DXMR90-X1 Series Controller Instruction Manual Original Instructions p/n: 225859 Rev. C June 09, 2023 # Contents | Chapter 1 Overview of the DXMR9 | | |---|---------| | | | | | | | | | | | | | | | | D in ensions | | | Chapter 2 Quick Start Guide | | | | | | 11.7 | | | - | | | | | | | | | | | | Prechan La Las a la con | | | Chapter 3 Controller Connections | | | • | | | | | | | | | | | | Setthe Masterland Save PortParameters | | | Chantar 4 Warking with Madhua D | aviana. | | Chapter 4 Working with Modbus D | evices | | | | | | | | M odbusiTCP IC l'enti | | | | | | C reate all eekly Event |] | | | | | | | | C on figuring the C on tro Ter: | | | ep | | | M a il Server Authentication I | | | | | | Define the Network Interface Settings | | | Define the Network Interface Settings | | | Define the Network Interface Settings I
Configure your Ethernet Connection I
Set the Email Parameters I | | | Define The INetwork Interface Settings I | | | D e fine The IN e twork [Interface IS ettings] | | | Define the Network Interface Settings I | | | Define the Network Interface Settings | | | Define The INetwork Interface Settings I | | | Define the INetwork Interface IS ettings I Configure I your Ethernet Connection I Set the IEmail Parameters I Define IT hreshold IR u'es Ifor IEmail Push Retries Chapter 6 PROFINET® General Station Description Markup (Language IFile DXMIPROFINETID) ID a tal Model I Configure I the ID XMI (Controller I fortal PROFINETID) II | | | S btslandiM odu bsliforD XM IPRO FINET | 12 | |---|----| | C hangeltheD eviceIP A ddress1 | | | C hange the D evice Nam e | | | Changeline Device Name | 42 | | Chapter 7 Accessories for the DXMR90-X1 | 43 | | Chapter 8 Product Support and Maintenance | | | Specifications for the DXMR90-X1 | 47 | | FCCIPart15IC lassIA I | 48 | | Industry C anada S tatem ent for Intentional R ad a tors | 48 | | File System [and Archive Process] | 48 | | U pdate YourD XM IP rocessorF im ware IU sing the IConfiguration Software I | | | D XM SupportPolicy | | | F im w are IU pdates I | | | W ebs te Inform a ton □ | | | Feature R equests | 49 | | Potentà IDXM [Issues] | | | DXM Security | 49 | | Warnings | | | B anner Engineering IC orp IL in ited IV ananty 1 | | | Contact Us | | | Document Information | 51 | # Blank page ### Chapter Contents | DXMR90-X1 Models | 7 | |----------------------|---| | Hardware Overview | 7 | | Automation Procotols | | | Modbus Overview | 8 | | Modbus Registers | 8 | | Dimensions | 9 | # Chapter 1 Overview of the DXMR90-X1 Banner's DXMR90-X1 Series Controller consolidates data from multiple sources to provide local data processing as well as accessibility for host systems as a platform for the Industrial Internet of Things (IIoT). The DXMR90-X1 contains four individual Modbus masters allowing for concurrent communication to up to four independent networks. Data is collected into the internal logic controller to facilitate edge processing, protocol conversion to Industrial Ethernet, and pushing information to web servers. One male M12 connection provides common power and ground to all M12 Modbus ports. The two-port 0 Modbus connections can be configured as pass-through wiring to connect to a Modbus trunk. One 100 Mbps Ethernet port (female) using an M12 D-coded Ethernet connection. - · Modbus TCP - EtherNet/IP - Profinet - · Configuration/discovery port Four Modbus master connections using female M12 connectors. - 2-wire RS-485 physical transceiver with power/ground at each connector - Separate Modbus master control and programmability for each connection point - Independent and selectable baud rate and parity settings - · Individual timing and packet timing for each Modbus connection #### Logic Controller Program the DXMR90-X1's logic controller using action rules and/or ScriptBasic or MicroPython programming languages, which can execute concurrently. The control functions allow freedom when creating custom sensing and control sequences. The logic controller supports the Modbus protocol standards for data management, ensuring seamless integration with existing automation systems. File password protection is an option. #### Action Rules - Thresholds (IF/THEN/ELSE) with timers, minimum on/off time - Math/Logic Rules (arithmetic and bitwise operators) - Control Logic (logical operators and SR/T/D/JK flip flops) - Trending (multiple averaging filters) - · Tracking (counts, on/off times) - Email notifications - Push data on conditions Programming Language—ScriptBasic to create variables, arrays, functions, loops, IF/THEN/ELSE, logical and arithmetic operators, API commands, register access, string functions and operators, time commands #### Scheduler - · Time/calendar-based events - · Holiday skips - · One-time events - Dynamic scheduler updating - Astronomical clock #### Push to the Cloud #### Email ### Register Mapping - Cyclical Read rules from wireless devices or local wired Modbus devices that include optional scaling, error conditions, and the ability to activate a read rule - Cyclical or Change of State Write rules to local wired Modbus devices with scaling - Modbus/TCP Master Read or Write rules for external devices on the network #### Wired Connectivity Ethernet: Modbus/TCP (master/slave) or Ethernet/IP Field Bus: Modbus RS-485 Master/Slave ### User Interface API Interface—Host Initiated control and Web service integration User-defined LED indicators—The DXMR90-X1 has six user-configurable LED indicators to indicate the status of the DXMR90-X1, processes, or equipment Modbus registers for internal local registers (Modbus ID 199) | Local Registers | Туре | Desc^ρto1 | |-----------------|----------------------------|--| | 1-845 | 32-bit integer | Local data registers | | 846-849 | 32-bit integer | Reset, Constant, Timer | | 851-900 | 32-bit non-volable integer | Data 1ash, 404-volatile | | 901-1000 | | Reserved for internal use | | 1001-5000 | Floating point | Floating point registers, local data registers | | 5001-7000 | 32-bit integer | Local data registers | | 7001-8000 | 32-bit non-volable integer | Data 1ash, 4o4-volatile | | > 10000 | | Read-only virtual registers, system-level data | ### DXMR90-X1M odels | Model | Ethewiet Convection | Modibus Master Connections | Other Connections | |-----------|--------------------------------|--|--| | DXMR90-X1 | One female M12 D-Code Ethernet | Four female M12 connections for Modibus master connections | One male M12 (Port 0) for incoming power and Modbus R5-485, one temale M12 for daisy chaining Port 0 agrals. | # Hardware 10 verview 1 The DXMR90-X1 Series Controller can have multiple configurations. The DXMR90-X1 will have a model number label on the housing. Use the model number to identify which boards are included in the controller. # Automation Procotols The DXMR90-X1 Series Controller supports the following automation protocols. ### EtherNet/IP™ By default, EtherNet/IP is disabled. Configure the DXMR90-X1 Local Registers as EtherNet/IP input or output registers using the DXM Configuration Software. A single register can only be set as either an EtherNet/IP input or output register. EtherNet/IP registers are limited to 228 registers set as E/IP Originator to DXM and 228 registers set as DXM to Originator ### Modbus® RTU The DXMR90-X1 manages five separate physical ports running the Modbus RTU protocol. The DXMR90-X1 is the Modbus Master when operating the Modbus master RTU port (port 1–4). The DXMR90-X1 uses the master Modbus RTU bus to communicate with locally connected Modbus slave devices. The other Modbus RTU port (port 0) is used by a host system to access the DXMR90-X1 as a slave device. The slave Modbus RTU port allows access all the internal local registers concurrently with the master RTU port. Port 0 can be configured as a Modbus Master Port using the DXM Configuration Software but is defined as a slave port by default. Configure the port parameters using the DXM Configuration Software. ### Modbus TCP/IP A host system acting as a Modbus master (client) can access the DXMR90-X1 using the Modbus TCP/IP protocol over Ethernet. Standard Modbus TCP port 502 is used by the DXMR90-X1 for all Modbus TCP/IP requests. All internal local registers are available to the host system concurrently with Modbus TCP. By default, the DXMR90-X1 is configured as a Modbus TCP/IP Server. To configure the DXMR90-X1 as a Modbus TCP Client, Modbus TCP must be enabled in the DXM Configuration Software and sockets must be defined to point the DXMR90-X1 to up to 5 Servers. #### PROFINET® By default, PROFINET is disabled on the DXMR90-X1. To configure the DXMR90- X1 for PROFINET communications, PROFINET must be enabled using the DXM Configuration Software. The DXMR90-X1 uses fixed Slot sizes and locations in the Local Registers for the Input and Output values. Module sizes supported are 64, 128, 256, and 512 bytes which range from 32 to up to 256 Local Registers in the DXMR90-X1. Modbus® is a registered trademark of Schneider Electric USA, Inc. PROFINET® is a registered trademark of PROFIBUS Nutzerorganisation e.V. EtherNet/IP™ is a trademark of ODVA, Inc. All other trademarks and registered trademarks cited are the property of their respective owners. ## M odbus 10 verview 1 The DXMR90-X1 Series Controller uses internal 32-bit registers to store information. The
processor's internal Local Registers serve as the main global pool of registers and are used as the common data exchange mechanism. External Modbus device registers can be read into the Local Registers or written from the local data registers. The DXMR90-X1, as a Modbus master device or slave device, exchanges data using the Local Registers. Modbus over Ethernet (Modbus/TCP) uses the Local Registers as the accessible register data. Using Action, Read/Write, and Threshold Rules allows you to manipulate the processor's Local Registers. The MicroPython or ScriptBasic programming capabilities extends the use of Local Registers with variables to create a flexible programming solution for more complex applications. The processor's Local Registers are divided into three different types: integer, floating point, and non-volatile. When using Local Registers internally, the user can store 32-bit numbers. Using Local Registers with external Modbus devices follows the Modbus standard of a 16-bit holding register. Local Registers are accessible as Modbus ID 199 when using ScriptBasic or MicroPython. # M odbus®R egisters□ The DXMR90-X1 Series Controller may have up to two internal Modbus slave addresses: Internal Modbus slave IDs (factory default) | Modbus Slave ID | Device | | |-----------------|---|--| | 199 | Local Registers—litternal storage registers | | | 203 | LED indicators | | All Modbus registers are defined as 16-bit Modbus Holding Registers. The local register slave ID (199) is fixed for access via ScriptBasic or MicroPython. When accessing the Local Registers through an external Modbus RTU Master, the Slave Port (Port 0) slave ID can be changed using the DXM Configuration Software. Connected devices can use any Modbus Slave ID. For a complete list of registers, see "Internal Local Registers (Slave ID 199)" on page 17. Modbus registers for internal local registers (Modbus slave ID 199) | Local Registers | Туре | Description | |-----------------|----------------|----------------------| | 1-845 | 32-bit integer | Local data registers | | 846-849 | 32-bit integer | Reset | Continued from page 8 | Local Registers | Туре | Description | |-----------------|-----------------------------|--| | 851-900 | 32-bit non-volatile integer | Data 1ash, non-volatile | | 901-1000 | | Reserved for internal use | | 1001-5000 | Floating point | Floating point registers, local data registers | | 5001-7000 | 32-bit integer | Local data registers | | 7001–8000 | 32-bit non-volatile integer | Data 1ash, 4o4-volatile | | > 10000 | | Read-only virtual registers, system-level data | Modbus registers for the LCD board (Modbus slave ID 203) | Modibus Register | LED | Colo | State | |------------------|-------|--------|---------| | 2101: bit 0 | LED 1 | Green | | | 2102 : bt 0 | LED 2 | Red | | | 2103 ; bt 0 | LED 3 | A/mbe/ | 1 = On | | 2104 : bt 0 | LED 4 | Алтоел | 0 = Off | | 2105; bit 0 | LED 5 | Red | | | 2106; bit 0 | LED 6 | Green | | # D in ensions All measurements are listed in millimeters, unless noted otherwise. # Blank page ### Chapter Contents | Apply Power to the Controller | 11 | |-------------------------------|----| | Configuration Instructions | 12 | | Mechanical Installation | 16 | # Chapter 2 Quick Start Guide # Apply Power to the Controller Follow these instructions to apply 12-30 V DC power to the DXMR90-X1 using a wall plug. ### Required equipment - DXMR90-X1 Series Controller - PSW-24-1W alliplugipow erisupply; 24W DC, 11A (orrequivalent24W DC M 12 pow erisupply) - Connect the PSW-24-1 power supply to the male M12 connector on the DXMR90-X1, Port 0. - 2. Plug in the PSW-24-1 wall plug power supply. ### Wiring #### Ports 0-4 female connector | Рол 0-4 5-рл M12 Соллефоr (temale) | Pid | Wire Color | Descaption | |------------------------------------|-----|--------------|--------------------| | _ | 1 | B/0W/1 (0/1) | 12 V DC to 30 V DC | | 1-1-2 | 2 | White (wh) | R5485/D1/B/+ | | 4 5 | 3 | Bue (bu) | DC common (GND) | | | 4 | Black (bk) | R5485/D0/A/- | | | 5 | Gray (gy) | Not u sed/reserved | ### CAUTION: - Wiring devices incorrectly will cause electrical damage. - Do not apply more than 12 volts on pins 2 or 4 for ports 1 through 4. #### Port 0 male connector | Port 0 4-ри M12 Connector (male) | Pid | Wire Color | Desc <i>npton</i> | |----------------------------------|-----|------------|--------------------| | 1 | 1 | Brown (01) | 12 V DC to 30 V DC | | 3 | 2 | White (wh) | R5485/D1/B/+ | | | 3 | Βυε (δυ) | DC common (GND) | | | 4 | Black (bk) | R54857D07A7- | #### D-coded industrial Ethernet connector | 4-pm Industrial Ethernet Connector (temale) | Pid | Wire Color | Descriptor | |---|-----|------------|------------| | 1 ~ 2 | 1 | Black (bk) | +Tx | | 4 | 2 | Red (rd) | +Rx | | | 3 | Green (gn) | -тх | | | 4 | White (wh) | - Fox | # **Configuration Instructions** ### **DXM Configuration Software** Configure the DXMR90-X1 using the configuration software. Use this software to customize your configuration and to process data from the Controller. Download the latest version of all configuration software from http://www.bannerengineering.com. For more information on using the DXM Configuration Software, refer to the instruction manual (p/n 209933). Overview of the configuration software features The configuration software creates an XML file that is transferred to the DXM using an Ethernet connection. The DXM can also receive the XML configuration file from a Web server using an Ethernet connection. This configuration file governs all aspects of the DXM operation. The DXM Configuration Software allows the user to define parameters for the DXMR90-X1, then saves the configuration in an XML file on the PC. After the configuration file is saved, upload the XML configuration file to the DXMR90-X1 for operation. IMPORTANT: The DXMR90-X1 Series Controller comes preloaded with a default configuration XML file. You can download the default XML on the product page for the DXMR90-X1. This quick start guide outlines the basic operations to set up a DXMR90-X1 using the configuration software. For a more comprehensive explanation of features, refer to the DXM Configuration Software Instruction Manual (p/n 209933). ### Configuring the DXMR90 Controller This section will walk you through the method of setting up the DXM Configuration Software and communicating with a connected DXM device. Version 4 of the DXM Configuration Software supports multiple DXM device models, each of which incorporates different features. As soon as a DXM model is connected to your computer, the software automatically detects the correct model and loads the appropriate screens. You may also manually select which model of DXM you are configuring if you intend to create a configuration file without connecting a device. This ensures that the interface and the configuration file use the correct features. Not all screens are available for all models. To change to another model of DXM, go to the Select Mode screen and use the drop-down list to select another model. If the active configuration is incompatible with the selected model, you will be prompted to either proceed and wipe out the active configuration or cancel the model change and preserve the configuration. Opening splash screen for Traditional Setup mode When the Select DXM Model drop-down is set to DXMR90-X1, a new network discovery table is displayed. Click Scan Network for DXMs to detect DXM devices on the host computer's network. Discovered DXMs are listed in the network discovery table. Double-click any row entry to connect to that DXM. If the DXM's IP address is already known, the standard TCP connection option is available below the network discovery table. IMPORTANT: Any model of DXM may connect to the configuration software regardless of which device model is selected in the configuration software. Compatibility is checked before configuration files are uploaded to the device. ### Configuration Example: Reading Registers on a Modbus Slave Device The local registers are the main global pool of registers that are defined by the user to store data within the DXM. The local registers are listed on the Local Registers > Local Registers in Use screen. The bottom status bar displays the communications status, application status, and the DXM Configuration Software version. In this short example, we will configure the DXM to read six registers on an external Modbus server device and save the data into the local registers. The software only loads a file to the DXM. Internal parameter settings that are changed in the tool but not saved to the file will not be sent to the device. ### M odifyM ultipleR egisters Modify a range of registers from the Local Registers > Local Registers in Use > Modify Multiple Registers screen. Select which parameter fields to modify. Most parameters have three selections. - Unchanged— no@changes@ - Default- change to default settings :: - Set- m od fy@heiparam eter.0 theriselections will appear based ion@heiparam eter.0 ### Modify Multiple Registers screen - Enter the Starting register and Ending register. - 2. Select the value to change using the drop-down list next to each value. - Enter the new value in the field provided. - 4. To push register values to the web server, setCloud Settings to Read. If the Cloud Settings are set to Read, the web server only views data from the device and cannot write data to the device. If the permissions are set to Write, the web server only writes to the device and cannot read the data. If the permissions are set to Read/Write, the web server can read the data from the device and write to the device from the web. - Click Modify Registers to save and apply the changes. #### DefnerantRTUtReadtRulet Follow these steps to create a new read rule. This example creates a read
rule to read six registers (address 1 through 6), from Port 1 Modbus Slave 4. The results are stored in the Local Registers 1 through 6. - Define the Port settings to be compatible with the connected devices. - a. Go to the Register Mapping > RTU > RTU Configuration screen. ### RTU Configuration screen - b. Go to the Register Mapping > RTU > RTU Configuration screen. - c. Modify the Port settings as needed. - Verify the Baud Rate and Parity match that of the connected Modbus slave devices. - * The Timeout controls how long the DXMR90-X1 waits before determining a command failed to send. Set based on the specific application requirements. - The Delay between messages defines the minimum wait time between resending another command. Set based on the specific application requirements. - From the Register Mapping > RTU > RTU Read screen, click Add Read Rule. - Click the arrow next to the name to display the parameters. - Name your rule. - Select the Port number to which the device is connected. - Select the Modbus ID of the device. - 7. Select how many registers to read, and the beginning register. - Define the register type, how often to read the register, and any other appropriate parameters. If necessary, select the error condition. For this example, if the read function fails after three attempts, the read rule writes 12345 to the DXM local registers. Notice the list of local register names this read rule is using. Read Rules - Configuration Example #### **Baud Rate** #### Defined for both the Modbusin as terrand is lave 1 Settings include: 19200 (default), 1200, 2400, 9600, 38400, 57600 Jand 115200 J #### Delay between messages Applies to the M odbus in asterport Sets their in in un il wait tin elifon ithe lend to fai Modbus itransaction to the ibeginning to fithe inext Modbus itransaction. I ### Parity Defined for both the Modbusin asterland is lave 1 Settings include: None (de fau it), Jodd Jeven Jspace Jand in ark ii #### Timeout #### AppliesIto Ithe M odbus in asteriport Covers the expected time for messages to be sent throughout theliw reless network JForthelD XM JthelTimeout[param etertis] thelim axin um [am ountoftine!thelD XM [should]wa itafterla!request is sent until the response message is received from the M odbus[s]ave[device.]] #### Set the Time Use the Settings > System screen to define the time zone and daylight saving option. The time zone and DST options are saved into the configuration file. Settings > System > Device Time - Go to the Settings > System screen. - If you connect the DXM to a computer, click Sync PC Time with Device to set the time on the DXM to match the time of the computer. - Set your time zone and select whether or not your device observes daylight saving time (DST). ### SetThe IP Address Follow these instructions to change the DXMR90-X1's IP address. Bytide fault, the IDXMR90-X1 tistset totalistatic IP laddress tof 192 168.0.1. The IP laddress to an iberchanged bytus ing the IDXM Configuration Software land tupdating the IXM L.I - Launch the DXM Configuration Software. - Go to the Settings > Ethernet screen. - In the IP Address section, select Static IP or DHCP from the drop-down list. - If Static IP is selected, enter the IP address, Subnet, and Gateway address as desired. - * If DHCP is selected, the IP address, Subnet, and Gateway address are grayed out and not configurable. Changing the IP Address to DHCP can make it so the DXM cannot be reached. Before changing this to DHCP, you MUST have a server that is going to assign an IP Address to the DXMR90-X1. - Save your changes to the configuration file (File > Save). - 5. Upload the configuration file to your controller (DXM > Send Configuration to DXM). ### Save and Upload the Configuration File After making any changes to the configuration, you must save the configuration files to your computer, then upload it to the device. Changes to the XML file are not automatically saved. Save your configuration file before exiting the tool and before sending the XML life to the Identication and it is in the Identity of - Save the XML configuration file to your hard drive by going to the File > Save As menu. - Go to the DXM > Send XML Configuration to DXM menu. #### Status indicator bar | Connected 192.168.0.1 | VibelQ_DXR90_V2.xml | Application Status 🕕 | | |-----------------------|---------------------|----------------------|--| | Connected 192,168.0.1 | VibelQ_DXR90_V2.xml | Application Status | | | Not Connected | VibelQ_DXR90_V2.xml | Application Status 🛑 | | - * If the Application Status indicator is red, close and restart the DXM Configuration Tool, unplug and re-plug in the cable and reconnect the DXM to the software. - * If the Application Status indicator is green, the file upload is complete. - * If the Application Status indicator is gray and the green status bar is in motion, the file transfer is in progress. After the file transfer is complete, the device reboots and begins running the new configuration. ## M echan calInstalation□ Install the DXMR90-X1 to allow access for functional checks, maintenance, and service or replacement. Do not install the DXMR90-X1 in such a way to allow for intentional defeat. Fasteners must be of sufficient strength to guard against breakage. The use of permanent fasteners or locking hardware is recommended to prevent the loosening or displacement of the device. The mounting hole (4.5 mm) in the DXMR90-X1 accepts M4 (#8) hardware. See the figure below to help in determining the minimum screw length. CAUTION: Do not overtighten the DXMR90-X1's mounting screw during installation. Overtightening can affect the performance of the DXMR90-X1. ### Chapter Contents | Ethernet | 17 | |---|----| | Internal Local Registers (Slave ID 199) | 17 | | Connecting to Remote Modbus Devices | 20 | # Chapter 3 Controller Connections ### E themet1 Before applying power to the DXMR90-X1, verify the Ethernet cable is connected. The Ethernet connection supports the DXM Configuration Software, Modbus/TCP, PROFINET, and EtherNet/IP. ScriptBasic also has access to Ethernet for custom programming. Use the software to configure the characteristics of the Ethernet connection, including the IP address. Any parameters not changeable from the menu system are configurable from the configuration software. # Internal Local Registers (Slave ID 199) The main storage elements for the DXMR90-X1 are its Local Registers, which can store 4-byte values that result from register mapping, action rules, MicroPython, or ScriptBasic commands. Local Registers updated from Modbus transactions are restricted to a16-bit data value to follow standard Modbus Holding Register definition. The Local Registers defined in Action Rules must all be within the same register group. For example, an Action Rule cannot have inputs from an integer group with the result register defined as a floating point register. To move between integers and floats, use the Register Copy Rule. Modbus registers for internal local registers (Modbus slave ID 199) | Local Registers | Туре | Description | |-----------------|-----------------------------|--| | 1-845 | 32-bit integer | Local data registers | | 846-849 | 32-bit integer | Reset | | 851-900 | 32-bit non-volatile integer | Data 1 ash, non-volatile | | 901-1000 | | Reserved for internal use | | 1001-5000 | Floating point | Floating point registers, local data registers | | 5001-7000 | 32-bit integer | Local data registers | | 7001-8000 | 32-bit non-volatile integer | Data 1 ash, 4 o4-volatile | #### Continued from page 17 | Local Registers | Туре | Description | |-----------------|------|---| | > 10000 | | Read-only virtual registers, system-leivel data | Local Registers 1–845 and 5001–7000 (Internal Processor Memory, 32-bit, Unsigned)—The Local Registers are the main global pool of registers. Local Registers are used as basic storage registers and as the common data exchange mechanism. External Modbus device registers can be read into the Local Registers or written from the Local Registers. The DXMR90-X1, as a Modbus master device or a Modbus slave device, exchanges data using the Local Registers. Modbus over Ethernet (Modbus/TCP) uses the Local Registers as the accessible register data. Local Registers 846–849 (Reset, Unsigned)—These Local registers are reserved for use as Reset registers. A time interval can be specified in the configuration software for the DXM to reset. If the data in the register does not change within the user-specified time interval, the DXM resets. Local Registers 851–900 and 7001–8000 (Data Flash, Non-volatile, 32-bit, Unsigned)—The top 50 Local Registers are special non-volatile registers. The registers can store constants or calibration type data that must be maintained when power is turned off. This register data is stored in a data flash component that has a limited write capability of 100,000 cycles, so these registers should not be used as common memory registers that change frequently. Local Registers 1001–5000—These Local Registers are paired together to store a 32-bit IEEE floating point format number in big endian format. Registers 1001 [31:16], 1002 [15:0] store the first floating point value; registers 1003, 1004 store the second floating point number. There are a total of 2000 floating point values; they are addressed as two 16-bit pieces to accommodate the Modbus protocol. Use these registers when reading/writing external devices that require Modbus registers in floating point format. Since Modbus transactions are 16-bits, the protocol requires two registers to form a 32-bit floating point number. Virtual Registers—The DXMR90-X1 has a small pool of virtual registers that show internal variables of the main processor. Some register values will be dependent upon the configuration settings of the DXMR90-X1. Do not use Read Rules to move Virtual Local
Registers data into Local Registers. Use the Action Rule > Register Copy function to move Virtual Local Registers into Local Registers space (1-850). ### Modbus registers for virtual registers | Registers | Definition | | |-------------|--------------------------------------|--| | 10001 | GPS latitude direction (N, S, E, W) | | | 10002 | GPS latitude | EDE Fooddaam Dava this DVM is gootle and missed as give sail EDE was | | 10003 | GPS longitude direction (N, S, E, W) | GPS Coordinate Data if the DXM is configured to read an external GPS unit. | | 10004 | GPS longitude | | | 10011-10012 | Resynctomer | Engineering use | | 10013-10014 | Resynctimer rollover | Engineering use | | 10015-10016 | Reboot cause (Restair Codes above) | Reboox Τγρε | | 10017-10018 | Watchdog reset count | Counter to track how many resets have been caused by the Watchdog | | 10025-10026 | Hπρ Puợt SSL Acquires | | | 10027-10028 | Ηπρ Pusti 55L Releases | Statistical counts of connections, disconnections and forced disconnects when the DXMR90-X1 creates a connection using SSL/TLS (Encrypted connections) | | 10029-10030 | Hπρ Push SSL Forced Releases | | | 10031-10032 | Ητρ Push Attempts | | | 10033-10034 | Ηπρ Ρυ 🕫 Successes | Statistical counts of connections, disconnections and forced disconnects when the
DXM controller creates a connection using HTTP non-encrypted | | 10035-10036 | Ηπρ Push Failures | | | 10037-10038 | Hπρ Puợn Last Status | Last DXMR90-X1 push status 0 = Initial state, no push attempt as trushed yet 1 = Attempt complete 2 = Attempt aborted | | 10055-10056 | Alazms, smip, attempts | Елай актельті | | | | | Continued from page 18 | Registers | Detration | | | |-------------|---------------------------------|--------------------------------|--| | 10057-10058 | Alazms, smφ, tails | E/mail failures | | | 10100 | Number of read maps in detault | | | | 10101 | Number of read map successes | | | | 10102 | Number of read map timeouts | Read Map statistics | | | 10103 | Number of read map errors | | | | 10104 | Read map success streak | | | | 10105 | Number of write map successes | | | | 10106 | Number of write map timeouts | Write Map statistics | | | 10107 | Number of write map errors | Wille Map statistics | | | 10108 | Write map success streak | | | | 10109 | Number of passiviough successes | | | | 101 10 | Number of passthrough inneouts | APT/message passing statistics | | | 10111 | Number of passthrough errors | Ar Thesawge passing stansacs | | | 10112 | Passthrough success streak | | | | 11000 | Read map success count | | | | 12000 | Write map success count | | | | 13000 | Read тар втесот соолт | | | | 14000 | Winte map timeout count | | | | 15000 | Read /пар ег/ог соолт | Read Write maps statistics | | | 16000 | Write map error count | | | | 17000 | Read map success streak | | | | 18000 | Write map success streak | | | | 19000 | Read map is in default | | | TCP Client Stats—The "x" represents the socket 0 through 4. The flex socket is not used. This range repeats for the next socket. ### TCP client statistics | Register | Detrainor | | |-------------|--|--| | 2x001 | Socket x connection attempts (2000) is the first socket, 21001 is the second socket) | | | 2x003 | Socket x connections | | | 2x005 | Socket x disconnections | | | 2x007 | Socket x transmits | | | 2x009 | Socket x receives | | | 2x011 | Socker xiresolver attempts (reserved) | | | 2x013 | Socketix resolvers (reserved) | | | 2x015-2x020 | Reserved | | | 2x021 | Socket x: Rule 0 t/a//s/nits | | | 2x023 | Socket x: Rule 0 /eceives | | | 2x025 | Socket x Rule 0 timeouts | | | 2x027 | Socker x Rule 0 broadcasts | | Continued from page 19 | Registe/ | Detration | |----------|----------------------------| | 2x029 | Reserved | | 2x031 | Socket x Rule 1 transmits | | 2x033 | Socket x Rule 1 /eceives | | 2x035 | Socket x Rule 1 timeouts | | 2x037 | Socket x Rule 1 b/oadcasts | | 2x039 | Re-se-ved | Reset Codes—The reset codes are in virtual register 11015 and define the condition of the last restart operation. #### Reset codes | Reset Code | Definition | |------------|-------------------------| | 0 | Undefined | | 1 | Unknown | | 2 | General General | | 3 | B/ow/rout | | 4 | Watchdog | | 5 | User | | 6 | Software | | 7 | Return from backup mode | # Connecting to Remote Modbus Devices The DXMR90-X1 is configured with four independent Modbus Master Ports, all ports use a 4-pin M12 female connector to connect to remote devices. No additional wiring is required if the sensors use compatible wiring. Ports 0-4 female connector ### M odbusM aster and S lave Ports The DXMR90-X1 can be a Modbus RTU master device to other slave devices and can be a Modbus slave device to another Modbus RTU master. The DXM uses the ports 1–4 as Modbus RTU master ports to control external slave devices. All wired devices connected to the master RS-485 port must be slave devices. - · As a Modbus RTU master device, the DXMR90-X1 controls external slaves connected to ports 1-4 - As a Modbus RTU slave device, the DXMR90-X1 local registers can be read from or written to by another Modbus RTU master device via port 0. The Modbus RTU slave connection, port 0, is controlled by another Modbus master device that is not the DXMR90-X1. The slave port is used by an external Modbus master device that will access the DXMR90-X1 as a Modbus slave Device. Use the DXM Configuration Software to define the operational settings for both the Modbus RTU master ports 1–4 and the Modbus RTU slave port 0. ### Setthe Master and Save PortParameters The basic communications parameters for the RS-485 ports are set in the DXM Configuration Software and are saved in the XML configuration file. Each port can have unique settings such as a unique baud rate, parity, timeout, and delays between messages. RTU Configuration screen for ports 0-4 - Define the Port settings to be compatible with the connected devices. - a. Go to the Register Mapping > RTU > RTU Configuration screen. ### RTU Configuration screen - b. Go to the Register Mapping > RTU > RTU Configuration screen. - Modify the Port settings as needed. - Verify the Baud Rate and Parity match that of the connected Modbus slave devices. - * The Timeout controls how long the DXMR90-X1 waits before determining a command failed to send. Set based on the specific application requirements. - * The Delay between messages defines the minimum wait time between resending another command. Set based on the specific application requirements. - To set the Modbus Slave parameters for Port 0, go to Settings > System > Slave Port 0 Settings. - Modify the Baud Rate, Parity, and change the Internal Slave ID. (For a description of the parameters, see "Define an RTU Read Rule" on page 14.) The Internal Slave ID is the Modbus ID that an external Modbus Master will access to read/write to the local registers on the DXMR90-X1. ### Slave Port 0 Settings ### Chapter Contents | Assigning Modbus Slave IDs | 23 | |-------------------------------|----| | Modbus Operation | 24 | | Modbus Communication Timeouts | 24 | | Modbus TCP Client | 24 | # Chapter 4 Working with Modbus Devices The DXMR90-X1 has five physical RS-485 connections using Modbus RTU protocol. The master Modbus RS-485 ports are for the DXMR90-X1 to act as a Modbus master device to control external Modbus slave devices. The Modbus master RS-485 ports are labeled Port 1–4. The Modbus slave port is used when another Modbus master device wants to communicate with the DXMR90-X1 when the DXMR90-X1 is a Modbus slave device. The Modbus slave RS-485 port is labeled Port 0. The DXMR90-X1 has dual Modbus roles: a Modbus slave device and a Modbus master device. These run as separate processes. The Modbus slave port can only access the DXMR90-X1 local registers. To operate as a Modbus slave device, the DXMR90-X1 needs to be assigned a unique Modbus slave ID as it pertains to the host Modbus network. This slave ID is separate from the internal Modbus slave IDs the DXMR90-X1 uses for its own Modbus network. The DXM Modbus slave ID and other Modbus slave port parameters are defined by using the configuration software. The DXMR90-X1 operates the Modbus master ports. Each device on a master port must be assigned a unique slave ID. There are slave IDs that are reserved for internal devices in the DXMR90-X1. Each device that shares a master port must have a unique ID. Devices on separate ports may have the same ID. Internal Modbus slave IDs (factory default) | Modbus Slave ID | Device | |-----------------|--| | 199 | Local Registers—Internal storage registers | | 203 | LED indicators | # Assigning M odbus S lave D s Assign the DXM Modbus Slave ID only if a Modbus master device is reading or writing the DXM Local Register data through the Modbus RS-485 slave port 0. To set the Modbus Slave parameters for Port 0, go to Settings > System > Slave Port 0 settings. Here you can modify the Baud Rate, Parity, and change the Internal Slave ID. The Internal Slave ID is the Modbus ID that an external Modbus Master accesses to read/write to the local registers on the DXMR90-X1. DXM Master Configuration—When the DXM operates as a Modbus master device, use the configuration software to configure read or write operations of the DXM Modbus network. The DXM communicates with all internal and external peripheral devices using the external Modbus bus RS-485 port(s). # M odbus® peration□ All Modbus transactions are managed by a central Modbus engine. If there are Modbus messages intended for a Modbus slave that doesn't exist, the Modbus engine waits for a response until the timeout period is expired. This slows down the Modbus polling loop for read and write operations. Each Master port is running its own
modbus engine; timeouts on one port will not affect the other ports. Verify all Modbus read and write operations are intended for Modbus slave devices that are in the network. # Modbus Communication Timeouts A Modbus timeout is the amount of time a Modbus slave is given to return an acknowledgment of a message sent by the Modbus master. If the Modbus master waits for the timeout period and no response is seen, the Modbus master considers it a lost message and continues on to the next operation. The timeout parameter is simple to set for Modbus devices directly connected to the DXMR90-X1. Special considerations need to be made to set the timeout parameter when the DXMR90-X1 is communicating to an external Modbus device through a serial data radio. In general, longer timeouts may be required to ensure the data is sent and received. Configure controllers operating wireless networks to allow for enough time for hardware transmission retries. Set the Communications Timeout parameter to cover the expected time for messages to be sent throughout the wireless network. For the DXMR90-X1, the Communications Timeout parameter is the maximum amount of time the DXMR90-X1 should wait after a request is sent until the response message is received from the Modbus slave device. Use the DXM Configuration Software to set the timeout parameter on the Register Mapping > RTU > RTU Configuration screen. The default setting for the timeout parameter is 5 seconds. ## M odbus TCP C Tent The DXMR90-X1 can operate as a Modbus TCP client on Ethernet. Users may define up to five socket connections for Modbus TCP server devices to read Modbus register data over Ethernet. Use the DXM Configuration Software to define and configure Modbus TCP client communications with other Modbus TCP servers. ### Chapter Contents | Scheduler | 25 | |---------------------------------|----| | Authentication Setup | 26 | | Register Flow and Configuration | 28 | | EtherNet/IP™ Configuration | 29 | | Set up the Email | 30 | | Push Retries | 33 | # Chapter 5 Configuration Instructions ### Scheduler Use the Scheduler screens to create a calendar schedule for local register changes, including defining the days of the week, start time, stop time, and register values. Schedules are stored in the XML configuration file, which is loaded to the DXMR90-X1. Reboot the DXMR90-X1 to activate a new schedule. If power is cycled to the DXMR90-X1 in the middle of a schedule, the DXMR90-X1 looks at all events scheduled that day and processes the last event before the current time. For screens that contain tables with rows, click on any row to select it. Then click Clone or Delete to copy/paste or remove that row. ## Create aW eekly Event Use the Scheduler > Weekly Events screen to define weekly events. Add Weekly Event 1 Register 20 None Active days M T W Th F S Su Start 1 at 22:00:00 Stchedule Definition Start Value 1 Start at Specific Time 22:00 \$ 24 hour format End Value 0 End at Specific Time 20:00 \$ 24 hour format Neekly Event 2 Register 20 None Active days M T W Th F S Su Start 0 at 02:00:00 Sthedule Definition Start Value 0 Start at Specific Time 20:00 \$ 24 hour format Active Holidays Scheduler > Weekly Events screen Click Add Weekly Event. A new schedule rule is created. - Click on the arrow to the left of the new rule to expand the parameters into view. The user-defined parameters are displayed. - Name your new rule. - Enter the local register. - Select the days of the week this rule applies to. - Enter the starting value for the local register. - Use the drop-down list to select the type of Start at time: a specific time or a relative time. - Enter the starting time. - 9. Enter the end time and end value for the local register. Register updates can be changed up to two times per day for each rule. Each rule can be set for any number of days in the week by clicking the buttons M , IT , W , ITh , F , S , for Su II If two treg is terrichanges ta reidefined for a iday, idefine the istart time to be be fore the tend it in e. IS electEnd Value to tenable the istart time enough the tend in a 24 hour period. To span across two days (crossing the midnight boundary), set the start value in the first day, in thou tise lecting End Value. It is eithe inext day to icreate the if hall register is tate. It Start and end times can be specified relative to sunrise and sunset, or set to a specific time within a 24 hour period. When using sunrise for sunset time es set the GPS (coordinates for the idevice iso littranical kullate is unrise and is unset.) ### Create a One-Tine Event Define one-time events to update registers at any time within a calendar year. S in fartfold eeklytevents, the tin est can be specific for relative to is unrise for sunset. Define fone-tin elevents tusing the Scheduler > One Time Events is creen. ### Scheduler > One Time Events screen 1. Click on Add One Time Event. A new one-time event is created. - Click on the arrow to expand the parameters into view. The user-defined parameters are displayed. - 3. Name your one-time event by clicking on the name link and entering a name. - Enter the local register. - Enter the starting time, date, and starting value for the local register. - Enter the ending time, date, and ending value for the local register. ### Create all oliday Event Use the Scheduler > Holidays screen to create date and/or time ranges that interrupt weekly events. ### Scheduler > Holidays screen - Click on Add Holiday. A new rule is created. - Enter a name your new holiday rule. - Select the start date and time for the new holiday. - Select the stop date and time for the new holiday. # Authentication Setup The DXMR90-X1 has three different areas that can be configured to require a login and password authentication. - Webserver/ Cloud Services Authentication - Mail Server Authentication - · DXM Configuration Authentication The webserver and mail server authentication depends upon the service provider. ### Setthe Controller to use Authentication The DXMR90-X1 can be configured to send login and password credentials for every HTTP packet sent to the webserver. This provides another layer of security for the webserver data. Configuration requires both the webserver and the DXMR90-X1 to be given the same credent as for the both and password In the webserver authentication username and password are not stored in the XML configuration file and must be stored in the DXMR90-X1 In - From within the DXM Configuration Software, go to the Settings > Cloud Services screen. - In the upper right, select Show advanced settings. - Define the username and password in the Web Server Authentication section of the screen. Web Server Authentication screen The first time you select Require Authentication, a pop-up box appears with additional instructions. Since the data is not stored in the XML configuration file, it is hidden from view of the DXM Configuration Software. Click on Send Authentication. The controller must be connected to the PC for this operation to succeed. The data transmits directly to the DXMR90-X1's non-volatile memory. If successful, a pop-up window appears, asking to reboot the device. Select Yes to reboot the device. ### Set the Web Services to Use Authentication - At the Banner Cloud Data Services website, go to Settings > Sites. - To edit the site settings, clickEdit on the line of the site name. Settings > Sites screen of the Banner CDS website At the bottom of the pop-up window is a checkbox to enable authentication/validation. Enter the same username and password as used in the DXM Configuration Software. The username and password do not need to be a defined user within the Banner Cloud Data Services website. # Controller Configuration Authentication The DXMR90-X1 can be programmed to allow changes to the configuration files only with proper authentication by setting up a password on the Settings > Administration screen in the DXM Configuration Software. With the DXMR90-X1 connected to the PC, click Get Device Status. The DXMR90-X1 status displays next to the button. Settings > Administration screen Use the DXM Configuration Software to: - · Set the Admin Password - Change the Admin Password - · Remove the Admin Password To change or remove an admin password, the current password must be supplied. The DXMR90-X1 must be connected to the PC to change the administration password. # Register Flow and Configuration The DXMR90-X1 register data flow goes through the Local Registers, which are data storage elements that reside within the processor. Using the configuration software, the controller can be programmed to move register data from the Local Register pool to remote devices or the I/O base. ### BasicApproachItoConfiguration When programming an application in the DXMR90-X1, first plan the overall data structure of the Local Registers. The Local Registers are the main storage elements in the DXMR90-X1. Everything goes into or out of the Local Registers. - In the DXM Configuration Software, name the Local Registers to provide the beginning structure of the application. - Configure the read/write rules to move the data. The Read/Write rules are simple rules that move data between devices (Nodes, Modbus servers, sensors, etc) and the Local Registers. - Most applications require the ability to manipulate the Local Register data, not just move data around. Use the Action rules to make decisions or transform the data after the data is in the Local Registers. Action rules can apply many different functions to the Local Register data, including conditional statements, math operations, copy operations, or trending. - 4. To perform scheduled events in Local Registers, go to the Scheduler screen in the DXM Configuration Software. These rules provide the ability to create register events by days of the week. The scheduler can also create events based on sunrise or sunset. # Troubleshooting a C on figuration View Local Registers using the Local Registers >
Local Registers in Use screen of the configuration software. When a configuration is running on the DXMR90-X1, viewing the Local Registers can help you to understand the application's operation. This utility can also access data from remote devices and the LED registers. ### Saving and Loading Configuration Files The DXM Configuration Software saves its configuration information in a XML file. Use the File menu to Save or Load configuration files. Save the configuration file before attempting to upload the configuration to the DXMR90-X1. The DXM Configuration Software uploads the configuration file saved on the PC to the DXMR90-X1; it will not send the configuration loaded in the tool. ### Upbading@rDownbading@onfgurationFiles The DXMR90-X1 requires a XML configuration file to become operational. To upload or download configuration files, connect a computer to the DXMR90-X1 using the Ethernet port. Then use the Upload Configuration to Device or Download Configuration from Device under the Device menu. # EtherNet/IP™ Configuration The DXMR90-X1 can be configured to send/receive local register data to and from an EtherNet/IP™⁽¹⁾ host. EDS (Electronic Data Sheet) files allow users of the EtherNet/IP protocol to easily add a Banner DXM device to the PLC. Download the EDS files from the Banner website. - DXM EDS Configuration File (for PLCs) (p/n b_4205242) - DXM EIP Config File for DXM Controller with Internal Gateway (Models: DXM1xx-BxR1, DXM1xx-BxR3, and DXM1xx-BxCxR1) (p/n 194730) ### Configuring the HostPLC On the host PLC, install the DXMR90-X1 using an EDS file or by using the following parameters: - Assembly1: Originator to DXM = Instance 112, 456 bytes (228 words) - Assembly2: DXM to Originator = Instance 100, 456 bytes (228 words) The Originator is the host PLC system, and the DXM is the DXMR90-X1. The host system sees the DXMR90-X1 as a generic device with the product name of Banner DXM (ProdType: 43 - Generic Device, ProdName: Banner DXM, Integer Type - INT). IMPORTANT: Do not set the Requested Packet Interval (RPI) any faster than 150 ms. ### Confguring@the@Controller@ Use the configuration software to define the Protocol conversion for each local register to be EIP Originator > DXM or EIP DXM > Originator from the Edit Register or Modify Multiple Register screens. Define a DXM local register as EIP Originator > DXM when the host PLC (Originator) will send data to the DXMR90-X1 local register (DXM). Define a DXM local register as EIP DXM > Originator when that register data will be sent from the DXMR90-X1 (DXM) to the host PLC (Originator). Data from an EIP controller in assembly instance 112 is data destined for the DXMR90-X1 local registers. The PLC is normally configured for INT or UINT data transfer. This allows for a seamless transfer of data. | EIP Assembly Instance 112 (16-bit) | | | DXM Local Registers | | |------------------------------------|------|-----|---------------------|------| | Adrs | Data | 1 2 | Adrs | Data | | 0 | 1122 | | 1 | 1122 | | 1 | 3344 | | 2 | 3344 | | 2 | 5566 | | 3 | 5566 | | 3 | 7788 | | 4 | 7788 | Continued on page 30 June 09, 2023 ⁽¹⁾ EttherNet/IP is a trademark of Rockwell Automation. Continued from page 29 | EIP Assembly Ins | tance 112 (16-bit) | DXM Loca | Registers | | |------------------|--------------------|----------|-----------|--| | 4 | 9900 | 5 | 9900 | | Data from the DXMR90-X1 local registers is sent to the EIP controller using assembly instance 100. Each local register in the DXMR90-X1 defined as EIP DXM > Originator is collected in numerical order and placed into the data buffer destined for assembly instance 100. DXM local registers are capable of 32-bits, but only the lower 2-bytes (16-bits) for each local register are transferred. | EIP Assembly Instance 100 (16-bit) | | | DXM Loca | al Registers | |------------------------------------|------|---------|----------|--------------| | Adrs | Data | 1 1 1 1 | Adrs | Data | | 0 | 1122 | | 11 | 1122 | | 1 | 3344 | | 12 | 3344 | | 2 | 5566 | | 13 | 5566 | | 3 | 7788 | | 14 | 7788 | | 4 | 9900 | | 15 | 9900 | # Set up the Email The DXMR90-X1 can be configured to send email messages based on threshold conditions. Ethernet-connected systems can only use email, but can send email to cellular phones as a SMS message depending upon the Inetwork icarrier IT of send iem a lito a Verizon iphone Juse The Iphone Inum ber Ifo Towed Iby@vtext.com Joriexam - ple_I1234567890@vtext.com J Fortin ore tin form atton , refer to the DXM (Configuration Software Instruction M anual (p,h (209933)). Follow these instructions and use the DXM Configuration Software to program the Controller forten at 1.1 - On the Settings > System screen, set the Device Time on the DXMR90-X1. - 2. On the Settings > Cloud Services screen, select Ethernet for the Push Interface. - Configure your Ethernet connection by setting the IP settings on the Ethernet screen. - Set the email and message parameters on the Notifications screen. - 5. To send alert messages, define the threshold rule to use email. ### MailServerAuthentication□ Complete the mail server settings to have the DXMR90-X1 send email alert messages. The SMTP password is stored in the DXMR90-X1, not the XML configuration file. Use the Settings > Notifications screen to complete this configuration. ### Mail server settings After selecting Enable SMTP Authentication for the first time, a pop-up box appears with additional instructions to complete the mail server authentication process. After entering the user name and password, click on Send SMTP Password to save the user name and password to the DXMR90-X1. The DXMR90-X1 must be connected to the PC to complete this operation. If successful, a pop-up window appears, asking to reboot the device. Select Yes to reboot the device. ### Define the Network Interface Settings On the Cloud Services screen, define the network connection settings by selecting HTTP Cloud Push to send data to Banner CDS or AWS IoT Core Push to send data to AWS IoT Core. If you don't require pushing data to a web server, set the Cloud Push interval to zero. # Configure Iyour Ethemet Connection To send email based on a threshold rule, first define the network and email servers. When selecting Ethernet, go to the Settings > Ethernet screen. To define the Ethernet IP address, give the DXMR90-X1 a static IP address. In most cases you may select the device to use DHCP and have the IP address automatically assigned. DNS settings are not typically required. The DXMR90-X1 uses a public service to resolve Domain names, but if the network connection does not have Internet access, the DNS settings may be required. ### Setthe EmailParameters From the Settings > Notifications screen, enter the SMTP definition, login, and password for a mail server. To send email, you must supply the SMTP Server, Server Port, and login credentials. The default SMTP port is 25 but may need to be adjusted for Ethernet-based networks. Note that many facilities block port 25. Port 587 is another common SMTP submission port. The SMTP password is not stored in the XML configuration file, but on the DXMR90-X1. After the password is entered, click on Send SMTP Password to send it to the DXMR90-X1. The password is stored in non-volatile memory, so reboot the DXMR90-X1 to recognize the new password. When using a GMail server, select Situational encryption and Enable SMTP authentication. GMail may notify you that you must allow access for less secure apps in your email settings. For other email servers, the parameters may vary and will require information from the provider. ### Email settings At the bottom of the screen, define the recipient to receive emails. These recipients selected in the threshold definition for sending alert messages. ### Define Threshold Rules for Email To define a threshold, go to Local Registers > Action Rules > Thresholds. Depending upon which recipients are defined, select the appropriate email or SMS checkbox for the threshold rule (under Email/SMS on state transition). When the threshold rules goes active or inactive, an email is generated. For more information on how to set up threshold rules, refer to the DXM Configuration Software Instruction Manual (p/ n 209933). # **Push Retries** Ethernet—The DXMR90-X1 can be configured to send register data packets to a webserver. When the Ethernet communications path is not operating, the DXMR90-X1 retries the send procedure. With an Ethernet-based network connection, the DXMR90-X1 retries a message five times. The five retry attempts immediately follow each other. After all attempts are exhausted, the register data packet is lost. At the next scheduled time, the DXMR90-X1 attempts to send only the new data. Any past data that the DXMR90 was unable to push is lost and cannot be recovered. Using SSL on Ethernet will have no retries. Event/Action—Event-based pushes caused by Action rules sent using email follow the same process when failures occur, based on the network connection. Email—There are no retries for emails that fail to be sent from the DXMR90-X1. # Blank page #### Chapter Contents | General Station Description Markup Language File | 35 | |---|----| | DXM PROFINET IO Data Model | 35 | | Configure the DXM Controller for a PROFINET IO Connection | 35 | | Slots and Modules for DXM PROFINET | 36 | | Configuration Instructions | 12 | # Chapter 6 PROFINET® PROFINET is a data communications protocol for industrial automation and processes. PROFINET IO defines how controllers (IO controllers) and peripheral devices (IO devices) exchange data in real-time. PROFINET® is a registered trademark of PROFIBUS Nutzerorganisation e.V. and the standard is maintained by PROFIBUS & PROFINET International (PI), an organization headquartered in Karlsruhe, Germany. Only the DXMR90, DXM700, DXM1000, and DXM1200 Controller models support PROFINET IO. # General'S tation Description Markup Language File A
PROFINET General Station Description (GSD) file is a description of an IO device provided by the device manufacturer in an XML format (GSDML.xml). The GSD file is a standardized way of describing the device information to engineering tools and the IO controller and can work across a variety of tools as a standard set of device information. ## DXM PROFINET DD Data Mode 1 The PROFINET IO data model is based on the typical, expandable field device that has a backplane with slots. Modules have different functionalities. Modules are plugged into slots. In the PROFINET IO data model, Slot 0, Subslot 1 is reserved for the Device Access Point (DAP) or network interface. # Configure the DXM Controller for a PROFINET ID Connection To use PROFINET, follow these instructions. - Using the DXM Configuration Software, go to the Settings > Ethernet screen. - Select Enable PROFINET. - Save the configuration file and upload it to the DXM Controller (see "Save and Upload the Configuration File" on page 16). After PROFINET is enabled, the IP address for the DXM Controller is controlled by the PROFINET host. The PROFINET data type and data size to/from the DXM Controller is configurable. The PROFINET data is processed from the LocalR egister of the DXM | Controller | Configure the IO-Link ports in the XML according to the modules selected for each port. # Save and Upload the Configuration File After making any changes to the configuration, you must save the configuration files to your computer, then upload it to the device. Changes to the XML file are not automatically saved. Save your configuration file before exiting the tool and before sending the XML Liftle to the idevice to tavo it libs ingidata . If you is elect DXM > Send XML Configuration to DXM (before is aving the iconfiguration file, the iso fix are in ill prompty out to it be the een is aving the liftle for icon thuring in thout saving the liftle. - Save the XML configuration file to your hard drive by going to the File > Save As menu. - Go to the DXM > Send XML Configuration to DXM menu. #### Status indicator bar | Connected 192.168.0.1 | VibelQ_DXR90_V2.xml | Application Status | | |-----------------------|---------------------|--------------------|--| | Connected 192,166,0.1 | VibelQ_DXR90_V2.emi | Application Status | | | Not Connected | VibelQ_DXR90_V2.xml | Application Status | | - * If the Application Status indicator is red, close and restart the DXM Configuration Tool, unplug and re-plug in the cable and reconnect the DXM to the software. - * If the Application Status indicator is green, the file upload is complete. - * If the Application Status indicator is gray and the green status bar is in motion, the file transfer is in progress. After the file transfer is complete, the device reboots and begins running the new configuration. # Slotsland Modules for DXM PROFINET There are ten slots to accommodate the DXM Controller data. Slots for input and output values | Values | Maximum Data Size | | |---------------|-------------------|--| | input values | 1440 bytes | | | Output values | 1440 bytes | | #### Slot 1 - Input (DXM --> PLC) | Module ID | Submodule ID | Module | Size (bytes) | Register Start | Register End | Direction | |-----------|-----------------------------------|--------|--------------|----------------|--------------|-----------| | | 0x01 Banner IO-Link 9 Master Info | 9 | | 1 | 3 | | | 0x44 | | | 9 | 6 | 6 | Input | | | | | | 123 | 123 | | It is important to note that the module placed in slot 2 corresponds to Port 1; the module placed in slot 3 corresponds to Port 2; the module placed in slot 4 corresponds to port 3. etc. For the DXMR90-4K IO-Link Master device, slots 6 through 9 are unused. If the IO-Link In/Out process data modules (all except digital input and output) are used, the attached IO-Link device must have PDI and PDO size less than or equal to the number of data bytes allowed in the module. Data transfers will not be applied otherwise. For example, plugging in the 16/16 byte module to a slot corresponding to a device that has 22 bytes of PDO results in an error. Process data sent from the PLC to DXM will not be applied. Slots 2-9 (1 per IO-link port) | Module ID | Submodule ID | Module | Size
(bytes) | Register Start | Register End | Direction | | |-----------|--|--------------------------------------|---------------------------------|----------------|--------------|---------------|-----------| | | | | | 36 | x001 | x017 | | | 0.45 | 0.001 | IO Link In Page 23123 Bleen L France | 36 | x506 | x507 | Bidirectional | | | 0x45 | 45 0x01 IO-Link In/Out 32/32 Byte + Status | 0x01 IO-Link M/Ou | 10-Link (1100) 3232 Byte + 3403 | 46 | x051 | x067 | Bonediora | | | | | 46 | x851 | x859 | | | | | | | 20 | x001 | x009 | | | | 0.45 | | | 20 | x506 | x507 | B. d | | | 0x46 | 0x01 | IO-Link M/Out 16/16 Byte + Status | 10 | x051 | x059 | Bidirectional | | | | | | 30 | x851 | x859 | | | | 0x47 | 0x01 | IO-Link In/Out 8/8 Byte + Status | 12 | x001 | x005 | Bidirectional | | #### Continued from page 36 | Module ID | Submodule ID | Module | Size
(bytes) | Register Start | Register End | Direction | |-----------|---|----------------------------------|-----------------|----------------|---------------|-----------------| | | | | | x506 | x507 | | | | | | 22 | x051 | x055 | | | | | | | x851 | x859 | | | | | | 8 | x001 | x003 | | | 7x48 | 0x01 | IO-Link In/Out 4/4 Byte + Status | | x506 | x507 | Bidirection at | | A40 | 0.01 | 10-Eink Mook 414 Byte + Statos | 18 | x051 | x053 | Bonediona | | | | | 200 | x851 | x859 | | | | | | 6 | x001 | x002 | | | 0x49 | 9 0x01 IO-Link In/Out 2/2 Byte + Status | IO-Link In/Out 2/2 Byte + Status | 3 | x506 | x507 | | | rv+3 | | | x051 | x052 | Bidirectional | | | | | | 16 | x851 | x859 | | | | 0x01 | IO-Link In/Out 1/1 Byte + Status | 5 | x001 | x002 | Budinergrightal | | 2x4A | | | | x506 | x507 | | | area. | | | 15 | x051 | x052 | Bonediona | | | | | 15 | x851 | x859 | | | | | | | x051 | x051 | | | 0x48 | 0x01 | B | _ | x851 | x851 | Ουτρυτ Module | | M+B | OXOL | Digital Output | 5 | x853 | x853 | | | | | | | x858 | x858 | | | | | | 2 | x001 | x001 | | | | | | | x051 | x051 | | | 0x4C | 0x01 | Digital Input | 4 | x851 | x851 | Bidirectional | | | | | 4 | x853 | x853 | | | | | | | x858 | x859 | | #### Slot 10 (ISDU) | Module ID | Submodule ID | Module | Size (bytes) | Register Start | Register End | Direction | | |-----------|--------------|-------------------------|--------------|----------------|--------------|-----------------|--| | 0x4D | 0x01 | ICDII 100 Pute + Ctatus | | 351 | 442 | | | | 0X4D | OXUT | ISDU 190 Byte + Status | 196 | 200 | 291 | Bid irection al | | | 0x4E | 0.04 | IF DIL 90 Bigg i France | 86 | 351 | 396 | bidirectional | | | UX4E | 0x01 ISD | ISDU 80 Byte + Status | 86 | 200 | 245 | | | | Example Configuration | | | | | | |-----------------------|------------------------------------|--|--|--|--| | Slot | Module | Description | | | | | Slot 1 | Banner IO-Link Master Info | Vendor ID, Device ID, Number of Supported Channels, and Firmware Version informa-
tion | | | | | Slot 2 | IO-Link In/Out 32/32 Byte + Status | Get/send IO-Link PDI/PDO for IO-Link device on Port 1 with PD Size between 17 and 32 bytes | | | | | Slot 3 | IO-Link In/Out 16/16 Byte + Status | Get/send IO-Link PDI/PDO for IO-Link device on Port 2 with PD Size between 9 and 16 bytes | | | | | Slot 4 | IO-Link In/Out 2/2 Byte + Status | Get/send IO-Link PDI/PDO for IO-Link device on Port 3 with PD Size between 1 and 2 bytes | | | | Continued on page 38 Continued from page 37 | Example Configuration | | | | | | |--------------------------------|----------------|--|--|--|--| | Slot | Module | Description | | | | | Slot 5 | Digital Output | Use SIO Output mode on Port 4 | | | | | Slot 10 ISDU 190 Byte + Status | | ISDU read/write access for all ports in IO-Link mode | | | | # Configuration Instructions I #### Install the GSD File Although these instructions are specific for the Siemens TIA Portal (v14) software, you may use these instructions as a basis for installing the GSD file into another controller. - Download the GSD file from www.bannerengineering.com. - 2. Launch the Siemens TIA Portal (v14) software. - 3. Click Open existing project. - Select a project and open it. - 5. After the project is uploaded, click Devices & networks. Devices and networks screen Click Configure networks. #### Configure networks screen - Click Options and select Manage general station description file (GSD). The Install general station description file window opens. - Click the More options (...) icon to the right of the Source path field and browse to the location the DXM GSD file was downloaded to. - 9. Select the DXM GSD file. - Click Install. #### Hardware catalog The system installs the DXM GSD file and places it in the Hardware catalog. In the example, the DXM GSD file is located under Other field devices > PROFINET IO > Banner Engineering Corp. > Banner. #### If the ID XM IG SD life idoes in o trins to Tiproperly, is ave it he i logiand icontact Banner Engineering IC orp. I #### C hange the D evice IP A ddress Follow these instructions to change the IP address of the DXM device using the Siemens TIA Portal (v14) software. Use these instructions as a basis if you are using another controller (PLC). - Launch the Siemens TIA Portal (v14) software. - Click Open existing project. - Select a project and open it. - Click Devices & networks. The Network view displays. - Double-click on the DXM icon to open the Device view screen. - Click on the DXM icon in the graphic area of the Device view screen.The Module properties window displays and the module can now be configured. - Click Properties. - Click General. - Select PROFINET
Interface > Ethernet addresses. - Select Set IP address in the project. - Enter the IP address. - 12. Right-click on the device icon and select Online & diagnostics. The Online & diagnostics windows displays. - 13. Select Assign IP address under Functions. - 14. Click Accessible devices. The Select device window searches the network for available devices. - 15. Determine the device to be adjusted via the MAC address and select it. - 16. Click Apply. The IP address for the device is updated. Click Assign IP address to complete the step. This step is completed for every device. #### Byide fault, each DXM [shipped] from [the factory it lass igned [the IP laddress I 192 168 0 1]. Immediately after the PROFINET protocol is enabled, the DXM has an IP address of 0.0.0.0. We recommend using the TIA Portal to give the DXM an IP address so that the address is saved in the unit. When the PLC powers up, this IP address is accessible. The IPLC can change the IP address fittis configured to Ido so. If the PLC assigns the DXM IP address (for example, using the Set IP address in the project option in Siemens TIA Portal), the DXM receives the specified address, but only after the program has been loaded into the PLC and is running. If the DXM is restarted after it was discovered and configured by the PLC, the DXM retains the IP address that was assigned to it using the ILCD for software funtilafter the IPLC idiscovers the IDXM reverts to the reddensing the IPLC idiscovers the IDXM reverts to the reddensity because the IPLC idiscovers the IDXM reverts to the reddensity because the IPLC idiscovers the IDXM reverts to the reddensity because the IPLC idiscovers the IDXM reverts to the reddensity because the IPLC idiscovers the IDXM reverts to the IDXM reverts to the IDXM reverts These configuration options conform to the PROFINET standard... ### Change The Device Name Follow these instructions to change the name of the DXM using the Siemens TIA Portal (v14) software. Use these instructions as a basis if you are using another controller (PLC). - Open a project and click on Devices & networks. The Network view displays. - Right-click on the DXM icon and select Assign device name.The Assign PROFINET device name window displays. The software searches for devices of the same type. - Enter the desired name in the PROFINET device name field. Note that each name can be used only once. - 4. Click Assign name. The device now has a PROFINET name. #### Chapter Contents # Chapter 7 Accessories for the DXM R 90-X1 #### Power Supplies PSD-24-4—DC Power Supply, Desktop style, 3.9 A, 24 V DC, Class 2, 4-pin M12/Euro-style quick disconnect (QD) PSDINP-24-06—DC power supply, 0.63 Amps, 24 V DC, with DIN Rail Mount, Class I Division 2 (Groups A, B, C, D) Rated PSDINP-24-13 —DC power supply, 1.3 Amps, 24 V DC, with DIN Rail Mount, Class I Division 2 (Groups A, B, C, D) Rated PSDINP-24-25 — DC power supply, 2.5 Amps, 24 V DC, with DIN Rail Mount, Class I Division 2 (Groups A, B, C, D) Rated PSW-24-1—DC power supply with multi-blade wall plug, 100–240 V AC 50/60 Hz input, 24 V DC 1 A output, UL Listed Class 2, 4-pin female M12 connector PSWB-24-1—DC power supply with multi-blade wall plug,100–240 V AC 50/60 Hz input, 24 V DC 1 A output, UL Listed Class 2, barrel jack connector #### SMBR90S - Stawless steel bracket - 4x M4-07 ρεππυτς (B) - Indudes 2x M4 stainless steel hex head screws and flat washers Hole center spacing: A = 40, B = 20 Hole size: A = Ø S | 4-Pin Thireaded M12 RS-485 to USB Adapter Cordset, with Wall Plug | | | | | | |---|----------------|----------|------------|--|--| | Model | Length | Style | Dimensions | Pinout (Female) | | | BWA-UCT-900 | 1 ⁄n (3.28 ft) | 5t/aight | 000 | 2 - 4
1 - Brown
2 = White
3 = Blue
4 = Black | | | 4-Pin Threaded M12 Condisets—Double Ended | | | | | | |---|-----------------|--|---|------------------------------------|--| | Model | Length | Style | Dimensions | Pidout | | | MQDEC-40155 | 0.31~m~(1~tt) | | <u></u> | | | | MQDEC-403SS | 0.91 m (2.99 t) | | (185) | | | | MQDEC-406SS | 1.83 σι (6 π) | | MEXT | | | | MQDEC-41255 | 3.66 m (12 t) | Male Straight / Fe- | a 14.5 [0.57"] | | | | MQDEC-42055 | 6.10 m (20 t) | male Straight | [173] | | | | MQDEC-43055 | 9.14 m (30.2 t) | | | Fe⁄nale | | | MQDEC-45055 | 15.2 m (49.9 t) | | M12x1 J
ø14.5[0.57] | 1 2 3 3 | | | MQDEC-403RS | 0.91 m (2.99 t) | | KTJ | | | | MQDEC-406RS | 1.83 π (6 π) | | - MIN -1 - III III | Male 2 4 | | | MQDEC-412RS | 3.66 m (12 t) | | | | | | MQDEC-420R5 | 6.10 m (20 t) | Male Right-Angle /
Female Straight | | | | | MQDEC-430RS | 9.14 m (30.2 t) | | | | | | MQDEC-450RS | 15.2 m (49.9 t) | | r a | 1 = B/ow/
2 = White
3 = Blue | | | MQDEC-403RR | 0.9 m (2.9 ft) | | • 1.20' - • | 4 = Black | | | MQDEC-406RR | 1.8 σι (5.9 π) | | TIE III | | | | MQDEC-412RR | 3.6 π (11.8 π) | Male Right-Angle /
Female Right-An- | (Lif) | | | | MQDEC-420RR | 6.1 எ (20 忧) | gle | MEX 1
M5 [0.5"] 31 Typ. | | | | S-Pin Threaded M12 Cordsets—Single Ended | | | | | | |--|-----------------|--------------|---|---|--| | Model | Length | Style | Dimensions | Pirrout (Female) | | | MQDC1-501.5 | 0.5 m (1.5 ft) | | | | | | MQDC1-503 | 0.9 m (2.9 ft) | | 44 yp | | | | MQDC1-506 | 2 m (6.5 ft) | | | | | | MQDC1-515 | 5 m (16.4 ft) | Straight | | | | | MQDC1-530 | 9 m (29.5 ft) | | M12 x 1—
ø 14.5— | 2 | | | MQDC1-560 | 18 m (59 t) | | 2 1.13 | 1 = B/ow/
2 = White
3 = Blue
4 = Black
5 = G/ay | | | MQDC1-5100 | 31 m (101.7 ft) | | | | | | MQDC1-506RA | 2 m (6.5 ft) | | , ∜ Typ | | | | MQDC1-515RA | 5 m (16.4 ft) | | | | | | MQDC1-530RA | 9 m (29.5 ft) | | | | | | MQDC1-560RA | 19 m (62.3 t) | Right-Arigle | M12 x 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 | | | | 4-pin M12 D-code to RJ45 Shielded Ethernet | | | | | | |--|----------------|-----------|----------------------------------|--|--| | Mod el | Length | 5tyle | Dimensions | Piriout (Male) | | | STP-M12D-406 | 183 m (6 t) | | | _ | | | STP-M12D-415 | 4.57 m (15 ft) | | | | | | STP-M12D-430 | 9.14 m (30 ft) | St/a) ght | 47.4 Typ M12 x 1.0 - 6g Ø 14.5 | 1 = White/Orange 2 = Orange 3 = White/Blue 6 = Blue 2 | | # Blank page #### Chapter Contents | Specifications for the DXMR90-X1 | 47 | |---|----| | File System and Archive Process | 48 | | Update Your DXM Processor Firmware Using the Configuration Software | 48 | | DXM Support Policy | 49 | | Warnings | 50 | # Chapter 8 Product Support and Maintenance # Specifications for the DXMR90-X1 Supply Voltage 12 V DC to 30 V DC Supply Protection Circuitry Protected against reverse polarity and transient voltages Power Consumption 120 mA maximum at 12 V DC Construction Connector Body: PVC translucent black Indicators Amber: Power port 0 Amber: Modbus communications port 0-4 Green/amber: Ethernet communications Red/amber/green: User-configurable LE Ds Connections Five integral 5-pin M12 female quick disconnect One integral 4-pin M12 male quick disconnect One integral 5-pin M12 female D-Code quick disconnect Application Note When connecting external devices through the DXMR90-X1, it is important not to exceed maximum current limitations of 3.5 Amps #### Certifications Banner Engineering BV Park Lane, Culliganlaan 2F bus 3 1831 Diegem, BELGIUM Required Overcurrent Protection WARNING: Electrical connections must be made by qualified personnel in accordance with local and national electrical codes and regulations. Overcurrent protection is required to be provided by end product application per the supplied table. Overcurrent protection may be provided with external fusing or via Current Limiting, Class 2 Power Supply. Communication Hardware (RS-485) Interface: 2-wire half-duplex RS-485 Baud rates: 1.2K, 2.4K, 9.6k, 19.2k (default), 38.4k, 57.6K, or 115.2K Data format: 8 data bits, no parity, 1 stop bit Communication Protocols Modbus® RTU, Modbus/TCP, EtherNet/IP™, and PROFINET® EtherNet/IP™ is a trademark of ODVA, Inc. Modbus® is a reg- istered trademark of Schneider Electric USA, Inc. PROFINET® is a registered trademark of PROFIBUS Nutzerorganisation e.V. Security Protocols TLS, SSL, HTTPS Environmental Ratings For Indoor Use Only IP65, IP67, NEMA 1, UL Type 1 Vibration and Mechanical Shock Meets IEC 60068-2-6 requirements (Vibration: 10 Hz to 55 Hz, 1.0 mm amplitude, 5 minutes sweep, 30 minutes dwell) Meets IEC 60068-2-27 requirements (Shock: 30G 11 ms duration, half sine wave) Operating Conditions -40 °C to +70 °C (-40 °F to +158 °F) 90% at +70 °C maximum relative humidity (non-condensing) Storage Temperature -40 °C to +80 °C (-40 °F to +176 °F) Turck Benner LTD Blenneim House Blenheim Court Wickford, Fescox SS11 8YT GREAT BRITAIN (CE/UKCA approval only applies to 2.4 GHz models) Supply wiring leads < 24 AWG shall not be spliced. For additional product support, go to www.bannerengineering.com. | Supply
Wiring
(AWG) | Required Overcurrent
Protection (A) | Supply
Wiring
(AWG) | Required Overcurrent
Protection (A) | |---------------------------|--|---------------------------|--| | 20 | 5.0 | 26 | 1.0 | | 22 | 3.0 | 28 | 0.8 | Continued on page 48 | Continued from | page 47 | |----------------|---------| |----------------|---------| | Supply
Wiring
(AWG) | Required Overcurrent
Protection (A) | Supply
Wiring
(AWG) | Required Overcurrent
Protection (A) | |---------------------------
--|---------------------------|--| | 24 | 1.0 | 30 | 0.5 | #### FCC Part15 C bssA This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense. #### Industry IC anada IS tatem entifor Intentional Radia tors This device contains licence-exempt transmitters(s)/receiver(s) that comply with Innovation, Science and Economic Development Canada's licence-exempt RSS(s). Operation is subject to the following two conditions: - This device may not cause interference. - 2. This device must accept any interference, including interference that may cause undesired operation of the device. Cet appareil contient des émetteurs/récepteurs exemptés de licence conformes à la norme Innovation, Sciences, et Développement économique Canada. L'exploitation est autorisée aux deux conditions suivantes: - L'appareil ne doit pas produire de brouillage. - L'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement. # File System Cand Archive Process The DXM file system is in a serial EEPROM that stores non-volatile configuration information. The serial EEPROM stores basic data that is required to be non-volatile, including network configuration data, IP address, MAC address, network masks, firewall settings, and authentication information. The controller XML configuration file created by the DXM Configuration Software is stored in EEPROM. The small section of non-volatile local registers is also stored in EEPROM. # Update YourDXM ProcessorFimware Using the Configuration Software To update your processor firmware using the DXM Configuration Software, follow these instructions. - Using the DXM Configuration Software version 4 or later, connect to the DXMR90-X1 via Ethernet. File loads to the DXMR90-X1 will take several minutes. - On the DXM Configuration Software, go to Tools > Reprogram > Get Device Information to verify the current firmware version. You must load a different version with the same firmware number for the bootloader to operate. Download firmware files from the Banner website. Example Device Information screen; every device's information will be different Under Tools > Reprogram, click Upload bootloader file to select the firmware file to program. A fler@he@file@bad@is@com pleted ,@reboot@he@device@by@selecting@DXM > Reboot DXM . I Tolverify the firm ware that been updated go to Tools > Reprogram > Get Device Information and verify the new iversions are listed. # DXM SupportPolicy The DXM Wireless Controllers are industrial wireless controllers that facilitate Industrial Internet of Things (IIoT) applications. As a communications gateway, it interfaces local serial ports, local I/O ports, and local ISM radio devices to the Internet using either a cellular connection or a wired Ethernet network connection. In a continuing effort to provide the best operation for the DXM, stay connected with Banner Engineering Corp to hear about the latest updates through the Banner website. Create a login today to stay informed of all Banner product releases. #### Fim ware Dpdates□ The DXM has been designed to be a robust and secure IOT device. To provide the most reliable and secure device possible, periodic firmware updates are released to enhance and expand the capabilities of the DXM. Firmware updates and description details are found on the Banner website. Customers with critical update requirements will get access to pre-released firmware from the factory. #### Webs†de⊡Information□ The Banner website is the main method of disseminating DXM information to customers. The data found on the website include: - DXM instruction manuals - Configuration manuals - Firmware downloads - · Firmware release notes - · Errata data, any known issues with a release of firmware - · Possible work-around solutions for known issues - · DXM Solutions Guides #### Feature IR equests Our customer is our most valuable resource to improve our DXM. If you have suggestions for improvements to the DXM or configuration tools, please contact Banner Engineering Corp. #### PotentialDXM [Issues] Potential issues with the DXM are collected from Banner's support engineers to provide solutions. Users can get help from the website documentation or by calling Banner Engineering for support help. Solutions are as simple as configuration adjustments, work-around configuration solutions, or potential new firmware updates. ## DXM Security 1 The DXM was designed to collect local wireless sensor data, local sensor data, provide simple control, and send the data to the cloud. The DXM does not run a Linux or Windows based operating system but an embedded real-time operating system (RTOS) environment. As a proprietary operating system, the security aspects are easier to manage and minimize. Security updates are released through the Banner Engineering Corp website (www.bannerengineering.com) and New Product Release Announcements (NPRA). # Warnings #### WARNING: - · Do not use this device for personnel protection - Using this device for personnel protection could result in serious injury or death. - This device does not include the self-checking redundant circuitry necessary to allow its use in personnel safety applications. A device failure or malfunction can cause either an energized (on) or de-energized (off) output condition. IMPORTANT: Please download the complete DXMR90-X1 Series Controller technical documentation, available in multiple languages, from www.bannerengineering.com for details on the proper use, applications, Warnings, and installation instructions of this device. IMPORTANT: Por favor descargue desde www.bannerengineering.com toda la documentación técnica de los DXMR90-X1 Series Controller, disponibles en múltiples idiomas, para detalles del uso adecuado, aplicaciones, advertencias, y las instrucciones de instalación de estos dispositivos. IMPORTANT: Veuillez télécharger la documentation technique complète des DXMR90-X1 Series Controller sur notre site www.bannerengineering.com pour les détails sur leur utilisation correcte, les applications, les notes de sécurité et les instructions de montage. Install and properly ground a qualified surge suppressor when installing a remote antenna system. Remote antenna configurations installed without surge suppressors invalidate the manufacturer's warranty. Keep the ground wire as short as possible and make all ground connections to a single-point ground system to ensure no ground loops are created. No surge suppressor can absorb all lightning strikes; do not touch the Sure Cross® device or any equipment connected to the Sure Cross device during a thunderstorm. Exporting Sure Cross® Radios. It is our intent to fully comply with all national and regional regulations regarding radio frequency emissions. Customers who want to re-export this product to a country other than that to which it was sold must ensure the device is approved in the destination country. The Sure Cross wireless products were certified for use in these countries using the antenna that ships with the product. When using other antennas, verify you are not exceeding the transmit power levels allowed by local governing agencies. This device has been designed to operate with the antennas listed on Banner Engineering's website and having a maximum gain of 9 dBm. Antennas not included in this list or having a gain greater than 9 dBm are strictly prohibited for use with this device. The required antenna impedance is 50 ohms. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen such that the equivalent isotropically radiated power (EIRP) is not more than that permitted for successful communication. Consult with Banner Engineering Corp. if the destination country is not on this list. #### IMPORTANT: - Never operate a 1 Watt radio without connecting an antenna - Operating 1 Watt radios without an antenna connected will damage the radio circuitry. - To avoid damaging the radio circuitry, never apply power to a Sure Cross® Performance or Sure Cross MultiHop (1 Watt) radio without an antenna connected. #### IMPORTANT: - Electrostatic discharge (ESD) sensitive device - ESD can damage the device. Damage from inappropriate handling is not covered by warranty. - Use proper handling procedures to prevent ESD damage. Proper handling procedures include leaving devices in their anti-static packaging until ready for use; wearing anti-static wrist straps; and assembling units on a grounded, static-dissipative surface. #### Banner Engineering Corp Lin ited W arranty Banner Engineering Corp. warrants its products to be free from defects in material and workmanship for one year following the date of shipment. Banner Engineering Corp. will repair or replace, free of charge, any product of its manufacture which, at the time it is returned to the factory, is found to have been defective during the warranty period. This warranty does not cover damage or liability for misuse, abuse, or the improper application or installation of the Banner product. THIS LIMITED WARRANTY IS EXCLUSIVE AND IN LIEU OF ALL OTHER WARRANTIES WHETHER EXPRESS OR IM-PLIED (INCLUDING, WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICU-LAR PURPOSE), AND WHETHER ARISING UNDER COURSE OF
PERFORMANCE, COURSE OF DEALING OR TRADE USAGE. This Warranty is exclusive and limited to repair or, at the discretion of Banner Engineering Corp., replacement. IN NO EVENT SHALL BANNER ENGINEERING CORP. BE LIABLE TO BUYER OR ANY OTHER PERSON OR ENTITY FOR ANY EXTRA COSTS, EXPENSES, LOSS OF PROFITS, OR ANY INCIDENTAL, CONSEQUENTIAL OR SPECIAL DAMAGES RESULTING FROM ANY PRODUCT DEFECT OR FROM THE USE OR INABILITY TO USE THE PRODUCT, WHETHER ARISING IN CONTRACT OR WARRANTY, STATUTE, TORT, STRICT LIABILITY, NEGLIGENCE, OR OTHER-WISE. Banner Engineering Corp. reserves the right to change, modify or improve the design of the product without assuming any obligations or liabilities relating to any product previously manufactured by Banner Engineering Corp. Any misuse, abuse, or improper application or installation of this product or use of the product for personal protection applications when the product is identified as not intended for such purposes will void the product warranty. Any modifications to this product without prior express approval by Banner Engineering Corp will void the product warranties. All specifications published in this document are subject to change; Banner reserves the right to modify product specifications or update documentation at any time. Specifications and product information in English supersede that which is provided in any other language. For the most recent version of any documentation, refer to: www.bannerengineering.com. For patent information, see www.bannerengineering.com/patents. #### Contact Us Banner Engineering Corp. headquarters is located at: 9714 Tenth Avenue North | Minneapolis, MN 55441, USA | Phone: + 1 888 373 6767 For worldwide locations and local representatives, visit www.bannerengineering.com. #### Document Information Document title: Sure Cross® DXMR90-X1 Series Controller Instruction Manual Part number: 225859 Revision: C Original Instructions © Banner Engineering Corp. All rights reserved.