-’

SILICON LABS

AN1134: Dynamic Multiprotocol

Development with Bluetooth® and
Proprietary Protocols on RAIL in
GSDK v2.x

This application note provides details on how to develop a multi-

protocol application running Bluetooth and a proprietary protocol KEY POINTS

at the same time. First the criteria for the coexistence of Blue- . Generic auidelines for brotocol
guiaelines T1or protoco

tooth and a proprietary protocol are discussed. Then the applica- coexistence

tion note guides you through how to create a new DMP applica- * Generating and configuring a new

tion, how to configure Bluetooth and your proprietary protocol, | zf:;?nczh;:f;l:izg?:pfi:t’f;tpackets

and how to transmit and receive proprietary packets while Blue- | . ;.0 RaiL priorities

tooth is running. Finally the Light/Switch DMP example demon- - Building and understanding the Light/

strated in QSG155: Using the Silicon Labs Dynamic Multiprotocol Switch DMP example

Demonstration Applications is introduced in more details. For

background on Dynamic Multiprotocol Application development in

general and about Bluetooth task priorities and scheduling, see

UG305: Dynamic Multiprotocol User’s Guide.

silabs.com | Building a more connected world.

AN1134: Dynamic Multiprotocol Development with Bluetooth® and Proprietary Protocols on RAIL in GSDK v2.x
Introduction

1. Introduction

UG305: Dynamic Multiprotocol User’s Guide provides information about the Dynamic Multiprotocol solution, where two protocols are
running on the same device in parallel, and includes general background as well as information on Bluetooth task priorities and sched-
uling. This application note introduces the Bluetooth / Proprietary multiprotocol solution. It assumes that the reader is familiar with the
principles of Dynamic Multiprotocol and with all the terms related to it.

1.1 Requirements

To be able to use all the features discussed in this document, you will need the followings installed on your computer:
* Bluetooth SDK version 2.9.0 or higher
* Micrium OS-5 kernel

To be able to run the Light/Switch example, you will need the following installed on your computer:

» Bluetooth SDK version 2.7.0 or higher

* Flex SDK version 2.1 or higher

* Micrium OS-5 kernel

* An EFR32 chip with at least 512 kB of flash (required to run all the necessary software components)

* IAR Embedded Workbench for ARM (IAR-EWARM) (required for the RAIL Switch application). See the release notes for the Blue-
tooth SDK for the required IAR-EWARM version.

silabs.com | Building a more connected world. Rev.0.3 | 2

AN1134: Dynamic Multiprotocol Development with Bluetooth® and Proprietary Protocols on RAIL in GSDK v2.x
Guidelines for Bluetooth and Proprietary Coexistence

2.

Guidelines for Bluetooth and Proprietary Coexistence

When you start implementing a Bluetooth / Proprietary DMP application the first thing to consider is if your proprietary protocol is com-
patible with Bluetooth. Here are some guidelines that you should always take into account:

Bluetooth is deterministic. The huge advantage of the Bluetooth protocol in a DMP scenario is that it does not send and receive
packets at random times, but at predefined time instances — always at the start of a connection interval. This means, among other
things, that Bluetooth does not need a background receive, and your proprietary protocol can receive in the background, of
course with some interruptions.

Bluetooth needs accuracy. The consequence of predefined time instances is that Bluetooth packets cannot be late — their timing
needs 500 ppm accuracy. If you delay a Bluetooth packet, it will not be received on the other side. So in case of collision with a
proprietary packet, either the proprietary packet has to be delayed, or one of the packets has to be dropped.

Bluetooth connection is active. Once a Bluetooth connection is established, the connection is kept alive by sending and receiving
at least an empty packet every connection interval. Consequently your proprietary protocol need to be prepared to be interrupted
every connection interval. You can, however, set the connection interval to a long period if you do not need low Bluetooth latency.
You can also use the slave latency parameter to make Bluetooth communication less frequent on the slave side.

Bluetooth uses short packets. If there is no data to be sent, the Bluetooth connection is kept alive by empty packets. An empty
packet takes 80.us to be sent out on 1 meg PHY, and 40 ps on 2 meg PHY. Empty packets sending + inter frame space + empty
packet receiving takes 80 + 150 + 80 = 310 ps or 40 + 150 + 40 = 230 us. This is the usual time needed by Bluetooth in every
connection interval. The largest Bluetooth packet has 257 byte payload which takes 2120 ys to be sent on 1 meg PHY and 1060 us
on 2 meg PHY. Along with receiving an empty response packet this takes 2120 + 150 + 80 = 2350 us on 1 meg PHY and 1060 +
150 + 40 = 1250 us on 2 meg PHY.

Bluetooth uses packet chains. If the data to be sent does not fit into one packet, Bluetooth communication can be extended within
a connection interval, that is you can expect that more than one packet is sent and received in an interval, but this is rare.

Bluetooth is robust. If a Bluetooth packet cannot be sent, then it will be retransmitted in the next connection interval. If a Blue-
tooth packet is received with a CRC error, it is always signaled by the other side by not sending a response packet. Again, the
packet will be retransmitted in the next connection interval. The only limit is the supervision timeout. If there is no successful trans-
mission within the supervision timeout, then the connection is dropped. In other words, Bluetooth communication can be subdued
by higher priority radio tasks for a time interval shorter that the supervision timeout.

Summary: When implementing your DMP protocol, you have to take into account that Bluetooth will need the radio every connection
interval for a short time (230 pys — 2350 ps). Bluetooth needs accurate timing, so Bluetooth packets cannot be delayed. The Bluetooth
packets can interrupt both your packet sending and packet receiving, hence the proprietary protocol should implement acknowledge-
ment and retransmission mechanisms, or a deterministic timing that is interleaved with the Bluetooth communication. Bluetooth commu-
nication can be subdued by a higher priority radio task for a time interval shorter than the supervision timeout.

silabs.com | Building a more connected world. Rev.0.3 | 3

AN1134: Dynamic Multiprotocol Development with Bluetooth® and Proprietary Protocols on RAIL in GSDK v2.x
Software Architecture of a Bluetooth / Proprietary DMP application

3. Software Architecture of a Bluetooth / Proprietary DMP application

DMP applications are based on Micrium RTOS. The RTOS helps run the Bluetooth and Proprietary protocols in parallel and independ-
ently.

Since the Bluetooth stack itself is just a collection of functions, Bluetooth needs separate tasks to run the stack. The Bl uet oot hTask()
and the Li nkLayer Task() are responsible for this, and they can be used as they are. The functions of the Bluetooth stack can be ac-
cessed through these tasks using BGAPI, as in the case of an RTOS-less or an NCP application. The Bluetooth application (handling
Bluetooth events and calling Bluetooth commands) has to be implemented by the developer in the bl uet oot hAppTask() . For details
please refer to AN1114: Integrating Silicon Labs Bluetooth® Applications with the Micrium RTOS.

The proprietary protocol is implemented in the propri et ar yAppTask() . Unlike Bluetooth, the proprietary protocol can access the radio
directly through the RAIL API. RAIL events need a callback function — r adi oEvent Handl er () — to be defined. This function is called
every time a new RAIL event is generated, and can notify the application about the event. Note: r adi oEvent Handl er () is called from
interrupt context, so only time-critical functions should be implemented in it. Everything else should be done in the application.

Although the Bluetooth and Proprietary applications are independent, they can communicate using inter-process communication (IPC).

bluetoothAppTask() 5C g proprietaryAppTask() pam
LinkLayerTask()

|
| |

' |

' |

' |

' |

|

| Bluetooth _RAIL API
|

|

|

|

|

|

|

stack T

use as it is |

silabs.com | Building a more connected world. Rev.0.3 | 4

AN1134: Dynamic Multiprotocol Development with Bluetooth® and Proprietary Protocols on RAIL in GSDK v2.x
Developing a Bluetooth / Proprietary DMP Project

4,

Developing a Bluetooth / Proprietary DMP Project

4.1 Create a New Project

Silicon Labs Bluetooth SDK (v2.9 or later) includes the “SOC — Empty — RAIL — DMP” Software Example that should be used as a
starting point for every Bluetooth / Proprietary application. This example project:

Includes the multiprotocol RAIL library

Includes the Bluetooth library

Includes the Micrium RTOS

Has a default Bluetooth GATT database configuration
Has a default RAIL configuration

Has a default RTOS configuration

Implements Bluetooth initialization

Implements RAIL initialization

Implements RTOS initialization

The only thing you have to do is to modify the configurations according to your needs and implement the bl uet oot hAppTask() and the
proprietaryAppTask(). The GATT database can be configured with the visual GATT editor tool, while the RAIL configuration can be
generated with the Radio Configurator tool. You may also need to add some emlib and emdrv files to your project to support peripheral
configuration. The general workflow to create a DMP project looks like this:

Radio rail_config.c \
configurator rail_config.h

Visual GATT gatt_db.c
editor gatt_db.h

1

> DMP project

SOC — Empty —

Bluetooth SDK project files

RAIL — DMP

Gecko SDK driver files

suite j

To create a new project.

1. Open Simplicity Studio.

2. Select your device on the Devices tab, or on the Solutions tab.

3. Click [New Project] in the Launcher perspective of Simplicity Studio, or click File > New > Project.
4. Select Bluetooth SDK. Click [Next].

5. If you have more SDKs installed, select Bluetooth SDK v2.9.0 or later. Click [Next].

6. Select SOC — Empty — RAIL — DMP sample application. Click [Next].

7.Name your project. Click [Next].

8. Check your part number.

9. Select the compiler you want to use. Click [Finish].

silabs.com | Building a more connected world. Rev.0.3 | 5

AN1134: Dynamic Multiprotocol Development with Bluetooth® and Proprietary Protocols on RAIL in GSDK v2.x
Developing a Bluetooth / Proprietary DMP Project

4.2 Configure Bluetooth

Configuring Bluetooth consists of two steps:
» Configuring the local GATT database
» Configuring the Bluetooth stack

To configure the local GATT database, use the Visual GATT editor tool:
1. Open the .isc file in the project (if it is not already open).
2. Click on the Bluetooth Configurator tab.

3. Add your services and characteristics as described in QSG139: Bluetooth® Development with Simplicity Studio (or use the default
GATT database).

4.Click [Generate] to generate gatt.xml, gatt_db.c and gatt_db.h.

o Bluetooth SDK, version:2.9.0.0

Bluetooth Configurator i Proprietary Configuratorw

BLE GATT Configurator Il
Source filters 4 [Custom BLE GATT =
SIG Silicon Labs a a Generic Access J_

[Device Name =
Profiles “_Services | Characteristics Descr\ptors} ®
B Appearance
type filter text 4 a Device Information i
[ﬂ Alert Motification - [E) Manufacturer Name String o
[ﬂ Automation [0 F B Model Number String 1
I ﬂ Blood Pressure B System [D
i+ [@ Continuous Glucose Monitoring a [E) Silicon Labs OTA
[ﬂ Cycling Power B Silicon Labs OTA Control

m

[ﬂ Cycling Speed and Cadence
[ﬂ Environmental Sensing

» [Find Me

[ﬂ Glucose

[ﬂ Health Thermometer

[ﬂ Heart Rate

» [HID OVER GATT

[ﬂ Location and Mavigation

i+ [Object Transfer

[ﬂ Phone Alert Status =

m

Characteristic - General settings
Marne: Device Name

Type: org.bluetooth.characteristic.gap.device_name Mame Device Name

UUID: 2400 [User description

Value: Empty Exarmnple L
Length: 13 byte Characteristic settings
Variable length: false ID device_name UUID 2A00

Type: UTFE R R
SIG type org.bluetooth.characteristic.gap.device

Property requirements:
Read - Optional - true Volue settings

Write - Optional - true Value Empty Example Value type

Length 13 = byte [variable length

Properties

[Demirameant Chate -

To configure the Bluetooth stack:
1. Open main.c.
2.Find the gecko configuration structure (gecko_configuration_t config).

3. Change the config according to your needs. For details see UG136: Silicon Labs Bluetooth® C Application Developer's Guide (or
use the default configuration).

silabs.com | Building a more connected world. Rev.0.3 | 6

AN1134: Dynamic Multiprotocol Development with Bluetooth® and Proprietary Protocols on RAIL in GSDK v2.x
Developing a Bluetooth / Proprietary DMP Project

4.3 Configure Proprietary Protocol

Configuring the proprietary protocol consists of two steps:

» Configuring the radio channels (base frequency, modulation, and so on)
» Configuring the RAIL

To configure the radio channels, use the Radio Configurator tool:
1. Open the .isc file in the project (if it's not opened yet).
2. Click the Proprietary Configurator tab.
3. Select Protocol Configuration.
4. Select Base Profile from the radio profiles.

5.Select a predefined radio PHY from the list, or select Custom settings, and apply your settings. For details see AN971: EFR32
Radio Configurator Guide.

6. Click [Generate] to generate rail_config.c and rail_config.h.

€D Bluetooth SDK, version:2.11.0.0

Bluetooth Configurator | (il Proprietary Configurator
EFR32 Multi PHY Configurator =
4[5 Protocol Configuration - Protocel Configuration -
Channel Group 1 (0-0) -) . . .
E2 Protocols can be switched using the RAIL_ConfigChannels AP], or can be used in Dynamic Multi-Protocol applications.
® See AN9TLfor detsiled documentation.
1t Connect enly supports the first configured protocol.
0. SeeUG235.03 for more detsils
[
o .
+ Protacol General settings
Protocol name Protocol Configuration
Seect o prtie |
Select a radio PHY for selected profile [915M 2GFSK 50Kbps 25K - I
» Crystal
~ Modem
Madulation Type | FSK2 Shaping Filter Gaussian
Bitrate 50 kbps Shaping Filter Parameter (5T or) [0,50 2
Deviation F KMz FSKsymbol map MAPO
Baudrate Tolerance [0 o ppm Enable &synchranous direct mode
~ Packet
Frame General *._Frame Fixed Length| Frame Variable Length | Frame Type Length | CRC| Whitening |
HeaderEnable Frarne Length Algarithr | FIXED_LENGTH
Frame Coding Method | NONE Frame Bit Endian LSB FIRST
Frame
[T T [1 2

To configure RAIL:
1. Open main.c.

2.Find the propri et aryAppTask() function. RAIL init is done here.

3.If you have generated multiple radio configurations, you can select here which one to use, and you can subscribe here for RAIL
events.

silabs.com | Building a more connected world.

Rev.0.3 | 7

AN1134: Dynamic Multiprotocol Development with Bluetooth® and Proprietary Protocols on RAIL in GSDK v2.x
Developing a Bluetooth / Proprietary DMP Project

4.4 Develop Bluetooth Application

Bluetooth applications have to be implemented the same way as in a non-DMP scenario:
* BGAPI commands can be called from anywhere (except from interrupt context!)
* BGAPI events have to be fetched from the internal event queue of the Bluetooth stack. This is typically done in an infinite loop.

A single protocol Bluetooth application can run with or without RTOS. The DMP Bluetooth application can, however, only run over
RTOS. As described in section 3. Software Architecture of a Bluetooth / Proprietary DMP application, you must implement Bluetooth
event handling in bl uet oot hAppTask() . The skeleton of this task is implemented in main.c. To handle new Bluetooth events, simply
add new case statements with the appropriate event IDs. The general process can be seen in the following figure:

bluetoothAppTask()

v

Wait for Bluetooth
event flag

!

Fetch Bluetooth
EVENnt

case event_idl

4

actions |

case event_id2 -
actions L

case event_id3

actions -

silabs.com | Building a more connected world. Rev.0.3 | 8

AN1134: Dynamic Multiprotocol Development with Bluetooth® and Proprietary Protocols on RAIL in GSDK v2.x
Developing a Bluetooth / Proprietary DMP Project

4.5 Develop Proprietary Application

Proprietary application uses RAIL directly:
* RAIL API commands can be called from anywhere.
» RAIL API events have to be handled in the events callback function that was setin RAIL_Init().

By default the events callback function is set to r adi oEvent Handl er () and an empty r adi oEvent Handl er () function is implemented in
the DMP empty example. This function is called every time a new radio event is received from RAIL. Each RAIL event sets a specific
flag in the 64-bit bitfield. Be aware that multiple flags may be set, so you may have to handle multiple events within one callback. Note:
The events callback function is called from an interrupt context, so you have to handle it as an interrupt handler! Do only quick calcula-
tions, and set a flag to inform your main loop about the changes.

The main loop to process the radio events is to be implemented in the proprietaryAppTask(), which runs parallel to the
bl uet oot hAppTask(). It is the developer's job to decide how to communicate between the radi oEvent Handl er() and the
proprietaryAppTask(), but in general it is recommended to use the services of the RTOS, like semaphores, flags, message queues,
and so on.

The general process is shown in the following figure:

radioEventHandler() proprietaryAppTask()
Check RAIL +
event flags] Wait for proprietary
event flag
svents & event_fl2gl | \mmediate actions +set | | ¢

flag for application Check protocol

state (or flags)

) . case statel actions +
o| |mmediate actions +set | | clesr flag
flag for application

events & event_flag2

¥

-

case state? | actions+
clear flag

v

events & event_flag3

Immediate actions + set
P e Sy A case stated actions +

flag for application

¥

clear flag

4.6 Communication between Bluetooth and Proprietary Protocol

Bluetooth and the proprietary protocol are running parallel in two independent tasks. However, often they need to be synchronized, for
example if you want to send out a proprietary packet when a value changed in the local GATT database, or you want to change a value
in the local GATT database when you received a proprietary packet.

To notify the Bluetooth task from the proprietary task, the easiest solution is to generate an external Bluetooth event.
gecko_ext ernal _si gnal () puts a new (external) event in the event queue of the Bluetooth stack. Then you can simply use the
gecko_evt_system_external_signal_id event ID in the bl uet oot hAppTask() to check if an external event was received. A 32-bit bitfield
can be used to differentiate 32 external events. For more information refer to UG136: Silicon Labs Bluetooth® C Application Developer's
Guide.

To notify the proprietary task from the Bluetooth task, the easiest way is to set an RTOS flag, in the same way you set flags in the
r adi oEvent Handl er () to notify the application about a new RAIL event.

silabs.com | Building a more connected world. Rev.0.3 | 9

AN1134: Dynamic Multiprotocol Development with Bluetooth® and Proprietary Protocols on RAIL in GSDK v2.x
Examples

5. Examples

5.1 Sending Proprietary Packets

This simple example sends out a proprietary packet every time a specific characteristic in the local GATT database is written.
1. Create a new SOC — Empty — RAIL — DMP project as described in section 4.1 Create a New Project 4.1 Create a New Project.

2.Add a new characteristic to the GATT database (as described in QSG139: Bluetooth® Development with Simplicity Studio) with the
following parameters:

a.Name: Proprietary characteristic
b.ID: prop_char
c. Value type: hex
d. Length: 16 byte
e. Properties: Read, Write, Notify
3. Click [Generate] to generate the GATT database.

4. Define a CHARACTERISTIC_CHANGED flag in the header part of main.c. This flag will be used in the communication between the
bluetoothAppTask and the proprietaryAppTask, as part of the proprietary_event_flags flag group.

#def i ne CHARACTERI STI C_CHANGED ((OS_FLAGS) 0x01)
5. Create a Tx FIFO. Define the following in the header part of main.c:

#define RAIL_TX FlI FO SI ZE (64)
static uint8_t txFifo[RAIL_TX FIFO Sl ZE] ;

6. In the bl uet oot hAppTask():
a.Add a new event handler to the switch — case statement to handle characteristic value changes.
b. Check if it is the prop_char that has changed.
c. Set a flag to notify the proprietary protocol.

case gecko_evt _gatt_server_attribute_val ue_id:
if (bluetooth_evt->data.evt_gatt_server_attribute_value.attribute == gattdb_prop_char)
{
OSFl agPost (&proprietary_event _fl ags,
CHARACTERI STI C_CHANGED,
OS_OPT_POST_FLAG_SET,
&err);
}

br eak;

7.In the propri et aryAppTask() — before the infinite loop:
a. Set up the Tx FIFO for RAIL.
b. Define scheduler info for the packet to be sent.

RAI L_Set TxFi fo(rai | Handl e, txFifo, 0, RAIL_TX FlFO SIZE);

RAI L_Schedul erInfo_t txSchedul erlnfo = (RAIL_Schedul erinfo_t){ .priority = 100,
.slipTime = 100000,
.transacti onTine = 800 };

silabs.com | Building a more connected world. Rev. 0.3 | 10

AN1134: Dynamic Multiprotocol Development with Bluetooth® and Proprietary Protocols on RAIL in GSDK v2.x
Examples

8. Within the infinite loop of the propri et ar yAppTask() :
a. Wait for the CHARACTERISTIC_CHANGED flag.
b. Copy the content of the characteristic into the Tx FIFO.
c. Send out the packet.

whi | e (DEF_TRUE) {
RTOS_ERR err;
OSFl agPend(&propri etary_event _fl ags,
CHARACTERI STI C_CHANGED,
(Cs_TI CK) O,
OS_OPT_PEND BLOCKI NG \
+ OS_OPT_PEND_FLAG SET_ANY \
+ OS_OPT_PEND FLAG CONSUME,
NULL,
&err);

struct gecko_nsg_gatt_server _read_attribute value rsp t *result;

result = gecko_cnd_gatt_server_read_attribute_val ue(gattdb_prop_char, 0);
RAIL_WiteTxFifo(rail Handl e, &(result->value.data[0]), 16, true);
RAIL_StartTx(rail Handl e, 0, RAIL_TX OPTI ONS_DEFAULT, &t xSchedul erlnfo);

9.In the r adi oEvent Handl er () :
a. Check for the packet_sent event, and do not forget to yield the radio.

static void radi oEvent Handl er (RAI L_Handl e_t rail Handl e,
RAIL_Events_t events)
{

if (events & RAIL_EVENT TX PACKET SENT) {
RAI L_Yi el dRadi o(rai | Handl e) ;
}

silabs.com | Building a more connected world. Rev. 0.3 | 11

AN1134: Dynamic Multiprotocol Development with Bluetooth® and Proprietary Protocols on RAIL in GSDK v2.x
Examples

5.2 Receiving Proprietary Packets

This example implements a receiver for the transmitter implemented in the previous section. Once a proprietary packet is received the
example updates a characteristic in the local GATT database.

To implement a receiver use the transmitter project described in the previous section and extend it with the following procedure.
1. Define a new flag for signaling packet reception to the proprietary application.

#defi ne PACKET RECElI VED ((OS_FLAGS)0x02)
2.Create an Rx FIFO. Define the following in the header part of main.c:

#defi ne RAIL_RX_FI FO S| ZE (64)
static uint8_t rxFifo[RAIL_RX FI FO Sl ZE] ;

3.In the propri et aryAppTask() — before the infinite loop:
a. Set Rx transition in order to automatically restore Rx state after packet reception.
b. Set the Rx priority lower than the Tx priority.
c. Start Rx (before the infinite loop!).

RAIL_StateTransitions_t stateTransition = (RAIL_StateTransitions_t){
.success = RAIL_RF_STATE_RX,
.error = RAIL_RF_STATE RX };
RAI L_Set RxTransi ti ons(rail Handl e, &t at eTransi ti on);
RAI L_Schedul erI nfo_t rxSchedul erlnfo = (RAIL_Schedulerinfo_t){ .priority = 200 };
RAIL_StartRx(rail Handl e, 0, &rxSchedul erlnfo);

4.In the r adi oEvent Handl er () :
a. Check if a packet was successfully received.
b. Copy the packet content to your local Rx FIFO.
c. Set a flag to notify the proprietary protocol about the new packet.

if (events & RAlIL_EVENT_RX PACKET_RECEI VED) {
RAI L_RxPacket I nfo_t packet | nfo;
RTOS_ERR err;

RAI L_Get RxPacket | nf o(rai | Handl e,
RAI L_RX_PACKET_HANDLE_NEVEST,
&packet | nf o) ;

i f (packet|nfo. packet Status == RAI L_RX PACKET_READY_SUCCESS) ({
RAI L_CopyRxPacket (r xFi f o, &acket | nf 0) ;
OSFl agPost (&proprietary_event _fl ags, PACKET_RECEI VED, OS_OPT_POST_FLAG_SET, &err);

silabs.com | Building a more connected world. Rev. 0.3 | 12

AN1134: Dynamic Multiprotocol Development with Bluetooth® and Proprietary Protocols on RAIL in GSDK v2.x
Examples

5. Within the infinite loop of the propri et ar yAppTask() :

a. Check for two event flags: CHARACTERISTIC_CHANGED and PACKET_RECEIVED. You can wait for both of them and then
check which one was set.

b.If the PACKET_RECEIVED flag is set then write the content of the received packet into the local GATT database and
c. Notify the Bluetooth stack that the value has changed (using a Bluetooth external signal).

whi | e (DEF_TRUE) {

RTOS_ERR err;

OS_FLAGS active_flags = OSFl agPend (&proprietary_event_fl ags,
CHARACTERI STI C_CHANGED \
+ PACKET_RECEI VED,
(OS_TI CK) 0,
OS_OPT_PEND_BLOCKI NG \
+ OS_OPT_PEND FLAG SET_ANY \
+ OS_OPT_PEND_FLAG CONSUME,

NULL,
&err);
if (active_flags & CHARACTERI STI C_CHANGED)
{
struct gecko _nsg_gatt_server_read_attribute_value_rsp_t *result;
result = gecko_cnd_gatt_server _read_attribute_val ue(gattdb_prop_char, 0);
RAIL_WiteTxFifo(rail Handl e, &(result->value.data[0]), 16, true);
RAIL_Start Tx(rail Handl e, 0, RAIL_TX OPTI ONS_DEFAULT, &txSchedul erl nfo);
}
if (active_flags & PACKET_RECEl VED)
{
gecko_cnd_gatt_server _wite_attribute_val ue(gattdb_prop_char, 0, 16, rxFi f o) ;
gecko_ext ernal _si gnal (CHARACTERI STI C_CHANGED) ;
}

6. In the bl uet oot hAppTask():
a.Add a new event handler for the external signal.
b. Check if you got a CHARACTERISTIC_CHANGED signal.
c. Send out a notification.

case gecko_evt_system external _signal _id:
i f (bluetooth_evt->data.evt_system external _signal.extsignals &
CHARACTERI STI C_CHANGED)

{
gecko_cnd_gatt_server_send_characteristic_notification(Oxff, gattdb_prop_char,
16, rxFifo);
}
br eak;

silabs.com | Building a more connected world. Rev. 0.3 | 13

AN1134: Dynamic Multiprotocol Development with Bluetooth® and Proprietary Protocols on RAIL in GSDK v2.x
Light/Switch Example

6. Light/Switch Example

This section provides details on working with the Light/Switch example code that results in the example user interface documented in
QSG155: Using the Silicon Labs Dynamic Multiprotocol Demonstration Applications.

6.1 Working with the Light/Switch Example

To work with Light/Switch dynamic multiprotocol example you must install both the Flex SDK version 2.1.0 or higher, and the Bluetooth
SDK version 2.7.0 or higher. The Micrium kernel is installed along with the Bluetooth SDK. Use the version of IAR Embedded Work-
bench for ARM (IAR-EWARM) that is documented in the release notes for the SDK. The RAIL Switch and Bluetooth/RAIL Light Dynam-
ic multiprotocol applications are generated, built, and uploaded in the same way as other applications in their SDKs.

» To see details about installing Simplicity Studio and the Flex SDK and building an example application, see QSG138: Getting Star-
ted with the Silicon Labs Flex SDK for the Wireless Gecko (EFR32™) Portfolio.

» To see details about installing Simplicity Studio and the Bluetooth SDK and building an example application, see QSG139: Bluetooth
Development with Simplicity Studio.

Note: In a demonstration configuration with multiple RAIL/Bluetooth dynamical protocol light devices and a single switch device, unpre-
dictable behavior may occur. We recommend testing with a single light device and a single switch device.

The following summary procedures are provided for your convenience.

6.1.1 Building the RAIL:Switch Application

1. In Simplicity Studio, start a new project.

2.In the Applications dialog, select Silicon Labs Flex SDK, and click [Next].

3.In the Select Applications dialog, select RAIL: Switch and click [Next].

4.In the Project Configuration dialog, name the project and click [Next].

5.In project setup, make sure that the correct board and part are shown. Click [Finish].

6. If you get an auto-upgrade notice. click [OK].

7.Click [Generate] to generate project files.

8. Either automatically compile and flash using the debug button, or manually compile and then load.

Application load success indicators are code-dependent. With the RAIL: Switch example, the LCD displays a short menu before chang-
ing over to the light bulb display.

silabs.com | Building a more connected world. Rev. 0.3 | 14

AN1134: Dynamic Multiprotocol Development with Bluetooth® and Proprietary Protocols on RAIL in GSDK v2.x
Light/Switch Example

6.1.2 Building the Bluetooth Light Application

The Bluetooth Light application requires the Gecko Bootloader be loaded on the device. The Gecko Bootloader is loaded when you
load the precompiled SOC - Light - RAIL - DMP demonstration as described in QSG155: Using the Silicon Labs Dynamic Multiprotocol
Demonstrations. Alternatively you can build and load your own Gecko Bootloader combined image (called <projectname>-com-
bined.s37), as described in chapter 4 of UG266: Silicon Labs Gecko Bootloader User’'s Guide.

1. In Simplicity Studio, start a new project.

2.In the Applications dialog, select Bluetooth SDK, and click [Next].

3.In the Select Applications dialog, select SOC - Light - RAIL - DMP and click [Next].
4.In the Project Configuration dialog, name the project and click [Next].

5.In project setup, make sure that the correct board and part are shown and, if you have both IAR and GCC configured, select one.
The active toolchain will be used in the project. Click [Finish].

6. You do not have to generate the files unless you have modified the GATT database.
7. Automatically compile and flash using the debug button.

Application load success indicators are code-dependent. With the SOC - Light - RAIL - DMP example, the LCD displays a light bulb.

6.1.3 Changing the PHY Configuration

The default PHY configuration for the RAIL/Bluetooth example is a sub Gigahertz configuration. You may want to modify this PHY con-
figuration as you begin to develop applications for your own hardware.

To change the PHY configuration:
1. Open the RAIL:Switch project.
2.Open the .isc file in the project.
3. Select the Radio Configuration tab.
4. Select a new PHY.
5. Click [Generate] to generate new rail_config.c and rail_config.h.
6. Open the SOC - Light - RAIL - DMP project.
7. Copy rail_config.c and rail_config.h from the RAIL:Switch project to the SOC - Light - RAIL — DMP project.
8. Make sure that you overwrite the old rail_config.c and rail_config.h files.
9. Rebuild and flash both projects as you would normally.

silabs.com | Building a more connected world. Rev. 0.3 | 15

SILCON LABS

Sbou v Progusi =
2 Commsntty & Suppt =

Do you have an
. innovative idea to

- o = v keep the world
il T~ h connected?

| e

= eiiis

Explorn Our Foatured Products
riencly c

Micracontrollers wireless & RF Sensors

Smart.
Connected.
Energy-Friendly.

Products Quality Support and Community
www.silabs.com/products www.silabs.com/quality community.silabs.com

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without
further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Without prior
notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or the performance
of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant any license
to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class Il devices, applications for which FDA premarket approval is
required, or Life Support Systems without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health,
which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs
products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering
such weapons. Silicon Labs disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such
unauthorized applications.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, ClockBuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers”, Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®,
Gecko OS, Gecko OS Studio, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-
Wave®, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a
registered trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.

®
Silicon Laboratories Inc.

400 West Cesar Chavez
Austin, TX 78701
USA

SILICON LABS http://www.silabs.com

	1. Introduction
	1.1 Requirements

	2. Guidelines for Bluetooth and Proprietary Coexistence
	3. Software Architecture of a Bluetooth / Proprietary DMP application
	4. Developing a Bluetooth / Proprietary DMP Project
	4.1 Create a New Project
	4.2 Configure Bluetooth
	4.3 Configure Proprietary Protocol
	4.4 Develop Bluetooth Application
	4.5 Develop Proprietary Application
	4.6 Communication between Bluetooth and Proprietary Protocol

	5. Examples
	5.1 Sending Proprietary Packets
	5.2 Receiving Proprietary Packets

	6. Light/Switch Example
	6.1 Working with the Light/Switch Example
	6.1.1 Building the RAIL:Switch Application
	6.1.2 Building the Bluetooth Light Application
	6.1.3 Changing the PHY Configuration

