AI systems with top 2 reproduction rates
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(a) Bifurcation analysis of Medical AI agents (b) Bifurcation analysis of Research AI agents

Figure 8: Bifurcation analysis and intervention planning for AI systems with top 2 reproduction rates: Medical AI and
Research AI agents

Figure 9: Comparison of intervention strategies effect on number of infected agents
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4 Discussion and Conclusion

4.1 Future Directions

We have demonstrated that physics-informed epidemiological modeling provides a powerful framework for under-
standing and managing security risks in large-scale AI agent deployments. Our empirical analysis reveals significant
variation in epidemic potential across deployment contexts, with research environments requiring immediate attention
due to high R0 values.

We would like to explore percolation theory to characterize the spread of malignant behavior. The attractiveness of
percolation theory is that it exhibits power law behavior, which might be interesting to look at.

On the practical side development of a monitoring system might enable AI companies to:

1. Continuous R0 Calculation: Real-time basic reproduction number monitoring

2. Epidemic Alert System: Automated alerts when R0 > 1

3. Time-to-Saturation Prediction: Calculate hours until 90% infection

4. Intervention Strategy Optimization: Cost-benefit analysis for different responses

The real-time monitoring will enable AI companies to transition from reactive to proactive security postures, providing
quantitative guidance for intervention strategies. By establishing the basic reproduction number (R0) as a key metric
for AI system health, we provide a universal language for discussing and managing AI security risks with executive
management.

This work opens a new direction for physics-informed AI safety research while providing immediately actionable tools
for securing the rapidly growing population of AI agents across diverse deployment contexts.
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Appendix

n*Code and Implementation

Complete implementation available at: https://github.com/GingerSpacetail/pinnsformer

Key components:

• ai_epidemiology_model.py: Core SEIR-PINN implementation
• bifurcationanalysis.pyempirical_parameter_estimation.py : Parameterestimationframework

•• realistic_ai_epidemiology_scenarios.py: Scenario analysis tools
• real_time_monitoring.py: Monitoring framework (future work)

LLM Usage Declaration

This research was conducted with assistance from Claude 3.5 Sonnet for:

• Sources summarization, introduction improvement
• Code debugging for PINNs implementation
• Extensive technical documentation

The core theoretical insights, empirical analysis, and framework development represent original research contributions
by the authors.
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