r AN5406
’l life.augmented

Application note

How to build a LoRa® application with STM32CubeWL

Introduction

This application note guides the user through all the steps required to build specific LoRa® applications based on
STM32WL Series microcontrollers.

LoRa® is a type of wireless telecommunication network designed to allow long-range communications at a very-low bitrate
and to enable long-life battery-operated sensors. LoRaWAN® defines the communication and security protocol that ensures the
interoperability with the LoRa® network.

The firmware in the STM32CubeWL MCU Package is compliant with the LoRa Alliance® specification protocol named
LoRaWAN® and has the following main features:

* Application integration ready

« Easy add-on of the low-power LoRa® solution

* Extremely low CPU load

* No latency requirements

* Small STM32 memory footprint

* Low-power timing services

The firmware of the STM32CubeWL MCU Package is based on the STM32Cube HAL drivers.

This document provides customer application examples on the STM32WL Nucleo boards NUCLEO_WL55JC

(order codes NUCLEO-WL55JC1 for high-frequency band and NUCLEO-WL55JC2 for low-frequency band).

To fully benefit from the information in this application note and to create an application, the user must be familiar with the
STM32 microcontrollers, the LoRa® technology, and understand system services such as low-power management and task
sequencing.

AN5406 - Rev 6 - February 2022 www.st.com

For further information contact your local STMicroelectronics sales office.

m AN5406

General information

1 General information

The STM32CubeWL runs on STM32WL Series microcontrollers based on the Arm® Cortex®-M processor.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

arm

Table 1. Acronyms and terms

ABP Activation by personalization
ADR Adaptive data rate
BSP Board support package
DC/DC Direct current to direct current converter
HAL Hardware abstraction layer
loT Internet of things
IPCC Inter-processor communication controller
IRQ Interrupt request
LBT Listen before talk
LoRa Long range radio technology
LoRaWAN LoRa wide-area network
LPWAN Low-power wide-area network
MAC Media access control
MCPS MAC common part sublayer
MIB MAC information base
MLME MAC sublayer management entity
MSC Message sequence chart
OTAA Over-the-air activation
PA Power amplifier
PER Packet error rate
PRBS Pseudo-random bit sequence
RSSI Receive signal strength indicator
Rx Reception
SWD Serial-wire debug
<target> STM32WL Nucleo boards (NUCLEO-WL55JC)
Tx Transmission

ANS5406 - Rev 6

AN5406

General information

3

Reference documents

[1] LoRaWAN 1.0.3 Specification by LoRa Alliance® Specification Protocol — 2018, January

[2] Application note LoRaWAN® AT commands for STM32CubeWL (AN5481)

[3] User manual Description of STM32WL HAL and low-layer drivers (UM2642)

[4] IEEE Std 802.15.4TM - 2011. Low-Rate Wireless Personal Area Networks (LR-WPANSs)

[5] Application note Long packet with STM32CubeWL (AN5687)

[6] Application note Integration guide of SBSFU on STM32CubeWL (including KMS) (AN5544)

[7] Application note How to secure LoRaWAN® and Sigfox™ with STM32CubeWL (AN5682)
LoRa standard

Refer to document [1] for more details on LoRa and LoRaWAN recommendations.

AN5406 - Rev 6 page 3/77

https://www.st.com/content/ccc/resource/technical/document/application_note/group1/63/ee/3a/53/c3/49/46/c1/DM00699239/files/DM00699239.pdf/jcr:content/translations/en.DM00699239.pdf
https://www.st.com/content/ccc/resource/technical/document/user_manual/group1/6f/be/85/55/8c/26/4c/22/DM00660673/files/DM00660673.pdf/jcr:content/translations/en.DM00660673.pdf
https://www.st.com/content/ccc/resource/technical/document/application_note/group1/13/aa/8f/28/57/e9/44/d6/DM00803405/files/DM00803405.pdf/jcr:content/translations/en.DM00803405.pdf
https://www.st.com/content/ccc/resource/technical/document/application_note/group1/f2/24/be/2d/45/7f/4a/74/DM00725183/files/DM00725183.pdf/jcr:content/translations/en.DM00725183.pdf
https://www.st.com/content/ccc/resource/technical/document/application_note/group1/32/53/b1/65/5a/f7/46/fc/DM00800433/files/DM00800433.pdf/jcr:content/translations/en.DM00800433.pdf

m AN5406

STM32CubeWL overview

2 STM32CubeWL overview

The firmware of the STM32CubeWL MCU Package includes the following resources (see Figure 1):
. Board support package: STM32WLxx_Nucleo drivers
. STM32WLxx_HAL_Driver
. Middleware:
— LoRaWAN containing:
° LoRaWAN layer
° LoRa utilities
° LoRa software crypto engine
° LoRa state machine
— SubGHz_Phy layer middleware containing the radio and radio_driver interfaces
. LoRaWAN applications:
— LoRaWAN_AT_Slave (SingleCore and DualCore)

— LoRaWAN_End_Node (SingleCore, DualCore, SingleCore with FreeRTOS and DualCore with
FreeRTOS)

. SubGHz_Phy application:

— SubGHz_Phy_PingPong (SingleCore and DualCore)

— SubGHz_Phy_Per (SingleCore)
In addition, this application provides an efficient system integration with the following:
. a sequencer to execute the tasks in background and to enter low-power mode when there is no activity
. a timer server to provide virtual timers running on RTC (in Stop and Standby modes) to the application
For more details refer to Section 8 Ultilities description.

AN5406 - Rev 6 page 4/77

AN5406
STM32CubeWL overview

Figure 1. Project file structure

_htmresc v Projects
) v NUCLEO-WL55JC
Documentation
v Applications
Drivers > BFU 1 Slot
BSP drivers BSP > BFU_2Slots
for STM32WL—» STM32WLxx_Nucleo > | Fatfs
Nucleo board
CMSIS > FreeRTOS
STM32WL .
AL drivere ™ STM32WLxx_ HAL Driver > W KMS
v LoRaWAN
Middlewares
v | LoRaWAN AT Slave @~ <— '-ORI?W.AN_AT_SHVG
application
ST > Core
STM32_Key_Management_Services FWARM
STM32_Secure_Engine > LoRaWAN
Third_Party MDK-ARM
> S5TM32CubelDE
FatFs
STM32CubeMonitor
Middleware FreeRTOS
LoRa crypto v LoRaWAN_AT Slave DualCore
engine LoRaWAN > | CMOPLUS
Middleware Conf > o
LoRa St?te Crypto > Common
machine EWARM
. LmHandler
Middleware MDK-ARM
LoRa MAC —» Mac
layer - > | SIM32CubelDE
Utilities STM32CubeMonitor
Middleware mbed-crypto > LoRaWAN_End_Node ~<——— LoRaWAN_End_Node application
LoRa utilities Sigfox > LoRaWAN_End_Node_DualCore
Middleware — SubGHz_Phy > LoRaWAN_End_Node_DualCoreFreeRTOS
SubGHz_Phy) > | LoRaWAN_End_Node FreeRTOS
Projects
> LoRaWAN_FUQOTA
> LoRaWAN_FUOTA DualCore
> LoRaWAN_SBSFU_1_Slot_DualCore
> SBSFU_1_Slot_DualCore
> SBSFU_2 Slots_DualCore
> SubGHz_Phy
b Demeonstrations
> Examples
> Examples_LL
> Examples_MIX
> Templates
> Templates_LL
A4 NUCLEO-WL55JC1
v Applications
> Sigfox
> Sigfox_SBSFU_1_Slot_DualCore
> Utilities

ANS5406 - Rev 6

page 5/77

m AN5406

SubGHz HAL driver

3 SubGHz HAL driver

This section focuses on the SubGHz HAL (other HAL functions such as timers or GPIO are not detailed).
The SubGHz HAL is directly on top of the sub-GHz radio peripheral (see Figure 3. Static LoRa architecture).

The SubGHz HAL driver is based on a simple one-shot command-oriented architecture (no complete processes).
Therefore, no LL driver is defined.

This SubGHz HAL driver is composed the following main parts:

. Handle, initialization and configuration data structures

. Initialization APIs

. Configuration and control APIs

. MSP and event callbacks

. Bus I/0 operation based on the SUBGHZ_SPI (Intrinsic services)

As the HAL APIs are mainly based on the bus services to send commands in one-shot operations, no functional
state machine is used except the RESET/READY HAL states.

3.1 SubGHz resources
The following HAL SubGHz APIs are called at the initialization of the radio:
. Declare a SUBGHZ_HandleTypeDef handle structure.
. Initialize the sub-GHz radio peripheral by calling the HAL._SUBGHZ Init (&hUserSubghz) AP
. Initialize the SubGHz low-level resources by implementing the HAL SUBGHZ MspInit () APL:
— PWR configuration: Enable wakeup signal of the sub-GHz radio peripheral.
— NVIC configuration:
° Enable the NVIC radio IRQ interrupts.
° Configure the sub-GHz radio interrupt priority.
The following HAL radio interrupt is called in the stm32wlxx it.c file:
. HAL SUBGHZ IRQHandler inthe SUBGHZ_Radio_IRQHandler.

3.2 SubGHz data transfers
The Set command operation is performed in polling mode with the HAL SUBGHZ ExecSetCmd () ; APL.
The Get Status operation is performed using polling mode with the HAL. SUBGHZ ExecGetCmd () ; APL
The read/write register accesses are performed in polling mode with following APIs:
. HAL SUBGHZ WriteRegister();
. HAL SUBGHZ ReadRegister();
. HAL SUBGHZ WriteRegisters();
. HAL SUBGHZ ReadRegisters();
. HAL SUBGHZ WriteBuffer();
. HAL SUBGHZ ReadBuffer();

AN5406 - Rev 6 page 6/77

‘,_l AN5406

BSP STM32WL Nucleo boards

4 BSP STM32WL Nucleo boards

This BSP driver provides a set of functions to manage radio RF services, such as RF switch settings and control,
TCXO settings, and DC/DC settings.

Note: The radio middleware (SubGHz_Phy) interfaces the radio BSP via radio board if.c/h interface file. When
a custom user board is used, it is recommended to perform one of the following:
. First option
- Copy the BSP/STM32WLxx Nucleo/ directory.
— Rename and update the user BSP APlIs with:
° user RF switch configuration and control (such as pin control or number of port)
° user TCXO configuration
° user DC/DC configuration
— replace in the IDE project the STM32WLxx_Nucleo BSP files by the user BSP files.
. Second option

— Disable USE BSP DRIVERIn Core/Inc/platform.h andimplement the BSP functions directly
into radio board if.c.

4.1 Frequency band
Two types of Nucleo board are available on the STM32WL Series:
. NUCLEO-WL55JC1: high-frequency-band, tuned for frequency between 865 MHz and 930 MHz
. NUCLEO-WL55JC2: low-frequency-band, tuned for frequency between 470 MHz and 520 MHz

If the user tries to run a firmware compiled at 868 MHz on a low-frequency-band board, very poor RF
performances are expected.

The firmware does not check the band of the board on which it runs.

4.2 RF switch

The STM32WL Nucleo board embeds an RF 3-port switch (SP3T) to address, with the same board, the following
modes:

. high-power transmission
. low-power transmission
. reception

Table 2. BSP radio switch
int32 t BSP RADIO Init(void) Initializes the RF switch.
BSP_RADIO ConfigRFSwitch (BSP_RADIO Switch TypeDef Config) | Configures the RF switch.
int32 t BSP_RADIO DelInit (void) De-initializes the RF switch.

Returns the board configuration:

int32 t BSP RADIO GetTxConfig(void) high power, low power or both

The RF states versus the switch configuration are given in the table below.

Table 3. RF states versus switch configuration

m FE_CTRL1 FE_CTRL2 FE_CTRL3

High-power transmission High High
Low-power transmission High High High
Reception High Low High

AN5406 - Rev 6 page 7/77

‘,_l AN5406

RF wakeup time

4.3 RF wakeup time

The sub-GHz radio wakeup time is recovered with the following API.

Table 4. BSP radio wakeup time

= =

uint32 t BSP_RADIO GetWakeUpTime (void) Returns RE_WAKEUP T IME value.

The user must start the TCXO by setting the command RADIO SET TCXOMODE with a timeout depending of the
application.

The timeout value can be updated in radio conf.h. Default template value is the following:

#define RF WAKEUP TIME 1U

4.4 TCXO

Various oscillator types can be mounted on the user application. On the STM32WL Nucleo boards, a temperature
compensated crystal oscillator (TCXO) is used to achieve a better frequency accuracy.

Table 5. BSP radio TCXO

o mEw [EEmmw]

uint32 t BSP_RADIO ISTCXO (void) Returns IS_TCXO_ SUPPORTED value.

The TCXO mode is defined by the STM32WL Nucleo BSP by selecting USE_BSP_DRIVER
in Core/Inc/platform.h.

If the user wants to update this value (no NUCLEO board compliant), or if the BSP is not present, the TXCO
mode can be updated in radio board if.h. Default template value is the following:

#define IS TCXO SUPPORTED 10

4.5 Power regulation

Depending on the user application, a LDO or an SMPS (also named DC/DC) is used for power regulation. An
SMPS is used on the STM32WL Nucleo boards.

Table 6. BSP radio SMPS

o EEw [BEme]

uint32 t BSP_RADIO IsDCDC (void) Returns IS _DCDC_SUPPORTED value.

The DC/DC mode is defined by the STM32WL Nucleo BSP by selecting USE_BSP_DRIVER
in Core/Inc/platform.h.

If the user wants to update this value (no NUCLEO board compliant), or if the BSP is not present, the DC/DC
mode can be updated in radio _board if.h. Default template value is defined below:

#define IS DCDC_SUPPORTED 10

The SMPS on the board can be disabled by setting IS DCDC_SUPPORTED = 0.

AN5406 - Rev 6 page 8/77

AN5406
STM32WL Nucleo board schematic

STM32WL Nucleo board schematic

The figure below details the STM32WL Nucleo board (MB1389 reference board) schematic, highlighting some
useful signals:

. control switches on PC4, PC5 and PC3
. TCXO control voltage pin on PBO

. debug lines on PB12, PB13 and PB14
system clock on PA8

SCK on PA5

MISO on PA6

MOSI on PA7

Figure 2. NUCLEO-WL55JC schematic

PATD 5] et
WARNING voltage applied to VIN <11 5V
PCIO
BCI015 —_—
e > sB20
IR vDD_Mcu]
2 3v3 DNF
4RD pE3 - ARDEES
SV Data transaction:
IOREF SKC, MOSI, MISO
Morpho connector AVDD== Morpho connector
s .
VDD MCU w1 2l “ - CNs S&Dfﬁ a2 PAO [, ch £5 ey | Control switchs
*—3 4 T 1K 10 —spapid PALL g 4 FECIRLZ, | 1and 2
56 5V AD 56—
o 50070 1 5 g I s g [AR 7 8 {5V _USB_CHGR
S fl :g JOREF ; E ; CK/D1 PAS ?l :g —= PCé
PAI3 upe T NRST RsT] 3 |2 ¢ misomrz PAS g PC0
EALL 15 16 Vi]y é PWMAIOSTDE PAT i var mco | System clock
PAIS 2 2 PAS
I R et | ; |2 Mcu 3 “Pwwimo PAD u
e I Irg 17 £ 1 D8 PC2 n TCXO control
P13 e L E 2 it
s 3 == T L® g Socket 1051 z voltage
PC15 27 28 VIN Socket 8x1 CN9 a7
cNg b7 PCL
oam| 2 & | BBL 40 [S [CPwwoe__pB10 3 I
VBAT| 33 34 PBY A7 |5 |58 § | _PWMDs __ PBS 28 |
f 0 A g5 goz] 785 —<ea1
5 | A3 2|22 3 —Fwma 3 35 36 B3 Control
K37 38 T~ ¢ |E 41Dz PBI2 ‘ etf £ CEECIRLS | yitch 3
Header 1932 u2i];: |8 R — Header 192
X0 *
i A
/ Socket 6x1
Socket 8x1
Debug line 2 and 3) Default: USART! from PB6/EBT
Debug line 1 Optional: LPUARTI/USART? from

ANS5406 - Rev 6

page 9/77

‘,_l AN5406

LoRaWAN stack description

5 LoRaWAN stack description

The firmware of the STM32CubeWL MCU Package includes STM32WL resources such as:
. STM32WLxx Nucleo drivers

. STM32WLxx HAL drivers

. LoRaWAN middleware

. SubGHz physical layer middleware

. LoRaWAN application example

. Utilities

The LoRaWAN stack middleware for STM32 microcontrollers is split into several modules:

Table 7. LoRaWAN stack description

T

LoRaMAC implements the Link Layer

o Middlewares\Third Party\LoRaWAN\Mac
layer specification -

implements the Regional
Parameters specification as
dependant interface for the
LoRaMAC layer module

implements AES/CMAC
LoRa crypto | algorithms and interface with ' Middlewares\Third Party\LoRaWAN\Crypto
SecureEngine element

Region layer Middlewares\Third Party\LoRaWAN\Mac\Region

implements the LoRaMac
Handler public interface,

LmHandler e tion specifications Middlewares\Third Party\LoRaWAN\LmHandler
and FUOTA packages
LoRa utiliies MPIements the common Middlewares\Third Party\LoRaWAN\Utilities

utility functions

Several LoRaWAN features are implemented in compliance with the LoRa Allicance protocol specifications:
. From the Link Layer specification:
— On-board LoRaWAN Class A, Class B and Class C protocol stack
— End-device activation either through OTAA or through activation-by-personalization (ABP)
— Adaptive data-rate support
. From the Regional Parameters specification:
— EU 868 MHz ISM band ETSI compliant
— EU 433 MHz ISM band ETSI compliant
- US 915 MHz ISM band FCC compliant
— KR 920 MHz ISM band defined by Korean government
— RU 864 MHz ISM band defined by Russian regulation
— CN 779 MHz and CN470Mhz ISM band defined by Chinese government
— AS 923 MHz ISM band defined by Asian governments
— AU 915 MHz ISM band defined by Australian government
— IN 865 MHz ISM band defined by Indian government
Additionally, the LoRaWAN stack integrates:
. Certification solution in accordance with the specifications described as below
. NVM Context Management to prevent power off loss of context
. Low-power integration by standby/sleep radio states

AN5406 - Rev 6 page 10/77

AN5406

LoRaWAN specifications version

5.2

ANS5406 - Rev 6

LoRaWAN specifications version

The Link Layer specification and the Regional Parameters specifications are defined by the LoRa-Alliance.
The LoRaWAN stack implements 2 different versions based on the Semtech stack deliveries:

. LoRaWAN Link Layer 1.0.3 Specification + LoRaWAN 1.0.3 Regional Parameters Specification

. LoRaWAN Link Layer 1.0.4 Specification (TS001-1.0.4) + LoRaWAN 2-1.0.1 Regional Parameters
Specification (RP002-1.0.1)

It is mandatory to select the adapted version of the stack with the expected LoRaWAN Server configuration.

LoRaWAN certification

The system including the NUCLEO-WL55JC board and the STM32CubeWL firmware modem application has
been verified by LoRaWAN TestHouse and passed the certification for EU868, IN865, KR920, AS923 & US915
bands.

The LoRaWAN certification implementation depend of the LoRaWAN specification version used:

Table 8. LoORaWAN certification

e e AN S LU O LoRaWAN certification specification
version

LoRa Alliance End Device Certification Requirements for AS923MHz ISM Band Devices
v1.1.0

LoRa Alliance End Device Certification Requirements for EU863-870 MHz ISM Band
Devices v1.6.0

LoRaWAN Link Layer 1.0.3 LoRa Alliance End Device Certification Requirements for India 865-867 MHz ISM Band
Specification v1.1.0

LoRa Alliance End Device Certification Requirements for South Korea 920-923MHz ISM
Band Devices v1.2.0

LoRa Alliance End Device Certification Requirements for US and Canada 902-928 MHz
ISM Band v1.5.0

LoRaWAN Link Layer 1.0.4 LoRaWAN 1.0.4 End Device Certification Requirements for All Regions
Specification (TS001-1.0.4) | sRaWAN Certification Protocol 1.0.0 Specification (TS009-1.0.0)

page 11/77

m AN5406

Architecture

5.3 Architecture

5.3.1 Static view
The figure below describes the main design of the firmware for the LoRa application.

Figure 3. Static LoRa architecture

LoRa application
(LoRaWAN_AT_Slave, LoRaWAN_End_Node,]
SubGhz Phy PingPong or SubGhz Phy Per)

LmHandler.h

LoRa crypto

Utilities

Debug trace

Low-power
mode

LmHandler| LoRaMAC

________________ radio.h

radio.c

radio_driver.c

Board support package (BSP)

Hardware abstraction layer APIs (HAL)

Sub-GHz radio system peripheral

The HAL uses STM32Cube APIs to drive the MCU hardware required by the application. Only specific hardware
is included in the LoRa middleware as it is mandatory to run a LoRa application.

The RTC provides a centralized time unit that continues to run even in low-power mode (Stop 2 mode). The RTC
alarm is used to wake up the system at specific timings managed by the timer server.

The SubGHz_Phy middleware uses the HAL SubGHz to control the radio (see the above figure). For more
details, refer to Section 7

The MAC controls the SubGHz_Phy using the 802.15.4 model. The MAC interfaces with the SubGHz_Phy driver
and uses the timer server to add or remove timed tasks.

Since the state machine that controls the LoRa Class A is sensitive, an intermediate level of software is inserted
(LmHandler.c) between the MAC and the application (refer to LoRaMAC driver in the above figure). With a
limited set of APIs, the user is free to implement the Class A state machine at application level. For more details,
refer to Section 6 .

The application, built around an infinite loop, manages the low-power mode, runs the interrupt handlers (alarm or
GPIO) and calls the LoRa Class A if any task must be done.

AN5406 - Rev 6 page 12/77

m AN5406

Architecture

5.3.2 Dynamic view

The MSC (message sequence chart) shown in the figure below depicts a Class A device transmitting an
application data and receiving application data from the server.

Figure 4. Class A Tx and Rx processing MSC

I |
: CPU | Sub-GHz |
| [l . |
| 11 radio
| LoRaApp ‘ ’ LmHandIer‘ LoRaMAC‘ ’ Radio ‘ ’ Timer ‘I 'veripheral!
H | peripneral,
I
| |
| LmHandlerSend LoRaMacticps RadioSend ! : | !
| Request | |
T |
: status status status [l |
[l |
| " ™
| RadioIgr : : :
: OnMacProcgssNotify OnRadioTxDone [1
< [l
| |
I LmHandler i |
| “packages LoRaMacProcess setRxw]lndowl [l |
> I
: Process < 1l :
[l
: OnTxdata McpsConfirm I :
| TimerIsr : : I
| < !
| RadioRx : : :
|
T |
: I |
[l |
| I Rx| |
| Radiolqr !} !
: OnMacProcgssNotify onRadioRxDone | [l |
| < [l |
| [l |
| [l |
| _LmHandler [l |
1 Packages LoRaMacProcess I : |
| Process ! | |
| ! |
| " |
! OnRxdata McpsIndication : : :
! [l |
|
| [l |
__ I

Once the radio has completed the application data transmission, an asynchronous RadiolRQ wakes up the
system. The Radiolsr here calls txDone in the handler mode.

All Radiolsr and MAC timer call a LoRaMacProcessNotify callback to request the application layer to update
the LoRaMAC state and to do further processing when needed.

For instance, at the end of the reception, rxDone is called in the ISR (handler), but all the Rx packet processing
including decryption must not be processed in the ISR. This case is an example of call sequence. If no data is
received into the Rx1 window, then another Rx2 window is launched..

5.3.3 Required STM32 peripherals to drive the radio

Sub-GHz radio

The sub-GHz radio peripheral is accessed through the stm32wlxx_hal subghz HAL.
The sub-GHz radio issues an interrupt through SUBGHZ_Radio_IRQHandler NVIC, to notify a TxDone or

RxDone event. More events are listed in the product reference manual.

RTC

The RTC (real-time clock) calendar is used as 32-bit counter running in all power modes from the 32 kHz
external oscillator. By default, the RTC is programed to provide 1024 ticks (subseconds) per second. The RTC is
programed once at hardware initialization (when the MCU starts for the first time). The RTC output is limited to a
32-bit timer that corresponds to about a 48-day period.

Caution: When changing the tick duration, the user must keep it below 1 ms.

AN5406 - Rev 6 page 13/77

AN5406

LoRaWAN middleware description

LoRaWAN middleware description

6.1

6.2

ANS5406 - Rev 6

LoRaWAN middleware initialization

The initialization of the LoRaMAC layer is done through the L.oRaMacInitialization API, that initializes both
the preamble run time of the LoRaMAC layer and the callback primitives of the MCPS and MLME services
(see the table below).

Table 9. LoRaWAN middleware initialization

T T

LoRaMacStatus t LoRaMacInitialization
(LoRaMacPrimitives t *primitives, Initializes the LoRaMAC layer module
LoRaMacCallback t *callback, (see Section 6.3 Middleware MAC layer callbacks)

LoRaMacRegion t region)

Middleware MAC layer APIs
The provided APIs follow the definition of “primitive” defined in IEEE802.15.4-2011 (see document [4]).

The interfacing with the LoRaMAC is made through the request-confirm and the indication-response architecture.
The application layer can perform a request that the LoRaMAC layer confirms with a confirm primitive.
Conversely, the LoORaMAC layer notifies an application layer with the indication primitive in case of any event.

The application layer may respond to an indication with the response primitive. Therefore, all the confirm or
indication are implemented using callbacks.

The LoRaMAC layer provides the following services:
. MCPS services
In general, the LoRaMAC layer uses the MCPS services for data transmissions and data receptions.

Table 10. MCPS services

LoRaMacStatus t LoRaMacMcpsRequest

Requests to send Tx data.
(McpsReq_ t* mcpsRequest, bool allowDelayedTx) q

. MLME services
The LoRaMAC layer uses the MLME services to manage the LoRaWAN network.

Table 11. MLME services

LoRaMacStatus t LoRaMacMlmeRequest

Generates a join request or requests for a link check.
(MImeReqg t *mlmeRequest)

page 14/77

‘,_l AN5406

Middleware MAC layer callbacks

. MIB services

The MIB stores important runtime information (such as MIB_NETWORK_ACTIVATION or MIB_NET _ID) and
holds the configuration of the LoRaMAC layer (for example the MIB_ADR, MIB_APP_KEY).

Table 12. MIB services

LoRaMacStatus t LoRaMacMibSetRequestConfirm

Sets attributes of the LoRaMAC | .
(MibRequestConfirm t *mibSet) e's atlributes ot the LoRa ayer

LoRaMacStatus_ t LoRaMacMibGetRequestConfirm

. . . Gets attributes of the LoRaMAC layer.
(MibRequestConfirm t *mibGet) e y

6.3 Middleware MAC layer callbacks

The LoRaMAC user event functions primitives (also named callbacks) to be implemented by the application are
the following:

Table 13. LoRaMacPrimitives_t structure description

o mEmw [Emmmw]

void (*MacMcpsConfirm)
Response to a McpsRequest
(McpsConfirm t *McpsConfirm)

Void (*MacMcpsIndication)
(McpsIndication t* McpsIndication, Notifies the application that a received packet is available.
LoRaMacRxStatus t* RxStatus)

void (*MacMlmeConfirm)
Manages the LoRaWAN network.
(MImeConfirm t *MImeConfirm)

void (*MacMlmeIndication)
(MlmeIndication t* MlmeIndication, Notify the MAC layer that a MAC response is available.
LoRaMacRxStatus t* RxStatus)

6.4 Middleware MAC layer timers

Table 14. MAC Timer events

Executed on first Rx window timer event by
RxWindow1Delay

Normal frame: RxWindowXDelay = ReceiveDelayX —
RADIO_WAKEUP_TIME

Join frame: RxWindowXDelay = JoinAcceptDelayX —
RADIO_WAKEUP_TIME

void OnRxWindowlTimerEvent

(void* context)

void OnRxWindow2TimerEvent Executed on first Rx window timer event by

(void* context) RxWindow2Delay

void OnTxDelayedTimerEvent
Executed on duty cycle delayed Tx timer event.
(void* context)

Executed on AckTimeout timer event by Acknowledge

void OnAckTimeoutTimerEvent timeout timer.
(void* context) Used for packet retransmissions (only for LoRaWAN version
v1.0.3).

AN5406 - Rev 6 page 15/77

m AN5406

Middleware LmHandler application function

void OnRetransmitTimeoutTimerEvent Executed on AckTimeout timer event by Acknowledge
. timeout timer. Used for packet retransmissions (only for
(void* context) LoRaWAN version v1.0.4).
6.5 Middleware LmHandler application function

The interface to the MAC is done through the MAC interface LoRaMac . h file, in one of the following modes:

. Standard mode

An interface file (LoRaMAC driver, see Figure 3) is provided to let the user start without worrying about the
LoRa state machine. This file is located in

Middlewares\Third Party\LoRaWAN\LmHandler\LmHandler.c andimplements:
— asetof APIs to access to the LoRaMAC services
— the LoRa certification test cases that are not visible to the application layer
. Advanced mode
The user accesses directly the MAC layer by including the MAC in the user file.

AN5406 - Rev 6 page 16/77

m AN5406

Middleware LmHandler application function

6.5.1 Operation model

The operation model proposed for the LoRaWAN_End_Node is based on ‘event-driven’ paradigms including
‘time-driven’ (see the figure below). The behavior of the LoRa system is triggered either by a timer event or by a
radio event plus a guard transition.

Figure 5. Operation model

Reset

.

Hal Initialization
Hardware initialization
LoRa stack initialization

v

LoRa specific configuration

v

LoRa join start

LoRa init TX event

| .

Processevent DISABLE_IRQ. LoRa stop event —
‘ ENABLE_IRQ ‘ ‘ Low power mode ‘

T

‘ | Processevent | ‘

Radio event?

ProcessTX or RX event H ProcessTimer event

(IDLE)

The next sections detail the LoORaWAN_End_Node and LoRaWAN_AT_Slave APIs used to access the LoRaMAC
services. The corresponding interface files are located in

Middlewares\Third Party\LoRaWAN\LmHandler\LmHandler.c
The user must implement the application with these APIs.

An example of LoORaWAN_End_Node application is provided in
\Projects\<target>\Applications\LoRaWAN\LoRaWAN End Node\LoRaWAN\App\lora app.c.

An example of LoORaWAN_AT_Slave application is provided in
\Projects\<target>\Applications\LoRaWAN\LoRaWAN AT Slave\LoRaWAN\App\lora app.c.

AN5406 - Rev 6 page 17/77

‘,_l AN5406

Application callbacks

6.5.2 Main application functions definition

Table 15. LmHandler main functions

LmHandlerErrorStatus t LmHandlerInit

(LmHandlerCallbacks t *handlerCallbacks, Initialization of the LoRa finite state machine
uint32 t fwVersion)

Deinit LoRa state machine, stop all timers, reset
LmHandlerErrorStatus t LmHandlerDelInit (void) MAC parameters, shutdown the radio and remove all
existing callbacks references

LmHandlerErrorStatus t LmHandlerConfigure

Configuration of all applicative parameters
(LmHandlerParams t *handlerParams)

Join request to a network either in OTAA or ABP
void LmHandlerJoin (ActivationType t mode, mode.

bool forceRejoin) forceRejoin Flag to force the rejoin even if LoRaWAN
context can be restored.

LmHandlerFlagStatus t LmHandlerJoinStatus

. Check whether the Device is joined to the network
(void)

Stops the LoRa process and waits a new

void LmHandlerStop (void) configuration before a rejoin action.

LmHandlerErrorStatus t LmHandlerHalt (void) Halt the LoRa stack with break of current process

LmHandlerErrorStatus LmHandlerRequestClass

(DeviceClass_t newClass) Requests the MAC layer to change LoRaWAN class.

LmHandlerErrorStatus t LmHandlerSend
Sends an uplink frame. This frame can be either

(LmHandlerAppData_t *appData, an unconfirmed empty frame or an unconfirmed/
LmHandlerMsgTypes t isTxConfirmed, bool confirmed payload frame.

allowDelayedTx)

TimerTime t LmHandlerGetDutyCycleWaitTime

(void) Gets current duty-cycle wait time

LmHandlerErrorStatus t LmHandlerGetVersion
(LmHandlerVersionType t lmhType, uint32 t Returns current LoRaWAN specifications version
*featureVersion)

Starts the NVM Data store process (more details
in Section 13 LoRaWAN context management
description).

LmHandlerErrorStatus t LmHandlerNvmDataStore
(void)

6.6 Application callbacks
Callbacks in the tables below are used for both LoRaWAN_End_Node and LoRaWAN_AT_Slave applications.

Table 16. LmHandlerCallbacks_t callback structure description

uint8 t GetBatteryLevel (void) Gets the battery level.

intl6 t GetTemperature (void) Gets the current temperature (in °C) of the device in q7.8

format.
void GetUniqueId (uint8 t *id) Gets the board 64-bit unique ID.
uint32 GetDevAddr (void) Gets the board 32-bit unique ID (LSB).

void OnRestoreContextRequest (void *nvm,

. . Restores the NVM Data context from the Flash.
uint32 t nvm size)

AN5406 - Rev 6 page 18/77

m AN5406

Application callbacks

void OnStoreContextRequest (void *nvm,
uint32 t nvm size)

Stores the NVM Data context to the Flash.

void OnMacProcess (void) Calls LmHandler Process when a Radio IRQ is received.

void OnNvmDataChange
Notifies the upper layer that the NVM context has changed.
(LmHandlerNvmContextStates t state)

void OnNetworkParametersChange Notifies the upper layer that network parameters have been

(CommissioningParams t *params) set.

void OnJoinRequest
Notifies the upper layer that a network has been joined.
(LmHandlerJoinParams_t *params)

voild OnTxData (LmHandlerTxPa rams t

*params) Notifies the upper layer that a frame has been transmitted.

void OnRxData (LmHandlerAppData t
*appData, Notifies the upper layer that an applicative frame has been

received.
LmHandlerRxParams t *params)

void OnClassChange (DeviceClass t

. Confirms the LoRaWAN device class change.
deviceClass)
void OnBeaconStatusChange

Notifies the upper layer that the beacon status has changed.
(LmHandlerBeaconParams t *params)

void OnBeaconStatusChange
Notifies the upper layer that the beacon status has changed.
(LmHandlerBeaconParams t *params)

Notifies the upper layer that the system time has been

void OnSysTimeUpdate (void) updated

)) o) Is called to change applicative Tx frame period.
void OnTxPeriodicityChanged (uint32 t

periodicity) Compliance test protocol callbacks used when TS001-1.0.4 +
TS009 1.0.0 are defined.

void Is called to change applicative Tx frame control.
QHTXFram?CtrlChanged (LmHandlerMsgTypes_t | compliance test protocol callbacks used when TS001-1.0.4 +
isTxConfirmed) TS009 1.0.0 are defined.

void Is called to change the ping period.
OnPingSlotPeriodicityChanged(uint8 t

, i Compliance test protocol callbacks used when TS001-1.0.4 +
pingSlotPeriodicity) TS009 1.0.0 are defined.

Is called to reset the system.

void OnSystemReset (void) Compliance test protocol callbacks used when TS001-1.0.4 +

TS009 1.0.0 are defined.

AN5406 - Rev 6 page 19/77

AN5406

Extended application functions

ANS5406 - Rev 6

Extended application functions

These callbacks are used for both LoORaWAN_End-Node and LoRaWAN_AT-Slave applications.

Table 17. Getter/setter functions

= =

LmHandlerErrorStatus t
LmHandlerGetCurrentClass (DeviceClass t
*deviceClass)

LmHandlerErrorStatus t

LmHandlerGetDevEUI (uint8 t *devEUI)
LmHandlerErrorStatus t
LmHandlerSetDevEUI (uint8 t *devEUI)
LmHandlerErrorStatus t
LmHandlerGetAppEUI (uint8 t *appEUI)
LmHandlerErrorStatus t
LmHandlerSetAppEUI (uint8 t *appEUI)

LmHandlerErrorStatus t
LmHandlerGetNetworkID(uint32 t
*networkId)

LmHandlerErrorStatus t
LmHandlerSetNetworkID uint32 t
networkId)

LmHandlerErrorStatus t
LmHandlerGetDevAddr (uint32 t *devAddr)

LmHandlerErrorStatus t
LmHandlerSetDevAddr (uint32 t devAddr)

LmHandlerErrorStatus t
LmHandlerGetAppKey (uint8 t *appKey)

LmHandlerErrorStatus t
LmHandlerSetAppKey (uint8 t *appKey)

LmHandlerErrorStatus t
LmHandlerGetNwkKey (uint8 t *nwkKey)

LmHandlerErrorStatus_t
LmHandlerSetNwkKey (uint8 t *nwkKey)

LmHandlerErrorStatus t

LmHandlerGetNwkSKey (uint8 t *nwkSKey)
LmHandlerErrorStatus t
LmHandlerSetNwkSKey (uint8 t *nwkSKey)
LmHandlerErrorStatus t
LmHandlerGetAppSKey (uint8 t *appSKey)
LmHandlerErrorStatus t
LmHandlerSetAppSKey (uint8 t *appSKey)

LmHandlerErrorStatus t
LmHandlerGetActiveRegion (LoRaMacRegion
t *region)

LmHandlerErrorStatus t
LmHandlerSetActiveRegion (LoRaMacRegion
t region)

Gets the current LoRaWAN class.

Gets the LoRaWAN device EUI.

Sets the LoRaWAN device EUI (if OTAA).

Gets the LoRaWAN App EUI.

Sets the LoRaWAN App EUL.

Gets the LoRaWAN Network ID.

Sets the LoRaWAN Network ID.

Gets the LoRaWAN device address.

Sets the LoRaWAN device address (if ABP).

Gets the LoRaWAN Application Root Key.

Sets the LoRaWAN Application Root Key.

Gets the LoRaWAN Network Root Key.

Sets the LoRaWAN Network Root Key.

Gets the LoRaWAN Network Session Key.

Sets the LoRaWAN Network Session Key.

Gets the LoRaWAN Application Session Key.

Sets the LoRaWAN Application Session Key.

Gets the active region.

Sets the active region.

page 20/77

AN5406

Extended application functions

LmHandlerErrorStatus t

LmHandlerGetAdrEnable (bool *adrEnable)

LmHandlerErrorStatus t

ILmHandlerSetAdrEnable (bool adrEnable)

LmHandlerErrorStatus t
LmHandlerGetTxDatarate(int8 t
*txDatarate)

LmHandlerErrorStatus t
LmHandlerSetTxDatarate (int8 t
txDatarate)

LmHandlerErrorStatus t
LmHandlerGetDutyCycleEnable

(bool *dutyCycleEnable)

LmHandlerErrorStatus t
ILmHandlerSetDutyCycleEnable

(bool dutyCycleEnable)

LmHandlerErrorStatus t
LmHandlerGetRX2Params

(RxChannelParams t *rxParams)

LmHandlerErrorStatus t
LmHandlerSetRX2Params

(RxChannelParams t *rxParams)

LmHandlerErrorStatus t
LmHandlerGetTxPower (int8 t *txPower)

LmHandlerErrorStatus t
LmHandlerSetTxPower (int8 t txPower)

LmHandlerErrorStatus t

LmHandlerGetRx1Delay(uint32 t *rxDelay)

LmHandlerErrorStatus t
LmHandlerSetRx1Delay (uint32 t rxDelay)

LmHandlerErrorStatus t

LmHandlerGetRx2Delay (uint32 t *rxDelay)

LmHandlerErrorStatus t
LmHandlerSetRx2Delay (uint32 t rxDelay)

LmHandlerErrorStatus t
LmHandlerGetJoinRx1Delay (
*rxDelay)

uint32 t

LmHandlerErrorStatus t
LmHandlerSetJoinRx1Delay (
rxDelay)

uint32_t

LmHandlerErrorStatus t
LmHandlerGetJoinRx2Delay (
*rxDelay)

uint32 t

LmHandlerErrorStatus t
LmHandlerSetJoinRx2Delay (
rxDelay)

uint32 t

LmHandlerErrorStatus t
LmHandlerGetPingPeriodicity

ANS5406 - Rev 6

Gets the adaptive data rate state.

Sets the adaptive data rate state.

Gets the current Tx data rate.

Sets the Tx data rate (if adaptive DR disabled).

Gets the current Tx duty cycle state.

Sets the Tx duty cycle state.

Gets the current Rx2 data rate and frequency conf.

Sets the Rx2 data rate and frequency conf.

Gets the current Tx power value.

Sets the Tx power value.

Gets the current Rx1 delay (after Tx window).

Sets the Rx1 delay (after Tx window).

Gets the current Rx2 delay (after Tx window).

Sets the Rx2 delay (after Tx window).

Gets the current Join Rx1 delay (after Tx window).

Sets the Join Rx1 delay (after Tx window).

Get the current Join Rx2 delay (after Tx window)

Sets the Join Rx2 delay (after Tx window).

Gets the current Rx Ping Slot periodicity (If
LORAMAC CLASSB_ ENABLED).

page 21/77

m AN5406

Extended application functions

(uint8 t pingPeriodicity)

LmHandlerErrorStatus t

LmHandlerSetPingPeriodicity Sets the Rx Ping Slot periodicity (If

LORAMAC CLASSB ENABLE D).
(uint8 t pingPeriodicity)

LmHandlerErrorStatus t
LmHandlerGetBeaconState Gets the beacon state (If LORAMAC CLASSB_ENABLED).
(BeaconState t *beaconState)

LmHandlerErrorStatus t

LmHandlerDeviceTimeReq (void) Requests network server time update.

LmHandlerErrorStatus t

LmHandlerLinkCheckReq (void) Requests Link connectivity check.

LmHandlerErrorStatus t
LmHandlerPingSlotReqg(uint8 t Informs the server on the ping-slot periodicity to use.

periodicity)

AN5406 - Rev 6 page 22/77

m AN5406

SubGHz_Phy layer middleware description

7 SubGHz_Phy layer middleware description

The radio abstraction layer is composed of two layers:

. high-level layer (radio.c)
It provides a high-level radio interface to the stack middleware. It also maintains radio states, processes
interrupts and manages timeouts. It records callbacks and calls them when radio events occur.

. low-level radio drivers

It is an abstraction layer to the RF interface. This layer knows about the register name and structure, as well
as detailed sequence. It is not aware about hardware interface.

The SubGHz_Phy layer middleware contains the radio abstraction layer that interfaces directly on top of the
hardware interface provided by BSP (refer Section 4).

The SubGHz_Phy middleware directory is divided in two parts:

. radio.c: contains a set of all radio generic callbacks, calling radio_driver functions. This set of APIs is
meant to be generic and identical for all radios.

. radio_driver.c: low-level radio drivers

radio_ conf.h contains radio application configuration like RF_WAKEUP_TIME, DC/DC dynamic settings,
XTAL_FREQ.

AN5406 - Rev 6 page 23/77

‘W AN5406

Middleware radio driver structure

71 Middleware radio driver structure

A radio generic structure (struct Radio_s Radio {},) is defined to register all the callbacks, with the fields detailed
in the table below.

Table 18. Radio_s structure callbacks

ANS5406 - Rev 6

RadioInit Initializes the radio.

RadioGetStatus Returns the current radio status.
RadioSetModem Configures the radio with the given modem.
RadioSetChannel Sets the channel frequency.

RadioIsChannelFree

Checks if the channel is free for the given time.

Generates a 32-bit random value based on the RSSI

RadioRandom)

readings.
RadioSetRxConfig Sets the reception parameters.
RadioSetTxConfig Sets the transmission parameters.

RadioCheckRfFrequenc

RadioTimeOnAir

Checks if the given RF frequency is supported by the
hardware.

Computes the packet time on air (in ms), for the given

payload.
RadioSend tF:;er;‘Z?;iessSitgr? packet to be sent and starts the radio in
RadioSleep Sets the radio in Sleep mode.
RadioStandby Sets the radio in Standby mode.
RadioRx Sets the radio in reception mode for the given time.
RadioStartCad Starts a CAD (channel activity detection).

RadioSetTxContinuousWave

Sets the radio in continuous-wave transmission mode.

RadioRssi Reads the current RSSI value.
RadioWrite Writes the radio register at the specified address.
RadioRead Reads the radio register at the specified address.

RadioSetMaxPayloadLength

RadioSetPublicNetwork

Sets the maximum payload length.

Sets the network to public or private, and updates the sync
byte.

RadioGetWakeUpTime Gets the time required for the radio to exit Sleep mode.
RadioIrgProcess Processes radio IRQ.

RadioRxBoosted Si?/t:ntrt}ﬁqzdio in reception mode with max LNA gain for the
RadioSetRxDutyCycle Sets the Rx duty-cycle management parameters.
RadioTxPrbs Sets the transmitter in continuous PRBS mode.
RadioTxCw Sets the transmitter in continuous unmodulated carrier mode.

page 24/77

m AN5406

Radio IRQ interrupts

7.2 Radio IRQ interrupts

The possible sub-GHz radio interrupt sources are detailed in the table below.

Table 19. Radio IRQ bit mapping and definition

txDone Packet transmission finished
1 rxDone Packet reception finished LoRa and GFSK
2 PreambleDetected Preamble detected
3 SyncDetected Synchronization word valid GFSK
4 HeaderValid Header valid Rx
LoRa
5 HeaderErr Header error
A Err ::;a;mble, sync word, address, CRC or length GFSK
CrcErr CRC error
7 CadDone Channel activity detection finished LoRa
8 CadDetected Channel activity detected CAD
9 Timeout Rx or Tx timeout LoRa and GFSK Rx and Tx

For more details, refer to the product reference manual.

AN5406 - Rev 6 page 25/77

‘,_l AN5406

Utilities description

8 Utilities description

Utilities are located in the \Utilities directory.

Main APIs are described below. Secondary APIs and additional information can be found on the header files
related to the drivers.

8.1 Sequencer

The sequencer provides a robust and easy framework to execute tasks in the background and enters low-power
mode when there is no more activity. The sequencer implements a mechanism to prevent race conditions.

In addition, the sequencer provides an event feature allowing any function to wait for an event (where particular
event is set by interrupt) and MIPS and power to be easily saved in any application that implements “run to
completion” command.

Theutilities def.h file located in the project sub-folder is used to configure the task and event IDs. The
ones already listed must not be removed.

The sequencer is not an OS. Any task is run to completion and cannot switch to another task like an RTOS can
do on the RTOS tick unless a task suspends itself by calling UTIL SEQ WaitEvt. Moreover, one single-memory
stack is used. The sequencer is an advanced ‘while loop’ centralizing task and event bitmap flags.

The sequencer provides the following features:

. Advanced and packaged while loop system

. Support up to 32 tasks and 32 events

. Task registration and execution

. Wait for an event and set event

. Task priority setting

. Race condition safe low-power entry

To use the sequencer, the application must perform the following:

. Set the number of maximum of supported functions, by defining a value for UTIL. SEQ CONF TASK NBR.
. Register a function to be supported by the sequencer with UTIL SEQ RegTask ().
. Start the sequencer by calling UTIL_SEQ Run () to run a background while loop.

. Call UTIL_SEQ SetTask () when a function needs to be executed.

The sequencer utility is located in Utilities\sequencer\stm32 seqg.c.

Table 20. Sequencer APls

o mEmw [Eemew]

void UTIL_SEQ Idle(void) Called (in critical section - PRIMASK) when there is nothing to

execute.
void UTIL SEQ Run (UTIL SEQ bm t Requests the sequencer to execute functions that are pending
mask bm) and enabled in the mask mask bm.
void UTIL_SEQ RegTask(UTIL_SEQ bm_t Registers a function (task) associated with a signal
task id bm, uint32 t flags, void (*task) | (task id bm)inthe sequencer. The task id bm must
(void)) have a single bit set.

Requests the function associated with the task id bm
to be executed. The task prio is evaluated by the

void UTIL_SEQ SetTask(UTIL_SEQ bm_ t sequencer only when a function has finished.

taskId bm, uint32 t task Prio)
If several functions are pending at any one time, the one with

the highest priority (0) is executed.

void UTIL SEQ WaitEvt (UTIL SEQ bm t

EvtId bm); Waits for a specific event to be set.

void UTIL SEQ SetEvt(UTIL SEQ bm t

EvtId bm); Sets an event that waits with UTIL SEQ WaitEvt ().

AN5406 - Rev 6 page 26/77

AN5406

Sequencer

ANS5406 - Rev 6

The figure below compares the standard while-loop implementation with the sequencer while-loop

implementation.

Table 21. While-loop standard vs. sequencer implementation

Standard way Sequencer way

While (1)
{
if (flagl)
{
flagl=0;
Fctl () ;
}
if (flag2)
{
flag2=0;
Fct2 () ;
}
/*Flags are checked in critical section
to avoid race conditions*/ /*Note: in the
critical section, NVIC records Interrupt source
and system will wake up if asleep */
__disable irqg();
if (! (flagl ||
{
/*Enter LowPower if nothing else to do*/
LPM _EnterLowPower ();
}
__enable irqg();
/*Irg executed here*/

}

flag2))

Void some Irg(void)

{

/*handler context*/

flag2=1; /*will execute Fct2*/

/*Flagl and Flag2 are bitmasks*/
UTIL_SEQ RegTask(flagl, Fctl()):;
UTIL SEQ RegTask(flag2, Fct2());

While (1)
{
UTIL_SEQ Run();

void UTIL SEQ Idle(void)
{

LPM EnterLowPower ();
}

Void some Irg(void)
{

UTIL SEQ SetTask(flag2); /*will execute
Fct2x/

}

/*handler context*/

page 27/77

‘,_l AN5406

Timer server

8.2 Timer server

The timer server allows the user to request timed-tasks execution. As the hardware timer is based on the RTC,
the time is always counted, even in low-power modes.

The timer server provides a reliable clock for the user and the stack. The user can request as many timers as the
application requires.

The timer server is located in Utilities\timer\stm32 timer.c.

Table 22. Timer server APIs

o mEmw [Emmmw]

UTIL TIMER Status t

UTIL TIMER Init (void) Initializes the timer server.

UTIL TIMER Status t UTIL TIMER Create

(UTIL TIMER Object t *TimerObject,

uint32 t Periodvalue, Creates the timer object and associates a callback function
- when timer elapses.

UTIL TIMER Mode t Mode, void (*Callback)

(void*), wvoid *Argument)
UTIL, TIMER Status t

UTIL_TIMER_SetPeriod (UTIL_TIMER Object_t | Updates the period and starts the timer with a timeout value
*TimerObject, (milliseconds).

uint32 t NewPeriodValue)

UTIL TIMER Status t UTIL TIMER Start
Starts and adds the timer object to the list of timer events.
(UTIL TIMER Object t *TimerObject)

UTIL TIMER Status_ t UTIL TIMER Stop Stops and removes the timer object from the list of timer

(UTIL_TIMER Object t *TimerObject) events.

8.3 Low-power functions

The low-power utility centralizes the low-power requirement of separate modules implemented by the firmware
and manages the low-power entry when the system enters idle mode. For example, when the DMA is used to
print data to the console, the system must not enter a low-power mode below Sleep mode because the DMA
clock is switched off in Stop mode

The APIs presented in the table below are used to manage the low-power modes of the core MCU. The
low-power utility is located in Utilities\1lpm\tiny lpm\stm32 lpm.c.

Table 23. Low-power APls

I R

Enters the selected low-power mode. Called by the idle state

void UTIL LPM EnterLowPower (void)
- — of the system

void UTIL LPM SetStopMode(UTIL LPM bm t | Sets Stop mode. id defines the process mode requested:
lpm id bm, UTIL LPM State t state); UTIL LPM ENABLE or UTIL LPM DISABLE.()

void UTIL LPM SetOffMode(UTIL LPM bm t Sets Stop mode. id defines the process mode requested:
lpm id bm, UTIL LPM State t state); UTIL LPM ENABLE or UTIL LPM DISABLE.

UTIL LPM Mode t UTIL LPM GetMode(void) | Returns the currently selected low-power mode.

1. Bitmaps for which the shift values are defined in utilities def.h.

AN5406 - Rev 6 page 28/77

m AN5406

Low-power functions

The default low-power mode is Off mode, which may be Standby or Shutdown mode
(defined in void PWR EnterOffMode (void) from Table 24):

. If Stop mode is disabled by at least one firmware module and low-power is entered, Sleep mode is selected.

. If Stop mode is not disabled by any firmware module, Off mode is disabled by at least one firmware module,
and low-power is entered. Stop mode is selected.

. If Stop mode is not disabled by any firmware module, Off mode is not disabled by any firmware module, and

low-power is entered. Off mode is selected.

Figure 6 depicts the behavior with three different firmware modules setting dependently their low-power
requirements and low-power mode, selected when the system enters a low-power mode.

Figure 6. Example of low-power mode dynamic view

[UTIL_LPM_SetStopMode((1 << CFG_LPM_MODULEO_Id), UTIL_LPM_DISABLE); |
- [UTIL_LPM_SetStopMode((1 << CFG_LPM_MODULEO_Id), UTIL_LPM_ENABLE); |

\ \ V v

module0 ‘ Stop disable ((module0_Id) ‘ Stop disable ((module0_Id) ‘
[UTIL_LPM_SetOfféode((1 << CFG_LPM_MODULE1_ld), UTIL_LPM_DISABLE); |
|UT/L_LPM_Se OffMode((1 << CFG_LPM_MODULE1_Id), UTIL_LPM_ENABLE); |
v \j
module ‘ off disable (mddule1_ld)
v \j
module2 Stop disable (module2_ld)
Sleep \ \j \/ v
mode
Low-power mode when \/
system enters idle mode Stop
(For example when ~ mode
UTIL_LPM_EnterLowPo
wer is called) Off
mode

Time

AN5406 - Rev 6 page 29/77

AN5406

Low-power functions

Note:

ANS5406 - Rev 6

Low-level APIs must be implemented to define what the system must do to enter/exit a low-power mode. These
functions are implemented in stm32 1pm if.c of project sub-folder.

Table 24. Low-level APls

o REw [Beme]

void PWR EnterSleepMode (void) API called before entering Sleep mode
void PWR ExitSleepMode (void) API called on exiting Sleep mode
void PWR EnterStopMode (void) API called before Stop mode

void PWR ExitStopMode (void) API called on exiting Stop mode
void PWR_EnterOffMode (void) AP called before entering Off mode
void PWR _ExitOffMode (void) API called on exiting Off mode

In Sleep mode, the core clock is stopped. Each peripheral clock can be gated or not. The power is maintained on
all peripherals.

In Stop 2 mode, most peripheral clocks are stopped. Most peripheral supplies are switched off. Some registers
of the peripherals are not retained and must be reinitialized on Stop 2 mode exit. Memory and core registers are
retained.

In Standby mode, all clocks are switched off except LS| and LSE. All peripheral supplies are switched off (except
BOR, backup registers, GPIO pull, and RTC), with no retention (except additional SRAM2 with retention), and
must be reinitialized on Standby mode exit. Core registers are not retained and must be reinitialized on Standby
mode exit.

The sub-GHz radio supply is independent of the rest of the system. See the product reference manual for more
details.

page 30/77

AN5406

System time

ANS5406 - Rev 6

System time

The MCU time is referenced to the MCU reset. The system time can record the UNIX® epoch time.

The APIs presented in the table below are used to manage the system time of the core MCU. The systime utility
is located in Utilities\misc\stm32 systime.c.

Table 25. System time functions

e e

Based on an input UNIX epoch in seconds and sub-seconds,
void SysTimeSet (SysTime t sysTime) the difference with the MCU time is stored in the backup

register (retained even in Standby mode).(")
SysTime_t SysTimeGet (void) Gets the current system time.(")

uint32 t SysTimeMkTime (const struct tm*

ime i ime. @
localtime) Converts local time into UNIX epoch time.

void SysTimeLocalTime

(const uint32 t timestamp, struct tm Converts UNIX epoch time into local time.)
*localtime)

1. The system time reference is the UNIX epoch starting January 15t, 1970.

2. SysTimeMkTime and SysTimeLocalTime are also provided to convert epoch into tm structure as specified by the t ime
. hinterface.

To convert UNIX time to local time, a time zone must be added and leap seconds must be removed. In 2018,
18 leap seconds must be removed. In Paris summertime, there is two hours difference from Greenwich time.
Assuming time is set, a local time can be printed on a terminal with the code below.

{

SysTime t UnixEpoch = SysTimeGet () ;

struct tm localtime;

UnixEpoch.Seconds-=18; /*removing leap seconds*/
UnixEpoch.Seconds+=3600*2; /*adding 2 hours*/

SysTimeLocalTime (UnixEpoch.Seconds, & localtime);

PRINTF ("it's %02dh%02dm%02ds on %02d/%02d/%04d\n\r",
localtime.tm hour, localtime.tm min, localtime.tm sec,
localtime.tm mday, localtime.tm mon+l, localtime.tm year + 1900);

}

page 31/77

AN5406

Trace

ANS5406 - Rev 6

Trace

The trace module enables printing data on a COM port using DMA. The APIs presented in the table below are

used to manage the trace functions.

The trace utility is located in Utilities\trace\adv_trace\stm32 adv_trace.c

Table 26. Trace functions

o mEw [Eemew]

UTIL ADV TRACE Status t
UTIL ADV _TRACE Init(void)

UTIL ADV_TRACE Status t

UTIL_ADV_TRACE_COND_FSend(uint32_t
Verboselevel,

uint32 t Region,

uint32 t TimeStampState, const char
*strFormat, ...)

UTIL ADV_TRACE Status t

UTIL ADV_TRACE COND Send(uint32 t
VerboseLevel, uint32 t Region, uint32 t
TimeStampState,

const uint8 t *pdata, uintlé6 t length)

UTIL ADV TRACE Status t

UTIL ADV_TRACE COND ZCSend Allocation (ui
nt32 t VerboseLevel, uint32 t Region,
uint32 t TimeStampState, uintlé6 t
length,uint8 t **pData, uintlé6 t
*FifoSize, uintl6 t *WritePos)

TraceInit must be called at the application initialization.
Initializes the com or vcom hardware in DMA mode and
registers the callback to be processed at DMA transmission
completion.

Converts string format into a buffer and posts it to the circular
queue for printing.

Posts data of length = 1en and posts it to the circular queue
for printing.

Writes user formatted data directly in the FIFO (Z-Cpy).

The status values of the trace functions are defined in the structure UTIL ADV_TRACE Status_t as follows.

typedef enum {

UTIL ADV_TRACE OK =0,
UTIL ADV_TRACE INVALID PARAM = -1,
UTIL ADV_TRACE HW ERROR = -2,
UTIL ADV_TRACE MEM ERROR = -3,
UTIL ADV_TRACE UNKNOWN ERROR = -4,
UTIL ADV_TRACE GIVEUP = -5,
UTIL ADV_TRACE REGIONMASKED -6

} UTIL ADV_TRACE Status t;

/*Operation terminated successfully*/
/*Invalid Parameter*/

/*Hardware Error*/

/*Memory Allocation Error*/

/*Unknown Error*/

/*!< trace give up*/

/*1< trace region masked*/

page 32/77

m AN5406

Trace
The UTIL ADV_TRACE COND FSend (..) function can be used:
. in polling mode when no real time constraints apply: for example, during application initialization
#define APP_PPRINTF(...) do{ } while(UTIL ADV_TRACE OK \
!= UTIL ADV_TRACE COND FSend (VLEVEL ALWAYS, T REG OFF, TS OFF, _ VA ARGS))
/* Polling Mode */
. in real-time mode: when there is no space left in the circular queue, the string is not added and is not printed
out in the com port
#define APP_LOG (TS, VL, ...)do{
{UTIL ADV_TRACE COND FSend(VL, T REG OFF, TS, _ VA ARGS_);} }while(0);)
where:

— VL is the VerboseLevel of the trace.
— TS allows a timestamp to be added to the trace (Ts_ON or TS_OFF).
The application verbose level is setin Core\Inc\sys_conf.h with:

#define VERBOSE LEVEL <VLEVEL>

where VLEVEL can be VLEVEL OFF, VLEVEL_L, VLEVEL M, or VLEVEL H.

UTIL ADV_TRACE COND FSend (..) is displayed only if VLEVEL = VerboseLevel.
The buffer length can be increased in case it is saturated in Core\Inc\utilities conf.h with:

#define UTIL ADV TRACE TMP BUF SIZE 256U

The utility provides hooks to be implemented to forbid the system to enter Stop or lower mode while the DMA is

active:
° void UTIL_ADV_TRACE PreSendHook (void)

{ UTIL LPM SetStopMode ((l << CFG_LPM UART TX Id) , UTIL LPM DISABLE); }
° void UTIL ADV_TRACE PostSendHook (void)

{ UTIL LPM SetStopMode((l << CFG LPM UART TX Id) , UTIL LPM ENABLE);}

AN5406 - Rev 6 page 33/77

‘,_l AN5406

LoRaWAN_End_Node application

9 LoRaWAN_End_Node application

This application measures the battery level and the temperature of the MCU. These values are sent periodically to
the LoRa network using the LoRa radio in Class A at 868 MHz.

To launch the LoRaWAN_End_Node project, go to

\Projects\<target>\Applications\LoRaWAN\LoRaWAN End Node and choose the favorite toolchain
folder (in the IDE environment). Select the LoRa project from the proper target board.

Focus on the configuration described below to setup the application.

9.1 LoRaWAN user code sections description
Four main functions are defined as example to implement and use the LoRaWAN stack in
\Projects\<target>\Applications\LoRaWAN\LoRaWAN End Node\LoRaWAN\App\lora app.c.

These functions contain example code under the USER CODE Sections, which can be overwritten to handle the
specifics features of the application layer.

Table 27. LoRaWAN user functions

o REmw [Beme]

Initialize the LoRaWAN Application as described in the

void LORaWAN_Init (void) Figure 5. Operation model

Example of LoRaWAN Tx process with a generic content
static void SendTxData (void) payload generation and a LmHandlerSend(...) call with the
temporary payload generated buffer.

Example of callback implementation when LoRaWAN

static void OnTxData(LmHandlerTxParams_t ,n5jcation has successfully transmitted a frame.

*params) .
. params parameter contains status of last Tx

Example of callback implementation when LoRaWAN

)) application has received a frame.
static void OnRxData (LmHandlerAppData t

*appData, LmHandlerRxParams t *params) . aRzpData parameter contains data received in the last
. params parameter contains status of last Rx

9.2 Device configuration

9.21 Activation methods and keys
There are two ways to activate a device on the network, either by OTAA or by ABP.

The global variable “ActivationType” in the application must be adjusted to activate the device with the selected
mode.

static ActivationType t ActivationType = LORAWAN DEFAULT ACTIVATION TYPE;

in \Projects\<target>\Applications\LoRaWAN\LoRaWAN End Node\LoRaWAN\App\lora app.c

and

#define LORAWAN DEFAULT ACTIVATION TYPE ACTIVATION TYPE OTAA

in \Projects\<target>\Applications\LoRaWAN\LoRaWAN End Node\LoRaWAN\App\lora app.h
where ActivationType t enumis defined as follows:

typedef enum eActivationType {
ACTIVATION TYPE NONE = 0, /* None */
ACTIVATION TYPE ABP = 1, /* Activation by personalization */
ACTIVATION TYPE OTAA = 2, /* Over the Air Activation */

AN5406 - Rev 6 page 34/77

m AN5406

Device configuration

\Projects\<target>\Applications\LoRaWAN\LoRaWAN End Node\LoRaWAN\App\se-identity.h
file contains commissioning data useful for device activation.

9.2.2 LoRa Class activation
By default, Class A is defined. To change the class activation (Class A, Class B, or Class C), the user must:
. set the code
#define LORAWAN DEFAULT CLASS CLASS B;
in
\Projects\<target>\Applications\LoRaWAN\LoRaWAN End Node\LoRaWAN\App\lora app.h

. set the code
#define LORAMAC CLASSB_ENABLED 1
in
\Projects\<target>\Applications\LoRaWAN\LoRaWAN End Node\LoRaWAN\App\lorawan con
f.h

9.2.3 Tx trigger
There are two ways to generate an uplink action, with the EventType global variable in
\Projects\<target>\Applications\LoRaWAN\LoRaWAN End Node\LoRaWAN\App\lora app.c:
. by timer
. by an external event
with the code

static TxEventType t EventType = TX ON TIMER;

where TxEventType t enum is defined as follows:

typedef enum TxEventType e {
TX _ON_TIMER = 0, /* App data transmission issue based on timer */
TX ON_EVENT = 1, /* App data transmission by external event */
}TxEventType t;

The TX ON_EVENT feature uses the button 1 as event in the LoRaWAN_End_Node application.

9.24 Duty cycle
The duty cycle value (in ms) to be used for the application is defined in

\Projects\<target>\Applications\LoRaWAN\LoRaWAN End Node\LoRaWAN\App\lora app.h, with
the code below (for example):

#define APP_TX DUTYCYCLE 10000 /* 10s duty cycle */

9.2.5 Application port
The application port to be used for the application is defined in

\Projects\<target>\Applications\LoRaWAN\LoRaWAN End Node\LoRaWAN\App\lora app.h, with
the code below (for example):

#define LORAWAN APP PORT 2
Note: LORAWAN APP PORT must not use port 224 that is reserved for certification.
9.2.6 Confirm/unconfirmed mode

The confirm/unconfirmed mode to be used for the application is defined in

AN5406 - Rev 6 page 35/77

m AN5406

Device configuration

\Projects\<target>\Applications\LoRaWAN\LoRaWAN End Node\LoRaWAN\App\lora app.h, with
the code below:

#define LORAWAN DEFAULT CONFIRMED MSG_ STATE LORAMAC HANDLER UNCONFIRMED MSG

9.2.7 Data buffer size
The size of the buffer sent to the network is defined in
\Projects\<target>\Applications\LoRaWAN\LoRaWAN End Node\LoRaWAN\App\lora app.h, with
the code below:

#define LORAWAN APP DATA BUFFER MAX SIZE 242

9.2.8 Adaptive data rate (ADR)
The ADR is enabled in
\Projects\<target>\Applications\LoRaWAN\LoRaWAN End Node\LoRaWAN\App\lora app.h, with
the code below:

#define LORAWAN ADR STATE LORAMAC HANDLER ADR ON

When the ADR is disabled, the default rate is set in
\Projects\<target>\Applications\LoRaWAN\LoRaWAN End Node\LoRaWAN\App\lora app.h, with
the code below:
#define LORAWAN DEFAULT DATA RATE DR_0

9.2.9 Ping periodicity
If the device is able to switch in Class B, the default Rx Ping slot periodicity must be enabled in
\Projects\<target>\Applications\LoRaWAN\LoRaWAN End Node\LoRaWAN\App\lora app.h
with the code below.

#define LORAWAN DEFAULT PING SLOT PERIODICITY 4

where the expected value must be in the 0-7 range.
The resulting period time is defined by:

period = 27LORAWAN DEFAULT_ PING_ SLOT PERIODICITY

9.2.10 LoRa band selection
The region and its corresponding band selection are defined in \Projects\<target>
\Applications\LoRaWAN\LoRaWAN End Node\LoRaWAN\Target\lorawan conf.h with the code below:

#define REGION AS923
#define REGION AU915
#define REGION CN470
#define REGION CN779
#define REGION EU433
#define REGION EU868
#define REGION KR920
#define REGION IN865
#define REGION US915
#define REGION RU864

Note: Several regions can be defined on the same application.
Depending on the region, the default active region must be defined in \Projects\<target>

\Applications\LoRaWAN\LoRaWAN End Node\Core\Inc\sys_conf.h with the code
(example for Europe)

#define ACTIVE REGION LORAMAC REGION EU868

AN5406 - Rev 6 page 36/77

m AN5406

Device configuration

9.2.11 Context management
The context management is defined in

\Projects\<target>\Applications\LoRaWAN\LoRaWAN End Node\LoRaWAN\App\lorawan conf.h
with the code below:

#define CONTEXT MANAGEMENT ENABLED 1

More details of this feature in Section 13 LoRaWAN context management description.

9.2.12 Debug switch
The debug mode is enabled in \Projects\<target>
\Applications\LoRaWAN\LoRaWAN End Node\Core\Inc\sys_ conf.h with the code below:

#define DEBUGGER ENABLED 1 /* ON=1, OFF=0 */

The debug mode enables the SWD pins, even when the MCU goes in low-power mode.

Note: In order to enable a true low-power, #define DEBUGGER ENABLED must be reset.

Some additional defines activate monitoring (probes) of some internal RF signal for debug:
#define DEBUG SUBGHZSPI MONITORING ENABLED 0

#define DEBUG_RF NRESET ENABLED ENABLED 0

#define DEBUG RF HSE32RDY ENABLED ENABLED 0

#define DEBUG_RF SMPSRDY ENABLED 0

#define DEBUG_RF LDORDY_ ENABLED 0

#define DEBUG_RF DTB1_ ENABLED 0

#define DEBUG_RF_BUSY ENABLED 0
9.2.13 Low-power switch

When the system is in idle, it enters the low-power Stop 2 mode.
This entry in Stop 2 mode can be disabled in \Projects\<target>
\Applications\LoRaWAN\LoRaWAN End Node\Core\Inc\sys conf.h with the code below:

#define LOW POWER DISABLE 0 /* Low power enabled = 0, Low power disabled = 1 */

where:
. Low power enabled = 0 meansthe MCU enters to Stop 2 mode

Stop 2 is a Stop mode with low-power regulator and Vpp12) interruptible digital core domain supply OFF.
Less peripherals are activated than in low-power Stop 1 mode to reduce power consumption. See the
document [3] for more details

. Low power disabled = 1 meansthe MCU enters only in Sleep mode.

9.2.14 Trace level
The trace mode is enabled in \Projects\<target>
\Applications\LoRaWAN\LoRaWAN End Node\Core\Inc\sys conf.h with the code below:

#define APP_LOG_ENABLED 1

The trace level is selected in \Projects\<target>

AN5406 - Rev 6 page 37/77

AN5406

Device configuration

3

\Applications\LoRaWAN\LoRaWAN End Node\Core\Inc\sys conf.h with the code below :

#define VERBOSE LEVEL VLEVEL M

The following trace levels are proposed:

. VLEVEL_OFF: all traces disabled

. VLEVEL_L: functional traces enabled
. VLEVEL_ M: debug traces enabled

* VLEVEL H: all traces enabled

AN5406 - Rev 6 page 38/77

AN5406

Device configuration summary for LoRaWAN_End_Node application

9.3

Device configuration summary for LoORaWAN_End_Node application

Table 28. Switch options for LoRaWAN_End_Node application configuration

Project Switch option Definition Location
module

Identification

Address

Supported regions

LoRa stack

Limited channels

Read keys
Optional class
Context Management

Tx trigger
Class choice

Duty cycle

App port

Confirmed mode

Adaptive data rate

Default data rate

Application

Maximum data buffer
size

Ping period

Network Join activation

Initial region

Debug

ANS5406 - Rev 6

STATIC DEVICE EUI

STATIC DEVICE ADDRESS

REGION EU868
REGION EU433
REGTON US915
REGION AS923
REGION AU915
REGION CN470
REGTON CN779
REGION IN865
REGION RU864

REGION KR920

HYBRID ENABLED

KEY EXTRACTABLE
LORAMAC CLASSB ENABLED
CONTEXT MANAGEMENT ENABLED

EventType = TX ON_TIMER
LORAWAN DEFAULT CLASS

APP TX DUTYCYCLE
LORAWAN USER APP PORT

LORAWAN_DEFAULT_ CONFIRMED
_MSG_STATE
LORAWAN ADR STATE

LORAWAN DEFAULT DATA RATE
LORAWAN APP DATA BUFFER
_MAX SIZE
LORAWAN_DEFAULT PING
_SLOT_PERIODICITY

LORAWAN DEFAULT
_ACTIVATION TYPE

ACTIVE REGION

DEBUGGER ENABLED

Static or dynamic end-device
identifying

Static or dynamic end-device
address

Regions supported by the device

Limits the number of usable
channels by default for AU915,
CN470 and US915 regions.

Defines the read access of the keys

in the memory.
End-device Class B capability

Stores and restores the LoRaWAN
stack context.

Tx trigger method

Sets class of the device.

Time period between two Tx sent
LoRa port used by the Tx data
frame

Confirmed mode selection

ADR selection

Data rate if ADR is disabled

Buffer size definition

Rx ping slot period

Activation procedure default choice

Region used at device startup

Enables SWD pins.

se-identity.h

lorawan conf.h

lora app.c

lora app.h

sys_conf.h

page 39/77

AN5406

,l Device configuration summary for LoRaWAN_End_Node application
e Switch option Definition Location
module
c Low power LOW POWER DISABLE Disables low-power mode.
o
® Trace enable APP LOG ENABLED Enables the trace mode.
kel - - sys conf.h
5 —
< Trace level VERBOSE LEVEL Enables the trace level.

page 40/77

ANS5406 - Rev 6

AN5406
LoRaWAN_AT_Slave application

LoRaWAN_AT_Slave application

The purpose of this example is to implement a LoRa modem controlled though the AT command interface over
UART by an external host.

The external host can be a host microcontroller embedding the application and the AT driver, or simply
a computer executing a terminal.

This application targets the STM32WL Nucleo board (NUCLEO-WL55JC).

The LoRaWAN_AT_Slave example implements the LoRaWAN stack driving the built-in LoRa radio. The stack
is controlled through the AT command interface over UART. The modem is always in Stop 2 mode unless it
processes an AT command from the external host.

To launch the LoRaWAN_AT_Slave project, the user must go to

\Projects\<target>\Applications\LoRaWAN\LoRaWAN AT Slave and follow the same procedure as for
the LoORaWAN_End_Node project to launch the preferred toolchain.

The document [2] gives the list of AT commands and their description.

The table below summarizes the main options for the LoORaWAN_AT _Slave application configuration.

Table 29. Switch options for LoORaWAN_AT_Slave application configuration

Project Switch option Definition Location
module

Identification STATIC DEVICE EUI

Address STATIC DEVICE ADDRESS

REGION EU868
REGION EU433
REGTON US915
REGION AS923

REGION AU915
Supported regions

x REGION_CN470
©
g REGION CN779
14
S REGION IN865
REGION RU864
REGION KR920
Limited channels HYBRID_ENABLED
Read keys KEY EXTRACTABLE
Optional class LORAMAC CLASSB ENABLED
Context Management | CONTEXT MANAGEMENT ENABLED
Adaptive data rate LORAWAN_ADR_STATE
Default data rate LORAWAN DEFAULT DATA RATE
c
£ LORAWAN DEFAULT PING
8 Ping period
= SLOT PERIODICITY
2 _
<
Initial region ACTIVE REGION
Debug DEBUGGER ENABLED

ANS5406 - Rev 6

Static or dynamic end-device
identifying
se-identity.h
Static or dynamic end-device
address

Regions supported by the device

lorawan conf.h

Limits the number of usable
channels by default for AU915,
CN470 and US915 regions.

Defines the read access of the keys
in the memory.

End-device Class B capability

Stores and restores the LoORaWAN
stack context

ADR selection
Data rate if ADR is disabled
lora app.h
Rx ping slot period
Region used at device startup

Enables SWD pins. sys_conf.h

page 41/77

ICTl AN5406
,l LoRaWAN_AT_Slave application

Project Switch option Definition Location
module

Low power LOW POWER DISABLE Disables low-power mode.

Trace enable APP LOG ENABLED Enables the trace mode.
i sys conf.h

c
kel
=

o4
RSl
a

o
<C

ANS5406 - Rev 6

Trace level VERBOSE LEVEL Enables the trace level.

page 42/77

‘,_l AN5406

SubGhz_Phy_PingPong application

11 SubGhz_Phy_PingPong application

This application shows a simple Rx/Tx RF link between the two PingPong devices (one called Ping, the other
called Pong).

By default, each PingPong device starts as a master, transmits a 'Ping' message, and waits for an answer. At
startup, each PingPong device has its two LEDs blinking. When the boards are synchronized (Tx window of one
board aligned with Rx window of the other board), the Ping device (board receiving 'Ping' message) makes the
green LED blinking, and the Pong device (board receiving 'Pong' message) makes the red LED blinking. The first
PingPong device that receives a 'Ping' message becomes a slave and answers with a 'Pong' message to the
master.

To launch the SubGhz_Phy_PingPong project, the user must go to

\Projects\<target>\Applications\SubGHz Phy\SubGHz Phy PingPong and follow the same
procedure as for the LoRaWAN_End_Node project to launch the preferred toolchain.

1.1 SubGhz_Phy_PingPong hardware/software environment setup

To setup the STM32WL Nucleo board (NUCLEO-WL55JC), connect this board to the computer with a USB
Type-A to Mini-B cable to the ST-LINK connector (CN1), as shown in the figure below.

Figure 7. SubGhz_Phy_PingPong application setup

PingPong device PingPong device
ComPort | U ComPort
- -
NUCLEO-WL55JC NUCLEO-WL55JC
11.2 Device configuration
11.2.1 Modulation definition

This application proposes to use two modulations: LoRa or FSK. To configure one modulation, the user must
update these defines in
\Projects\<target>\Applications\SubGHz Phy\SubGHz Phy PingPong\SubGHz Phy\App\subgh

z_phy app.h as shown in the table below:

Table 30. SubGHz_Phy_PingPong modulation configuration

LoRa FSK
#define USE MODEM LORA 1 #define USE MODEM LORA 0
#define USE_MODEM FSK 0 #define USE_MODEM FSK 1
11.2.2 Payload length
Each Tx payload is defined by the string PING or PONG followed by a sequence of 0. The length of this payload
is defined in

\Projects\<target>\Applications\SubGHz Phy\SubGHz Phy PingPong\SubGHz Phy\App\subgh
z_phy app.h, with the code below:

#define PAYLOAD LEN 64

The typical payload size is generally between 51 and 242.

AN5406 - Rev 6 page 43/77

‘,_l AN5406

Device configuration

It is mandatory the set a value equal to or less than the maximum buffer size defined in
\Projects\<target>\Applications\SubGHz Phy\SubGHz Phy PingPong\SubGHz Phy\App\subgh
z_phy_ app.c, with the code below:

#define MAX APP BUFFER SIZE 255

11.2.3 Region and frequency

The Frequency value to be used for the application is defined in
\Projects\<target>\Applications\SubGHz Phy\SubGHz Phy PingPong\SubGHz Phy\App\subgh
z_phy_app.h, with the code below (for example):

#define RF_FREQUENCY 868000000 /* Hz */

An additional define propose to use some predefined frequency values for each channel plan with the code below
(only one define can be uncommented at the time):

/* #define REGION AS923 */
/* #define REGION AU915 */
/* #define REGION CN470 */
/* #define REGION CN779 */
/* #define REGION EU433 */
#define REGION EU868

/* #define REGION KR920 */
/* #define REGION IN865 */
/* #define REGION US915 */
/* #define REGION RU864 */

11.2.4 Bandwith, spreading factor and data rate
Depending on the chosen modulation, it is possible to define the bandwith, the spreading factor and the data rate
in
\Projects\<target>\Applications\SubGHz Phy\SubGHz Phy PingPong\SubGHz Phy\App\subgh
z_phy app.h as shown in the table below:

Table 31. SubGHz_Phy_PingPong bandwith, SF and DR configuration

LoRa FSK
#define LORA BANDWIDTH 0 #define FSK BANDWIDTH 50000
#define LORA SPREADING FACTOR 7 #define FSK DATARATE 50000

The expected value of LORA_BANDWIDTH must be in the 0-2 range, corresponding the equivalent frequency:
[0: 125kHz, 1: 250kHz, 2: 500kHZz].

The expected value of LORA_SPREADING_FACTOR must be in the 7-12 range. The spreading factor influences
the time it takes to transmit a frame and the transmission power.

The expected value of FSK_BANDWIDTH must be in the 4800-500000 range (in Hz).
The expected value of FSK_DATARATE equivalent to the bitrate value, is typically defined a 50kbps.

11.2.5 Preamble length
All transmitted/received packets contain a preamble (typically with eight symbols), a header, the payload (size
defined in section 10.2.2), and a CRC field.

The preamble field size can be updated in
\Projects\<target>\Applications\SubGHz Phy\SubGHz Phy PingPong\SubGHz Phy\App\subgh
z_phy app.h by these defines as shown in the table below:

AN5406 - Rev 6 page 44/77

AN5406

Device configuration summary for SubGhz_Phy_PingPong application

11.3

Table 32. SubGHz_Phy_PingPong preamble configuration

LoRa

#define LORA PREAMBLE LENGTH

/* default LoRa preamble size */

FSK

8 #define FSK PREAMBLE LENGTH 5

/* default FSK preamble size */

Device configuration summary for SubGhz_Phy_PingPong application

Table 33. Switch options for SubGhz_Phy_PingPong application configuration

Project module = Application

Rx/Tx
configuration

Modulation
configuration

LoRa/FSK
common
parameters

LoRa specific
parameters

FSK specific
parameters

ANS5406 - Rev 6

RX_TIMEOUT VALUE
TX_TIMEOUT VALUE
MAX APP BUFFER SIZE
RX_TIME MARGIN
FSK_AFC_BANDWIDTH
LED PERIOD MS
USE_MODEM_LORA

USE_MODEM _FSK

REGION XXyyy

RF FREQUENCY
TX OUTPUT_ POWER

PAYLOAD LEN

LORA BANDWIDTH

LORA SPREADING FACTOR

LORA CODINGRATE

LORA PREAMBLE LENGTH

LORA SYMBOL TIMEOUT

LORA FIX LENGTH PAYLOAD ON

LORA IQ INVERSION ON
FSK_FDEV
FSK_DATARATE
FSK_BANDWIDTH

FSK PREAMBLE LENGTH

Rx window timeout

Tx window timeout

Max data buffer size

Time between the end of Rx and start of Tx
AFC bandwidth (in Hz)

LED blink period

LoRa modem selected

FSK modem selected

Active LoRa region: AS923, AU915, CN470,

CN779, EU433, EU868, KR920, IN865, US915,

or RU864.
Frequency used by the transceiver
RF output power: -17 to 22 dBm

Data buffer size

Bandwidth:

. 0: 125 kHz
. 1: 250 kHz
. 2: 500 kHz

. 3: Reserved

Spreading factor: SF7 to SF12

Coding rate:
. 1:4/5
. 2: 4/6
. 3:4/7
. 4:4/8

Length of Tx/Rx preamble

Number of symbols checked before timeout
Fix/dynamic length payload option

1Q inversion option

Frequency deviation (in Hz)

Data rate (in bit/s)

Bandwidth (in Hz)

Length of Tx/Rx preamble

subghz phy app.c

subghz phy app.h

page 45/77

m AN5406

Device configuration summary for SubGhz_Phy_PingPong application

FSK specific . : ; subghz phy a h
parameters FSK FIX LENGTH PAYLOAD ON Fix/dynamic length payload option ghz_phy_ app.
Debug DEBUGGER ENABLED Enables SWD pins.
Low power LOW_ POWER DISABLE Disables low-power mode.

sys_conf.h
Trace enable APP LOG ENABLED Enables the trace mode.
Trace level VERBOSE LEVEL Enables the trace level.

AN5406 - Rev 6 page 46/77

m AN5406

SubGhz_Phy_Per application

12 SubGhz_Phy_Per application

The SubGHz_Phy_Per application is a packet-error-rate test with IBM® whitening between one Tx device and one
Rx device.

Tx device

Update #define TEST MODE to RADIO TXin /SubGHz Phy/App/subghz phy app.c. Compile and load.
The packet contentis preamble | sync | payload length | payload | crc where:

. crc is calculated using payload length and payload.

. Whitening is calculated over payload length | payload | crc.

The transmission starts forever in GFSK 50 Kbit/s with a payload of 64 bytes. The user button 1 increments
packet length by 16 bytes. The user button 2 increments packet length by 1 byte. The user button 3
toggles packet payload mode from ramp (0x00, 0x01..) to prbs9.

The blue LED is on while radio in Tx.

Rx device
Update #define TEST MODE to RADIO RXin /SubGHz Phy/App/subghz phy app.c. Compile and load.
The green LED is on when Rx is OK. The red LED is on when Rx is KO.

To launch the SubGhz_Phy_Per project, the user must go to

\Projects\<target>\Applications\SubGHz Phy\SubGHz Phy Per and follow the same procedure as
for the LoRaWAN_End_Node project to launch the preferred toolchain.

12.1 SubGhz_Phy_Per hardware/software environment setup

To setup the STM32WL Nucleo board (NUCLEO-WL55JC), connect this board to the computer with a USB
Type-A to Mini-B cable to the ST-LINK connector (CN1), as shown in the figure below.

Figure 8. SubGhz_Phy_Per application setup

Tx device Rx device

ComPort ComPort
- -

NUCLEO-WL55JC NUCLEO-WL55JC

AN5406 - Rev 6 page 47/77

AN5406

Device configuration summary for SubGhz_Phy_Per application

12.2 Device configuration summary for SubGhz_Phy_Per application

Table 34. Switch options for SubGhz_Phy_Per application configuration

Project module = Application

RX TIMEOUT VALUE
TX TIMEOUT VALUE

RX_CONTINUOUS ON

Rx window timeout
Tx window timeout

RX mode continuous or with timeout

Rx/'][x . Device mode: subghz phy app.c
contiguration TEST MODE . RADIO_TX: send packet indefinitely
. RADIO_RX: receive packet indefinitely
APP_LONG_PACKET Long packet option(")
MAX APP BUFFER SIZE Max data buffer size
Modulation USE_MODEM_FSK FSK modem selected
configuration - —
Active LoRa region: AS923, AU915, CN470,
REGION XXyyy CN779, EU433, EU868, KR920, IN865, US915,
or RU864.
LoRa/FSK
common RF_FREQUENCY Frequency used by the transceiver
parameters
TX OUTPUT_ POWER RF output power: -17 to 22 dBm
PAYLOAD LEN Data buffer size subghz_phy_app.h
FSK_FDEV Frequency deviation (in Hz)
FSK DATARATE Data rate (in bit/s)
FSK specific FSK BANDWIDTH Bandwidth (in Hz)
parameters —
FSK PREAMBLE LENGTH Length of Tx/Rx preamble
FSK_FIX LENGTH PAYLOAD ON Fix/dynamic length payload option
Debug DEBUGGER ENABLED Enables SWD pins.
Low power LOW_POWER_DISABLE Disables low-power mode.

Trace enable

Trace level

APP LOG ENABLED

VERBOSE LEVEL

1. Refer to the document [5] for more details.

ANS5406 - Rev 6

Enables the trace mode.

Enables the trace level.

sys conf.h

page 48/77

‘,_l AN5406

LoRaWAN context management description

13 LoRaWAN context management description

The NVM context management is used to store the current LoORaWAN stack configuration in ROM before a
power-off or a reset of the board.

The proposed solution is to store the LoraMacNvmData_t structure of size 1420 bytes in a pre-allocated ROM
page of 2 Kbytes.

This structure is defined as below:

Table 35. LoRaWAN NVM context structure

Size

Parameters related to the crypto layer. Change with

Crypto LoRaMacCryptoNvmbData t every TX/RX.

Parameters related to the MAC which changes with
MacGroup1 LoRaMacNvmDataGroupl t 24 high probability after every TX/RX.

Parameters related to the MAC which do not change
MacGroup?2 LoRaMacNvmDataGroup2 t 228 very likely with every TX/RX.
SecureElement | SecureElementNvmData t 192 Pararn_eters related to the secure-element (Keys,

— Identifiers, etc.)

Parameters related to the regional implementation
RegionGroup1 RegionNvmbDataGroupl t 20 which change with high probability after every TX/RX

procedure .

Parameters related to the regional implementation
RegionGroup2 RegionNvmbDataGroup2 t 892 which do not change very likely with every TX/RX

procedure.
ClassB LoRaMacClassBNvmbData t 24 Parameters related to class b.
131 NVM context managment data API definition

Table 36. LoRaWAN context management API and callbacks

. Halts the LoRaMAC.

LmHandlerErrorStatus_t . Prepares the NVM data to be stored in FLASH.
. . Calls the OnStoreContextRequest() callback to execute the
LmHandlerNvmDataStore (void) FLASH_Write operation.

. Resumes the LoRaMAC.

void OnRestoreContextRequest
Restores the NVM data stored in FLASH to a backup buffer in RAM.
(void *nvm, uint32_t nvm_size)

void OnStoreContextRequest
Stores the NVM data from the RAM to the FLASH.
(void *nvm, uint32 t nvm size)

void OnNvmDataChange
Is called by LmHandler when a store or restore action is completed.
(LmHandlerNvmContextStates t state)

If callbacks are not defined, the feature is considered as disabled. The feature enabled by the define described in
Section 9.2.11 Context management Context Management

AN5406 - Rev 6 page 49/77

AN5406

Dual-core management

14 Dual-core management

The STM32WL5x devices embed two Cortex:

. Cortex-M4 (named CPU1)

. Cortext-M0+ (named CPU2)

In the dual-core applications, the application part mapped on CPU1 is separated from the stack and firmware low

layers mapped on CPU2.

In a dual-core proposed model, two separated binaries are generated: CPU1 binary is placed at 0x0800 0000 and

CPU2 binary is placed at 0x0802 0000.

A function address from one binary is not known from the other binary: this is why a communication model must

be put in place. The aim of that model is that the user can change the application on CPU1 without impacting the

core stack behavior on CPU2. However, ST still provides the implementation of the two CPUs in open source.

The interface between cores is done by the IPCC peripheral (interprocessor communication controller) and the

inter-core memory, as described in Section 14.1 .

This dual-core implementation has been designed to behave the same way as the single-core program execution,

thanks to a message blocking handling through a mailbox mechanism.

14.1 Mailbox mechanism

The mailbox is a service implementing a way to exchange data between the two processors. As shown in the

figure below, the mailbox is built over two resources:

. IPCC: This hardware peripheral is used to trigger an interrupt to the remote CPU, and to receive an interrupt
when it has completed the notification. The IPCC is highly configurable and each interrupt notification may
be disabled/enabled. There is no memory management inside the IPCC.

. Intercore memory: This shared memory can be read/written by both CPUs. It is used to store all buffers
that contain the data to be exchanged between the two CPUs.

Figure 9. Mailbox overview
7 Intercore memory S
N \
Data path
CPU1 CPU2
features features
MBMUX

The mailbox is specified to allow changes of the buffer definition to some extend, without breaking the backward

compatibility.

14.1.1 Mailbox multiplexer (MBMUX)

ANS5406 - Rev 6

As described in Figure 10, the data to be exchanged need to communicate via the 12 available IPCC channels
(six for each direction). This is done via the MBMUX (mailbox multiplexer) that is a firmware component in charge
to route the messages. These channels are identified from 1 to 6. An additional channel 0 is dedicated to the
system feature.

The data type has been divided in groups called features. Each feature interfaces with the MBMUX via its own
MBMUXIF (MBUX interface).

The mailbox is used to abstract a function executed by another core.

page 50/77

‘,_l AN5406

Mailbox mechanism

14.1.2 Mailbox features
In STM32WL5x devices, the MBMUX has the following features:
. System, supporting all communications related to the system

This includes messages that are either related to one of the supported stacks, or related to none of
them. The CPU1 channel 0 is used to notify the CPU2 that a command has been posted, and to receive
the response of that command from the CPU2. The CPU2 channel 0 is used to notify CPU1 that an
asynchronous event has been posted.

The following services are mapped on system channel:

— system initialization

- IPCC channels versus feature registration

— information exchanged on feature attributes and capabilities

— possible additional system channels for high-priority operations (such as RTC notifications)
. Trace

The CPUZ2 fills a circular queue for information or debug that is sent to the CPU1 via the IPCC. The CPU1 is
in charge to handle this information, by outputting it on the same channel used for CPU1 logs (such as the

USART).
. KMS (key management services)
. Radio

The sub-GHz radio can be interfaced directly without passing by the CPU2 stack. A dedicated mailbox
channel is used.

. Protocol stack

This channel is used to interface all protocol stack commands (such as Init or request), and events
(response/indication) related to the stack implemented protocol.

Figure 10. MBMUX - Multiplexer between features and IPCC channels

System KMS Trace Protocol stack Other
application application application application application
System KM.S Tracé Protocol stack Other
MBMUXIF MBMUXIF MBMUXIF MBMUXIF MBMUXIF
MBMUX
IPCC_IF
-}——— CPU1 to CPU2 communication direction
l T l T --}——— CPU2 to CPU1 communication direction
IPCC (6 channels x direction)

In order to use the MBMUX, a feature needs to be registered (except the system feature that is registered
by default and always mapped on IPCC channel 0). The registration dynamically assigns to the feature, the
requested number of IPCC channels: typically one for each direction (CPU1 to CPU2 and CPU2 to CPU1).

AN5406 - Rev 6 page 51/77

m AN5406

Mailbox mechanism

In the following cases, the feature needs just a channel in one direction:
. Trace feature is only meant to send debug information from CPU2 to CPU1.
. KMS is only used by CPU1 to request functions execution to CPU2.
Note: . The RTC alarm A transfers the interrupt using one IPCC IRQ, not considered as a feature.
. The user must consider adding KMS wrapper to be able to use it as a feature.

14.1.3 MBMUX messages

The mailbox uses the following types of messages:

. Ccmd command sent by CPU1 to CPU2, composed of:
— Msg ID identifies a function called by CPU1 but implemented on CPU2.
- Ptr buffer params points to the buffer containing the parameters of the above function
- Number of params

. Resp, response sent by CPU2 to CPU1, composed of:
— Msg ID(same value as Cmd Msg ID)
— Return value contains the return value of the above function.

. Notif, notification sent by CPU2 to CPU1, composed of:
— Msg ID identifies a callback function called by CPU2 but implemented on CPU1.
— Ptr buffer params points to the buffer containing the parameters of the above function.
- Number of params

. Ack, acknowledge sent by CPU1 to CPU2, composed of:
— Msg ID(same value as Notif Msg ID)
- Return value contains the return value of the above callback function.

Figure 11. Mailbox messages through MBMUX and IPCC channels

CPU1 application CPU2 application
I Y I R Y
Cmd Resp Notif| Ack

~€—— Notif/Ack communication
channel message

<— Cmd/Response communication
channel message

MBMUX
IPCC

AN5406 - Rev 6 page 52/77

AN5406

Intercore memory

14.2

14.21

14.2.2

ANS5406 - Rev 6

Intercore memory

The intercore memory is a centralized memory accessible by both cores, and used by the cores to exchange
data, function parameters, and return values.

CPU2 capabilities

Several CPU2 capabilities must be known by the CPU1 to detail its supported features (such as protocol stack
implemented on the CPU2, version number of each stack, or regions supported).

These CPU2 capabilities are stored in the features_info table. Data from this table are requested at initialization
by the CPU1 to expose CPU2 capabilities, as shown in RAM mapping.

The features_info table is composed of:

. Feat Info Feature Id:feature name

: Feat Info Feature Version: feature version number used in current implementation
MB_MEM?2 is used to store these CPU2 capabilities.

Mailbox sequence to execute a CPU2 function from a CPU1 call

When the CPU1 needs to call a CPU2 feature func X (), a feature func_ X () with the same APl must be
implemented on the CPU1:

1. The CPU1 sends a command containing feature func_X () parameters in the Mapping table:

a. func_ X IDthatwas associated to feature func_ X () atinitialization during registration, is added
in the Mapping table. func_X_ID has to be known by both cores: this is fixed at compilation time.

b. The CPU1 waits the CPU2 to execute the feature func X () and goes in low-power mode.
c. The CPU2 wakes up if it was in low-power mode and executes the feature func X().
2. The CPU2 sends a response and fills the Mapping table with the return value:
a. The IPCC interrupt wakes up the CPU1.
b. The CPU1 retrieves the return value from the Mapping table.

Conversely, when the CPU2 needs to call a CPU1 feature func X 2(),a feature func X 2 () withthe
same API must be implemented on the CPU2:

1. The CPU2 sends a notification containing feature func X 2 () in the Mapping table.
2. The CPU1 sends an acknowledge and fills the Mapping table with the return value.

page 53/77

m AN5406

Intercore memory

The full sequence is shown in the figure below.

Figure 12. CPU1 to CPU2 feature_func_X() process

MBMUX
APPING_TABL

» func X ID

CPU1

application feature_mbwrapper.c

|

a function()

{

CPU2

feature_mbwrapper.c | stack

. feature func X(a,b,c)
k = {
feature func X(a,b,c); stores:

— — func X 1D, a, b ,c
in MappingTable

}

feature func X wrap()
{
k =

feature func X(a,b,c);

}

feature func X(a,b,c)

{

A
e

CPU1
waits

return k;

}

process continues
return;
} /* end of a function */

- ———————

AN5406 - Rev 6 page 54/77

m AN5406

Intercore memory

14.2.3 Mapping table

The Mapping table is a common structure in the MBMUX area of Figure 12. In RAM mapping, the memory
mapping is referenced as MAPPING_TABLE.

The MBMUX communication table (MBSYS_RefTable) is described in the figure below.

Figure 13. MBMUX communication table

MBSYS_RefTable —

MBCmdRespParam|[0] MsgId
MBCmdRespParam[1] void (*MsgCm4Cb) (void ComObj) ;
MBCmdRespParam[2] void (*MsgCmOplusCb) (void ComObj) ;
MBCmdRespParam|[3] BufSize
MBCmdRespParam[4] ParamCnt
MBCmdRespParam[5] *ParamBuf
MBNotifAckParam[0] Returnval
MBNotifAckParam[1] L
MBNotifAckParam[2]
MBNotifAckParam[3]
MBNotifAckParam[4]
MBNotifAckParam[5]
MBMUXMapping
[FEAT INFO CNT][2];
SynchronizeCpusAtBoot
ChipRevId Legend: init at registration

This MBSYS_RefTable includes:

. two communication parameter structures for both Command/Response and Notification/Acknowledge
parameters for each of the sic IPCC channels.

Each communication parameter, as shown in MBMUX Mapping table area of Figure 12, is composed of:
- MsgId: message ID of feature func X()
— *MsgCm4Cb: pointer to CPU1 callback feature func X ()
- *MsgCmOplusCb: pointer to CPU2 callback feature func X ()
— Bufsize: buffer size
— ParamCnt: message parameter number
— ParamBuf: message pointer to parameters
- ReturnVal: return value of feature func X()
. MBMUXMapping: chart used to map channels to features

This chart is filled at the MBMUX initialization during the registration. For instance, if the radio
feature is associated to Cmd/Response channel number = 1,then MBMUXMapping must associate
[FEAT INFO RADIO ID][1].

. SynchronizeCpusAtBoot: flags used to synchronize CPU1 and CPU2 processing as shown in
Figure 14 sequence chart.

. ChipRevId: stores the hardware revision ID.
MB_MEM1 is used to send command/response set () parameter and to get the return values for the CPU1.

AN5406 - Rev 6 page 55/77

‘,_l AN5406

Intercore memory

14.2.4 Option-byte warning

A trap is placed in the code to avoid erroneous option-byte loading (see section Option-byte loading failure at
high MSI system clock frequency in the product errata sheet). The trap can be removed if the system clock is set
below or equal to 16 MHz.

14.2.5 RAM mapping
The tables below detail the mapping of both CPU1 and CPU2 RAM areas and the intercore memory.

Table 37. STM32WL5x RAM mapping

Page

ndex —no v werowo2FrdeTLer2 2R KR IREKNRRB S
(1

c

ie] ° °

B o o

@ 9] 9]

@2 < R

c U)I (fJI

-% I o

@ CPU1 RAM > > CPU2 RAM2
c 5 &

S s | &

© -] -]

8 o o

= (@] O

<

1. 2 Kbytes for each page.

Table 38. STM32WL5x RAM allocation and shared buffer

. Size Total

readwrite

CPU1 RAM CSTACK -

HEAP
MAPPING
MBMUX SYSTEM MBMUX ComTable t MBSYS RefTable 316 316
_TABLE - - - -
uint32 t aLoraCmdRespBuff[] 60
MBMUX_LORAWAN
uint32 t aLoraNotifAckBuff[] 20
uint32 t aRadioCmdRespBuff[] 60
MBMUX RADIO
uint32 t aRadioNotifAckBuffl[] 16
CPU1 RAM2 MBMUX TRACE uint32 t aTraceNotifAckBuff[] 44
_Shared uint32 t aSystemCmdRespBuff[] 28
MB MEM1 524
uint32 t aSystemNotifAckBuff[] 20
uint32 t aSystemPrioACmdRespBuff[] 4
MBMUX_SYSTEM
uint32 t aSystemPrioANotifAckBuff [] 4
uint32 t aSystemPrioBCmdRespBuff[] 4
uint32 t aSystemPrioBNotifAckBuff[] 4
LMH MBWRAPPER uint8 t aLoraMbWrapShareBuffer|[] 260

AN5406 - Rev 6 page 56/77

‘W AN5406

Intercore memory

Slze Total

MBMUX LORAWAN FEAT INFO Param t Feat Info Table
MB_MEM2 -
MBMUX LORAWAN FEAT INFO List t Feat Info List 8
CPU2 RAM2 MBMUX_TRACE uint8 t ADV_TRACE Buffer(] 1024
_Shared MBMUX LORAWAN LoraInfo t loralnfo 16
MB_ MEM3(") -
LMH MBWRAPPER uint8 t aLoraMbWrapShare2Buffer(] 280
RADIO_ MBWRAPPER uint8 t aRadioMbWrapRxBuffer[] 256
readwrite

CPU2 RAM2 | CSTACK -

HEAP

1. This new section prevents overcharge of Flash usage to init these BSS RAM variables with
STM32CubelDE.

AN5406 - Rev 6 page 57/77

m AN5406

Startup sequence

14.3 Startup sequence
The startup sequence for CPU1 and CPU2 is detailed in the figure below.

Figure 14. Startup sequence

CPU1

boot

v

Platform init
o HAL
® System clock config
® LPM iNit
® Trace/USART config

CPU2

) 4
MBMUX system init #define CPUS_BOOT_SYNC_PREVENT CPU2_TO_ START OxFFFF
e Allocate memory for shared table. #define CPUS_BOOT_SYNC_ALLOW_CPU2_TO_START 0x5555
#define CPUS BOOT SYNC CPU2 INIT COMPLETED OxARAA
® Store table addr in #define CPUS_BOOT_SYNC RTC_REGISTERED 0%9999

OPTIONBYTE_IPCC_BUF_ADDR.
® |[PCC init.
® Registers system to channel 0 C/R.
® SynchronizeCpusAtBoot = OxFFFF
® PR _CR4 C2BOOT = 1

Boot

Y

Core init
® HAL init
® RTC init
® | PM init

v

Retrieve shared table addr in
OPTIONBYTE_IPCC_BUF_ADDR

v

MBMUX system init
® Allocate memory for features INFO.

\ 4
Wait
SynchronizeCpusAtBoot = OxAAAA

® Register system to channel N/Ack.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
f
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
| ® SynchronizeCpusAtBoot = 0xAAAA
I

SynchronizeCpusAtBoot = 0xAAAA
1

AN5406 - Rev 6 page 58/77

m AN5406

Startup sequence

The various steps are the following:
1. The CPU1, that is the master processor in this init sequence:

a. executes the platform initialization.

b. initializes the MBMUX system.

c. setsthe PWR CR4 C2BOOT flag to 1, which starts the CPU2.

d. waits that CPU2 sets the SynchronizeCpusAtBoot flag to OXAAAA.
2. The CPU2 boots and:

a. executes the core initialization.

b. retrieves the shared table address.
c. initializes the MBMUX system.
d

sets the SynchronizeCpusAtBoot to OXAAAA to inform the CPU1 that he has ended its init
sequence and that he is ready.

3. The CPU1 acknowledges this CPU2 notification.
Then both cores are initialized, and the initialization goes on via MBMUX, as shown in the figure below.

Figure 15. MBMUX initialization

CPU1 | CPU2
|

S i
§ Sequencer run (idle)
$
Request to Cortex-M0O+] _
feature list pointer | cma
I Y
. I Respond to Command ()
N Resp | Sequencer run (idle)
A J I
Register high-Priority [_
channel for RTC : Cmd
: Y
| Register high priority channel for RTC
-t Respond to Command ()
Y Resp I Sequencer_run (idle)
Wait I
SynchronizeCpusAtBoot = 0x9999 : Cmd
P |
SynchronizeCpusAtBoot = 0x9999
' I

Register channel for chosen feature

Cmd

|

I

: Y

| Register channel for chosen feature
I

I

|

Respond to Command/()

Resp Sequencer_run (idle)

v

AN5406 - Rev 6 page 59/77

m AN5406

Key management services (KMS)

15 Key management services (KMS)

Key management services (KMS) provide cryptographic services through the standard PKCS#11 APIs (developed
by OASIS), are used to abstract the key value to the caller (using object ID and not directly the key value).

KMS can be executed inside a protected/isolated environment in order to ensure that key value cannot be
accessed by an unauthorized code running outside the protected/isolated environment, as shown in the figure
below.

Figure 16. KMS overall architecture

KEY1

STM32 device (VALUE1)

User application

(Token = STM32
Secure key update
(import{BLOB())
AES RSA/ Object
decrypt/ ECDSA Digest

encrypt || sign/verify management

e
Static ID

NVM storage

D ;
Static embedded keys ynamic

T TTTTT
(HEEEEEEEEEEEE NN
T T T T T e T e e it e it i it it it ittt

Isolated/protected environment
I 1T
| 1T

NN
NN
T

For more details, refer to KMS section in the user manual Getting Started with the SBSFU of STM32Cube WL
(UM2767) .

To activate the KMS module, KMS_ENABLE must be set to 1 in C/C++ compiler project options.
KMS supports only PKCS #11 APIs listed below:

. Object management functions (creation/update/deletion)

. AES encryption/decryption functions (CBC, CCM, ECB, GCM, CMAC algorithms)

. Digesting functions

. RSA and ECDSA signing/verifying functions

. Key management functions (key generation/derivation)

AN5406 - Rev 6 page 60/77

‘W AN5406

KMS key types

15.1 KMS key types

KMS manages three key types but only the two following ones are used:

. Static embedded keys

— predefined keys embedded within the code that cannot be modified
— immutable keys

NVM_DYNAMIC keys:

— runtime keys

— keys IDs that may be defined when keys are created using KMS (DeriveKey () or
CreateObject ())

— keys that can be deleted or defined as mutable

15.2 KMS key definition

Static and dynamic keys used by stack occupies different sizes.

Static key

Each static key is composed of the two following elements:

. a blob header: five 4-byte fields (total = 20 bytes): version, configuration, blob size, blob count,
and object id.

. a blob buffer: some required and option blob elements, from the list of elements defined as follows:

Table 39. Global KMS blob elements

CKA CLASS CKO_ SECRET KEY Type of blob element
CKA KEY TYPE CKK_AES Yes 12 Type of key
CKA VALUE "KEY VALUE" Yes 24 Key value (uint32_t format)
CKA DERIVE TRUE/FALSE No 12
CKA_ENCRYPT TRUE/FALSE No 12 Optional parameters to enable/
disable capabilities by default.
CKA DECRYPT TRUE/FALSE No 12 These fields are TRUE if not
CKA_ COPYABLE TRUE/FALSE No 12 defined.
CKA EXTRACTABLE TRUE/FALSE No 12
12 for static key

CKA LABEL "UNIQUE LABEL" Yes 16 for dynamic | Unique label

key

Example:

A static key composed of a blob header and eight blob elements (CKA CLASS, CKA_KEY TYPE, CKA VALUE,
CKA LABEL, CKA DERIVE, CKA DECRYPT, CKA COPYABLE, and CKA EXTRACTABLE) uses a total size of
128 bytes (blob header = 20 bytes, and blob buffer = (12 x 7 + 24) = 108 bytes).

Dynamic key

Each dynamic key is composed of three elements, a data header, a blob header, and a blob buffer, with:

. a data header: eight 4-byte fields (total = 32 bytes): magicl, magic2, slot, instance, next,
data_type, size, and checksum.

Example:

A dynamic key composed of a data header, a blob header and five blob elements (CKA CLASS, CKA KEY TYPE,
CKA VALUE, CKA LABEL, and CKA EXTRACTABLE) uses a total size of 128 bytes (data header = 32 bytes,
blob header = 20 bytes, and blob buffer = (12 + 12 + 24 + 12 + 16) = 76 bytes.

AN5406 - Rev 6 page 61/77

‘,_l AN5406

LoRaWAN keys

Note: . The NVM dynamic memory always starts with an initial data header element.

. At each dynamic key 'deletion’ (such as an obsolete key replaced by a new key value), an additional data
header is written in the memory to declare that the previous instance cannot longer be used.

15.3 LoRaWAN keys

In STM32CubeWL applications, the KMS are used on CPU2 only on dual-core application. The root keys are
chosen to be static embedded keys. All derived keys are NVM_DYNAMIC keys.

For LoRaWAN stack, the immutable root keys are detailed in the table below.

Table 40. LoRaWAN static keys with blob attributes

Key

Yy
y

(ABP only)

LoRaWAN NWK_Ke
LoRaWAN NWK S Key
(ABP only)
LoRaWAN APP S Ke

>y
9 %
= X
[o]
5 a
N <
g g
(L]
q 7
3 o
3 =

CKA_CLASS CKO_SECRET KEY
KA KEY TYPE CKK_AES

CKA_VALUE "KEY VALUE"

CKA DERIVE FALSE TRUE TRUE TRUE TRUE
CKA_ENCRYPT TRUE FALSE FALSE TRUE TRUE
CKA_DECRYPT FALSE FALSE FALSE TRUE TRUE
CKA_COPYABLE FALSE

CKA EXTRACTABLE FALSE TRUE/FALSE defined by #define KEY EXTRACTABLE
CKA_ LABEL "UNIQUE LABEL"

AN5406 - Rev 6 page 62/77

(_ AN5406
,l LoRaWAN keys

All other keys are mutable NVM_DYNAMIC generated keys, detailed in the table below.

Table 41. LoRaWAN dynamic keys with blob attributes

Key

Yy
3’4

y

(OTAA only)
(OTAA only)

MC_ROOT_Ke
MC_APP S Key 0

LoRaWAN APP S Ke
SLOT RAND ZERO Ke

>
Q
B4
(9]
3
[
14
Q
H

CKO SECRET KEY

CKA_CLASS
KA KEY TYPE CKK_AES
CKA_VALUE "KEY VALUE"
CKA_DERIVE TRUE
CKA ENCRYPT TRUE
CKA DECRYPT TRUE
TRUE

CKA COPYABLE

CKA EXTRACTABLE TRUE/FALSE defined by #define KEY EXTRACTABLE

CKA LABEL "UNIQUE LABEL"

AN5406 - Rev 6 page 63/77

m AN5406

KMS key memory mapping for user applications

15.4 KMS key memory mapping for user applications

Static embedded keys correspond to USER _embedded_Keys (used for root keys). They are placed in
a dedicated data storage in Flash memory/ROM. The linker files for user applications locate them from
0x0803 E500 to 0x0803 E7FF, as shown in the figure below.

NVM_DYNAMIC keys are placed in KMS key data storage area, KMS_DataStorage.

The total data storage area must be 4 Kbytes, as explained in Section 15.5 . They have been placed from:
0x0803 D000 to 0x0803 DFFF, as shown in the figure below. This size may be increased if more keys are
necessary.

Figure 17. ROM memory mapping

0x0803 FFFF

0x0803 E7FF
USER_embedded_Keys

CPU2 0x0803 E500

0x0803 DFFF
KMS_DataStorage
0x0803 D000

0x0802 0000

15.5 How to size NVM for KMS data storage

The NVM is organized by 2-Kbyte pages. Due to the double buffering (flip/flop EEPROM emulation mechanism),
each page needs a “twin”. So the minimum to be allocated for NVM is 4 Kbytes. The allocation size is defined in
the linker file.

The linker files proposed by the applications use the minimum allowed size (2 x 2 Kbytes). The associated
limitations/drawbacks are explained below. The user must size NVM depending on the application specific need.

The applications use the NVM only to store the dynamic keys. A LoRaWAN dynamic key with a data header, a
blob header, and a blob buffer of five elements, occupies 108 bytes. An empty NVM is initialized with a global
32-byte data header and, for each obsolete key, an additional 32-byte data header is written to declare the
previous instance as unusable.

Given the above values, it is possible to evaluate how many keys can be stored in 2 Kbytes:

(2048 - 32) / (108 + 32) = 14.4 ==> 14 dynamic keys can be stored into a 2-Kbyte memory page before the flop
operation.

In user application configuration, only NvM_DYNAMIC is used. NVM_STATIC can be filled via blob, but is not
covered by user applications.

NVM_DYNAMIC can host derived keys (via C_DeriveKey ())and root keys (via C_CreateObject ()).
The LoRaWAN application generates:

. two derived keys each join in ABP mode

. four derived keys each join in OTAA mode

Up to ten derived keys simultaneously active can be generated in more complex scenarios (such as setting
multicast). If a user wants to write one application that uses more than 14 keys, additional NVM pages must be
allocated to the linker file.

AN5406 - Rev 6 page 64/77

m AN5406

KMS configuration files to build the application

Smaller is the NVM size, more the NVM is written and erased, shorter becomes its life expectation.

Destroy a key does not mean that this key is erased, but that this key is tagged as destroyed and is not copied at
the next flip-flop switch. A destroy flag also occupies some NVM bytes: after destroying eight keys, the remaining
place is less than four keys.

For a scenario where four keys are generated each join, and after having destroyed the previous join key, the life

expectation is estimated as follows:

. At the 3" join session, four new keys are derived but no place in page 1 for the last key. All four keys (being
still active) are placed in page 2. Page 1 is erased at once as the NVM page can only be fully erased .

. At the 5t join also, page 2 is erased and keys are stored back on page 1. After 40.000 joins, the two NVM
pages have been erased 10.000 times, that is the estimated lifetime of the Flash sector.

. If the user application is supposed to join excessively frequently (for example every 2 hours), the expected
NVM live is 80.000 hours (around nine years). If the join process is done once a day, the lifetime is much
greater than ten years.

Bigger are the amount of requested derived keys simultaneously active (not destroyed), less efficient is the
flip-flop mechanism.

To conclude, for applications that need to preserve the NVM life-time duration, it is suggested to keep the NVM
size rather bigger than the number of keys active simultaneously (not destroyed).

Note: Obsolete keys must be destroyed otherwise, if page 1 is fully filled by active keys, the flip-flop switch cannot be
done and an error is generated.

15.6 KMS configuration files to build the application
The KMS are used in the LoRaWAN application by setting the code
#define LORAWAN KMS 1

in CMOPLUS/LoRaWAN/Target/lorawan_conf.h

The following files must be filled with the information on SubGHz_Phy stack keys:
. embedded keys structures defined in CMOPLUS/Core/Inc/kms_platf objects_config.h

. embedded object handles associated to SubGHz_Phy stack keys, use of KMS modules defined in
CMOPLUS/Core/Inc/kms platf objects interface.h

15.7 Embedded keys

The embedded keys of the SubGHz_Phy protocol stack must be stored in a ROM region in which a secure
additional software (such as SBSFU, Secure Boot and Firmware Update) ensures data confidentiality and
integrity. For more details on the SBSFU, refer to the application note Integration guide of SBSFU on
STM32CubeWL (AN5544).

These embedded keys are positioned in the ROM as indicated in Figure 17. ROM memory mapping.

AN5406 - Rev 6 page 65/77

AN5406

How to secure a LoRaWAN application

3

16 How to secure a LoRaWAN application

The document [7] describes how to secure a dual-core LoRaWAN application using the SBSFU framework.

AN5406 - Rev 6 page 66/77

m AN5406

System performances

17 System performances

171 Memory footprint
Values in the table below are measured in the following configuration of the IAR Embedded Workbench® compiler
(EWARM version 8.30.1):
. optimization level 3 for size
. debug option off
. trace option: VLEVEL_M (debug traces enabled)
. target : NUCLEO-WL55JC1
. LoRaWAN_End_Node application
. LoRaMAC Class A
. LoRaMAC region EU868 and US915

Table 42. Memory footprint values for LoRaWAN_End_Node application

Flash memory

Application 4771 Core, Application and Target components

LoRaWAN stack 29186 3676 Middleware Lmhandler interface, crypto, MAC and Region

HAL 13782 84 STM32WL HAL and LL drivers

Utilities 2873 1740 All STM32 services (sequencer, time server, low-power manager, trace, mem)
SubGHz_Phy 7050 413 Middleware radio interface

IAR lib 2062 0 Proprietary IAR libraries

IAR startup 821 2048 Int_vect, init routines, init table, CSTACK and HEAP

Total application m 8850 Memory footprint for LoRaWAN_End_Node application

Figure 18. Flash memory and RAM footprint

HAL
B4
* IAR Lib
0
0%
. SubGHz_Phy,
N 413
HAL %
13782 f
e ll'l [L IAR Startup
— | \
‘“‘-\Jf’mn Lib \
2062
3%
IAR Startup
821
1%
[FLASH] LoRaWAN_End_Node [RAM] LoRaWAN_End_Node

AN5406 - Rev 6 page 67/77

m AN5406

Real-time constraints

17.2 Real-time constraints

The LoRa RF asynchronous protocol implies to follow a strict Tx/Rx timing recommendation
(see the figure below).

The STM32WL Nucleo board (NUCLEO-WL55JC) is optimized for user-transparent low-lock time and fast auto-
calibrating operation. The BSP integrates the transmitter startup time and the receiver startup time constraints
(refer to Section 4 BSP STM32WL Nucleo boards).

Figure 19. Rx/Tx time diagram

Start-Tx TimerStart(&RxWindowTimer1) Start-Rx

MCU H H N ﬂ

RF activity Tx-ON v Rx-ON

\| i

SUBGHZ_Radio_IRQHandler ﬂ M- FL

txDone rxDone

Rx window channel starts. The Rx1 window opens 1 second (+20 us) after the txDone falling edge. The Rx2
window opens 1 second (20 ps) after the txDone falling edge.

The JOIN_ACCEPT uses a 5 seconds (£20 ps) and 6 seconds delay after the end of the uplink modulation.

The current scheduling interrupt-level priority must be respected. In other words, all the new user-interrupts must
have an interrupt priority higher than the Radio IRQ_interrupt in order to avoid stalling the received startup time.

17.3 Power consumption
The power-consumption measurement is done for the STM32WL Nucleo board NUCLEO-WL55JC1.
Measurements setup:
. no debug
. trace level VLEVEL_OFF (no trace)
. no SENSOR_ENABLED
Measurements results:
. Typical consumption in Stop 2 mode = 2 pA (see Figure 21).
. Typical consumption with TCXO in Tx = 23 mA (see Figure 20).
. Typical consumption with TCXO in Rx = 7 mA (see Figure 20).

AN5406 - Rev 6 page 68/77

m AN5406

Power consumption

Measurements figures: instantaneous consumption over 30 seconds.

Figure 20. NUCLEO-WL55JC1 current consumption versus time

[s Cubeenie- Power - v183 - o x

mcsseconmnoe | eset e et rewrearesrs (D

.....

START ACqUEETION

S,

P

Figure 21. NUCLEO-WL55JC1 current consumption in Stop 2 mode

B sTME ubstdonizrPower - w103 - o x

oy - Gs

ACOUETION & REPLAY

‘| ||| il | -I'lf'-" I Iﬂl \ﬂ |LJ11. | _ .\'I|.|_LI".'| i '\ |I‘ " lll-J.r'

| | l'l.'\ 'y |' § l'| 1|| I’ . | Il --' il '||‘ _'ll Iulrfll. I.r_ra .l_‘:l

START ACOUIETION

AN5406 - Rev 6 page 69/77

Lys

AN5406

Revision history

Table 43. Document revision history

I T

10-Dec-2019 1
27-Apr-2020 2
17-Nov-2020 3
18-Feb-2021 4

9-Jul-2021 5

ANS5406 - Rev 6

Initial release.

Global update of the document structure and content.

Updated:

. Figure 1. Project file structure

. Note in Section 4 BSP STM32WL Nucleo-73 boards

. Intro of Section 6 LoRaWAN middleware description

. Title and intro of Section 6.6 Middleware LmHandler application function
. Table 22 and Table 23

. Section 8.1.1 Activation methods and keys

. Table 38. Switch options for End_Node application configuration
. Table 39. Switch options for AT_Slave application configuration
. Table 40. Switch options for PingPong application configuration
. Section 13.1 Memory footprint

Added:

. Table 26. LmHandler process

. Section 11 Dual-core management

. Section 12 Key management services (KMS)

Removed tables "Board unique ID" and "Board random seed" from Section 6.7.

Updated:

. lora app.crenamed lora app.h in Section 8.1.2, Section 8.1.4,
Section 8.1.5, Section 8.1.6, Section 8.1.7, Section 8.1.8 and Section 8.1.9

. Table 38. Switch options for End_Node application configuration

. Table 39. Switch options for AT_Slave application configuration

Updated:

. Overview section renamed Section 1 General information
. Intro of Section 11 SubGhz_Phy_PingPong application

. Figure 7. SubGhz_Phy_PingPong application setup

. Intro of Section 14 Dual-core management

. Section 14.1.3 MBMUX messages

. Section 14.2.5 RAM mapping

. Section 15.2 KMS key definition

. Section 15.3 LoRaWAN keys

. Figure 17. ROM memory mapping

. Section 15.5 How to size NVM for KMS data storage

. Section 15.6 KMS configuration files to build the application
. Section 17.1 Memory footprint

. Intro of Section 11 SubGhz_Phy_PingPong application

. Figure 7. SubGhz_Phy_PingPong application setup

. Intro of Section 14 Dual-core management

. Section 14.1.3 MBMUX messages

. Section 14.2.5 RAM mapping

. Section 15.2 KMS key definition

. Section 15.3 LoRaWAN keys

. Figure 17. ROM memory mapping

. Section 15.5 How to size NVM for KMS data storage

. Section 15.6 KMS configuration files to build the application
. Section 17.1 Memory footprint

page 70/77

m AN5406

T T

Added:

9-Jul-2021 (cont'd) 5 . Seven tables in Section 6.6 Application callbacks
. Section 12 SubGhz_Phy_Per application
. Section 16 How to secure a LoRaWAN application
Updated:
. Table 1. Acronyms and terms
. Section 2 STM32CubeWL overview
. Section 6 LoRaWAN middleware description
Added:
. Section 5 LoRaWAN stack description
. Section 5.3.3 Required STM32 peripherals to drive the radio
. Section 9.1 LoRaWAN user code sections description
. Section 9.2.11 Context management

21-Feb-2022 6 . Section 13 LoRaWAN context management description

. Section 13.1 NVM context managment data API definition
. Section 11.2 Device configuration
. Section 11.2.1 Modulation definition

. Section 11.2.2 Payload length

. Section 11.2.3 Region and frequency

. Section 11.2.4 Bandwith, spreading factor and data rate
. Section 11.2.5 Preamble length

Removed:
. STM32CubeWL architecture

AN5406 - Rev 6 page 71/77

m AN5406

Contents
Contents
General information i i 2
STM32CUbEWL OVeIVIEWttt iaaaa e s an s nnnnnnnnnnnsanans 4
SUBGHZ HAL driVer. i it i et eeeeaa s eaasnasraaasnnannannnns 6
31 SUDGHZ re€SOUICESot e e 6
3.2 SubGHz datatransfers. 6
4 BSP STM32WL Nucleo boardsciiiiiiiiiiii it iieaaenaaaeeeeeannnnns 7
4.1 Frequency band 7
4.2 RF SWItCh . .o 7
4.3 RF wakeup time 8
A T CXO . 8
4.5 Power regulation 8
4.6 STM32WL Nucleo board schematic i i 9
5 LoRaWAN stack descCription ...ttt it ieie s iaanannnnnns 10
5.1 LoRaWAN specifications version 11
5.2 LoRaWAN certification 11
5.3 ArChitecture 12
5.3.1 Stalic VIEW. . . . 12
5.3.2 DynamiC VIEW 13
5.3.3 Required STM32 peripherals todrivetheradio. 13
6 LoRaWAN middleware descriptiont iei i ianrennnnnns 14
6.1 LoRaWAN middleware initialization 14
6.2 Middleware MAC layer APIS 14
6.3 Middleware MAC layer callbacks i 15
6.4 Middleware MAC layer timers e e e 15
6.5 Middleware LmHandler application function L. 16
6.5.1 Operation model 17
6.5.2 Main application functions definition. 18
6.6 Application callbacks 18
6.7 Extended application functions e 20
7 SubGHz_Phy layer middleware description 23
71 Middleware radio driver structure 24
7.2 Radio IRQ INtermuptso 25
8 Utilities description i i ettt ia i s an s 26
8.1 SEQUENCET . . ottt 26

AN5406 - Rev 6 page 72/77

Lys s
8.2 TIMr SOIVEr . . o 28

8.3 Low-power fUNCHIONSo e 28

8.4 System time 31

8.5 TrACE. . o o 32

9 LoRaWAN_End_Node application. ...t i iinannens 34
9.1 LoRaWAN user code sections description 34

9.2 Device configuration e 34

9.2.1 Activation methods and Keys. 34

9.2.2 LoRa Class activation 35

9.2.3 TXAGQer. . 35

9.24 DUty CYClE . . oo 35

9.2.5 Application Porto 35

9.2.6 Confirm/unconfirmed mode. 35

9.2.7 Databuffer size. 36

9.2.8 Adaptive datarate (ADR) 36

9.2.9 Ping periodicity 36

9.210 LoRabandselection 36

9.211 Context management 37

9.212 Debug switCh 37

9.213 Low-power switCh 37

9.214 Trace level 37

9.3 Device configuration summary for LoRaWAN_End_Node application.................. 39

10 LoRaWAN_AT _Slave application...........cviiiiiiiiiiiiiiiiiiiainiannnennnnns 41
11 SubGhz_Phy_PingPong application. ... iiaeeenenns 43
11.1 SubGhz_Phy_PingPong hardware/software environmentsetup. 43

11.2 Device configuration 43
11.2.1 Modulation definition 43

11.2.2 Payload length 43

11.2.3 Region and freqQUENCY 44

11.2.4 Bandwith, spreading factorand datarate 44

11.2.5 Preamble length 44

11.3 Device configuration summary for SubGhz_Phy_PingPong application 45

12 SubGhz_Phy _Perapplication ...t i it iei i iranna s 47
121 SubGhz_Phy_ Per hardware/software environmentsetup 47

12.2 Device configuration summary for SubGhz_Phy_Per application 48

13 LoRaWAN context management description............. ..ot iiiiiiiinnn. 49
13.1 NVM context managment data API definition 49

ANS5406 - Rev 6

page 73/77

m AN5406

Contents
14 Dual-core managementiiiiiiiii it ian i tanranreanraaraan nananns 50
141 Mailbox mechanism 50
1411 Mailbox multiplexer (MBMUX). e e 50

14.1.2 Mailbox features 51

14.1.3 MBMUX MESSAQES . . . o v et e et e et e e e e e 52

142 INterCOre MEMOIY . . oottt e e e e e e e e e e e e 53
14.21 CPU2capabilities 53

14.2.2 Mailbox sequence to execute a CPU2 function froma CPU1call 53

14.2.3 Mappingtable 55

14.2.4 Option-byte Warning 56

14.25 RAMMAPPING .« et 56

14.3 Startup SEQUENCE oo e 58

15 Key management services (KMS) ... i ee s 60
151 KM S KeY tY S, oot e e 61

15.2 KMS key definition 61

15.3 LORAWAN KeY S . . o oottt e e 62

15.4 KMS key memory mapping for user applications, 64

15.5 Howtosize NVMforKMS datastorage............... 64

15.6 KMS configuration files to build the application. 65

15.7 Embedded Keys. o 65

16 How to secure a LoORaWAN application.............c.ccoiiiiiiiiiiiiii i 66
17 System performancCesciiiiiiiii ittt taaa e iaaas e aaaarenaaaeannnns 67
171 Memory footprint e 67

17.2 Realtime constraints 68

17.3 Power consumpPlion 68
ReVISIiON RiStOory i it iiia s 70
List of tables e 75
List Of figQUIeS. . ..ot i i it it eee s eat e a e 76

AN5406 - Rev 6 page 74/77

m AN5406

List of tables
List of tables
Table 1. Acronyms and terms 2
Table 2. BSPradio switCh 7
Table 3. RF states versus switch configuration. e 7
Table 4. BSPradiowakeup time 8
Table 5. BSPradio TCXOo 8
Table 6. BSPradio SMPS 8
Table 7. LoRaWAN stack description 10
Table 8. LoRaWAN certification 11
Table 9. LoRaWAN middleware initialization 14
Table 10, MCPS SEIVICES o ottt e e e e e e e 14
Table 11, MLME ServiCeS e 14
Table 12, MIB SEIVICES o o e 15
Table 13. LoRaMacPrimitives_t structure description e 15
Table 14. MAC Timer @VeNES o o e e e e e e 15
Table 15. LmHandler main functions. 18
Table 16. LmHandlerCallbacks_t callback structure description 18
Table 17. Getter/setter functions 20
Table 18. Radio_s structure callbacks. 24
Table 19. Radio IRQ bit mapping and definition 25
Table 20, Sequencer APIs. 26
Table 21. While-loop standard vs. sequencer implementation 27
Table 22. Timer server APIs 28
Table 23. Low-power APIS e 28
Table 24. Low-level APIS. . . . 30
Table 25. Systemtime funCtions 31
Table 26. Trace fUNCHONS 32
Table 27. LoRaWAN user funCtions 34
Table 28. Switch options for LoORaWAN_End_Node application configuration. 39
Table 29. Switch options for LoORaWAN_AT_Slave application configuration 41
Table 30. SubGHz_Phy_PingPong modulation configuration 43
Table 31. SubGHz_Phy_PingPong bandwith, SF and DR configuration. i 44
Table 32. SubGHz_Phy PingPong preamble configuration 45
Table 33. Switch options for SubGhz_Phy_PingPong application configuration 45
Table 34. Switch options for SubGhz_Phy_Per application configuration. 48
Table 35. LoRaWAN NVM context structure e 49
Table 36. LoRaWAN context management APland callbacks 49
Table 37. STM32WL5X RAM Mapping o ottt e e e e e e e e e 56
Table 38. STM32WL5x RAM allocation and shared buffer. 56
Table 39. Global KMS blob elements 61
Table 40. LoRaWAN static keys with blob attributes 62
Table 41. LoRaWAN dynamic keys with blob attributes 63
Table 42. Memory footprint values for LoRaWAN_End_Node application 67
Table 43. Document revision history 70

AN5406 - Rev 6 page 75/77

‘7 AN5406

List of figures

List of figures

Figure 1. Project file structure 5
Figure 2. NUCLEO-WL55JC schematiC. e e e e e e e e 9
Figure 3. Static LoRa architecture. 12
Figure 4. Class A Tx and Rx processing MSC 13
Figure 5. Operation Model. 17
Figure 6. Example of low-power mode dynamiC VIEW.o 29
Figure 7. SubGhz_Phy_PingPong application setup 43
Figure 8. SubGhz_Phy_Per application setup 47
Figure 9. MailbOX OVEIVIEW . . . o . o 50
Figure 10. MBMUX - Multiplexer between features and IPCC channels. 51
Figure 11. Mailbox messages through MBMUX and IPCC channels 52
Figure 12. CPU1 to CPU2 feature_func_X() ProCESS. o\ ottt e e e e e e e e e e 54
Figure 13. MBMUX communication table. 55
Figure 14. Startup SEQUENCE o 58
Figure 15. MBMUX initialization 59
Figure 16. KMS overall architecture 60
Figure 17. ROM MeMOry MappPiNg« vttt e e e e e e e e e e e e e e e e e e e 64
Figure 18. Flash memory and RAM footprint 67
Figure 19. Rx/Txtime diagram. 68
Figure 20. NUCLEO-WL55JC1 current consumption versus timet e e 69
Figure 21. NUCLEO-WL55JC1 current consumptionin Stop2mode i 69

AN5406 - Rev 6 page 76/77

m AN5406

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2022 STMicroelectronics — All rights reserved

AN5406 - Rev 6 page 77/77

http://www.st.com/trademarks

	 Introduction
	1 General information
	2 STM32CubeWL overview
	3 SubGHz HAL driver
	3.1 SubGHz resources
	3.2 SubGHz data transfers

	4 BSP STM32WL Nucleo boards
	4.1 Frequency band
	4.2 RF switch
	4.3 RF wakeup time
	4.4 TCXO
	4.5 Power regulation
	4.6 STM32WL Nucleo board schematic

	5 LoRaWAN stack description
	5.1 LoRaWAN specifications version
	5.2 LoRaWAN certification
	5.3 Architecture
	5.3.1 Static view
	5.3.2 Dynamic view
	5.3.3 Required STM32 peripherals to drive the radio

	6 LoRaWAN middleware description
	6.1 LoRaWAN middleware initialization
	6.2 Middleware MAC layer APIs
	6.3 Middleware MAC layer callbacks
	6.4 Middleware MAC layer timers
	6.5 Middleware LmHandler application function
	6.5.1 Operation model
	6.5.2 Main application functions definition

	6.6 Application callbacks
	6.7 Extended application functions

	7 SubGHz_Phy layer middleware description
	7.1 Middleware radio driver structure
	7.2 Radio IRQ interrupts

	8 Utilities description
	8.1 Sequencer
	8.2 Timer server
	8.3 Low-power functions
	8.4 System time
	8.5 Trace

	9 LoRaWAN_End_Node application
	9.1 LoRaWAN user code sections description
	9.2 Device configuration
	9.2.1 Activation methods and keys
	9.2.2 LoRa Class activation
	9.2.3 Tx trigger
	9.2.4 Duty cycle
	9.2.5 Application port
	9.2.6 Confirm/unconfirmed mode
	9.2.7 Data buffer size
	9.2.8 Adaptive data rate (ADR)
	9.2.9 Ping periodicity
	9.2.10 LoRa band selection
	9.2.11 Context management
	9.2.12 Debug switch
	9.2.13 Low-power switch
	9.2.14 Trace level

	9.3 Device configuration summary for LoRaWAN_End_Node application

	10 LoRaWAN_AT_Slave application
	11 SubGhz_Phy_PingPong application
	11.1 SubGhz_Phy_PingPong hardware/software environment setup
	11.2 Device configuration
	11.2.1 Modulation definition
	11.2.2 Payload length
	11.2.3 Region and frequency
	11.2.4 Bandwith, spreading factor and data rate
	11.2.5 Preamble length

	11.3 Device configuration summary for SubGhz_Phy_PingPong application

	12 SubGhz_Phy_Per application
	12.1 SubGhz_Phy_Per hardware/software environment setup
	12.2 Device configuration summary for SubGhz_Phy_Per application

	13 LoRaWAN context management description
	13.1 NVM context managment data API definition

	14 Dual-core management
	14.1 Mailbox mechanism
	14.1.1 Mailbox multiplexer (MBMUX)
	14.1.2 Mailbox features
	14.1.3 MBMUX messages

	14.2 Intercore memory
	14.2.1 CPU2 capabilities
	14.2.2 Mailbox sequence to execute a CPU2 function from a CPU1 call
	14.2.3 Mapping table
	14.2.4 Option-byte warning
	14.2.5 RAM mapping

	14.3 Startup sequence

	15 Key management services (KMS)
	15.1 KMS key types
	15.2 KMS key definition
	15.3 LoRaWAN keys
	15.4 KMS key memory mapping for user applications
	15.5 How to size NVM for KMS data storage
	15.6 KMS configuration files to build the application
	15.7 Embedded keys

	16 How to secure a LoRaWAN application
	17 System performances
	17.1 Memory footprint
	17.2 Real-time constraints
	17.3 Power consumption

	 Revision history
	Contents
	List of tables
	List of figures

