i

VHDLwhiz.com

VHDL registers UART test
interface generator - User manual

Version: 1.04
Date: August 18, 2024
Author: Jonas Julian Jensen

Product URL: https://vhdlwhiz.com/product/vhdl-registers-uart-test-interface-

generator

Contact email: jonas@vhdlwhiz.com

This document describes using VHDLwhiz's UART test interface generator to

produce a custom VHDL module and Python script for reading and writing FPGA
register values.

Copyright VHDLwhiz.com

https://manuals.plus/m/a8be6d99fb64278bfd7be5eb4f8833b8aab973936f3565bbc19b45a80dd8f477

Table of content

(I (=] 0 1] <P TP PR PP PPUPRPP 3
(@ o T=] g1 =1=1 [0 - OO OO UTRTUPPRROPPR 3
DL ol] 014 [0] o PR O OO O P TP P PP PPPRRPPPRR 4
REQUITEIMENTS . ..eiiitieiiie ettt ettt e sre e e st essab e s st e e e s abeesabeessabaeesasbeessnbaeesaseens 4
PrOTOCOL. ..ttt sttt e b e sbe b e et e be et e st e sabesbesabesabesane s 5
BN _UAIT_IEES.PY -eveeeiurieeiieeeiiiteeeette e ettt e sttt eesbe e s s bt e e sbbeesasbeeesabeeesbbeesanbeeesnbeeesanneesanneeeennee 6
GENEIALEA FIl@S ettt st st be e 7
UAIE_FEES. VNG oottt sttt ettt et e st e e besbesabesabesane s 8
U S, PY e eeurtteeiteeeiitteesite e ettt e st e s sib e e e sb et e s st e e s e abeessabeeesbeeesnbeesaabeeesabeeesnbeesanneeennneeas 9
HEIPD MENU 1ttt st sttt s s e s e sbeenbe e 9
Setting the UART POt ..ottt sttt 10
LISTING MEEISTRIS «.eeeei ettt ettt sbt e st e e s sabe e e sab e e e sbaeessabeeessraeenns 10
WITING TO FEZISTEI'S ..ttt st e s e e s e sareessaneeeens 10
REAAING FEEISTEIS ettt e e s e e sbae e aaesbe e sabeesane 11

DL oTU] =4 =41 o =S OO SRRSO 12
Using the interface in other Python SCriptS....cccoovveviiiiiiiiieniiciecece 13
instantiation_templat@.Vho ... 13
SEALIC RTL fIl@S ettt sttt et et e et e s b s besabesasesane s 14
DEIMO PIrOJECES ettt ettt e st e s bt e e s sabe e e sbe e e snaeesanreesenneeens 15
LattiCe ICESTICK ueiutiiieeiieieeteeese ettt st s bbb e sbe bt 15
XiliNX DIgIHent Arty A7-35T ...iiieieeieeieeieeeee ettt sttt ettt be e 16
XiliNX DIgHENT AITY S7-50 .iiviiiiiiieeieeieeieeieete ettt sttt be e 16
IMIPIEMENTATION Lottt st st st ae e b esbe e 17
CONSEIAINTS ..eeeeeiieieee et e e st e e s e e s sab e e sba e e sanreessnneeens 17
KNOWN ISSUES .ottt s e s s sn e s e s 17
2

Copyright VHDLwhiz.com

License

The MIT license covers the source code’s copyright requirements and terms of use.
Refer to the LICENSE.txt file in the Zip file for details.

Changelog

These changes refer to the project files, and this document is updated accordingly.

Version Remarks

1.0.0 Initial release

1.0.1 Fixed missing «self» reference bug when importing as uart_regs.py
as a Python module. Changed write failed printout to exception to
avoid printing to the console when running as an imported module.

1.0.2 Fix for Vivado [Synth 8-248] error when there are no out mode regs.

1.0.3 Fix Vivado Linter warning: Register has enable driven by
synchronous reset

1.0.4 Fix the corner case when receiving a malformed word with the
escape character as the last byte. The next word would also be lost
because we didn't clear recv_data_prev_is_escape when returning to
IDLE.
The gen_uart_regs.py script now allows only unique reg names.

Copyright VHDLwhiz.com

Description

This document describes the following files and folders:
e gen_uart_regs.py

e generated/uart_regs.vhd
e generated/uart_regs.py
o generated/instantiation_template.vho

e rtl/uart_regs_backend.vhd
e rtl/uart_rx.vhd
e rtl/uart_tx.vhd

e demo/lattice icestick/
o demo/xilinx_arty_a7_35/
o demo/xilinx_arty_s7_50/

The gen uart regs.py script and supporting VHDL files in this project allow you to
generate custom interfaces for reading and writing FPGA register values of various
types and widths using UART.

You can use the generated VHDL module and Python script to read from or write to
any number of registers in your design. The UART accessible registers can have the
types std_logic, std_logic_vector, signed, or unsigned.

You can decide on the precise composition of input and output registers and types
when generating the output files using the gen_uart_regs.py script.

The Python scripts were created partially with the help of the ChatGPT artificial
intelligence tool, while the VHDL code is handcrafted.

Requirements

The scripts in this project must be run through a Python 3 interpreter and the
Pyserial package must be installed.

Copyright VHDLwhiz.com

You can install Pyserial through Pip using this command:

pip install pyserial

Protocol
The VHDL files and Python script uses a data framing protocol with four control
characters:
Name Value Comment
READ_REQ Ox0A Command from the host to the FPGA to initiate a write
sequence to send all registers back over UART
START_WRITE | Ox0B Marks the beginning of a write sequence in either
direction
END_WRITE | Ox0C Marks the end of a write sequence in either direction
ESCAPE 0x0D Escape character used for escaping any of the control
words, including the ESCAPE character itself, when
they appear as data between the START_WRITE and
END_WRITE markers.

Any unescaped READ_REQ byte sent to the FPGA is an instruction to send all of its
UART-accessible registers (inputs and outputs) back to the host over UART. This
command is usually only issued by the uart regs.py script.

Upon receiving this command, the FPGA will respond by sending the content of all
registers back to the host. First, the input signals, then the output signals. If their
lengths don't add up to a multiple of 8 bits, the lower bits of the last byte will be

padded zeros.

A write sequence always starts with the START_WRITE byte and ends with the
END_WRITE byte. Any bytes between those are considered to be data bytes. If any
data bytes have the same value as a control character, the data byte must be
escaped. This means sending an extra ESCAPE character before the data byte to
indicate that it's actually data.

If an unescaped START_WRITE arrives anywhere in the stream of bytes, it is
considered the start of a write sequence. The uart regs_backend module uses this
information to resynchronize in case the communication gets out of sync.

Copyright VHDLwhiz.com

gen_uart_regs.py

This is the script you must start with to generate the interface. Below is a screenshot
of the help menu that you can get by running: python gen_uart_regs.py -h

s’y o u L W Dewn Loads \ uart _regs> python . gen_uart_regs. py

sn_uart_regs.py [-h] [-c CON] [-b BALD] [reg_namse=length:mode:type ...]

wsfible Feglster generator by VHDLehLZ . Gemerate VHIL and Python Tiles Tor UART reglster acoess 1

asitional argumesnts:
o name= Length zmode : type
Bequesters Tormatled as ' regonames= Lengihmod Bodes: "1n' or "owut'

Iypes: "std_logic', "std_lo wvector', "unsigned', "sigmeed’. Default mode is

'in'. Default type 1s "std_logic_wector' for lemgths = 1, "std_logic” for

lengith 1.

Ghow This help message and exil
c C0M, oo (C0M Default WART port QTCE egs.py script (OOMF if mot specified)
b B, baud BMID Baud rate for the oS py Scriplt and wart regs.vhd module (115798 1 ot

SpRc T e)

E o g | s -
python generate-if.py sl=1:out uns=4:inrunsigned slv=Brout sig=4:in:signed
Thiz example will gemerate files for a UAET interface with
1. An "oul’ regieter namsl s1° with 1 Bt of type St
"in" register named "uns' with 4 bits of type "unsigred

"out' register named "slv" with B bits of &

inT Fregister mnamed CSlg with 4 BAts o

To generate a custom interface, you must run the script with each of your desired
UART controllable registers listed as arguments. The available types are
std_logic, std_logic_vector, unsigned, and signed.

The default mode (direction) is in and the default type is std_logic_vector
unless the register is of length: 1. Then, it will default to std_logic.

Thus, if you want to create a std_logic input signal, you can use any of these
arguments:

my sl=1

my sl=1l:in
my sl=1:in:std logic

Copyright VHDLwhiz.com

All of the above variants will result in the script generating this UART-accessible
signal:

my_slv : std_logic;

Let's run the script with arguments to generate an interface with several registers of
different directions, lengths, and types:

mython Cugen, st regs. ey bines inssignedd Led=%iowt fumesigreed

t rogi=18iout regl=1d1oat reg? =52 roul runsigrees] TegS=A8 0 mait T oo

Generated files

A successful run of the gen_uart_regs.py script will produce an output folder named
generated with the three files listed below. If they already exist, they will be
overwritten.

e generated/uart_regs.vhd

e generated/uart_regs.py
e generated/instantiation_template.vho

Copyright VHDLwhiz.com

uart_regs.vhd

This is the custom interface module generated by the script. You need to instantiate
it in your design, where it can access the registers you want to control using UART.

Everything above the “-- UART accessible registers” section will be identical for every
uart_regs module, while the composition of port signals below that line depends on
the arguments given to the generator script.

The listing below shows the entity for the uart regs module resulting from the
generate command example shown in the gen uart regs.py section.

uart_regs
¢
clk _hz : positive;
baud rate : positive := 115200
)5

¢
clk : std logic;
rst : std _logic;

uart_rx : std_logic;
uart_tx : std _logic;

btn : std_logic_vector(3

SW : signed(3 9);

led : unsigned(3 9);

ledo r : std logic;

ledo g : std_logic;

ledo b : std_logic;

rego : std_logic_vector(9

regl : std_logic_vector(15

reg2 : unsigned(31 9);

reg3 : unsigned(39 9)
)

uart_regs;

You do not need to synchronize the uart_rx signal, as that's handled in the vart_rx.
module.

Copyright VHDLwhiz.com

When the module receives a read request, it will capture the values of all input and
output signals within the current clock cycle. The instantaneous snapshot is then
sent to the host over UART.

When a write happens, all output registers are updated with the new values within
the same clock cycle. It is not possible to change output signal values individually.

However, the uart regs.py script allows the user to update only selected outputs by
first reading back the current values of all registers. It then writes back all values,
including the updated ones.

uart_regs.py

The generated/uart_regs.py file is generated together with the vart regs VHDL module
and contains the custom register information in the header of the file. With this
script, you can read from or write to your custom registers with ease.

Help menu

Type python uart_regs.py -h to printthe help menu:

PS5 C:llsersY jojulDosnloadsyuart_regs\generateds python .usart_regs.py

usage: wart _regs.py L-h] {-r | -« Lreg_name=value ...] | -1} [-d] [-c COH]
Command-line interface to read from and write to UAR

opt ions:

show this help message and exit

Bead all .'-|'|_|i'-.1-|'| 5

write [reg nasecvalue ...]

Write to one or more out mode registers, The walue can be given as hex l"-l.-'i ’
B=xtT). bir v (i Qs 1111). or as & s1gmed or wisigned 1aleger.
Last all reglrasters
Print detagging inlo aboul received and sent byles
Sel the UART port. Default 1= OOM7F as defined in the UART_PDRT constan
fwan lable ports: COM4E, OON3, COM11

Example: "python vart_reqgs.py -w regl=-75%5 reg?-8uff regd=8b11111111°. Thas wall wrate 285 to

t_regs.generateds I

Copyright VHDLwhiz.com

Setting the UART port

The script has options to set the UART port using the -c switch. This works on Windows and
Linux. Set it to one of the available ports listed in the help menu. To set a default port, you
can also edit the UART_PORT variable in the uart_regs.py script.

Listing registers

Information about the register mapping is placed in the header of the uart_regs.py script by
the gen_uart regs.py script. You can list the available registers with the - switch, as seen
below. This is a local command and will not interact with the target FPGA.

P Ca%lksersy ill |1| o Loadsvolonedemoyei line_arty_s7_Ge

Register Hame Bits Type Modc

bin
led
Lol x
L g
Led® b
regi
redl
e

T

Writing to registers

You can write to any of the out mode registers by using the -w switch. Supply the
register name followed by “=" and the value given as a binary, hexadecimal, or
decimal value, as shown below.

PS ColsersyjoyulyDown i

o= TBR11ER regl=teabodg

Hrite succeeded

Note that the VHDL implementation requires the script to write all output registers
simultaneously. Therefore, if you don't specify a complete set of output registers,
the script will first perform a read from the target FPGA and then use those values
for the missing ones. The result will be that only the specified registers change.

10
Copyright VHDLwhiz.com

When you perform a write, all specified registers will change during the same clock
cycle, not as soon as they are received over UART.

Reading registers

Use the -r switch to read all register values, as shown below. The values marked in
yellow are the ones we changed in the previous write example.

N L |||| % Down Loadsh e Lo demaxiline art W97 Sifce |_|lr"|_|'||_|-|'| , GUBET s . Py
I'ype Mode Hex wval Int wal

std |-:||i| v T i
signed in
LS 1 e ot
CHIT
ourt
Tl
IR
ol
oAt B i S

out i B

SlsersY 11 iu|"l.|:||-r loadsh o lome demobxiling art W5/ _ Lo I

Every read shows an instantaneous snapshot of all input and output registers. They
are all sampled during the same clock cycle.

11
Copyright VHDLwhiz.com

Debugging

Use the -d switch with any of the other switches if you need to debug the
communication protocol. Then, the script will print out all sent and received bytes
and tag them if they are control characters, as shown below.

PS C:\Usershjojul\Downloads\clonedemox 57_G@= python .\uart_regs.py

Openong LA

Semnding He

I L, () s

Ll W T

END_WRITE

g Name Bits Iype

std_legic_wector in
signed in
L 1 e o'l
st i
wid

ort

ot

owrt

st

1
|

gt 1 i it
|

gitd_1

ot
ot

s Lgried out

Copyright VHDLwhiz.com

Using the interface in other Python scripts

The uart_regs.py script contains a UartRegs class that you can easily use as the
communication interface in other custom Python scripts. Simply import the class,
create an object of it, and start using the methods, as shown below.

uart_regs = UartRegs(port=args.com, baud_rate=BAUD_RATE,

debug=args.debug)

my_dict = uart_regs.read_regs()

Refer to the docstrings in the Python code for method and descriptions and return
value types.

instantiation_template.vho

The instantiation template is generated along with the uart regs module for your
convenience. To save coding time, you can copy the module instantiation and signal
declarations into your design.

clk_hz : integer := 100e6;

clk : std_logic;

rst : std_logic;
uart_to_dut : std_logic;
uart_from_dut : std_logic;

btn : std_logic_vector(3

sw : signed(3 0);

led : unsigned(3 0);
ledo_r : std_logic;

ledo_g : std_logic;

ledd_b : std_logic;

regd : std_logic_vector(9
regl : std_logic_vector(15
reg2 : unsigned(31 0);

reg3 : unsigned(39 0);

13
Copyright VHDLwhiz.com

UART_REGS_INST : work.uart_regs(xrtl)
(
clk_hz => clk_hz
D)
(
clk => clk,
rst => rst,
uart_rx => uart_rx,
uart_tx => uvart_tx,
btn => btn,
sw => sw,
led => led,
ledO_r => ledo_r,
ledd_g => ledO_g,
led@_b => ledo_b,
regd => rego,
regl => reql,
reg2 => reg2,

reg3 => reg3

Static RTL files

You need to include the following files in your VHDL project so that they are
compiled into the same library as the uart_regs module:

e rtl/uart_regs_backend.vhd
e rtl/uart_rx.vhd
e rtl/uart_tx.vhd

The uart_regs_backend module implements the finite-state machines that clock in
and out the register data. It uses the vart rx and uart_tx modules to handle the
UART communication with the host.

14
Copyright VHDLwhiz.com

Demo projects

There are three demo projects included in the Zip file. They let you control the
peripherals on the different boards as well as a few larger, internal registers.

The demo folders include pre-generated uart regs.vhd and uart_regs.py files made
specifically for those designs.

Lattice iCEstick

The demo/icecubeZ_icestick folder contains a register access demo implementation
for the Lattice iCEstick FPGA board.

To run through the implementation process, open the
demo/lattice_icestick/icecube2_proj/uart_regs_sbt.project file in the Lattice iCEcube2
design software.

After loading the project in the iCEcube2 GUI, click Tools—Run All to generate the
programming bitmap file.

You can use the Lattice Diamond Programmer Standalone tool to configure the
FPGA with the generated bitmap file. When Diamond Programmer opens, click
Open an existing programmer project in the welcome dialog box.

Select project file found in the Zip:
demo/lattice_icestick/diamond_programmer_project.xcf and click OK.

Diamond Programirses - diamond_programmes_padjactaed]
File Edit Weew Design Help
. 4 e =
Operation Fie Name “ile DabeTemi 5

. T RECTEAC

After the project loads, click the three dots in the File Name column, as shown
above. Browse to select the bitmap file that you generated in iCEcube2:

15
Copyright VHDLwhiz.com

demo/lattice_icestick/icecube2_proj/uart_regs_Implmnt/sbt/outputs/bitmap/top_icestick_
bitmap.bin

Finally, with the iCEstick board plugged into a USB port on your computer, select
Design—Program to program the SPI flash and configure the FPGA.

You can now proceed to read and write registers by using the
demo/lattice_icestick/uart_regs.py script as described in the uart regs.py section.

Xilinx Digilent Arty A7-35T

You can find the demo implementation for the Artix-7 35T Arty FPGA evaluation kit
in the demo/arty_a7_35 folder.

Open Vivado and navigate to the extracted files using the Tcl console found at the
bottom of the GUI interface. Type this command to enter the demo project folder:
cd <zip_content>/demo/arty_a7_35/vivado_proj/

Execute the create_vivado_proj.tcl Tcl script to regenerate the Vivado project:
source ./create_vivado_proj.tcl

Click Generate Bitstream in the sidebar to run through all the implementation
steps and generate the programming bitstream file.

Finally, click Open Hardware Manager and program the FPGA through the GUI.

You can now proceed to read and write registers by using the
demo/arty_a7_35/uart_regs.py script as described in the uart regs.py section.

Xilinx Digilent Arty S7-50

You can find the demo implementation for the Arty S7: Spartan-7 FPGA
development board in the demo/arty_s7_50 folder.

Open Vivado and navigate to the extracted files using the Tcl console found at the
bottom of the GUI interface. Type this command to enter the demo project folder:

16
Copyright VHDLwhiz.com

cd <zip_content>/demo/arty_s7_560/vivado_proj/

Execute the create_vivado_proj.tcl Tcl script to regenerate the Vivado project:
source ./create_vivado_proj.tcl

Click Generate Bitstream in the sidebar to run through all the implementation
steps and generate the programming bitstream file.

Finally, click Open Hardware Manager and program the FPGA through the GUI.

You can now proceed to read and write registers by using the
demo/arty_s7_50/uart_regs.py script as described in the uart regs.py section.

Implementation

There are no specific implementation requirements.

Constraints

No specific timing constraints are needed for this design because the UART
interface is slow and treated as an asynchronous interface.

The uart_rx input to the uart_regs module is synchronized within the uvart rx
module. Thus, it doesn’t need to be synchronized in the top-level module.

Known issues

e You may need to reset the module before it can be used, depending on
whether your FPGA architecture supports default register values.

Copyright VHDLwhiz.com

17

	Table of content
	License
	Changelog
	Description
	Requirements
	Protocol

	gen_uart_regs.py
	Generated files
	uart_regs.vhd
	uart_regs.py
	Help menu
	Setting the UART port
	Listing registers
	Writing to registers
	Reading registers
	Debugging
	Using the interface in other Python scripts

	instantiation_template.vho

	Static RTL files
	Demo projects
	Lattice iCEstick
	Xilinx Digilent Arty A7-35T
	Xilinx Digilent Arty S7-50

	Implementation
	Constraints

	Known issues

