
Juniper Cloud-Native Router Deployment
Guide

Published

2025-04-08

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA
408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

 Juniper Cloud-Native Router Deployment Guide
Copyright © 2025 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.

ii

https://support.juniper.net/support/eula/

Table of Contents

1 Introduction

Juniper Cloud-Native Router Overview | 2

Juniper Cloud-Native Router Components | 5

Juniper Cloud-Native Router vRouter Datapath | 11

Cloud-Native Router Deployment Modes | 13

Cloud-Native Router Interfaces Overview | 14

2 Install Cloud-Native Router on Baremetal Server

Install and Verify Juniper Cloud-Native Router for Baremetal Servers | 28

Install Juniper Cloud-Native Router Using Helm Chart | 28

Verify Installation | 32

System Requirements for Baremetal Servers | 36

Customize Cloud-Native Router Helm Chart for Bare Metal Servers | 48

Customize Cloud-Native Router Configuration | 62

Cloud-Native Router Operator Service Module: Host-Based Routing | 70

Overview | 70

Install Host-Based Routing | 72

Prepare the Nodes | 76

Create Virtual Ethernet Interface (VETH) Pairs and Configure Static Routes | 78

Install the Operator Service Module | 81

Set Up Secondary CNI for Host-Based Routing | 83

3 Install Cloud-Native Router on Red Hat OpenShift

Install and Verify Juniper Cloud-Native Router for OpenShift Deployment | 88

Install Juniper Cloud-Native Router Using Helm Chart | 88

iii

Verify Installation | 92

System Requirements for OpenShift Deployment | 98

Customize Cloud-Native Router Helm Chart for OpenShift Deployment | 111

Customize Cloud-Native Router Configuration | 126

4 Install Cloud-Native Router on Amazon EKS

Install and Verify Juniper Cloud-Native Router on Amazon EKS | 136

Install Juniper Cloud-Native Router Using Juniper Support Site Package | 136

Install Juniper Cloud-Native Router Using AWS Marketplace Subscription (BYOL) | 140

Verify Cloud-Native Router Installation on Amazon EKS | 144

System Requirements for EKS Deployment | 149

Customize Cloud-Native Router Helm Chart for EKS Deployment | 157

Customize Cloud-Native Router Configuration | 168

Cloud-Native Router Operator Service Module: VPC Gateway | 177

Cloud-Native Router VPC Gateway Overview | 177

Install the Cloud-Native Router VPC Gateway | 178

Prepare the MetalLB Cluster | 190

Prepare the Cloud-Native Router VPC Gateway Cluster | 193

Prepare the On-Premises Cluster | 195

5 Install Cloud-Native Router on Google Cloud Platform

Install and Verify Juniper Cloud-Native Router for GCP Deployment | 198

Install Juniper Cloud-Native Router Using Juniper Support Site Package | 198

Install Juniper Cloud-Native Router Via Google Cloud Marketplace | 202

Verify Installation | 204

System Requirements for GCP Deployment | 208

Customize Cloud-Native Router Helm Chart for GCP Deployment | 219

Customize Cloud-Native Router Configuration | 230

iv

6 Install Cloud-Native Router on Wind River Cloud Platform

Install and Verify Juniper Cloud-Native Router for Wind River Deployment | 240

Install Juniper Cloud-Native Router Using Helm Chart | 240

Verify Installation | 244

System Requirements for Wind River Deployment | 248

Customize Cloud-Native Router Helm Chart for Wind River Deployment | 261

Customize Cloud-Native Router Configuration | 275

7 Install Cloud-Native Router on Microsoft Azure Cloud Platform

Install and Verify Juniper Cloud-Native Router for Azure Deployment | 285

Install Juniper Cloud-Native Router Using Helm Chart | 285

Verify Installation | 289

System Requirements for Azure Deployment | 293

Customize Cloud-Native Router Helm Chart for Azure Deployment | 302

Customize Cloud-Native Router Configuration | 313

8 Install Cloud-Native Router on VMWare Tanzu

Install and Verify Juniper Cloud-Native Router for VMWare Tanzu | 323

System Requirements for Tanzu Deployment | 323

Customize Cloud-Native Router Helm Chart for Tanzu Deployment | 333

Customize Cloud-Native Router Configuration | 334

9 Deploying Service Chain (cSRX) with JCNR

Deploying Service Chain (cSRX) with JCNR | 336

Install cSRX on an Existing Cloud-Native Router Installation | 336

Install cSRX During Cloud-Native Router Installation | 337

Apply the cSRX License and Configure cSRX | 338

Customize cSRX Helm Chart | 340

v

10 Manage

Manage Cloud-Native Router Software | 346

Upgrade from Cloud-Native Router Release 23.4 and Earlier | 346

Upgrade from Cloud-Native Router Release 24.2 and Later | 349

Downgrade/Rollback JCNR | 351

Uninstall JCNR | 351

Manage Cloud-Native Router Licenses | 352

Installing Your License | 353

Renewing Your License | 353

Allocate CPUs to the Cloud-Native Router Forwarding Plane | 355

Allocate CPUs Using the Kubernetes CPU Manager | 355

Allocate CPUs Using Static CPU Allocation | 358

Host Protection using Control Plane Policing | 359

11 Validate and Troubleshoot

Cloud-Native Router Readiness Checks | 362

Validation Factory | 364

Overview | 365

Test Topology Manifest | 367

Execute the Test Profiles | 375

Troubleshoot Deployment | 378

Common Problems | 378

Check Deployer Logs | 380

Verify vRouter and cRPD Health | 381

Verify cRPD Configuration | 383

View Log Files | 384

12 Appendix

vi

Kubernetes Overview | 386

Cloud-Native Router Software Download Packages | 387

Cloud-Native Router Default Helm Chart | 389

Configure Repository Credentials | 398

Deploy Prepackaged Images | 399

Configure Huge Pages | 401

Configure the Number of Huge Pages Available on a Node | 401

Configure the Number of Huge Pages to Use | 403

List of Cloud-Native Router Readiness Checks | 404

CloudFormation Template for EKS Cluster | 406

Cloud-Native Router Operator Service Module: Host-Based Routing Example
Configuration Files | 417

Host-Based Routing: Example Scripts and Configuration Files to Install cRPD | 418

Host-Based Routing: Example Calico Configuration | 436

Host-Based Routing: Example VxLAN and Route Target Pools | 440

Host-Based Routing: Example JCNR Configuration | 441

Host-Based Routing: Example Secondary CNI Configuration Files | 442

Juniper Technology Preview | 452

vii

1
CHAPTER

Introduction

IN THIS CHAPTER

Juniper Cloud-Native Router Overview | 2

Juniper Cloud-Native Router Components | 5

Juniper Cloud-Native Router vRouter Datapath | 11

Cloud-Native Router Deployment Modes | 13

Cloud-Native Router Interfaces Overview | 14

Juniper Cloud-Native Router Overview

SUMMARY

This topic provides an overview of the Juniper
Cloud-Native Router (JCNR) overview, use cases, and
features.

IN THIS SECTION

Overview | 2

Use Cases | 2

Architecture and Key Components | 3

Features | 4

Overview

While 5G unleashes higher bandwidth, lower latency and higher capacity, it also brings in new
infrastructure challenges such as increased number of base stations or cell sites, more backhaul links
with larger capacity and more cell site routers and aggregation routers. Service providers are integrating
cloud-native infrastructure in distributed RAN (D-RAN) topologies, which are usually small, leased
spaces, with limited power, space and cooling. The disaggregation of radio access network (RAN) and
the expansion of 5G data centers into cloud hyperscalers has added newer requirements for cloud-
native routing.
The Juniper Cloud-Native Router provides the service providers the flexibility to roll out the expansion
requirements for 5G rollouts, reducing both the CapEx and OpEx.

Juniper Cloud-Native Router (JCNR) is a containerized router that combines Juniper's proven routing
technology with the Junos containerized routing protocol daemon (cRPD) as the controller and a high-
performance Data Plane Development Kit (DPDK) or extended Berkley Packet Filter (eBPF) eXpress
Data Path (XDP) datapath based vRouter forwarding plane. It is implemented in Kubernetes and
interacts seemlessly with a Kubernetes container network interface (CNI) framework.

Use Cases

The Cloud-Native Router has the following use cases:

• Radio Access Network (RAN)

The new 5G-only sites are a mix of centralized RAN (C-RAN) and distributed RAN (D-RAN). The C-
RAN sites are typically large sites owned by the carrier and continue to deploy physical routers. The
D-RAN sites, on the other hand, are tens of thousands of smaller sites, closer to the users.

2

https://www.juniper.net/us/en/products/routers/containerized-routing-protocol-daemon-crpd.html

Optimization of CapEx and OpEx is a huge factor for the large number of D-RAN sites. These sites
are also typically leased, with limited space, power and cooling capacities. There is limited
connectivity over leased lines for transit back to the mobile core. Juniper Cloud-Native Router is
designed to work in the constraints of a D-RAN. It is integrated with the distributed unit (DU) and
installable on an existing 1 U server.

• Telco virtual private cloud (VPC)

The 5G data centers are expanding into cloud hyperscalers to support more radio sites. The cloud-
native routing available in public cloud environments do not support the routing demands of telco
VPCs, such as MPLS, quality of service (QoS), L3 VPN, and more. The Juniper Cloud-Native Router
integrates directly into the cloud as a containerized network function (CNF), managed as a cloud-
native Kubernetes component, while providing advanced routing capabilities.

Architecture and Key Components

The Juniper Cloud-Native Router consists of the Junos containerized routing protocol Daemon (cRPD)
as the control plane (Cloud-Native Router Controller), providing topology discovery, route advertisement
and forwarding information base (FIB) programming, as well as dynamic underlays and overlays. It uses
the Data Plane Development Kit (DPDK) or eBPF XDP datapath enabled vRouter as a forwarding plane,
providing packet forwarding for applications in a pod and host path I/O for protocol sessions. The third
component is the Cloud-Native Router container network interface (CNI) that interacts with Kubernetes
as a secondary CNI to create pod interfaces, assign addresses and generate the router configuration.

The Data Plane Development Kit (DPDK) is an open source set of libraries and drivers. DPDK enables
fast packet processing by allowing network interface cards (NICs) to send direct memory access (DMA)
packets directly into an application’s address space. The applications poll for packets, to avoid the
overhead of interrupts from the NIC. Integrating with DPDK allows a vRouter to process more packets
per second than is possible when the vRouter runs as a kernel module.

The extended Berkley Packet Filter (eBPF) is a Linux kernel technology that executes user-defined
programs inside a sandbox virtual machine. It enables low-level networking programs to execute with
optimal performance. The eXpress Data Path (XDP) frameworks enables high-speed packet processing
for the eBPF programs. Cloud-Native Router supports eBPF XDP datapath based vRouter.

In this integrated solution, the Cloud-Native Router Controller uses gRPC, a high performance Remote
Procedure Call, based services to exchange messages and to communicate with the vRouter, thus
creating the fully functional Cloud-Native Router. This close communication allows you to:

• Learn about fabric and workload interfaces.

• Provision DPDK or kernel-based interfaces for Kubernetes pods as needed.

• Configure IPv4 and IPv6 address allocation for pods.

3

https://www.juniper.net/us/en/products/routers/containerized-routing-protocol-daemon-crpd.html

• Run routing protocols such as ISIS, BGP, and OSPF and much more.

Features

• Easy deployment, removal, and upgrade on general purpose compute devices using Helm.

• Higher packet forwarding performance with DPDK-based JCNR-vRouter.

• Full routing, switching, and forwarding stacks in software.

• Out-of-the-box software-based open radio access network (O-RAN) support.

• Quick spin up with containerized deployment.

• Highly scalable solution.

• L3 features such as transit gateway, support for routing protocols, BFD, VRRP, VRF-Lite, EVPN
Type-5, ECMP and BGP Unnumbered, access control lists, SRv6.

• L2 functionality, such as MAC learning, MAC aging, MAC limiting, native VLAN, L2 statistics, and
access control lists (ACLs).

• L2 reachability to Radio Units (RU) for management traffic.

• L2 or L3 reachability to physical distributed units (DU) such as 5G millimeter wave DUs or 4G DUs.

• VLAN tagging and bridge domains.

• Trunk and access ports.

• Support for multiple virtual functions (VF) on Ethernet NICs.

• Support for bonded VF interfaces.

• Rate limiting of egress broadcast, unknown unicast, and multicast traffic on fabric interfaces.

• IPv4 and IPv6 routing.

4

Juniper Cloud-Native Router Components

SUMMARY

The Juniper Cloud-Native Router solution consists of
several components including the Cloud-Native
Router controller, the Data Plane Development Kit
(DPDK) or extended Berkley Packet Filter (eBPF)
eXpress Data Path (XDP) datapath based Cloud-
Native Router vRouter and the JCNR-CNI. This topic
provides a brief overview of the components of the
Juniper Cloud-Native Router.

IN THIS SECTION

Cloud-Native Router Components | 5

Cloud-Native Router Controller | 7

Cloud-Native Router vRouter | 8

JCNR-CNI | 9

Syslog-NG | 11

Cloud-Native Router Components

The Juniper Cloud-Native Router has primarily three components—the Cloud-Native Router Controller
control plane, the Cloud-Native Router vRouter forwarding plane, and the JCNR-CNI for Kubernetes
integration. All Cloud-Native Router components are deployed as containers.

Figure 1 on page 6 shows the components of the Juniper Cloud-Native Router inside a Kubernetes
cluster when implemented with DPDK based vRouter.

5

Figure 1: Components of Juniper Cloud-Native Router (DPDK Datapath)

Figure 2 on page 7 shows the components of the Juniper Cloud-Native Router inside a Kubernetes
cluster when implemented with eBPF XDP based vRouter.

6

Figure 2: Components of Juniper Cloud-Native Router (eBPF XDP Datapath)

Cloud-Native Router Controller

The Cloud-Native Router Controller is the control-plane of the cloud-native router solution that runs the
Junos containerized routing protocol Daemon (cRPD). It is implemented as a statefulset. The controller
communicates with the other elements of the cloud-native router. Configuration, policies, and rules that
you set on the controller at deployment time are communicated to the Cloud-Native Router vRouter and
other components for implementation.

For example, firewall filters (ACLs) configured on the controller are sent to the Cloud-Native Router
vRouter (through the vRouter agent).

Juniper Cloud-Native Router Controller Functionality:

• Exposes Junos OS compatible CLI configuration and operation commands that are accessible to
external automation and orchestration systems using the NETCONF protocol.

• Supports vRouter as the high-speed forwarding plane. This enables applications that are built using
the DPDK framework to send and receive packets directly to the application and the vRouter
without passing through the kernel.

7

• Supports configuration of VLAN-tagged sub-interfaces on physical function (PF), virtual function
(VF), virtio, access, and trunk interfaces managed by the DPDK-enabled vRouter.

• Supports configuration of bridge domains, VLANs, and virtual-switches.

• Advertises DPDK application reachability to core network using routing protocols primarily with
BGP, IS-IS and OSPF.

• Distributes L3 network reachability information of the pods inside and outside a cluster.

• Maintains configuration for L2 firewall.

• Passes configuration information to the vRouter through the vRouter-agent.

• Stores license key information.

• Works as a BGP Speaker, establishing peer relationships with other BGP speakers to exchange
routing information.

• Exports control plane telemetry data to Prometheus and gNMI.

Configuration Options

Use the "configlet resource" on page 62 to configure the cRPD pods.

Cloud-Native Router vRouter

The Cloud-Native Router vRouter is a high-performance datapath component. It is an alternative to the
Linux bridge or the Open vSwitch (OVS) module in the Linux kernel. It runs as a user-space process. The
vRouter functionality is implemented in two pods, one for the vrouter-agent and the vrouter-telemetry-
exporter, and the other for the vrouter-agent-dpdk. This split gives you the flexibility to tailor CPU
resources to the different vRouter components as needed.

The vRouter supports both Data Plane Development Kit (DPDK) and extended Berkley Packet Filter
(eBPF) eXpress Data Path (XDP) datapath.

NOTE: Cloud-Native Router eBPF XDP Datapath is a Juniper Technology Preview (Tech
Preview) feature. Limited features are supported. See "Juniper Cloud-Native Router
vRouter Datapath" on page 11 for more details.

Cloud-Native Router vRouter Functionality:

• Performs routing with Layer 3 virtual private networks.

8

• Performs L2 forwarding.

• Supports high-performance DPDK-based forwarding.

• Supports high performance eBPF XDP datapath based forwarding.

• Exports data plane telemetry data to Prometheus and gNMI.

Benefits of vRouter:

• High-performance packet processing.

• Forwarding plane provides faster forwarding capabilities than kernel-based forwarding.

• Forwarding plane is more scalable than kernel-based forwarding.

• Support for the following NICs:

• Intel E810 (Columbiaville) family

• Intel XL710 (Fortville) family

JCNR-CNI

JCNR-CNI is a new container network interface (CNI) developed by Juniper. JCNR-CNI is a Kubernetes
CNI plugin installed on each node to provision network interfaces for application pods. During pod
creation, Kubernetes delegates pod interface creation and configuration to JCNR-CNI. JCNR-CNI
interacts with Cloud-Native Router controller and the vRouter to setup DPDK interfaces. When a pod is
removed, JCNR-CNI is invoked to de-provision the pod interface, configuration, and associated state in
Kubernetes and cloud-native router components. JCNR-CNI works as a secondary CNI, along with the
Multus CNI to add and configure pod interfaces.

JCNR-CNI Functionality:

• Manages the networking tasks in Kubernetes pods such as:

• assigning IP addresses.

• allocating MAC addresses.

• setting up untagged, access, and other interfaces between the pod and vRouter in a Kubernetes
cluster.

• creating VLAN sub-interfaces.

• creating L3 interfaces.

9

• Acts on pod events such as add and delete.

• Generates cRPD configuration.

The JCNR-CNI manages the secondary interfaces that the pods use. It creates the required interfaces
based on the configuration in YAML-formatted network attachment definition (NAD) files. The JCNR-
CNI configures some interfaces before passing them to their final location or connection point and
provides an API for further interface configuration options such as:

• Instantiating different kinds of pod interfaces.

• Creating virtio-based high performance interfaces for pods that leverage the DPDK data plane.

• Creating veth pair interfaces that allow pods to communicate using the Linux Kernel networking
stack.

• Creating pod interfaces in access or trunk mode.

• Attaching pod interfaces to bridge domains and virtual routers.

• Supporting IPAM plug-in for Dynamic IP address allocation.

• Allocating unique socket interfaces for virtio interfaces.

• Managing the networking tasks in pods such as assigning IP addresses and setting up of interfaces
between the pod and vRouter in a Kubernetes cluster.

• Connecting pod interface to a network including pod-to-pod and pod-to-network.

• Integrating with the vRouter for offloading packet processing.

Benefits of JCNR-CNI:

• Improved pod interface management

• Customizable administrative and monitoring capabilities

• Increased performance through tight integration with the controller and vRouter components

The Role of JCNR-CNI in Pod Creation:

When you create a pod for use in the cloud-native router, the Kubernetes component known as kubelet
calls the Multus CNI to set up pod networking and interfaces. Multus reads the annotations section of
the pod.yaml file to find the NADs. If a NAD points to JCNR-CNI as the CNI plug in, Multus calls the
JCNR-CNI to set up the pod interface. JCNR-CNI creates the interface as specified in the NAD. JCNR-
CNI then generates and pushes a configuration into the controller.

10

Syslog-NG

Juniper Cloud-Native Router uses a syslog-ng pod to gather event logs from cRPD and vRouter and
transform the logs into JSON-based notifications. The notifications are logged to a file. Syslog-ng runs as
a daemonset.

Juniper Cloud-Native Router vRouter Datapath

SUMMARY

Cloud-Native Router supports both Data Plane
Development Kit (DPDK) and extended Berkley
Packet Filter (eBPF) eXpress Data Path (XDP)
datapath based vRouter forwarding plane.

IN THIS SECTION

Data Plane Development Kit (DPDK) | 11

eBPF XDP | 12

The Cloud-Native Router vRouter forwarding plane supports both the Data Plane Development Kit
(DPDK) and extended Berkley Packet Filter (eBPF) eXpress Data Path (XDP) datapath for high-speed
packet processing.

Data Plane Development Kit (DPDK)

DPDK is an open-source set of libraries and drivers for rapid packet processing. DPDK enables fast
packet processing by allowing network interface cards (NICs) to send direct memory access (DMA)
packets directly into an application’s address space. This method of packet routing lets the application
poll for packets, which prevents the overhead of interrupts from the NIC.

DPDK's poll mode drivers (PMDs) use the physical interface (NIC) of a VM's host instead of the Linux
kernel's interrupt-based drivers. The NIC's registers operate in user space, which makes them accessible
by DPDK’s PMDs. As a result, the host OS does not need to manage the NIC's registers. This means that
the DPDK application manages all packet polling, packet processing, and packet forwarding of a NIC.
Instead of waiting for an I/O interrupt to occur, a DPDK application constantly polls for packets and
processes these packets immediately upon receiving them.
DPDK datapath has high CPU usage due to the poll mode and has high maintenance costs. Also, when
implementing DPDK, the NIC is no longer available in the kernel, hence sockets and forwarding plane
code must be re-implemented.

11

eBPF XDP

NOTE: This is a Juniper Technology Preview (Tech Preview) feature.

Cloud-Native Router also supports an eBPF XDP datapath based vRouter. eBPF (extended Berkley
Packet Filter) is a Linux kernel technology that executes user-defined programs inside a sandbox virtual
machine. It enables low-level networking programs to execute with optimal performance. The eXpress
Data Path (XDP) frameworks enables high-speed packet processing for the eBPF programs. Cloud-
Native Router supports XDP in native (driver) mode on Baremental server deployments for limited
drivers only. Please see the "System Requirements" on page 36 for more details.

Benefits of eBPF XDP Datapath

Benefits of eBPF XDP Datapath include:

• An eBPF XDP kernel program and its custom library is easier to maintain across kernel versions and
has wider kernel compatibility. The kernel dependencies are limited to a small set of eBPF helper
functions.

• The program is safer since it is analysed by the in-built Linux eBPF verifier before it is loaded into the
kernel.

• Offers higher performance using kernel bypass and omitting socket buffer (skb) allocation.

Supported Cloud-Native Router Features for eBPF XDP

The following Cloud-Native Router Features are supported with eBPF XDP for IPv4 traffic only:

• L3 traffic with Cloud-Native Router deployed as a sending, receiving or transit router

• VRF-Lite

• MPLSoUDP

• IGPs—OSPF, IS-IS

• BGP route advertisements

NOTE: When deploying JCNR, you can configure the agentModeType attribute in the
helmchart to select either a DPDK based or eBPF XDP datapath based vRouter.

12

Cloud-Native Router Deployment Modes

SUMMARY

Read this topic to know about the various modes of
deploying the cloud-native router.

IN THIS SECTION

Deployment Modes | 13

Deployment Modes

Starting with Juniper Cloud-Native Router Release 23.2, you can deploy and operate Juniper Cloud-
Native Router in L2, L3 and L2-L3 modes, auto-derived based on the interface configuration in the
values.yaml file prior to deployment.

NOTE: In the values.yaml file:

• When all the interfaces have an interface_mode key configured, then the mode of
deployment would be L2.

• When one or more interfaces have an interface_mode key configured and some of the
interfaces do not have the interface_mode key configured, then the mode of
deployment would be L2-L3.

• When none of the interfaces have the interface_mode key configured, then the mode of
deployment would be L3.

In L2 mode, the cloud-native router behaves like a switch and therefore does not performs any routing
functions and it doesn not run any routing protocols. The pod network uses VLANs to direct traffic to
various destinations.

In L3 mode, the cloud-native router behaves like a router and therefore performs routing functions and
runs routing protocols such as ISIS, BGP, OSPF, and segment routing-MPLS. In L3 mode, the pod
network is divided into an IPv4 or IPv6 underlay network and an IPv4 or IPv6 overlay network. The
underlay network is used for control plane traffic.

The L2-L3 mode provides the functionality of both the switch and the router at the same time. It
enables Cloud-Native Router to act as both a switch and a router simultaneously by performing
switching in a set of interfaces and routing in the other set of interfaces. Cell site routers in a 5G
deployment need to handle both L2 and L3 traffic. DHCP packets from radio outdoor unit (RU) is an

13

example of L2 traffic and data packets moving from outdoor unit (ODU) to central unit (CU) is an
example of L3 traffic.

Cloud-Native Router Interfaces Overview

SUMMARY

This topic provides information on the network
communication interfaces provided by the JCNR-
Controller. Fabric interfaces are aggregated
interfaces that receive traffic from multiple
interfaces. Interfaces to which different workloads
are connected are called workload interfaces.

IN THIS SECTION

Juniper Cloud-Native Router Interface
Types | 14

Cloud-Native Router Interface Details | 15

Read this topic to understand the network communication interfaces provided by the JCNR-Controller.
We cover interface names, what they connect to, how they communicate and the services they provide.

Juniper Cloud-Native Router Interface Types

Juniper Cloud-Native Router supports two types of interfaces:

• Fabric interfaces—Aggregated interfaces that receive traffic from multiple interfaces. Fabric interfaces
are always physical interfaces. They can either be a physical function (PF) or a virtual function (VF).
The throughput requirement for these interfaces is higher, hence multiple hardware queues are
allocated to them. Each hardware queue is allocated with a dedicated CPU core . The interfaces are
configured for the cloud-native router using the appropriate values.yaml file in the deployer
helmcharts. You can view the interface mapping using the dpdkinfo -c command (View the
Troubleshoot using the vRouter CLI topic for more details). You also have fabric workload interfaces
that have low throughput requirement. Only one hardware queue is allocated to the interface,
thereby saving precious CPU resources. These interfaces can be configured using the appropriate
values.yaml file in the deployer helmcharts.

• Workload interfaces—Interfaces to which different workloads are connected. They can either be
software-based or hardware-based interfaces. Software-based interfaces (pod interfaces) are either
high-performance interfaces using the Data Plane Development Kit (DPDK) poll mode driver (PMD)
or a low-performance interfaces using the kernel driver. Typically the DPDK interfaces are used for
data traffic such as the GPRS Tunneling Protocol for user data (GTP-U) traffic and the kernel-based

14

interfaces are used for control plane data traffic such as TCP. The kernel pod interfaces are typically
for the operations, administration and maintenance (OAM) traffic or are used by non-DPDK pods.
The kernel pod interfaces are configured as a veth-pair, with one end of the interface in the pod and
the other end in the Linux kernel on the host. The DPDK native pod interfaces (virtio interfaces) are
plumbed as vhost-user interfaces to the DPDK vRouter by the CNI. Cloud-Native Router also
supports bonded interfaces via the link bonding PMD. These interfaces can be configured using the
appropriate values.yaml file in the deployer helmcharts.

Cloud-Native Router supports different types of VLAN interfaces including trunk, access and sub-
interfaces across fabric and workload interfaces.

Cloud-Native Router Interface Details

The different Cloud-Native Router interfaces are provided in detail below:

Agent Interface

The vRouter has only one agent interface. The agent interface enables communication between the
vRouter-agent and the vRouter containers. On the vRouter CLI when you issue the vif --list command,
the agent interface looks like this:

vif0/0 Socket: unix
 Type:Agent HWaddr:00:00:5e:00:01:00
 Vrf:65535 Flags:L2 QOS:-1 Ref:3
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:650 bytes:99307 errors:0
 Drops:0

L3 Fabric Interface (DPDK)

A layer-3 fabric interface bound to the DPDK.

L3 fabric interface in cRPD can be reviewed on the cRPD shell using the junos show interfaces command:

show interfaces routing ens2f2
Interface State Addresses
ens2f2 Up MPLS enabled
 ISO enabled

15

 INET 192.21.2.4
 INET6 2001:192:21:2::4
 INET6 fe80::c5da:7e9c:e168:56d7
 INET6 fe80::a0be:69ff:fe59:8b58

The corresponding physical and tap interfaces can be seen on the vRouter using the vif --list command
on the vRouter shell.

vif0/1 PCI: 0000:17:01.1 (Speed 25000, Duplex 1) NH: 7 MTU: 9000 <- PCI
Address
 Type:Physical HWaddr:d6:93:87:91:45:6c IPaddr: 192.21.2.4 <- Physical interface
 IP6addr:2001:192:21:2::4 <- IPv6 address
 DDP: OFF SwLB: ON
 Vrf:2 Mcast Vrf:2 Flags:L3L2Vof QOS:0 Ref:16 <- L3 (only) interface
 RX port packets:423168341 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Fabric Interface: 0000:17:01.1 Status: UP Driver: net_iavf
 RX packets:423168341 bytes:29123418594 errors:0
 TX packets:417508247 bytes:417226216530 errors:0
 Drops:8
 TX port packets:417508247 errors:0

vif0/2 PMD: ens2f2 NH: 12 MTU: 9000 <- Tap interface name as seen by cRPD
 Type:Host HWaddr:d6:93:87:91:45:6c IPaddr: 192.21.2.4 <- Tap interface type
 IP6addr:2001:192:21:2::4
 DDP: OFF SwLB: ON
 Vrf:2 Mcast Vrf:65535 Flags:L3DProxyEr QOS:-1 Ref:15 TxXVif:1 <-cross-connected to
vif 1
 RX device packets:306995 bytes:25719830 errors:0
 RX queue packets:306995 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:306995 bytes:25719830 errors:0
 TX packets:307489 bytes:25880250 errors:0
 Drops:0
 TX queue packets:307489 errors:0
 TX device packets:307489 bytes:25880250 errors:0

16

L3 Bond Interface (DPDK)

A layer 3 bond interface bound to DPDK.

show interfaces routing bond34
Interface State Addresses
bond34 Up INET6 2001:192:7:7::4
 ISO enabled
 INET 192.7.7.4
 INET6 fe80::527c:6fff:fe48:7574

vif0/3 PCI: 0000:00:00.0 (Speed 25000, Duplex 1) NH: 6 MTU: 1514 <- Bond interface (PCI id
0)
 Type:Physical HWaddr:50:7c:6f:48:75:74 IPaddr:192.7.7.4 <- Physical interface
 IP6addr:2001:192:7:7::4
 DDP: OFF SwLB: ON
 Vrf:1 Mcast Vrf:1 Flags:TcL3L2Vof QOS:0 Ref:18
 RX port packets:402183888 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Fabric Interface: eth_bond_bond34 Status: UP Driver: net_bonding <- Bonded master
 Slave Interface(0): 0000:5e:00.0 Status: UP Driver: net_ice <- Bond slave - 1
 Slave Interface(1): 0000:af:00.0 Status: UP Driver: net_ice <- Bond slave - 2
 RX packets:402183888 bytes:49519387070 errors:0
 TX packets:79226 bytes:7330912 errors:0
 Drops:1393
 TX port packets:79226 errors:0

vif0/4 PMD: bond34 NH: 11 MTU: 9000
 Type:Host HWaddr:50:7c:6f:48:75:74 IPaddr:192.7.7.4 <- Tap interface
 IP6addr:2001:192:7:7::4
 DDP: OFF SwLB: ON
 Vrf:1 Mcast Vrf:65535 Flags:L3DProxyEr QOS:-1 Ref:15 TxXVif:3 <- Tap interface for
bond
 RX device packets:76357 bytes:7101918 errors:0
 RX queue packets:76357 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:76357 bytes:7101918 errors:0
 TX packets:75349 bytes:6946908 errors:0
 Drops:0

17

 TX queue packets:75349 errors:0
 TX device packets:75349 bytes:6946908 errors:0

L3 Pod VLAN Sub-Interface (DPDK)

Starting in Juniper Cloud-Native Router Release 23.2, the cloud-native router supports the use of VLAN
sub-interfaces in L3 mode, bound to DPDK.

Corresponding interface state in cRPD:

show interfaces routing ens1f0v1.201
Interface State Addresses
ens1f0v1.201 Up MPLS enabled
 ISO enabled
 INET6 fe80::b89c:fff:feab:e2c9

vif0/2 PCI: 0000:17:01.1 (Speed 25000, Duplex 1) NH: 7 MTU: 9000
 Type:Physical HWaddr:d6:93:87:91:45:6c IPaddr:0.0.0.0
 IP6addr:fe80::d493:87ff:fe91:456c <- IPv6 address
 DDP: OFF SwLB: ON
 Vrf:2 Mcast Vrf:2 Flags:L3L2Vof QOS:0 Ref:16 <- L3 (only) interface
 RX port packets:423168341 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Fabric Interface: 0000:17:01.1 Status: UP Driver: net_iavf
 RX packets:423168341 bytes:29123418594 errors:0
 TX packets:417508247 bytes:417226216530 errors:0
 Drops:8
 TX port packets:417508247 errors:0

vif0/5 PMD: ens1f0v1 NH: 12 MTU: 9000
 Type:Host HWaddr:d6:93:87:91:45:6c IPaddr:0.0.0.0
 IP6addr:fe80::d493:87ff:fe91:456c
 DDP: OFF SwLB: ON
 Vrf:2 Mcast Vrf:65535 Flags:L3DProxyEr QOS:-1 Ref:15 TxXVif:2 <- L3 (only) tap
interface
 RX device packets:306995 bytes:25719830 errors:0
 RX queue packets:306995 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:306995 bytes:25719830 errors:0

18

 TX packets:307489 bytes:25880250
errors:0

 Drops:0
 TX queue packets:307489 errors:0
 TX device packets:307489 bytes:25880250 errors:0

vif0/9 Virtual: ens1f0v1.201 Vlan(o/i)(,S): 201/201 Parent:vif0/2 NH: 36 MTU: 1514 <- VLAN
fabric sub-intf with parent as vif 2 and VLAN tag as 201
 Type:Virtual(Vlan) HWaddr:d6:93:87:91:45:6c IPaddr:103.1.1.2
 IP6addr:fe80::d493:87ff:fe91:456c
 DDP: OFF SwLB: ON
 Vrf:1 Mcast Vrf:1 Flags:L3DProxyEr QOS:-1 Ref:4
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:0

vif0/10 Virtual: ens1f0v1.201 Vlan(o/i)(,S): 201/201 Parent:vif0/5 NH: 21 MTU: 9000
 Type:Virtual(Vlan) HWaddr:d6:93:87:91:45:6c IPaddr:103.1.1.2
 IP6addr:fe80::d493:87ff:fe91:456c
 DDP: OFF SwLB: ON
 Vrf:1 Mcast Vrf:65535 Flags:L3DProxyEr QOS:-1 Ref:4 TxXVif:9 <- VLAN tap sub-intf
cross connected to fabric sub-intf vif 9 and parent as tap intf vif 5
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:0

vif0/50 PMD: vhostnet1-9403fd77-648a-47 NH: 177 MTU: 9160 ---> pod
interface
 Type:Virtual HWaddr:00:00:5e:00:01:00 IPaddr:0.0.0.0
 DDP: OFF SwLB: ON
 Vrf:65535 Mcast Vrf:65535 Flags:L3DProxyEr QOS:-1 Ref:20
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0

19

 TX packets:0 bytes:0 errors:0
 Drops:0

vif0/51 Virtual: vhostnet1-9403fd77-648a-47.201 Vlan(o/i)(,S): 201/201 NH: 17 MTU: 1514
 Parent:vif0/50 ---->L3 pod
sub-interface, parent is the pod interface
 Type:Virtual(Vlan) HWaddr:00:00:5e:00:01:00 IPaddr:99.62.0.2
 IP6addr:1234::633e:2
 DDP: OFF SwLB: ON
 Vrf:2 Mcast Vrf:2 Flags:PL3DProxyEr QOS:-1 Ref:4
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:0

L3 Pod Kernel Interface

These are non-DPDK L3 pod interfaces. Interface state in the cRPD:

show interfaces routing jvknet1-0af476e
Interface State Addresses
jvknet1-0af476e Up INET6 enabled
 INET6 abcd:2:51:1::4
 ISO enabled
 INET enabled
 INET 2.51.1.4

vif0/13 Ethernet: jvknet1-0af476e NH: 35 MTU: 9160 <- Kernel interface (jvk) of CNF
 Type:Virtual HWaddr:00:00:5e:00:01:00 IPaddr:2.51.1.4 <- pod/ workload
 IP6addr:abcd:2:51:1::4
 DDP: OFF SwLB: ON
 Vrf:1 Mcast Vrf:1 Flags:PL3DVofProxyEr QOS:-1 Ref:11
 RX port packets:47 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:47 bytes:13012 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:47

20

L2 Fabric Interface (DPDK, Physical Trunk)

DPDK L2 fabric interfaces, which are associated with the physical network interface card (NIC) on the
host server, accept traffic from multiple VLANs. The trunk interfaces accept only tagged packets. Any
untagged packets are dropped. These interfaces can accept a VLAN filter to allow only specific VLAN
packets. A trunk interface can be a part of multiple bridge-domains (BD). A bridge domain is a set of
logical ports that share the same flooding or broadcast characteristics. Like a VLAN, a bridge domain
spans one or more ports of multiple devices.

The cRPD interface configuration using the show configuration command looks like this (the output is
trimmed for brevity):

interfaces {
 ens786f0v0 {
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 1001-1100;
 }
 }
 }
}

On the vRouter CLI when you issue the vif --list command, the DPDK VF fabric interface looks like
this:

vif0/1 PCI: 0000:31:01.0 (Speed 10000, Duplex 1)
 Type:Physical HWaddr:d6:22:c5:42:de:c3
 Vrf:65535 Flags:L2Vof QOS:-1 Ref:12
 RX queue packets:11813 errors:1
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 1 0
 Fabric Interface: 0000:31:01.0 Status: UP Driver: net_iavf
 Vlan Mode: Trunk Vlan: 1001-1100
 RX packets:0 bytes:0 errors:49962
 TX packets:18188356 bytes:2037400554 errors:0
 Drops:49963

21

DPDK L2 Bond Interface (Active-Standby, Trunk)

Layer-2 Bond interfaces accept traffic from multiple VLANs. A bond interface runs in the active or
standby mode (mode 0). You define the bond interface in the helm chart configuration as follows:

bondInterfaceConfigs:
- name: "bond0"
 mode: 1 # ACTIVE_BACKUP MODE
 slaveInterfaces:
 - "ens2f0v1"
 - "ens2f1v1"

 - bond0:
 ddp: "auto"
 interface_mode: trunk
 vlan-id-list: [1001-1100]
 storm-control-profile: rate_limit_pf1
 native-vlan-id: 1001
 no-local-switching: true

The cRPD interface configuration using the show configuration command looks like this (the output is
trimmed for brevity):

interfaces {
 bond0 {
 unit 0 {
 family bridge
 interface-mode trunk;
 vlan-id-list 1001-1100;
 }
 }
}

On the vRouter CLI when you issue the vif --list command, the bond interface looks like this:

vif0/2 PCI: 0000:00:00.0 (Speed 10000, Duplex 1)
 Type:Physical HWaddr:32:f8:ad:8c:d3:bc
 Vrf:65535 Flags:L2Vof QOS:-1 Ref:8
 RX queue packets:1882 errors:0

22

 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0
 Fabric Interface: eth_bond_bond0 Status: UP Driver: net_bonding
 Slave Interface(0): 0000:81:01.0 Status: UP Driver: net_iavf
 Slave Interface(1): 0000:81:03.0 Status: UP Driver: net_iavf
 Vlan Mode: Trunk Vlan: 1001-1100
 RX packets:8108366000 bytes:486501960000 errors:4234
 TX packets:65083776 bytes:4949969408 errors:0
 Drops:8108370394

DPDK L2 Pod Interface (Virtio Trunk)

The trunk interfaces accept only tagged packets. Any untagged packets are dropped. These interfaces
can accept a VLAN filter to allow only specific VLAN packets. A trunk interface can be a part of multiple
bridge-domains (BD). A bridge domain is a set of logical ports that share the same flooding or broadcast
characteristics. Like a VLAN, a bridge domain spans one or more ports of multiple devices. Virtio
interfaces are associated with pod interfaces that use virtio on the DPDK data plane.

The cRPD interface configuration using the show configuration command looks like this (the output is
trimmed for brevity):

interfaces {
 vhost242ip-93883f16-9ebb-4acf-b {
 unit 0 {
 family bridge {
 interface-mode trunk;
 vlan-id-list 1001-1003;
 }
 }
 }
}

On the vRouter CLI when you issue the vif --list command, the virtio with DPDK data plane interface
looks like this:

vif0/3 PMD: vhost242ip-93883f16-9ebb-4acf-b
 Type:Virtual HWaddr:00:16:3e:7e:84:a3
 Vrf:65535 Flags:L2 QOS:-1 Ref:13
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Vlan Mode: Trunk Vlan: 1001-1003
 RX packets:0 bytes:0 errors:0
 TX packets:10604432 bytes:1314930908 errors:0

23

 Drops:0
 TX port packets:0 errors:10604432

L2 Pod Kernel Interface (Access)

The access interfaces accept both tagged and untagged packets. Untagged packets are tagged with the
access VLAN or access BD. Any tagged packets other than the ones with access VLAN are dropped. The
access interfaces is a part of a single bridge-domain. It does not have any parent interface.

The cRPD interface configuration using the show configuration command looks like this (the output is
trimmed for brevity):

routing-instances {
 switch {
 instance-type virtual-switch;
 bridge-domains
{

 bd1001 {
 vlan-id 1001;
 interface jvknet1-eed79ff;
 }
 }
 }
}

On the vRouter CLI when you issue the vif --list command, the veth pair interface looks like this:

vif0/4 Ethernet: jvknet1-88c44c3
 Type:Virtual HWaddr:02:00:00:3a:8f:73
 Vrf:0 Flags:L2Vof QOS:-1 Ref:10
 RX queue packets:524 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Vlan Mode: Access Vlan Id: 1001 OVlan Id: 1001
 RX packets:9 bytes:802 errors:515
 TX packets:0 bytes:0 errors:0
 Drops: 525

24

L2 Pod VLAN Sub-interface (DPDK)

You can configure a user pod with a Layer 2 VLAN sub-interface and attach it to the Cloud-Native
Router instance. VLAN sub-interfaces are like logical interfaces on a physical switch or router. They
access only tagged packets that match the configured VLAN tag. A sub-interface has a parent interface.
A parent interface can have multiple sub-interfaces, each with a VLAN ID. When you run the cloud-
native router, you must associate each sub-interface with a specific VLAN.

The cRPD interface configuration viewed using the show configuration command is as shown below (the
output is trimmed for brevity).

For L2:

routing-instances {
 switch {
 instance-type virtual-switch;
 bridge-domains
{

 bd3003 {
 vlan-id 3003;
 interface vhostnet1-71cd7db1-1a5e-49.3003;
 }
 }
 }
}

On the vRouter, a VLAN sub-interface configuration is as shown below:

vif0/4 PMD: vhostnet1-71cd7db1-1a5e-49 MTU: 9160
 Type:Virtual HWaddr:02:00:00:84:dc:42
 DDP: OFF SwLB: ON
 Vrf:65535 Flags:L2 QOS:-1 Ref:14
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:0
 TX port packets:0 errors:293

vif0/5 Virtual: vhostnet1-71cd7db1-1a5e-49.3003 Vlan(o/i)(,S): 3003/3003 Parent:vif0/4
 Type:Virtual(Vlan) HWaddr:00:99:99:99:33:09
 Vrf:0 Flags:L2 QOS:-1 Ref:3

25

 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:0

RELATED DOCUMENTATION

Cloud-Native Router Use-Cases and Configuration Overview

26

2
CHAPTER

Install Cloud-Native Router on
Baremetal Server

IN THIS CHAPTER

Install and Verify Juniper Cloud-Native Router for Baremetal Servers | 28

System Requirements for Baremetal Servers | 36

Customize Cloud-Native Router Helm Chart for Bare Metal Servers | 48

Customize Cloud-Native Router Configuration | 62

Cloud-Native Router Operator Service Module: Host-Based Routing | 70

Install and Verify Juniper Cloud-Native Router for
Baremetal Servers

SUMMARY

The Juniper Cloud-Native Router (cloud-native
router) uses the the JCNR-Controller (cRPD) to
provide control plane capabilities and JCNR-CNI to
provide a container network interface. Juniper
Cloud-Native Router uses the DPDK-enabled
vRouter to provide high-performance data plane
capabilities and Syslog-NG to provide notification
functions. This section explains how you can install
these components of the Cloud-Native Router.

IN THIS SECTION

Install Juniper Cloud-Native Router Using
Helm Chart | 28

Verify Installation | 32

Install Juniper Cloud-Native Router Using Helm Chart

Read this section to learn the steps required to load the cloud-native router image components into
docker and install the cloud-native router components using Helm charts.

1. Review the "System Requirements for Baremetal Servers" on page 36 section to ensure the cluster
has all the required configuration.

2. Download the desired Cloud-Native Router software package to the directory of your choice.

You have the option of downloading the package to install Cloud-Native Router only or
downloading the package to install JNCR together with Juniper cSRX. See "Cloud-Native Router
Software Download Packages" on page 387 for a description of the packages available. If you don't
want to install Juniper cSRX now, you can always choose to install Juniper cSRX on your working
Cloud-Native Router installation later.

3. Expand the downloaded package.

tar xzvf <sw_package>.tar.gz

4. Change directory to the main installation directory.

• If you're installing Cloud-Native Router only, then:

cd Juniper_Cloud_Native_Router_<release>

28

This directory contains the Helm chart for Cloud-Native Router only.

• If you're installing Cloud-Native Router and cSRX at the same time, then:

cd Juniper_Cloud_Native_Router_CSRX_<release>

This directory contains the combination Helm chart for Cloud-Native Router and cSRX.

NOTE: All remaining steps in the installation assume that your current working
directory is now either Juniper_Cloud_Native_Router_<release> or
Juniper_Cloud_Native_Router_CSRX_<release>.

5. View the contents in the current directory.

ls
helmchart images README.md secrets

6. Change to the helmchart directory and expand the Helm chart.

cd helmchart

• For Cloud-Native Router only:

ls
jcnr-<release>.tgz

tar -xzvf jcnr-<release>.tgz

ls
jcnr jcnr-<release>.tgz

The Helm chart is located in the jcnr directory.

29

• For the combined Cloud-Native Router and cSRX:

ls
jcnr_csrx-<release>.tgz

tar -xzvf jcnr_csrx-<release>.tgz

ls
jcnr_csrx jcnr_csrx-<release>.tgz

The Helm chart is located in the jcnr_csrx directory.

7. The Cloud-Native Router container images are required for deployment. Choose one of the
following options:

• Configure your cluster to deploy images from the Juniper Networks enterprise-hub.juniper.net
repository. See "Configure Repository Credentials" on page 398 for instructions on how to
configure repository credentials in the deployment Helm chart.

• Configure your cluster to deploy images from the images tarball included in the downloaded
Cloud-Native Router software package. See "Deploy Prepackaged Images" on page 399 for
instructions on how to import images to the local container runtime.

8. Follow the steps in "Installing Your License" on page 353 to install your Cloud-Native Router
license.

9. Enter the root password for your host server into the secrets/jcnr-secrets.yaml file at the following
line:

 root-password: <add your password in base64 format>

You must enter the password in base64-encoded format. Encode your password as follows:

echo -n "password" | base64 -w0

Copy the output of this command into secrets/jcnr-secrets.yaml.

30

10. Apply secrets/jcnr-secrets.yaml to the cluster.

kubectl apply -f secrets/jcnr-secrets.yaml
namespace/jcnr created
secret/jcnr-secrets created

11. If desired, configure how cores are assigned to the vRouter DPDK containers. See "Allocate CPUs
to the Cloud-Native Router Forwarding Plane" on page 355.

12. Customize the Helm chart for your deployment using the helmchart/jcnr/values.yaml or
helmchart/jcnr_csrx/values.yaml file.

See "Customize Cloud-Native Router Helm Chart for Bare Metal Servers" on page 48 for
descriptions of the Helm chart configurations.

13. Optionally, customize Cloud-Native Router configuration.

See "Customize Cloud-Native Router Configuration " on page 62 for creating and applying the
cRPD customizations.

14. If you're installing Juniper cSRX now, then follow the procedure in "Apply the cSRX License and
Configure cSRX" on page 338.

15. Label the nodes where you want Cloud-Native Router to be installed based on the nodeaffinity
configuration (if defined in the values.yaml). For example:

kubectl label nodes ip-10.0.100.17.lab.net key1=jcnr --overwrite

16. Deploy the Juniper Cloud-Native Router using the Helm chart.

Navigate to the helmchart/jcnr or the helmchart/jcnr_csrx directory and run the following
command:

helm install jcnr .

or

helm install jcnr-csrx .

NAME: jcnr
LAST DEPLOYED: Fri Dec 22 06:04:33 2023
NAMESPACE: default
STATUS: deployed

31

REVISION: 1
TEST SUITE: None

17. Confirm Juniper Cloud-Native Router deployment.

helm ls

Sample output:

NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION
jcnr default 1 <date-time> deployed jcnr-<version> <version>

Verify Installation

This section enables you to confirm a successful Cloud-Native Router deployment.

NOTE: The output shown in this example procedure is affected by the number of nodes
in the cluster. The output you see in your setup may differ in that regard.

1. Verify the state of the Cloud-Native Router pods by issuing the kubectl get pods -A command.

The output of the kubectl command shows all of the pods in the Kubernetes cluster in all namespaces.
Successful deployment means that all pods are in the running state. In this example we have marked
the Juniper Cloud-Native Router Pods in bold. For example:

kubectl get pods -A

NAMESPACE NAME READY STATUS RESTARTS AGE

contrail-deploy contrail-k8s-deployer-579cd5bc74-g27gs 1/1 Running 0 103s

contrail jcnr-0-dp-contrail-vrouter-nodes-b2jxp 2/2 Running 0 87s

contrail jcnr-0-dp-contrail-vrouter-nodes-vrdpdk-g7wrk 1/1 Running 0 87s

jcnr jcnr-0-crpd-0 1/1 Running 0 103s

jcnr syslog-ng-ds5qd 1/1 Running 0 103s

kube-system calico-kube-controllers-5f4fd8666-m78hk 1/1 Running 0 4h2m

kube-system calico-node-28w98 1/1 Running 0 86d

kube-system coredns-54bf8d85c7-vkpgs 1/1 Running 0 3h8m

32

kube-system dns-autoscaler-7944dc7978-ws9fn 1/1 Running 0 86d

kube-system kube-apiserver-ix-esx-06 1/1 Running 0 86d

kube-system kube-controller-manager-ix-esx-06 1/1 Running 0 86d

kube-system kube-multus-ds-amd64-jl69w 1/1 Running 0 86d

kube-system kube-proxy-qm5bl 1/1 Running 0 86d

kube-system kube-scheduler-ix-esx-06 1/1 Running 0 86d

kube-system nodelocaldns-bntfp 1/1 Running 0 86d

2. Verify the Cloud-Native Router daemonsets by issuing the kubectl get ds -A command.

Use the kubectl get ds -A command to get a list of daemonsets. The Cloud-Native Router daemonsets
are highlighted in bold text.

kubectl get ds -A

NAMESPACE NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE

contrail jcnr-0-dp-contrail-vrouter-nodes 1 1 1 1 1 <none> 90m

contrail jcnr-0-dp-contrail-vrouter-nodes-vrdpdk 1 1 1 1 1 <none> 90m

jcnr syslog-ng 1 1 1 1 1 <none> 90m

kube-system calico-node 1 1 1 1 1 kubernetes.io/os=linux 86d

kube-system kube-multus-ds-amd64 1 1 1 1 1 kubernetes.io/arch=amd64 86d

kube-system kube-proxy 1 1 1 1 1 kubernetes.io/os=linux 86d

kube-system nodelocaldns 1 1 1 1 1 kubernetes.io/os=linux 86d

3. Verify the Cloud-Native Router statefulsets by issuing the kubectl get statefulsets -A command.

The command output provides the statefulsets.

kubectl get statefulsets -A

NAMESPACE NAME READY AGE
jcnr jcnr-0-crpd 1/1 27m

4. Verify if the cRPD is licensed and has the appropriate configurations

a. View the Access cRPD CLI section for instructions to access the cRPD CLI.

33

b. Once you have access the cRPD CLI, issue the show system license command in the cli mode to view
the system licenses. For example:

root@jcnr-01:/# cli
root@jcnr-01> show system license
License usage:
 Licenses Licenses Licenses Expiry
 Feature name used installed needed
 containerized-rpd-standard 1 1 0 2024-09-20 16:59:00 PDT

Licenses installed:
 License identifier: 85e5229f-0c64-0000-c10e4-a98c09ab34a1
 License SKU: S-CRPD-10-A1-PF-5
 License version: 1
 Order Type: commercial
 Software Serial Number: 1000098711000-iHpgf
 Customer ID: Juniper Networks Inc.
 License count: 15000
 Features:
 containerized-rpd-standard - Containerized routing protocol daemon with standard
features
 date-based, 2022-08-21 17:00:00 PDT - 2027-09-20 16:59:00 PDT

c. Issue the show configuration | display set command in the cli mode to view the cRPD default and
custom configuration. The output will be based on the custom configuration and the Cloud-
Native Router deployment mode.

root@jcnr-01# cli
root@jcnr-01> show configuration | display set

d. Type the exit command to exit from the pod shell.

5. Verify the vRouter interfaces configuration

a. View the Access vRouter CLI section for instruction to access the vRouter CLI.

b. Once you have accessed the vRouter CLI, issue the vif --list command to view the vRouter
interfaces . The output will depend upon the Cloud-Native Router deployment mode and

34

configuration. An example for L3 mode deployment, with one fabric interface configured, is
provided below:

$ vif --list

Vrouter Interface Table

Flags: P=Policy, X=Cross Connect, S=Service Chain, Mr=Receive Mirror
 Mt=Transmit Mirror, Tc=Transmit Checksum Offload, L3=Layer 3, L2=Layer 2
 D=DHCP, Vp=Vhost Physical, Pr=Promiscuous, Vnt=Native Vlan Tagged
 Mnp=No MAC Proxy, Dpdk=DPDK PMD Interface, Rfl=Receive Filtering Offload,
Mon=Interface is Monitored
 Uuf=Unknown Unicast Flood, Vof=VLAN insert/strip offload, Df=Drop New Flows, L=MAC
Learning Enabled
 Proxy=MAC Requests Proxied Always, Er=Etree Root, Mn=Mirror without Vlan Tag,
HbsL=HBS Left Intf
 HbsR=HBS Right Intf, Ig=Igmp Trap Enabled, Ml=MAC-IP Learning Enabled, Me=Multicast
Enabled

vif0/0 Socket: unix MTU: 1514
 Type:Agent HWaddr:00:00:5e:00:01:00
 Vrf:65535 Flags:L2 QOS:-1 Ref:3
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:0

vif0/1 PCI: 0000:5a:02.1 (Speed 10000, Duplex 1) NH: 6 MTU: 9000
 Type:Physical HWaddr:ba:9c:0f:ab:e2:c9 IPaddr:0.0.0.0
 DDP: OFF SwLB: ON
 Vrf:0 Mcast Vrf:0 Flags:L3L2Vof QOS:0 Ref:12
 RX port packets:66 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Fabric Interface: 0000:5a:02.1 Status: UP Driver: net_iavf
 RX packets:66 bytes:5116 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:0

vif0/2 PMD: eno3v1 NH: 9 MTU: 9000
 Type:Host HWaddr:ba:9c:0f:ab:e2:c9 IPaddr:0.0.0.0
 DDP: OFF SwLB: ON
 Vrf:0 Mcast Vrf:65535 Flags:L3L2DProxyEr QOS:-1 Ref:13 TxXVif:1

35

 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:66 bytes:5116 errors:0
 Drops:0
 TX queue packets:66 errors:0
 TX device packets:66 bytes:5116 errors:0

c. Type the exit command to exit the pod shell.

System Requirements for Baremetal Servers

IN THIS SECTION

Minimum Host System Requirements for Bare Metal | 36

Resource Requirements for Bare Metal | 40

Miscellaneous Requirements for Bare Metal | 41

Port Requirements | 46

Download Options | 47

Cloud-Native Router Licensing | 47

Read this section to understand the system, resource, port, and licensing requirements for installing
Juniper Cloud-Native Router on a baremetal server.

Minimum Host System Requirements for Bare Metal

Table 1 on page 37 and Table 2 on page 39 list the host system requirements for installing Cloud-
Native Router on bare metal servers.

36

Table 1: Minimum Host System Requirements (DPDK) for Bare Metal

Component Value/Version Notes

CPU Intel x86 The tested CPU is Intel
Xeon Gold 6212U 24-
core @2.4 GHz

Host OS RedHat Enterprise Linux Version 8.4, 8.5, 8.6

Rocky Linux 8.6, 8.7, 8.8, 8.9, 9.3

Ubuntu 22.04.4 LTS

Kernel Version RedHat Enterprise Linux
(RHEL): 4.18.X

Rocky Linux: 4.18.X,
5.14.X

Ubuntu: 5.15.X

NIC • Intel E810 CVL with
Firmware 4.22
0x8001a1cf 1.3346.0

• Intel E810 CPK with
Firmware 2.20
0x80015dc1 1.3083.0

• Intel E810-CQDA2
with Firmware 4.20
0x80017785
1.3346.0

• Intel XL710 with
Firmware 9.20
0x8000e0e9 0.0.0

• Mellanox ConnectX-6

• Mellanox ConnectX-7

Support for Mellanox
NICs is considered a
Juniper Technology
Preview ("Tech
Preview" on page 452)
feature.

When using Mellanox
NICs, ensure your
interface names do not
exceed 11 characters
in length.

IAVF driver 4.8.2 

37

Table 1: Minimum Host System Requirements (DPDK) for Bare Metal (Continued)

Component Value/Version Notes

ICE_COMMS 1.3.35.0

ICE 1.11.20.13 ICE driver is used only
with the Intel E810
NIC

i40e 2.22.18.1 i40e driver is used only
with the Intel XL710
NIC

Kubernetes (K8s) 1.22.x, 1.23.x, 1.25x,
1.28.x, 1.29.x

Cloud-Native Router
supports an all-in-one
or multinode
Kubernetes cluster,
with master and
worker nodes running
on virtual machines
(VMs) or bare metal
servers (BMS).

Calico 3.22.x

Multus 3.8

Helm 3.9.x

Container-RT containerd 1.6.x, 1.7.x Other container
runtimes may work but
have not been tested
with JCNR.

NOTE: The component versions listed in this table are expected to work with JCNR, but not every version or
combination is tested in every release.

38

Table 2: Minimum Host System Requirements (eBPF) for Bare Metal

Component Value/Version Notes

CPU Intel x86 The tested CPU is Intel
Xeon Gold 6212U 24-
core @2.4 GHz

Host OS Ubuntu Version 22.04

Kernel Version Recommended Linux
5.10.x or higher

The tested kernel
version is 5.15.x

NIC • Intel XL710 with
Firmware 9.20
0x8000e0e9 0.0.0

Drivers virtio

i40e version 2.22.18.1

Kubernetes (K8s) Version 1.22.x, 1.23.x,
1.25x

The tested K8s version
is 1.22.4. K8s version
1.22.2 also works.

Cloud-Native Router
supports an all-in-one
or multinode
Kubernetes cluster,
with control plane and
worker nodes running
on virtual machines
(VMs) or bare metal
servers (BMS).

Calico Version 3.22.x

Multus Version 3.8

Helm 3.9.x

39

Table 2: Minimum Host System Requirements (eBPF) for Bare Metal (Continued)

Component Value/Version Notes

Container-RT containerd 1.7.x Other container
runtimes may work but
have not been tested
with JCNR.

NOTE: The component versions listed in this table are expected to work with JCNR, but not every version or
combination is tested in every release.

NOTE: Cloud-Native Router eBPF XDP Datapath is a Juniper Technology Preview (Tech
Preview) feature. Limited features are supported. Please review "Juniper Cloud-Native
Router vRouter Datapath" on page 11 for more details.

Resource Requirements for Bare Metal

Table 3 on page 40 lists the resource requirements for installing Cloud-Native Router on bare metal
servers.

Table 3: Resource Requirements for Bare Metal

Resource Value Usage Notes

Data plane forwarding
cores

1 core (1P +
1S)

Service/Control Cores 0

UIO Driver VFIO-PCI To enable, follow the steps below:

cat /etc/modules-load.d/vfio.conf
vfio
vfio-pci

Hugepages (1G) 6 Gi See "Configure the Number of Huge Pages Available on a Node" on
page 401.

40

Table 3: Resource Requirements for Bare Metal (Continued)

Resource Value Usage Notes

Cloud-Native Router
Controller cores

.5

Cloud-Native Router
vRouter Agent cores

.5

Miscellaneous Requirements for Bare Metal

Table 4 on page 41 lists additional requirements for installing Cloud-Native Router on bare metal
servers.

Table 4: Miscellaneous Requirements for Bare Metal

Requirement Example

Enable the host with SR-IOV and VT-d in the system's
BIOS.

Depends on BIOS.

Enable VLAN driver at system boot. Configure /etc/modules-load.d/vlan.conf as follows:

cat /etc/modules-load.d/vlan.conf
8021q

Reboot and verify by executing the command:

lsmod | grep 8021q

41

Table 4: Miscellaneous Requirements for Bare Metal (Continued)

Requirement Example

Enable VFIO-PCI driver at system boot. Configure /etc/modules-load.d/vfio.conf as follows:

cat /etc/modules-load.d/vfio.conf
vfio
vfio-pci

Reboot and verify by executing the command:

lsmod | grep vfio

Set IOMMU and IOMMU-PT in GRUB. Add the following line to /etc/default/grub.

GRUB_CMDLINE_LINUX_DEFAULT="console=tty1
console=ttyS0 default_hugepagesz=1G hugepagesz=1G
hugepages=64 intel_iommu=on iommu=pt"

Update grub and reboot.

grub2-mkconfig -o /boot/grub2/grub.cfg

reboot

Disable spoofcheck on VFs allocated to JCNR.

NOTE: Applicable for L2 deployments only.

ip link set <interfacename> vf 1 spoofcheck off.

Set trust on VFs allocated to JCNR.

NOTE: Applicable for L2 deployments only.

ip link set <interfacename> vf 1 trust on

42

Table 4: Miscellaneous Requirements for Bare Metal (Continued)

Requirement Example

Additional kernel modules need to be loaded on the
host before deploying Cloud-Native Router in L3
mode. These modules are usually available in linux-
modules-extra or kernel-modules-extra packages.

NOTE: Applicable for L3 deployments only.

Create a /etc/modules-load.d/crpd.conf file and add
the following kernel modules to it:

tun
fou
fou6
ipip
ip_tunnel
ip6_tunnel
mpls_gso
mpls_router
mpls_iptunnel
vrf
vxlan

Enable kernel-based forwarding on the Linux host.
ip fou add port 6635 ipproto 137

43

Table 4: Miscellaneous Requirements for Bare Metal (Continued)

Requirement Example

Exclude Cloud-Native Router interfaces from
NetworkManager control.

NetworkManager is a tool in some operating systems
to make the management of network interfaces easier.
NetworkManager may make the operation and
configuration of the default interfaces easier. However,
it can interfere with Kubernetes management and
create problems.

To avoid NetworkManager from interfering with
Cloud-Native Router interface configuration, exclude
Cloud-Native Router interfaces from NetworkManager
control. Here's an example on how to do this in some
Linux distributions:

1. Create the /etc/NetworkManager/conf.d/crpd.conf
file and list the interfaces that you don't want
NetworkManager to manage.

For example:

[keyfile]
 unmanaged-devices+=interface-name:enp*;interface-
name:ens*

where enp* and ens* refer to your Cloud-Native
Router interfaces.

NOTE: enp*
indicates all interfaces starting with
enp
. For specific interface names, provided a comma-
separated list.

2. Restart the NetworkManager service:

sudo systemctl restart NetworkManager

.

3. Edit the /etc/sysctl.conf file on the host and paste
the following content in it:

net.ipv6.conf.default.addr_gen_mode=0
net.ipv6.conf.all.addr_gen_mode=0

44

Table 4: Miscellaneous Requirements for Bare Metal (Continued)

Requirement Example

net.ipv6.conf.default.autoconf=0
net.ipv6.conf.all.autoconf=0

4. Run the command sysctl -p /etc/sysctl.conf to
load the new sysctl.conf values on the host.

5. Create the bond interface manually. For example:

ifconfig ens2f0 down
ifconfig ens2f1 down
ip link add bond0 type bond mode 802.3ad
ip link set ens2f0 master bond0
ip link set ens2f1 master bond0
ifconfig ens2f0 up ; ifconfig ens2f1 up; ifconfig
bond0 up

Verify the core_pattern value is set on the host before
deploying JCNR. sysctl kernel.core_pattern

kernel.core_pattern = |/usr/lib/systemd/systemd-
coredump %P %u %g %s %t %c %h %e

You can update the core_pattern in /etc/sysctl.conf.
For example:

kernel.core_pattern=/var/crash/core_%e_%p_%i_%s_%h_
%t.gz

Set MACAddressPolicy (Ubuntu only). On all nodes running DPDK on a Ubuntu OS, set
MACAddressPolicy to none and reboot. For example:

sudo sed -i 's/MACAddressPolicy=.*/
MACAddressPolicy=none/' /usr/lib/systemd/network/99-
default.link

sudo reboot

45

Port Requirements

Juniper Cloud-Native Router listens on certain TCP and UDP ports. This section lists the port
requirements for the cloud-native router.

Table 5: Cloud-Native Router Listening Ports

Protocol Port Description

TCP 8085 vRouter introspect–Used to gain
internal statistical information
about vRouter

TCP 8070 Telemetry Information- Used to see
telemetry data from the Cloud-
Native Router vRouter

TCP 8072 Telemetry Information-Used to see
telemetry data from Cloud-Native
Router control plane

TCP 8075, 8076 Telemetry Information- Used for
gNMI requests

TCP 9091 vRouter health check–cloud-native
router checks to ensure the vRouter
agent is running.

TCP 9092 vRouter health check–cloud-native
router checks to ensure the vRouter
DPDK is running.

TCP 50052 gRPC port–Cloud-Native Router
listens on both IPv4 and IPv6

TCP 8081 Cloud-Native Router Deployer Port

TCP 24 cRPD SSH

TCP 830 cRPD NETCONF

TCP 666 rpd

46

Table 5: Cloud-Native Router Listening Ports (Continued)

Protocol Port Description

TCP 1883 Mosquito mqtt–Publish/subscribe
messaging utility

TCP 9500 agentd on cRPD

TCP 21883 na-mqttd

TCP 50053 Default gNMI port that listens to
the client subscription request

TCP 51051 jsd on cRPD

UDP 50055 Syslog-NG

Download Options

See "Cloud-Native Router Software Download Packages" on page 387.

Cloud-Native Router Licensing

See "Manage Cloud-Native Router Licenses" on page 352.

47

Customize Cloud-Native Router Helm Chart for Bare
Metal Servers

IN THIS SECTION

Helm Chart Description for Bare Metal Deployment | 48

Read this topic to learn about the deployment configuration available for the Juniper Cloud-Native
Router on bare metal servers.
You can deploy and operate Juniper Cloud-Native Router in the L2, L3, or L2-L3 mode on a bare metal
server. You configure the deployment mode by editing the appropriate attributes in the values.yaml file
prior to deployment.

NOTE:

• In the fabricInterface key of the values.yaml file:

• When all the interfaces have an interface_mode key configured, then the mode of
deployment would be L2.

• When one or more interfaces have an interface_mode key configured along with the
rest of the interfaces not having the interface_mode key, then the mode of
deployment would be L2-L3.

• When none of the interfaces have the interface_mode key configured, then the
mode of deployment would be L3.

Helm Chart Description for Bare Metal Deployment

Customize the Helm chart using the Juniper_Cloud_Native_Router_<release>/helmchart/jcnr/
values.yaml file. We provide a copy of the default values.yaml in "Cloud-Native Router Default Helm
Chart" on page 389.

Table 6 on page 49 contains a description of the configurable attributes in values.yaml for a bare metal
deployment.

48

Table 6: Helm Chart Description for Bare Metal Deployment

Key Description

global

installSyslog Set to true to install syslog-ng.

registry Defines the Docker registry for the Cloud-Native Router
container images. The default value is enterprise-hub.juniper.net.
The images provided in the tarball are tagged with the default
registry name. If you choose to host the container images to a
private registry, replace the default value with your registry URL.

repository (Optional) Defines the repository path for the Cloud-Native
Router container images. This is a global key that takes
precedence over the repository paths under the common section.
Default is jcnr-container-prod/.

imagePullSecret (Optional) Defines the Docker registry authentication credentials.
You can configure credentials to either the Juniper Networks
enterprise-hub.juniper.net registry or your private registry.

registryCredentials Base64 representation of your Docker registry credentials. See
"Configure Repository Credentials" on page 398 for more
information.

secretName Name of the secret object that will be created.

common Defines repository paths and tags for the various Cloud-Native
Router container images. Use defaults unless using a private
registry.

repository Defines the repository path. The default value is jcnr-container-
prod/. The global repository key takes precedence if defined.

tag Defines the image tag. The default value is configured to the
appropriate tag number for the Cloud-Native Router release
version.

49

https://enterprise.hub.juniper.net

Table 6: Helm Chart Description for Bare Metal Deployment (Continued)

Key Description

readinessCheck Set to true to enable Cloud-Native Router Readiness preflight
and postflight checks during installation. Comment this out or set
to false to disable Cloud-Native Router Readiness preflight and
postflight checks.

Preflight checks verify that your infrastructure can support JCNR.
Preflight checks take place before Cloud-Native Router is
installed.

Postflight checks verify that your Cloud-Native Router
installation is working properly. Postflight checks take place after
Cloud-Native Router is installed.

See "Cloud-Native Router Readiness Checks" on page 362.

replicas (Optional) Indicates the number of replicas for cRPD. Default is 1.
The value for this key must be specified for multi-node clusters.
The value is equal to the number of nodes running JCNR.

noLocalSwitching (Optional) Prevents interfaces in a bridge domain from
transmitting and receiving Ethernet frame copies. Enter one or
more comma separated VLAN IDs to ensure that the interfaces
belonging to the VLAN IDs do not transmit frames to one
another. This key is specific to L2 and L2-L3 deployments.
Enabling this key provides the functionality on all access
interfaces. To enable the functionality on trunk interfaces,
configure no-local-switching in fabricInterface. See Prevent Local
Switching for more details.

iamRole Not applicable.

50

Table 6: Helm Chart Description for Bare Metal Deployment (Continued)

Key Description

fabricInterface Aggregated interfaces that receive traffic from multiple
interfaces. Fabric interfaces are always physical interfaces. They
can either be a physical function (PF) or a virtual function (VF).
The throughput requirement for these interfaces is higher —
hence multiple hardware queues are allocated to them. Each
hardware queue is allocated with a dedicated CPU core. See
"Cloud-Native Router Interfaces Overview" on page 14 for more
information.

Use this field to provide a list of fabric interfaces to be bound to
the DPDK. You can also provide subnets instead of interface
names. If both the interface name and the subnet are specified,
then the interface name takes precedence over the subnet/
gateway combination. The subnet/gateway combination is useful
when the interface names vary in a multi-node cluster.

NOTE:

• When all the interfaces have an interface_mode key
configured, then the mode of deployment is L2.

• When one or more interfaces have an interface_mode key
configured along with the rest of the interfaces not having
the interface_mode key, then the mode of deployment is L2-
L3.

• When none of the interfaces have the interface_mode key
configured, then the mode of deployment is L3.

For example:

 # L2 only
 - eth1:
 ddp: "auto"
 interface_mode: trunk
 vlan-id-list: [100, 200, 300, 700-705]
 storm-control-profile: rate_limit_pf1
 native-vlan-id: 100
 no-local-switching: true

 # L3 only
 - eth1:

51

Table 6: Helm Chart Description for Bare Metal Deployment (Continued)

Key Description

 ddp: "off"
 qosSchedulerProfileName: "sched_profile_1"

 # L2L3
 - eth1:
 ddp: "auto"
 qosSchedulerProfileName: "sched_profile_1"
 - eth2:
 ddp: "auto"
 interface_mode: trunk
 vlan-id-list: [100, 200, 300, 700-705]
 storm-control-profile: rate_limit_pf1
 native-vlan-id: 100
 no-local-switching: true

subnet An alternative mode of input to interface names. For example:

- subnet: 10.40.1.0/24
 gateway: 10.40.1.1
 ddp: "off"

The subnet option is applicable only for L3 interfaces. With the
subnet mode of input, interfaces are auto-detected in each
subnet. Specify either subnet/gateway or the interface name. Do
not configure both. The subnet/gateway form of input is
particularly helpful in environments where the interface names
vary in a multi-node cluster.

ddp (Optional) Indicates the interface-level Dynamic Device
Personalization (DDP) configuration. DDP provides datapath
optimization at the NIC for traffic like GTPU, SCTP, etc. For a
bond interface, all slave interface NICs must support DDP for the
DDP configuration to be enabled. See Enabling Dynamic Device
Personalization (DDP) on Individual Interfaces for more details.

Options include auto, on, or off. Default is off.

NOTE: The interface level ddp takes precedence over the
global ddp configuration.

52

Table 6: Helm Chart Description for Bare Metal Deployment (Continued)

Key Description

interface_mode Set to trunk for L2 interfaces and do not configure for L3
interfaces. For example,

interface_mode: trunk

vlan-id-list Provide a list of VLAN IDs associated with the interface.

storm-control-profile Use storm-control-profile to associate the desired storm control
profile to the interface. Profiles are defined under jcnr-
vrouter.stormControlProfiles.

native-vlan-id Configure native-vlan-id with any of the VLAN IDs in the vlan-
id-list to associate it with untagged data packets received on
the physical interface of a fabric trunk mode interface. For
example:

fabricInterface:
 - bond0:
 interface_mode: trunk
 vlan-id-list: [100, 200, 300]
 storm-control-profile: rate_limit_pf1
 native-vlan-id: 100 

See Native VLAN for more details.

no-local-switching Prevents interfaces from communicating directly with each other
when configured. Allowed values are true or false. See Prevent
Local Switching for more details.

qosSchedulerProfileN
ame

Specifies the QoS scheduler profile applicable to this interface.
See the qosSchedulerProfiles section.

If you don't specify a profile, then the QoS scheduler is disabled
for this interface, which means that packets are scheduled with
no regard to traffic class.

53

Table 6: Helm Chart Description for Bare Metal Deployment (Continued)

Key Description

fabricWorkloadInterface (Optional) Defines the interfaces to which different workloads
are connected. They can be software-based or hardware-based
interfaces.

log_level Defines the log severity. Available value options are: DEBUG,
INFO, WARN, and ERR.

NOTE: Leave it set to the default INFO unless instructed to
change it by Juniper Networks support.

log_path The defined directory stores various JCNR-related descriptive
logs such as contrail-vrouter-agent.log, contrail-vrouter-
dpdk.log, etc. Default is /var/log/jcnr/.

syslog_notifications Indicates the absolute path to the file that stores syslog-ng
generated notifications in JSON format. Default is /var/log/jcnr/
jcnr_notifications.json.

corePattern Indicates the core_pattern for the core file. If left blank, then
Cloud-Native Router pods will not overwrite the default pattern
on the host.

NOTE: Set the core_pattern on the host before deploying
JCNR. You can change the value in /etc/sysctl.conf. For
example, kernel.core_pattern=/var/crash/core_%e_%p_%i_%s_%h_
%t.gz

coreFilePath Indicates the path to the core file. Default is /var/crash.

54

Table 6: Helm Chart Description for Bare Metal Deployment (Continued)

Key Description

nodeAffinity (Optional) Defines labels on nodes to determine where to place
the vRouter pods.

By default the vRouter pods are deployed to all nodes of a
cluster.

In the example below, the node affinity label is defined as
key1=jcnr. You must apply this label to each node where Cloud-
Native Router is to be deployed:

nodeAffinity:
- key: key1
operator: In
values:
- jcnr

NOTE: This key is a global setting.

key Key-value pair that represents a node label that must be matched
to apply the node affinity.

operator Defines the relationship between the node label and the set of
values in the matchExpression parameters in the pod
specification. This value can be In, NotIn, Exists, DoesNotExist,
Lt, or Gt.

cni_bin_dir (Optional) The default path is /opt/cni/bin. You can override the
default path with the path in your distribution (for
example, /var/opt/cni/bin).

grpcTelemetryPort (Optional) Enter a value for this parameter to override cRPD
telemetry gRPC server default port of 50053.

grpcVrouterPort (Optional) Default is 50052. Configure to override.

vRouterDeployerPort (Optional) Default is 8081. Configure to override.

jcnr-vrouter

55

Table 6: Helm Chart Description for Bare Metal Deployment (Continued)

Key Description

cpu_core_mask If present, this indicates that you want to use static CPU
allocation to allocate cores to the forwarding plane.

This value should be a comma-delimited list of isolated CPU
cores that you want to statically allocate to the forwarding plane
(for example, cpu_core_mask: "2,3,22,23"). Use the cores not used
by the host OS.

Comment this out if you want to use Kubernetes CPU Manager
to allocate cores to the forwarding plane.

NOTE: You cannot use static CPU allocation and Kubernetes
CPU Manager at the same time. Cloud-Native Router
Readiness preflight checks, if enabled, will fail the installation if
you specify both.

guaranteedVrouterCpus If present, this indicates that you want to use the Kubernetes
CPU Manager to allocate CPU cores to the forwarding plane.

This value should be the number of guaranteed CPU cores that
you want the Kubernetes CPU Manager to allocate to the
forwarding plane. You should set this value to at least one more
than the number of forwarding cores.

Comment this out if you want to use static CPU allocation to
allocate cores to the forwarding plane.

NOTE: You cannot use static CPU allocation and Kubernetes
CPU Manager at the same time. Using both can lead to
unpredictable behavior.

dpdkCtrlThreadMask Specifies the CPU core(s) to allocate to vRouter DPDK control
threads when using static CPU allocation. This list should be a
subset of the cores listed in cpu_core_mask and can be the same as
the list in serviceCoreMask.

CPU cores listed in cpu_core_mask but not in serviceCoreMask or
dpdkCtrlThreadMask are allocated for forwarding.

Comment this out if you want to use Kubernetes CPU Manager
to allocate cores to the forwarding plane.

56

Table 6: Helm Chart Description for Bare Metal Deployment (Continued)

Key Description

serviceCoreMask Specifies the CPU core(s) to allocate to vRouter DPDK service
threads when using static CPU allocation. This list should be a
subset of the cores listed in cpu_core_mask and can be the same as
the list in dpdkCtrlThreadMask.

CPU cores listed in cpu_core_mask but not in serviceCoreMask or
dpdkCtrlThreadMask are allocated for forwarding.

Comment this out if you want to use Kubernetes CPU Manager
to allocate cores to the forwarding plane.

numServiceCtrlThreadCPU Specifies the number of CPU cores to allocate to vRouter DPDK
service/control traffic when using the Kubernetes CPU Manager.

This number should be smaller than the number of
guaranteedVrouterCpus cores. The remaining guaranteedVrouterCpus
cores are allocated for forwarding.

Comment this out if you want to use static CPU allocation to
allocate cores to the forwarding plane.

numberOfSchedulerLcores The number of CPU cores that you want Kubernetes CPU
Manager to dedicate to your QoS schedulers. Comment this out
if you want to use static CPU allocation to allocate cores to the
forwarding plane.

restoreInterfaces Set to true to restore the interfaces back to their original state in
case the vRouter pod crashes or restarts or if Cloud-Native
Router is uninstalled.

bondInterfaceConfigs (Optional) Enable bond interface configurations only for L2 or L2-
L3 deployments.

name Name of the bond interface.

mode Set to 1 (active-backup).

slaveInterfaces List of fabric interfaces to be bonded.

57

Table 6: Helm Chart Description for Bare Metal Deployment (Continued)

Key Description

primaryInterface (Optional) Primary interface for the bond.

slaveNetworkDetails Not applicable.

mtu Maximum Transmission Unit (MTU) value for all physical
interfaces (VFs and PFs). Default is 9000.

qosSchedulerProfiles Defines the QoS scheduler profiles that are referenced from the
fabricInterface section.

sched_profile_1 The name of the QoS scheduler profile.

cpu Specify the CPU core(s) to dedicate to the
scheduler. If cpu_core_mask is specified, this should
be a unique additional core(s).

bandwidth Specify the bandwidth in Gbps.

stormControlProfiles Configure the rate limit profiles for BUM traffic on fabric
interfaces in bytes per second. See /Content/l2-bum-rate-
limiting_xi931744_1_1.dita for more details.

dpdkCommandAdditionalArgs Pass any additional DPDK command line parameters. The --
yield_option 0 is set by default and implies the DPDK forwarding
cores will not yield their assigned CPU cores. Other common
parameters that can be added are tx and rx descriptors and
mempool. For example:

dpdkCommandAdditionalArgs: "--yield_option 0 --dpdk_txd_sz
2048 --dpdk_rxd_sz 2048 --vr_mempool_sz 131072"

NOTE: Changing the number of tx and rx descriptors and the
mempool size affects the number of huge pages required. If you
make explicit changes to these parameters, set the number of
huge pages to 10 (x 1 GB).

See "Configure Huge Pages" on page 401 for information on
how to configure huge pages.

58

Table 6: Helm Chart Description for Bare Metal Deployment (Continued)

Key Description

dpdk_monitoring_thread_config (Optional) Enables a monitoring thread for the vRouter DPDK
container. Every loggingInterval seconds, a log containing the
information indicated by loggingMask is generated.

loggingMask Specifies the information to be generated. Represented by a
bitmask with bit positions as follows:

• 0b001 is the nl_counter

• 0b010 is the lcore_timestamp

• 0b100 is the profile_histogram

loggingInterval Specifies the log generation interval in seconds.

ddp (Optional) Indicates the global Dynamic Device Personalization
(DDP) configuration. DDP provides datapath optimization at the
NIC for traffic like GTPU, SCTP, etc. For a bond interface, all slave
interface NICs must support DDP for the DDP configuration to
be enabled. See Enabling Dynamic Device Personalization (DDP)
on Individual Interfaces for more details.

Options include auto, on, or off. Default is off.

NOTE: The interface level ddp takes precedence over the
global ddp configuration.

twampPort (Optional) The TWAMP session reflector port (if you want
TWAMP sessions to use vRouter timestamps). The vRouter
listens to TWAMP test messages on this port and inserts/
overwrites timestamps in TWAMP test messages. Timestamping
TWAMP messages at the vRouter (instead of at cRPD) leads to
more accurate measurements. Valid values are 862 and 49152
through 65535.

If this parameter is absent, then the vRouter does not insert or
overwrite timestamps in the TWAMP session. Timestamps are
taken and inserted by cRPD instead.

See Two-Way Active Measurement Protocol (TWAMP).

59

Table 6: Helm Chart Description for Bare Metal Deployment (Continued)

Key Description

vrouter_dpdk_uio_driver The uio driver is vfio-pci.

agentModeType Options are dpdk or xdp. Set to dpdk to bring up the DPDK
datapath. Set to xdp to use eBPF. Default is dpdk.

Note: xdp is supported for bare metal deployments only. See
"Juniper Cloud-Native Router vRouter Datapath" on page 11 for
more details.

fabricRpfCheckDisable Set to false to enable the RPF check on all Cloud-Native Router
fabric interfaces. By default, RPF check is disabled.

telemetry (Optional) Configures cRPD telemetry settings. To learn more
about telemetry, see Telemetry Capabilities .

disable Set to true to disable cRPD telemetry. Default is false, which
means that cRPD telemetry is enabled by default.

metricsPort The port that the cRPD telemetry exporter is listening to
Prometheus queries on. Default is 8072.

logLevel One of warn, warning, info, debug, trace, or verbose. Default is
info.

gnmi (Optional) Configures cRPD gNMI settings.

enable Set to true to enable the cRPD telemetry exporter to
respond to gNMI requests.

vrouter

telemetry (Optional) Configures vRouter telemetry settings. To learn more
about telemetry, see Telemetry Capabilities .

60

Table 6: Helm Chart Description for Bare Metal Deployment (Continued)

Key Description

metricsPort Specify the port that the vRouter telemetry
exporter listens to Prometheus queries on. Default
is 8070.

logLevel One of warn, warning, info, debug, trace, or verbose.
Default is info.

gnmi (Optional) Configures vRouter gNMI settings.

enable - Set to true to enable the vRouter telemetry
exporter to respond to gNMI requests.

persistConfig Set to true if you want Cloud-Native Router pod configuration to
persist even after uninstallation. This option can only be set for
L2 mode deployments. Default is false.

enableLocalPersistence Set to true if you're using the cRPD CLI or NETCONF to
configure JCNR. When set to true, the cRPD CLI and NETCONF
configuration persists through node reboots, cRPD pod restarts,
and Cloud-Native Router upgrades. Default is false.

interfaceBoundType Not applicable.

networkDetails Not applicable.

networkResources Not applicable.

contrail-tools

install Set to true to install contrail-tools (used for debugging).

61

Customize Cloud-Native Router Configuration

SUMMARY

Read this topic to understand how to customize
Cloud-Native Router configuration using a Configlet
custom resource.

IN THIS SECTION

Configlet Custom Resource | 62

Configuration Examples | 62

Applying the Configlet Resource | 64

Modifying the Configlet | 69

Troubleshooting | 70

Configlet Custom Resource

Starting with Juniper Cloud-Native Router (JCNR) Release 24.2, we support customizing Cloud-Native
Router configuration using a configlet custom resource. The configlet can be generated either by
rendering a predefined template of supported Junos configuration or using raw configuration. The
generated configuration is validated and deployed on the Cloud-Native Router controller (cRPD) as one
or more Junos configuration groups.

NOTE: You can configure Cloud-Native Router using either configlets or the cRPD CLI or
NETCONF. If you use the cRPD CLI or NETCONF, be sure to enable local persistence in
values.yaml (enableLocalPersistence: true) so that your CLI or NETCONF configuration
persists across reboots and upgrades.

NOTE: Using both configlets and the cRPD CLI or NETCONF to configure Cloud-Native
Router may lead to unpredictable behavior. Use one or the other, but not both.

Configuration Examples

You create a configlet custom resource of the kind Configlet in the jcnr namespace. You provide raw
configuration as Junos set commands.

62

https://www.juniper.net/documentation/us/en/software/junos/cli/topics/topic-map/configuration-groups-usage.html

Use crpdSelector to control where the configlet applies. The generated configuration is deployed to cRPD
pods on nodes matching the specified label only. If crpdSelector is not defined, the configuration is
applied to all cRPD pods in the cluster.

An example configlet yaml is provided below:

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample # <-- Configlet resource name
 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address 10.10.10.1/32
 crpdSelector:
 matchLabels:
 node: worker # <-- Node label to select the cRPD pods

You can also use a templatized configlet yaml that contains keys or variables. The values for variables are
provided by a configletDataValue custom resource, referenced by configletDataValueRef . An example
templatized configlet yaml is provided below:

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample-with-template # <-- Configlet resource name
 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address {{ .Ip }}
 crpdSelector:
 matchLabels:
 node: worker # <-- Node label to select the cRPD pods
 configletDataValueRef:
 name: "configletdatavalue-sample" # <-- Configlet Data Value resource name

To render configuration using the template, you must provide key:value pairs in the ConfigletDataValue
custom resource:

apiVersion: configplane.juniper.net/v1
kind: ConfigletDataValue

63

metadata:
 name: configletdatavalue-sample
 namespace: jcnr
spec:
 data: {
 "Ip": "127.0.0.1" # <-- Key:Value pair
 }

The generated configuration is validated and applied to all or selected cRPD pods as a Junos
Configuration Group.

Applying the Configlet Resource

The configlet resource can be used to apply configuration to selected or all cRPD pods either when
Cloud-Native Router is deployed or once the cRPD pods are up and running. Let us look at configlet
deployment in detail.

Applying raw configuration

1. Create raw configuration configlet yaml. The example below configures a loopback interface in cRPD.

cat configlet-sample.yaml

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample
 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address 10.10.10.1/32
 crpdSelector:
 matchLabels:
 node: worker

64

https://www.juniper.net/documentation/us/en/software/junos/cli/topics/topic-map/configuration-groups-usage.html
https://www.juniper.net/documentation/us/en/software/junos/cli/topics/topic-map/configuration-groups-usage.html

2. Apply the configuration using the kubectl apply command.

kubectl apply -f configlet-sample.yaml

configlet.configplane.juniper.net/configlet-sample created

3. Check on the configlet.

When a configlet resource is deployed, it creates additional node configlet custom resources, one for
each node matched by the crpdSelector.

kubectl get nodeconfiglets -n jcnr

NAME AGE
configlet-sample-node1 10m

If the configuration defined in the configlet yaml is invalid or fails to deploy, you can view the error
message using kubectl describe for the node configlet custom resource.

For example:

kubectl describe nodeconfiglet configlet-sample-node1 -n jcnr

The following output has been trimmed for brevity:

Name: configlet-sample-node1
Namespace: jcnr
Labels: core.juniper.net/nodeName=node1
Annotations: <none>
API Version: configplane.juniper.net/v1
Kind: NodeConfiglet
Metadata:
 Creation Timestamp: 2024-06-13T16:51:23Z
 ...
Spec:
 Clis:
 set interfaces lo0 unit 0 address 10.10.10.1/32
 Group Name: configlet-sample

65

 Node Name: node1
Status:
 Message: load-configuration failed: syntax error
 Status: False
Events: <none>

4. Optionally, verify the configuration on the Access cRPD CLI shell in CLI mode. Note that the
configuration is applied as a configuration group named after the configlet resource.

show configuration groups configlet-sample

interfaces {
 lo0 {
 unit 0 {
 family inet {
 address 10.10.10.1/32;
 }
 }
 }
}

NOTE: The configuration generated using configlets is applied to cRPD as configuration
groups. We therefore recommend that you not use configuration groups when
specifying your configlet.

Applying templatized configuration

1. Create the templatized configlet yaml and the configlet data value yaml for key:value pairs.

cat configlet-sample-template.yaml

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample-template
 namespace: jcnr

66

spec:
 config: |-
 set interfaces lo0 unit 0 family inet address {{ .Ip }}
 crpdSelector:
 matchLabels:
 node: master
 configletDataValueRef:
 name: "configletdatavalue-sample"

cat configletdatavalue-sample.yaml

apiVersion: configplane.juniper.net/v1
kind: ConfigletDataValue
metadata:
 name: configletdatavalue-sample
 namespace: jcnr
spec:
 data: {
 "Ip": "127.0.0.1"
 }

2. Apply the configuration using the kubectl apply command, starting with the config data value yaml.

kubectl apply -f configletdatavalue-sample.yaml

configletdatavalue.configplane.juniper.net/configletdatavalue-sample created

kubectl apply -f configlet-sample-template.yaml

configlet.configplane.juniper.net/configlet-sample-template created

3. Check on the configlet.

67

When a configlet resource is deployed, it creates additional node configlet custom resources, one for
each node matched by the crpdSelector.

kubectl get nodeconfiglets -n jcnr

NAME AGE
configlet-sample-template-node1 10m

If the configuration defined in the configlet yaml is invalid or fails to deploy, you can view the error
message using kubectl describe for the node configlet custom resource.

For example:

kubectl describe nodeconfiglet configlet-sample-template-node1 -n jcnr

The following output has been trimmed for brevity:

Name: configlet-sample-template-node1
Namespace: jcnr
Labels: core.juniper.net/nodeName=node1
Annotations: <none>
API Version: configplane.juniper.net/v1
Kind: NodeConfiglet
Metadata:
 Creation Timestamp: 2024-06-13T16:51:23Z
 ...
Spec:
 Clis:
 set interfaces lo0 unit 0 address 10.10.10.1/32
 Group Name: configlet-sample-template
 Node Name: node1
Status:
 Message: load-configuration failed: syntax error
 Status: False
Events: <none>

68

4. Optionally, verify the configuration on the Access cRPD CLI shell in CLI mode. Note that the
configuration is applied as a configuration group named after the configlet resource.

show configuration groups configlet-sample-template

interfaces {
 lo0 {
 unit 0 {
 family inet {
 address 127.0.0.1/32;
 }
 }
 }
}

Modifying the Configlet

You can modify a configlet resource by changing the yaml file and reapplying it using the kubectl apply
command.

kubectl apply -f configlet-sample.yaml

configlet.configplane.juniper.net/configlet-sample configured

Any changes to existing configlet resource are reconciled by replacing the configuration group on cRPD.

You can delete the configuration group by deleting the configlet resource using the kubectl delete
command.

kubectl delete configlet configlet-sample -n jcnr

configlet.configplane.juniper.net "configlet-sample" deleted

69

Troubleshooting

If you run into problems, check the contrail-k8s-deployer logs. For example:

kubectl logs contrail-k8s-deployer-8ff895cc5-cbfwm -n contrail-deploy

Cloud-Native Router Operator Service Module:
Host-Based Routing

SUMMARY

The Cloud-Native Router Operator Service Module is
an operator framework that we use to develop cRPD
applications and solutions. This section describes
how to use the Service Module to implement a host-
based routing solution for your Kubernetes cluster.

IN THIS SECTION

Overview | 70

Install Host-Based Routing | 72

Prepare the Nodes | 76

Create Virtual Ethernet Interface (VETH) Pairs
and Configure Static Routes | 78

Install the Operator Service Module | 81

Set Up Secondary CNI for Host-Based
Routing | 83

Overview

We provide the Cloud-Native Router Operator Service Module to implement a cRPD host-based routing
solution for your Kubernetes cluster. Host-based routing, also known as host-based networking, refers
to using the host's network namespace instead of the Kubernetes default namespace for the pod
network. In the context of Cloud-Native Router, this means that pod-to-pod traffic traverses an external
(to the cluster) network provided by cRPD.

The Kubernetes CNI exposes container network endpoints through BGP to a co-located (but
independent) cRPD instance acting as a BGP peer. Packets between pods are routed by the Kubernetes
CNI to this cRPD instance. This cRPD instance, in turn, routes the packets to the cRPD instance on the
destination node for hand-off to the destination Kubernetes CNI for delivery to the destination pod.

70

By taking this approach to Kubernetes host networking, we are leveraging Cloud-Native Router to
provide a more fulsome pod networking implementation that supports common data center protocols
such as EVPN-VXLAN and MPLS over UDP.

Figure 3 on page 71 shows a Kubernetes cluster leveraging cRPD for host-based routing. The Calico
BGP speaker in the cluster connects through a virtual Ethernet (veth) interface to a co-located cRPD
instance attached to the IP fabric interconnecting cluster nodes.

Figure 3: Host-Based Routing

To facilitate the installation of this host-based routing solution, we provide a Helm chart that you can
install and we show you how to configure and customize cRPD and the underlying network
infrastructure to support a 5-node cluster (3 control plane nodes and 2 worker nodes).

71

Install Host-Based Routing

This is the main procedure. Start here.
1. "Prepare the Nodes" on page 76.

2. "Create Virtual Ethernet Interface (VETH) Pairs and Configure Static Routes" on page 78.

3. Pick one of the control plane nodes as the installation host and install Helm on it. The installation
host is where you'll install the Helm chart.

curl -sL https://get.helm.sh/helm-v3.9.4-linux-amd64.tar.gz

tar -xvzf helm-v3.9.4-linux-amd64.tar.gz

sudo mv linux-amd64/helm /usr/local/bin/helm

rm -rf linux-amd64

4. Install cRPD on all nodes.

For convenience, we provide an example script ("Example cRPD Installation Script" on page 418)
that installs cRPD on a node. Run the script with the respective configuration file on each node.

./install-crpd.sh

For more information on how to install cRPD, see https://www.juniper.net/documentation/us/en/
software/crpd/crpd-deployment/index.html.

5. Verify that the veth-crpd interface is reachable from the local host.

For example:

ping 10.1.1.2

6. Verify that BGP sessions are established between cRPDs and check the routing table.

a. Exec into the cRPD container on the local node.

sudo podman exec -it <crpd-container> bash

72

https://www.juniper.net/documentation/us/en/software/crpd/crpd-deployment/index.html
https://www.juniper.net/documentation/us/en/software/crpd/crpd-deployment/index.html

where <crpd-container> is the name of the cRPD container running on the local node.

b. Enter CLI mode.

cli

c. Check that BGP sessions have been established.

show bgp summary

If you're on a control plane node, then you'll see BGP sessions established between the local
cRPD instance and the cRPD instances on all other nodes. If you're on a worker node, then you'll
see BGP sessions established between the local cRPD instance and the cRPD instances on all
the control plane nodes.

d. Check that veth-k8s routes are in the routing table.

show route table master-calico-ri.inet.0

Make sure that the veth-k8s routes (for example, 10.1.1.1, 10.1.2.1, 10.1.3.1, 10.1.4.1, 10.1.5.1)
are in the routing table.

7. Verify that veth-k8s interfaces are reachable from each node to all other nodes.

For example:

ping 10.1.5.1

8. Configure the kubelet on all nodes to use the local veth-k8s IPv4 address as the node IP.

echo "KUBELET_EXTRA_ARGS=--node-ip=<veth-k8s-ip>" | sudo tee /etc/default/kubelet > /dev/
null

where <veth-k8s-ip> is the <veth-k8s> IPv4 address as shown in Table 7 on page 78 (minus the /30
subnet qualifier).

sudo systemctl restart kubelet

Perform this step on all nodes, but use the respective <veth-k8s> IPv4 addresses.

9. Create the first control plane node in the Kubernetes cluster.

73

Log in to one of the control plane nodes and create the cluster.

sudo kubeadm init --pod-network-cidr=<pod-cidr> --apiserver-advertise-address=<veth-k8s-ip>
--control-plane-endpoint=<veth-k8s-ip> --upload-certs

where <pod-cidr> is 192.168.0.0/24 in our example (or if running dual stack
192.168.0.0/24,2001:db8:42:0::56),

and <veth-k8s-ip> is the <veth-k8s> IPv4 address of the local control plane node.

10. Log in to each of the other two control plane nodes and join each to the cluster.

For example:

kubeadm join 10.1.1.1:6443 <options> --control-plane

11. Log in to each of the two worker nodes and join each to the cluster.

For example:

kubeadm join 10.1.1.1:6443 <options>

12. Verify that all nodes are now part of the cluster.

kubectl get nodes

13. Untaint all control plane nodes so that all pods can run on them.

kubectl taint nodes --all node-role.kubernetes.io/control-plane-

14. Install Calico.

See https://docs.tigera.io/calico/latest/getting-started/kubernetes/quickstart#install-calico.

15. Configure Calico.

a. Disable nodeMesh and set the AS number and listen port.

kubectl apply -f bgpconfig.yaml

See "BGP Configuration Example" on page 436.

74

https://docs.tigera.io/calico/latest/getting-started/kubernetes/quickstart#install-calico

b. Configure the IPv4 address pool with no IP-IP or VxLAN encapsulation.

kubectl apply -f ippool-v4.yaml

See "IP Pool Configuration Example" on page 436.

c. (Optional) If you're running a dual stack setup, then configure the IPv6 address pool.

kubectl apply -f ippool-v6.yaml

See "IP Pool Configuration Example" on page 436.

d. Configure the IPv4 BGP peering relationships.

kubectl apply -f bgppeers-v4.yaml

See "BGP Peer Configuration Example" on page 437.

e. (Optional) If you're running a dual stack setup, then configure the IPv6 BGP peering
relationships.

kubectl apply -f bgppeers-v6.yaml

See "BGP Peer Configuration Example" on page 437.

16. Verify that BGP sessions are established between the Calico CNI and the co-located cRPD.

a. Exec into the cRPD container on the local node.

sudo podman exec -it <crpd-container> bash

where <crpd-container> is the name of the cRPD container running on the local node.

b. Enter CLI mode.

cli

c. Check that BGP sessions have been established.

show bgp summary

75

In addition to the BGP sessions that you saw earlier between cRPDs, you'll see a BGP session
established between the local cRPD and the Calico CNI.

17. "Install the Operator Service Module" on page 81.

18. (Optional) If you want to set up a secondary CNI that also uses cRPD, then see "Set Up Secondary
CNI for Host-Based Routing" on page 83.

Prepare the Nodes

Perform the following steps on all the nodes (VMs or bare metal servers) that you want to be in your
cluster. All nodes should have at least 2 interfaces:

• one interface for regular management access (for example, SSH)

• one interface for cRPD to connect to the IP fabric

1. Install a fresh OS.

We tested our host-based routing solution on the following combination:

• Ubuntu 22.04

• Linux kernel 5.15.0-88-generic

2. Update the repository list and install podman.

sudo apt update

sudo install -y podman

3. Install the required kernel modules on all nodes in the cluster.

Create /etc/modules-load.d/jcnr.conf and populate it with the following list of kernel modules:

overlay
br_netfilter
8021q
uio_pci_generic
vfio-pci
tun
fou
fou6
ipip
ip_tunnel

76

ip6_tunnel
mpls_gso
mpls_router
mpls_iptunnel
vrf
vxlan

4. Enable IP forwarding and iptables on the underlay Linux bridges.

Create /etc/sysctl.d/99-kubernetes-cri.conf and populate it with the following configuration:

net.bridge.bridge-nf-call-iptables = 1
net.ipv4.ip_forward = 1
net.bridge.bridge-nf-call-ip6tables = 1
net.ipv6.conf.all.forwarding = 1
net.ipv6.conf.default.addr_gen_mode = 0
net.ipv6.conf.all.addr_gen_mode = 0
net.ipv6.conf.default.autoconf = 0
net.ipv6.conf.all.autoconf = 0

Additionally, set the following in /etc/sysctl.conf:

net.ipv4.ip_forward = 1
net.ipv6.conf.all.forwarding = 1

NOTE: The above enables IP forwarding and iptables for both IPv4 and IPv6. If you're
only running IPv4, then omit the IPv6 settings.

5. Set the MAC address policy.

sudo sed -i 's/MACAddressPolicy=.*/MACAddressPolicy=none/' /usr/lib/systemd/network/99-
default.link

6. Install kubeadm, kubelet, and kubectl. See https://kubernetes.io/docs/setup/production-
environment/tools/kubeadm/install-kubeadm/.

We tested our host-based routing solution on Kubernetes version 1.28.15.

7. Reboot.

77

https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/

Create Virtual Ethernet Interface (VETH) Pairs and Configure Static
Routes

Before we bring up the Kubenetes cluster and cRPD, we'll create the veth interfaces that connect them
together and configure static routes to direct traffic to the cRPD instance.

On each node, we'll run the Kubernetes cluster (including the Calico BGP speaker) in the Kubernetes
default namespace and we'll run cRPD in a namespace that we'll call crpd. We'll create a veth pair that
connects the two namespaces, from veth-k8s in the default namespace to veth-crpd in the crpd namespace.

This is shown in Table 7 on page 78 along with the IP address assignments we'll use in our example.
This includes both IPv4 and IPv6 addresses for a dual stack deployment. If you're only running IPv4,
then ignore the IPv6 settings.

Table 7: Namespace and Interface Configuration (Example)

Node Namespace Interface IP Address

Node 1 (control plane) default veth-k8s 10.1.1.1/30

2001:db8:1::1/126

crpd veth-crpd 10.1.1.2/30

2001:db8:1::2/126

ens41 192.168.1.101/24

Node 2 (control plane) default veth-k8s 10.1.2.1/30

2001:db8:2::1/126

crpd veth-crpd 10.1.2.2/30

2001:db8:2::2/126

ens41 192.168.1.102/24

Node 3 (control plane) default veth-k8s 10.1.3.1/30

2001:db8:3::1/126

78

Table 7: Namespace and Interface Configuration (Example) (Continued)

Node Namespace Interface IP Address

crpd veth-crpd 10.1.3.2/30

2001:db8:2::2/126

ens41 192.168.1.103/24

Node 4 (worker) default veth-k8s 10.1.4.1/30

2001:db8:4::1/126

crpd veth-crpd 10.1.4.2/30

2001:db8:4::2/126

ens41 192.168.1.104

Node 5 (worker) default veth-k8s 10.1.5.1/30

2001:db8:5::1/126

crpd veth-crpd 10.1.5.2/30

2001:db8:5::2/126

ens41 192.168.1.105/24

1 This is the physical underlay interface connecting cRPD to the IP fabric. The interface name in your setup may
differ.

Perform the following steps on all nodes in the cluster. Remember to set the IP addresses for the
different nodes as shown in Table 7 on page 78.

1. Create veth-k8s and veth-crpd and pair them together.

79

a. Create the veth interface pair.

sudo ip link add dev veth-k8s type veth peer name veth-crpd

By default, both interfaces are in the default namespace. We'll move veth-crpd to the crpd
namespace in a later step.

b. Enable these 2 veth interfaces.

sudo ip link set dev veth-k8s up

sudo ip link set dev veth-crpd up

c. Configure the IP address on the veth-k8s interface.

sudo ip addr add 10.1.1.1/30 dev veth-k8s

We'll configure the IP address for the veth-crpd interface in a later step.

d. (Optional) If you want to run a dual IPv4/IPv6 stack setup, then configure the IPv6 address on the
same veth-k8s interface.

sudo ip addr add 2001:db8:1::1/126 dev veth-k8s

We'll configure the IPv6 address for the veth-crpd interface in a later step.

2. Create the crpd namespace for cRPD.

sudo ip netns add crpd

3. Move veth-crpd to the crpd namespace.

a. Assign the physical underlay interface to the crpd namespace. This is the interface that connects
cRPD to the IP fabric.

For example:

sudo ip link set ens4 netns crpd

where ens4 is the physical interface (in our example) that connects to the IP fabric.

80

b. Configure the IP address for the ens4 interface.

sudo ip netns exec crpd ifconfig ens4 192.168.1.101/24 up

where 192.168.1.0/24 is the underlay subnet connecting to the IP fabric.

c. Assign the veth-crpd interface to the crpd namespace.

sudo ip link set veth-crpd netns crpd

d. Configure the IP address for the veth-crpd interface.

sudo ip netns exec crpd ifconfig veth-crpd 10.1.1.2/30 up

e. (Optional) If you want to run a dual IPv4/IPv6 stack setup, then configure the IPv6 address for the
veth-crpd interface.

sudo ip netns exec crpd ip addr add 2001:db8:1::2/126 dev veth-crpd

4. In the default namespace, configure a route to all cRPD interfaces.

sudo ip route add 10.1.0.0/16 via 10.1.1.2

5. Repeat step 1 through step 4 for Nodes 2 through 5 according to Table 7 on page 78.

Install the Operator Service Module

Run these steps on the nodes indicated. The installation host is the control plane node where you
installed Helm earlier.
1. On the installation host, create the jcnr namespace.

kubectl create ns jcnr

2. On the installation host, create and apply the JCNR secret.

81

Create a jcnr-secrets.yaml file with the below contents.

apiVersion: v1
kind: Secret
metadata:
 name: jcnr-secrets
 namespace: jcnr
type: Opaque
data:
 root-password: <password>
 crpd-license: <crpd-license>

where <password> is the base64-encoded string of the root password and <crpd-license> is the
base64-encoded cRPD license. For more information on installing your cRPD license, see "Installing
Your License" on page 353.

Apply the secret.

kubectl apply -f jcnr-secrets.yaml

3. On all nodes, create /etc/crpd/crpd_conf.yaml with the content below.

management_ip: <veth-crpd-ip>

where <veth-crpd-ip> is the IPv4 address of the <veth-crpd> interface on the local node.

4. On the installation host, download the Cloud-Native Router Operator Service Module package.

You can download the Service Module package from the Juniper Networks software download site.
See "Cloud-Native Router Software Download Packages" on page 387.

5. Gunzip and untar the software package.

tar -xzvf Juniper_Cloud_Native_Router_Service_Module_<release>.tar.gz

6. Load the provided images on all nodes in the cluster. The images are located in the downloaded
package.

See "Deploy Prepackaged Images" on page 399.

7. On the installation host, extract the Cloud-Native Operator Service Module Helm chart.

82

a. Navigate to the Helm chart directory.

cd Juniper_Cloud_Native_Router_Service_Module_<release>/helmchart

b. Extract the Helm chart.

tar -xzvf jcnr-gwsvc-<release>.tgz

8. Apply the Helm chart.

cd jcnr-gwsvc

helm upgrade --install --wait svc . --set
controller.nodeAffinity[0].operator=Exists,controller.nodeAffinity[0].key=node-
role.kubernetes.io/control-
plane,global.hostBasedNetworking=true,replicaCount=3,controller.image.pullPolicy=IfNotPresent,
crd_loader.pullPolicy=IfNotPresent

Set the replicaCount to the number of control plane nodes in the cluster.

9. After a few minutes, verify that the cluster is up and running.

kubectl get pods -A

helm ls

Set Up Secondary CNI for Host-Based Routing

This procedure shows an example of how to set up a secondary MACVLAN CNI and a secondary
IPVLAN CNI for host-based routing.
1. On the installation host, install multus.

See https://github.com/k8snetworkplumbingwg/multus-cni/blob/master/docs/quickstart.md.

83

https://github.com/k8snetworkplumbingwg/multus-cni/blob/master/docs/quickstart.md

2. On all nodes, create the veth interface pairs for MACVLAN.

sudo ip link add dev host-end type veth peer name vrf-end
sudo ip link set dev host-end up
sudo ip link set dev vrf-end up
sudo ip link set vrf-end netns crpd

where host-end is the veth endpoint on the Kubernetes cluster and vrf-end is the veth endpoint on
cRPD.

3. On all nodes, create the veth interface pairs for IPVLAN.

sudo ip link add dev ipvlan-host type veth peer name ipvlan-vrf
sudo ip link set dev ipvlan-host up
sudo ip link set dev ipvlan-vrf up
sudo ip link set ipvlan-vrf netns crpd

where ipvlan-host is the veth endpoint on the Kubernetes cluster and ipvlan-vrf is the veth endpoint
on cRPD.

4. For IPVLAN, on all nodes, enable proxy ARP on ipvlan-vrf.

sudo ip netns exec crpd bash
echo "1" > /proc/sys/net/ipv4/conf/ipvlan-vrf/proxy_arp
exit

5. Check the interfaces on all nodes.

sudo ip netns exec crpd ifconfig

If, for some reason, the interfaces are not up, set them up from cRPD as follows:

sudo ip netns exec crpd ip link set dev vrf-end up

sudo ip netns exec crpd ip link set dev ipvlan-vrf up

84

6. On the installation host, create and apply the default VxLAN and route target pools.

kubectl apply -f vxlan-pool.yaml

kubectl apply -f rt-pool.yaml

See "Host-Based Routing: Example VxLAN and Route Target Pools" on page 440.

7. Label all the nodes.

kubectl label nodes <cp-nodename> master=""
kubectl label nodes <worker-nodename> worker=""

where <cp-nodename> and <worker-nodename> are the node names of the control plane and
worker nodes respectively.

8. Configure JCNR.

kubectl create ns hbn

kubectl apply -f jcnr-config.yaml

See "JCNR Configuration" on page 441.

9. Apply the MACVLAN custom resource.

kubectl apply -f macvlan-cr.yaml

See "Example MACVLAN Custom Resource" on page 442.

10. Create MACVLAN pods.

kubectl apply -f macvlan-pods.yaml

See "Example MACVLAN Pods" on page 445.

11. Apply the IPVLAN custom resource.

kubectl apply -f ipvlan-cr.yaml

85

See "Example IPVLAN Custom Resource" on page 447.

12. Create IPVLAN pods.

kubectl apply -f ipvlan-pods.yaml

See "Example IPVLAN Pods" on page 450.

86

3
CHAPTER

Install Cloud-Native Router on Red
Hat OpenShift

IN THIS CHAPTER

Install and Verify Juniper Cloud-Native Router for OpenShift Deployment |
 88

System Requirements for OpenShift Deployment | 98

Customize Cloud-Native Router Helm Chart for OpenShift Deployment |
 111

Customize Cloud-Native Router Configuration | 126

Install and Verify Juniper Cloud-Native Router for
OpenShift Deployment

SUMMARY

The Juniper Cloud-Native Router (cloud-native
router) uses the the JCNR-Controller (cRPD) to
provide control plane capabilities and JCNR-CNI to
provide a container network interface. Juniper
Cloud-Native Router uses the DPDK-enabled
vRouter to provide high-performance data plane
capabilities and Syslog-NG to provide notification
functions. This section explains how you can install
these components of the Cloud-Native Router on
Red Hat OpenShift Container Platform (OCP).

IN THIS SECTION

Install Juniper Cloud-Native Router Using
Helm Chart | 88

Verify Installation | 92

Install Juniper Cloud-Native Router Using Helm Chart

Read this section to learn the steps required to install the cloud-native router components using Helm
charts.

1. Review the "System Requirements for OpenShift Deployment" on page 98 to ensure the cluster
has all the required configuration.

2. Download the desired Cloud-Native Router software package to the directory of your choice.

You have the option of downloading the package to install Cloud-Native Router only or
downloading the package to install JNCR together with Juniper cSRX. See "Cloud-Native Router
Software Download Packages" on page 387 for a description of the packages available. If you don't
want to install Juniper cSRX now, you can always choose to install Juniper cSRX on your working
Cloud-Native Router installation later.

3. Expand the file Juniper_Cloud_Native_Router_release-number.tgz.

tar xzvf Juniper_Cloud_Native_Router_release-number.tgz

4. Change directory to the main installation directory.

88

• If you're installing Cloud-Native Router only, then:

cd Juniper_Cloud_Native_Router_<release>

This directory contains the Helm chart for Cloud-Native Router only.

• If you're installing Cloud-Native Router and cSRX at the same time, then:

cd Juniper_Cloud_Native_Router_CSRX_<release>

This directory contains the combination Helm chart for Cloud-Native Router and cSRX.

NOTE: All remaining steps in the installation assume that your current working
directory is now either Juniper_Cloud_Native_Router_<release> or
Juniper_Cloud_Native_Router_CSRX_<release>.

5. View the contents in the current directory.

ls
helmchart images README.md scripts secrets

6. Change to the helmchart directory and expand the Helm chart.

cd helmchart

• For Cloud-Native Router only:

ls
jcnr-<release>.tgz

tar -xzvf jcnr-<release>.tgz

ls
jcnr jcnr-<release>.tgz

The Helm chart is located in the jcnr directory.

89

• For the combined Cloud-Native Router and cSRX:

ls
jcnr_csrx-<release>.tgz

tar -xzvf jcnr_csrx-<release>.tgz

ls
jcnr_csrx jcnr_csrx-<release>.tgz

The Helm chart is located in the jcnr_csrx directory.

7. The Cloud-Native Router container images are required for deployment. Choose one of the
following options:

• Configure your cluster to deploy images from the Juniper Networks enterprise-hub.juniper.net
repository. See "Configure Repository Credentials" on page 398 for instructions on how to
configure repository credentials in the deployment Helm chart.

• Configure your cluster to deploy images from the images tarball included in the downloaded
Cloud-Native Router software package. See "Deploy Prepackaged Images" on page 399 for
instructions on how to import images to the local container runtime.

8. Follow the steps in "Installing Your License" on page 353 to install your Cloud-Native Router
license.

9. Enter the root password for your host server into the secrets/jcnr-secrets.yaml file at the following
line:

 root-password: <add your password in base64 format>

You must enter the password in base64-encoded format. Encode your password as follows:

echo -n "password" | base64 -w0

Copy the output of this command into secrets/jcnr-secrets.yaml.

90

10. Apply secrets/jcnr-secrets.yaml to the cluster.

kubectl apply -f secrets/jcnr-secrets.yaml
namespace/jcnr created
secret/jcnr-secrets created

11. If desired, configure how cores are assigned to the vRouter DPDK containers. See "Allocate CPUs
to the Cloud-Native Router Forwarding Plane" on page 355.

12. Customize the Helm chart for your deployment using the helmchart/jcnr/values.yaml or
helmchart/jcnr_csrx/values.yaml file.

See "Customize Cloud-Native Router Helm Chart for OpenShift Deployment" on page 111 for
descriptions of the Helm chart configurations.

13. Optionally, customize Cloud-Native Router configuration.

See "Customize Cloud-Native Router Configuration " on page 62 for creating and applying the
cRPD customizations.

14. If you're installing Juniper cSRX now, then follow the procedure in "Apply the cSRX License and
Configure cSRX" on page 338.

15. Deploy the Juniper Cloud-Native Router using the Helm chart.

Navigate to the helmchart/jcnr or the helmchart/jcnr_csrx directory and run the following
command:

helm install jcnr .

or

helm install jcnr-csrx .

NAME: jcnr
LAST DEPLOYED: Fri Dec 22 06:04:33 2023
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None

16. Confirm Juniper Cloud-Native Router deployment.

helm ls

91

Sample output:

NAME NAMESPACE REVISION UPDATED
STATUS CHART APP VERSION
jcnr default 1 2023-12-22 06:04:33.144611017 -0400 EDT
deployed jcnr-<version> <version>

Verify Installation

This section enables you to confirm a successful Cloud-Native Router deployment.

NOTE: The output shown in this example procedure is affected by the number of nodes
in the cluster. The output you see in your setup may differ in that regard.

1. Verify the state of the Cloud-Native Router pods by issuing the kubectl get pods -A command.

The output of the kubectl command shows all of the pods in the Kubernetes cluster in all namespaces.
Successful deployment means that all pods are in the running state. In this example we have marked
the Juniper Cloud-Native Router Pods in bold. For example:

kubectl get pods -A

NAMESPACE NAME READY

STATUS RESTARTS AGE

contrail jcnr-0-dp-contrail-vrouter-nodes-b2jxp 2/2

Running 0 16d

contrail jcnr-0-dp-contrail-vrouter-nodes-vrdpdk-g7wrk 1/1

Running 0 16d

jcnr jcnr-0-crpd-0 1/1

Running 0 16d

jcnr syslog-ng-vh89p 1/1

Running 0 16d

openshift-cluster-node-tuning-operator tuned-zccwc 1/1

Running 8 69d

openshift-dns dns-default-wmchn 2/2

Running 14 69d

92

openshift-dns node-resolver-dm9b7 1/1

Running 8 69d

openshift-image-registry image-pruner-28212480-bpn9w 0/1

Completed 0 2d11h

openshift-image-registry image-pruner-28213920-9jk74 0/1

Completed 0 35h

openshift-image-registry node-ca-jbwlx 1/1

Running 8 69d

openshift-ingress-canary ingress-canary-k6jqs 1/1

Running 8 69d

openshift-ingress router-default-55dff9cbc5-kz8bg 1/1

Running 1 62d

openshift-kni-infra coredns-node-warthog-41 2/2

Running 16 69d

openshift-kni-infra keepalived-node-warthog-41 2/2

Running 14 69d

openshift-machine-config-operator machine-config-daemon-w8fbh 2/2

Running 16 69d

openshift-monitoring alertmanager-main-1 6/6

Running 7 62d

openshift-monitoring node-exporter-rbht9 2/2

Running 15 69d

openshift-monitoring prometheus-adapter-7d77cfb894-nx29s 1/1

Running 0 6d18h

openshift-monitoring prometheus-k8s-1 6/6

Running 6 62d

openshift-monitoring prometheus-operator-admission-webhook-7d4759d465-mv98x 1/1

Running 1 62d

openshift-monitoring thanos-querier-6d77dcb87-c4pr6 6/6

Running 6 62d

openshift-multus multus-additional-cni-plugins-jbrv2 1/1

Running 8 69d

openshift-multus multus-x2ddp 1/1

Running 8 69d

openshift-multus network-metrics-daemon-tg528 2/2

Running 16 69d

openshift-network-diagnostics network-check-target-mqr4t 1/1

Running 8 69d

openshift-operator-lifecycle-manager collect-profiles-28216020-66xqc 0/1

Completed 0 6m8s

openshift-ovn-kubernetes ovnkube-node-d4g2s 5/5

Running 37 69d

93

2. Verify the Cloud-Native Router daemonsets by issuing the kubectl get ds -A command.

Use the kubectl get ds -A command to get a list of daemonsets. The Cloud-Native Router daemonsets
are highlighted in bold text.

kubectl get ds -A

NAMESPACE NAME DESIRED CURRENT READY UP-TO-DATE

AVAILABLE NODE SELECTOR AGE

contrail jcnr-0-dp-contrail-vrouter-nodes 1 1 1 1

1 <none> 16d

contrail jcnr-0-dp-contrail-vrouter-nodes-vrdpdk 1 1 1 1

1 <none> 16d

jcnr syslog-ng 1 1 1 1

1 <none> 16d

openshift-cluster-node-tuning-operator tuned 5 5 5 5

5 kubernetes.io/os=linux 69d

openshift-dns dns-default 5 5 5 5

5 kubernetes.io/os=linux 69d

openshift-dns node-resolver 5 5 5 5

5 kubernetes.io/os=linux 69d

openshift-image-registry node-ca 5 5 5 5

5 kubernetes.io/os=linux 69d

openshift-ingress-canary ingress-canary 2 2 2 2

2 kubernetes.io/os=linux 69d

openshift-machine-api ironic-proxy 3 3 3 3

3 node-role.kubernetes.io/master= 69d

openshift-machine-config-operator machine-config-daemon 5 5 5 5

5 kubernetes.io/os=linux 69d

openshift-machine-config-operator machine-config-server 3 3 3 3

3 node-role.kubernetes.io/master= 69d

openshift-monitoring node-exporter 5 5 5 5

5 kubernetes.io/os=linux 69d

openshift-multus multus 5 5 5 5

5 kubernetes.io/os=linux 69d

openshift-multus multus-additional-cni-plugins 5 5 5 5

5 kubernetes.io/os=linux 69d

openshift-multus network-metrics-daemon 5 5 5 5

5 kubernetes.io/os=linux 69d

openshift-network-diagnostics network-check-target 5 5 5 5

94

5 beta.kubernetes.io/os=linux 69d

openshift-ovn-kubernetes ovnkube-master 3 3 3 3

3 beta.kubernetes.io/os=linux,node-role.kubernetes.io/master= 69d

openshift-ovn-kubernetes ovnkube-node 5 5 5 5 5

beta.kubernetes.io/os=linux 69d

3. Verify the Cloud-Native Router statefulsets by issuing the kubectl get statefulsets -A command.

The command output provides the statefulsets.

kubectl get statefulsets -A

NAMESPACE NAME READY AGE
jcnr jcnr-0-crpd 1/1 16d
openshift-monitoring alertmanager-main 2/2 69d
openshift-monitoring prometheus-k8s 2/2 69d

4. Verify if the cRPD is licensed and has the appropriate configurations

a. View the access the cRPD CLI section to access the cRPD CLI.

b. Once you have access the cRPD CLI, issue the show system license command in the cli mode to view
the system licenses. For example:

root@jcnr-01:/# cli
root@jcnr-01> show system license
License usage:
 Licenses Licenses Licenses Expiry
 Feature name used installed needed
 containerized-rpd-standard 1 1 0 2024-09-20 16:59:00 PDT

Licenses installed:
 License identifier: 85e5229f-0c64-0000-c10e4-a98c09ab34a1
 License SKU: S-CRPD-10-A1-PF-5
 License version: 1
 Order Type: commercial
 Software Serial Number: 1000098711000-iHpgf
 Customer ID: Juniper Networks Inc.
 License count: 15000
 Features:
 containerized-rpd-standard - Containerized routing protocol daemon with standard

95

features
 date-based, 2022-08-21 17:00:00 PDT - 2027-09-20 16:59:00 PDT

c. Issue the show configuration | display set command in the cli mode to view the cRPD default and
custom configuration. The output will be based on the custom configuration and the Cloud-
Native Router deployment mode.

root@jcnr-01# cli
root@jcnr-01> show configuration | display set

d. Type the exit command to exit from the pod shell.

5. Verify the vRouter interfaces configuration

a. View the access the vRouter CLI section to access the vRouter CLI.

b. Once you have accessed the vRouter CLI, issue the vif --list command to view the vRouter
interfaces . The output will depend upon the Cloud-Native Router deployment mode and
configuration. An example for L3 mode deployment, with two fabric interfaces configured, is
provided below:

$ vif --list

Vrouter Interface Table

Flags: P=Policy, X=Cross Connect, S=Service Chain, Mr=Receive Mirror
 Mt=Transmit Mirror, Tc=Transmit Checksum Offload, L3=Layer 3, L2=Layer 2
 D=DHCP, Vp=Vhost Physical, Pr=Promiscuous, Vnt=Native Vlan Tagged
 Mnp=No MAC Proxy, Dpdk=DPDK PMD Interface, Rfl=Receive Filtering Offload,
Mon=Interface is Monitored
 Uuf=Unknown Unicast Flood, Vof=VLAN insert/strip offload, Df=Drop New Flows, L=MAC
Learning Enabled
 Proxy=MAC Requests Proxied Always, Er=Etree Root, Mn=Mirror without Vlan Tag,
HbsL=HBS Left Intf
 HbsR=HBS Right Intf, Ig=Igmp Trap Enabled, Ml=MAC-IP Learning Enabled, Me=Multicast
Enabled

vif0/0 Socket: unix MTU: 1514
 Type:Agent HWaddr:00:00:5e:00:01:00
 Vrf:65535 Flags:L2 QOS:-1 Ref:3
 RX port packets:864 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0

96

 RX packets:864 bytes:75536 errors:0
 TX packets:13609 bytes:1419892 errors:0
 Drops:0

vif0/1 PCI: 0000:17:00.0 (Speed 25000, Duplex 1) NH: 6 MTU: 9000
 Type:Physical HWaddr:40:a6:b7:a0:f0:6c IPaddr:0.0.0.0
 DDP: OFF SwLB: ON
 Vrf:0 Mcast Vrf:0 Flags:TcL3L2Vof QOS:0 Ref:9
 RX port packets:243886 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0
 Fabric Interface: 0000:17:00.0 Status: UP Driver: net_ice
 RX packets:243886 bytes:20529529 errors:0
 TX packets:243244 bytes:20010274 errors:0
 Drops:2675
 TX port packets:243244 errors:0

vif0/2 PCI: 0000:17:00.1 (Speed 25000, Duplex 1) NH: 7 MTU: 9000
 Type:Physical HWaddr:40:a6:b7:a0:f0:6d IPaddr:0.0.0.0
 DDP: OFF SwLB: ON
 Vrf:0 Mcast Vrf:0 Flags:TcL3L2Vof QOS:0 Ref:8
 RX port packets:129173 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0
 Fabric Interface: 0000:17:00.1 Status: UP Driver: net_ice
 RX packets:129173 bytes:11623158 errors:0
 TX packets:129204 bytes:11624377 errors:0
 Drops:0
 TX port packets:129204 errors:0

vif0/3 PMD: ens1f0 NH: 10 MTU: 9000
 Type:Host HWaddr:40:a6:b7:a0:f0:6c IPaddr:0.0.0.0
 DDP: OFF SwLB: ON
 Vrf:0 Mcast Vrf:65535 Flags:L3L2DProxyEr QOS:-1 Ref:11 TxXVif:1
 RX device packets:242329 bytes:19965464 errors:0
 RX queue packets:242329 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:242329 bytes:19965464 errors:0
 TX packets:241163 bytes:20324343 errors:0
 Drops:0
 TX queue packets:241163 errors:0
 TX device packets:241163 bytes:20324343 errors:0

vif0/4 PMD: ens1f1 NH: 15 MTU: 9000
 Type:Host HWaddr:40:a6:b7:a0:f0:6d IPaddr:0.0.0.0

97

 DDP: OFF SwLB: ON
 Vrf:0 Mcast Vrf:65535 Flags:L3L2DProxyEr QOS:-1 Ref:11 TxXVif:2
 RX device packets:129204 bytes:11624377 errors:0
 RX queue packets:129204 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:129204 bytes:11624377 errors:0
 TX packets:129173 bytes:11623158 errors:0
 Drops:0
 TX queue packets:129173 errors:0
 TX device packets:129173 bytes:11623158 errors:0

c. Type the exit command to exit the pod shell.

System Requirements for OpenShift Deployment

IN THIS SECTION

Minimum Host System Requirements for OCP | 98

Resource Requirements for OCP | 100

Miscellaneous Requirements for OCP | 103

Port Requirements | 107

Interface Naming for Mellanox NICs | 109

Download Options | 111

Cloud-Native Router Licensing | 111

Read this section to understand the system, resource, port, and licensing requirements for installing
Juniper Cloud-Native Router on the Red Hat OpenShift Container Platform (OCP).

Minimum Host System Requirements for OCP

Table 8 on page 99 lists the host system requirements for installing Cloud-Native Router on OCP.

98

Table 8: Minimum Host System Requirements for OCP

Component Value/Version Notes

CPU Intel x86 The tested CPU is Intel(R) Xeon(R)
Silver 4314 CPU @ 2.40GHz 64 core

Host OS RHCOS 4.13

Kernel Version RedHat Enterprise Linux
(RHEL): 4.18.X

The tested kernel version for RHEL is
4.18.0-372.40.1.el8_6.x86_64

NIC • Intel E810 with
Firmware 4.00
0x80014411 1.3236.0

• Intel E810-CQDA2
with Firmware
4.000x800144111.32
36.0

• Intel XL710 with
Firmware 9.00
0x8000cead 1.3179.0

• Mellanox ConnectX-6

• Mellanox ConnectX-7

Support for Mellanox NICs is
considered a Juniper Technology
Preview ("Tech Preview" on page 452)
feature.

When using Mellanox NICs, ensure
your interface names do not exceed
11 characters in length.

When using Mellanox NICs, follow the
interface naming procedure in
"Interface Naming for Mellanox NICs"
on page 109.

IAVF driver Version 4.5.3.1

ICE_COMMS Version 1.3.35.0

ICE Version 1.9.11.9 ICE driver is used only with the Intel
E810 NIC

i40e Version 2.18.9 i40e driver is used only with the Intel
XL710 NIC

OCP Version 4.13

OVN-Kubernetes CNI

99

Table 8: Minimum Host System Requirements for OCP (Continued)

Component Value/Version Notes

Multus Version 3.8

Helm 3.12.x

Container-RT crio 1.25x Other container runtimes may work
but have not been tested with JCNR.

NOTE: The component versions listed in this table are expected to work with JCNR, but not every version or
combination is tested in every release.

Resource Requirements for OCP

Table 9 on page 100 lists the resource requirements for installing Cloud-Native Router on OCP.

Table 9: Resource Requirements for OCP

Resource Value Usage Notes

Data plane
forwarding cores

1 core (1P + 1S)

Service/Control
Cores

0

100

Table 9: Resource Requirements for OCP (Continued)

Resource Value Usage Notes

UIO Driver VFIO-PCI To enable, follow the steps below:

Create a Butane config file, 100-worker-vfiopci.bu, binding the PCI
device to the VFIO driver.

variant: openshift
version: 4.8.0
metadata:
 name: 100-worker-vfiopci
 labels:
 machineconfiguration.openshift.io/role: worker
storage:
 files:
 - path: /etc/modprobe.d/vfio.conf
 mode: 0644
 overwrite: true
 contents:
 inline: |
 options vfio-pci ids=10de:1eb8
 - path: /etc/modules-load.d/vfio-pci.conf
 mode: 0644
 overwrite: true
 contents:
 inline: vfio-pci

Create and apply the machine config:

$ butane 100-worker-vfiopci.bu -o 100-worker-vfiopci.yaml

$ oc apply -f 100-worker-vfiopci.yaml

101

Table 9: Resource Requirements for OCP (Continued)

Resource Value Usage Notes

Hugepages (1G) 6 Gi Configure huge pages on the worker nodes using the following
commands:

oc create -f hugepages-tuned-boottime.yaml

cat hugepages-tuned-boottime.yaml
apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
 name: hugepages
 namespace: openshift-cluster-node-tuning-operator
spec:
 profile:
 - data: |
 [main]
 summary=Boot time configuration for hugepages
 include=openshift-node
 [bootloader]
 cmdline_openshift_node_hugepages=hugepagesz=1G hugepages=6
 name: openshift-node-hugepages
 recommend:
 - machineConfigLabels:
 machineconfiguration.openshift.io/role: "worker-hp"
 priority: 30
 profile: openshift-node-hugepages

oc create -f hugepages-mcp.yaml 

cat hugepages-mcp.yaml
apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 name: worker-hp
 labels:
 worker-hp: ""
spec:
 machineConfigSelector:
 matchExpressions:
 - {key: machineconfiguration.openshift.io/role, operator:
In, values: [worker,worker-hp]}
 nodeSelector:

102

Table 9: Resource Requirements for OCP (Continued)

Resource Value Usage Notes

 matchLabels:
 node-role.kubernetes.io/worker-hp: ""

Cloud-Native Router
Controller cores

.5

Cloud-Native Router
vRouter Agent cores

.5

Miscellaneous Requirements for OCP

Table 10 on page 103 lists additional requirements for installing Cloud-Native Router on OCP.

Table 10: Miscellaneous Requirements for OCP

Cloud-Native Router Release Miscellaneous
Requirements

Enable the host with SR-IOV and VT-d in the system's
BIOS.

Depends on BIOS.

Enable VLAN driver at system boot. Configure /etc/modules-load.d/vlan.conf as follows:

cat /etc/modules-load.d/vlan.conf
8021q

Reboot and verify by executing the command:

lsmod | grep 8021q

103

Table 10: Miscellaneous Requirements for OCP (Continued)

Cloud-Native Router Release Miscellaneous
Requirements

Enable VFIO-PCI driver at system boot. Configure /etc/modules-load.d/vfio.conf as follows:

cat /etc/modules-load.d/vfio.conf
vfio
vfio-pci

Reboot and verify by executing the command:

lsmod | grep vfio

Set IOMMU and IOMMU-PT. Create a MachineConfig object that sets IOMMU and
IOMMU-PT:

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: 100-worker-iommu
spec:
 config:
 ignition:
 version: 3.2.0
 kernelArguments:
 - intel_iommu=on iommmu=pt

$ oc create -f 100-worker-kernel-arg-iommu.yaml

Disable spoofcheck on VFs allocated to JCNR.

NOTE: Applicable for L2 deployments only.

ip link set <interfacename> vf 1 spoofcheck off.

Set trust on VFs allocated to JCNR.

NOTE: Applicable for L2 deployments only.

ip link set <interfacename> vf 1 trust on

104

Table 10: Miscellaneous Requirements for OCP (Continued)

Cloud-Native Router Release Miscellaneous
Requirements

Additional kernel modules need to be loaded on the
host before deploying Cloud-Native Router in L3
mode. These modules are usually available in linux-
modules-extra or kernel-modules-extra packages.

NOTE: Applicable for L3 deployments only.

Create a conf file and add the kernel modules:

cat /etc/modules-load.d/crpd.conf
tun
fou
fou6
ipip
ip_tunnel
ip6_tunnel
mpls_gso
mpls_router
mpls_iptunnel
vrf
vxlan

Enable kernel-based forwarding on the Linux host.
ip fou add port 6635 ipproto 137

105

Table 10: Miscellaneous Requirements for OCP (Continued)

Cloud-Native Router Release Miscellaneous
Requirements

Exclude Cloud-Native Router interfaces from
NetworkManager control.

NetworkManager is a tool in some operating systems
to make the management of network interfaces easier.
NetworkManager may make the operation and
configuration of the default interfaces easier. However,
it can interfere with Kubernetes management and
create problems.

To avoid NetworkManager from interfering with
Cloud-Native Router interface configuration, exclude
Cloud-Native Router interfaces from NetworkManager
control. Here's an example on how to do this in some
Linux distributions:

1. Create the /etc/NetworkManager/conf.d/crpd.conf
file and list the interfaces that you don't want
NetworkManager to manage.

For example:

[keyfile]
 unmanaged-devices+=interface-name:enp*;interface-
name:ens*

where enp* and ens* refer to your Cloud-Native
Router interfaces.

NOTE: enp*
indicates all interfaces starting with
enp
. For specific interface names, provided a comma-
separated list.

2. Restart the NetworkManager service:

sudo systemctl restart NetworkManager

.

3. Edit the /etc/sysctl.conf file on the host and paste
the following content in it:

net.ipv6.conf.default.addr_gen_mode=0
net.ipv6.conf.all.addr_gen_mode=0

106

Table 10: Miscellaneous Requirements for OCP (Continued)

Cloud-Native Router Release Miscellaneous
Requirements

net.ipv6.conf.default.autoconf=0
net.ipv6.conf.all.autoconf=0

4. Run the command sysctl -p /etc/sysctl.conf to
load the new sysctl.conf values on the host.

5. Create the bond interface manually. For example:

ifconfig ens2f0 down
ifconfig ens2f1 down
ip link add bond0 type bond mode 802.3ad
ip link set ens2f0 master bond0
ip link set ens2f1 master bond0
ifconfig ens2f0 up ; ifconfig ens2f1 up; ifconfig
bond0 up

Verify the core_pattern value is set on the host before
deploying JCNR. sysctl kernel.core_pattern

kernel.core_pattern = |/usr/lib/systemd/systemd-
coredump %P %u %g %s %t %c %h %e

You can update the core_pattern in /etc/sysctl.conf.
For example:

kernel.core_pattern=/var/crash/core_%e_%p_%i_%s_%h_
%t.gz

Port Requirements

Juniper Cloud-Native Router listens on certain TCP and UDP ports. This section lists the port
requirements for the cloud-native router.

107

Table 11: Cloud-Native Router Listening Ports

Protocol Port Description

TCP 8085 vRouter introspect–Used to gain
internal statistical information
about vRouter

TCP 8070 Telemetry Information- Used to see
telemetry data from the Cloud-
Native Router vRouter

TCP 8072 Telemetry Information-Used to see
telemetry data from Cloud-Native
Router control plane

TCP 8075, 8076 Telemetry Information- Used for
gNMI requests

TCP 9091 vRouter health check–cloud-native
router checks to ensure the vRouter
agent is running.

TCP 9092 vRouter health check–cloud-native
router checks to ensure the vRouter
DPDK is running.

TCP 50052 gRPC port–Cloud-Native Router
listens on both IPv4 and IPv6

TCP 8081 Cloud-Native Router Deployer Port

TCP 24 cRPD SSH

TCP 830 cRPD NETCONF

TCP 666 rpd

TCP 1883 Mosquito mqtt–Publish/subscribe
messaging utility

TCP 9500 agentd on cRPD

108

Table 11: Cloud-Native Router Listening Ports (Continued)

Protocol Port Description

TCP 21883 na-mqttd

TCP 50053 Default gNMI port that listens to
the client subscription request

TCP 51051 jsd on cRPD

UDP 50055 Syslog-NG

Interface Naming for Mellanox NICs

When deploying Mellanox NICs in an OpenShift cluster, a conflict can arise between how OCP and
Cloud-Native Router use interface names on those NICs. This might prevent your cluster from coming
up.

Prior to installing JCNR, either disable predictable interface naming ("Option 1: Disable predictable
interface naming" on page 109) or rename the Cloud-Native Router interfaces ("Option 2: Rename the
Cloud-Native Router interfaces" on page 110). The Cloud-Native Router interfaces are the interfaces
that you want Cloud-Native Router to control.

Option 1: Disable predictable interface naming

1. Before you start, ensure you have console access to the node.

2. Edit /etc/default/grub and append net.ifnames=0 to GRUB_CMDLINE_LINUX_DEFAULT.

GRUB_CMDLINE_LINUX_DEFAULT="<existing_parameter_settings> net.ifnames=0"

3. Update grub.

grub2-mkconfig -o /boot/grub2/grub.cfg

4. Reboot the node.

109

5. Log back into the node. You might have to do this through the console if the network interfaces don't
come back up.

6. List the interfaces and take note of the names of the non-Cloud-Native Router and Cloud-Native
Router interfaces.

ip address

7. For all the non-Cloud-Native Router interfaces, update NetworkManager (or your network renderer)
with the new interface names and restart NetworkManager.

8. Repeat on all the nodes where you’re installing the Cloud-Native Router vRouter.

NOTE: Remember to update the fabric interfaces in your Cloud-Native Router
installation helm chart with the new names of the Cloud-Native Router interfaces (or use
subnets).

Option 2: Rename the Cloud-Native Router interfaces

1. Create a /etc/udev/rules.d/00-persistent-net.rules file to contain the rules.

2. Add the following line to the file:

SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", ATTR{address}=="<mac_address>",
ATTR{dev_id}=="0x0", ATTR{type}=="1", NAME="<new_ifname>"

where <mac_address> is the MAC address of the interface you’re renaming and <new_ifname> is the
new name you want to assign to the interface (for example, jcnr-eth1).

3. Add a corresponding line for each interface you’re renaming. (You’re renaming all the interfaces that
Cloud-Native Router controls.)

4. Reboot the node.

5. Repeat on all the nodes where you’re installing the Cloud-Native Router vRouter.

NOTE: Remember to update the fabric interfaces in your Cloud-Native Router
installation helm chart with the new names of the Cloud-Native Router interfaces (or use
subnets).

110

Download Options

See "Cloud-Native Router Software Download Packages" on page 387.

Cloud-Native Router Licensing

See "Manage Cloud-Native Router Licenses" on page 352.

Customize Cloud-Native Router Helm Chart for
OpenShift Deployment

IN THIS SECTION

Helm Chart Description for OpenShift Deployment | 112

Read this topic to learn about the deployment configuration available for the Juniper Cloud-Native
Router.
You can deploy and operate Juniper Cloud-Native Router in the L2, L3, or L2-L3 mode. You configure
the deployment mode by editing the appropriate attributes in the values.yaml file prior to deployment.

NOTE:

• In the fabricInterface key of the values.yaml file:

• When all the interfaces have an interface_mode key configured, then the mode of
deployment would be L2.

• When one or more interfaces have an interface_mode key configured along with the
rest of the interfaces not having the interface_mode key, then the mode of
deployment would be L2-L3.

111

• When none of the interfaces have the interface_mode key configured, then the
mode of deployment would be L3.

Customize the helm charts using the Juniper_Cloud_Native_Router_release-number/helmchart/values.yaml file. The
configuration keys of the helm chart are shown in the table below.

Helm Chart Description for OpenShift Deployment

Customize the Helm chart using the Juniper_Cloud_Native_Router_<release>/helmchart/jcnr/
values.yaml file. We provide a copy of the default values.yaml in "Cloud-Native Router Default Helm
Chart" on page 389.

Table 12 on page 112 contains a description of the configurable attributes in values.yaml for an
OpenShift deployment.

Table 12: Helm Chart Description for OpenShift Deployment

Key Description

global

installSyslog Set to true to install syslog-ng.

registry Defines the Docker registry for the Cloud-Native Router container
images. The default value is enterprise-hub.juniper.net. The
images provided in the tarball are tagged with the default registry
name. If you choose to host the container images to a private
registry, replace the default value with your registry URL.

repository (Optional) Defines the repository path for the Cloud-Native Router
container images. This is a global key that takes precedence over
the repository paths under the common section. Default is jcnr-
container-prod/.

imagePullSecret (Optional) Defines the Docker registry authentication credentials.
You can configure credentials to either the Juniper Networks
enterprise-hub.juniper.net registry or your private registry.

112

https://enterprise.hub.juniper.net

Table 12: Helm Chart Description for OpenShift Deployment (Continued)

Key Description

registryCredentials Base64 representation of your Docker registry credentials. See
"Configure Repository Credentials" on page 398 for more
information.

secretName Name of the secret object that will be created.

common Defines repository paths and tags for the various Cloud-Native
Router container images. Use default unless using a private
registry.

repository Defines the repository path. The default value is jcnr-container-
prod/. The global repository key takes precedence if defined.

tag Defines the image tag. The default value is configured to the
appropriate tag number for the Cloud-Native Router release
version.

readinessCheck Set to true to enable Cloud-Native Router Readiness preflight and
postflight checks during installation. Comment this out or set to
false to disable Cloud-Native Router Readiness preflight and
postflight checks.

Preflight checks verify that your infrastructure can support JCNR.
Preflight checks take place before Cloud-Native Router is installed.

Postflight checks verify that your Cloud-Native Router installation
is working properly. Postflight checks take place after Cloud-
Native Router is installed.

See "Cloud-Native Router Readiness Checks" on page 362.

replicas (Optional) Indicates the number of replicas for cRPD. Default is 1.
The value for this key must be specified for multi-node clusters.
The value is equal to the number of nodes running JCNR.

113

Table 12: Helm Chart Description for OpenShift Deployment (Continued)

Key Description

noLocalSwitching (Optional) Prevents interfaces in a bridge domain from transmitting
and receiving Ethernet frame copies. Enter one or more comma
separated VLAN IDs to ensure that the interfaces belonging to the
VLAN IDs do not transmit frames to one another. This key is
specific to L2 and L2-L3 deployments. Enabling this key provides
the functionality on all access interfaces. To enable the
functionality on trunk interfaces, configure no-local-switching in
fabricInterface. See Prevent Local Switching for more details.

iamRole Not applicable.

114

Table 12: Helm Chart Description for OpenShift Deployment (Continued)

Key Description

fabricInterface Aggregated interfaces that receive traffic from multiple interfaces.
Fabric interfaces are always physical interfaces. They can either be
a physical function (PF) or a virtual function (VF). The throughput
requirement for these interfaces is higher — hence multiple
hardware queues are allocated to them. Each hardware queue is
allocated with a dedicated CPU core. See "Cloud-Native Router
Interfaces Overview" on page 14 for more information.

Use this field to provide a list of fabric interfaces to be bound to
the DPDK. You can also provide subnets instead of interface
names. If both the interface name and the subnet are specified,
then the interface name takes precedence over the subnet/
gateway combination. The subnet/gateway combination is useful
when the interface names vary in a multi-node cluster.

NOTE:

• When all the interfaces have an interface_mode key
configured, then the mode of deployment is L2.

• When one or more interfaces have an interface_mode key
configured along with the rest of the interfaces not having
the interface_mode key, then the mode of deployment is L2-
L3.

• When none of the interfaces have the interface_mode key
configured, then the mode of deployment is L3.

For example:

 # L2 only
 - eth1:
 ddp: "auto"
 interface_mode: trunk
 vlan-id-list: [100, 200, 300, 700-705]
 storm-control-profile: rate_limit_pf1
 native-vlan-id: 100
 no-local-switching: true

 # L3 only
 - eth1:
 ddp: "off"

115

Table 12: Helm Chart Description for OpenShift Deployment (Continued)

Key Description

 # L2L3
 - eth1:
 ddp: "auto"
 - eth2:
 ddp: "auto"
 interface_mode: trunk
 vlan-id-list: [100, 200, 300, 700-705]
 storm-control-profile: rate_limit_pf1
 native-vlan-id: 100
 no-local-switching: true

subnet An alternative mode of input to interface names. For example:

- subnet: 10.40.1.0/24
 gateway: 10.40.1.1
 ddp: "off"

The subnet option is applicable only for L3 interfaces. With the
subnet mode of input, interfaces are auto-detected in each subnet.
Specify either subnet/gateway or the interface name. Do not
configure both. The subnet/gateway form of input is particularly
helpful in environments where the interface names vary in a multi-
node cluster.

ddp (Optional) Indicates the interface-level Dynamic Device
Personalization (DDP) configuration. DDP provides datapath
optimization at the NIC for traffic like GTPU, SCTP, etc. For a bond
interface, all slave interface NICs must support DDP for the DDP
configuration to be enabled. See Enabling Dynamic Device
Personalization (DDP) on Individual Interfaces for more details.

Options include auto, on, or off. Default is off.

NOTE: The interface level ddp takes precedence over the global
ddp configuration.

116

Table 12: Helm Chart Description for OpenShift Deployment (Continued)

Key Description

interface_mode Set to trunk for L2 interfaces and do not configure for L3
interfaces. For example,

interface_mode: trunk

vlan-id-list Provide a list of VLAN IDs associated with the interface.

storm-control-
profile

Use storm-control-profile to associate the desired storm control
profile to the interface. Profiles are defined under jcnr-
vrouter.stormControlProfiles.

native-vlan-id Configure native-vlan-id with any of the VLAN IDs in the vlan-id-
list to associate it with untagged data packets received on the
physical interface of a fabric trunk mode interface. For example:

fabricInterface:
 - bond0:
 interface_mode: trunk
 vlan-id-list: [100, 200, 300]
 storm-control-profile: rate_limit_pf1
 native-vlan-id: 100 

See Native VLAN for more details.

no-local-switching Prevents interfaces from communicating directly with each other
when configured. Allowed values are true or false. See Prevent
Local Switching for more details.

qosSchedulerProfile
Name

Specifies the QoS scheduler profile applicable to this interface. See
the qosSchedulerProfiles section.

If you don't specify a profile, then the QoS scheduler is disabled
for this interface, which means that packets are scheduled with no
regard to traffic class.

117

Table 12: Helm Chart Description for OpenShift Deployment (Continued)

Key Description

fabricWorkloadInterface (Optional) Defines the interfaces to which different workloads are
connected. They can be software-based or hardware-based
interfaces.

log_level Defines the log severity. Available value options are: DEBUG,
INFO, WARN, and ERR.

NOTE: Leave it set to the default INFO unless instructed to
change it by Juniper Networks support.

log_path The defined directory stores various JCNR-related descriptive logs
such as contrail-vrouter-agent.log, contrail-vrouter-dpdk.log, etc.
Default is /var/log/jcnr/.

syslog_notifications Indicates the absolute path to the file that stores syslog-ng
generated notifications in JSON format. Default is /var/log/jcnr/
jcnr_notifications.json.

corePattern Indicates the core_pattern for the core file. If left blank, then
Cloud-Native Router pods will not overwrite the default pattern
on the host.

NOTE: Set the core_pattern on the host before deploying JCNR.
You can change the value in /etc/sysctl.conf. For example,
kernel.core_pattern=/var/crash/core_%e_%p_%i_%s_%h_%t.gz

coreFilePath Indicates the path to the core file. Default is /var/crash.

118

Table 12: Helm Chart Description for OpenShift Deployment (Continued)

Key Description

nodeAffinity (Optional) Defines labels on nodes to determine where to place
the vRouter pods.

By default the vRouter pods are deployed to all nodes of a cluster.

In the example below, the node affinity label is defined as
key1=jcnr. You must apply this label to each node where Cloud-
Native Router is to be deployed:

nodeAffinity:
- key: key1
operator: In
values:
- jcnr

On an OCP setup, node affinity must be configured to bring up
Cloud-Native Router on worker nodes only. For example:

 nodeAffinity:
 - key: node-role.kubernetes.io/worker
 operator: Exists
 - key: node-role.kubernetes.io/master
 operator: DoesNotExist

NOTE: This key is a global setting.

key Key-value pair that represents a node label that must be matched
to apply the node affinity.

operator Defines the relationship between the node label and the set of
values in the matchExpression parameters in the pod specification.
This value can be In, NotIn, Exists, DoesNotExist, Lt, or Gt.

cni_bin_dir For Red Hat OpenShift, don't leave this field empty. Set
to /var/lib/cni/bin, which is the default path on any OCP
deployment.

grpcTelemetryPort (Optional) Enter a value for this parameter to override cRPD
telemetry gRPC server default port of 50053.

119

Table 12: Helm Chart Description for OpenShift Deployment (Continued)

Key Description

grpcVrouterPort (Optional) Default is 50052. Configure to override.

vRouterDeployerPort (Optional) Default is 8081. Configure to override.

jcnr-vrouter

cpu_core_mask If present, this indicates that you want to use static CPU allocation
to allocate cores to the forwarding plane.

This value should be a comma-delimited list of isolated CPU cores
that you want to statically allocate to the forwarding plane (for
example, cpu_core_mask: "2,3,22,23"). Use the cores not used by
the host OS.

Comment this out if you want to use Kubernetes CPU Manager to
allocate cores to the forwarding plane.

NOTE: You cannot use static CPU allocation and Kubernetes
CPU Manager at the same time. Cloud-Native Router Readiness
preflight checks, if enabled, will fail the installation if you specify
both.

guaranteedVrouterCpus If present, this indicates that you want to use the Kubernetes CPU
Manager to allocate CPU cores to the forwarding plane.

This value should be the number of guaranteed CPU cores that
you want the Kubernetes CPU Manager to allocate to the
forwarding plane. You should set this value to at least one more
than the number of forwarding cores.

Comment this out if you want to use static CPU allocation to
allocate cores to the forwarding plane.

NOTE: You cannot use static CPU allocation and Kubernetes
CPU Manager at the same time. The installation will fail if you
specify both.

120

Table 12: Helm Chart Description for OpenShift Deployment (Continued)

Key Description

dpdkCtrlThreadMask Specifies the CPU core(s) to allocate to vRouter DPDK control
threads when using static CPU allocation. This list should be a
subset of the cores listed in cpu_core_mask and can be the same as
the list in serviceCoreMask.

CPU cores listed in cpu_core_mask but not in serviceCoreMask or
dpdkCtrlThreadMask are allocated for forwarding.

Comment this out if you want to use Kubernetes CPU Manager to
allocate cores to the forwarding plane.

serviceCoreMask Specifies the CPU core(s) to allocate to vRouter DPDK service
threads when using static CPU allocation. This list should be a
subset of the cores listed in cpu_core_mask and can be the same as
the list in dpdkCtrlThreadMask.

CPU cores listed in cpu_core_mask but not in serviceCoreMask or
dpdkCtrlThreadMask are allocated for forwarding.

Comment this out if you want to use Kubernetes CPU Manager to
allocate cores to the forwarding plane.

numServiceCtrlThreadCPU Specifies the number of CPU cores to allocate to vRouter DPDK
service/control traffic when using the Kubernetes CPU Manager.

This number should be smaller than the number of
guaranteedVrouterCpus cores. The remaining guaranteedVrouterCpus
cores are allocated for forwarding.

Comment this out if you want to use static CPU allocation to
allocate cores to the forwarding plane.

numberOfSchedulerLcores The number of CPU cores that you want Kubernetes CPU
Manager to dedicate to your QoS schedulers. Comment this out if
you want to use static CPU allocation to allocate cores to the
forwarding plane.

restoreInterfaces Set to true to restore the interfaces back to their original state in
case the vRouter pod crashes or restarts or if Cloud-Native Router
is uninstalled.

121

Table 12: Helm Chart Description for OpenShift Deployment (Continued)

Key Description

bondInterfaceConfigs (Optional) Enable bond interface configurations only for L2 or L2-
L3 deployments.

name Name of the bond interface.

mode Set to 1 (active-backup).

slaveInterfaces List of fabric interfaces to be bonded.

primaryInterface (Optional) Primary interface for the bond.

slaveNetworkDetail
s

Not applicable.

mtu Maximum Transmission Unit (MTU) value for all physical interfaces
(VFs and PFs). Default is 9000.

qosSchedulerProfiles Defines the QoS scheduler profiles that are referenced from the
fabricInterface section.

sched_profile_1 The name of the QoS scheduler profile.

cpu Specify the CPU core(s) to dedicate to the scheduler.
If cpu_core_mask is specified, this should be a unique
additional core(s).

bandwidth Specify the bandwidth in Gbps.

stormControlProfiles Configure the rate limit profiles for BUM traffic on fabric interfaces
in bytes per second. See /Content/l2-bum-rate-
limiting_xi931744_1_1.dita for more details.

122

Table 12: Helm Chart Description for OpenShift Deployment (Continued)

Key Description

dpdkCommandAdditionalArgs Pass any additional DPDK command line parameters. The --
yield_option 0 is set by default and implies the DPDK forwarding
cores will not yield their assigned CPU cores. Other common
parameters that can be added are tx and rx descriptors and
mempool. For example:

dpdkCommandAdditionalArgs: "--yield_option 0 --dpdk_txd_sz 2048
--dpdk_rxd_sz 2048 --vr_mempool_sz 131072"

NOTE: Changing the number of tx and rx descriptors and the
mempool size affects the number of huge pages required. If you
make explicit changes to these parameters, set the number of
huge pages to 10 (x 1 GB).

See Table 9 on page 100 in "System Requirements for OpenShift
Deployment" on page 98 for information on how to configure
huge pages on an OpenShift node and see "Configure the
Number of Huge Pages to Use" on page 403 for information on
how to configure the number of huge pages that the Cloud-
Native Router vRouter uses.

dpdk_monitoring_thread_config (Optional) Enables a monitoring thread for the vRouter DPDK
container. Every loggingInterval seconds, a log containing the
information indicated by loggingMask is generated.

loggingMask Specifies the information to be generated. Represented by a
bitmask with bit positions as follows:

• 0b001 is the nl_counter

• 0b010 is the lcore_timestamp

• 0b100 is the profile_histogram

loggingInterval Specifies the log generation interval in seconds.

123

Table 12: Helm Chart Description for OpenShift Deployment (Continued)

Key Description

ddp (Optional) Indicates the global Dynamic Device Personalization
(DDP) configuration. DDP provides datapath optimization at the
NIC for traffic like GTPU, SCTP, etc. For a bond interface, all slave
interface NICs must support DDP for the DDP configuration to be
enabled. See Enabling Dynamic Device Personalization (DDP) on
Individual Interfaces for more details.

Options include auto, on, or off. Default is off.

NOTE: The interface level ddp takes precedence over the global
ddp configuration.

twampPort (Optional) The TWAMP session reflector port (if you want
TWAMP sessions to use vRouter timestamps). The vRouter listens
to TWAMP test messages on this port and inserts/overwrites
timestamps in TWAMP test messages. Timestamping TWAMP
messages at the vRouter (instead of at cRPD) leads to more
accurate measurements. Valid values are 862 and 49152 through
65535.

If this parameter is absent, then the vRouter does not insert or
overwrite timestamps in the TWAMP session. Timestamps are
taken and inserted by cRPD instead.

See Two-Way Active Measurement Protocol (TWAMP).

vrouter_dpdk_uio_driver The uio driver is vfio-pci.

agentModeType Set to dpdk.

fabricRpfCheckDisable Set to false to enable the RPF check on all Cloud-Native Router
fabric interfaces. By default, RPF check is disabled.

telemetry (Optional) Configures cRPD telemetry settings. To learn more
about telemetry, see Telemetry Capabilities .

disable Set to true to disable cRPD telemetry. Default is false, which
means that cRPD telemetry is enabled by default.

124

Table 12: Helm Chart Description for OpenShift Deployment (Continued)

Key Description

metricsPort The port that the cRPD telemetry exporter is listening to
Prometheus queries on. Default is 8072.

logLevel One of warn, warning, info, debug, trace, or verbose. Default is
info.

gnmi (Optional) Configures cRPD gNMI settings.

enable Set to true to enable the cRPD telemetry exporter to
respond to gNMI requests.

vrouter

telemetry (Optional) Configures vRouter telemetry settings. To learn more
about telemetry, see Telemetry Capabilities .

metricsPort Specify the port that the vRouter telemetry exporter
listens to Prometheus queries on. Default is 8070.

logLevel One of warn, warning, info, debug, trace, or verbose.
Default is info.

gnmi (Optional) Configures vRouter gNMI settings.

enable - Set to true to enable the vRouter telemetry
exporter to respond to gNMI requests.

persistConfig Set to true if you want Cloud-Native Router pod configuration to
persist even after uninstallation. This option can only be set for L2
mode deployments. Default is false.

enableLocalPersistence Set to true if you're using the cRPD CLI or NETCONF to configure
JCNR. When set to true, the cRPD CLI and NETCONF
configuration persists through node reboots, cRPD pod restarts,
and Cloud-Native Router upgrades. Default is false.

125

Table 12: Helm Chart Description for OpenShift Deployment (Continued)

Key Description

interfaceBoundType Not applicable.

networkDetails Not applicable.

networkResources Not applicable.

contrail-tools

install Set to true to install contrail-tools (used for debugging).

Customize Cloud-Native Router Configuration

SUMMARY

Read this topic to understand how to customize
Cloud-Native Router configuration using a Configlet
custom resource.

IN THIS SECTION

Configlet Custom Resource | 126

Configuration Examples | 127

Applying the Configlet Resource | 128

Modifying the Configlet | 134

Troubleshooting | 134

Configlet Custom Resource

Starting with Juniper Cloud-Native Router (JCNR) Release 24.2, we support customizing Cloud-Native
Router configuration using a configlet custom resource. The configlet can be generated either by
rendering a predefined template of supported Junos configuration or using raw configuration. The
generated configuration is validated and deployed on the Cloud-Native Router controller (cRPD) as one
or more Junos configuration groups.

126

https://www.juniper.net/documentation/us/en/software/junos/cli/topics/topic-map/configuration-groups-usage.html

NOTE: You can configure Cloud-Native Router using either configlets or the cRPD CLI or
NETCONF. If you use the cRPD CLI or NETCONF, be sure to enable local persistence in
values.yaml (enableLocalPersistence: true) so that your CLI or NETCONF configuration
persists across reboots and upgrades.

NOTE: Using both configlets and the cRPD CLI or NETCONF to configure Cloud-Native
Router may lead to unpredictable behavior. Use one or the other, but not both.

Configuration Examples

You create a configlet custom resource of the kind Configlet in the jcnr namespace. You provide raw
configuration as Junos set commands.

Use crpdSelector to control where the configlet applies. The generated configuration is deployed to cRPD
pods on nodes matching the specified label only. If crpdSelector is not defined, the configuration is
applied to all cRPD pods in the cluster.

An example configlet yaml is provided below:

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample # <-- Configlet resource name
 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address 10.10.10.1/32
 crpdSelector:
 matchLabels:
 node: worker # <-- Node label to select the cRPD pods

You can also use a templatized configlet yaml that contains keys or variables. The values for variables are
provided by a configletDataValue custom resource, referenced by configletDataValueRef . An example
templatized configlet yaml is provided below:

apiVersion: configplane.juniper.net/v1
kind: Configlet

127

metadata:
 name: configlet-sample-with-template # <-- Configlet resource name
 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address {{ .Ip }}
 crpdSelector:
 matchLabels:
 node: worker # <-- Node label to select the cRPD pods
 configletDataValueRef:
 name: "configletdatavalue-sample" # <-- Configlet Data Value resource name

To render configuration using the template, you must provide key:value pairs in the ConfigletDataValue
custom resource:

apiVersion: configplane.juniper.net/v1
kind: ConfigletDataValue
metadata:
 name: configletdatavalue-sample
 namespace: jcnr
spec:
 data: {
 "Ip": "127.0.0.1" # <-- Key:Value pair
 }

The generated configuration is validated and applied to all or selected cRPD pods as a Junos
Configuration Group.

Applying the Configlet Resource

The configlet resource can be used to apply configuration to selected or all cRPD pods either when
Cloud-Native Router is deployed or once the cRPD pods are up and running. Let us look at configlet
deployment in detail.

128

https://www.juniper.net/documentation/us/en/software/junos/cli/topics/topic-map/configuration-groups-usage.html
https://www.juniper.net/documentation/us/en/software/junos/cli/topics/topic-map/configuration-groups-usage.html

Applying raw configuration

1. Create raw configuration configlet yaml. The example below configures a loopback interface in cRPD.

cat configlet-sample.yaml

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample
 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address 10.10.10.1/32
 crpdSelector:
 matchLabels:
 node: worker

2. Apply the configuration using the kubectl apply command.

kubectl apply -f configlet-sample.yaml

configlet.configplane.juniper.net/configlet-sample created

3. Check on the configlet.

When a configlet resource is deployed, it creates additional node configlet custom resources, one for
each node matched by the crpdSelector.

kubectl get nodeconfiglets -n jcnr

NAME AGE
configlet-sample-node1 10m

If the configuration defined in the configlet yaml is invalid or fails to deploy, you can view the error
message using kubectl describe for the node configlet custom resource.

129

For example:

kubectl describe nodeconfiglet configlet-sample-node1 -n jcnr

The following output has been trimmed for brevity:

Name: configlet-sample-node1
Namespace: jcnr
Labels: core.juniper.net/nodeName=node1
Annotations: <none>
API Version: configplane.juniper.net/v1
Kind: NodeConfiglet
Metadata:
 Creation Timestamp: 2024-06-13T16:51:23Z
 ...
Spec:
 Clis:
 set interfaces lo0 unit 0 address 10.10.10.1/32
 Group Name: configlet-sample
 Node Name: node1
Status:
 Message: load-configuration failed: syntax error
 Status: False
Events: <none>

4. Optionally, verify the configuration on the Access cRPD CLI shell in CLI mode. Note that the
configuration is applied as a configuration group named after the configlet resource.

show configuration groups configlet-sample

interfaces {
 lo0 {
 unit 0 {
 family inet {
 address 10.10.10.1/32;
 }
 }

130

 }
}

NOTE: The configuration generated using configlets is applied to cRPD as configuration
groups. We therefore recommend that you not use configuration groups when
specifying your configlet.

Applying templatized configuration

1. Create the templatized configlet yaml and the configlet data value yaml for key:value pairs.

cat configlet-sample-template.yaml

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample-template
 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address {{ .Ip }}
 crpdSelector:
 matchLabels:
 node: master
 configletDataValueRef:
 name: "configletdatavalue-sample"

cat configletdatavalue-sample.yaml

apiVersion: configplane.juniper.net/v1
kind: ConfigletDataValue
metadata:
 name: configletdatavalue-sample
 namespace: jcnr
spec:
 data: {

131

 "Ip": "127.0.0.1"
 }

2. Apply the configuration using the kubectl apply command, starting with the config data value yaml.

kubectl apply -f configletdatavalue-sample.yaml

configletdatavalue.configplane.juniper.net/configletdatavalue-sample created

kubectl apply -f configlet-sample-template.yaml

configlet.configplane.juniper.net/configlet-sample-template created

3. Check on the configlet.

When a configlet resource is deployed, it creates additional node configlet custom resources, one for
each node matched by the crpdSelector.

kubectl get nodeconfiglets -n jcnr

NAME AGE
configlet-sample-template-node1 10m

If the configuration defined in the configlet yaml is invalid or fails to deploy, you can view the error
message using kubectl describe for the node configlet custom resource.

For example:

kubectl describe nodeconfiglet configlet-sample-template-node1 -n jcnr

The following output has been trimmed for brevity:

Name: configlet-sample-template-node1
Namespace: jcnr
Labels: core.juniper.net/nodeName=node1

132

Annotations: <none>
API Version: configplane.juniper.net/v1
Kind: NodeConfiglet
Metadata:
 Creation Timestamp: 2024-06-13T16:51:23Z
 ...
Spec:
 Clis:
 set interfaces lo0 unit 0 address 10.10.10.1/32
 Group Name: configlet-sample-template
 Node Name: node1
Status:
 Message: load-configuration failed: syntax error
 Status: False
Events: <none>

4. Optionally, verify the configuration on the Access cRPD CLI shell in CLI mode. Note that the
configuration is applied as a configuration group named after the configlet resource.

show configuration groups configlet-sample-template

interfaces {
 lo0 {
 unit 0 {
 family inet {
 address 127.0.0.1/32;
 }
 }
 }
}

133

Modifying the Configlet

You can modify a configlet resource by changing the yaml file and reapplying it using the kubectl apply
command.

kubectl apply -f configlet-sample.yaml

configlet.configplane.juniper.net/configlet-sample configured

Any changes to existing configlet resource are reconciled by replacing the configuration group on cRPD.

You can delete the configuration group by deleting the configlet resource using the kubectl delete
command.

kubectl delete configlet configlet-sample -n jcnr

configlet.configplane.juniper.net "configlet-sample" deleted

Troubleshooting

If you run into problems, check the contrail-k8s-deployer logs. For example:

kubectl logs contrail-k8s-deployer-8ff895cc5-cbfwm -n contrail-deploy

134

4
CHAPTER

Install Cloud-Native Router on
Amazon EKS

IN THIS CHAPTER

Install and Verify Juniper Cloud-Native Router on Amazon EKS | 136

System Requirements for EKS Deployment | 149

Customize Cloud-Native Router Helm Chart for EKS Deployment | 157

Customize Cloud-Native Router Configuration | 168

Cloud-Native Router Operator Service Module: VPC Gateway | 177

Install and Verify Juniper Cloud-Native Router on
Amazon EKS

IN THIS SECTION

Install Juniper Cloud-Native Router Using Juniper Support Site Package | 136

Install Juniper Cloud-Native Router Using AWS Marketplace Subscription (BYOL) | 140

Verify Cloud-Native Router Installation on Amazon EKS | 144

The Juniper Cloud-Native Router uses the the JCNR-Controller (cRPD) to provide control plane
capabilities and JCNR-CNI to provide a container network interface. Juniper Cloud-Native Router uses
the DPDK-enabled vRouter to provide high-performance data plane capabilities and Syslog-NG to
provide notification functions. This section explains how you can install these components of the Cloud-
Native Router.

Install Juniper Cloud-Native Router Using Juniper Support Site Package

Read this section to learn the steps required to install the cloud-native router components using Helm
charts.

1. Review the "System Requirements for EKS Deployment" on page 149 to ensure the setup has all
the required configuration.

2. Download the desired Cloud-Native Router software package to the directory of your choice.

You have the option of downloading the package to install Cloud-Native Router only or
downloading the package to install JNCR together with Juniper cSRX. See "Cloud-Native Router
Software Download Packages" on page 387 for a description of the packages available. If you don't
want to install Juniper cSRX now, you can always choose to install Juniper cSRX on your working
Cloud-Native Router installation later.

3. Expand the file Juniper_Cloud_Native_Router_<release-number>.tgz.

tar xzvf Juniper_Cloud_Native_Router_<release-number>.tgz

4. Change directory to the main installation directory.

136

• If you're installing Cloud-Native Router only, then:

cd Juniper_Cloud_Native_Router_<release>

This directory contains the Helm chart for Cloud-Native Router only.

• If you're installing Cloud-Native Router and cSRX at the same time, then:

cd Juniper_Cloud_Native_Router_CSRX_<release>

This directory contains the combination Helm chart for Cloud-Native Router and cSRX.

NOTE: All remaining steps in the installation assume that your current working
directory is now either Juniper_Cloud_Native_Router_<release> or
Juniper_Cloud_Native_Router_CSRX_<release>.

5. View the contents in the current directory.

ls
helmcharts images README.md secrets

6. Change to the helmchart directory and expand the Helm chart.

cd helmchart

• For Cloud-Native Router only:

ls
jcnr-<release>.tgz

tar -xzvf jcnr-<release>.tgz

ls
jcnr jcnr-<release>.tgz

The Helm chart is located in the jcnr directory.

137

• For the combined Cloud-Native Router and cSRX:

ls
jcnr_csrx-<release>.tgz

tar -xzvf jcnr_csrx-<release>.tgz

ls
jcnr_csrx jcnr_csrx-<release>.tgz

The Helm chart is located in the jcnr_csrx directory.

7. Follow the steps in "Installing Your License" on page 353 to install your Cloud-Native Router
license.

8. Enter the root password for your host server into the secrets/jcnr-secrets.yaml file at the following
line:

 root-password: <add your password in base64 format>

You must enter the password in base64-encoded format. Encode your password as follows:

echo -n "password" | base64 -w0

Copy the output of this command into secrets/jcnr-secrets.yaml.

9. Apply secrets/jcnr-secrets.yaml to the cluster.

kubectl apply -f secrets/jcnr-secrets.yaml
namespace/jcnr created
secret/jcnr-secrets created

10. Create the "JCNR ConfigMap" on page 153 if using the Virtual Router Redundancy Protocol (VRRP)
for your Cloud-Native Router cluster. A sample jcnr-aws-config.yaml manifest is provided in

138

cRPD_examples directory in the installation bundle. Apply the jcnr-aws-config.yaml to the Kubernetes
system.

kubectl apply -f jcnr-aws-config.yaml
configmap/jcnr-aws-config created

11. If desired, configure how cores are assigned to the vRouter DPDK containers. See "Allocate CPUs
to the Cloud-Native Router Forwarding Plane" on page 355.

12. Customize the Helm chart for your deployment using the helmchart/jcnr/values.yaml or
helmchart/jcnr_csrx/values.yaml file.

See "Customize JCNR Helm Chart for EKS Deployment" on page 157 for descriptions of the helm
chart configurations and a sample helm chart for EKS deployment.

13. Optionally, customize Cloud-Native Router configuration.

See, "Customize Cloud-Native Router Configuration " on page 62 for creating and applying the
cRPD customizations.

14. If you're installing Juniper cSRX now, then follow the procedure in "Apply the cSRX License and
Configure cSRX" on page 338.

15. Install Multus CNI using the following command:

kubectl apply -f https://raw.githubusercontent.com/aws/amazon-vpc-cni-k8s/master/config/
multus/v3.7.2-eksbuild.1/aws-k8s-multus.yaml

16. Install the Amazon Elastic Block Storage (EBS) Container Storage Interface (CSI) driver.

17. Label the nodes where you want Cloud-Native Router to be installed based on the nodeaffinity
configuration (if defined in the values.yaml). For example:

kubectl label nodes ip-10.0.100.17.us-east-2.compute.internal key1=jcnr --overwrite

18. Deploy the Juniper Cloud-Native Router using the Helm chart.

Navigate to the helmchart/jcnr or the helmchart/jcnr_csrx directory and run the following
command:

helm install jcnr .

139

or

helm install jcnr-csrx .

NAME: jcnr
LAST DEPLOYED: Fri Dec 22 06:04:33 2023
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None

19. Confirm Juniper Cloud-Native Router deployment.

helm ls

Sample output:

NAME NAMESPACE REVISION UPDATED
STATUS CHART APP VERSION
jcnr default 1 2023-12-22 06:04:33.144611017 -0400 EDT
deployed jcnr-<version> <version>

Install Juniper Cloud-Native Router Using AWS Marketplace Subscription
(BYOL)

Use this procedure to install JCNR (BYOL) from AWS Marketplace using Helm charts.

This procedure installs Cloud-Native Router on your existing Amazon EKS cluster. Ensure you've set up
your Amazon EKS cluster prior to running this procedure. You can use any method to create an EKS
cluster as long as it meets the system requirements described in "System Requirements for EKS
Deployment" on page 149.

For convenience, we've provided a CloudFormation template that you can use to quickly get a cluster up
and running. This template is provided in "CloudFormation Template for EKS Cluster" on page 406.

140

1. Review the "System Requirements for EKS Deployment" on page 149 to ensure the setup has all
the required configuration.

2. Log in to and search for Cloud-Native Router products from the AWS Marketplace.

3. Select the JCNR (BYOL) product and subscribe to it.

4. Scroll down on the selected product's landing page to view the usage instructions.

The instructions show you how to log in to the ECR Helm registry and download the Cloud-Native
Router helm chart.

5. Copy and run the provided usage instructions on the setup where you issue your AWS CLI
commands.

aws configure
aws ecr get-login-password <...>
helm pull oci: <...>

This downloads the jcnr-<version>.tgz file onto your setup.

6. Expand the file jcnr-<version>.tgz.

tar xzvf jcnr-<version>.tgz

7. Change directory to jcnr.

cd jcnr

NOTE: All remaining steps in the installation assume that your current working
directory is now jcnr.

8. View the contents in the current directory.

ls
Chart.yaml charts cRPD_examples scripts secrets values.yaml

9. Follow the steps in "Installing Your License" on page 353 to install your Cloud-Native Router
license.

141

https://aws.amazon.com/marketplace/search/results?searchTerms=jcnr

10. Enter the root password for your host server into the secrets/jcnr-secrets.yaml file at the following
line:

 root-password: <add your password in base64 format>

You must enter the password in base64-encoded format. Encode your password as follows:

echo -n "password" | base64 -w0

Copy the output of this command into secrets/jcnr-secrets.yaml.

11. Apply secrets/jcnr-secrets.yaml to the cluster.

kubectl apply -f secrets/jcnr-secrets.yaml
namespace/jcnr created
secret/jcnr-secrets created

12. Create the "JCNR ConfigMap" on page 153 if using the Virtual Router Redundancy Protocol (VRRP)
for your Cloud-Native Router cluster. Apply the jcnr-aws-config.yaml to the Kubernetes system.

kubectl apply -f jcnr-aws-config.yaml
configmap/jcnr-aws-config created

13. If desired, configure how cores are assigned to the vRouter DPDK containers. See "Allocate CPUs
to the Cloud-Native Router Forwarding Plane" on page 355.

14. Customize the helm chart for your deployment using the values.yaml file.

See, "Customize JCNR Helm Chart for EKS Deployment" on page 157 for descriptions of the helm
chart configurations and a sample helm chart for EKS deployment.

15. Optionally, customize Cloud-Native Router configuration.

See "Customize Cloud-Native Router Configuration " on page 62 for creating and applying the
cRPD customizations.

16. Verify that the Amazon EBS CSI driver role policy has been attached to the EKS cluster node role.

aws iam list-attached-role-policies --role-name <EKS_Cluster_Node_Role_Name>

142

Look for arn:aws:iam::aws:policy/service-role/AmazonEBSCSIDriverPolicy in the output. If this policy is not
listed, add it as follows:

aws iam attach-role-policy --role-name <EKS_Cluster_Node_Role_Name> --policy-arn
arn:aws:iam::aws:policy/service-role/AmazonEBSCSIDriverPolicy

17. Verify that the Amazon VPC CNI role policy has been attached to the EKS cluster node role.

aws iam list-attached-role-policies --role-name <EKS_Cluster_Node_Role-Name>

Look for arn:aws:iam::aws:policy/AmazonEKS_CNI_Policy in the output. If this policy is not listed, add it as
follows:

aws iam attach-role-policy --role-name <EKS_Cluster_Node_Role_Name> --policy-arn
arn:aws:iam::aws:policy/AmazonEKS_CNI_Policy

18. Verify that the Amazon EBS CSI driver and Amazon VPC CNI add-ons are installed.

aws eks describe-addon-versions --addon-name aws-ebs-csi-driver

aws eks describe-addon-versions --addon-name vpc-cni

If any of the add-ons is not installed, you can install them respectively as follows:

aws eks create-addon --cluster-name my-cluster --addon-name aws-ebs-csi-driver --addon-
version <version> --service-account-role-arn <EKS_Cluster_Node_IAM_role_ARN>

aws eks create-addon --cluster-name my-cluster --addon-name vpc-cni --addon-version
<version> --service-account-role-arn <EKS_Cluster_Node_IAM_role_ARN>

Be sure to install the versions listed in "Minimum Host System Requirements for EKS" on page 149.

19. Label the nodes where you want Cloud-Native Router to be installed based on the nodeaffinity
configuration (if defined in the values.yaml). For example:

kubectl label nodes ip-10.0.100.17.us-east-2.compute.internal key1=jcnr --overwrite

143

20. Deploy the Juniper Cloud-Native Router using the helm chart.

Run the following command:

helm install jcnr .

NAME: jcnr
LAST DEPLOYED: <date_time>
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None

21. Confirm Juniper Cloud-Native Router deployment.

helm ls

Sample output:

NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION

jcnr default 1 <date_time> deployed jcnr-<version> <version>

Verify Cloud-Native Router Installation on Amazon EKS

NOTE: The output shown in this example procedure is affected by the number of nodes
in the cluster. The output you see in your setup may differ in that regard.

1. Verify the state of the Cloud-Native Router pods by issuing the kubectl get pods -A command. The
output of the kubectl command shows all of the pods in the Kubernetes cluster in all namespaces.

144

Successful deployment means that all pods are in the running state. In this example we have marked
the Juniper Cloud-Native Router Pods in bold. For example:

kubectl get pods -A

NAMESPACE NAME READY STATUS RESTARTS AGE

contrail-deploy contrail-k8s-deployer-5b6c9656d5-nw9t9 1/1 Running 0 13d

contrail jcnr-0-dp-contrail-vrouter-nodes-b2jxp 2/2 Running 0 13d

contrail jcnr-0-dp-contrail-vrouter-nodes-vrdpdk-g7wrk 1/1 Running 0 13d

jcnr jcnr-0-crpd-0 1/1 Running 0 13d

jcnr syslog-ng-tct27 1/1 Running 0 13d

kube-system aws-node-k8hxl 1/1 Running 1 (15d ago) 15d

kube-system ebs-csi-node-c8rbh 3/3 Running 3 (15d ago) 15d

kube-system kube-multus-ds-8nzhs 1/1 Running 1 (13d ago) 13d

kube-system kube-proxy-h669c 1/1 Running 1 (15d ago) 15d

2. Verify the Cloud-Native Router daemonsets by issuing the kubectl get ds -A command. Use the kubectl
get ds -A command to get a list of daemonsets. The Cloud-Native Router daemonsets are highlighted
in bold text.

kubectl get ds -A

NAMESPACE NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE

SELECTOR AGE

contrail jcnr-0-dp-contrail-vrouter-nodes 1 1 1 1 1

<none> 13d

contrail jcnr-0-dp-contrail-vrouter-nodes-vrdpdk 1 1 1 1 1

<none> 13d

jcnr syslog-ng 1 1 1 1 1

<none> 13d

kube-system aws-node 8 8 8 8 8

<none> 15d

kube-system ebs-csi-node 8 8 8 8 8 kubernetes.io/

os=linux 15d

kube-system ebs-csi-node-windows 0 0 0 0 0 kubernetes.io/

os=windows 15d

kube-system kube-multus-ds 8 8 8 8 8

145

<none> 13d

kube-system kube-proxy 8 8 8 8 8

<none> 15d

3. Verify the Cloud-Native Router statefulsets by issuing the kubectl get statefulsets -A command. The
command output provides the statefulsets.

kubectl get statefulsets -A

NAMESPACE NAME READY AGE
jcnr jcnr-0-crpd 1/1 27m

4. Verify if the cRPD is licensed and has the appropriate configurations.

a. View the Access the cRPD CLI section for instructions to access the cRPD CLI.

b. Once you have access the cRPD CLI, issue the show system license command in the cli mode to view
the system licenses. For example:

root@jcnr-01:/# cli
root@jcnr-01> show system license
License usage:
 Licenses Licenses Licenses Expiry
 Feature name used installed needed
 containerized-rpd-standard 1 1 0 2024-09-20 16:59:00 PDT

Licenses installed:
 License identifier: 85e5229f-0c64-0000-c10e4-a98c09ab34a1
 License SKU: S-CRPD-10-A1-PF-5
 License version: 1
 Order Type: commercial
 Software Serial Number: 1000098711000-iHpgf
 Customer ID: Juniper Networks Inc.
 License count: 15000
 Features:
 containerized-rpd-standard - Containerized routing protocol daemon with standard
features
 date-based, 2022-08-21 17:00:00 PDT - 2027-09-20 16:59:00 PDT

146

c. Issue the show configuration | display set command in the cli mode to view the cRPD default and
custom configuration. The output will be based on the custom configuration and the Cloud-
Native Router deployment mode.

root@jcnr-01# cli
root@jcnr-01> show configuration | display set

d. Type the exit command to exit from the pod shell.

5. Verify the vRouter interfaces configuration.

a. View the Access the vRouter CLI section for instructions on how to access the vRouter CLI.

b. Once you have accessed the vRouter CLI, issue the vif --list command to view the vRouter
interfaces . The output will depend upon the Cloud-Native Router deployment mode and
configuration. An example for L3 mode deployment, with one fabric interface configured, is
provided below:

$ vif --list

Vrouter Interface Table

Flags: P=Policy, X=Cross Connect, S=Service Chain, Mr=Receive Mirror
 Mt=Transmit Mirror, Tc=Transmit Checksum Offload, L3=Layer 3, L2=Layer 2
 D=DHCP, Vp=Vhost Physical, Pr=Promiscuous, Vnt=Native Vlan Tagged
 Mnp=No MAC Proxy, Dpdk=DPDK PMD Interface, Rfl=Receive Filtering Offload,
Mon=Interface is Monitored
 Uuf=Unknown Unicast Flood, Vof=VLAN insert/strip offload, Df=Drop New Flows, L=MAC
Learning Enabled
 Proxy=MAC Requests Proxied Always, Er=Etree Root, Mn=Mirror without Vlan Tag,
HbsL=HBS Left Intf
 HbsR=HBS Right Intf, Ig=Igmp Trap Enabled, Ml=MAC-IP Learning Enabled, Me=Multicast
Enabled

vif0/0 Socket: unix MTU: 1514
 Type:Agent HWaddr:00:00:5e:00:01:00
 Vrf:65535 Flags:L2 QOS:-1 Ref:3
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:0

vif0/1 PCI: 0000:00:07.0 (Speed 1000, Duplex 1) NH: 6 MTU: 9000

147

 Type:Physical HWaddr:0e:d0:2a:58:46:4f IPaddr:0.0.0.0
 DDP: OFF SwLB: ON
 Vrf:0 Mcast Vrf:0 Flags:L3L2 QOS:0 Ref:8
 RX device packets:20476 bytes:859992 errors:0
 RX port packets:20476 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0
 Fabric Interface: 0000:00:07.0 Status: UP Driver: net_ena
 RX packets:20476 bytes:859992 errors:0
 TX packets:2 bytes:180 errors:0
 Drops:0
 TX port packets:2 errors:0
 TX device packets:8 bytes:740 errors:0

vif0/2 PCI: 0000:00:08.0 (Speed 1000, Duplex 1) NH: 7 MTU: 9000
 Type:Physical HWaddr:0e:6a:9e:04:da:6f IPaddr:0.0.0.0
 DDP: OFF SwLB: ON
 Vrf:0 Mcast Vrf:0 Flags:L3L2 QOS:0 Ref:8
 RX device packets:20476 bytes:859992 errors:0
 RX port packets:20476 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0
 Fabric Interface: 0000:00:08.0 Status: UP Driver: net_ena
 RX packets:20476 bytes:859992 errors:0
 TX packets:2 bytes:180 errors:0
 Drops:0
 TX port packets:2 errors:0
 TX device packets:8 bytes:740 errors:0

vif0/3 PMD: eth2 NH: 10 MTU: 9000
 Type:Host HWaddr:0e:d0:2a:58:46:4f IPaddr:0.0.0.0
 DDP: OFF SwLB: ON
 Vrf:0 Mcast Vrf:65535 Flags:L3L2DProxyEr QOS:-1 Ref:11 TxXVif:1
 RX device packets:2 bytes:180 errors:0
 RX queue packets:2 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:2 bytes:180 errors:0
 TX packets:20476 bytes:859992 errors:0
 Drops:0
 TX queue packets:20476 errors:0
 TX device packets:20476 bytes:859992 errors:0

vif0/4 PMD: eth3 NH: 15 MTU: 9000
 Type:Host HWaddr:0e:6a:9e:04:da:6f IPaddr:0.0.0.0
 DDP: OFF SwLB: ON

148

 Vrf:0 Mcast Vrf:65535 Flags:L3L2DProxyEr QOS:-1 Ref:11 TxXVif:2
 RX device packets:2 bytes:180 errors:0
 RX queue packets:2 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:2 bytes:180 errors:0
 TX packets:20476 bytes:859992 errors:0
 Drops:0
 TX queue packets:20476 errors:0
 TX device packets:20476 bytes:859992 errors:0

c. Type exit to exit from the pod shell.

System Requirements for EKS Deployment

IN THIS SECTION

Minimum Host System Requirements for EKS | 149

Resource Requirements for EKS | 151

Miscellaneous Requirements for EKS | 152

Cloud-Native Router ConfigMap for VRRP | 153

Port Requirements | 155

Download Options | 157

Cloud-Native Router Licensing | 157

Read this section to understand the system, resource, port, and licensing requirements for installing
Juniper Cloud-Native Router on Amazon Elastic Kubernetes Service (EKS).

Minimum Host System Requirements for EKS

Table 13 on page 150 lists the host system requirements for installing Cloud-Native Router on EKS.

149

Table 13: Minimum Host System Requirements for EKS

Component Value/Version

EKS Deployment Self-managed nodes or managed node group

Host OS Amazon Linux 2

EKS version / Kubernetes 1.26.3, 1.28.x, 1.29.x

EC2 Instance Type Any instance type with ENA adapters

NOTE: There is no minimum instance type
imposed by Juniper Cloud-Native Router,
but a typical deployment runs c5.4xlarge or
m5.4xlarge or larger (depending on
performance requirements).

Kernel Version 5.10.x, 5.15.x

NIC Elastic Network Adapter (ENA)

AWS CLI version 2.11.9

VPC CNI v1.14.0-eksbuild.3

EBS CSI Driver v1.28.0-eksbuild.1

Node Role AmazonEBSCSIDriverPolicy

AmazonEKS_CNI_Policy

Multus 3.7.2

(kubectl apply -f https://
raw.githubusercontent.com/aws/amazon-vpc-cni-
k8s/master/config/multus/v3.7.2-eksbuild.1/
aws-k8s-multus.yaml)

Helm 3.11

Container-RT containerd 1.7.x

150

Table 13: Minimum Host System Requirements for EKS (Continued)

Component Value/Version

NOTE: The component versions listed in this table are expected to work with JCNR, but not every version or
combination is tested in every release.

Resource Requirements for EKS

Table 14 on page 151 lists the resource requirements for installing Cloud-Native Router on EKS.

Table 14: Resource Requirements for EKS

Resource Value Usage Notes

Data plane
forwarding cores

1 core (1P +
1S)

Service/Control Cores 0

UIO Driver VFIO-PCI To enable, follow the steps below:

cat /etc/modules-load.d/vfio.conf
vfio
vfio-pci

Enable Unsafe IOMMU mode

echo Y > /sys/module/vfio_iommu_type1/parameters/
allow_unsafe_interrupts
echo Y > /sys/module/vfio/parameters/enable_unsafe_noiommu_mode

Hugepages (1G) 6 Gi See "Configure the Number of Huge Pages Available on a Node" on
page 401.

Cloud-Native Router
Controller cores

.5

151

Table 14: Resource Requirements for EKS (Continued)

Resource Value Usage Notes

Cloud-Native Router
vRouter Agent cores

.5

Miscellaneous Requirements for EKS

Table 15 on page 152 lists additional requirements for installing Cloud-Native Router on EKS.

Table 15: Miscellaneous Requirements for EKS

Requirement Example

Disable source/destination checks. Disable source/destination checks on the AWS Elastic
Network Interfaces (ENI) interfaces attached to JCNR.
JCNR, being a transit router, is neither the source nor
the destination of any traffic that it receives.

Attach IAM policy. Attach the AmazonEBSCSIDriverPolicy IAM policy to the
role assigned to the EKS cluster.

Set IOMMU and IOMMU-PT in GRUB. Add the following line to /etc/default/grub.

GRUB_CMDLINE_LINUX_DEFAULT="console=tty1
console=ttyS0 default_hugepagesz=1G hugepagesz=1G
hugepages=64 intel_iommu=on iommu=pt"

Update grub and reboot.

grub2-mkconfig -o /boot/grub2/grub.cfg

reboot

152

Table 15: Miscellaneous Requirements for EKS (Continued)

Requirement Example

Additional kernel modules need to be loaded on the
host before deploying Cloud-Native Router in L3
mode. These modules are usually available in linux-
modules-extra or kernel-modules-extra packages.

NOTE: Applicable for L3 deployments only.

Create a /etc/modules-load.d/crpd.conf file and add
the following kernel modules to it:

tun
fou
fou6
ipip
ip_tunnel
ip6_tunnel
mpls_gso
mpls_router
mpls_iptunnel
vrf
vxlan

Verify the core_pattern value is set on the host before
deploying JCNR. sysctl kernel.core_pattern

kernel.core_pattern = |/usr/lib/systemd/systemd-
coredump %P %u %g %s %t %c %h %e

You can update the core_pattern in /etc/sysctl.conf.
For example:

kernel.core_pattern=/var/crash/core_%e_%p_%i_%s_%h_
%t.gz

Cloud-Native Router ConfigMap for VRRP

You can enable Virtual Router Redundancy Protocol (VRRP) for your Cloud-Native Router cluster.

NOTE: When running VRRP, the AWS IAM role for the node hosting the Cloud-Native
Router instance needs permission to modify the VPC route table. To provide that
permission, add the NetworkAdministrator policy to that IAM role.

153

You must create a Cloud-Native Router ConfigMap to define the behavior of VRRP for your Cloud-
Native Router cluster in an EKS deployment. Considering that AWS VPC supports exactly one next-hop
for a prefix, the ConfigMap defines how the VRRP mastership status is used to copy prefixes from
routing tables in Cloud-Native Router to specific routing tables in AWS.

We provide an example jcnr-aws-config.yaml manifest below:

apiVersion: v1
kind: ConfigMap
metadata:
 name: jcnr-aws-config
 namespace: jcnr
data:
 aws-rttable-map.json: |
 [
 {
 "jcnr-table-name":"default-rt.inet.0",
 "jcnr-policy-name": "default-rt-to-aws-export",
 "jcnr-nexthop-interface-name":"eth4",
 "vpc-table-tag":"jcnr-aws-vpc-internal-table"
 },
 {
 "jcnr-table-name":"default-rt.inet6.0",
 "jcnr-policy-name":"default-rt-to-aws-export",
 "jcnr-nexthop-interface-name":"eth4",
 "vpc-table-tag":"jcnr-aws-vpc-internal-table"
 }
]

Table 16 on page 154 describes the ConfigMap elements:

Table 16: Cloud-Native Router ConfigMap Elements

Element Description

jcnr-table-name The routing table in Cloud-Native Router from which
prefixes should be copied.

jcnr-policy-name A routing policy in Cloud-Native Router that imports
the prefixes in the named routing table to copy to the
AWS routing table.

154

Table 16: Cloud-Native Router ConfigMap Elements (Continued)

Element Description

jcnr-nexthop-interface-name Name of the Cloud-Native Router interface which
should be used as the next-hop by the AWS VPC route
table when this instance of the Cloud-Native Router is
VRRP master.

vpc-table-tag A freeform tag applied to the VPC route table in AWS
to which the prefixes should be copied.

Apply jcnr-aws-config.yaml to the cluster before installing JCNR. The Cloud-Native Router CNI deployer
renders the cRPD configuration based on the ConfigMap.

NOTE: When not using VRRP, provide an empty list as the data for aws-rttable-map.json.

Port Requirements

Juniper Cloud-Native Router listens on certain TCP and UDP ports. This section lists the port
requirements for the cloud-native router.

Table 17: Cloud-Native Router Listening Ports

Protocol Port Description

TCP 8085 vRouter introspect–Used to gain
internal statistical information
about vRouter

TCP 8070 Telemetry Information- Used to see
telemetry data from the Cloud-
Native Router vRouter

TCP 8072 Telemetry Information-Used to see
telemetry data from Cloud-Native
Router control plane

TCP 8075, 8076 Telemetry Information- Used for
gNMI requests

155

Table 17: Cloud-Native Router Listening Ports (Continued)

Protocol Port Description

TCP 9091 vRouter health check–cloud-native
router checks to ensure the vRouter
agent is running.

TCP 9092 vRouter health check–cloud-native
router checks to ensure the vRouter
DPDK is running.

TCP 50052 gRPC port–Cloud-Native Router
listens on both IPv4 and IPv6

TCP 8081 Cloud-Native Router Deployer Port

TCP 24 cRPD SSH

TCP 830 cRPD NETCONF

TCP 666 rpd

TCP 1883 Mosquito mqtt–Publish/subscribe
messaging utility

TCP 9500 agentd on cRPD

TCP 21883 na-mqttd

TCP 50053 Default gNMI port that listens to
the client subscription request

TCP 51051 jsd on cRPD

UDP 50055 Syslog-NG

156

Download Options

To deploy Cloud-Native Router on an EKS cluster, you can either download the Helm charts from the
Juniper Networks software download site (see "Cloud-Native Router Software Download Packages" on
page 387) or subscribe via the AWS Marketplace.

NOTE: Before deploying
Cloud-Native Router
on an EKS cluster via Helm charts downloaded from the Juniper Networks software
download site, you must whitelist the
https://enterprise.hub.juniper.net
URL as the
Cloud-Native Router
image repository.

Cloud-Native Router Licensing

You can purchase BYOL licenses for the Juniper Cloud-Native Router software through your Juniper
Account Team.

For information on BYOL licenses, see "Manage Cloud-Native Router Licenses" on page 352.

Customize Cloud-Native Router Helm Chart for EKS
Deployment

IN THIS SECTION

Helm Chart Description for Amazon EKS Deployment | 158

Read this topic to learn about the deployment configuration available for the Juniper Cloud-Native
Router when deployed on Amazon EKS.

157

https://aws.amazon.com/marketplace/search/results?searchTerms=jcnr
https://enterprise.hub.juniper.net

You can deploy and operate Juniper Cloud-Native Router in the L3 mode on Amazon EKS. You configure
the deployment mode by editing the appropriate attributes in the values.yaml file prior to deployment.

Helm Chart Description for Amazon EKS Deployment

Customize the Helm chart using the Juniper_Cloud_Native_Router_<release>/helmchart/jcnr/
values.yaml file. We provide a copy of the default values.yaml in "Cloud-Native Router Default Helm
Chart" on page 389.

Table 18 on page 158 contains a description of the configurable attributes in values.yaml for an Amazon
EKS deployment.

Table 18: Helm Chart Description for Amazon EKS Deployment

Key Description

global

installSyslog Set to true to install syslog-ng.

registry Defines the Docker registry for the Cloud-Native Router container
images.

The default value is set to:

• enterprise-hub.juniper.net in Helm charts downloaded from
the Juniper Networks software download site.

• Amazon Elastic Container Registry (ECR) for Helm charts
downloaded from the AWS Marketplace.

repository (Optional) Defines the repository path for the Cloud-Native Router
container images. This is a global key that takes precedence over
the repository paths under the common section. Default is jcnr-
container-prod/.

imagePullSecret (Optional) Defines the Docker registry authentication credentials.
You can configure credentials to either the Juniper Networks
enterprise-hub.juniper.net registry or your private registry.

Not applicable for AWS Marketplace subscriptions.

158

https://enterprise.hub.juniper.net

Table 18: Helm Chart Description for Amazon EKS Deployment (Continued)

Key Description

registryCredentials Base64 representation of your Docker registry credentials. See
"Configure Repository Credentials" on page 398 for more
information.

secretName Name of the secret object that will be created.

common Defines repository paths and tags for the vRouter, cRPD and jcnr-
cni container images. Use the defaults.

repository Defines the repository path. The global repository key takes
precedence if defined.

The default value is set to:

• jcnr-container-prod/ in Helm charts downloaded from the
Juniper Networks software download site.

• juniper-networks for AWS Marketplace subscriptions.

tag Defines the image tag. The default value is configured to the
appropriate tag number for the Cloud-Native Router release
version.

readinessCheck Set to true to enable Cloud-Native Router Readiness preflight and
postflight checks during installation. Comment this out or set to
false to disable Cloud-Native Router Readiness preflight and
postflight checks.

Preflight checks verify that your infrastructure can support JCNR.
Preflight checks take place before Cloud-Native Router is installed.

Postflight checks verify that your Cloud-Native Router installation
is working properly. Postflight checks take place after Cloud-
Native Router is installed.

See "Cloud-Native Router Readiness Checks" on page 362.

replicas (Optional) Indicates the number of replicas for cRPD. Default is 1.
The value for this key must be specified for multi-node clusters.
The value is equal to the number of nodes running JCNR.

159

Table 18: Helm Chart Description for Amazon EKS Deployment (Continued)

Key Description

noLocalSwitching Not applicable.

iamrole Not applicable.

fabricInterface Provide a list of interfaces to be bound to the DPDK. You can also
provide subnets instead of interface names. If both the interface
name and the subnet are specified, then the interface name takes
precedence over subnet/gateway combination. The subnet/
gateway combination is useful when the interface names vary in a
multi-node cluster.

NOTE: Use the L3 only section to configure fabric interfaces for
Amazon EKS. The L2 only and L2-L3 sections are not applicable
for EKS deployments.

For example:

 # L3 only
 - eth1:
 ddp: "off"
 - eth2:
 ddp: "off"

subnet An alternative mode of input to interface names. For example:

- subnet: 10.40.1.0/24
 gateway: 10.40.1.1
 ddp: "off"

With the subnet mode of input, interfaces are auto-detected in
each subnet. Specify either subnet/gateway or the interface name.
Do not configure both. The subnet/gateway form of input is
particularly helpful in environments where the interface names
vary in a multi-node cluster.

ddp Not applicable.

interface_mode Not applicable.

vlan-id-list Not applicable.

160

Table 18: Helm Chart Description for Amazon EKS Deployment (Continued)

Key Description

storm-control-
profile

Not applicable.

native-vlan-id Not applicable.

no-local-switching Not applicable.

qosSchedulerProfile
Name

Specifies the QoS scheduler profile applicable to this interface. See
the qosSchedulerProfiles section.

If you don't specify a profile, then the QoS scheduler is disabled
for this interface, which means that packets are scheduled with no
regard to traffic class.

fabricWorkloadInterface Not applicable.

log_level Defines the log severity. Available value options are: DEBUG,
INFO, WARN, and ERR.

NOTE: Leave it set to the default INFO unless instructed to
change it by Juniper Networks support.

log_path The defined directory stores various JCNR-related descriptive logs
such as contrail-vrouter-agent.log, contrail-vrouter-dpdk.log, etc.
Default is /var/log/jcnr/.

syslog_notifications Indicates the absolute path to the file that stores syslog-ng
generated notifications in JSON format. Default is /var/log/jcnr/
jcnr_notifications.json.

corePattern Indicates the core_pattern for the core file. If left blank, then
Cloud-Native Router pods will not overwrite the default pattern
on the host.

NOTE: Set the core_pattern on the host before deploying JCNR.
You can change the value in /etc/sysctl.conf. For example,
kernel.core_pattern=/var/crash/core_%e_%p_%i_%s_%h_%t.gz

161

Table 18: Helm Chart Description for Amazon EKS Deployment (Continued)

Key Description

coreFilePath Indicates the path to the core file. Default is /var/crash.

nodeAffinity (Optional) Defines labels on nodes to determine where to place
the vRouter pods. By default the vRouter pods are deployed to all
nodes of a cluster.

In the example below, the node affinity label is defined as
key1=jcnr. You must apply this label to each node where Cloud-
Native Router is to be deployed:

nodeAffinity:
 - key: key1
 operator: In
 values:
 - jcnr

NOTE: This key is a global setting.

key Key-value pair that represents a node label that must be matched
to apply the node affinity.

operator Defines the relationship between the node label and the set of
values in the matchExpression parameters in the pod specification.
This value can be In, NotIn, Exists, DoesNotExist, Lt, or Gt.

cni_bin_dir (Optional) The default path is /opt/cni/bin. You can override the
default path with the path in your distribution (for
example, /var/opt/cni/bin).

grpcTelemetryPort (Optional) Enter a value for this parameter to override cRPD
telemetry gRPC server default port of 50051.

grpcVrouterPort (Optional) Default is 50052. Configure to override.

vRouterDeployerPort (Optional) Default is 8081. Configure to override.

162

Table 18: Helm Chart Description for Amazon EKS Deployment (Continued)

Key Description

cpu_core_mask If present, this indicates that you want to use static CPU allocation
to allocate cores to the forwarding plane.

This value should be a comma-delimited list of isolated CPU cores
that you want to statically allocate to the forwarding plane (for
example, cpu_core_mask: "2,3,22,23"). Use the cores not used by
the host OS.

Comment this out if you want to use Kubernetes CPU Manager to
allocate cores to the forwarding plane.

NOTE: You cannot use static CPU allocation and Kubernetes
CPU Manager at the same time. Cloud-Native Router Readiness
preflight checks, if enabled, will fail the installation if you specify
both.

guaranteedVrouterCpus If present, this indicates that you want to use the Kubernetes CPU
Manager to allocate CPU cores to the forwarding plane.

This value should be the number of guaranteed CPU cores that
you want the Kubernetes CPU Manager to allocate to the
forwarding plane. You should set this value to at least one more
than the number of forwarding cores.

Comment this out if you want to use static CPU allocation to
allocate cores to the forwarding plane.

NOTE: You cannot use static CPU allocation and Kubernetes
CPU Manager at the same time. Using both can lead to
unpredictable behavior.

dpdkCtrlThreadMask Specifies the CPU core(s) to allocate to vRouter DPDK control
threads when using static CPU allocation. This list should be a
subset of the cores listed in cpu_core_mask and can be the same as
the list in serviceCoreMask.

CPU cores listed in cpu_core_mask but not in serviceCoreMask or
dpdkCtrlThreadMask are allocated for forwarding.

Comment this out if you want to use Kubernetes CPU Manager to
allocate cores to the forwarding plane.

163

Table 18: Helm Chart Description for Amazon EKS Deployment (Continued)

Key Description

serviceCoreMask Specifies the CPU core(s) to allocate to vRouter DPDK service
threads when using static CPU allocation. This list should be a
subset of the cores listed in cpu_core_mask and can be the same as
the list in dpdkCtrlThreadMask.

CPU cores listed in cpu_core_mask but not in serviceCoreMask or
dpdkCtrlThreadMask are allocated for forwarding.

Comment this out if you want to use Kubernetes CPU Manager to
allocate cores to the forwarding plane.

numServiceCtrlThreadCPU Specifies the number of CPU cores to allocate to vRouter DPDK
service/control traffic when using the Kubernetes CPU Manager.

This number should be smaller than the number of
guaranteedVrouterCpus cores. The remaining guaranteedVrouterCpus
cores are allocated for forwarding.

Comment this out if you want to use static CPU allocation to
allocate cores to the forwarding plane.

numberOfSchedulerLcores The number of CPU cores that you want Kubernetes CPU
Manager to dedicate to your QoS schedulers. Comment this out if
you want to use static CPU allocation to allocate cores to the
forwarding plane.

restoreInterfaces Set to true to restore the interfaces back to their original state in
case the vRouter pod crashes or restarts or if Cloud-Native Router
is uninstalled.

bondInterfaceConfigs Not applicable.

mtu Maximum Transmission Unit (MTU) value for all physical interfaces
(VFs and PFs). Default is 9000.

qosSchedulerProfiles Defines the QoS scheduler profiles that are referenced from the
fabricInterface section.

sched_profile_1 The name of the QoS scheduler profile.

164

Table 18: Helm Chart Description for Amazon EKS Deployment (Continued)

Key Description

cpu Specify the CPU core(s) to dedicate to the scheduler.
If cpu_core_mask is specified, this should be a unique
additional core(s).

bandwidth Specify the bandwidth in Gbps.

stormControlProfiles Not applicable.

dpdkCommandAdditionalArgs Pass any additional DPDK command line parameters. The --
yield_option 0 is set by default and implies the DPDK forwarding
cores will not yield their assigned CPU cores. Other common
parameters that can be added are tx and rx descriptors and
mempool. For example:

dpdkCommandAdditionalArgs: "--yield_option 0 --dpdk_txd_sz 2048
--dpdk_rxd_sz 2048 --vr_mempool_sz 131072"

NOTE: Changing the number of tx and rx descriptors and the
mempool size affects the number of huge pages required. If you
make explicit changes to these parameters, set the number of
huge pages to 10 (x 1 GB).

See "Configure Huge Pages" on page 401 for information on
how to configure huge pages.

dpdk_monitoring_thread_config (Optional) Enables a monitoring thread for the vRouter DPDK
container. Every loggingInterval seconds, a log containing the
information indicated by loggingMask is generated.

loggingMask Specifies the information to be generated. Represented by a
bitmask with bit positions as follows:

• 0b001 is the nl_counter

• 0b010 is the lcore_timestamp

• 0b100 is the profile_histogram

loggingInterval Specifies the log generation interval in seconds.

165

Table 18: Helm Chart Description for Amazon EKS Deployment (Continued)

Key Description

ddp Not applicable.

twampPort (Optional) The TWAMP session reflector port (if you want
TWAMP sessions to use vRouter timestamps). The vRouter listens
to TWAMP test messages on this port and inserts/overwrites
timestamps in TWAMP test messages. Timestamping TWAMP
messages at the vRouter (instead of at cRPD) leads to more
accurate measurements. Valid values are 862 and 49152 through
65535.

If this parameter is absent, then the vRouter does not insert or
overwrite timestamps in the TWAMP session. Timestamps are
taken and inserted by cRPD instead.

See Two-Way Active Measurement Protocol (TWAMP).

vrouter_dpdk_uio_driver The uio driver is vfio-pci.

agentModeType Set to dpdk.

fabricRpfCheckDisable Set to false to enable the RPF check on all Cloud-Native Router
fabric interfaces. By default, RPF check is disabled.

telemetry (Optional) Configures cRPD telemetry settings. To learn more
about telemetry, see Telemetry Capabilities .

disable Set to true to disable cRPD telemetry. Default is false, which
means that cRPD telemetry is enabled by default.

metricsPort The port that the cRPD telemetry exporter is listening to
Prometheus queries on. Default is 8072.

logLevel One of warn, warning, info, debug, trace, or verbose. Default is
info.

gnmi (Optional) Configures cRPD gNMI settings.

166

Table 18: Helm Chart Description for Amazon EKS Deployment (Continued)

Key Description

enable Set to true to enable the cRPD telemetry exporter to
respond to gNMI requests.

vrouter

telemetry (Optional) Configures vRouter telemetry settings. To learn more
about telemetry, see Telemetry Capabilities .

metricsPort Specify the port that the vRouter telemetry exporter
listens to Prometheus queries on. Default is 8070.

logLevel One of warn, warning, info, debug, trace, or verbose.
Default is info.

gnmi (Optional) Configures vRouter gNMI settings.

enable - Set to true to enable the vRouter telemetry
exporter to respond to gNMI requests.

persistConfig Set to true if you want Cloud-Native Router pod configuration to
persist even after uninstallation. This option can only be set for L2
mode deployments. Default is false.

enableLocalPersistence Set to true if you're using the cRPD CLI or NETCONF to configure
JCNR. When set to true, the cRPD CLI and NETCONF
configuration persists through node reboots, cRPD pod restarts,
and Cloud-Native Router upgrades. Default is false.

interfaceBoundType Not applicable.

networkDetails Not applicable.

networkResources Not applicable.

contrail-tools

167

Table 18: Helm Chart Description for Amazon EKS Deployment (Continued)

Key Description

install Set to true to install contrail-tools (used for debugging).

Customize Cloud-Native Router Configuration

SUMMARY

Read this topic to understand how to customize
Cloud-Native Router configuration using a Configlet
custom resource.

IN THIS SECTION

Configlet Custom Resource | 168

Configuration Examples | 169

Applying the Configlet Resource | 170

Modifying the Configlet | 176

Troubleshooting | 176

Configlet Custom Resource

Starting with Juniper Cloud-Native Router (JCNR) Release 24.2, we support customizing Cloud-Native
Router configuration using a configlet custom resource. The configlet can be generated either by
rendering a predefined template of supported Junos configuration or using raw configuration. The
generated configuration is validated and deployed on the Cloud-Native Router controller (cRPD) as one
or more Junos configuration groups.

NOTE: You can configure Cloud-Native Router using either configlets or the cRPD CLI or
NETCONF. If you use the cRPD CLI or NETCONF, be sure to enable local persistence in
values.yaml (enableLocalPersistence: true) so that your CLI or NETCONF configuration
persists across reboots and upgrades.

168

https://www.juniper.net/documentation/us/en/software/junos/cli/topics/topic-map/configuration-groups-usage.html

NOTE: Using both configlets and the cRPD CLI or NETCONF to configure Cloud-Native
Router may lead to unpredictable behavior. Use one or the other, but not both.

Configuration Examples

You create a configlet custom resource of the kind Configlet in the jcnr namespace. You provide raw
configuration as Junos set commands.

Use crpdSelector to control where the configlet applies. The generated configuration is deployed to cRPD
pods on nodes matching the specified label only. If crpdSelector is not defined, the configuration is
applied to all cRPD pods in the cluster.

An example configlet yaml is provided below:

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample # <-- Configlet resource name
 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address 10.10.10.1/32
 crpdSelector:
 matchLabels:
 node: worker # <-- Node label to select the cRPD pods

You can also use a templatized configlet yaml that contains keys or variables. The values for variables are
provided by a configletDataValue custom resource, referenced by configletDataValueRef . An example
templatized configlet yaml is provided below:

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample-with-template # <-- Configlet resource name
 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address {{ .Ip }}

169

 crpdSelector:
 matchLabels:
 node: worker # <-- Node label to select the cRPD pods
 configletDataValueRef:
 name: "configletdatavalue-sample" # <-- Configlet Data Value resource name

To render configuration using the template, you must provide key:value pairs in the ConfigletDataValue
custom resource:

apiVersion: configplane.juniper.net/v1
kind: ConfigletDataValue
metadata:
 name: configletdatavalue-sample
 namespace: jcnr
spec:
 data: {
 "Ip": "127.0.0.1" # <-- Key:Value pair
 }

The generated configuration is validated and applied to all or selected cRPD pods as a Junos
Configuration Group.

Applying the Configlet Resource

The configlet resource can be used to apply configuration to selected or all cRPD pods either when
Cloud-Native Router is deployed or once the cRPD pods are up and running. Let us look at configlet
deployment in detail.

Applying raw configuration

1. Create raw configuration configlet yaml. The example below configures a loopback interface in cRPD.

cat configlet-sample.yaml

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample

170

https://www.juniper.net/documentation/us/en/software/junos/cli/topics/topic-map/configuration-groups-usage.html
https://www.juniper.net/documentation/us/en/software/junos/cli/topics/topic-map/configuration-groups-usage.html

 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address 10.10.10.1/32
 crpdSelector:
 matchLabels:
 node: worker

2. Apply the configuration using the kubectl apply command.

kubectl apply -f configlet-sample.yaml

configlet.configplane.juniper.net/configlet-sample created

3. Check on the configlet.

When a configlet resource is deployed, it creates additional node configlet custom resources, one for
each node matched by the crpdSelector.

kubectl get nodeconfiglets -n jcnr

NAME AGE
configlet-sample-node1 10m

If the configuration defined in the configlet yaml is invalid or fails to deploy, you can view the error
message using kubectl describe for the node configlet custom resource.

For example:

kubectl describe nodeconfiglet configlet-sample-node1 -n jcnr

The following output has been trimmed for brevity:

Name: configlet-sample-node1
Namespace: jcnr
Labels: core.juniper.net/nodeName=node1
Annotations: <none>

171

API Version: configplane.juniper.net/v1
Kind: NodeConfiglet
Metadata:
 Creation Timestamp: 2024-06-13T16:51:23Z
 ...
Spec:
 Clis:
 set interfaces lo0 unit 0 address 10.10.10.1/32
 Group Name: configlet-sample
 Node Name: node1
Status:
 Message: load-configuration failed: syntax error
 Status: False
Events: <none>

4. Optionally, verify the configuration on the Access cRPD CLI shell in CLI mode. Note that the
configuration is applied as a configuration group named after the configlet resource.

show configuration groups configlet-sample

interfaces {
 lo0 {
 unit 0 {
 family inet {
 address 10.10.10.1/32;
 }
 }
 }
}

NOTE: The configuration generated using configlets is applied to cRPD as configuration
groups. We therefore recommend that you not use configuration groups when
specifying your configlet.

172

Applying templatized configuration

1. Create the templatized configlet yaml and the configlet data value yaml for key:value pairs.

cat configlet-sample-template.yaml

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample-template
 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address {{ .Ip }}
 crpdSelector:
 matchLabels:
 node: master
 configletDataValueRef:
 name: "configletdatavalue-sample"

cat configletdatavalue-sample.yaml

apiVersion: configplane.juniper.net/v1
kind: ConfigletDataValue
metadata:
 name: configletdatavalue-sample
 namespace: jcnr
spec:
 data: {
 "Ip": "127.0.0.1"
 }

173

2. Apply the configuration using the kubectl apply command, starting with the config data value yaml.

kubectl apply -f configletdatavalue-sample.yaml

configletdatavalue.configplane.juniper.net/configletdatavalue-sample created

kubectl apply -f configlet-sample-template.yaml

configlet.configplane.juniper.net/configlet-sample-template created

3. Check on the configlet.

When a configlet resource is deployed, it creates additional node configlet custom resources, one for
each node matched by the crpdSelector.

kubectl get nodeconfiglets -n jcnr

NAME AGE
configlet-sample-template-node1 10m

If the configuration defined in the configlet yaml is invalid or fails to deploy, you can view the error
message using kubectl describe for the node configlet custom resource.

For example:

kubectl describe nodeconfiglet configlet-sample-template-node1 -n jcnr

The following output has been trimmed for brevity:

Name: configlet-sample-template-node1
Namespace: jcnr
Labels: core.juniper.net/nodeName=node1
Annotations: <none>
API Version: configplane.juniper.net/v1
Kind: NodeConfiglet

174

Metadata:
 Creation Timestamp: 2024-06-13T16:51:23Z
 ...
Spec:
 Clis:
 set interfaces lo0 unit 0 address 10.10.10.1/32
 Group Name: configlet-sample-template
 Node Name: node1
Status:
 Message: load-configuration failed: syntax error
 Status: False
Events: <none>

4. Optionally, verify the configuration on the Access cRPD CLI shell in CLI mode. Note that the
configuration is applied as a configuration group named after the configlet resource.

show configuration groups configlet-sample-template

interfaces {
 lo0 {
 unit 0 {
 family inet {
 address 127.0.0.1/32;
 }
 }
 }
}

175

Modifying the Configlet

You can modify a configlet resource by changing the yaml file and reapplying it using the kubectl apply
command.

kubectl apply -f configlet-sample.yaml

configlet.configplane.juniper.net/configlet-sample configured

Any changes to existing configlet resource are reconciled by replacing the configuration group on cRPD.

You can delete the configuration group by deleting the configlet resource using the kubectl delete
command.

kubectl delete configlet configlet-sample -n jcnr

configlet.configplane.juniper.net "configlet-sample" deleted

Troubleshooting

If you run into problems, check the contrail-k8s-deployer logs. For example:

kubectl logs contrail-k8s-deployer-8ff895cc5-cbfwm -n contrail-deploy

176

Cloud-Native Router Operator Service Module: VPC
Gateway

SUMMARY

The Cloud-Native Router Operator Service Module is
an operator framework that we use to develop cRPD
applications and solutions. This section describes
how to use the Service Module to implement a VPC
gateway between your Amazon EKS cluster and your
on-premises Kubernetes cluster.

IN THIS SECTION

Cloud-Native Router VPC Gateway
Overview | 177

Install the Cloud-Native Router VPC
Gateway | 178

Prepare the MetalLB Cluster | 190

Prepare the Cloud-Native Router VPC
Gateway Cluster | 193

Prepare the On-Premises Cluster | 195

Cloud-Native Router VPC Gateway Overview

We provide the Cloud-Native Router Operator Service Module to install JCNR (with a BYOL license) on
an Amazon EKS cluster and to configure it to act as an EVPN-VXLAN VPC Gateway between a separate
Amazon EKS cluster running MetalLB and an on-premises Kubernetes cluster (Figure 4 on page 178).

Once you configure the VPC Gateway custom resource with information on your MetalLB cluster and
your on-premises Kubernetes cluster, the VPC Gateway establishes a BGP session with your MetalLB
cluster and establishes a BGP EVPN session with your on-premises Kubernetes cluster. Routes learned
from the MetalLB cluster are re-advertised to the on-premises cluster using EVPN Type 5 routes. Routes
learned from the on-premises cluster are leaked into the route tables of the routing instance for the
MetalLB cluster.

The configuration example we'll use in this section connects workloads at 10.4.230.4/32 in the on-
premises cluster to services at 10.14.220.1/32 in the MetalLB cluster.

NOTE: Configuring the connectivity between the AWS Cloud and the Customer Data
Center is not covered in this procedure. Use your preferred AWS method for
connectivity.

177

Figure 4: Cloud-Native Router VPC Gateway

NOTE: The VPC Gateway custom resource automatically installs Cloud-Native Router
with a configuration that is specific to this application. You don't need to install Cloud-
Native Router explicitly and you don't need to configure the Cloud-Native Router
installation Helm chart.

Install the Cloud-Native Router VPC Gateway

This is the main procedure. Start here.

1. Prepare the clusters.

a. Prepare the Cloud-Native Router VPC Gateway cluster. See "Prepare the Cloud-Native Router
VPC Gateway Cluster" on page 193.

b. Prepare the MetalLB cluster. See "Prepare the MetalLB Cluster" on page 190.

c. Prepare the on-premises cluster. See "Prepare the On-Premises Cluster" on page 195

After preparing the clusters, you can start installation of the Cloud-Native Router VPC Gateway.
Execute the remaining steps in the Cloud-Native Router VPC Gateway cluster.

2. Download and install the Cloud-Native Router Service Module Helm chart on the cluster.

You can download the Cloud-Native Router Service Module Helm chart from the Juniper Networks
software download site. See "Cloud-Native Router Software Download Packages" on page 387.

178

3. Install the downloaded Helm chart.

helm install vpcgwy Juniper_Cloud_Native_Router_Service_Module_<release>.tgz

NOTE: The provided Helm chart installs the Cloud-Native Router VPC Gateway on
cores 2, 3, 22, and 23. Therefore ensure that the nodes in your cluster have at least 24
cores and that the specified cores are free to use.

Check that the controller-manager and the contrail-k8s-deployer pods are up.

kubectl get pods -A

NAMESPACE NAME READY STATUS
svcmodule-system controller-manager-67898d794d-4cpsw 2/2 Running
cert-manager cert-manager-5bd57786d4-mf7hq 1/1 Running
cert-manager cert-manager-cainjector-57657d5754-5d2xc 1/1 Running
cert-manager cert-manager-webhook-7d9f8748d4-p482n 1/1 Running
contrail-deploy contrail-k8s-deployer-546587dcbc-bjbrg 1/1 Running
kube-system aws-node-dhsgv 2/2 Running
kube-system aws-node-n6kcx 2/2 Running
kube-system coredns-54d6f577c6-m7q8h 1/1 Running
kube-system coredns-54d6f577c6-qc76c 1/1 Running
kube-system eks-pod-identity-agent-6k6xj 1/1 Running
kube-system eks-pod-identity-agent-rvqz7 1/1 Running
kube-system kube-proxy-nqpsd 1/1 Running
kube-system kube-proxy-vzbnv 1/1 Running

4. Configure the Cloud-Native Router VPC Gateway custom resource.

This custom resource contains information on the MetalLB cluster and the on-premises cluster.

a. Create a YAML file that contains the desired configuration. We'll put our Cloud-Native Router
VPC Gateway pods into a namespace that we'll call gateway.

The YAML file has the following format:

apiVersion: v1
kind: Namespace
metadata:
 name: gateway

179

apiVersion: workflow.svcmodule.juniper.net/v1
kind: VpcGateway
metadata:
 name: vpc-gw
 namespace: gateway
spec:
 <see table>

Table 19 on page 180 describes the main configuration fields for the spec section. In the spec
definition, application refers to the MetalLB cluster and client refers to the on-premises cluster.
Table 19: Spec Descriptions

Spec Field Description

applicationTopology This section contains information on the MetalLB
cluster.

applicationInterface The name of the interface connecting to the MetalLB
cluster.

bgpSpeakerType Specify metallb when connecting to the MetalLB cluster.

clusters

kubeconfigSecretName The secret containing the kubeconfig of the MetalLB
cluster.

name The name of the MetalLB cluster.

enableV6 (Optional) True or false.

Enables or disables IPv6 in the MetalLB cluster. Default
is false.

180

Table 19: Spec Descriptions (Continued)

Spec Field Description

neighbourDiscovery (Optional) True or false.

Governs how BGP neighbors (BGP speakers from the
MetalLB cluster) are determined.

When set to true, BGP neighbors with addresses
specified in sessionPrefix or with addresses in the
application interface's subnet are accepted.

When set to false, the remote MetalLB cluster's cRPD
pod IP is used as the BGP neighbor. Default is false.

routePolicyOverride (Optional) True or false.

When set to true, a route policy called "export-onprem"
is used to govern what MetalLB cluster routes are
exported to the on-premises cluster. This gives you the
opportunity to create your own export policy. You must
create this policy manually and call it "export-onprem".

Default is false, which means that all MetalLB cluster
routes are exported to the on-premises cluster.

sessionPrefix (Optional) Used when neighbourDiscovery is set to true.

When present, it indicates the CIDR from which BGP
sessions from the MetalLB cluster are accepted.

Default is to accept BGP sessions from BGP neighbors
in the application interface's subnet.

client Information related to the on-premises cluster.

address The BGP speaker IP address of the on-premises cluster.

The Cloud-Native Router VPC Gateway establishes a
direct eBGP session with this address. This eBGP
session is used to learn the route to the loopback
address, which is used to establish the subsequent BGP
EVPN session.

181

Table 19: Spec Descriptions (Continued)

Spec Field Description

asn The AS number of the eBGP speaker in the client
cluster.

The Cloud-Native Router VPC Gateway validates this
when establishing the direct eBGP session with the BGP
speaker in the on-premises cluster.

loopbackAddress The loopback address of the BGP speaker in the on-
premises cluster.

The Cloud-Native Router VPC Gateway uses this IP
address to establish a BGP EVPN session with the BGP
speaker in the on-premises cluster.

myASN The local AS number that the Cloud-Native Router VPC
Gateway uses for the direct eBGP session with the BGP
speaker in the on-premises cluster.

routeTarget The route target for the EVPN routes in the on-premises
cluster.

vrrp Always set to true.

This enables VRRP on interfaces towards the on-
premises cluster.

clientInterface The name of the interface connecting to the on-
premises cluster.

dpdkDriver Set to vfio-pci.

loopbackIPPool The IP address pool used for assigning IP addresses to
the cRPD instances created in the cluster (in CIDR
format).

NOTE: The number of addresses in the pool must be
at least one more than the number of replicas.

182

Table 19: Spec Descriptions (Continued)

Spec Field Description

nodeSelector (Optional) Used in conjunction with a node's labels to
determine whether the VPC Gateway pod can run on a
node.

This selector must match a node's labels for the pod to
be scheduled on that node.

replicas (Optional) The number of JCNRs created. Default is 1.

NOTE: Armed with the MetalLB kubeconfig, the Cloud-Native Router VPC Gateway
has sufficient information to configure BGP sessions automatically with the MetalLB
cluster. You don't need to provide any parameters other than what's listed in the
table.

Here's an example of a working configuration:

apiVersion: v1
kind: Namespace
metadata:
 name: jcnr-gateway

apiVersion: workflow.svcmodule.juniper.net/v1
kind: VpcGateway
metadata:
 name: vpc-gw
 namespace: gateway
spec:
 dpdkDriver: vfio-pci
 replicas: 1
 clientInterface: eth3
 loopbackIPPool: 10.14.140.0/28
 applicationTopology:
 applicationInterface: eth2
 bgpSpeakerType: metallb
 clusters:

183

 - name: metallb-1
 kubeconfigSecretName: metallb-cluster-kubeconfig
 client:
 asn: 65010
 myASN: 65000
 address: 10.14.205.158
 loopbackAddress: 10.14.140.200
 routeTarget: target-1-4
 vrrp: true

b. Apply the YAML file to the cluster.

kubectl apply -f vpcGateway.yaml

where vpcGateway.yaml is the YAML file defining the Cloud-Native Router VPC Gateway.

c. Check the pods.

kubectl get pods -A

NAMESPACE NAME READY STATUS
svcmodule-system controller-manager-67898d794d-4cpsw 2/2
Running
cert-manager cert-manager-5bd57786d4-mf7hq 1/1
Running
cert-manager cert-manager-cainjector-57657d5754-5d2xc 1/1
Running
cert-manager cert-manager-webhook-7d9f8748d4-p482n 1/1
Running
contrail-deploy contrail-k8s-deployer-546587dcbc-bjbrg 1/1
Running
contrail vpc-gw-crpdgroup-0-x-contrail-vrouter-nodes-s9wkk 2/2
Running
contrail vpc-gw-crpdgroup-0-x-contrail-vrouter-nodes-vrdpdk-jczh5 1/1
Running
jcnr jcnr-gateway-vpc-gw-crpdgroup-0-0 2/2
Running
kube-system aws-node-dhsgv 2/2
Running
kube-system aws-node-n6kcx 2/2

184

Running
kube-system coredns-54d6f577c6-m7q8h 1/1
Running
kube-system coredns-54d6f577c6-qc76c 1/1
Running
kube-system eks-pod-identity-agent-6k6xj 1/1
Running
kube-system eks-pod-identity-agent-rvqz7 1/1
Running
kube-system kube-proxy-nqpsd 1/1
Running
kube-system kube-proxy-vzbnv 1/1
Running

5. Verify your installation.

Find the name of the configlet:

kubectl get nodeconfiglet -n jcnr

NAME AGE
vpc-gw-crpdgroup-0 8h

See how the configlet is configured. For example:

kubectl describe nodeconfiglet -n jcnr vpc-gw-crpdgroup-0

Name: vpc-gw-crpdgroup-0
Namespace: jcnr
Labels: core.juniper.net/nodeName=ip-10-75-66-162.us-west-2.compute.internal
Annotations: <none>
API Version: configplane.juniper.net/v1
Kind: NodeConfiglet
Metadata:
 Creation Timestamp: 2024-06-24T23:32:35Z
 Finalizers:
 node-configlet.finalizers.deployer.juniper.net
 Generation: 26
 Managed Fields:
 API Version: configplane.juniper.net/v1

185

 Fields Type: FieldsV1
 fieldsV1:
 f:status:
 .:
 f:message:
 f:status:
 Manager: manager
 Operation: Update
 Subresource: status
 Time: 2024-06-24T23:32:36Z
 API Version: configplane.juniper.net/v1
 Fields Type: FieldsV1
 fieldsV1:
 f:metadata:
 f:finalizers:
 .:
 v:"node-configlet.finalizers.deployer.juniper.net":
 f:ownerReferences:
 .:
 k:{"uid":"00c67217-87e7-434d-8d6a-8256f2d9d206"}:
 f:spec:
 .:
 f:clis:
 f:nodeName:
 Manager: manager
 Operation: Update
 Time: 2024-06-25T02:22:26Z
 Owner References:
 API Version: configplane.juniper.net/v1
 Block Owner Deletion: true
 Controller: true
 Kind: JcnrInstance
 Name: vpc-gw-crpdgroup-0
 UID: 00c67217-87e7-434d-8d6a-8256f2d9d206
 Resource Version: 133907
 UID: 340a19d0-9de5-414d-b2ac-c3831203877c
Spec:
 Clis:
 set interfaces eth2 unit 0 family inet address 10.14.207.30/22
 set interfaces eth2 mac 52:54:00:a4:c3:85
 set interfaces eth2 mtu 9216
 set interfaces eth3 unit 0 family inet address 10.14.205.159/22
 set interfaces eth3 mac 52:54:00:ee:4b:3f

186

 set interfaces eth3 mtu 9216
 set interfaces lo0 unit 0 family inet address 10.14.140.1/32
 set interfaces lo0 mtu 9216
 set policy-options policy-statement default-rt-to-aws-export then reject
 set policy-options policy-statement default-rt-to-aws-export term awsv4 from family inet
 set policy-options policy-statement default-rt-to-aws-export term awsv4 from protocol evpn
 set policy-options policy-statement default-rt-to-aws-export term awsv4 then accept
 set policy-options policy-statement default-rt-to-aws-export term awsv6 from family inet6
 set policy-options policy-statement default-rt-to-aws-export term awsv6 from protocol evpn
 set policy-options policy-statement default-rt-to-aws-export term awsv6 then accept
 set policy-options policy-statement export-direct then reject
 set policy-options policy-statement export-direct term directly-connected from protocol
direct
 set policy-options policy-statement export-direct term directly-connected then accept
 set policy-options policy-statement export-evpn then reject
 set policy-options policy-statement export-evpn term evpn-connected from protocol evpn
 set policy-options policy-statement export-evpn term evpn-connected then accept
 set policy-options policy-statement export-onprem then reject
 set policy-options policy-statement export-onprem term learned-from-bgp from protocol bgp
 set policy-options policy-statement export-onprem term learned-from-bgp then accept
 set routing-instances application-ri protocols bgp group vpc-gw-application local-address
10.14.207.30
 set routing-instances application-ri protocols bgp group vpc-gw-application export export-
evpn
 set routing-instances application-ri protocols bgp group vpc-gw-application peer-as 64513
 set routing-instances application-ri protocols bgp group vpc-gw-application local-as 64512
 set routing-instances application-ri protocols bgp group vpc-gw-application multihop
 set routing-instances application-ri protocols bgp group vpc-gw-application allow
10.14.207.29/22
 set routing-instances application-ri protocols evpn ip-prefix-routes advertise direct-
nexthop
 set routing-instances application-ri protocols evpn ip-prefix-routes encapsulation vxlan
 set routing-instances application-ri protocols evpn ip-prefix-routes vni 4096
 set routing-instances application-ri protocols evpn ip-prefix-routes export export-onprem
 set routing-instances application-ri protocols evpn ip-prefix-routes route-attributes
community export-action allow
 set routing-instances application-ri protocols evpn ip-prefix-routes route-attributes
community import-action allow
 set routing-instances application-ri interface eth2
 set routing-instances application-ri vrf-target target:1:4
 set routing-instances application-ri instance-type vrf
 set routing-options route-distinguisher-id 10.14.140.1
 set routing-options router-id 10.14.140.1

187

 set protocols bgp group vpc-gw-client-lo local-address 10.14.140.1
 set protocols bgp group vpc-gw-client-lo peer-as 64512
 set protocols bgp group vpc-gw-client-lo local-as 64512
 set protocols bgp group vpc-gw-client-lo family evpn signaling
 set protocols bgp group vpc-gw-client-lo neighbor 10.14.140.200
 set protocols bgp group vpc-gw-client-direct export export-direct
 set protocols bgp group vpc-gw-client-direct peer-as 65010
 set protocols bgp group vpc-gw-client-direct local-as 65000
 set protocols bgp group vpc-gw-client-direct multihop
 set protocols bgp group vpc-gw-client-direct neighbor 10.14.205.158
 Node Name: ip-10-75-66-162.us-west-2.compute.internal
Status:
 Message: Configuration committed
 Status: True
Events: <none>

6. Verify your installation.

a. Access the cRPD pod.

kubectl exec -n jcnr jcnr-gateway-vpc-gw-crpdgroup-0-0 -c crpd -it -- sh

b. Enter CLI mode.

cli

c. Check the BGP peers.

show bgp summary
Threading mode: BGP I/O
Default eBGP mode: advertise - accept, receive - accept
Groups: 3 Peers: 3 Down peers: 0
Unconfigured peers: 1
Table Tot Paths Act Paths Suppressed History Damp State Pending
bgp.evpn.0
 2 2 0 0 0 0
inet.0
 4 1 0 0 0 0
Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|
#Active/Received/Accepted/Damped...
10.14.140.200 64512 6514 6471 0 1 2d 0:49:34 Establ

188

 bgp.evpn.0: 2/2/2/0
 application-ri.evpn.0: 2/2/2/0
10.14.205.158 65010 6386 6363 0 3 2d 0:01:56 Establ
 inet.0: 1/4/4/0
10.14.207.29 64513 5758 6352 0 0 1d 23:56:40 Establ
 application-ri.inet.0: 1/1/1/0

In the output above, the Cloud-Native Router VPC Gateway has the following BGP sessions:

• with the iBGP speaker in the on-premises cluster at 10.14.140.200 for EVPN routes

• with the eBGP speaker in the on-premises cluster at 10.14.205.158 for the direct eBGP
session

• with the MetalLB cluster at 10.14.207.29

d. Check the routes to the MetalLB cluster and the on-premises cluster.

Check the route to the Nginx service in the MetalLB cluster:

show route 10.14.220.1

application-ri.inet.0: 4 destinations, 4 routes (4 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.14.220.1/32 *[BGP/170] 1d 00:24:25, localpref 100
 AS path: 64513 I, validation-state: unverified
 > to 10.14.207.29 via eth2

Check the route to the workloads in the on-premises cluster:

show route 10.4.230.4

application-ri.inet.0: 4 destinations, 4 routes (4 active, 0 holddown, 0 hidden)
+ = Active Route, - = Last Active, * = Both

10.4.230.4/32 *[EVPN/170] 1d 17:51:00
 > to 10.14.205.158 via eth3

With the routes successfully exchanged, the on-premises workloads at 10.4.230.4 can access the
MetalLB cluster at 10.14.220.1.

189

Prepare the MetalLB Cluster

The MetalLB cluster is the Amazon EKS cluster that you ultimately want to connect to your on-premises
cluster. Follow this procedure to prepare your MetalLB cluster to establish a BGP session with the
Cloud-Native Router VPC Gateway.

1. Create the Amazon EKS cluster where you'll be running the MetalLB service.

2. Deploy MetalLB on that cluster. MetalLB provides a network load balancer implementation for your
cluster.

See https://metallb.universe.tf/configuration/ for information on deploying MetalLB.

3. Create the necessary MetalLB resources. As a minimum, you need to create the MetalLB
IPAddressPool resource and the MetalLB BGPAdvertisement resource.

a. Create the MetalLB IPAddressPool resource.

Here's an example of a YAML file that defines the IPAddressPool resource.

apiVersion: metallb.io/v1beta1
kind: IPAddressPool
metadata:
 name: first-pool
 namespace: metallb-system
spec:
 addresses:
 - 10.14.220.0/24
 avoidBuggyIPs: true

In this example, MetalLB will assign load balancer IP addresses from the 10.14.220.0/24 range.

Apply the above YAML to the cluster to create the IPAddressPool.

kubectl apply -f ipaddresspool.yaml

where ipaddresspool.yaml is the name of the YAML file defining the IPAddressPool resource.

b. Create the MetalLB BGPAdvertisement resource.

Here's an example of a YAML file that defines the BGPAdvertisement resource.

apiVersion: metallb.io/v1beta1
kind: BGPAdvertisement
metadata:

190

https://metallb.universe.tf/configuration/

 name: example
 namespace: metallb-system

The BGPAdvertisement resource advertises your service IP addresses to external routers (for
example, to your Cloud-Native Router VPC Gateway).

Apply the above YAML to the cluster to create the BGPAdvertisement resource.

kubectl apply -f bgpadvertisement.yaml

where bgpadvertisement.yaml is the name of the YAML file defining the BGPAdvertisement
resource.

4. Create the LoadBalancer service. The LoadBalancer service provides the entry point for external
workloads to reach the cluster. You can create any LoadBalancer service of your choice.

Here's an example YAML for an Nginx LoadBalancer service.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx
spec:
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: <image repo URL>
 ports:
 - name: http
 containerPort: 80

apiVersion: v1
kind: Service
metadata:
 name: nginx

191

spec:
 ports:
 - name: http
 port: 80
 protocol: TCP
 targetPort: 8080
 selector:
 app: nginx
 type: LoadBalancer

Apply the above YAML to the cluster to create the Nginx LoadBalancer service.

kubectl apply -f nginx.yaml

where nginx.yaml is the name of the YAML file defining the Nginx service.

5. Verify your installation.

a. Take a look at the pods in your cluster.

For example:

kubectl get pods -A

NAMESPACE NAME READY STATUS RESTARTS AGE
default nginx-6d66d85dc4-h6dng 1/1 Running 0 9d
kube-system aws-node-vdhv9 2/2 Running 2 (28d ago) 28d
kube-system coredns-54d6f577c6-lbznn 1/1 Running 1 (28d ago) 29d
kube-system coredns-54d6f577c6-stljk 1/1 Running 1 (28d ago) 29d
kube-system eks-pod-identity-agent-kqtcb 1/1 Running 1 (28d ago) 28d
kube-system kube-proxy-fxcjq 1/1 Running 1 (28d ago) 28d
metallb-system controller-5c6b6c8447-2jdzc 1/1 Running 0 28d
metallb-system speaker-xhkpd 1/1 Running 0 28d

The example output shows that both MetalLB and Nginx are up.

b. Check the assigned external IP address for the Nginx service.

192

For example:

kubectl get svc nginx

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
nginx LoadBalancer 10.100.65.169 10.14.220.1 80:30623/TCP 9d

In this example, MetalLB has assigned 10.14.220.1 to the Nginx LoadBalancer service. This is the
overlay IP address that workloads in the on-premises cluster can use to reach services in the
MetalLB cluster.

Prepare the Cloud-Native Router VPC Gateway Cluster

1. Create the Amazon EKS cluster that you want to act as the Cloud-Native Router VPC Gateway.

The cluster must meet the system requirements described in "System Requirements for EKS
Deployment" on page 149.

Since you're not installing Cloud-Native Router explicitly, you can ignore any requirement that relates
to downloading the Cloud-Native Router software package or configuring the Cloud-Native Router
Helm chart.

2. Ensure all worker nodes in the cluster have identical interface names and identical root passwords.

In this example, we'll use eth2 to connect to the MetalLB cluster and eth3 to connect to the on-
premises cluster.

3. Once the cluster is up, create a jcnr-secrets.yaml file with the below contents.

apiVersion: v1
kind: Namespace
metadata:
 name: jcnr

apiVersion: v1
kind: Secret
metadata:
 name: jcnr-secrets
 namespace: jcnr
data:
 root-password: <add your password in base64 format>

193

 crpd-license: |
 <add your license in base64 format>

4. Follow the steps in "Installing Your License" on page 353 to install your Cloud-Native Router BYOL
license in the jcnr-secrets.yaml file.

5. Enter the base64-encoded form of the root password for your nodes into the jcnr-secrets.yaml file at
the following line:

 root-password: <add your password in base64 format>

You must enter the password in base64-encoded format. Encode your password as follows:

echo -n "password" | base64 -w0

Copy the output of this command into the designated location in jcnr-secrets.yaml.

6. Apply jcnr-secrets.yaml to the cluster.

kubectl apply -f jcnr-secrets.yaml
namespace/jcnr created
secret/jcnr-secrets created

7. Create the secret for accessing the MetalLB cluster.

a. Base64-encode the MetalLB cluster kubeconfig file.

base64 -w0 <metalLB-kubeconfig>

where <metalLB-kubeconfig> is the kubeconfig file for the MetalLB cluster.

The output of this command is the base64-encoded form of the MetalLB cluster kubeconfig.

b. Create the YAML defining the MetalLB cluster kubeconfig secret. We'll use a namespace called
jcnr-gateway, which we'll define later.

apiVersion: v1
data:
 kubeconfig: |-
<base64-encoded kubeconfig of MetalLB cluster>
kind: Secret
metadata:
 name: metallb-cluster-kubeconfig

194

 namespace: jcnr-gateway
type: Opaque

where <base64-encoded kubeconfig of MetalLB cluster> is the base64-encoded output from the previous
step.

c. Apply the YAML.

kubectl apply -f metallb-cluster-kubeconfig-secret.yaml

where metallb-cluster-kubeconfig-secret.yaml is the name of the YAML file defining the secret.

8. Install webhooks.

kubectl apply -f https://github.com/cert-manager/cert-manager/releases/download/v1.12.0/cert-manager.yaml

9. Create the jcnr-aws-configmap. See "Cloud-Native Router ConfigMap for VRRP" on page 153.

Your cluster is now ready for you to install the Cloud-Native Router VPC Gateway, but let's prepare the
on-premises cluster first.

Prepare the On-Premises Cluster

The Cloud-Native Router VPC Gateway sets up an eBGP session and an iBGP session with the on-
premises cluster:

• The Cloud-Native Router VPC Gateway uses the eBGP session to learn the loopback IP address of
the BGP speaker in the on-premises cluster. The Cloud-Native Router VPC Gateway then uses the
loopback IP address to establish the subsequent iBGP session.

• The Cloud-Native Router VPC Gateway uses the iBGP session to learn routes to the workloads in the
on-premises cluster. For the iBGP session, you must configure the local and peer AS number to be
64512.

The Cloud-Native Router VPC Gateway does not impose any restrictions on the on-premises cluster as
long as you configure it to establish the BGP sessions with the Cloud-Native Router VPC Gateway as
described above and to expose routes to the desired workloads.

We don't cover configuring the on-premises cluster because that's very device-specific. You should
configure the following, however, in order to be consistent with our ongoing example:

• an eBGP speaker at 10.14.205.158 for the eBGP session

195

• an iBGP speaker at 10.14.140.200 for exchanging EVPN routes

• workloads reachable at 10.4.230.4/32

196

5
CHAPTER

Install Cloud-Native Router on Google
Cloud Platform

IN THIS CHAPTER

Install and Verify Juniper Cloud-Native Router for GCP Deployment | 198

System Requirements for GCP Deployment | 208

Customize Cloud-Native Router Helm Chart for GCP Deployment | 219

Customize Cloud-Native Router Configuration | 230

Install and Verify Juniper Cloud-Native Router for
GCP Deployment

SUMMARY

The Juniper Cloud-Native Router (cloud-native
router) uses the the JCNR-Controller (cRPD) to
provide control plane capabilities and JCNR-CNI to
provide a container network interface. Juniper
Cloud-Native Router uses the DPDK-enabled
vRouter to provide high-performance data plane
capabilities and Syslog-NG to provide notification
functions. This section explains how you can install
these components of the Cloud-Native Router.

IN THIS SECTION

Install Juniper Cloud-Native Router Using
Juniper Support Site Package | 198

Install Juniper Cloud-Native Router Via
Google Cloud Marketplace | 202

Verify Installation | 204

Install Juniper Cloud-Native Router Using Juniper Support Site Package

Read this section to learn the steps required to load the cloud-native router image components using
Helm charts.

1. Review the "System Requirements for GCP Deployment" on page 208 section to ensure the setup
has all the required configuration.

2. Download the desired Cloud-Native Router software package to the directory of your choice.

You have the option of downloading the package to install Cloud-Native Router only or
downloading the package to install JNCR together with Juniper cSRX. See "Cloud-Native Router
Software Download Packages" on page 387 for a description of the packages available. If you don't
want to install Juniper cSRX now, you can always choose to install Juniper cSRX on your working
Cloud-Native Router installation later.

3. Expand the file Juniper_Cloud_Native_Router_release-number.tgz.

tar xzvf Juniper_Cloud_Native_Router_release-number.tgz

4. Change directory to the main installation directory.

• If you're installing Cloud-Native Router only, then:

cd Juniper_Cloud_Native_Router_<release>

198

This directory contains the Helm chart for Cloud-Native Router only.

• If you're installing Cloud-Native Router and cSRX at the same time, then:

cd Juniper_Cloud_Native_Router_CSRX_<release>

This directory contains the combination Helm chart for Cloud-Native Router and cSRX.

NOTE: All remaining steps in the installation assume that your current working
directory is now either Juniper_Cloud_Native_Router_<release> or
Juniper_Cloud_Native_Router_CSRX_<release>.

5. View the contents in the current directory.

ls
helmchart images README.md secrets

6. Change to the helmchart directory and expand the Helm chart.

cd helmchart

• For Cloud-Native Router only:

ls
jcnr-<release>.tgz

tar -xzvf jcnr-<release>.tgz

ls
jcnr jcnr-<release>.tgz

The Helm chart is located in the jcnr directory.

199

• For the combined Cloud-Native Router and cSRX:

ls
jcnr_csrx-<release>.tgz

tar -xzvf jcnr_csrx-<release>.tgz

ls
jcnr_csrx jcnr_csrx-<release>.tgz

The Helm chart is located in the jcnr_csrx directory.

7. The Cloud-Native Router container images are required for deployment. Choose one of the
following options:

• Configure your cluster to deploy images from the Juniper Networks enterprise-hub.juniper.net
repository. See "Configure Repository Credentials" on page 398 for instructions on how to
configure repository credentials in the deployment Helm chart.

• Configure your cluster to deploy images from the images tarball included in the downloaded
Cloud-Native Router software package. See "Deploy Prepackaged Images" on page 399 for
instructions on how to import images to the local container runtime.

8. Follow the steps in "Installing Your License" on page 353 to install your Cloud-Native Router
license.

9. Enter the root password for your host server into the secrets/jcnr-secrets.yaml file at the following
line:

 root-password: <add your password in base64 format>

You must enter the password in base64-encoded format. Encode your password as follows:

echo -n "password" | base64 -w0

Copy the output of this command into secrets/jcnr-secrets.yaml.

200

10. Apply secrets/jcnr-secrets.yaml to the cluster.

kubectl apply -f secrets/jcnr-secrets.yaml
namespace/jcnr created
secret/jcnr-secrets created

11. If desired, configure how cores are assigned to the vRouter DPDK containers. See "Allocate CPUs
to the Cloud-Native Router Forwarding Plane" on page 355.

12. Customize the Helm chart for your deployment using the helmchart/jcnr/values.yaml or
helmchart/jcnr_csrx/values.yaml file.

See "Customize Cloud-Native Router Helm Chart for GCP Deployment" on page 219 for
descriptions of the Helm chart configurations.

13. Optionally, customize Cloud-Native Router configuration.

See, "Customize Cloud-Native Router Configuration " on page 62 for creating and applying the
cRPD customizations.

14. If you're installing Juniper cSRX now, then follow the procedure in "Apply the cSRX License and
Configure cSRX" on page 338.

15. Label the nodes where you want Cloud-Native Router to be installed based on the nodeaffinity
configuration (if defined in the values.yaml). For example:

kubectl label nodes ip-10.0.100.17.lab.net key1=jcnr --overwrite

16. Deploy the Juniper Cloud-Native Router using the Helm chart.

Navigate to the helmchart/jcnr or the helmchart/jcnr_csrx directory and run the following
command:

helm install jcnr .

or

helm install jcnr-csrx .

NAME: jcnr
LAST DEPLOYED: Fri Dec 22 06:04:33 2023
NAMESPACE: default
STATUS: deployed

201

REVISION: 1
TEST SUITE: None

17. Confirm Juniper Cloud-Native Router deployment.

helm ls

Sample output:

NAME NAMESPACE REVISION UPDATED
STATUS CHART APP VERSION
jcnr default 1 2023-09-22 06:04:33.144611017 -0400 EDT
deployed jcnr-<version> <version>

Install Juniper Cloud-Native Router Via Google Cloud Marketplace

Read this section to learn the steps required to deploy the cloud-native router.

1. Launch the Juniper Cloud-Native Router (PAYG) deployment wizard from the Google Cloud
Marketplace.

2. The table below lists the settings to be configured:

Settings Value

Deployment name Name of your deployment.

Zone GCP zone.

Series N2

Machine Type n2-standard-32 (32 vCPU, 16 core, 128 GB)

SSH-Keys SSH key pair for Compute Engine virtual machine
(VM) instances.

202

(Continued)

Settings Value

Cloud-Native Router License Base64 encoded license key.

To encode the license, copy the license key into a file
on your host server and issue the command:

base64 -w 0 licenseFile

Copy and paste the base64 encoded license key in
the Cloud-Native Router license field.

cRPD Config Template Create a config template to customize Cloud-Native
Router configuration. See "Customize Cloud-Native
Router Configuration " on page 62 for sample cRPD
template. The config template must be saved in the
GCP bucket as an object. Provide the gsutil URI for
the object in the cRPD Config Template field.

cRPD Config Map Create a config template to customize Cloud-Native
Router configuration. See, "Customize Cloud-Native
Router Configuration " on page 62 for sample cRPD
config map. The config template must be saved in the
GCP bucket as an object. Provide the gsutil URI for
the object in the cRPD Config Map field.

Boot disk type Standard Persistent Disk

Boot disk size in GB 50

Network Interfaces Define additional network interface. An interface in
the VPC network is available by default.

3. Review the "System Requirements for GCP Deployment" on page 208 section for additional
minimum system requirements. Please note that the settings are pre-configured for the Cloud-Native
Router deployment via Google Cloud Marketplace.

4. Click Deploy to complete the Cloud-Native Router deployment.

203

5. Once deployed, you can customize the Cloud-Native Router helm chart. Review the "Customize
Cloud-Native Router Helm Chart for GCP Deployment" on page 219 topic for more information.
Once configured issue the helm upgrade command to deploy the customizations.

helm upgrade jcnr .
Release "jcnr" has been upgraded. Happy Helming!
NAME: jcnr
LAST DEPLOYED: Thu Dec 21 03:58:28 2023
NAMESPACE: default
STATUS: deployed
REVISION: 2
TEST SUITE: None

Verify Installation

This section enables you to confirm a successful Cloud-Native Router deployment.

NOTE: The output shown in this example procedure is affected by the number of nodes
in the cluster. The output you see in your setup may differ in that regard.

1. Verify the state of the Cloud-Native Router pods by issuing the kubectl get pods -A command.

The output of the kubectl command shows all of the pods in the Kubernetes cluster in all namespaces.
Successful deployment means that all pods are in the running state. In this example we have marked
the Juniper Cloud-Native Router Pods in bold. For example:

kubectl get pods -A

NAMESPACE NAME READY STATUS RESTARTS AGE

contrail-deploy contrail-k8s-deployer-579cd5bc74-g27gs 1/1 Running 0 103s

contrail jcnr-0-dp-contrail-vrouter-nodes-b2jxp 2/2 Running 0 87s

contrail jcnr-0-dp-contrail-vrouter-nodes-vrdpdk-g7wrk 1/1 Running 0 87s

jcnr jcnr-0-crpd-0 1/1 Running 0 103s

jcnr syslog-ng-ds5qd 1/1 Running 0 103s

kube-system calico-kube-controllers-5f4fd8666-m78hk 1/1 Running 0 4h2m

kube-system calico-node-28w98 1/1 Running 0 86d

kube-system coredns-54bf8d85c7-vkpgs 1/1 Running 0 3h8m

204

kube-system dns-autoscaler-7944dc7978-ws9fn 1/1 Running 0 86d

kube-system kube-apiserver-ix-esx-06 1/1 Running 0 86d

kube-system kube-controller-manager-ix-esx-06 1/1 Running 0 86d

kube-system kube-multus-ds-amd64-jl69w 1/1 Running 0 86d

kube-system kube-proxy-qm5bl 1/1 Running 0 86d

kube-system kube-scheduler-ix-esx-06 1/1 Running 0 86d

kube-system nodelocaldns-bntfp 1/1 Running 0 86d

2. Verify the Cloud-Native Router daemonsets by issuing the kubectl get ds -A command.

Use the kubectl get ds -A command to get a list of daemonsets. The Cloud-Native Router daemonsets
are highlighted in bold text.

kubectl get ds -A

NAMESPACE NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE

SELECTOR AGE

contrail jcnr-0-dp-contrail-vrouter-nodes 1 1 1 1 1

<none> 90m

contrail jcnr-0-dp-contrail-vrouter-nodes-vrdpdk 1 1 1 1 1

<none> 90m

jcnr syslog-ng 1 1 1 1 1

<none> 90m

kube-system calico-node 1 1 1 1 1 kubernetes.io/

os=linux 86d

kube-system kube-multus-ds-amd64 1 1 1 1 1 kubernetes.io/

arch=amd64 86d

kube-system kube-proxy 1 1 1 1 1 kubernetes.io/

os=linux 86d

kube-system nodelocaldns 1 1 1 1 1 kubernetes.io/

os=linux 86d

3. Verify the Cloud-Native Router statefulsets by issuing the kubectl get statefulsets -A command.

205

The command output provides the statefulsets.

kubectl get statefulsets -A

NAMESPACE NAME READY AGE
jcnr jcnr-0-crpd 1/1 27m

4. Verify if the cRPD is licensed and has the appropriate configurations

a. View the Access cRPD CLI section to access the cRPD CLI.

b. Once you have access the cRPD CLI, issue the show system license command in the cli mode to view
the system licenses. For example:

root@jcnr-01:/# cli
root@jcnr-01> show system license
License usage:
 Licenses Licenses Licenses Expiry
 Feature name used installed needed
 containerized-rpd-standard 1 1 0 2024-09-20 16:59:00 PDT

Licenses installed:
 License identifier: 85e5229f-0c64-0000-c10e4-a98c09ab34a1
 License SKU: S-CRPD-10-A1-PF-5
 License version: 1
 Order Type: commercial
 Software Serial Number: 1000098711000-iHpgf
 Customer ID: Juniper Networks Inc.
 License count: 15000
 Features:
 containerized-rpd-standard - Containerized routing protocol daemon with standard
features
 date-based, 2022-08-21 17:00:00 PDT - 2027-09-20 16:59:00 PDT

206

c. Issue the show configuration | display set command in the cli mode to view the cRPD default and
custom configuration. The output will be based on the custom configuration and the Cloud-
Native Router deployment mode.

root@jcnr-01# cli
root@jcnr-01> show configuration | display set

d. Type the exit command to exit from the pod shell.

5. Verify the vRouter interfaces configuration

a. View the Access vRouter CLI section to access the vRouter CLI.

b. Once you have accessed the vRouter CLI, issue the vif --list command to view the vRouter
interfaces . The output will depend upon the Cloud-Native Router deployment mode and
configuration. An example for L3 mode deployment, with one fabric interface configured, is
provided below:

$ vif --list

Vrouter Interface Table

Flags: P=Policy, X=Cross Connect, S=Service Chain, Mr=Receive Mirror
 Mt=Transmit Mirror, Tc=Transmit Checksum Offload, L3=Layer 3, L2=Layer 2
 D=DHCP, Vp=Vhost Physical, Pr=Promiscuous, Vnt=Native Vlan Tagged
 Mnp=No MAC Proxy, Dpdk=DPDK PMD Interface, Rfl=Receive Filtering Offload,
Mon=Interface is Monitored
 Uuf=Unknown Unicast Flood, Vof=VLAN insert/strip offload, Df=Drop New Flows, L=MAC
Learning Enabled
 Proxy=MAC Requests Proxied Always, Er=Etree Root, Mn=Mirror without Vlan Tag,
HbsL=HBS Left Intf
 HbsR=HBS Right Intf, Ig=Igmp Trap Enabled, Ml=MAC-IP Learning Enabled, Me=Multicast
Enabled

vif0/0 Socket: unix MTU: 1514
 Type:Agent HWaddr:00:00:5e:00:01:00
 Vrf:65535 Flags:L2 QOS:-1 Ref:3
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:0

vif0/1 PCI: 0000:5a:02.1 (Speed 10000, Duplex 1) NH: 6 MTU: 9000

207

 Type:Physical HWaddr:ba:9c:0f:ab:e2:c9 IPaddr:0.0.0.0
 DDP: OFF SwLB: ON
 Vrf:0 Mcast Vrf:0 Flags:L3L2Vof QOS:0 Ref:12
 RX port packets:66 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Fabric Interface: 0000:5a:02.1 Status: UP Driver: net_iavf
 RX packets:66 bytes:5116 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:0

vif0/2 PMD: eno3v1 NH: 9 MTU: 9000
 Type:Host HWaddr:ba:9c:0f:ab:e2:c9 IPaddr:0.0.0.0
 DDP: OFF SwLB: ON
 Vrf:0 Mcast Vrf:65535 Flags:L3L2DProxyEr QOS:-1 Ref:13 TxXVif:1
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:66 bytes:5116 errors:0
 Drops:0
 TX queue packets:66 errors:0
 TX device packets:66 bytes:5116 errors:0

c. Type the exit command to exit the pod shell.

System Requirements for GCP Deployment

IN THIS SECTION

Minimum Host System Requirements for GCP Deployment | 209

Resource Requirements for GCP Deployment | 210

Miscellaneous Requirements for GCP Deployment | 211

Port Requirements | 216

Download Options | 218

Cloud-Native Router Licensing | 218

208

Read this section to understand the system, resource, port, and licensing requirements for installing
Juniper Cloud-Native Router on Google Cloud Platform (GCP).

Minimum Host System Requirements for GCP Deployment

Table 20 on page 209 lists the host system requirements for installing Cloud-Native Router on GCP.

NOTE: The settings below are pre-configured when you deploy Cloud-Native Router via
the Google Cloud Marketplace.

Table 20: Minimum Host System Requirements for GCP Deployment

Component Value/Version Notes

GCP Deployment VM-based

Instance Type n2-standard-16

CPU Intel x86 The tested CPU is Intel
Cascade Lake

Host OS Rocky Linux 8.8 (Green
Obsidian)

Kernel Version Rocky Linux 4.18.X

NIC VirtIO NIC

Kubernetes (K8s) 1.25.x The tested K8s version is
1.25.5.

The K8s version for Google
Cloud Marketplace Cloud-
Native Router subscription
is v1.27.5.

Calico 3.25.1

Multus 4.0

209

Table 20: Minimum Host System Requirements for GCP Deployment (Continued)

Component Value/Version Notes

Helm 3.9.x

Container-RT containerd 1.7.x Other container runtimes
may work but have not
been tested with JCNR.

NOTE: The component versions listed in this table are expected to work with JCNR, but not every version or
combination is tested in every release.

Resource Requirements for GCP Deployment

Table 21 on page 210 lists the resource requirements for installing Cloud-Native Router on GCP.

Table 21: Resource Requirements for GCP Deployment

Resource Value Usage Notes

Data plane forwarding cores 1 core (1P + 1S)

Service/Control Cores 0

UIO Driver VFIO-PCI To enable, follow the steps below:

cat /etc/modules-load.d/vfio.conf
vfio
vfio-pci

Enable Unsafe IOMMU mode

echo Y > /sys/module/
vfio_iommu_type1/parameters/
allow_unsafe_interrupts
echo Y > /sys/module/vfio/
parameters/
enable_unsafe_noiommu_mode

210

Table 21: Resource Requirements for GCP Deployment (Continued)

Resource Value Usage Notes

Hugepages (1G) 6 Gi See "Configure the Number of
Huge Pages Available on a Node"
on page 401.

Cloud-Native Router Controller
cores

.5

Cloud-Native Router vRouter Agent
cores

.5

Miscellaneous Requirements for GCP Deployment

Table 22 on page 211 lists additional requirements for deploying Cloud-Native Router on GCP.

Table 22: Miscellaneous Requirements for GCP Deployment

Requirement Example

Set IOMMU and IOMMU-PT in GRUB. Add the following line to /etc/default/grub.

GRUB_CMDLINE_LINUX_DEFAULT="console=tty1
console=ttyS0 default_hugepagesz=1G hugepagesz=1G
hugepages=64 intel_iommu=on iommu=pt"

Update grub and reboot.

grub2-mkconfig -o /boot/grub2/grub.cfg

reboot

211

Table 22: Miscellaneous Requirements for GCP Deployment (Continued)

Requirement Example

Additional kernel modules need to be loaded on the
host before deploying Cloud-Native Router in L3
mode. These modules are usually available in linux-
modules-extra or kernel-modules-extra packages.

NOTE: Applicable for L3 deployments only.

Create a /etc/modules-load.d/crpd.conf file and add
the following kernel modules to it:

tun
fou
fou6
ipip
ip_tunnel
ip6_tunnel
mpls_gso
mpls_router
mpls_iptunnel
vrf
vxlan

Enable kernel-based forwarding on the Linux host.
ip fou add port 6635 ipproto 137

212

Table 22: Miscellaneous Requirements for GCP Deployment (Continued)

Requirement Example

Enable IP Forwarding for VMs in GCP. Use one of these two methods to enable IP
forwarding:

1. Specify it as an option while creating the VM. For
example:

gcloud compute instances create instance-name --
can-ip-forward

2. For an exisiting VM, enable IP forwarding by
updating the compute instance via a file. For
example:

gcloud compute instances export transit-jcnr01 --
project jcnr-ci-admin --zone us-west1-a --
destination=instance_file_1

Edit the instance file to set the value
canIpForward=true.

Update the compute instance from the file:

gcloud compute instances update-from-file transit-
jcnr01 --project jcnr-ci-admin --zone us-west1-a
--source=instance_file_1 --most-disruptive-
allowed-action ALLOWED_ACTION

Enable Multi-IP subnet on Guest OS.
gcloud compute images create debian-9-multi-ip-
subnet \
 --source-disk debian-9-disk \
 --source-disk-zone us-west1-a \
 --guest-os-features MULTI_IP_SUBNET

213

Table 22: Miscellaneous Requirements for GCP Deployment (Continued)

Requirement Example

Add firewall rules for loopback address for VPC. Configure the VPC firewall rule to allow ingress traffic
with source filters set to the subnet range to which
Cloud-Native Router is attached, along with the IP
ranges or addresses for the loopback addresses.

For example:

Navigate to Firewall policies on the GCP console and
create a firewall rule with the following attributes:

1. Name: Name of the firewall rule

2. Network: Choose the VPC network

3. Priority: 1000

4. Direction: Ingress

5. Action on Match: Allow

6. Source filters: 10.2.0.0/24, 10.51.2.0/24,
10.51.1.0/24, 10.12.2.2/32, 10.13.3.3/32

7. Protocols: all

8. Enforcement: Enabled

where 10.2.0.0/24 is the subnet to which Cloud-
Native Router is attached and 10.51.2.0/24,
10.51.1.0/24, 10.12.2.2/32, and 10.13.3.3/32 are
loopback IP ranges.

214

Table 22: Miscellaneous Requirements for GCP Deployment (Continued)

Requirement Example

Exclude Cloud-Native Router interfaces from
NetworkManager control.

NetworkManager is a tool in some operating systems
to make the management of network interfaces easier.
NetworkManager may make the operation and
configuration of the default interfaces easier. However,
it can interfere with Kubernetes management and
create problems.

To avoid NetworkManager from interfering with
Cloud-Native Router interface configuration, exclude
Cloud-Native Router interfaces from NetworkManager
control. Here's an example on how to do this in some
Linux distributions:

1. Create the /etc/NetworkManager/conf.d/crpd.conf
file and list the interfaces that you don't want
NetworkManager to manage.

For example:

[keyfile]
 unmanaged-devices+=interface-name:enp*;interface-
name:ens*

where enp* and ens* refer to your Cloud-Native
Router interfaces.

NOTE: enp*
indicates all interfaces starting with
enp
. For specific interface names, provided a comma-
separated list.

2. Restart the NetworkManager service:

sudo systemctl restart NetworkManager

3. Edit the /etc/sysctl.conf file on the host and paste
the following content in it:

net.ipv6.conf.default.addr_gen_mode=0
net.ipv6.conf.all.addr_gen_mode=0

215

Table 22: Miscellaneous Requirements for GCP Deployment (Continued)

Requirement Example

net.ipv6.conf.default.autoconf=0
net.ipv6.conf.all.autoconf=0

4. Run the command sysctl -p /etc/sysctl.conf to
load the new sysctl.conf values on the host.

Verify the core_pattern value is set on the host before
deploying JCNR. sysctl kernel.core_pattern

kernel.core_pattern = |/usr/lib/systemd/systemd-
coredump %P %u %g %s %t %c %h %e

You can update the core_pattern in /etc/sysctl.conf.
For example:

kernel.core_pattern=/var/crash/core_%e_%p_%i_%s_%h_
%t.gz

NOTE: Here are additional restrictions:

• Cloud-Native Router supports only IPv4 for GCP.

• Cloud-Native Router deployment on GCP supports only N8-standard for VM deployments. The N16-
standard is not supported.

Port Requirements

Juniper Cloud-Native Router listens on certain TCP and UDP ports. This section lists the port
requirements for the cloud-native router.

216

Table 23: Cloud-Native Router Listening Ports

Protocol Port Description

TCP 8085 vRouter introspect–Used to gain
internal statistical information
about vRouter

TCP 8070 Telemetry Information- Used to see
telemetry data from the Cloud-
Native Router vRouter

TCP 8072 Telemetry Information-Used to see
telemetry data from Cloud-Native
Router control plane

TCP 8075, 8076 Telemetry Information- Used for
gNMI requests

TCP 9091 vRouter health check–cloud-native
router checks to ensure the vRouter
agent is running.

TCP 9092 vRouter health check–cloud-native
router checks to ensure the vRouter
DPDK is running.

TCP 50052 gRPC port–Cloud-Native Router
listens on both IPv4 and IPv6

TCP 8081 Cloud-Native Router Deployer Port

TCP 24 cRPD SSH

TCP 830 cRPD NETCONF

TCP 666 rpd

TCP 1883 Mosquito mqtt–Publish/subscribe
messaging utility

TCP 9500 agentd on cRPD

217

Table 23: Cloud-Native Router Listening Ports (Continued)

Protocol Port Description

TCP 21883 na-mqttd

TCP 50053 Default gNMI port that listens to
the client subscription request

TCP 51051 jsd on cRPD

UDP 50055 Syslog-NG

Download Options

To deploy Cloud-Native Router on GCP, you can either download the Helm charts from the Juniper
Networks software download site (see "Cloud-Native Router Software Download Packages" on page
387) or subscribe via the Google Cloud Marketplace.

NOTE: Before deploying Cloud-Native Router on GCP via Helm charts downloaded from
the Juniper Networks software download site, you must whitelist the
https://enterprise.hub.juniper.net
URL as the Cloud-Native Router image repository.

Cloud-Native Router Licensing

See "Manage Cloud-Native Router Licenses" on page 352.

218

https://enterprise.hub.juniper.net

Customize Cloud-Native Router Helm Chart for GCP
Deployment

IN THIS SECTION

Helm Chart Description for GCP Deployment | 219

Read this topic to learn about the deployment configuration available for the Juniper Cloud-Native
Router when deployed on GCP.
You can deploy and operate Juniper Cloud-Native Router in L3 mode on GCP. You configure the
deployment mode by editing the appropriate attributes in the values.yaml file prior to deployment.

Helm Chart Description for GCP Deployment

Customize the Helm chart using the Juniper_Cloud_Native_Router_<release>/helmchart/jcnr/
values.yaml file. We provide a copy of the default values.yaml in "Cloud-Native Router Default Helm
Chart" on page 389.

Table 24 on page 219 contains a description of the configurable attributes in values.yaml for a GCP
deployment.

Table 24: Helm Chart Description for GCP Deployment

Key Description

global

installSyslog Set to true to install syslog-ng.

registry Defines the Docker registry for the Cloud-Native Router
container images. The default value is enterprise-hub.juniper.net.
The images provided in the tarball are tagged with the default
registry name. If you choose to host the container images to a
private registry, replace the default value with your registry URL.

219

Table 24: Helm Chart Description for GCP Deployment (Continued)

Key Description

repository (Optional) Defines the repository path for the Cloud-Native
Router container images. This is a global key that takes
precedence over the repository paths under the common section.
Default is jcnr-container-prod/.

imagePullSecret (Optional) Defines the Docker registry authentication credentials.
You can configure credentials to either the Juniper Networks
enterprise-hub.juniper.net registry or your private registry.

registryCredentials Base64 representation of your Docker registry credentials. See
"Configure Repository Credentials" on page 398 for more
information.

secretName Name of the secret object that will be created.

common Defines repository paths and tags for the Cloud-Native Router
container images. Use defaults unless using a private registry.

repository Defines the repository path. The default value is jcnr-container-
prod/. The global repository key takes precedence if defined.

tag Defines the image tag. The default value is configured to the
appropriate tag number for the Cloud-Native Router release
version.

readinessCheck Set to true to enable Cloud-Native Router Readiness preflight
and postflight checks during installation. Comment this out or set
to false to disable Cloud-Native Router Readiness preflight and
postflight checks.

Preflight checks verify that your infrastructure can support JCNR.
Preflight checks take place before Cloud-Native Router is
installed.

Postflight checks verify that your Cloud-Native Router
installation is working properly. Postflight checks take place after
Cloud-Native Router is installed.

See "Cloud-Native Router Readiness Checks" on page 362.

220

https://enterprise.hub.juniper.net

Table 24: Helm Chart Description for GCP Deployment (Continued)

Key Description

replicas (Optional) Indicates the number of replicas for cRPD. Default is 1.
The value for this key must be specified for multi-node clusters.
The value is equal to the number of nodes running JCNR.

noLocalSwitching Not applicable.

iamRole Not applicable.

fabricInterface Provide a list of interfaces to be bound to the DPDK. You can
also provide subnets instead of interface names. If both the
interface name and the subnet are specified, then the interface
name takes precedence over subnet/gateway combination. The
subnet/gateway combination is useful when the interface names
vary in a multi-node cluster.

NOTE: Use the L3 only section to configure fabric interfaces
for GCP. The L2 only and L2-L3 sections are not applicable for
GCP deployments. Do not configure interface_mode for any of
the interfaces.

For example:

 # L3 only
 - eth1:
 ddp: "off"
 - eth2:
 ddp: "off"

See "Cloud-Native Router Interfaces Overview" on page 14 for
more information.

221

Table 24: Helm Chart Description for GCP Deployment (Continued)

Key Description

subnet An alternative mode of input to interface names. For example:

- subnet: 10.40.1.0/24
 gateway: 10.40.1.1
 ddp: "off"

The subnet option is applicable only for L3 interfaces. With the
subnet mode of input, interfaces are auto-detected in each
subnet. Specify either subnet/gateway or the interface name. Do
not configure both. The subnet/gateway form of input is
particularly helpful in environments where the interface names
vary in a multi-node cluster.

ddp Not applicable.

interface_mode Not applicable.

vlan-id-list Not applicable.

storm-control-profile Not applicable.

native-vlan-id Not applicable.

no-local-switching Not applicable.

qosSchedulerProfileN
ame

Specifies the QoS scheduler profile applicable to this interface.
See the qosSchedulerProfiles section.

If you don't specify a profile, then the QoS scheduler is disabled
for this interface, which means that packets are scheduled with
no regard to traffic class.

fabricWorkloadInterface Not applicable.

log_level Defines the log severity. Available value options are: DEBUG,
INFO, WARN, and ERR.

NOTE: Leave it set to the default INFO unless instructed to
change it by Juniper Networks support.

222

Table 24: Helm Chart Description for GCP Deployment (Continued)

Key Description

log_path The defined directory stores various JCNR-related descriptive
logs such as contrail-vrouter-agent.log, contrail-vrouter-
dpdk.log, etc. Default is /var/log/jcnr/.

syslog_notifications Indicates the absolute path to the file that stores syslog-ng
generated notifications in JSON format. Default is /var/log/jcnr/
jcnr_notifications.json.

corePattern Indicates the core_pattern for the core file. If left blank, then
Cloud-Native Router pods will not overwrite the default pattern
on the host.

NOTE: Set the core_pattern on the host before deploying
JCNR. You can change the value in /etc/sysctl.conf. For
example, kernel.core_pattern=/var/crash/core_%e_%p_%i_%s_%h_
%t.gz

coreFilePath Indicates the path to the core file. Default is /var/crash.

nodeAffinity (Optional) Defines labels on nodes to determine where to place
the vRouter pods.

By default the vRouter pods are deployed to all nodes of a
cluster.

In the example below, the node affinity label is defined as
key1=jcnr. You must apply this label to each node where Cloud-
Native Router is to be deployed:

nodeAffinity:
- key: key1
operator: In
values:
- jcnr

NOTE: This key is a global setting.

key Key-value pair that represents a node label that must be matched
to apply the node affinity.

223

Table 24: Helm Chart Description for GCP Deployment (Continued)

Key Description

operator Defines the relationship between the node label and the set of
values in the matchExpression parameters in the pod
specification. This value can be In, NotIn, Exists, DoesNotExist,
Lt, or Gt.

cni_bin_dir (Optional) The default path is /opt/cni/bin. You can override the
default path with the path in your distribution (for
example, /var/opt/cni/bin).

grpcTelemetryPort (Optional) Enter a value for this parameter to override cRPD
telemetry gRPC server default port of 50053.

grpcVrouterPort (Optional) Default is 50052. Configure to override.

vRouterDeployerPort (Optional) Default is 8081. Configure to override.

jcnr-vrouter

cpu_core_mask If present, this indicates that you want to use static CPU
allocation to allocate cores to the forwarding plane.

This value should be a comma-delimited list of isolated CPU
cores that you want to statically allocate to the forwarding plane
(for example, cpu_core_mask: "2,3,22,23"). Use the cores not used
by the host OS.

Comment this out if you want to use Kubernetes CPU Manager
to allocate cores to the forwarding plane.

NOTE: You cannot use static CPU allocation and Kubernetes
CPU Manager at the same time. Cloud-Native Router
Readiness preflight checks, if enabled, will fail the installation if
you specify both.

224

Table 24: Helm Chart Description for GCP Deployment (Continued)

Key Description

guaranteedVrouterCpus If present, this indicates that you want to use the Kubernetes
CPU Manager to allocate CPU cores to the forwarding plane.

This value should be the number of guaranteed CPU cores that
you want the Kubernetes CPU Manager to allocate to the
forwarding plane. You should set this value to at least one more
than the number of forwarding cores.

Comment this out if you want to use static CPU allocation to
allocate cores to the forwarding plane.

NOTE: You cannot use static CPU allocation and Kubernetes
CPU Manager at the same time. Using both can lead to
unpredictable behavior.

dpdkCtrlThreadMask Specifies the CPU core(s) to allocate to vRouter DPDK control
threads when using static CPU allocation. This list should be a
subset of the cores listed in cpu_core_mask and can be the same as
the list in serviceCoreMask.

CPU cores listed in cpu_core_mask but not in serviceCoreMask or
dpdkCtrlThreadMask are allocated for forwarding.

Comment this out if you want to use Kubernetes CPU Manager
to allocate cores to the forwarding plane.

serviceCoreMask Specifies the CPU core(s) to allocate to vRouter DPDK service
threads when using static CPU allocation. This list should be a
subset of the cores listed in cpu_core_mask and can be the same as
the list in dpdkCtrlThreadMask.

CPU cores listed in cpu_core_mask but not in serviceCoreMask or
dpdkCtrlThreadMask are allocated for forwarding.

Comment this out if you want to use Kubernetes CPU Manager
to allocate cores to the forwarding plane.

225

Table 24: Helm Chart Description for GCP Deployment (Continued)

Key Description

numServiceCtrlThreadCPU Specifies the number of CPU cores to allocate to vRouter DPDK
service/control traffic when using the Kubernetes CPU Manager.

This number should be smaller than the number of
guaranteedVrouterCpus cores. The remaining guaranteedVrouterCpus
cores are allocated for forwarding.

Comment this out if you want to use static CPU allocation to
allocate cores to the forwarding plane.

numberOfSchedulerLcores The number of CPU cores that you want Kubernetes CPU
Manager to dedicate to your QoS schedulers. Comment this out
if you want to use static CPU allocation to allocate cores to the
forwarding plane.

restoreInterfaces Set to true to restore the interfaces back to their original state in
case the vRouter pod crashes or restarts or if Cloud-Native
Router is uninstalled.

bondInterfaceConfigs Not applicable.

mtu Maximum Transmission Unit (MTU) value for all physical
interfaces (VFs and PFs). Default is 9000.

qosSchedulerProfiles Defines the QoS scheduler profiles that are referenced from the
fabricInterface section.

sched_profile_1 The name of the QoS scheduler profile.

cpu Specify the CPU core(s) to dedicate to the
scheduler. If cpu_core_mask is specified, this should
be a unique additional core(s).

bandwidth Specify the bandwidth in Gbps.

stormControlProfiles Not applicable.

226

Table 24: Helm Chart Description for GCP Deployment (Continued)

Key Description

dpdkCommandAdditionalArgs Pass any additional DPDK command line parameters. The --
yield_option 0 is set by default and implies the DPDK forwarding
cores will not yield their assigned CPU cores. Other common
parameters that can be added are tx and rx descriptors and
mempool. For example:

dpdkCommandAdditionalArgs: "--yield_option 0 --dpdk_txd_sz
2048 --dpdk_rxd_sz 2048 --vr_mempool_sz 131072"

NOTE: Changing the number of tx and rx descriptors and the
mempool size affects the number of huge pages required. If you
make explicit changes to these parameters, set the number of
huge pages to 10 (x 1 GB).

See "Configure Huge Pages" on page 401 for information on
how to configure huge pages.

dpdk_monitoring_thread_config (Optional) Enables a monitoring thread for the vRouter DPDK
container. Every loggingInterval seconds, a log containing the
information indicated by loggingMask is generated.

loggingMask Specifies the information to be generated. Represented by a
bitmask with bit positions as follows:

• 0b001 is the nl_counter

• 0b010 is the lcore_timestamp

• 0b100 is the profile_histogram

loggingInterval Specifies the log generation interval in seconds.

ddp Not applicable.

227

Table 24: Helm Chart Description for GCP Deployment (Continued)

Key Description

twampPort (Optional) The TWAMP session reflector port (if you want
TWAMP sessions to use vRouter timestamps). The vRouter
listens to TWAMP test messages on this port and inserts/
overwrites timestamps in TWAMP test messages. Timestamping
TWAMP messages at the vRouter (instead of at cRPD) leads to
more accurate measurements. Valid values are 862 and 49152
through 65535.

If this parameter is absent, then the vRouter does not insert or
overwrite timestamps in the TWAMP session. Timestamps are
taken and inserted by cRPD instead.

See Two-Way Active Measurement Protocol (TWAMP).

vrouter_dpdk_uio_driver The uio driver is vfio-pci.

agentModeType Set to dpdk.

fabricRpfCheckDisable Set to false to enable the RPF check on all Cloud-Native Router
fabric interfaces. By default, RPF check is disabled.

telemetry (Optional) Configures cRPD telemetry settings. To learn more
about telemetry, see Telemetry Capabilities .

disable Set to true to disable cRPD telemetry. Default is false, which
means that cRPD telemetry is enabled by default.

metricsPort The port that the cRPD telemetry exporter is listening to
Prometheus queries on. Default is 8072.

logLevel One of warn, warning, info, debug, trace, or verbose. Default is
info.

gnmi (Optional) Configures cRPD gNMI settings.

228

Table 24: Helm Chart Description for GCP Deployment (Continued)

Key Description

enable Set to true to enable the cRPD telemetry exporter to
respond to gNMI requests.

vrouter

telemetry (Optional) Configures vRouter telemetry settings. To learn more
about telemetry, see Telemetry Capabilities .

metricsPort Specify the port that the vRouter telemetry
exporter listens to Prometheus queries on. Default
is 8070.

logLevel One of warn, warning, info, debug, trace, or verbose.
Default is info.

gnmi (Optional) Configures vRouter gNMI settings.

enable - Set to true to enable the vRouter telemetry
exporter to respond to gNMI requests.

persistConfig Set to true if you want Cloud-Native Router pod configuration to
persist even after uninstallation. This option can only be set for
L2 mode deployments. Default is false.

enableLocalPersistence Set to true if you're using the cRPD CLI or NETCONF to
configure JCNR. When set to true, the cRPD CLI and NETCONF
configuration persists through node reboots, cRPD pod restarts,
and Cloud-Native Router upgrades. Default is false.

interfaceBoundType Not applicable.

networkDetails Not applicable.

networkResources Not applicable.

229

Table 24: Helm Chart Description for GCP Deployment (Continued)

Key Description

contrail-tools

install Set to true to install contrail-tools (used for debugging).

Customize Cloud-Native Router Configuration

SUMMARY

Read this topic to understand how to customize
Cloud-Native Router configuration using a Configlet
custom resource.

IN THIS SECTION

Configlet Custom Resource | 230

Configuration Examples | 231

Applying the Configlet Resource | 232

Modifying the Configlet | 238

Troubleshooting | 238

Configlet Custom Resource

Starting with Juniper Cloud-Native Router (JCNR) Release 24.2, we support customizing Cloud-Native
Router configuration using a configlet custom resource. The configlet can be generated either by
rendering a predefined template of supported Junos configuration or using raw configuration. The
generated configuration is validated and deployed on the Cloud-Native Router controller (cRPD) as one
or more Junos configuration groups.

NOTE: You can configure Cloud-Native Router using either configlets or the cRPD CLI or
NETCONF. If you use the cRPD CLI or NETCONF, be sure to enable local persistence in
values.yaml (enableLocalPersistence: true) so that your CLI or NETCONF configuration
persists across reboots and upgrades.

230

https://www.juniper.net/documentation/us/en/software/junos/cli/topics/topic-map/configuration-groups-usage.html

NOTE: Using both configlets and the cRPD CLI or NETCONF to configure Cloud-Native
Router may lead to unpredictable behavior. Use one or the other, but not both.

Configuration Examples

You create a configlet custom resource of the kind Configlet in the jcnr namespace. You provide raw
configuration as Junos set commands.

Use crpdSelector to control where the configlet applies. The generated configuration is deployed to cRPD
pods on nodes matching the specified label only. If crpdSelector is not defined, the configuration is
applied to all cRPD pods in the cluster.

An example configlet yaml is provided below:

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample # <-- Configlet resource name
 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address 10.10.10.1/32
 crpdSelector:
 matchLabels:
 node: worker # <-- Node label to select the cRPD pods

You can also use a templatized configlet yaml that contains keys or variables. The values for variables are
provided by a configletDataValue custom resource, referenced by configletDataValueRef . An example
templatized configlet yaml is provided below:

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample-with-template # <-- Configlet resource name
 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address {{ .Ip }}

231

 crpdSelector:
 matchLabels:
 node: worker # <-- Node label to select the cRPD pods
 configletDataValueRef:
 name: "configletdatavalue-sample" # <-- Configlet Data Value resource name

To render configuration using the template, you must provide key:value pairs in the ConfigletDataValue
custom resource:

apiVersion: configplane.juniper.net/v1
kind: ConfigletDataValue
metadata:
 name: configletdatavalue-sample
 namespace: jcnr
spec:
 data: {
 "Ip": "127.0.0.1" # <-- Key:Value pair
 }

The generated configuration is validated and applied to all or selected cRPD pods as a Junos
Configuration Group.

Applying the Configlet Resource

The configlet resource can be used to apply configuration to selected or all cRPD pods either when
Cloud-Native Router is deployed or once the cRPD pods are up and running. Let us look at configlet
deployment in detail.

Applying raw configuration

1. Create raw configuration configlet yaml. The example below configures a loopback interface in cRPD.

cat configlet-sample.yaml

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample

232

https://www.juniper.net/documentation/us/en/software/junos/cli/topics/topic-map/configuration-groups-usage.html
https://www.juniper.net/documentation/us/en/software/junos/cli/topics/topic-map/configuration-groups-usage.html

 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address 10.10.10.1/32
 crpdSelector:
 matchLabels:
 node: worker

2. Apply the configuration using the kubectl apply command.

kubectl apply -f configlet-sample.yaml

configlet.configplane.juniper.net/configlet-sample created

3. Check on the configlet.

When a configlet resource is deployed, it creates additional node configlet custom resources, one for
each node matched by the crpdSelector.

kubectl get nodeconfiglets -n jcnr

NAME AGE
configlet-sample-node1 10m

If the configuration defined in the configlet yaml is invalid or fails to deploy, you can view the error
message using kubectl describe for the node configlet custom resource.

For example:

kubectl describe nodeconfiglet configlet-sample-node1 -n jcnr

The following output has been trimmed for brevity:

Name: configlet-sample-node1
Namespace: jcnr
Labels: core.juniper.net/nodeName=node1
Annotations: <none>

233

API Version: configplane.juniper.net/v1
Kind: NodeConfiglet
Metadata:
 Creation Timestamp: 2024-06-13T16:51:23Z
 ...
Spec:
 Clis:
 set interfaces lo0 unit 0 address 10.10.10.1/32
 Group Name: configlet-sample
 Node Name: node1
Status:
 Message: load-configuration failed: syntax error
 Status: False
Events: <none>

4. Optionally, verify the configuration on the Access cRPD CLI shell in CLI mode. Note that the
configuration is applied as a configuration group named after the configlet resource.

show configuration groups configlet-sample

interfaces {
 lo0 {
 unit 0 {
 family inet {
 address 10.10.10.1/32;
 }
 }
 }
}

NOTE: The configuration generated using configlets is applied to cRPD as configuration
groups. We therefore recommend that you not use configuration groups when
specifying your configlet.

234

Applying templatized configuration

1. Create the templatized configlet yaml and the configlet data value yaml for key:value pairs.

cat configlet-sample-template.yaml

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample-template
 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address {{ .Ip }}
 crpdSelector:
 matchLabels:
 node: master
 configletDataValueRef:
 name: "configletdatavalue-sample"

cat configletdatavalue-sample.yaml

apiVersion: configplane.juniper.net/v1
kind: ConfigletDataValue
metadata:
 name: configletdatavalue-sample
 namespace: jcnr
spec:
 data: {
 "Ip": "127.0.0.1"
 }

235

2. Apply the configuration using the kubectl apply command, starting with the config data value yaml.

kubectl apply -f configletdatavalue-sample.yaml

configletdatavalue.configplane.juniper.net/configletdatavalue-sample created

kubectl apply -f configlet-sample-template.yaml

configlet.configplane.juniper.net/configlet-sample-template created

3. Check on the configlet.

When a configlet resource is deployed, it creates additional node configlet custom resources, one for
each node matched by the crpdSelector.

kubectl get nodeconfiglets -n jcnr

NAME AGE
configlet-sample-template-node1 10m

If the configuration defined in the configlet yaml is invalid or fails to deploy, you can view the error
message using kubectl describe for the node configlet custom resource.

For example:

kubectl describe nodeconfiglet configlet-sample-template-node1 -n jcnr

The following output has been trimmed for brevity:

Name: configlet-sample-template-node1
Namespace: jcnr
Labels: core.juniper.net/nodeName=node1
Annotations: <none>
API Version: configplane.juniper.net/v1
Kind: NodeConfiglet

236

Metadata:
 Creation Timestamp: 2024-06-13T16:51:23Z
 ...
Spec:
 Clis:
 set interfaces lo0 unit 0 address 10.10.10.1/32
 Group Name: configlet-sample-template
 Node Name: node1
Status:
 Message: load-configuration failed: syntax error
 Status: False
Events: <none>

4. Optionally, verify the configuration on the Access cRPD CLI shell in CLI mode. Note that the
configuration is applied as a configuration group named after the configlet resource.

show configuration groups configlet-sample-template

interfaces {
 lo0 {
 unit 0 {
 family inet {
 address 127.0.0.1/32;
 }
 }
 }
}

237

Modifying the Configlet

You can modify a configlet resource by changing the yaml file and reapplying it using the kubectl apply
command.

kubectl apply -f configlet-sample.yaml

configlet.configplane.juniper.net/configlet-sample configured

Any changes to existing configlet resource are reconciled by replacing the configuration group on cRPD.

You can delete the configuration group by deleting the configlet resource using the kubectl delete
command.

kubectl delete configlet configlet-sample -n jcnr

configlet.configplane.juniper.net "configlet-sample" deleted

Troubleshooting

If you run into problems, check the contrail-k8s-deployer logs. For example:

kubectl logs contrail-k8s-deployer-8ff895cc5-cbfwm -n contrail-deploy

238

6
CHAPTER

Install Cloud-Native Router on Wind
River Cloud Platform

IN THIS CHAPTER

Install and Verify Juniper Cloud-Native Router for Wind River
Deployment | 240

System Requirements for Wind River Deployment | 248

Customize Cloud-Native Router Helm Chart for Wind River Deployment |
 261

Customize Cloud-Native Router Configuration | 275

Install and Verify Juniper Cloud-Native Router for
Wind River Deployment

SUMMARY

The Juniper Cloud-Native Router uses the JCNR-
Controller (cRPD) to provide control plane
capabilities and JCNR-CNI to provide a container
network interface. Juniper Cloud-Native Router uses
the DPDK-enabled vRouter to provide high-
performance data plane capabilities and Syslog-NG
to provide notification functions. This section
explains how you can install these components of
the Cloud-Native Router.

IN THIS SECTION

Install Juniper Cloud-Native Router Using
Helm Chart | 240

Verify Installation | 244

Install Juniper Cloud-Native Router Using Helm Chart

Read this section to learn the steps required to load the cloud-native router image components into
docker and install the cloud-native router components using Helm charts.

1. Review the "System Requirements for Wind River Deployment" on page 248 section to ensure the
server has all the required configuration.

2. Download the desired Cloud-Native Router software package to the directory of your choice.

You have the option of downloading the package to install Cloud-Native Router only or
downloading the package to install JNCR together with Juniper cSRX. See "Cloud-Native Router
Software Download Packages" on page 387 for a description of the packages available. If you don't
want to install Juniper cSRX now, you can always choose to install Juniper cSRX on your working
Cloud-Native Router installation later.

3. Expand the file Juniper_Cloud_Native_Router_release-number.tgz.

tar xzvf Juniper_Cloud_Native_Router_release-number.tgz

4. Change directory to the main installation directory.

• If you're installing Cloud-Native Router only, then:

cd Juniper_Cloud_Native_Router_<release>

240

This directory contains the Helm chart for Cloud-Native Router only.

• If you're installing Cloud-Native Router and cSRX at the same time, then:

cd Juniper_Cloud_Native_Router_CSRX_<release>

This directory contains the combination Helm chart for Cloud-Native Router and cSRX.

NOTE: All remaining steps in the installation assume that your current working
directory is now either Juniper_Cloud_Native_Router_<release> or
Juniper_Cloud_Native_Router_CSRX_<release>.

5. View the contents in the current directory.

ls
helmchart images README.md secrets

6. Change to the helmchart directory and expand the Helm chart.

cd helmchart

• For Cloud-Native Router only:

ls
jcnr-<release>.tgz

tar -xzvf jcnr-<release>.tgz

ls
jcnr jcnr-<release>.tgz

The Helm chart is located in the jcnr directory.

241

• For the combined Cloud-Native Router and cSRX:

ls
jcnr_csrx-<release>.tgz

tar -xzvf jcnr_csrx-<release>.tgz

ls
jcnr_csrx jcnr_csrx-<release>.tgz

The Helm chart is located in the jcnr_csrx directory.

7. The Cloud-Native Router container images are required for deployment. Choose one of the
following options:

• Configure your cluster to deploy images from the Juniper Networks enterprise-hub.juniper.net
repository. See "Configure Repository Credentials" on page 398 for instructions on how to
configure repository credentials in the deployment Helm chart.

• Configure your cluster to deploy images from the images tarball included in the downloaded
Cloud-Native Router software package. See "Deploy Prepackaged Images" on page 399 for
instructions on how to import images to the local container runtime.

8. Follow the steps in "Installing Your License" on page 353 to install your Cloud-Native Router
license.

9. Enter the root password for your host server into the secrets/jcnr-secrets.yaml file at the following
line:

 root-password: <add your password in base64 format>

You must enter the password in base64-encoded format. Encode your password as follows:

echo -n "password" | base64 -w0

Copy the output of this command into secrets/jcnr-secrets.yaml.

242

10. Apply secrets/jcnr-secrets.yaml to the cluster.

kubectl apply -f secrets/jcnr-secrets.yaml
namespace/jcnr created
secret/jcnr-secrets created

11. If desired, configure how cores are assigned to the vRouter DPDK containers. See "Allocate CPUs
to the Cloud-Native Router Forwarding Plane" on page 355.

12. Customize the Helm chart for your deployment using the helmchart/jcnr/values.yaml or
helmchart/jcnr_csrx/values.yaml file.

See "Customize Cloud-Native Router Helm Chart for Wind River Deployment" on page 261 for
descriptions of the Helm chart configurations.

13. Optionally, customize Cloud-Native Router configuration.

See, "Customize Cloud-Native Router Configuration " on page 62 for creating and applying the
cRPD customizations.

14. If you're installing Juniper cSRX now, then follow the procedure in "Apply the cSRX License and
Configure cSRX" on page 338.

15. Label the nodes where you want Cloud-Native Router to be installed based on the nodeaffinity
configuration (if defined in the values.yaml). For example:

kubectl label nodes ip-10.0.100.17.lab.net key1=jcnr --overwrite

16. Deploy the Juniper Cloud-Native Router using the Helm chart.

Navigate to the helmchart/jcnr or the helmchart/jcnr_csrx directory and run the following
command:

helm install jcnr .

or

helm install jcnr-csrx .

NAME: jcnr
LAST DEPLOYED: Fri Dec 22 06:04:33 2023
NAMESPACE: default
STATUS: deployed

243

REVISION: 1
TEST SUITE: None

17. Confirm Juniper Cloud-Native Router deployment.

helm ls

Sample output:

NAME NAMESPACE REVISION UPDATED
STATUS CHART APP VERSION
jcnr default 1 2023-12-22 06:04:33.144611017 -0400 EDT
deployed jcnr-<version> <version>

Verify Installation

This section enables you to confirm a successful Cloud-Native Router deployment.

NOTE: The output shown in this example procedure is affected by the number of nodes
in the cluster. The output you see in your setup may differ in that regard.

1. Verify the state of the Cloud-Native Router pods by issuing the kubectl get pods -A command.

The output of the kubectl command shows all of the pods in the Kubernetes cluster in all namespaces.
Successful deployment means that all pods are in the running state. In this example we have marked
the Juniper Cloud-Native Router Pods in bold. For example:

kubectl get pods -A

NAMESPACE NAME READY STATUS RESTARTS AGE

contrail-deploy contrail-k8s-deployer-579cd5bc74-g27gs 1/1 Running 0 103s

contrail jcnr-0-dp-contrail-vrouter-nodes-b2jxp 2/2 Running 0 87s

contrail jcnr-0-dp-contrail-vrouter-nodes-vrdpdk-g7wrk 1/1 Running 0 87s

jcnr jcnr-0-crpd-0 1/1 Running 0 103s

jcnr syslog-ng-ds5qd 1/1 Running 0 103s

244

kube-system calico-kube-controllers-5f4fd8666-m78hk 1/1 Running 1 (3h13m ago) 4h2m

kube-system calico-node-28w98 1/1 Running 3 (4d1h ago) 86d

kube-system coredns-54bf8d85c7-vkpgs 1/1 Running 0 3h8m

kube-system dns-autoscaler-7944dc7978-ws9fn 1/1 Running 3 (4d1h ago) 86d

kube-system kube-apiserver-ix-esx-06 1/1 Running 4 (4d1h ago) 86d

kube-system kube-controller-manager-ix-esx-06 1/1 Running 8 (4d1h ago) 86d

kube-system kube-multus-ds-amd64-jl69w 1/1 Running 3 (4d1h ago) 86d

kube-system kube-proxy-qm5bl 1/1 Running 3 (4d1h ago) 86d

kube-system kube-scheduler-ix-esx-06 1/1 Running 9 (4d1h ago) 86d

kube-system nodelocaldns-bntfp 1/1 Running 4 (4d1h ago) 86d

2. Verify the Cloud-Native Router daemonsets by issuing the kubectl get ds -A command.

Use the kubectl get ds -A command to get a list of daemonsets. The Cloud-Native Router daemonsets
are highlighted in bold text.

kubectl get ds -A

NAMESPACE NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE

SELECTOR AGE

contrail jcnr-0-dp-contrail-vrouter-nodes 1 1 1 1 1

<none> 90m

contrail jcnr-0-dp-contrail-vrouter-nodes-vrdpdk 1 1 1 1 1

<none> 90m

jcnr syslog-ng 1 1 1 1 1

<none> 90m

kube-system calico-node 1 1 1 1 1 kubernetes.io/

os=linux 86d

kube-system kube-multus-ds-amd64 1 1 1 1 1 kubernetes.io/

arch=amd64 86d

kube-system kube-proxy 1 1 1 1 1 kubernetes.io/

os=linux 86d

kube-system nodelocaldns 1 1 1 1 1 kubernetes.io/

os=linux 86d

3. Verify the Cloud-Native Router statefulsets by issuing the kubectl get statefulsets -A command.

245

The command output provides the statefulsets.

kubectl get statefulsets -A

NAMESPACE NAME READY AGE
jcnr jcnr-0-crpd 1/1 27m

4. Verify if the cRPD is licensed and has the appropriate configurations

a. View the Access cRPD CLI section to access the cRPD CLI.

b. Once you have access the cRPD CLI, issue the show system license command in the cli mode to view
the system licenses. For example:

root@jcnr-01:/# cli
root@jcnr-01> show system license
License usage:
 Licenses Licenses Licenses Expiry
 Feature name used installed needed
 containerized-rpd-standard 1 1 0 2024-09-20 16:59:00 PDT

Licenses installed:
 License identifier: 85e5229f-0c64-0000-c10e4-a98c09ab34a1
 License SKU: S-CRPD-10-A1-PF-5
 License version: 1
 Order Type: commercial
 Software Serial Number: 1000098711000-iHpgf
 Customer ID: Juniper Networks Inc.
 License count: 15000
 Features:
 containerized-rpd-standard - Containerized routing protocol daemon with standard
features
 date-based, 2022-08-21 17:00:00 PDT - 2027-09-20 16:59:00 PDT

246

c. Issue the show configuration | display set command in the cli mode to view the cRPD default and
custom configuration. The output will be based on the custom configuration and the Cloud-
Native Router deployment mode.

root@jcnr-01# cli
root@jcnr-01> show configuration | display set

d. Type the exit command to exit from the pod shell.

5. Verify the vRouter interfaces configuration

a. View the Access vRouter CLI section to access the vRouter CLI.

b. Once you have accessed the vRouter CLI, issue the vif --list command to view the vRouter
interfaces . The output will depend upon the Cloud-Native Router deployment mode and
configuration. An example for L3 mode deployment, with one fabric interface configured, is
provided below:

$ vif --list

Vrouter Interface Table

Flags: P=Policy, X=Cross Connect, S=Service Chain, Mr=Receive Mirror
 Mt=Transmit Mirror, Tc=Transmit Checksum Offload, L3=Layer 3, L2=Layer 2
 D=DHCP, Vp=Vhost Physical, Pr=Promiscuous, Vnt=Native Vlan Tagged
 Mnp=No MAC Proxy, Dpdk=DPDK PMD Interface, Rfl=Receive Filtering Offload,
Mon=Interface is Monitored
 Uuf=Unknown Unicast Flood, Vof=VLAN insert/strip offload, Df=Drop New Flows, L=MAC
Learning Enabled
 Proxy=MAC Requests Proxied Always, Er=Etree Root, Mn=Mirror without Vlan Tag,
HbsL=HBS Left Intf
 HbsR=HBS Right Intf, Ig=Igmp Trap Enabled, Ml=MAC-IP Learning Enabled, Me=Multicast
Enabled

vif0/0 Socket: unix MTU: 1514
 Type:Agent HWaddr:00:00:5e:00:01:00
 Vrf:65535 Flags:L2 QOS:-1 Ref:3
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:0

vif0/1 PCI: 0000:5a:02.1 (Speed 10000, Duplex 1) NH: 6 MTU: 9000

247

 Type:Physical HWaddr:ba:9c:0f:ab:e2:c9 IPaddr:0.0.0.0
 DDP: OFF SwLB: ON
 Vrf:0 Mcast Vrf:0 Flags:L3L2Vof QOS:0 Ref:12
 RX port packets:66 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Fabric Interface: 0000:5a:02.1 Status: UP Driver: net_iavf
 RX packets:66 bytes:5116 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:0

vif0/2 PMD: eno3v1 NH: 9 MTU: 9000
 Type:Host HWaddr:ba:9c:0f:ab:e2:c9 IPaddr:0.0.0.0
 DDP: OFF SwLB: ON
 Vrf:0 Mcast Vrf:65535 Flags:L3L2DProxyEr QOS:-1 Ref:13 TxXVif:1
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:66 bytes:5116 errors:0
 Drops:0
 TX queue packets:66 errors:0
 TX device packets:66 bytes:5116 errors:0

c. Type the exit command to exit the pod shell.

6. If desired, download and run Validation Factory topology tests. See "Validation Factory" on page 364.

System Requirements for Wind River Deployment

IN THIS SECTION

Minimum Host System Requirements on a Wind River Deployment | 249

Resource Requirements on a Wind River Deployment | 251

Miscellaneous Requirements on a Wind River Deployment | 252

Requirements for Pre-Bound SR-IOV Interfaces on a Wind River Deployment | 254

Requirements for Non-Pre-Bound SR-IOV Interfaces on a Wind River Deployment | 258

Port Requirements | 259

Download Options | 260

248

Cloud-Native Router Licensing | 261

Read this section to understand the system, resource, port, and licensing requirements for installing
Juniper Cloud-Native Router on a Wind River deployment. We provide requirements for both pre-bound
and non-pre-bound SR-IOV interfaces.

Minimum Host System Requirements on a Wind River Deployment

Table 25 on page 249 lists the host system requirements for installing Cloud-Native Router on a Wind
River deployment.

Table 25: Cloud-Native Router Minimum Host System Requirements on a Wind River Deployment

Component Value/Version Notes

CPU Intel x86 The tested CPU is
Intel(R) Xeon(R) Silver
4314 CPU @ 2.40GHz

Host OS Debian GNU/Linux
(depends on Wind River
Cloud Platform version)

Kernel Version 5.10.x 5.10.0-6-amd64

249

Table 25: Cloud-Native Router Minimum Host System Requirements on a Wind River Deployment
(Continued)

Component Value/Version Notes

NIC • Intel E810 with
Firmware 4.00
0x80014411
1.3236.0

• Intel E810-CQDA2
with Firmware
4.000x800144111.32
36.0

• Intel XL710 with
Firmware 9.00
0x8000cead 1.3179.0

• Mellanox ConnectX-6

• Mellanox ConnectX-7

Support for Mellanox
NICs is considered a
Juniper Technology
Preview ("Tech
Preview" on page 452)
feature.

When using Mellanox
NICs, ensure your
interface names do not
exceed 11 characters
in length.

Wind River Cloud Platform 22.12

IAVF driver Version 4.5.3.1

ICE_COMMS Version 1.3.35.0

ICE Version 1.9.11.9 ICE driver is used only
with the Intel E810
NIC

i40e Version 2.18.9 i40e driver is used only
with the Intel XL710
NIC

Kubernetes (K8s) Version 1.24 The tested K8s version
is 1.24.4

Calico Version 3.24.x

Multus Version 3.8

250

Table 25: Cloud-Native Router Minimum Host System Requirements on a Wind River Deployment
(Continued)

Component Value/Version Notes

Helm 3.9.x

Container-RT • containerd 1.4.x

• crictl 1.21.x

Other container
runtimes may work but
have not been tested
with JCNR.

NOTE: The component versions listed in this table are expected to work with JCNR, but not every version or
combination is tested in every release.

Resource Requirements on a Wind River Deployment

Table 26 on page 251 lists the resource requirements for installing Cloud-Native Router on a Wind River
deployment.

Table 26: Resource Requirements on a Wind River Deployment

Resource Value Usage Notes

Data plane forwarding
cores

1 core (1P +
1S)

Service/Control Cores 0

251

Table 26: Resource Requirements on a Wind River Deployment (Continued)

Resource Value Usage Notes

Hugepages (1G) 6 Gi Lock the controller and get the memory processors using below
command:

source /etc/platform/openrc
system host-lock controller-0
system host-memory-list controller-0

To set the huge pages, run the following command for each
controller:

system host-memory-modify controller-0 0 -1G 6
system host-memory-modify controller-0 1 -1G 6

View the huge pages with the following command:

system host-memory-list controller-0

Unlock the controller:

system host-unlock controller-0

Cloud-Native Router
Controller cores

.5

Cloud-Native Router
vRouter Agent cores

.5

Miscellaneous Requirements on a Wind River Deployment

Table 27 on page 253 lists the additional requirements for installing Cloud-Native Router on a Wind
River deployment.

252

Table 27: Miscellaneous Requirements on a Wind River Deployment

Requirement Example

Enable the host with SR-IOV and VT-d in the system's
BIOS.

Depends on BIOS.

Isolate CPUs from the kernel scheduler.
source /etc/platform/openrc
system host-lock controller-0
system host-cpu-list controller-0
system host-cpu-modify -f application-isolated -c
4-59 controller-0
system host-unlock controller-0

Additional kernel modules need to be loaded on the
host before deploying Cloud-Native Router in L3
mode. These modules are usually available in linux-
modules-extra or kernel-modules-extra packages.

NOTE: Applicable for L3 deployments only.

Create a conf file and add the kernel modules:

cat /etc/modules-load.d/crpd.conf
tun
fou
fou6
ipip
ip_tunnel
ip6_tunnel
mpls_gso
mpls_router
mpls_iptunnel
vrf
vxlan

Enable kernel-based forwarding on the Linux host.
ip fou add port 6635 ipproto 137

253

Table 27: Miscellaneous Requirements on a Wind River Deployment (Continued)

Requirement Example

Verify the core_pattern value is set on the host before
deploying JCNR. sysctl kernel.core_pattern

kernel.core_pattern = |/usr/lib/systemd/systemd-
coredump %P %u %g %s %t %c %h %e

You can update the core_pattern in /etc/sysctl.conf.
For example:

kernel.core_pattern=/var/crash/core_%e_%p_%i_%s_%h_
%t.gz

Requirements for Pre-Bound SR-IOV Interfaces on a Wind River
Deployment

In a Wind River deployment, you typically bind all your Cloud-Native Router interfaces to the vfio DPDK
driver before you deploy JCNR. Table 28 on page 255 shows an example of how you can do this on an
SR-IOV-enabled interface on a host.

NOTE: We support pre-binding interfaces for Cloud-Native Router L3 mode
deployments only.

254

Table 28: Requirements for Pre-Bound SR-IOV Interfaces on a Wind River Deployment

Requirement Example

Pre-bind the Cloud-Native Router
interfaces to the vfio DPDK driver.

source /etc/platform/openrc

system host-lock controller-0
system host-label-assign controller-0 sriovdp=enabled # <-- Label node to accept SR-IOV-enabled
 # deployments.

system host-label-assign controller-0 kube-cpu-mgr-policy=static
system host-label-assign controller-0 kube-topology-mgr-policy=restricted # <-- see note below

system datanetwork-add datanet0 flat # <-- Create datanet0 network. You'll define this in a NAD
 # later.

DTNIF=enp175s0f0
system host-if-modify -m 1500 -n $DTNIF -c pci-sriov -N 8 controller-0 $DTNIF --vf-driver=netdevice
 # ^ Enable 8 (for example) VFs on enp175s0f0.

system host-if-add -c pci-sriov controller-0 srif0 vf $DTNIF -N 1 --vf-driver=vfio
 # ^ Create srif0 interface that uses one of the VFs
 # and bind to vfio driver.

IFUUID=$(system host-if-list 1 | awk '{if ($4 == "srif0") {print $2}}')
system interface-datanetwork-assign 1 $IFUUID datanet0 # <-- Attach srif0 interface to datanet0
network.

system host-unlock 1

NOTE: On hosts with a single NUMA node or where all NICs are
attached to the same NUMA node, set kube-topology-mgr-
policy=restricted.

On hosts with multiple NUMA nodes where the NICs are spread across
NUMA nodes, set kube-topology-mgr-policy=best-effort.

255

Table 28: Requirements for Pre-Bound SR-IOV Interfaces on a Wind River Deployment (Continued)

Requirement Example

Create and apply the Network
Attachment Definition that
attaches the datanet0 network
defined above.

Create a yaml file for the Network Attachment Definition. For example:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: srif0net0
 annotations:
 k8s.v1.cni.cncf.io/resourceName: intel.com/pci_sriov_net_datanet0
spec:
 config: '{
 "cniVersion": "0.3.0",
 "type": "sriov",
 "spoofchk": "off",
 "trust": "on"
 }'

Apply the yaml to attach the datanet0 network:

kubectl apply -f srif0net0.yaml

where srif0net0.yaml is the file that contains the Network Attachment
Definition above.

256

Table 28: Requirements for Pre-Bound SR-IOV Interfaces on a Wind River Deployment (Continued)

Requirement Example

Update the Helm chart values.yaml
to use the defined networks.

Here's an example of using two networks, datanet0/srif0net0 and
datanet1/srif1net1.

jcnr-vrouter:
 guaranteedVrouterCpus: 4
 interfaceBoundType: 1

 networkDetails:
 - ddp: "off"
 name: srif0net0
 namespace: default
 - ddp: "off"
 name: srif1net1
 namespace: default

 networkResources:
 limits:
 intel.com/pci_sriov_net_datanet0: "1"
 intel.com/pci_sriov_net_datanet1: "1"
 requests:
 intel.com/pci_sriov_net_datanet0: "1"
 intel.com/pci_sriov_net_datanet1: "1"

Here's an example of using a bond interface attached to two networks
(datanet0/srif0net0 and datanet1/srif1net1) and a regular interface
attached to a third network (datanet2/srif2net2).

jcnr-vrouter:
 guaranteedVrouterCpus: 4
 interfaceBoundType: 1

 bondInterfaceConfigs:
 - mode: 1
 name: bond0
 slaveNetworkDetails:
 - name: srif0net0
 namespace: default
 - name: srif1net1
 namespace: default

 networkDetails:

257

Table 28: Requirements for Pre-Bound SR-IOV Interfaces on a Wind River Deployment (Continued)

Requirement Example

 - ddp: "off"
 name: bond0
 - ddp: "off"
 name: srif2net2
 namespace: default

 networkResources:
 limits:
 intel.com/pci_sriov_net_datanet0: "1"
 intel.com/pci_sriov_net_datanet1: "1"
 intel.com/pci_sriov_net_datanet2: "1"
 requests:
 intel.com/pci_sriov_net_datanet0: "1"
 intel.com/pci_sriov_net_datanet1: "1"
 intel.com/pci_sriov_net_datanet2: "1"

Requirements for Non-Pre-Bound SR-IOV Interfaces on a Wind River
Deployment

In some situations, you might want to run with non-pre-bound interfaces. Table 29 on page 259 shows
the requirements for non-pre-bound interfaces.

258

Table 29: Requirements for Non-Pre-Bound SR-IOV Interfaces on a Wind River Deployment

Requirement Example

Configure IPv4 and IPv6 addresses for the non-pre-
bound interfaces allocated to JCNR. source /etc/platform/openrc

system host-lock controller-0
system host-if-modify -n ens1f0 -c platform --ipv4-
mode static controller-0 ens1f0
system host-addr-add 1 ens1f0 11.11.11.29 24
system host-if-modify -n ens1f0 -c platform --ipv6-
mode static controller-0 ens1f0
system host-addr-add 1 ens1f0 abcd::11.11.11.29 112
system host-if-list controller-0
system host-addr-list controller-0
system host-unlock controller-0

Port Requirements

Juniper Cloud-Native Router listens on certain TCP and UDP ports. This section lists the port
requirements for the cloud-native router.

Table 30: Cloud-Native Router Listening Ports

Protocol Port Description

TCP 8085 vRouter introspect–Used to gain
internal statistical information
about vRouter

TCP 8070 Telemetry Information- Used to see
telemetry data from the Cloud-
Native Router vRouter

TCP 8072 Telemetry Information-Used to see
telemetry data from Cloud-Native
Router control plane

TCP 8075, 8076 Telemetry Information- Used for
gNMI requests

259

Table 30: Cloud-Native Router Listening Ports (Continued)

Protocol Port Description

TCP 9091 vRouter health check–cloud-native
router checks to ensure the vRouter
agent is running.

TCP 9092 vRouter health check–cloud-native
router checks to ensure the vRouter
DPDK is running.

TCP 50052 gRPC port–Cloud-Native Router
listens on both IPv4 and IPv6

TCP 8081 Cloud-Native Router Deployer Port

TCP 24 cRPD SSH

TCP 830 cRPD NETCONF

TCP 666 rpd

TCP 1883 Mosquito mqtt–Publish/subscribe
messaging utility

TCP 9500 agentd on cRPD

TCP 21883 na-mqttd

TCP 50053 Default gNMI port that listens to
the client subscription request

TCP 51051 jsd on cRPD

UDP 50055 Syslog-NG

Download Options

See "Cloud-Native Router Software Download Packages" on page 387.

260

Cloud-Native Router Licensing

See "Manage Cloud-Native Router Licenses" on page 352.

Customize Cloud-Native Router Helm Chart for
Wind River Deployment

IN THIS SECTION

Helm Chart Description for Wind River Deployment | 261

Read this topic to learn about the deployment configuration available for the Juniper Cloud-Native
Router on a Wind River Deployment.
You can deploy and operate Juniper Cloud-Native Router in the L3 mode on a Wind River deployment.
You configure the deployment mode by editing the appropriate attributes in the values.yaml file prior to
deployment.

Helm Chart Description for Wind River Deployment

Customize the Helm chart using the Juniper_Cloud_Native_Router_<release>/helmchart/jcnr/
values.yaml file. We provide a copy of the default values.yaml in "Cloud-Native Router Default Helm
Chart" on page 389.

Table 31 on page 261 contains a description of the configurable attributes in values.yaml for a Wind
River deployment.

Table 31: Helm Chart Description for Wind River Deployment

Key Description

global

261

Table 31: Helm Chart Description for Wind River Deployment (Continued)

Key Description

installSyslog Set to true to install syslog-ng.

registry Defines the Docker registry for the Cloud-Native Router
container images. The default value is enterprise-hub.juniper.net.
The images provided in the tarball are tagged with the default
registry name. If you choose to host the container images to a
private registry, replace the default value with your registry URL.

repository (Optional) Defines the repository path for the Cloud-Native
Router container images. This is a global key that takes
precedence over the repository paths under the common section.
Default is jcnr-container-prod/.

imagePullSecret (Optional) Defines the Docker registry authentication credentials.
You can configure credentials to either the Juniper Networks
enterprise-hub.juniper.net registry or your private registry.

registryCredentials Base64 representation of your Docker registry credentials. See
"Configure Repository Credentials" on page 398 for more
information.

secretName Name of the secret object that will be created.

common Defines repository paths and tags for the various Cloud-Native
Router container images. Use default unless using a private
registry.

repository Defines the repository path. The default value is jcnr-container-
prod/. The global repository key takes precedence if defined.

tag Defines the image tag. The default value is configured to the
appropriate tag number for the Cloud-Native Router release
version.

262

https://enterprise.hub.juniper.net

Table 31: Helm Chart Description for Wind River Deployment (Continued)

Key Description

readinessCheck Set to true to enable Cloud-Native Router Readiness preflight
and postflight checks during installation. Comment this out or set
to false to disable Cloud-Native Router Readiness preflight and
postflight checks.

Preflight checks verify that your infrastructure can support JCNR.
Preflight checks take place before Cloud-Native Router is
installed.

Postflight checks verify that your Cloud-Native Router
installation is working properly. Postflight checks take place after
Cloud-Native Router is installed.

See "Cloud-Native Router Readiness Checks" on page 362.

replicas (Optional) Indicates the number of replicas for cRPD. Default is 1.
The value for this key must be specified for multi-node clusters.
The value is equal to the number of nodes running JCNR.

noLocalSwitching (Optional) Prevents interfaces in a bridge domain from
transmitting and receiving Ethernet frame copies. Enter one or
more comma separated VLAN IDs to ensure that the interfaces
belonging to the VLAN IDs do not transmit frames to one
another. This key is specific to L2 and L2-L3 deployments.
Enabling this key provides the functionality on all access
interfaces. To enable the functionality on trunk interfaces,
configure no-local-switching in fabricInterface. See Prevent Local
Switching for more details.

iamRole Not applicable.

263

Table 31: Helm Chart Description for Wind River Deployment (Continued)

Key Description

fabricInterface Provide a list of interfaces to be bound to DPDK. You can also
provide subnets instead of interface names. If both the interface
name and the subnet are specified, then the interface name takes
precedence over subnet/gateway combination. The subnet/
gateway combination is useful when the interface names vary in
a multi-node cluster.

For example:

L3 only
- eth1:
 ddp: "off"

This attribute and all of its child attributes are only applicable
when running with non-pre-bound SR-IOV interfaces.

Comment out these attributes when running with pre-bound SR-
IOV interfaces.

subnet An alternative mode of input to interface names. For example:

- subnet: 10.40.1.0/24
 gateway: 10.40.1.1
 ddp: "off"

The subnet option is applicable only for L3 interfaces. With the
subnet mode of input, interfaces are auto-detected in each
subnet. Specify either subnet/gateway or the interface name. Do
not configure both. The subnet/gateway form of input is
particularly helpful in environments where the interface names
vary in a multi-node cluster.

264

Table 31: Helm Chart Description for Wind River Deployment (Continued)

Key Description

ddp (Optional) Indicates the interface-level Dynamic Device
Personalization (DDP) configuration. DDP provides datapath
optimization at the NIC for traffic like GTPU, SCTP, etc. See
Enabling Dynamic Device Personalization (DDP) on Individual
Interfaces for more details.

Options include auto, on, or off. Default is off.

NOTE: The interface level ddp takes precedence over the
global ddp configuration.

interface_mode Not applicable.

vlan-id-list Not applicable.

storm-control-profile Not applicable.

native-vlan-id Not applicable.

no-local-switching Not applicable.

qosSchedulerProfileN
ame

Specifies the QoS scheduler profile applicable to this interface.
See the qosSchedulerProfiles section.

If you don't specify a profile, then the QoS scheduler is disabled
for this interface, which means that packets are scheduled with
no regard to traffic class.

fabricWorkloadInterface Not applicable.

log_level Defines the log severity. Available value options are: DEBUG,
INFO, WARN, and ERR.

NOTE: Leave it set to the default INFO unless instructed to
change it by Juniper Networks support.

log_path The defined directory stores various JCNR-related descriptive
logs such as contrail-vrouter-agent.log, contrail-vrouter-
dpdk.log, etc. Default is /var/log/jcnr/.

265

Table 31: Helm Chart Description for Wind River Deployment (Continued)

Key Description

syslog_notifications Indicates the absolute path to the file that stores syslog-ng
generated notifications in JSON format. Default is /var/log/jcnr/
jcnr_notifications.json.

corePattern Indicates the core_pattern for the core file. If left blank, then
Cloud-Native Router pods will not overwrite the default pattern
on the host.

NOTE: Set the core_pattern on the host before deploying
JCNR. You can change the value in /etc/sysctl.conf. For
example, kernel.core_pattern=/var/crash/core_%e_%p_%i_%s_%h_
%t.gz

coreFilePath Indicates the path to the core file. Default is /var/crash.

nodeAffinity (Optional) Defines labels on nodes to determine where to place
the vRouter pods.

By default the vRouter pods are deployed to all nodes of a
cluster.

In the example below, the node affinity label is defined as
key1=jcnr. You must apply this label to each node where Cloud-
Native Router is to be deployed:

nodeAffinity:
- key: key1
operator: In
values:
- jcnr

NOTE: This key is a global setting.

key Key-value pair that represents a node label that must be matched
to apply the node affinity.

266

Table 31: Helm Chart Description for Wind River Deployment (Continued)

Key Description

operator Defines the relationship between the node label and the set of
values in the matchExpression parameters in the pod
specification. This value can be In, NotIn, Exists, DoesNotExist,
Lt, or Gt.

cni_bin_dir Set to /var/opt/cni/bin.

grpcTelemetryPort (Optional) Enter a value for this parameter to override cRPD
telemetry gRPC server default port of 50053.

grpcVrouterPort (Optional) Default is 50052. Configure to override.

vRouterDeployerPort (Optional) Default is 8081. Configure to override.

jcnr-vrouter

cpu_core_mask If present, this indicates that you want to use static CPU
allocation to allocate cores to the forwarding plane.

This value should be a comma-delimited list of isolated CPU
cores that you want to statically allocate to the forwarding plane
(for example, cpu_core_mask: "2,3,22,23").

Comment this out if you want to use Kubernetes CPU Manager
to allocate cores to the forwarding plane.

NOTE: You cannot use static CPU allocation and Kubernetes
CPU Manager at the same time. Cloud-Native Router
Readiness preflight checks, if enabled, will fail the installation if
you specify both.

267

Table 31: Helm Chart Description for Wind River Deployment (Continued)

Key Description

guaranteedVrouterCpus If present, this indicates that you want to use the Kubernetes
CPU Manager to allocate CPU cores to the forwarding plane.

This value should be the number of guaranteed CPU cores that
you want the Kubernetes CPU Manager to allocate to the
forwarding plane. You should set this value to at least one more
than the number of forwarding cores.

Comment this out if you want to use static CPU allocation to
allocate cores to the forwarding plane.

NOTE: You cannot use static CPU allocation and Kubernetes
CPU Manager at the same time. Using both can lead to
unpredictable behavior.

dpdkCtrlThreadMask Specifies the CPU core(s) to allocate to vRouter DPDK control
threads when using static CPU allocation. This list should be a
subset of the cores listed in cpu_core_mask and can be the same as
the list in serviceCoreMask.

CPU cores listed in cpu_core_mask but not in serviceCoreMask or
dpdkCtrlThreadMask are allocated for forwarding.

Comment this out if you want to use Kubernetes CPU Manager
to allocate cores to the forwarding plane.

serviceCoreMask Specifies the CPU core(s) to allocate to vRouter DPDK service
threads when using static CPU allocation. This list should be a
subset of the cores listed in cpu_core_mask and can be the same as
the list in dpdkCtrlThreadMask.

CPU cores listed in cpu_core_mask but not in serviceCoreMask or
dpdkCtrlThreadMask are allocated for forwarding.

Comment this out if you want to use Kubernetes CPU Manager
to allocate cores to the forwarding plane.

268

Table 31: Helm Chart Description for Wind River Deployment (Continued)

Key Description

numServiceCtrlThreadCPU Specifies the number of CPU cores to allocate to vRouter DPDK
service/control traffic when using the Kubernetes CPU Manager.

This number should be smaller than the number of
guaranteedVrouterCpus cores. The remaining guaranteedVrouterCpus
cores are allocated for forwarding.

Comment this out if you want to use static CPU allocation to
allocate cores to the forwarding plane.

numberOfSchedulerLcores The number of CPU cores that you want Kubernetes CPU
Manager to dedicate to your QoS schedulers. Comment this out
if you want to use static CPU allocation to allocate cores to the
forwarding plane.

restoreInterfaces Set to true to restore the interfaces back to their original state in
case the vRouter pod crashes or restarts or if Cloud-Native
Router is uninstalled.

bondInterfaceConfigs (Optional) Enable bond interface configurations for L3 mode
deployments.

NOTE: The bondInterfaceConfigs attribute and its child
attributes are only applicable when running with pre-bound
SR-IOV interfaces.

Comment out these attributes when running with non-pre-
bound SR-IOV interfaces.

name Name of the bond interface.

mode Set to 1 (active-backup).

slaveInterfaces Not applicable.

primaryInterface Not applicable.

269

Table 31: Helm Chart Description for Wind River Deployment (Continued)

Key Description

slaveNetworkDetails Information on the slave network interfaces (in name /
namespace pairs) when using Network Attachment Definitions
for L3 mode deployments. For an example on how to use this,
see "Requirements for Pre-Bound SR-IOV Interfaces on a Wind
River Deployment" on page 254.

name Name of the slave interface.

namespace Namespace for the slave interface.

mtu Maximum Transmission Unit (MTU) value for all physical
interfaces (VFs and PFs). Default value is 9000.

qosSchedulerProfiles Defines the QoS scheduler profiles that are referenced from the
fabricInterface section.

sched_profile_1 The name of the QoS scheduler profile.

cpu Specify the CPU core(s) to dedicate to the
scheduler. If cpu_core_mask is specified, this should
be a unique additional core(s).

bandwidth Specify the bandwidth in Gbps.

stormControlProfiles Configure the rate limit profiles for BUM traffic on fabric
interfaces in bytes per second. See /Content/l2-bum-rate-
limiting_xi931744_1_1.dita for more details.

270

Table 31: Helm Chart Description for Wind River Deployment (Continued)

Key Description

dpdkCommandAdditionalArgs Pass any additional DPDK command line parameters. The --
yield_option 0 is set by default and implies the DPDK forwarding
cores will not yield their assigned CPU cores. Other common
parameters that can be added are tx and rx descriptors and
mempool. For example:

dpdkCommandAdditionalArgs: "--yield_option 0 --dpdk_txd_sz
2048 --dpdk_rxd_sz 2048 --vr_mempool_sz 131072"

NOTE: Changing the number of tx and rx descriptors and the
mempool size affects the number of huge pages required. If you
make explicit changes to these parameters, set the number of
huge pages to 10 (x 1 GB).

See "Resource Requirements on a Wind River Deployment" on
page 251 in "System Requirements for Wind River
Deployment" on page 248 for information on how to configure
huge pages on a Wind River node and see "Configure the
Number of Huge Pages to Use" on page 403 for information
on how to configure the number of huge pages that the Cloud-
Native Router vRouter uses.

dpdk_monitoring_thread_config (Optional) Enables a monitoring thread for the vRouter DPDK
container. Every loggingInterval seconds, a log containing the
information indicated by loggingMask is generated.

loggingMask Specifies the information to be generated. Represented by a
bitmask with bit positions as follows:

• 0b001 is the nl_counter

• 0b010 is the lcore_timestamp

• 0b100 is the profile_histogram

loggingInterval Specifies the log generation interval in seconds.

271

Table 31: Helm Chart Description for Wind River Deployment (Continued)

Key Description

ddp (Optional) Indicates the global Dynamic Device Personalization
(DDP) configuration. DDP provides datapath optimization at the
NIC for traffic like GTPU, SCTP, etc. For a bond interface, all slave
interface NICs must support DDP for the DDP configuration to
be enabled. See Enabling Dynamic Device Personalization (DDP)
on Individual Interfaces for more details.

Options include auto, on, or off. Default is off.

NOTE: The interface level ddp takes precedence over the
global ddp configuration.

twampPort (Optional) The TWAMP session reflector port (if you want
TWAMP sessions to use vRouter timestamps). The vRouter
listens to TWAMP test messages on this port and inserts/
overwrites timestamps in TWAMP test messages. Timestamping
TWAMP messages at the vRouter (instead of at cRPD) leads to
more accurate measurements. Valid values are 862 and 49152
through 65535.

If this parameter is absent, then the vRouter does not insert or
overwrite timestamps in the TWAMP session. Timestamps are
taken and inserted by cRPD instead.

See Two-Way Active Measurement Protocol (TWAMP).

vrouter_dpdk_uio_driver The uio driver is vfio-pci.

agentModeType Set to dpdk.

fabricRpfCheckDisable Set to false to enable the RPF check on all Cloud-Native Router
fabric interfaces. By default, RPF check is disabled.

telemetry (Optional) Configures cRPD telemetry settings. To learn more
about telemetry, see Telemetry Capabilities .

disable Set to true to disable cRPD telemetry. Default is false, which
means that cRPD telemetry is enabled by default.

272

Table 31: Helm Chart Description for Wind River Deployment (Continued)

Key Description

metricsPort The port that the cRPD telemetry exporter is listening to
Prometheus queries on. Default is 8072.

logLevel One of warn, warning, info, debug, trace, or verbose. Default is
info.

gnmi (Optional) Configures cRPD gNMI settings.

enable Set to true to enable the cRPD telemetry exporter to
respond to gNMI requests.

vrouter

telemetry (Optional) Configures vRouter telemetry settings. To learn more
about telemetry, see Telemetry Capabilities .

metricsPort Specify the port that the vRouter telemetry
exporter listens to Prometheus queries on. Default
is 8070.

logLevel One of warn, warning, info, debug, trace, or verbose.
Default is info.

gnmi (Optional) Configures vRouter gNMI settings.

enable - Set to true to enable the vRouter telemetry
exporter to respond to gNMI requests.

persistConfig Set to true if you want Cloud-Native Router pod configuration to
persist even after uninstallation. This option can only be set for
L2 mode deployments. Default is false.

273

Table 31: Helm Chart Description for Wind River Deployment (Continued)

Key Description

enableLocalPersistence Set to true if you're using the cRPD CLI or NETCONF to
configure JCNR. When set to true, the cRPD CLI and NETCONF
configuration persists through node reboots, cRPD pod restarts,
and Cloud-Native Router upgrades. Default is false.

interfaceBoundType Set to 1 to indicate a pre-bound SR-IOV interface. Default is 0.

networkDetails Configures attributes related to the network attachment
definitions.

ddp Options are on or off. Default is off.

name Specify the name of the network attachment definition.

namespace Specify the namespace where the network attachment definition
is created.

networkResources Configures network device resources for the network attachment
definitions.

limits Set the limit for the number of SR-IOV interfaces used for each
network attachment definition.

requests Set the requested number of SR-IOV interfaces for each network
attachment definition.

contrail-tools

install Set to true to install contrail-tools (used for debugging).

274

Customize Cloud-Native Router Configuration

SUMMARY

Read this topic to understand how to customize
Cloud-Native Router configuration using a Configlet
custom resource.

IN THIS SECTION

Configlet Custom Resource | 275

Configuration Examples | 275

Applying the Configlet Resource | 277

Modifying the Configlet | 282

Troubleshooting | 283

Configlet Custom Resource

Starting with Juniper Cloud-Native Router (JCNR) Release 24.2, we support customizing Cloud-Native
Router configuration using a configlet custom resource. The configlet can be generated either by
rendering a predefined template of supported Junos configuration or using raw configuration. The
generated configuration is validated and deployed on the Cloud-Native Router controller (cRPD) as one
or more Junos configuration groups.

NOTE: You can configure Cloud-Native Router using either configlets or the cRPD CLI or
NETCONF. If you use the cRPD CLI or NETCONF, be sure to enable local persistence in
values.yaml (enableLocalPersistence: true) so that your CLI or NETCONF configuration
persists across reboots and upgrades.

NOTE: Using both configlets and the cRPD CLI or NETCONF to configure Cloud-Native
Router may lead to unpredictable behavior. Use one or the other, but not both.

Configuration Examples

You create a configlet custom resource of the kind Configlet in the jcnr namespace. You provide raw
configuration as Junos set commands.

275

https://www.juniper.net/documentation/us/en/software/junos/cli/topics/topic-map/configuration-groups-usage.html

Use crpdSelector to control where the configlet applies. The generated configuration is deployed to cRPD
pods on nodes matching the specified label only. If crpdSelector is not defined, the configuration is
applied to all cRPD pods in the cluster.

An example configlet yaml is provided below:

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample # <-- Configlet resource name
 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address 10.10.10.1/32
 crpdSelector:
 matchLabels:
 node: worker # <-- Node label to select the cRPD pods

You can also use a templatized configlet yaml that contains keys or variables. The values for variables are
provided by a configletDataValue custom resource, referenced by configletDataValueRef . An example
templatized configlet yaml is provided below:

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample-with-template # <-- Configlet resource name
 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address {{ .Ip }}
 crpdSelector:
 matchLabels:
 node: worker # <-- Node label to select the cRPD pods
 configletDataValueRef:
 name: "configletdatavalue-sample" # <-- Configlet Data Value resource name

To render configuration using the template, you must provide key:value pairs in the ConfigletDataValue
custom resource:

apiVersion: configplane.juniper.net/v1
kind: ConfigletDataValue

276

metadata:
 name: configletdatavalue-sample
 namespace: jcnr
spec:
 data: {
 "Ip": "127.0.0.1" # <-- Key:Value pair
 }

The generated configuration is validated and applied to all or selected cRPD pods as a Junos
Configuration Group.

Applying the Configlet Resource

The configlet resource can be used to apply configuration to selected or all cRPD pods either when
Cloud-Native Router is deployed or once the cRPD pods are up and running. Let us look at configlet
deployment in detail.

Applying raw configuration

1. Create raw configuration configlet yaml. The example below configures a loopback interface in cRPD.

cat configlet-sample.yaml

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample
 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address 10.10.10.1/32
 crpdSelector:
 matchLabels:
 node: worker

277

https://www.juniper.net/documentation/us/en/software/junos/cli/topics/topic-map/configuration-groups-usage.html
https://www.juniper.net/documentation/us/en/software/junos/cli/topics/topic-map/configuration-groups-usage.html

2. Apply the configuration using the kubectl apply command.

kubectl apply -f configlet-sample.yaml

configlet.configplane.juniper.net/configlet-sample created

3. Check on the configlet.

When a configlet resource is deployed, it creates additional node configlet custom resources, one for
each node matched by the crpdSelector.

kubectl get nodeconfiglets -n jcnr

NAME AGE
configlet-sample-node1 10m

If the configuration defined in the configlet yaml is invalid or fails to deploy, you can view the error
message using kubectl describe for the node configlet custom resource.

For example:

kubectl describe nodeconfiglet configlet-sample-node1 -n jcnr

The following output has been trimmed for brevity:

Name: configlet-sample-node1
Namespace: jcnr
Labels: core.juniper.net/nodeName=node1
Annotations: <none>
API Version: configplane.juniper.net/v1
Kind: NodeConfiglet
Metadata:
 Creation Timestamp: 2024-06-13T16:51:23Z
 ...
Spec:
 Clis:
 set interfaces lo0 unit 0 address 10.10.10.1/32
 Group Name: configlet-sample

278

 Node Name: node1
Status:
 Message: load-configuration failed: syntax error
 Status: False
Events: <none>

4. Optionally, verify the configuration on the Access cRPD CLI shell in CLI mode. Note that the
configuration is applied as a configuration group named after the configlet resource.

show configuration groups configlet-sample

interfaces {
 lo0 {
 unit 0 {
 family inet {
 address 10.10.10.1/32;
 }
 }
 }
}

NOTE: The configuration generated using configlets is applied to cRPD as configuration
groups. We therefore recommend that you not use configuration groups when
specifying your configlet.

Applying templatized configuration

1. Create the templatized configlet yaml and the configlet data value yaml for key:value pairs.

cat configlet-sample-template.yaml

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample-template
 namespace: jcnr

279

spec:
 config: |-
 set interfaces lo0 unit 0 family inet address {{ .Ip }}
 crpdSelector:
 matchLabels:
 node: master
 configletDataValueRef:
 name: "configletdatavalue-sample"

cat configletdatavalue-sample.yaml

apiVersion: configplane.juniper.net/v1
kind: ConfigletDataValue
metadata:
 name: configletdatavalue-sample
 namespace: jcnr
spec:
 data: {
 "Ip": "127.0.0.1"
 }

2. Apply the configuration using the kubectl apply command, starting with the config data value yaml.

kubectl apply -f configletdatavalue-sample.yaml

configletdatavalue.configplane.juniper.net/configletdatavalue-sample created

kubectl apply -f configlet-sample-template.yaml

configlet.configplane.juniper.net/configlet-sample-template created

3. Check on the configlet.

280

When a configlet resource is deployed, it creates additional node configlet custom resources, one for
each node matched by the crpdSelector.

kubectl get nodeconfiglets -n jcnr

NAME AGE
configlet-sample-template-node1 10m

If the configuration defined in the configlet yaml is invalid or fails to deploy, you can view the error
message using kubectl describe for the node configlet custom resource.

For example:

kubectl describe nodeconfiglet configlet-sample-template-node1 -n jcnr

The following output has been trimmed for brevity:

Name: configlet-sample-template-node1
Namespace: jcnr
Labels: core.juniper.net/nodeName=node1
Annotations: <none>
API Version: configplane.juniper.net/v1
Kind: NodeConfiglet
Metadata:
 Creation Timestamp: 2024-06-13T16:51:23Z
 ...
Spec:
 Clis:
 set interfaces lo0 unit 0 address 10.10.10.1/32
 Group Name: configlet-sample-template
 Node Name: node1
Status:
 Message: load-configuration failed: syntax error
 Status: False
Events: <none>

281

4. Optionally, verify the configuration on the Access cRPD CLI shell in CLI mode. Note that the
configuration is applied as a configuration group named after the configlet resource.

show configuration groups configlet-sample-template

interfaces {
 lo0 {
 unit 0 {
 family inet {
 address 127.0.0.1/32;
 }
 }
 }
}

Modifying the Configlet

You can modify a configlet resource by changing the yaml file and reapplying it using the kubectl apply
command.

kubectl apply -f configlet-sample.yaml

configlet.configplane.juniper.net/configlet-sample configured

Any changes to existing configlet resource are reconciled by replacing the configuration group on cRPD.

You can delete the configuration group by deleting the configlet resource using the kubectl delete
command.

kubectl delete configlet configlet-sample -n jcnr

configlet.configplane.juniper.net "configlet-sample" deleted

282

Troubleshooting

If you run into problems, check the contrail-k8s-deployer logs. For example:

kubectl logs contrail-k8s-deployer-8ff895cc5-cbfwm -n contrail-deploy

283

7
CHAPTER

Install Cloud-Native Router on
Microsoft Azure Cloud Platform

IN THIS CHAPTER

Install and Verify Juniper Cloud-Native Router for Azure Deployment |
 285

System Requirements for Azure Deployment | 293

Customize Cloud-Native Router Helm Chart for Azure Deployment | 302

Customize Cloud-Native Router Configuration | 313

Install and Verify Juniper Cloud-Native Router for
Azure Deployment

SUMMARY

The Juniper Cloud-Native Router (cloud-native
router) uses the the JCNR-Controller (cRPD) to
provide control plane capabilities and JCNR-CNI to
provide a container network interface. Juniper
Cloud-Native Router uses the DPDK-enabled
vRouter to provide high-performance data plane
capabilities and Syslog-NG to provide notification
functions. This section explains how you can install
these components of the Cloud-Native Router.

IN THIS SECTION

Install Juniper Cloud-Native Router Using
Helm Chart | 285

Verify Installation | 289

Install Juniper Cloud-Native Router Using Helm Chart

Read this section to learn the steps required to load the cloud-native router image components using
Helm charts.

1. Review the "System Requirements for Azure Deployment" on page 293 section to ensure the setup
has all the required configuration.

2. Download the desired Cloud-Native Router software package to the directory of your choice.

You have the option of downloading the package to install Cloud-Native Router only or
downloading the package to install JNCR together with Juniper cSRX. See "Cloud-Native Router
Software Download Packages" on page 387 for a description of the packages available. If you don't
want to install Juniper cSRX now, you can always choose to install Juniper cSRX on your working
Cloud-Native Router installation later.

3. Expand the file Juniper_Cloud_Native_Router_release-number.tgz.

tar xzvf Juniper_Cloud_Native_Router_release-number.tgz

4. Change directory to the main installation directory.

• If you're installing Cloud-Native Router only, then:

cd Juniper_Cloud_Native_Router_<release>

285

This directory contains the Helm chart for Cloud-Native Router only.

• If you're installing Cloud-Native Router and cSRX at the same time, then:

cd Juniper_Cloud_Native_Router_CSRX_<release>

This directory contains the combination Helm chart for Cloud-Native Router and cSRX.

NOTE: All remaining steps in the installation assume that your current working
directory is now either Juniper_Cloud_Native_Router_<release> or
Juniper_Cloud_Native_Router_CSRX_<release>.

5. View the contents in the current directory.

ls
helmchart images README.md secrets

6. Change to the helmchart directory and expand the Helm chart.

cd helmchart

• For Cloud-Native Router only:

ls
jcnr-<release>.tgz

tar -xzvf jcnr-<release>.tgz

ls
jcnr jcnr-<release>.tgz

The Helm chart is located in the jcnr directory.

286

• For the combined Cloud-Native Router and cSRX:

ls
jcnr_csrx-<release>.tgz

tar -xzvf jcnr_csrx-<release>.tgz

ls
jcnr_csrx jcnr_csrx-<release>.tgz

The Helm chart is located in the jcnr_csrx directory.

7. The Cloud-Native Router container images are required for deployment. Choose one of the
following options:

• Configure your cluster to deploy images from the Juniper Networks enterprise-hub.juniper.net
repository. See "Configure Repository Credentials" on page 398 for instructions on how to
configure repository credentials in the deployment Helm chart.

• Configure your cluster to deploy images from the images tarball included in the downloaded
Cloud-Native Router software package. See "Deploy Prepackaged Images" on page 399 for
instructions on how to import images to the local container runtime.

8. Follow the steps in "Installing Your License" on page 353 to install your Cloud-Native Router
license.

9. Enter the root password for your host server into the secrets/jcnr-secrets.yaml file at the following
line:

 root-password: <add your password in base64 format>

You must enter the password in base64-encoded format. Encode your password as follows:

echo -n "password" | base64 -w0

Copy the output of this command into secrets/jcnr-secrets.yaml.

287

10. Apply secrets/jcnr-secrets.yaml to the cluster.

kubectl apply -f secrets/jcnr-secrets.yaml
namespace/jcnr created
secret/jcnr-secrets created

11. If desired, configure how cores are assigned to the vRouter DPDK containers. See "Allocate CPUs
to the Cloud-Native Router Forwarding Plane" on page 355.

12. Customize the Helm chart for your deployment using the helmchart/jcnr/values.yaml or
helmchart/jcnr_csrx/values.yaml file.

See "Customize Cloud-Native Router Helm Chart for Azure Deployment" on page 302 for
descriptions of the Helm chart configurations.

13. Optionally, customize Cloud-Native Router configuration.

See, "Customize Cloud-Native Router Configuration " on page 62 for creating and applying the
cRPD customizations.

14. If you're installing Juniper cSRX now, then follow the procedure in "Apply the cSRX License and
Configure cSRX" on page 338.

15. Label the nodes where you want Cloud-Native Router to be installed based on the nodeaffinity
configuration (if defined in the values.yaml). For example:

kubectl label nodes ip-10.0.100.17.lab.net key1=jcnr --overwrite

16. Deploy the Juniper Cloud-Native Router using the Helm chart.

Navigate to the helmchart/jcnr or the helmchart/jcnr_csrx directory and run the following
command:

helm install jcnr .

or

helm install jcnr-csrx .

NAME: jcnr
LAST DEPLOYED: Fri Dec 22 06:04:33 2023
NAMESPACE: default
STATUS: deployed

288

REVISION: 1
TEST SUITE: None

17. Confirm Juniper Cloud-Native Router deployment.

helm ls

Sample output:

NAME NAMESPACE REVISION UPDATED
STATUS CHART APP VERSION
jcnr default 1 2023-12-22 06:04:33.144611017 -0400 EDT
deployed jcnr-<version> <version>

Verify Installation

This section enables you to confirm a successful Cloud-Native Router deployment.

NOTE: The output shown in this example procedure is affected by the number of nodes
in the cluster. The output you see in your setup may differ in that regard.

1. Verify the state of the Cloud-Native Router pods by issuing the kubectl get pods -A command.

The output of the kubectl command shows all of the pods in the Kubernetes cluster in all namespaces.
Successful deployment means that all pods are in the running state. In this example we have marked
the Juniper Cloud-Native Router Pods in bold. For example:

kubectl get pods -A

NAMESPACE NAME READY STATUS RESTARTS AGE

contrail-deploy contrail-k8s-deployer-579cd5bc74-g27gs 1/1 Running 0 103s

contrail jcnr-0-dp-contrail-vrouter-nodes-b2jxp 2/2 Running 0 87s

contrail jcnr-0-dp-contrail-vrouter-nodes-vrdpdk-g7wrk 1/1 Running 0 87s

jcnr jcnr-0-crpd-0 1/1 Running 0 103s

jcnr syslog-ng-ds5qd 1/1 Running 0 103s

289

kube-system calico-kube-controllers-5f4fd8666-m78hk 1/1 Running 0 4h2m

kube-system calico-node-28w98 1/1 Running 0 86d

kube-system coredns-54bf8d85c7-vkpgs 1/1 Running 0 3h8m

kube-system dns-autoscaler-7944dc7978-ws9fn 1/1 Running 0 86d

kube-system kube-apiserver-ix-esx-06 1/1 Running 0 86d

kube-system kube-controller-manager-ix-esx-06 1/1 Running 0 86d

kube-system kube-multus-ds-amd64-jl69w 1/1 Running 0 86d

kube-system kube-proxy-qm5bl 1/1 Running 0 86d

kube-system kube-scheduler-ix-esx-06 1/1 Running 0 86d

kube-system nodelocaldns-bntfp 1/1 Running 0 86d

2. Verify the Cloud-Native Router daemonsets by issuing the kubectl get ds -A command.

Use the kubectl get ds -A command to get a list of daemonsets. The Cloud-Native Router daemonsets
are highlighted in bold text.

kubectl get ds -A

NAMESPACE NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE

SELECTOR AGE

contrail jcnr-0-dp-contrail-vrouter-nodes 1 1 1 1 1

<none> 90m

contrail jcnr-0-dp-contrail-vrouter-nodes-vrdpdk 1 1 1 1 1

<none> 90m

jcnr syslog-ng 1 1 1 1 1

<none> 90m

kube-system calico-node 1 1 1 1 1 kubernetes.io/

os=linux 86d

kube-system kube-multus-ds-amd64 1 1 1 1 1 kubernetes.io/

arch=amd64 86d

kube-system kube-proxy 1 1 1 1 1 kubernetes.io/

os=linux 86d

kube-system nodelocaldns 1 1 1 1 1 kubernetes.io/

os=linux 86d

3. Verify the Cloud-Native Router statefulsets by issuing the kubectl get statefulsets -A command.

290

The command output provides the statefulsets.

kubectl get statefulsets -A

NAMESPACE NAME READY AGE
jcnr jcnr-0-crpd 1/1 27m

4. Verify if the cRPD is licensed and has the appropriate configurations

a. View the Access cRPD CLI section to access the cRPD CLI.

b. Once you have access the cRPD CLI, issue the show system license command in the cli mode to view
the system licenses. For example:

root@jcnr-01:/# cli
root@jcnr-01> show system license
License usage:
 Licenses Licenses Licenses Expiry
 Feature name used installed needed
 containerized-rpd-standard 1 1 0 2024-09-20 16:59:00 PDT

Licenses installed:
 License identifier: 85e5229f-0c64-0000-c10e4-a98c09ab34a1
 License SKU: S-CRPD-10-A1-PF-5
 License version: 1
 Order Type: commercial
 Software Serial Number: 1000098711000-iHpgf
 Customer ID: Juniper Networks Inc.
 License count: 15000
 Features:
 containerized-rpd-standard - Containerized routing protocol daemon with standard
features
 date-based, 2022-08-21 17:00:00 PDT - 2027-09-20 16:59:00 PDT

291

c. Issue the show configuration | display set command in the cli mode to view the cRPD default and
custom configuration. The output will be based on the custom configuration and the Cloud-
Native Router deployment mode.

root@jcnr-01# cli
root@jcnr-01> show configuration | display set

d. Type the exit command to exit from the pod shell.

5. Verify the vRouter interfaces configuration

a. View the Access vRouter CLI section to access the vRouter CLI.

b. Once you have accessed the vRouter CLI, issue the vif --list command to view the vRouter
interfaces . The output will depend upon the Cloud-Native Router deployment mode and
configuration. An example for L3 mode deployment, with one fabric interface configured, is
provided below:

$ vif --list

Vrouter Interface Table

Flags: P=Policy, X=Cross Connect, S=Service Chain, Mr=Receive Mirror
 Mt=Transmit Mirror, Tc=Transmit Checksum Offload, L3=Layer 3, L2=Layer 2
 D=DHCP, Vp=Vhost Physical, Pr=Promiscuous, Vnt=Native Vlan Tagged
 Mnp=No MAC Proxy, Dpdk=DPDK PMD Interface, Rfl=Receive Filtering Offload,
Mon=Interface is Monitored
 Uuf=Unknown Unicast Flood, Vof=VLAN insert/strip offload, Df=Drop New Flows, L=MAC
Learning Enabled
 Proxy=MAC Requests Proxied Always, Er=Etree Root, Mn=Mirror without Vlan Tag,
HbsL=HBS Left Intf
 HbsR=HBS Right Intf, Ig=Igmp Trap Enabled, Ml=MAC-IP Learning Enabled, Me=Multicast
Enabled

vif0/0 Socket: unix MTU: 1500
 Type:Agent HWaddr:00:00:5e:00:01:00
 Vrf:65535 Flags:L2 QOS:-1 Ref:3
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:0

vif0/1 PCI: 0000:5a:02.1 (Speed 10000, Duplex 1) NH: 6 MTU: 1500

292

 Type:Physical HWaddr:ba:9c:0f:ab:e2:c9 IPaddr:0.0.0.0
 DDP: OFF SwLB: ON
 Vrf:0 Mcast Vrf:0 Flags:L3L2Vof QOS:0 Ref:12
 RX port packets:66 errors:0
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Fabric Interface: 0000:5a:02.1 Status: UP Driver: net_iavf
 RX packets:66 bytes:5116 errors:0
 TX packets:0 bytes:0 errors:0
 Drops:0

vif0/2 PMD: eno3v1 NH: 9 MTU: 1500
 Type:Host HWaddr:ba:9c:0f:ab:e2:c9 IPaddr:0.0.0.0
 DDP: OFF SwLB: ON
 Vrf:0 Mcast Vrf:65535 Flags:L3L2DProxyEr QOS:-1 Ref:13 TxXVif:1
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 RX packets:0 bytes:0 errors:0
 TX packets:66 bytes:5116 errors:0
 Drops:0
 TX queue packets:66 errors:0
 TX device packets:66 bytes:5116 errors:0

c. Type the exit command to exit the pod shell.

System Requirements for Azure Deployment

IN THIS SECTION

Minimum Host System Requirements for Azure | 294

Resource Requirements for Azure | 295

Miscellaneous Requirements for Azure | 295

Port Requirements | 300

Download Options | 302

Cloud-Native Router Licensing | 302

293

Read this section to understand the system, resource, port, and licensing requirements for installing
Juniper Cloud-Native Router on Microsoft Azure Cloud Platform.

Minimum Host System Requirements for Azure

Table 32 on page 294 lists the host system requirements for installing Cloud-Native Router on Azure.

Table 32: Minimum Host System Requirements for Azure

Component Value/Version Notes

Azure Deployment VM-based

Instance Type Standard_F16s_v2

CPU Intel x86 The tested CPU is Intel
Cascade Lake

Host OS Rocky Linux 8.7

Kernel Version Rocky Linux: 4.18.X

Kubernetes (K8s) Version 1.25.x

Calico Version 3.25.1

Multus Version 4.0

Helm 3.9.x

Container-RT containerd 1.6.x, 1.7.x Other container runtimes
may work but have not
been tested with JCNR.

NOTE: The component versions listed in this table are expected to work with JCNR, but not every version or
combination is tested in every release.

294

Resource Requirements for Azure

Table 33 on page 295 lists the resource requirements for installing Cloud-Native Router on Azure.

Table 33: Resource Requirements for Azure

Resource Value Usage Notes

Data plane forwarding cores 1 core (1P + 1S)

Service/Control Cores 0

UIO Driver uio_hv_generic To enable, add the following
modules to be loaded at boot:

cat /etc/modules-load.d/k8s.conf
uio
uio_hv_genericib_uverbs
mlx4_ib

The above libraries are provided by
ibverbs package.

Hugepages (1G) 6 Gi See "Configure the Number of
Huge Pages Available on a Node"
on page 401.

Cloud-Native Router Controller
cores

.5

Cloud-Native Router vRouter Agent
cores

.5

Miscellaneous Requirements for Azure

Table 34 on page 296 lists additional requirements for installing Cloud-Native Router on Azure.

295

Table 34: Miscellaneous Requirements for Azure

Requirement Example

Set IOMMU and IOMMU-PT in GRUB. Add the following line to /etc/default/grub.

GRUB_CMDLINE_LINUX_DEFAULT="console=tty1
console=ttyS0 default_hugepagesz=1G hugepagesz=1G
hugepages=64 intel_iommu=on iommu=pt"

Update grub and reboot.

grub2-mkconfig -o /boot/grub2/grub.cfg

reboot

Additional kernel modules need to be loaded on the
host before deploying Cloud-Native Router in L3
mode. These modules are usually available in linux-
modules-extra or kernel-modules-extra packages.

NOTE: Applicable for L3 deployments only.

Create a /etc/modules-load.d/crpd.conf file and add
the following kernel modules to it:

tun
fou
fou6
ipip
ip_tunnel
ip6_tunnel
mpls_gso
mpls_router
mpls_iptunnel
vrf
vxlan

Enable kernel-based forwarding on the Linux host.
ip fou add port 6635 ipproto 137

296

Table 34: Miscellaneous Requirements for Azure (Continued)

Requirement Example

Add firewall rules for loopback address for VPC. Configure the VPC firewall rule to allow ingress traffic
with source filters set to the subnet range to which
Cloud-Native Router is attached, along with the IP
ranges or addresses for the loopback addresses.

For example:

Navigate to Firewall policies on the Azure console and
create a firewall rule with the following attributes:

1. Name: Name of the firewall rule

2. Network: Choose the VPC network

3. Priority: 1000

4. Direction: Ingress

5. Action on Match: Allow

6. Source filters: 10.2.0.0/24, 10.51.2.0/24,
10.51.1.0/24, 10.12.2.2/32, 10.13.3.3/32

7. Protocols: all

8. Enforcement: Enabled

where 10.2.0.0/24 is the subnet to which Cloud-
Native Router is attached and 10.51.2.0/24,
10.51.1.0/24, 10.12.2.2/32, and 10.13.3.3/32 are
loopback IP ranges.

Set the MTU on all fabric interfaces to 1500 bytes. After Cloud-Native Router comes up, use the cRPD
CLI to set the MTU size on all fabric interfaces to 1500
bytes. Microsoft Azure Cloud Platform recommends an
MTU size less than or equal to 1500 bytes on all
interfaces that connect directly to the Azure
infrastructure. These interfaces are the Cloud-Native
Router fabric interfaces. Failure to follow this rule
might lead to packet drops.

For information on how to access the cRPD CLI, see
Access cRPD CLI.

297

Table 34: Miscellaneous Requirements for Azure (Continued)

Requirement Example

Ensure accelerated networking is enabled for the fabric
interface.

If accelerated networking is enabled properly, two
interfaces become available for the fabric interface. For
example:

3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500
qdisc mq state UP group default qlen 1000
 link/ether 00:22:48:23:3b:9e brd
ff:ff:ff:ff:ff:ff
 inet 10.225.0.6/24 brd 10.225.0.255 scope global
eth1
 valid_lft forever preferred_lft forever
 inet6 fe80::222:48ff:fe23:3b9e/64 scope link
 valid_lft forever preferred_lft forever
4: enP22960s2:
<BROADCAST,MULTICAST,SLAVE,UP,LOWER_UP> mtu 1500
qdisc mq master eth1 state UP group default qlen 1000
 link/ether 00:22:48:23:3b:9e brd
ff:ff:ff:ff:ff:ff
 altname enP22960p0s2

When configuring the fabric interface in the Helm
chart, you must provide the interface with hv_netvsc
bound to it. Issue the ethtool -i interface_name
command to verify it. For example:

user@jcnr01:~# ethtool -i eth1
driver: hv_netvsc
version: 5.15.0-1049-azure
firmware-version: N/A
expansion-rom-version:
bus-info:
supports-statistics: yes
supports-test: no
supports-eeprom-access: no
supports-register-dump: yes
supports-priv-flags: no

NOTE: Do not enable accelerated networking for
the management interface.

298

Table 34: Miscellaneous Requirements for Azure (Continued)

Requirement Example

Exclude Cloud-Native Router interfaces from
NetworkManager control.

NetworkManager is a tool in some operating systems
to make the management of network interfaces easier.
NetworkManager may make the operation and
configuration of the default interfaces easier. However,
it can interfere with Kubernetes management and
create problems.

To avoid NetworkManager from interfering with
Cloud-Native Router interface configuration, exclude
Cloud-Native Router interfaces from NetworkManager
control. Here's an example on how to do this in some
Linux distributions:

1. Create the /etc/NetworkManager/conf.d/crpd.conf
file and list the interfaces that you don't want
NetworkManager to manage.

For example:

[keyfile]
 unmanaged-devices+=interface-name:enp*;interface-
name:ens*

where enp* and ens* refer to your Cloud-Native
Router interfaces.

NOTE: enp*
indicates all interfaces starting with
enp
. For specific interface names, provided a comma-
separated list.

2. Restart the NetworkManager service:

sudo systemctl restart NetworkManager

3. Edit the /etc/sysctl.conf file on the host and paste
the following content in it:

net.ipv6.conf.default.addr_gen_mode=0
net.ipv6.conf.all.addr_gen_mode=0

299

Table 34: Miscellaneous Requirements for Azure (Continued)

Requirement Example

net.ipv6.conf.default.autoconf=0
net.ipv6.conf.all.autoconf=0

4. Run the command sysctl -p /etc/sysctl.conf to
load the new sysctl.conf values on the host.

Verify the core_pattern value is set on the host before
deploying JCNR. sysctl kernel.core_pattern

kernel.core_pattern = |/usr/lib/systemd/systemd-
coredump %P %u %g %s %t %c %h %e

You can update the core_pattern in /etc/sysctl.conf.
For example:

kernel.core_pattern=/var/crash/core_%e_%p_%i_%s_%h_
%t.gz

NOTE: Cloud-Native Router supports only IPv4 for Azure.

Port Requirements

Juniper Cloud-Native Router listens on certain TCP and UDP ports. This section lists the port
requirements for the cloud-native router.

Table 35: Cloud-Native Router Listening Ports

Protocol Port Description

TCP 8085 vRouter introspect–Used to gain
internal statistical information
about vRouter

300

Table 35: Cloud-Native Router Listening Ports (Continued)

Protocol Port Description

TCP 8070 Telemetry Information- Used to see
telemetry data from the Cloud-
Native Router vRouter

TCP 8072 Telemetry Information-Used to see
telemetry data from Cloud-Native
Router control plane

TCP 8075, 8076 Telemetry Information- Used for
gNMI requests

TCP 9091 vRouter health check–cloud-native
router checks to ensure the vRouter
agent is running.

TCP 9092 vRouter health check–cloud-native
router checks to ensure the vRouter
DPDK is running.

TCP 50052 gRPC port–Cloud-Native Router
listens on both IPv4 and IPv6

TCP 8081 Cloud-Native Router Deployer Port

TCP 24 cRPD SSH

TCP 830 cRPD NETCONF

TCP 666 rpd

TCP 1883 Mosquito mqtt–Publish/subscribe
messaging utility

TCP 9500 agentd on cRPD

TCP 21883 na-mqttd

TCP 50053 Default gNMI port that listens to
the client subscription request

301

Table 35: Cloud-Native Router Listening Ports (Continued)

Protocol Port Description

TCP 51051 jsd on cRPD

UDP 50055 Syslog-NG

Download Options

See "Cloud-Native Router Software Download Packages" on page 387.

NOTE: Before deploying Cloud-Native Router on Azure via Helm charts downloaded
from the Juniper Networks software download site, you must whitelist the
https://enterprise.hub.juniper.net
URL as the Cloud-Native Router image repository.

Cloud-Native Router Licensing

See "Manage Cloud-Native Router Licenses" on page 352.

Customize Cloud-Native Router Helm Chart for
Azure Deployment

IN THIS SECTION

Helm Chart Description for Azure Deployment | 303

Read this topic to learn about the deployment configuration available for the Juniper Cloud-Native
Router when deployed on Microsoft Azure Cloud Platform.

302

https://enterprise.hub.juniper.net

You can deploy and operate Juniper Cloud-Native Router in L3 mode on Azure. You configure the
deployment mode by editing the appropriate attributes in the values.yaml file prior to deployment.

Helm Chart Description for Azure Deployment

Customize the Helm chart using the Juniper_Cloud_Native_Router_<release>/helmchart/jcnr/
values.yaml file. We provide a copy of the default values.yaml in "Cloud-Native Router Default Helm
Chart" on page 389.

Table 36 on page 303 contains a description of the configurable attributes in values.yaml for an Azure
deployment.

Table 36: Helm Chart Description for Azure Deployment

Key Description

global

installSyslog Set to true to install syslog-ng.

registry Defines the Docker registry for the Cloud-Native Router
container images. The default value is enterprise-hub.juniper.net.
The images provided in the tarball are tagged with the default
registry name. If you choose to host the container images to a
private registry, replace the default value with your registry URL.

repository (Optional) Defines the repository path for the Cloud-Native
Router container images. This is a global key that takes
precedence over the repository paths under the common section.
Default is jcnr-container-prod/.

imagePullSecret (Optional) Defines the Docker registry authentication credentials.
You can configure credentials to either the Juniper Networks
enterprise-hub.juniper.net registry or your private registry.

registryCredentials Base64 representation of your Docker registry credentials. See
"Configure Repository Credentials" on page 398 for more
information.

secretName Name of the secret object that will be created.

303

https://enterprise.hub.juniper.net

Table 36: Helm Chart Description for Azure Deployment (Continued)

Key Description

common Defines repository paths and tags for the Cloud-Native Router
container images. Use defaults unless using a private registry.

repository Defines the repository path. The default value is jcnr-container-
prod/. The global repository key takes precedence if defined.

tag Defines the image tag. The default value is configured to the
appropriate tag number for the Cloud-Native Router release
version.

readinessCheck Set to true to enable Cloud-Native Router Readiness preflight
and postflight checks during installation. Comment this out or set
to false to disable Cloud-Native Router Readiness preflight and
postflight checks.

Preflight checks verify that your infrastructure can support JCNR.
Preflight checks take place before Cloud-Native Router is
installed.

Postflight checks verify that your Cloud-Native Router
installation is working properly. Postflight checks take place after
Cloud-Native Router is installed.

See "Cloud-Native Router Readiness Checks" on page 362.

replicas (Optional) Indicates the number of replicas for cRPD. Default is 1.
The value for this key must be specified for multi-node clusters.
The value is equal to the number of nodes running JCNR.

noLocalSwitching Not applicable.

iamRole Not applicable.

304

Table 36: Helm Chart Description for Azure Deployment (Continued)

Key Description

fabricInterface Provide a list of interfaces to be bound to the DPDK.

NOTE: Use the L3 only section to configure fabric interfaces
for Azure. The L2 only and L2-L3 sections are not applicable
for Azure deployments. Do not configure interface_mode for
any of the interfaces.

For example:

 # L3 only
 - eth1:
 ddp: "off"
 - eth2:
 ddp: "off"

See "Cloud-Native Router Interfaces Overview" on page 14 for
more information.

subnet Not applicable.

ddp Not applicable.

interface_mode Not applicable.

vlan-id-list Not applicable.

storm-control-profile Not applicable.

native-vlan-id Not applicable.

no-local-switching Not applicable.

qosSchedulerProfileN
ame

Specifies the QoS scheduler profile applicable to this interface.
See the qosSchedulerProfiles section.

If you don't specify a profile, then the QoS scheduler is disabled
for this interface, which means that packets are scheduled with
no regard to traffic class.

305

Table 36: Helm Chart Description for Azure Deployment (Continued)

Key Description

fabricWorkloadInterface Not applicable.

log_level Defines the log severity. Available value options are: DEBUG,
INFO, WARN, and ERR.

NOTE: Leave it set to the default INFO unless instructed to
change it by Juniper Networks support.

log_path The defined directory stores various JCNR-related descriptive
logs such as contrail-vrouter-agent.log, contrail-vrouter-
dpdk.log, etc. Default is /var/log/jcnr/.

syslog_notifications Indicates the absolute path to the file that stores syslog-ng
generated notifications in JSON format. Default is /var/log/jcnr/
jcnr_notifications.json.

corePattern Indicates the core_pattern for the core file. If left blank, then
Cloud-Native Router pods will not overwrite the default pattern
on the host.

NOTE: Set the core_pattern on the host before deploying
JCNR. You can change the value in /etc/sysctl.conf. For
example, kernel.core_pattern=/var/crash/core_%e_%p_%i_%s_%h_
%t.gz

coreFilePath Indicates the path to the core file. Default is /var/crash.

306

Table 36: Helm Chart Description for Azure Deployment (Continued)

Key Description

nodeAffinity (Optional) Defines labels on nodes to determine where to place
the vRouter pods.

By default the vRouter pods are deployed to all nodes of a
cluster.

In the example below, the node affinity label is defined as
key1=jcnr. You must apply this label to each node where Cloud-
Native Router is to be deployed:

nodeAffinity:
- key: key1
operator: In
values:
- jcnr

NOTE: This key is a global setting.

key Key-value pair that represents a node label that must be matched
to apply the node affinity.

operator Defines the relationship between the node label and the set of
values in the matchExpression parameters in the pod
specification. This value can be In, NotIn, Exists, DoesNotExist,
Lt, or Gt.

cni_bin_dir (Optional) The default path is /opt/cni/bin. You can override the
default path with the path in your distribution (for
example, /var/opt/cni/bin).

grpcTelemetryPort (Optional) Enter a value for this parameter to override cRPD
telemetry gRPC server default port of 50053.

grpcVrouterPort (Optional) Default is 50052. Configure to override.

vRouterDeployerPort (Optional) Default is 8081. Configure to override.

jcnr-vrouter

307

Table 36: Helm Chart Description for Azure Deployment (Continued)

Key Description

cpu_core_mask If present, this indicates that you want to use static CPU
allocation to allocate cores to the forwarding plane.

This value should be a comma-delimited list of isolated CPU
cores that you want to statically allocate to the forwarding plane
(for example, cpu_core_mask: "2,3,22,23"). Use the cores not used
by the host OS.

Comment this out if you want to use Kubernetes CPU Manager
to allocate cores to the forwarding plane.

NOTE: You cannot use static CPU allocation and Kubernetes
CPU Manager at the same time. Cloud-Native Router
Readiness preflight checks, if enabled, will fail the installation if
you specify both.

guaranteedVrouterCpus If present, this indicates that you want to use the Kubernetes
CPU Manager to allocate CPU cores to the forwarding plane.

This value should be the number of guaranteed CPU cores that
you want the Kubernetes CPU Manager to allocate to the
forwarding plane. You should set this value to at least one more
than the number of forwarding cores.

Comment this out if you want to use static CPU allocation to
allocate cores to the forwarding plane.

NOTE: You cannot use static CPU allocation and Kubernetes
CPU Manager at the same time. Using both can lead to
unpredictable behavior.

dpdkCtrlThreadMask Specifies the CPU core(s) to allocate to vRouter DPDK control
threads when using static CPU allocation. This list should be a
subset of the cores listed in cpu_core_mask and can be the same as
the list in serviceCoreMask.

CPU cores listed in cpu_core_mask but not in serviceCoreMask or
dpdkCtrlThreadMask are allocated for forwarding.

Comment this out if you want to use Kubernetes CPU Manager
to allocate cores to the forwarding plane.

308

Table 36: Helm Chart Description for Azure Deployment (Continued)

Key Description

serviceCoreMask Specifies the CPU core(s) to allocate to vRouter DPDK service
threads when using static CPU allocation. This list should be a
subset of the cores listed in cpu_core_mask and can be the same as
the list in dpdkCtrlThreadMask.

CPU cores listed in cpu_core_mask but not in serviceCoreMask or
dpdkCtrlThreadMask are allocated for forwarding.

Comment this out if you want to use Kubernetes CPU Manager
to allocate cores to the forwarding plane.

numServiceCtrlThreadCPU Specifies the number of CPU cores to allocate to vRouter DPDK
service/control traffic when using the Kubernetes CPU Manager.

This number should be smaller than the number of
guaranteedVrouterCpus cores. The remaining guaranteedVrouterCpus
cores are allocated for forwarding.

Comment this out if you want to use static CPU allocation to
allocate cores to the forwarding plane.

numberOfSchedulerLcores The number of CPU cores that you want Kubernetes CPU
Manager to dedicate to your QoS schedulers. Comment this out
if you want to use static CPU allocation to allocate cores to the
forwarding plane.

restoreInterfaces Set to true to restore the interfaces back to their original state in
case the vRouter pod crashes or restarts or if Cloud-Native
Router is uninstalled.

bondInterfaceConfigs Not applicable.

mtu Maximum Transmission Unit (MTU) value for all physical
interfaces (VFs and PFs). Default is 9000.

qosSchedulerProfiles Defines the QoS scheduler profiles that are referenced from the
fabricInterface section.

sched_profile_1 The name of the QoS scheduler profile.

309

Table 36: Helm Chart Description for Azure Deployment (Continued)

Key Description

cpu Specify the CPU core(s) to dedicate to the
scheduler. If cpu_core_mask is specified, this should
be a unique additional core(s).

bandwidth Specify the bandwidth in Gbps.

stormControlProfiles Not applicable.

dpdkCommandAdditionalArgs Pass any additional DPDK command line parameters. The --
yield_option 0 is set by default and implies the DPDK forwarding
cores will not yield their assigned CPU cores. Other common
parameters that can be added are tx and rx descriptors and
mempool. For example:

dpdkCommandAdditionalArgs: "--yield_option 0 --dpdk_txd_sz
2048 --dpdk_rxd_sz 2048 --vr_mempool_sz 131072"

NOTE: Changing the number of tx and rx descriptors and the
mempool size affects the number of huge pages required. If you
make explicit changes to these parameters, set the number of
huge pages to 10 (x 1 GB).

See "Configure Huge Pages" on page 401 for information on
how to configure huge pages.

dpdk_monitoring_thread_config (Optional) Enables a monitoring thread for the vRouter DPDK
container. Every loggingInterval seconds, a log containing the
information indicated by loggingMask is generated.

loggingMask Specifies the information to be generated. Represented by a
bitmask with bit positions as follows:

• 0b001 is the nl_counter

• 0b010 is the lcore_timestamp

• 0b100 is the profile_histogram

loggingInterval Specifies the log generation interval in seconds.

310

Table 36: Helm Chart Description for Azure Deployment (Continued)

Key Description

ddp Not applicable.

twampPort (Optional) The TWAMP session reflector port (if you want
TWAMP sessions to use vRouter timestamps). The vRouter
listens to TWAMP test messages on this port and inserts/
overwrites timestamps in TWAMP test messages. Timestamping
TWAMP messages at the vRouter (instead of at cRPD) leads to
more accurate measurements. Valid values are 862 and 49152
through 65535.

If this parameter is absent, then the vRouter does not insert or
overwrite timestamps in the TWAMP session. Timestamps are
taken and inserted by cRPD instead.

See Two-Way Active Measurement Protocol (TWAMP).

vrouter_dpdk_uio_driver The uio driver is uio_hv_generic.

agentModeType Set to dpdk.

fabricRpfCheckDisable Set to false to enable the RPF check on all Cloud-Native Router
fabric interfaces. By default, RPF check is disabled.

telemetry (Optional) Configures cRPD telemetry settings. To learn more
about telemetry, see Telemetry Capabilities .

disable Set to true to disable cRPD telemetry. Default is false, which
means that cRPD telemetry is enabled by default.

metricsPort The port that the cRPD telemetry exporter is listening to
Prometheus queries on. Default is 8072.

logLevel One of warn, warning, info, debug, trace, or verbose. Default is
info.

gnmi (Optional) Configures cRPD gNMI settings.

311

Table 36: Helm Chart Description for Azure Deployment (Continued)

Key Description

enable Set to true to enable the cRPD telemetry exporter to
respond to gNMI requests.

vrouter

telemetry (Optional) Configures vRouter telemetry settings. To learn more
about telemetry, see Telemetry Capabilities .

metricsPort Specify the port that the vRouter telemetry
exporter listens to Prometheus queries on. Default
is 8070.

logLevel One of warn, warning, info, debug, trace, or verbose.
Default is info.

gnmi (Optional) Configures vRouter gNMI settings.

enable - Set to true to enable the vRouter telemetry
exporter to respond to gNMI requests.

persistConfig Set to true if you want Cloud-Native Router pod configuration to
persist even after uninstallation. This option can only be set for
L2 mode deployments. Default is false.

enableLocalPersistence Set to true if you're using the cRPD CLI or NETCONF to
configure JCNR. When set to true, the cRPD CLI and NETCONF
configuration persists through node reboots, cRPD pod restarts,
and Cloud-Native Router upgrades. Default is false.

interfaceBoundType Not applicable.

networkDetails Not applicable.

networkResources Not applicable.

312

Table 36: Helm Chart Description for Azure Deployment (Continued)

Key Description

contrail-tools

install Set to true to install contrail-tools (used for debugging).

Customize Cloud-Native Router Configuration

SUMMARY

Read this topic to understand how to customize
Cloud-Native Router configuration using a Configlet
custom resource.

IN THIS SECTION

Configlet Custom Resource | 313

Configuration Examples | 314

Applying the Configlet Resource | 315

Modifying the Configlet | 321

Troubleshooting | 321

Configlet Custom Resource

Starting with Juniper Cloud-Native Router (JCNR) Release 24.2, we support customizing Cloud-Native
Router configuration using a configlet custom resource. The configlet can be generated either by
rendering a predefined template of supported Junos configuration or using raw configuration. The
generated configuration is validated and deployed on the Cloud-Native Router controller (cRPD) as one
or more Junos configuration groups.

NOTE: You can configure Cloud-Native Router using either configlets or the cRPD CLI or
NETCONF. If you use the cRPD CLI or NETCONF, be sure to enable local persistence in
values.yaml (enableLocalPersistence: true) so that your CLI or NETCONF configuration
persists across reboots and upgrades.

313

https://www.juniper.net/documentation/us/en/software/junos/cli/topics/topic-map/configuration-groups-usage.html

NOTE: Using both configlets and the cRPD CLI or NETCONF to configure Cloud-Native
Router may lead to unpredictable behavior. Use one or the other, but not both.

Configuration Examples

You create a configlet custom resource of the kind Configlet in the jcnr namespace. You provide raw
configuration as Junos set commands.

Use crpdSelector to control where the configlet applies. The generated configuration is deployed to cRPD
pods on nodes matching the specified label only. If crpdSelector is not defined, the configuration is
applied to all cRPD pods in the cluster.

An example configlet yaml is provided below:

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample # <-- Configlet resource name
 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address 10.10.10.1/32
 crpdSelector:
 matchLabels:
 node: worker # <-- Node label to select the cRPD pods

You can also use a templatized configlet yaml that contains keys or variables. The values for variables are
provided by a configletDataValue custom resource, referenced by configletDataValueRef . An example
templatized configlet yaml is provided below:

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample-with-template # <-- Configlet resource name
 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address {{ .Ip }}

314

 crpdSelector:
 matchLabels:
 node: worker # <-- Node label to select the cRPD pods
 configletDataValueRef:
 name: "configletdatavalue-sample" # <-- Configlet Data Value resource name

To render configuration using the template, you must provide key:value pairs in the ConfigletDataValue
custom resource:

apiVersion: configplane.juniper.net/v1
kind: ConfigletDataValue
metadata:
 name: configletdatavalue-sample
 namespace: jcnr
spec:
 data: {
 "Ip": "127.0.0.1" # <-- Key:Value pair
 }

The generated configuration is validated and applied to all or selected cRPD pods as a Junos
Configuration Group.

Applying the Configlet Resource

The configlet resource can be used to apply configuration to selected or all cRPD pods either when
Cloud-Native Router is deployed or once the cRPD pods are up and running. Let us look at configlet
deployment in detail.

Applying raw configuration

1. Create raw configuration configlet yaml. The example below configures a loopback interface in cRPD.

cat configlet-sample.yaml

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample

315

https://www.juniper.net/documentation/us/en/software/junos/cli/topics/topic-map/configuration-groups-usage.html
https://www.juniper.net/documentation/us/en/software/junos/cli/topics/topic-map/configuration-groups-usage.html

 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address 10.10.10.1/32
 crpdSelector:
 matchLabels:
 node: worker

2. Apply the configuration using the kubectl apply command.

kubectl apply -f configlet-sample.yaml

configlet.configplane.juniper.net/configlet-sample created

3. Check on the configlet.

When a configlet resource is deployed, it creates additional node configlet custom resources, one for
each node matched by the crpdSelector.

kubectl get nodeconfiglets -n jcnr

NAME AGE
configlet-sample-node1 10m

If the configuration defined in the configlet yaml is invalid or fails to deploy, you can view the error
message using kubectl describe for the node configlet custom resource.

For example:

kubectl describe nodeconfiglet configlet-sample-node1 -n jcnr

The following output has been trimmed for brevity:

Name: configlet-sample-node1
Namespace: jcnr
Labels: core.juniper.net/nodeName=node1
Annotations: <none>

316

API Version: configplane.juniper.net/v1
Kind: NodeConfiglet
Metadata:
 Creation Timestamp: 2024-06-13T16:51:23Z
 ...
Spec:
 Clis:
 set interfaces lo0 unit 0 address 10.10.10.1/32
 Group Name: configlet-sample
 Node Name: node1
Status:
 Message: load-configuration failed: syntax error
 Status: False
Events: <none>

4. Optionally, verify the configuration on the Access cRPD CLI shell in CLI mode. Note that the
configuration is applied as a configuration group named after the configlet resource.

show configuration groups configlet-sample

interfaces {
 lo0 {
 unit 0 {
 family inet {
 address 10.10.10.1/32;
 }
 }
 }
}

NOTE: The configuration generated using configlets is applied to cRPD as configuration
groups. We therefore recommend that you not use configuration groups when
specifying your configlet.

317

Applying templatized configuration

1. Create the templatized configlet yaml and the configlet data value yaml for key:value pairs.

cat configlet-sample-template.yaml

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample-template
 namespace: jcnr
spec:
 config: |-
 set interfaces lo0 unit 0 family inet address {{ .Ip }}
 crpdSelector:
 matchLabels:
 node: master
 configletDataValueRef:
 name: "configletdatavalue-sample"

cat configletdatavalue-sample.yaml

apiVersion: configplane.juniper.net/v1
kind: ConfigletDataValue
metadata:
 name: configletdatavalue-sample
 namespace: jcnr
spec:
 data: {
 "Ip": "127.0.0.1"
 }

318

2. Apply the configuration using the kubectl apply command, starting with the config data value yaml.

kubectl apply -f configletdatavalue-sample.yaml

configletdatavalue.configplane.juniper.net/configletdatavalue-sample created

kubectl apply -f configlet-sample-template.yaml

configlet.configplane.juniper.net/configlet-sample-template created

3. Check on the configlet.

When a configlet resource is deployed, it creates additional node configlet custom resources, one for
each node matched by the crpdSelector.

kubectl get nodeconfiglets -n jcnr

NAME AGE
configlet-sample-template-node1 10m

If the configuration defined in the configlet yaml is invalid or fails to deploy, you can view the error
message using kubectl describe for the node configlet custom resource.

For example:

kubectl describe nodeconfiglet configlet-sample-template-node1 -n jcnr

The following output has been trimmed for brevity:

Name: configlet-sample-template-node1
Namespace: jcnr
Labels: core.juniper.net/nodeName=node1
Annotations: <none>
API Version: configplane.juniper.net/v1
Kind: NodeConfiglet

319

Metadata:
 Creation Timestamp: 2024-06-13T16:51:23Z
 ...
Spec:
 Clis:
 set interfaces lo0 unit 0 address 10.10.10.1/32
 Group Name: configlet-sample-template
 Node Name: node1
Status:
 Message: load-configuration failed: syntax error
 Status: False
Events: <none>

4. Optionally, verify the configuration on the Access cRPD CLI shell in CLI mode. Note that the
configuration is applied as a configuration group named after the configlet resource.

show configuration groups configlet-sample-template

interfaces {
 lo0 {
 unit 0 {
 family inet {
 address 127.0.0.1/32;
 }
 }
 }
}

320

Modifying the Configlet

You can modify a configlet resource by changing the yaml file and reapplying it using the kubectl apply
command.

kubectl apply -f configlet-sample.yaml

configlet.configplane.juniper.net/configlet-sample configured

Any changes to existing configlet resource are reconciled by replacing the configuration group on cRPD.

You can delete the configuration group by deleting the configlet resource using the kubectl delete
command.

kubectl delete configlet configlet-sample -n jcnr

configlet.configplane.juniper.net "configlet-sample" deleted

Troubleshooting

If you run into problems, check the contrail-k8s-deployer logs. For example:

kubectl logs contrail-k8s-deployer-8ff895cc5-cbfwm -n contrail-deploy

321

8
CHAPTER

Install Cloud-Native Router on
VMWare Tanzu

IN THIS CHAPTER

Install and Verify Juniper Cloud-Native Router for VMWare Tanzu | 323

System Requirements for Tanzu Deployment | 323

Customize Cloud-Native Router Helm Chart for Tanzu Deployment | 333

Customize Cloud-Native Router Configuration | 334

Install and Verify Juniper Cloud-Native Router for
VMWare Tanzu

The procedure for installing and verifying Cloud-Native Router on VMWare Tanzu is the same as the
procedure for installing and verifying Cloud-Native Router on baremetal.

See "Install and Verify Juniper Cloud-Native Router for Baremetal Servers" on page 28.

System Requirements for Tanzu Deployment

IN THIS SECTION

Minimum Host System Requirements for Tanzu | 323

Resource Requirements for Tanzu | 325

Miscellaneous Requirements for Tanzu | 326

Port Requirements | 331

Download Options | 333

Cloud-Native Router Licensing | 333

Read this section to understand the system, resource, port, and licensing requirements for installing
Juniper Cloud-Native Router on a VMWare Tanzu platform.

Minimum Host System Requirements for Tanzu

Table 37 on page 324 lists the host system requirements for installing Cloud-Native Router on Tanzu.

323

Table 37: Minimum Host System Requirements for Tanzu

Component Value/Version Notes

CPU Intel x86 The tested CPU is Intel
Xeon Gold 6212U 24-
core @2.4 GHz

Host OS (for TKG 2.3) Photon OS 3.0

Kernel Version (for TKG 2.3) 4.19.x

NIC • Intel E810 CVL with
Firmware 4.22
0x8001a1cf 1.3346.0

• Intel E810 CPK with
Firmware 2.20
0x80015dc1 1.3083.0

• Intel E810-CQDA2
with Firmware 4.20
0x80017785
1.3346.0

• Intel XL710 with
Firmware 9.20
0x8000e0e9 0.0.0

• Mellanox ConnectX-6

• Mellanox ConnectX-7

Support for Mellanox
NICs is considered a
Juniper Technology
Preview ("Tech
Preview" on page 452)
feature.

When using Mellanox
NICs, ensure your
interface names do not
exceed 11 characters
in length.

IAVF driver 4.8.2 

ICE_COMMS 1.3.35.0

ICE 1.11.20.13 ICE driver is used only
with the Intel E810
NIC

324

Table 37: Minimum Host System Requirements for Tanzu (Continued)

Component Value/Version Notes

i40e 2.22.18.1 i40e driver is used only
with the Intel XL710
NIC

Kubernetes (TKG 2.3) 1.23.8+vmware.3

Calico 3.22.x

Multus 3.8

Helm 3.9.x

Container-RT (TKG 2.3) containerd 1.6.6x

NOTE: The component versions listed in this table are expected to work with JCNR, but not every version or
combination is tested in every release.

Resource Requirements for Tanzu

Table 38 on page 325 lists the resource requirements for installing Cloud-Native Router on Tanzu.

Table 38: Resource Requirements for Tanzu

Resource Value Usage Notes

Data plane forwarding
cores

1 core (1P +
1S)

Service/Control Cores 0

325

Table 38: Resource Requirements for Tanzu (Continued)

Resource Value Usage Notes

UIO Driver VFIO-PCI To enable, follow the steps below:

cat /etc/modules-load.d/vfio.conf
vfio
vfio-pci

Hugepages (1G) 6 Gi See "Configure the Number of Huge Pages Available on a Node" on
page 401.

Cloud-Native Router
Controller cores

.5

Cloud-Native Router
vRouter Agent cores

.5

Miscellaneous Requirements for Tanzu

Table 39 on page 326 lists additional requirements for installing Cloud-Native Router on Tanzu.

Table 39: Miscellaneous Requirements for Tanzu

Requirement Example

Enable the host with SR-IOV and VT-d in the system's
BIOS.

Depends on BIOS.

326

Table 39: Miscellaneous Requirements for Tanzu (Continued)

Requirement Example

Enable VLAN driver at system boot. Configure /etc/modules-load.d/vlan.conf as follows:

cat /etc/modules-load.d/vlan.conf
8021q

Reboot and verify by executing the command:

lsmod | grep 8021q

Enable VFIO-PCI driver at system boot. Configure /etc/modules-load.d/vfio.conf as follows:

cat /etc/modules-load.d/vfio.conf
vfio
vfio-pci

Reboot and verify by executing the command:

lsmod | grep vfio

Set IOMMU and IOMMU-PT in GRUB. Add the following line to /etc/default/grub.

GRUB_CMDLINE_LINUX_DEFAULT="console=tty1
console=ttyS0 default_hugepagesz=1G hugepagesz=1G
hugepages=64 intel_iommu=on iommu=pt"

Update grub and reboot.

grub2-mkconfig -o /boot/grub2/grub.cfg

reboot

327

Table 39: Miscellaneous Requirements for Tanzu (Continued)

Requirement Example

Additional kernel modules need to be loaded on the
host before deploying Cloud-Native Router in L3
mode. These modules are usually available in linux-
modules-extra or kernel-modules-extra packages.

NOTE: Applicable for L3 deployments only.

Create a /etc/modules-load.d/crpd.conf file and add
the following kernel modules to it:

tun
fou
fou6
ipip
ip_tunnel
ip6_tunnel
mpls_gso
mpls_router
mpls_iptunnel
vrf
vxlan

Enable kernel-based forwarding on the Linux host.
ip fou add port 6635 ipproto 137

328

Table 39: Miscellaneous Requirements for Tanzu (Continued)

Requirement Example

Exclude Cloud-Native Router interfaces from
NetworkManager control.

NetworkManager is a tool in some operating systems
to make the management of network interfaces easier.
NetworkManager may make the operation and
configuration of the default interfaces easier. However,
it can interfere with Kubernetes management and
create problems.

To avoid NetworkManager from interfering with
Cloud-Native Router interface configuration, exclude
Cloud-Native Router interfaces from NetworkManager
control. Here's an example on how to do this in some
Linux distributions:

1. Create the /etc/NetworkManager/conf.d/crpd.conf
file and list the interfaces that you don't want
NetworkManager to manage.

For example:

[keyfile]
 unmanaged-devices+=interface-name:enp*;interface-
name:ens*

where enp* and ens* refer to your Cloud-Native
Router interfaces.

NOTE: enp*
indicates all interfaces starting with
enp
. For specific interface names, provided a comma-
separated list.

2. Restart the NetworkManager service:

sudo systemctl restart NetworkManager

.

3. Edit the /etc/sysctl.conf file on the host and paste
the following content in it:

net.ipv6.conf.default.addr_gen_mode=0
net.ipv6.conf.all.addr_gen_mode=0

329

Table 39: Miscellaneous Requirements for Tanzu (Continued)

Requirement Example

net.ipv6.conf.default.autoconf=0
net.ipv6.conf.all.autoconf=0

4. Run the command sysctl -p /etc/sysctl.conf to
load the new sysctl.conf values on the host.

5. Create the bond interface manually. For example:

ifconfig ens2f0 down
ifconfig ens2f1 down
ip link add bond0 type bond mode 802.3ad
ip link set ens2f0 master bond0
ip link set ens2f1 master bond0
ifconfig ens2f0 up ; ifconfig ens2f1 up; ifconfig
bond0 up

Verify the core_pattern value is set on the host before
deploying JCNR. sysctl kernel.core_pattern

kernel.core_pattern = |/usr/lib/systemd/systemd-
coredump %P %u %g %s %t %c %h %e

You can update the core_pattern in /etc/sysctl.conf.
For example:

kernel.core_pattern=/var/crash/core_%e_%p_%i_%s_%h_
%t.gz

Enable iommu unsafe interrupts and unsafe noiommu
mode. echo Y > /sys/module/vfio_iommu_type1/parameters/

allow_unsafe_interrupts

echo Y > /sys/module/vfio/parameters/
enable_unsafe_noiommu_mode

330

Table 39: Miscellaneous Requirements for Tanzu (Continued)

Requirement Example

Configure iptables to accept specified traffic.
 iptables -I INPUT -p tcp --dport 830 -j ACCEPT
 iptables -I INPUT -p tcp --dport 24 -j ACCEPT
 iptables -I INPUT -p tcp --dport 8085 -j ACCEPT
 iptables -I INPUT -p tcp --dport 8070 -j ACCEPT

 iptables -I INPUT -p tcp --dport 8072 -j ACCEPT
 iptables -I INPUT -p tcp --dport 50053 -j ACCEPT

iptables -A INPUT -p icmp -j ACCEPT
iptables -A OUTPUT -p icmp -j ACCEPT

iptables -A INPUT -s 224.0.0.0/4 -j ACCEPT
iptables -A FORWARD -s 224.0.0.0/4 -d 224.0.0.0/4 -j
ACCEPT
iptables -A OUTPUT -d 224.0.0.0/4 -j ACCEPT

On the ESXi Hypervisor, enable 16 queues.
set esxcli system module parameters set -m icen -p
NumQPsPerVF=16,16,16,16

On the ESXi Hypervisor, enable trust and disable
spoofcheck: esxcli intnet sriovnic vf set -s false -t true -v

0 -n vmnic2

Check the settings:

esxcli intnet sriovnic vf get -n vmnic2

VF ID Trusted Spoof Check
0 true false

Port Requirements

Juniper Cloud-Native Router listens on certain TCP and UDP ports. This section lists the port
requirements for the cloud-native router.

331

Table 40: Cloud-Native Router Listening Ports

Protocol Port Description

TCP 8085 vRouter introspect–Used to gain
internal statistical information
about vRouter

TCP 8070 Telemetry Information- Used to see
telemetry data from the Cloud-
Native Router vRouter

TCP 8072 Telemetry Information-Used to see
telemetry data from Cloud-Native
Router control plane

TCP 8075, 8076 Telemetry Information- Used for
gNMI requests

TCP 9091 vRouter health check–cloud-native
router checks to ensure the vRouter
agent is running.

TCP 9092 vRouter health check–cloud-native
router checks to ensure the vRouter
DPDK is running.

TCP 50052 gRPC port–Cloud-Native Router
listens on both IPv4 and IPv6

TCP 8081 Cloud-Native Router Deployer Port

TCP 24 cRPD SSH

TCP 830 cRPD NETCONF

TCP 666 rpd

TCP 1883 Mosquito mqtt–Publish/subscribe
messaging utility

TCP 9500 agentd on cRPD

332

Table 40: Cloud-Native Router Listening Ports (Continued)

Protocol Port Description

TCP 21883 na-mqttd

TCP 50053 Default gNMI port that listens to
the client subscription request

TCP 51051 jsd on cRPD

UDP 50055 Syslog-NG

Download Options

See "Cloud-Native Router Software Download Packages" on page 387.

Cloud-Native Router Licensing

See "Manage Cloud-Native Router Licenses" on page 352.

Customize Cloud-Native Router Helm Chart for
Tanzu Deployment

The way that you configure the installation Helm chart for Cloud-Native Router on VMWare Tanzu is
the same as the way that you configure the installation Helm chart for Cloud-Native Router on
baremetal servers.

See "Customize Cloud-Native Router Helm Chart for Bare Metal Servers" on page 48.

333

Customize Cloud-Native Router Configuration

The procedure for customizing cRPD for Cloud-Native Router on VMWare Tanzu is the same as the
procedure for customizing cRPD for Cloud-Native Router on baremetal.

See "Customize Cloud-Native Router Configuration " on page 62.

334

9
CHAPTER

Deploying Service Chain (cSRX) with
JCNR

IN THIS CHAPTER

Deploying Service Chain (cSRX) with JCNR | 336

Deploying Service Chain (cSRX) with JCNR

SUMMARY

Read this section to learn how to customize and
deploy a security services instance (cSRX) with the
Cloud-Native Router.

IN THIS SECTION

Install cSRX on an Existing Cloud-Native
Router Installation | 336

Install cSRX During Cloud-Native Router
Installation | 337

Apply the cSRX License and Configure
cSRX | 338

Customize cSRX Helm Chart | 340

You can integrate the Juniper Cloud-Native Router (JCNR) with Juniper's containerized SRX (cSRX)
platform to provide security services such as IPsec. Using host-based service chaining, the cloud-native
router is chained with a security service instance (cSRX) in the same Kubernetes cluster. The cSRX
instance runs as a pod service in L3 mode. The cSRX instance is customized and deployed via a Helm
chart.

You have the option of deploying Juniper cSRX when you're installing Cloud-Native Router or after
you've installed JCNR. See "Cloud-Native Router Software Download Packages" on page 387 for a
description of the available packages.

Install cSRX on an Existing Cloud-Native Router Installation

Follow this procedure to install a cSRX instance on an existing Cloud-Native Router installation. Ensure
all Cloud-Native Router components are up and running before you start this procedure.

1. Download and expand the software package for installing Juniper cSRX on an existing Cloud-Native
Router installation. See "Cloud-Native Router Software Download Packages" on page 387 for a
description of the software packages available.

tar -xzvf junos_csrx_<release>.tar.gz

336

https://www.juniper.net/us/en/products/security/srx-series/csrx-containerized-firewall.html

2. Change to the junos_csrx_<release>/helmchart directory and expand the Helm chart.

cd junos_csrx_<release>/helmchart

ls
junos-csrx-<release>.tgz

tar -xzvf junos-csrx-<release>.tgz

ls
junos-csrx junos-csrx-<release>.tgz

The Helm chart is located in the junos-csrx directory.

3. The cSRX container images are required for deployment. Choose one of the following options:

• Configure your cluster to deploy images from the Juniper Networks enterprise-hub.juniper.net
repository. See "Configure Repository Credentials" on page 398 for example instructions on how
to configure repository credentials in Helm charts.

• Configure your cluster to deploy images from the image tarball included in the downloaded cSRX
software package. See "Deploy Prepackaged Images" on page 399 for example instructions on
how to import images to the local containerd runtime.

4. Follow the steps in "Apply the cSRX License and Configure cSRX" on page 338 to apply your cSRX
license and configure the cSRX Helm chart.

5. Install cSRX.

Navigate to the junos_csrx_<release>/helmchart/junos-csrx directory and issue the following
command to install the cSRX instance.

helm install junos-csrx .

Install cSRX During Cloud-Native Router Installation

Follow the steps in the respective Cloud-Native Router installation sections to install JCNR. One of the
steps will refer you to "Apply the cSRX License and Configure cSRX" on page 338.

337

Apply the cSRX License and Configure cSRX

Follow this procedure to apply your cSRX license and configure Juniper cSRX.

The following steps assume you're in the Juniper_Cloud_Native_Router_CSRX_<release> directory if
installing cSRX and Cloud-Native Router together, or in the junos_csrx_<release> directory if installing
cSRX on an existing Cloud-Native Router installation.

1. Copy the cluster kubeconfig to all nodes where you want to install the Cloud-Native Router and
cSRX combination.

This step applies to both installing cSRX during Cloud-Native Router installation and installing cSRX
on an existing Cloud-Native Router installation. If you don't perform this step, the installation may
fail.

a. Copy the cluster kubeconfig to a location of your choice on the target node.

For example, the following copies the cluster kubeconfig from its default location at ~/.kube/
config to /root/kubeconfig on the target node:

scp ~/.kube/config <worker-node-ip>:/root/kubeconfig

where <worker-node-ip> is the IP address of a node where you want to install both Cloud-Native
Router and cSRX. Repeat for all nodes where you want to install both Cloud-Native Router and
cSRX.

NOTE: The destination file path must be the same on all target nodes.

b. After copying the kubeconfig to all target nodes, set kubeConfigPath in values.yaml to the
destination file location.

For example:

kubeconfigpath: /root/kubeconfig

See "Customize cSRX Helm Chart" on page 340 for information on the parameters in values.yaml.

2. Apply your Juniper cSRX license.

a. If the secrets/csrx-secrets.yaml doesn't exist in your software package, create it with the contents
below:

apiVersion: v1
kind: Secret

338

metadata:
 name: service-chain-instance
 namespace: jcnr
data:
 csrx_license: |
 <add your license in base64 format>
 csrx_root_password: <add your root password in base64 format>

b. Encode your license in base64.

Copy your Juniper cSRX license file onto your host server and issue the command:

base64 -w 0 licenseFile

The output of this command is your base64-encoded license.

c. Replace <add your license in base64 format> with your base64-encoded license.

NOTE: You must obtain your license file from your account team and install it in the
secrets/csrx-secrets.yaml file as instructed above. The csrx-init container performs a
license check and proceeds only if the required secret service-chain-instance is found.

d. Encode your root password in base64. The root password is required for NETCONF access for
telemetry.

Encode your password as follows:

echo -n "password" | base64 -w0

The output of this command is your base64-encoded root password.

e. Replace <add your root password in base64 format> with your base64-encoded root password.

f. Apply the secrets/csrx-secrets.yaml to the Kubernetes cluster.

kubectl apply -f secrets/csrx-secrets.yaml
secret/service-chain-instance created

3. Configure the cSRX Helm chart.

339

• If you're installing cSRX at the same time you're installing JCNR, then you're configuring the junos-
csrx section of the combination Helm chart in Juniper_Cloud_Native_Router_CSRX_<release>/
helmchart/jcnr_csrx/values.yaml.

• If you're installing cSRX on an existing Cloud-Native Router installation, then you're configuring
the csrx section of the standalone Helm chart in junos_csrx_<release>/helmchart/junos-csrx/
values.yaml.

Refer to the cSRX parameter descriptions in "Customize cSRX Helm Chart" on page 340.

Customize cSRX Helm Chart

The cSRX service chaining instance is deployed via a Helm chart, either a standalone Helm chart or a
combined Helm chart with JCNR. The deployment consists of two essential components:

• csrx-init: This is an init container that prepares the configuration for the main cSRX application. It
extracts the necessary information from the values.yaml file, processes it, and generates the
configuration data for cSRX. This ensures that the main cSRX application starts with a valid, up-to-
date configuration.

• csrx: The csrx is the main application container and the core component of the cSRX deployment. It
relies on the configuration provided by the csrx-init container to function correctly.

You can customize the cSRX deployment by specifying a range of configuration parameters in the
values.yaml file. Key configuration options include:

• kubeConfigPath: This is the path to the cluster kubeconfig file on the node(s) where you're installing
Cloud-Native Router and cSRX. You copied the cluster kubeconfig to this file location on this node(s)
in step 1 in "Apply the cSRX License and Configure cSRX" on page 338. If this parameter is
commented out, then the cluster kubeconfig is assumed to be at /etc/kubernetes/kubelet.conf.

• interfaceType: This is the type of interface on the cSRX to connect to JCNR. Must be set to vhost only.

• interfaceConfigs: This is an array defining the interface IP address, gateway address and optionally
routes. The interface IP must match the localAddress element in the ipSecTunnelConfigs array. The routes
should contain prefixes to steer decrypted traffic to Cloud-Native Router and reachability route for
IPSec gateway.

• ipSecTunnelConfigs: This is an array defining the IPsec configuration details such as ike-phase1,
proposal, policy and gateway configuration. Traffic selector should contain traffic that is expected to
be encrypted.

340

• jcnr_config: This is an array defining the routes to be configured in Cloud-Native Router to steer
traffic from Cloud-Native Router to cSRX and to steer IPsec traffic from the remote IPsec gateway to
the cSRX to apply the security service chain.

• telemetry: Enable or disable telemetry.

Here is the default values.yaml for standalone cSRX deployment:

Default values for cSRX.
This is a YAML-formatted file.
Declare variables to be passed into your templates.

common:
 registry: enterprise-hub.juniper.net/
 repository: jcnr-container-prod/

 csrxInit:
 repository:
 image: csrx-init
 tag: 24.4.0.196
 imagePullPolicy: IfNotPresent
 resources:
 #limits:
 # memory: 1Gi
 # cpu: 1
 #requests:
 # memory: 1Gi
 # cpu: 1

 csrx:
 repository:
 image: csrx
 tag: 24.4R1.9
 imagePullPolicy: IfNotPresent
 resources:
 limits:
 hugepages-1Gi: 4Gi
 memory: 4Gi
 requests:
 hugepages-1Gi: 4Gi
 memory: 4Gi

341

 csrxTelemetry:
 repository:
 image: contrail-telemetry-exporter
 tag: 24.4.0.196
 imagePullPolicy: IfNotPresent
 resources:

uncomment below if you are using a private registry that needs authentication
registryCredentials - Base64 representation of your Docker registry credentials
secretName - Name of the Secret object that will be created
#imagePullSecret:
 #registryCredentials: <base64-encoded-credential>
 #secretName: regcred

nodeAffinity: Can be used to inject nodeAffinity for cSRX
you may label the nodes where we wish to deploy cSRX and inject affinity accordingly
#nodeAffinity:
#- key: node-role.kubernetes.io/worker
operator: Exists
#- key: node-role.kubernetes.io/master
operator: DoesNotExist
#- key: kubernetes.io/hostname
operator: In
values:
- example-host-1

replicas: 1

interfaceType: "vhost"

interfaceConfigs:
 #- name: eth1
 # ip: 181.1.1.1/30 # should match ipSecTunnelConfigs localAddress if configured
 # gateway: 181.1.1.2 # gateway configuration
 # ip6: 181:1:1::1/64 # optional
 # ip6Gateway: 181:1:1::2 # optional
 # routes: # this field is optional
 # - "191.1.1.0/24"
 # - "200.1.1.0/24"
 # instance_parameters:

342

 # name: "untrust"
 # type: "vrf" # options include virtual-router or vrf
 # vrfTarget: 10:10 # this option is valid only for vrf
 #- name: eth2
 # ip: 1.21.1.1/30 # should match ipSecTunnelConfigs localAddress if configured
 # gateway: 1.21.1.2 # gateway configuration
 # ip6: 181:2:1::1/64 # optional
 # ip6Gateway: 181:2:1::2 # optional
 # routes: # this field is optional
 # - "111.1.1.0/24"
 # - "192.1.1.0/24"
 # instance_parameters:
 # name: "trust"
 # type: "vrf" # options include virtual-router or vrf
 # vrfTarget: 11:11 # this option is valid only for vrf

ipSecTunnelConfigs: # untrust
 #- interface: eth1 ## section ike-phase1, proposal, policy, gateway
 # gateway: 171.1.1.1
 # localAddress: 181.1.1.1
 # authenticationAlgorithm: sha-256
 # encryptionAlgorithm: aes-256-cbc
 # preSharedKey: "9zt3l3AuIRhev8FnNVsYoaApu0RcSyev8XO1NVYoDj.P5F9AyrKv8X"
 # trafficSelector:
 # - name: ts1
 # localIP: 111.1.1.0/24 ## IP cannot be 0.0.0.0/0
 # remoteIP: 222.1.1.0/24 ## IP cannot be 0.0.0.0/0

jcnr_config:
 #- name: eth1
 # routes:
 # - "121.1.1.0/24"

#csrx_flavor: specify the csrx deployment model. Corresponding values for csrx control and data
cpus
#must be provided based on the flavor mentioned below. Following are possible options:
CSRX-2CPU-4G
CSRX-4CPU-8G
CSRX-6CPU-12G
CSRX-8CPU-16G
CSRX-16CPU-32G
CSRX-20CPU-48G
csrx_flavor: CSRX-2CPU-4G

343

csrx_ctrl_cpu: "0x01"

csrx_data_cpu: "0x02"

telemetry:
 enable: false
 gnmi: true
 service:
 type: ClusterIP

 labels: {}
 annotations: {}
 clusterIP: ""

 # List of IP addresses at which the cSRX telemetry service is available
 # Ref: https://kubernetes.io/docs/user-guide/services/#external-ips
 externalIPs: []

 # Only use if service.type is "LoadBalancer"
 loadBalancerIP: ""

 # Ports to expose on each node
 # Only used if service.type is "NodePort"
 nodePort:
 prometheus: 30073
 gnmi: 30077

For a cSRX configuration example, see IPsec Security Services in the Juniper Cloud Native Router User
Guide.

344

10
CHAPTER

Manage

IN THIS CHAPTER

Manage Cloud-Native Router Software | 346

Manage Cloud-Native Router Licenses | 352

Allocate CPUs to the Cloud-Native Router Forwarding Plane | 355

Host Protection using Control Plane Policing | 359

Manage Cloud-Native Router Software

SUMMARY

This topic provides information on the available
upgrade, downgrade and uninstall options for JCNR.

IN THIS SECTION

Upgrade from Cloud-Native Router Release
23.4 and Earlier | 346

Upgrade from Cloud-Native Router Release
24.2 and Later | 349

Downgrade/Rollback JCNR | 351

Uninstall JCNR | 351

Upgrade from Cloud-Native Router Release 23.4 and Earlier

Upgrading to this release from Cloud-Native Router release 23.4 and earlier is not supported. You must
uninstall your existing Cloud-Native Router release before you can install this Cloud-Native Router
release. We show you how to do this below.

NOTE: Starting with Cloud-Native Router release 23.2, the Cloud-Native Router license
format has changed. Request a new license key from the JAL portal if your existing
Cloud-Native Router release is earlier than release 23.2.

1. Save your current configuration.

a. Save the Cloud-Native Router Helm chart values.yaml customizations that you made.

b. Access the cRPD pods and save the Junos cRPD CLI configuration.

To see the set of commands used to create the current configuration,

show configuration | display set

To save the configuration, use the Junos CLI save command.

2. Uninstall JCNR.

See "Uninstall JCNR" on page 351 but don't delete the jcnr namespace or the jcnr-secrets.

346

3. Download the <sw_package>.tar.gz tarball to the directory of your choice. See "Cloud-Native
Router Software Download Packages" on page 387 for the available package options.

4. Expand the downloaded package.

tar xzvf <sw_package>.tar.gz

5. Change directory to the main installation directory.

If you're installing Cloud-Native Router only, then:

cd Juniper_Cloud_Native_Router_<release>

This directory contains the Helm chart for Cloud-Native Router only.

If you're installing Cloud-Native Router and cSRX at the same time, then:

cd Juniper_Cloud_Native_Router_CSRX_<release>

This directory contains the combination Helm chart for both Cloud-Native Router and cSRX.

NOTE: All remaining steps in the installation assume that your current working
directory is now either Juniper_Cloud_Native_Router_<release> or
Juniper_Cloud_Native_Router_CSRX_<release>.

6. View the contents in the current directory.

ls
helmchart images README.md secrets

347

7. Change to the helmchart directory and expand the Helm chart.

cd helmchart

ls
jcnr-<release>.tgz

tar -xzvf jcnr-<release>.tgz

ls
jcnr jcnr-<release>.tgz

The Helm chart is located in the jcnr directory.

8. Modify the Helm chart helmchart/jcnr/values.yaml file to match the Helm chart configuration you
saved earlier.

9. Install the Cloud-Native Router Helm chart.

Navigate to the helmchart/jcnr directory and run the following command:

helm install jcnr .

NAME: jcnr
LAST DEPLOYED: xxxxxxx
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None

10. Check that the Cloud-Native Router Helm chart is being installed.

helm ls

348

Sample output:

NAME NAMESPACE REVISION UPDATED STATUS CHART APP VERSION
jcnr default 1 xxxxxxx deployed jcnr-xxxxxxx xxxxxxx

If the new version of Cloud-Native Router fails to install, troubleshoot the installation as you
normally do. Look at the Cloud-Native Router deployer logs and see "Troubleshoot Deployment" on
page 378.

11. Reconfigure cRPD with the saved Junos CLI commands.

Access the cRPD CLI and use the Junos CLI load command to load the previously saved
configuration.

Upgrade from Cloud-Native Router Release 24.2 and Later

1. Download the <sw_package>.tar.gz tarball to the directory of your choice. See "Cloud-Native Router
Software Download Packages" on page 387 for the available package options.

2. Expand the downloaded package.

tar xzvf <sw_package>.tar.gz

3. Change directory to the main installation directory.

If you're installing Cloud-Native Router only, then:

cd Juniper_Cloud_Native_Router_<release>

This directory contains the Helm chart for Cloud-Native Router only.

If you're installing Cloud-Native Router and cSRX at the same time, then:

cd Juniper_Cloud_Native_Router_CSRX_<release>

This directory contains the combination Helm chart for both Cloud-Native Router and cSRX.

349

NOTE: All remaining steps in the installation assume that your current working
directory is now either Juniper_Cloud_Native_Router_<release> or
Juniper_Cloud_Native_Router_CSRX_<release>.

4. View the contents in the current directory.

ls
helmchart images README.md secrets

5. Change to the helmchart directory and expand the Helm chart.

cd helmchart

ls
jcnr-<release>.tgz

tar -xzvf jcnr-<release>.tgz

ls
jcnr jcnr-<release>.tgz

The Helm chart is located in the jcnr directory.

6. Modify the Helm chart helmchart/jcnr/values.yaml file to match the Helm chart configuration in your
current installation.

7. Upgrade JCNR.

Navigate to the helmchart/jcnr directory and run the following command:

helm upgrade jcnr .

Release "jcnr" has been upgraded. Happy Helming!
NAME: jcnr
LAST DEPLOYED: xxxxxxx
NAMESPACE: default
STATUS: deployed

350

REVISION: 2
TEST SUITE: None

8. Check that the Cloud-Native Router Helm chart is being installed.

helm ls

Sample output:

NAME NAMESPACE REVISION UPDATED STATUS CHART APP
VERSION
jcnr default 2 xxxxxxx deployed jcnr-xxxxxxx
xxxxxxx

If the new version of Cloud-Native Router fails to install, troubleshoot the installation as you
normally do. Look at the Cloud-Native Router deployer logs and see "Troubleshoot Deployment" on
page 378.

Downgrade/Rollback JCNR

To downgrade or roll back from the current version to an older or previous version, uninstall the current
version and install the older or previous version.

Uninstall JCNR

Uninstalling Cloud-Native Router restores interfaces to their original state by unbinding from DPDK and
binding back to the original driver. It also deletes contents of Cloud-Native Router directories, deletes
cRPD created interfaces and removes any Kubernetes objects created for JCNR. (See the
restoreInterfaces attribute in the Helm chart.)

NOTE: Uninstalling Cloud-Native Router using Helm does not delete the jcnr namespace
or the jcnr-secrets. Delete these manually if needed.

351

1. Uninstall JCNR.

helm uninstall jcnr

2. Wait for all Cloud-Native Router resources to be fully deleted before attempting reinstallation.

Premature re-installation can lead to installation issues and may require manual steps for recovery. If
this occurs, use one or more of the following commands to clean up the uninstallation:

helm uninstall jcnr --no-hooks
kubectl delete <ds/name>
kubectl delete <job/jobname>
kubectl delete ns jcnrops

Manage Cloud-Native Router Licenses

SUMMARY

Learn how to install and renew your Cloud-Native
Router license.

IN THIS SECTION

Installing Your License | 353

Renewing Your License | 353

A Cloud-Native Router license is required for you to use the containerized Routing Protocol Daemon
(cRPD). Cloud-Native Router licensing is aligned with the Juniper Agile Licensing (JAL) model. JAL
ensures that features are used in compliance with Juniper's end-user license agreement. You can
purchase licenses for Cloud-Native Router software through your Juniper Networks representative.

For more information on JAL or for managing multiple license files for multiple Cloud-Native Router
deployments, see Juniper Agile Licensing Overview.

NOTE: Starting with Cloud-Native Router Release 23.2, the Cloud-Native Router license
format has changed. Request a new license key from the JAL portal before deploying or
upgrading from a pre-23.2 release to this release.

352

https://www.juniper.net/documentation/us/en/software/license/licensing/topics/topic-map/jal-overview.html

Installing Your License

Use this procedure to install your Cloud-Native Router license.

NOTE: You must obtain your license file from your account team and install it in the jcnr-
secrets.yaml file as described in the procedures in this section. Without the proper
base64-encoded license key and root password in the jcnr-secrets.yaml file, the cRPD
pod may sometimes not enter Running state, but remain in CrashLoopBackOff state.

1. Encode your license in base64.

base64 -w 0 licenseFile

where licenseFile is the license file that you obtained from Juniper Networks.

The output of this command is your base64-encoded license.

2. Copy and paste your base64-encoded license into secrets/jcnr-secrets.yaml.

The secrets/jcnr-secrets.yaml file contains a parameter called crpd-license:

 crpd-license: |
 <add your license in base64 format>

If this is your first time adding your license, then replace <add your license in base64 format> with your
base64-encoded license.

If you're renewing your license, then replace your old base64-encoded license with your new
base64-encoded license.

Save and quit the file and continue with your installation.

Renewing Your License

Use this procedure to renew your Cloud-Native Router license.

When your Cloud-Native Router license expires, you'll receive a License Expired notification through
syslog. Additionally, you can see the License Expired notification event in the Cloud-Native Router
notification log file (typically /var/log/jcnr/jcnr_notifications.json). The notification looks something like
this: LICENSE_EXPIRED: License for feature Containerized routing protocol daemon with standard features(243)
expired. Contact Juniper partner or account team.

353

All Cloud-Native Router features continue to function even after your license expires but will cease to
function the next time the cRPD pod restarts. To prevent this from occurring, contact your Juniper
Networks representative as soon as possible to receive a new license.

When you receive your new license, follow these steps to renew your license in the current cluster:

1. Follow "Installing Your License" on page 353 to install your new license.

2. Apply your new license to the cluster.

kubectl apply -f secrets/jcnr-secrets.yaml

3. Restart the cRPD pod(s) to pick up the new license.

kubectl delete pod jcnr-xxx-crpd-0 -n jcnr

When you delete a cRPD pod, a new one (with the new license) will be instantiated in its place. If you
have more than one cRPD pod, remember to delete them all.

4. Verify that your license was installed properly.

a. Access the cRPD pod.

kubectl exec -it jcnr-xxx-crpd-0 -n jcnr -- bash

b. Enter CLI mode and show the license.

cli

show system license

The output should show that the containerized-rpd-standard license was installed.

If the output shows that the license was not installed, then double check your steps or call Juniper
Networks for support.

354

Allocate CPUs to the Cloud-Native Router
Forwarding Plane

SUMMARY

Learn how to allocate CPU cores using static CPU
allocation or using the Kubernetes CPU Manager.

IN THIS SECTION

Allocate CPUs Using the Kubernetes CPU
Manager | 355

Allocate CPUs Using Static CPU
Allocation | 358

The Cloud-Native Router installation Helm chart and the vRouter CRD provide you with a number of
controls to allocate CPU cores to the Cloud-Native Router vRouter. You can specify the requested
number of cores, the core limit, and the cores to be assigned, either through static CPU allocation or
through the Kubernetes CPU Manager.

Allocate CPUs Using the Kubernetes CPU Manager

Use this procedure to allocate CPU cores to vRouter DPDK pods using the Kubernetes CPU Manager.
This is the recommended approach if your cluster is running the Kubernetes CPU Manager.

1. Specify the resource limits and requests for the contrail-vrouter-kernel-init-dpdk and the
contrail_vrouter_agent_dpdk containers.

a. Locate the helmchart/jcnr/charts/jcnr-vrouter/values.yaml file in your installation directory.

b. Edit that file to specify the resource limits and requests for both the contrail-vrouter-kernel-init-
dpdk and the contrail_vrouter_agent_dpdk containers.

 resources:
 limits:
 cpu: <number_of_cpus>
 memory: <memory>
 requests:
 cpu: <number_of_cpus>
 memory: <memory>

355

To guarantee that each container gets what it's asking for, set the same cpu value in both the limits
and requests sections, and set the same memory value in both the limits and requests sections for each
container.

2. Configure the Helm chart to specify the number of guaranteed vRouter CPUs that you want for the
vRouter pods.

In the main values.yaml file:

a. Disable the static CPU allocation method of assigning CPU cores by commenting out the
following lines:

#cpu_core_mask: "2,3,22,23"
#dpdkCtrlThreadMask: "2,3"
#serviceCoreMask: "2,3"

b. Configure the vRouter DPDK pods to use the guaranteed CPUs reserved by the Kubernetes CPU
Manager.

For example, to reserve 5 CPU cores:

guaranteedVrouterCpus: 5

This value must be:

• greater or equal to the number of CPU cores configured for the contrail-vrouter-kernel-init-dpdk
and the contrail_vrouter_agent_dpdk containers in helmchart/charts/jcnr/jcnr-vrouter/
values.yaml, and

• smaller or equal to the number of CPU cores reserved by the Kubernetes CPU Manager.

The minimum recommended number is one more than the desired number of forwarding cores.

c. Specify the number of CPU cores to use for vRouter DPDK service/control threads.

For example, to reserve 1 core for vRouter DPDK service/control threads:

numServiceCtrlThreadCPU: 1

This leaves the remaining cores (four, in this example) for forwarding.

3. Proceed with your Cloud-Native Router installation.

356

4. After Cloud-Native Router is installed, check to make sure the vRouter DPDK pods has a QoS Class
of Guaranteed.

kubectl get pod -n contrail contrail-vrouter-masters-vrdpdk-<xxxx> -o yaml | grep -i qosclass

The output should look like this:

qosClass: Guaranteed

5. To find out which CPUs are allocated to the vRouter DPDK container:

kubectl exec -n contrail contrail-vrouter-masters-vrdpdk-<xxxx> -c contrail-vrouter-agent-
dpdk -- cat /sys/fs/cgroup/cpuset/cpuset.cpus

The output should list the cores assigned to the container.

6. To view the CPU assignment from the Kubernetes CPU Manager:

a. SSH into a node where Cloud-Native Router is running.

b. Look at the Kubernetes CPU Manager state.

For example:

 cat /var/lib/kubelet/cpu_manager_state | jq
{
 "policyName": "static",
 "defaultCpuSet": "0-1,7-11",
 "entries": {
 "915d338f-c013-4984-a53c-51db78476dbf": {
 "contrail-vrouter-agent-dpdk": "2-6",
 "contrail-vrouter-kernel-init-dpdk": "2"
 }
 },
 "checksum": 3199431349
}

NOTE: You'll need to install jq (dnf install -y jq) in order to see formatted output.

357

Allocate CPUs Using Static CPU Allocation

Use this procedure to allocate CPU cores to vRouter DPDK pods using static CPU allocation.
We recommend you use this method only when your cluster is not running the Kubernetes CPU
Manager.

1. Specify the resource limits and requests for the contrail-vrouter-kernel-init-dpdk and the
contrail_vrouter_agent_dpdk containers.

a. Locate the helmchart/jcnr/charts/jcnr-vrouter/values.yaml file in your installation directory.

b. Edit that file to specify the resource limits and requests for both the contrail-vrouter-kernel-init-
dpdk and the contrail_vrouter_agent_dpdk containers.

 resources:
 limits:
 cpu: <number_of_cpus>
 memory: <memory>
 requests:
 cpu: <number_of_cpus>
 memory: <memory>

To guarantee that each container gets what it's asking for, set the same cpu value in both the limits
and requests sections, and set the same memory value in both the limits and requests sections for each
container.

2. Configure the Helm chart to specify the cores that you want the vRouter DPDK to use.

a. Disable the use of the Kubernetes CPU Manager for vRouter core allocation by commenting out
the following:

#guaranteedVrouterCpus: 5
#numServiceCtrlThreadCPU: 1

b. Specify the CPU cores to use for static CPU allocation.

For example, to specify cores 2, 3, 22, and 23:

cpu_core_mask: "2,3,22,23"

c. Specify the CPU cores to use for vRouter DPDK service/control threads.

358

For example, to reserve cores 2 and 3 for vRouter DPDK service/control threads:

dpdkCtrlThreadMask: "2,3"
serviceCoreMask: "2,3"

This example leaves cores 22 and 23 for forwarding.

3. Proceed with your Cloud-Native Router installation.

Host Protection using Control Plane Policing

SUMMARY

This topic provides details about configuring Juniper Cloud-Native Router with host protection
against DDoS attacks.

NOTE: This is a "Juniper Technology Preview" on page 452 feature.

Juniper Cloud-Native Router supports host protection against Distributed Denial of Service (DDoS)
Attacks. You can configure rate-limiting for host traffic based on protocol classification on the loopback
interface lo0.0 using layer 3 class of service. See Layer-3 Class of Service (CoS) .

Here is a sample configlet to rate-limit BGP control plane traffic on the loopback lo0.0 interface:

apiVersion: configplane.juniper.net/v1
kind: Configlet
metadata:
 name: configlet-sample
 namespace: jcnr
spec:
 config: |-
 set interfaces lo0.0 unit 0 family inet filter input f1
 set firewall three-color-policer test action loss-priority high then discard
 set firewall three-color-policer test two-rate color-blind
 set firewall three-color-policer test two-rate committed-information-rate 50m

359

 set firewall three-color-policer test two-rate committed-burst-size 70m
 set firewall three-color-policer test two-rate peak-information-rate 2048
 set firewall three-color-policer test two-rate peak-burst-size 2048
 set firewall family inet filter f1 term t1 from source-port bgp
 set firewall family inet filter f1 term t1 then accept
 set firewall family inet filter f1 term t1 then count c1
 set firewall family inet filter f1 term t1 then three-color-policer two-rate test
crpdSelector:
 matchLabels:
 node: worker

See Layer-3 Class of Service (CoS) for more details.

360

11
CHAPTER

Validate and Troubleshoot

IN THIS CHAPTER

Cloud-Native Router Readiness Checks | 362

Validation Factory | 364

Troubleshoot Deployment | 378

Cloud-Native Router Readiness Checks

SUMMARY

Learn how Cloud-Native Router Readiness checks verify that your Cloud-Native Router installation is
working properly.

Cloud-Native Router Readiness checks are a set of tests that validate your installation. They consist of
preflight and postflight checks.

Preflight
checks

Preflight checks verify that your cluster nodes can support JCNR. The checks test for
resource capacity, OS version, and other infrastructure requirements. Preflight checks
run prior to Cloud-Native Router coming up.

Postflight
checks

Postflight checks verify that your Cloud-Native Router installation is working properly.
The checks test for status and other basic functions. Postflight checks run after Cloud-
Native Router comes up.

Cloud-Native Router Readiness is the name of the custom resource where these preflight and postflight
checks are defined. When you enable Cloud-Native Router Readiness checks in values.yaml
(readinessCheck: true), a set of pods that run these tests are created. For example:

kubectl get pods -A | grep preflight

cpuavailability-preflight-k8s-cp0-wtt92 0/1 Completed 0
cpuavailability-preflight-k8s-worker0-p7bxk 0/1 Completed 0
cpuinstructionset-preflight-k8s-cp0-4zmzq 0/1 Completed 0
cpuinstructionset-preflight-k8s-worker0-gh9zl 0/1 Completed 0
crpd-prerequisite-preflight-k8s-cp0-sqnjj 0/1 Completed 0
crpd-prerequisite-preflight-k8s-worker0-29psj 0/1 Completed 0
<trimmed>

362

NOTE: To see the list of checks that are currently performed, see "List of Cloud-Native
Router Readiness Checks" on page 404.

When Cloud-Native Router Readiness checks are enabled, they run automatically when you install the
Cloud-Native Router Helm chart. A failed check does not necessarily fail the installation. In some cases,
the installation is allowed to continue.

To see the results of the checks, look at the results ConfigMap. For best viewing of the results, use the
JSON processor jq.

NOTE: If jq is not installed on your OS by default, install it using the appropriate package
manager for your OS. For example:

dnf install jq

apt install jq

Here's an example of the preflight results ConfigMap:

kubectl get cm preflight-results -n contrail-deploy -ojsonpath={".data.readinessStatus"} | jq

{
 "preflight": {
 "taskResults": [
 {
 "name": "cpuavailability",
 "taskExecutionTime": "2s",
 "message": "task completed (2/2)",
 "taskPassed": false,
 "failure_reason": "core 2 is not available on the node\ncore 2 is not available on the
node\n"
 },
<trimmed>

If there are any errors, fix them and then uninstall and reinstall JCNR.

363

Here's an example of the postflight results ConfigMap:

kubectl get cm postflight-results -n contrail-deploy -ojsonpath={".data.readinessStatus"} | jq

{
 "postflight": {
 "taskResults": [
 {
 "name": "jcnrresources",
 "taskExecutionTime": "0s",
 "message": "task completed (1/1)",
 "taskPassed": true
 }
],
 "result": "success"
 }
}

Although preflight and postflight checks can detect many common errors, some errors can slip through
undetected. If the installation still fails after you fix all listed errors, look at the deployer and applier logs
for more information:

• For deployer logs, see "Check Deployer Logs" on page 380.

• For applier logs, see "View Log Files" on page 384.

Also see the various general troubleshooting suggestions in "Troubleshoot Deployment" on page 378.

Validation Factory

SUMMARY

Validation Factory provides a framework to test and
validate Juniper Cloud-Native Router deployments. It
simplifies the evaluation of Cloud-Native Router
solutions for customer adoption.

IN THIS SECTION

Overview | 365

Test Topology Manifest | 367

364

Execute the Test Profiles | 375

Overview

Validation Factory provides a library of well-defined test profiles that validate basic layer 3 features,
including common sanity and performance tests for Cloud-Native Router deployments.

The aim of Validation Factory is to reduce the number of tests you need to manually create and execute
when evaluating or qualifying a Cloud-Native Router deployment for a production environment.

Test execution is automated using a Kubernetes custom resource (CR) and the test result is published in
a user-friendly format.

NOTE: Validation Factory is supported for Wind River deployments only.

Table 41 on page 365 shows the supported features.

Table 41: Validation Factory Supported Features

Supported Features Description

Supported topology • Cloud-Native Router deployed in two single-node
clusters

• Cloud-Native Router deployed in five single-node
clusters

We recommend that you validate with five single-node
clusters.

Supported routing protocols BGP, OSPF, IS-IS

Supported tests MPLS-over-UDP, SR-MPLS, SRv6

Table 42 on page 366 shows the Validation Factory components.

365

Table 42: Components

Component Description

Test Profile Library A python-based, well-defined collection of test profiles
for basic layer 3 Cloud-Native Router functionality.
Each profile specifies:

• Test-Description: A clear explanation of the
functionality or behavior being tested.

• Test Parameters: Configurable parameters to tailor
the test profiles to specific scenarios.

• Pass and Fail Criteria: Defined metrics or conditions
that determine success or failure of the test case.

The following test cases are executed:

• End-to-end IPv4 & IPv6 traffic between pods. Both
kernel & DPDK interfaces are included.

• Restart routing process on cRPD.

• Restart of pod running test traffic.

• Respawn of the cRPD pod.

• Respawn of the vRouter agent pod.

• Respawn of the vRouter DPDK pod.

Kubernetes Operator The framework is implemented as a Kubernetes custom
resource (CR). The operator performs the following
tasks:

• Manages the test custom resource definitions
(CRDs).

• Parses the CR upon creation.

• Orchestrates the test execution process by bringing
up containerized test pods.

• Monitors test pod execution and collects results.

• Publishes test results in a user-friendly format.

366

Table 42: Components (Continued)

Component Description

Test Pods Test pods execute specific test profiles. The pods
contain the necessary tools and libraries for network
performance testing. The operator dynamically
provisions the pods based on the requested test profile.

Results The results are stored as a filesystem volume on the
Kubernetes cluster.

Test Topology Manifest

The test topology manifest describes the part of your network that you want to test. Table 43 on page
367 shows the main configuration parameters.

Table 43: Main Test Topology Parameters

Parameter Description

apiVersion Set to
testtopology.validationfactory.juniper.net/v1.

kind Set to TestTopology.

metadata

name The name you want to call this test topology
manifest.

namespace Set to jcnr.

spec

367

Table 43: Main Test Topology Parameters (Continued)

Parameter Description

global

platform Set to windriver.

auth

secret The name of the secret that contains the
kubeconfigs of all cluster nodes.

crpd

username Username to log in to cRPD via SSH.

password Password to log in to cRPD via SSH.

cluster An array of Cloud-Native Router clusters to be
tested. We support the following:

• two clusters, with each cluster consisting of
a single (worker) node

• five clusters, with each cluster consisting of
a single (worker) node

name Name of the cluster.

kubeconfigpath Path to the kubeconfig file on a node in the
specified cluster.

nodes An array of Cloud-Native Router nodes in the
cluster.

name Name of the node.

ip IP address of the node.

368

Table 43: Main Test Topology Parameters (Continued)

Parameter Description

jumphost (Optional) IP address of the jumphost to access
the node.

connections An array of connections between the specified
nodes as per the test topology.

You're describing how your nodes are
connected together. For example, if you have
five nodes connected in a full mesh, then this
array will contain ten connections.

name Name of the connection.

node1

name Name of the node at one end of the
connection.

interface Name of the fabric interface on that node.

node2

name Name of the node at the other end of the
connection.

interface Name of the fabric interface on that node.

369

Table 43: Main Test Topology Parameters (Continued)

Parameter Description

protocols The underlay protocols running on this
connection (link). Set to the same value for all
connections.

Valid values depend on the type of test you're
running:

• If the tunnel type is mpls-over-udp, then set
to either bgp, ospf, or isis.

• If the segment routing path type is sr-mpls,
then set to both isis and mpls. For example:

protocols:
 - isis
 - mpls

• If the segment routing path type is srv6,
then set to isis.

tunnels1 An array of tunnels for MPLS-over-UDP. Omit
this section if you're not testing MPLS-over-
UDP.

name Name of the tunnel.

type Tunnel type. Set to mpls-over-udp.

node1

name Name of the node at one end of the tunnel.

node2

name Name of the node at the other end of the
tunnel.

370

Table 43: Main Test Topology Parameters (Continued)

Parameter Description

segmentroutings1 An array of segment routing paths for SR-
MPLS and SRv6. Omit this section if you're not
testing SR-MPLS or SRv6.

name Name of the segment routing path.

type Path type. Set to sr-mpls or srv6.

endpoints The pair of endpoints for this path. For
example:

endpoints:
 - jcnr-node5
 - jcnr-node6

transit An array of transit hops for SRv6 paths. For
example:

transit:
 - jcnr-node7
 - jcnr-node8

1 Each test topology manifest is limited to only one type of test: mpls-over-udp, sr-mpls, or srv6.

• If you're testing MPLS-over-UDP, then include the tunnels section but omit the segmentroutings section.

• If you're testing SR-MPLS or SRv6, then include the segmentroutings section but omit the tunnels section.

• Within the segmentroutings section, the type must be the same for all paths. You cannot create a test that has
a mix of SR-MPLS and SRv6 paths.

Here's a sample two-node test topology manifest:

apiVersion: testtopology.validationfactory.juniper.net/v1
kind: TestTopology
metadata:
 name: twonode-mplsoverudp

371

 namespace: jcnr
spec:
 global:
 platform: windriver
 auth:
 secret: sshauth
 crpd:
 username: root
 password: <password>
 cluster:
 - name: cluster1
 kubeconfigpath: /etc/kubernetes/admin.conf
 nodes:
 - name: jcnr-node5
 ip: 10.108.33.135
 - name: cluster2
 kubeconfigpath: /etc/kubernetes/admin.conf
 nodes:
 - name: jcnr-node6
 ip: 10.108.33.136
 connections:
 - name: toDC1
 node1:
 name: jcnr-node5
 interface: ens1f2
 node2:
 name: jcnr-node6
 interface: ens1f2
 protocols:
 - isis
 tunnels:
 - name: tun1
 type: mpls-over-udp
 node1:
 name: jcnr-node5
 node2:
 name: jcnr-node6

Here's a sample five-node test topology manifest:

apiVersion: testtopology.validationfactory.juniper.net/v1
kind: TestTopology

372

metadata:
 name: fiveonode-mplsoverudp
 namespace: jcnr
spec:
 global:
 platform: windriver
 auth:
 secret: sshauth
 crpd:
 username: root
 password: <password>
 cluster:
 - name: PE1
 kubeconfigpath: /etc/kubernetes/admin.conf
 nodes:
 - name: jcnr-node14
 ip: 10.204.8.14
 - name: PE2
 kubeconfigpath: /etc/kubernetes/admin.conf
 nodes:
 - name: jcnr-node16
 ip: 10.204.8.16
 - name: P1
 kubeconfigpath: /etc/kubernetes/admin.conf
 nodes:
 - name: jcnr-node13
 ip: 10.204.8.13
 - name: P2
 kubeconfigpath: /etc/kubernetes/admin.conf
 nodes:
 - name: jcnr-node12
 ip: 10.204.8.12
 - name: P3
 kubeconfigpath: /etc/kubernetes/admin.conf
 nodes:
 - name: jcnr-node15
 ip: 10.204.8.15

 connections:
 - name: PE1andP1
 node1:
 name: jcnr-node14

373

 interface: ens1f0np0
 node2:
 name: jcnr-node13
 interface: ens1f0
 protocols:
 - isis
 - name: P1toPE2
 node1:
 name: jcnr-node13
 interface: ens1f1
 node2:
 name: jcnr-node16
 interface: ens2f0
 protocols:
 - isis
 - name: PE1andP2
 node1:
 name: jcnr-node14
 interface: ens1f1np1
 node2:
 name: jcnr-node12
 interface: ens1f1
 protocols:
 - isis
 - name: P2andP3
 node1:
 name: jcnr-node12
 interface: ens2f0
 node2:
 name: jcnr-node15
 interface: ens2f0
 protocols:
 - isis

 - name: P3toPE2
 node1:
 name: jcnr-node15
 interface: ens2f1
 node2:
 name: jcnr-node16
 interface: ens2f1
 protocols:
 - isis

374

 - name: P1toP2
 node1:
 name: jcnr-node13
 interface: ens1f2
 node2:
 name: jcnr-node12
 interface: ens1f0
 protocols:
 - isis
 - name: P1toP3
 node1:
 name: jcnr-node13
 interface: ens1f3
 node2:
 name: jcnr-node15
 interface: ens1f0
 protocols:
 - isis

 tunnels:
 - name: tun1
 type: mpls-over-udp
 node1:
 name: jcnr-node14
 node2:
 name: jcnr-node16

Execute the Test Profiles

You can run the Validation Factory tests on any host that has access to the clusters you want to test.
Typically, however, you would run the tests on the installation host in one of those clusters. The
installation host is where you installed Helm and where you ran the Cloud-Native Router installation for
that cluster.

All clusters must have Cloud-Native Router installed, and all nodes in all clusters must allow the same
login credentials (username and password or SSH key).

1. Download the Validation Factory software package to the installation host in one of the clusters that
you want to test. The installation host is where you have Helm installed and where you ran the
Cloud-Native Router installation for that cluster.

375

You can download the Cloud-Native Router Validation Factory software package from the Juniper
Networks software download site. See "Cloud-Native Router Software Download Packages" on page
387.

2. Gunzip and untar the software package.

tar -xzvf JCNR_Validation_Factory_<release>.tar.gz

3. Load the provided images on all nodes in the cluster. The images are located in the downloaded
package.

See "Deploy Prepackaged Images" on page 399.

4. If desired, configure the port where you want the test results to be accessible.

Look for the following line in validation-factory/values.yaml and change the port number to your
desired value:

nodePort: 30000

5. Install the Helm chart.

cd validation-factory

helm install validation-factory .

6. Create a secret with the login credentials and kubeconfigs of your clusters and apply it.

valfac-secrets.yaml:

apiVersion: v1
kind: Secret
metadata:
 name: <name_of_secret>
 namespace: jcnr
type: Opaque
data:
 key: <base64-encoded_ssh_key>
 username: <base64-encoded_username>
 password: <base64-encoded_password>
 <cluster1_name>-kubeconfig: <base64-encoded_kubeconfig_of_cluster1>
 <cluster2_name>-kubeconfig: <base64-encoded_kubeconfig_of_cluster2>

376

 <clusterN_name>-kubeconfig: <base64-encoded_kubeconfig_of_clusterN>
 etc.

name The name you want to call this secret.

key The base64-encoded ssh key that allows username to log in to every node. If
you specify the key, then you don't specify the password.

username The base64-encoded username to log in to every node.

password The base64-encoded password for username to log in to every node. If you
specify the password, then you don't specify the key.

<cluster1_name>-
kubeconfig

The base64-encoded kubeconfig file of the first cluster. The order that you
list your clusters is not important, but <cluster1_name> must match the
name of one of your clusters.

<cluster2_name>-
kubeconfig

The base64-encoded kubeconfig file of the second cluster.
<cluster2_name> must match the name of one of the remaining clusters.

<clusterN_name>-
kubeconfig

The base64-encoded kubeconfig file of the Nth cluster. <clusterN_name>
must match the name of one of the remaining clusters.

NOTE: You'll need to base64-encode most of the required information in the secrets
manifest.

• To base64-encode a file: base64 -w0 <file>

• To base64-encode a string: echo -n <string> | base64 -w0

Copy the output to the respective locations in the secrets manifest.

Apply the secret:

kubectl apply -f valfac-secrets.yaml

7. Configure the test topology manifest. See "Test Topology Manifest" on page 367.

8. Apply the manifest to begin test execution.

For example:

kubectl create -f fivenode_topology_test.yaml

9. View the test results.

377

View the test results at http://<cluster_node_IP>:<node_port>/<test_topology_name>/
<test_topology_name>.html, where <node_port> is the value you set in step 4.

For example, if you executed the test profile named fivenode-mplsoverudp on a cluster with node IP
address 10.0.0.100 and node port 30000, you'll be able to see the results at http://10.0.0.100:30000/
fivenode-mplsoverudp/fivenode-mplsoverudp.html.

Troubleshoot Deployment

SUMMARY

Learn how to troubleshoot your Cloud-Native Router
deployment.

IN THIS SECTION

Common Problems | 378

Check Deployer Logs | 380

Verify vRouter and cRPD Health | 381

Verify cRPD Configuration | 383

View Log Files | 384

NOTE: We use the JSON processor jq to format the output of some commands. If jq is
not installed on your OS by default, install it using the appropriate package manager for
your OS. For example:

dnf install jq

apt install jq

Common Problems

Table 44 on page 379 lists some common deployment problems and remedies.

378

Table 44: Common Problems

Potential issue What to check Related Commands

Image not found Check if the images are uploaded to
the local docker using the
command docker images. If not, then
the registry configured in
values.yaml should be accessible.
Ensure image tags are correct.

kubectl -n jcnr describe pod
<crpd-pod-name>

Initialization errors Check if jcnr-secrets is loaded and
has a valid license key [root@jcnr-01]# kubectl get

secrets -n jcnr
NAME
TYPE
 DATA AGE
crpd-token-zp8kc
kubernetes.io/service-account-
token 3 29d
default-token-zn6p9
kubernetes.io/service-account-
token 3 29d
jcnr-secrets
Opaque
 2 29d

Confirm that root password and
license key are present in /var/run/
jcnr/juniper.conf

379

Table 44: Common Problems (Continued)

Potential issue What to check Related Commands

cRPD Pod in CrashLoopBackOff
state

• Check if startup/liveness probe
is failing or vrouter pod not
running

• rpd-vrouter-agent gRPC
connection not UP

• Composed configuration is
invalid or config template is
invalid

• kubectl get pods -A

kubectl -n jcnr describe pod
<crpd-pod-name>

tail –f /var/log/jcnr/jcnr-
cni.log

tail –f /var/log/jcnr/
jcnr_notifications.json

• See Access cRPD CLI to enter
the cRPD CLI and run the
following command:

show krt state channel vrouter

• cat /var/run/jcnr/juniper.conf

vRouter Pod in CrashLoopBackOff
state

Check the contail-k8s-deployer
logs for errors

See "Check Deployer Logs" on page
380.

Check Deployer Logs

The deployer logs should be one of the first places you look when you run into installation problems.
To check the deployer logs:

a. List the deployer pod.

kubectl get pods -n contrail-deploy

380

Sample output:

NAME READY STATUS RESTARTS AGE
contrail-k8s-deployer-6fbf77bc7-5j67d 1/1 Running 0 24h

b. View the deployer logs.

kubectl logs contrail-k8s-deployer-6fbf77bc7-5j67d -n contrail-deploy

Verify vRouter and cRPD Health

1. Check the vRouter daemonset.

a. List the daemonsets.

kubectl get ds -n contrail

Sample output:

NAME DESIRED CURRENT READY UP-TO-DATE
AVAILABLE NODE SELECTOR AGE
jcnr-0-contrail-vrouter-nodes 1 1 1 1
1 <none> 24h
jcnr-0-contrail-vrouter-nodes-vrdpdk 1 1 1 1
1 <none> 24h

b. Get vRouter daemonset details.

kubectl get ds jcnr-0-contrail-vrouter-nodes -n contrail -o json | jq

Sample output:

{
 "apiVersion": "apps/v1",
 "kind": "DaemonSet",

381

 "metadata": {
 "annotations": {
 "deprecated.daemonset.template.generation": "1"
 },
 "creationTimestamp": "2024-09-12T21:29:31Z",
 "generation": 1,
 "labels": {
 "app": "contrail-vrouter-nodes",
 "core.juniper.net/jcnrInstance": "jcnr-0",
 "core.juniper.net/jcnrInstanceNs": "jcnr",
 "core.juniper.net/nodeName": "k8s-worker0"
<trimmed>

 "status": {
 "currentNumberScheduled": 1,
 "desiredNumberScheduled": 1,
 "numberAvailable": 1,
 "numberMisscheduled": 0,
 "numberReady": 1,
 "observedGeneration": 1,
 "updatedNumberScheduled": 1
 }
}

2. Check the cRPD stateful set.

a. List the stateful sets.

kubectl get sts -n jcnr

Sample output:

NAME READY AGE
jcnr-0-crpd 1/1 24h

b. Get the cRPD stateful set details.

kubectl get sts -n jcnr -o json | jq

382

Sample output:

{
 "apiVersion": "v1",
 "items": [
 {
 "apiVersion": "apps/v1",
 "kind": "StatefulSet",
 "metadata": {
 "creationTimestamp": "2024-09-12T21:29:23Z",
 "generation": 1,
 "labels": {
 "core.juniper.net/jcnrInstance": "jcnr-0",
 "core.juniper.net/jcnrInstanceNs": "jcnr"
 },
 "name": "jcnr-0-crpd",
 "namespace": "jcnr",
 "resourceVersion": "5502485",
 "uid": "025bc4b3-62eb-4552-9a83-b7e0123435d1"
 },
<trimmed>

Verify cRPD Configuration

The Cloud-Native Router deployment process creates a cRPD configuration file from the parameters in
values.yaml for L2 mode and custom configuration via node annotations in L3 mode. This cRPD
configuration file is at /var/run/jcnr/juniper.conf on any node running JCNR.

The cRPD configuration can be customized using node annotations. The cRPD pod will stay in pending
state if the applied configuration is invalid.

The rendered custom configuration is in /etc/crpd/juniper.conf.master.

In an AWS EKS deployment you can see the rendered custom configuration by accessing the cRPD CLI
and navigating to the /config directory.

383

View Log Files

You can find the Cloud-Native Router log files in the default log_path directory (/var/log/jcnr/) on any
node running JCNR. You can change this location by changing the value of the log_path or
syslog_notifications parameters in the values.yaml file prior to deployment.

Here's an example of some of the log files that Cloud-Native Router keeps.

ls /var/log/jcnr

applier
contrail-vrouter-agent.log
contrail-vrouter-dpdk-init.log
contrail-vrouter-dpdk.log
jcnr-cni.log
jcnr_notifications.json
license
messages
mgd-api
mosquitto
na-grpcd
vrouter-kernel-init.log

NOTE: If your deployment fails, check the applier logs in applier/applier.log for more
information.

384

12
CHAPTER

Appendix

IN THIS CHAPTER

Kubernetes Overview | 386

Cloud-Native Router Software Download Packages | 387

Cloud-Native Router Default Helm Chart | 389

Configure Repository Credentials | 398

Deploy Prepackaged Images | 399

Configure Huge Pages | 401

List of Cloud-Native Router Readiness Checks | 404

CloudFormation Template for EKS Cluster | 406

Cloud-Native Router Operator Service Module: Host-Based Routing
Example Configuration Files | 417

Juniper Technology Preview | 452

Kubernetes Overview

IN THIS SECTION

Kubernetes Overview | 386

Kubernetes Overview

NOTE: Juniper Networks refers to primary nodes and backup nodes. Kubernetes refers
to master nodes and worker nodes. References in this guide to primary and backup
correlate with master and worker in the Kubernetes world.

Kubernetes is an orchestration platform for running containerized applications in a clustered computing
environment. It provides automatic deployment, scaling, networking, and management of containerized
applications.

A Kubernetes pod consists of one or more containers, with each pod representing an instance of the
application. A pod is the smallest unit that Kubernetes can manage. All containers in the pod share the
same network name space.

We rely on Kubernetess to orchestrate the infrastructure that the cloud-native router needs to operate.
However, we do not supply Kubernetes installation or management instructions in this documentation.
See https://kubernetes.io for Kubernetes documentation. Currently, Juniper Cloud-Native Router
requires that the Kubernetes cluster be a standalone cluster, meaning that the Kubernetes primary and
backup functions both run on a single node.

The major components of a Kubernetes cluster are:

• Nodes

Kubernetes uses two types of nodes: a primary (control) node and a compute (worker) node. A
Kubernetes cluster usually consists of one or more master nodes (in active/standby mode) and one or
more worker nodes. You create a node on a physical computer or a virtual machine (VM).

• Pods

Pods live in nodes and provide a space for containerized applications to run. A Kubernetes pod
consists of one or more containers, with each pod representing an instance of the application(s). A

386

https://kubernetes.io

pod is the smallest unit that Kubernetes can manage. All containers in a pod share the same network
namespace.

• Namespaces

In Kubernetes, pods operate within a namespace to isolate groups of resources within a cluster. All
Kubernetes clusters have a kube-system namespace, which is for objects created by the Kubernetes
system. Kubernetes also has a default namespace, which holds all objects that don't provide their
own namespace. The last two preconfigured Kubernetes namespaces are kube-public and kube-
node-lease. The kube-public namespace is used to allow authenticated and unauthenticated users to
read some aspects of the cluster. Node leases allow the kubelet to send heartbeats so that the
control plane can detect node failure.

• Kubelet

The kubelet is the primary node agent that runs on each node. In the case of Juniper Cloud-Native
Router, only a single kubelet runs on the cluster since we do not support multinode deployments.

• Containers

A container is a single package that consists of an entire runtime environment including the
application and its:

• Configuration files

• Dependencies

• Libraries

• Other binaries

Software that runs in containers can, for the most part, ignore the differences in the those binaries,
libraries, and configurations that may exist between the container environment and the environment
that hosts the container. Common container types are docker, containerd, and Container Runtime
Interface using Open Container Initiative compatible runtimes (CRI-O).

Cloud-Native Router Software Download Packages

IN THIS SECTION

Cloud-Native Router Software Download Packages | 388

387

Cloud-Native Router Software Download Packages

Table 45 on page 388 shows the software packages available from the Juniper Networks software
download site:

Table 45: Cloud-Native Router Software Download Packages

Package Description

Juniper_Cloud_Native_Router_<release>.tar.gz This contains the Helm chart for installing Cloud-
Native Router on all deployments.

Juniper_Cloud_Native_Router_CSRX_<release>.tar.gz This contains the combined Helm chart for installing
Cloud-Native Router and cSRX on all deployments.

junos_csrx_<release>.tar.gz This contains the Helm chart for installing cSRX on an
existing Cloud-Native Router installation on all
deployments.

Juniper_Cloud_Native_Router_Service_Module_<releas
e>.tar.gz

This contains the Cloud-Native Router Operator
Service Module Helm chart for the following:

• installing the Cloud-Native Router VPC Gateway
on an Amazon EKS deployment

• installing the Cloud-Native Router host-based
routing solution on a bare metal deployment

JCNR_Validation_Factory_<release>.tar.gz This contains the Helm chart for installing Validation
Factory.

NOTE: By default, the provided Helm charts download container images from the
Juniper Networks enterprise-hub.juniper.net repository. Be sure to whitelist the https://
enterprise-hub.juniper.net URL if you intend to use this default repository.

388

https://support.juniper.net/support/downloads/?p=juniper-cloud-native-router
https://enterprise-hub.juniper.net
https://enterprise-hub.juniper.net

Cloud-Native Router Default Helm Chart

IN THIS SECTION

Default Helm Chart | 389

Default Helm Chart

This is the Cloud-Native Router release 24.4 default Helm chart values.yaml from the Juniper Networks
Software Download site.

NOTE: This is not a working sample. Customize it for your deployment.

##
Common Configuration (global vars)
##
global:

 # Set true/false to install syslog-ng.
 # It will deploy Service, ConfigMap and Daemonset about syslog-ng.
 installSyslog: true

 registry: enterprise-hub.juniper.net/
 # uncomment below if all images are available in the same path; it will
 # take precedence over "repository" paths under "common" section below
 #repository: path/to/allimages/
 repository: jcnr-container-prod/
 # uncomment below if you are using a private registry that needs authentication
 # registryCredentials - Base64 representation of your Docker registry credentials
 # secretName - Name of the Secret object that will be created
 #imagePullSecret:
 #registryCredentials: <base64-encoded-credential>
 #secretName: regcred

 common:

389

https://support.juniper.net/support/downloads/?p=juniper-cloud-native-router

 vrouter:
 repository: jcnr-container-prod/
 tag: 24.4.0.196
 crpd:
 repository: jcnr-container-prod/
 tag: 24.4R1.9
 jcnrcni:
 repository: jcnr-container-prod/
 tag: 24.4-20241112-741b53a
 telemetryExporter:
 repository: jcnr-container-prod/
 tag: 24.4.0.196
 tools:
 repository:
 tag: 24.4.0.196
 jcnrinit:
 repository: jcnr-container-prod/
 tag: 24.4.0.196
 readinessChecks:
 repository: jcnr-container-prod/
 tag: 24.4.0.196
 syslog:
 repository: jcnr-container-prod/
 tag: v6

 # Set true/false to Enable or Disable readiness checks (Pre / Post Flight tasks)
 # Pre-requisite - A configMap in the default namespace with the final deployer
manifests
 # Enable only for DPDK deployments
 readinessCheck: true

 # Number of replicas for cRPD; this option must be used for multinode clusters
 # JCNR will take 1 as default if replicas is not specified
 #replicas: "3"

 #noLocalSwitching: [700]
 # Set AWS IAM Role for EKS PAYG deployments
 #iamrole: arn:aws:iam::298183613488:role/jcnr-payg-metering-role

 # fabricInterface: provide a list of interfaces to be bound to dpdk
 # You can also provide subnets instead of interface names. Interfaces name take

390

precedence over
 # Subnet/Gateway combination if both specified (although there is no reason to
specify both)
 # Subnet/Gateway combination comes handy when the interface names vary in a multi-
node cluster
 fabricInterface:
 #########################
 # L2 only
 #- eth1:
 # ddp: "auto" # ddp parameter is optional; options include auto
or on or off; default: off
 # interface_mode: trunk
 # vlan-id-list: [100, 200, 300, 700-705]
 # storm-control-profile: rate_limit_pf1
 # native-vlan-id: 100
 # no-local-switching: true
 #- eth2:
 # ddp: "auto" # ddp parameter is optional; options include auto
or on or off; default: off
 # interface_mode: trunk
 # vlan-id-list: [700]
 # storm-control-profile: rate_limit_pf1
 # native-vlan-id: 100
 # no-local-switching: true
 #- bond0:
 # ddp: "auto" # auto/on/off # ddp parameter is optional; options include auto
or on or off; default: off
 # interface_mode: trunk
 # vlan-id-list: [100, 200, 300, 700-705]
 # storm-control-profile: rate_limit_pf1
 # #native-vlan-id: 100
 # #no-local-switching: true

 #########################
 # L3 only
 #- eth1:
 # ddp: "off" # ddp parameter is optional; options include auto
or on or off; default: off
 # qosSchedulerProfileName: "sched_profile_1"
 #- eth2:
 # ddp: "off" # ddp parameter is optional; options include auto

391

or on or off; default: off
 # qosSchedulerProfileName: "sched_profile_1"
 ########################

 # L2L3
 #- eth1:
 # ddp: "auto" # ddp parameter is optional; options include auto
or on or off; default: off
 # qosSchedulerProfileName: "sched_profile_1"
 #- eth2:
 # ddp: "auto" # ddp parameter is optional; options include auto
or on or off; default: off
 # interface_mode: trunk
 # vlan-id-list: [100, 200, 300, 700-705]
 # storm-control-profile: rate_limit_pf1
 # native-vlan-id: 100
 # no-local-switching: true
 ##################################

 # Provide subnets instead of interface names
 # Interfaces will be auto-detected in each subnet
 # Only one of the interfaces or subnet range must
 # be configured. This form of input is particularly
 # helpful when the interface names vary in a multi-node
 # K8s cluster
 #- subnet: 10.40.1.0/24
 # gateway: 10.40.1.1
 # ddp: "off" # ddp parameter is optional; options include auto
or on or off; default: off
 # qosSchedulerProfileName: "sched_profile_1"
 #- subnet: 192.168.1.0/24
 # gateway: 192.168.1.1
 # ddp: "off" # ddp parameter is optional; options include auto
or on or off; default: off
 # qosSchedulerProfileName: "sched_profile_1"

 ##################################
 # fabricWorkloadInterface is applicable only for Pure L2 deployments
 #
 #fabricWorkloadInterface:
 #- enp59s0f1v0:

392

 # interface_mode: access
 # vlan-id-list: [700]
 #- enp59s0f1v1:
 # interface_mode: trunk
 # vlan-id-list: [800, 900]
 #########################

 # defines the log severity. Possible options: DEBUG, INFO, WARN, ERR
 log_level: "INFO"

 # "log_path": this directory will contain various jcnr related descriptive logs
 # such as contrail-vrouter-agent.log, contrail-vrouter-dpdk.log etc.
 log_path: "/var/log/jcnr/"
 # "syslog_notifications": absolute path to the file that will contain syslog-ng
 # generated notifications in json format
 syslog_notifications: "/var/log/jcnr/jcnr_notifications.json"

 # core pattern to denote how the core file will be generated
 # if left empty, JCNR pods will not overwrite the default pattern
 #corePattern: "core.%e.%h.%t"

 # path for the core file; vrouter considers /var/crash as default value
 #coreFilePath: /var/crash

 # nodeAffinity: Can be used to inject nodeAffinity for vRouter, cRPD and syslog-ng
pods
 # You may label the nodes where we wish to deploy JCNR and inject affinity
accodingly
 #nodeAffinity:
 #- key: node-role.kubernetes.io/worker
 # operator: Exists
 #- key: node-role.kubernetes.io/master
 # operator: DoesNotExist
 #- key: kubernetes.io/hostname
 # operator: In
 # values:
 # - example-host-1

 # cni_bin_dir: Path where the CNI binary will be put; default: /opt/cni/bin
 # this may be overriden in distributions other than vanilla K8s
 # e.g. OpenShift - you may use /var/lib/cni/bin or /etc/kubernetes/cni/net.d

393

 #cni_bin_dir: /var/lib/cni/bin

 # grpcTelemetryPort: use this parameter to override cRPD telemetry gRPC server
default port of 50053
 #grpcTelemetryPort: 50053

 # grpcVrouterPort: use this parameter to override vRouter gRPC server default port
of 50052
 #grpcVrouterPort: 50060

 # vRouterDeployerPort: use this parameter to override vRouter deployer port default
port of 8081
 #vRouterDeployerPort: 8082

jcnr-vrouter:
 # do not configure cpu_core_mask if you wish to use Kubernetes CPU manager static
policy (pod with Guaranteed QoS) for vRouter DPDK
 # cpu_core_mask is the vRouter forward core mask i.e. if specified, vRouter will be
run using the mentioned cores
 cpu_core_mask: "2,3,22,23"

 # configure guaranteedVrouterCpus if you wish to use CPU manager static policy (pod
with Guaranteed QoS) for vRouter DPDK
 #guaranteedVrouterCpus: 4

 # configurable parameter for dpdk control threads
 #dpdkCtrlThreadMask: "2,3"

 # configurable parameter for service core mask
 #serviceCoreMask: "2,3"

 # no of cpus to be assigned to service and control threads if serviceCoreMask,
dpdkCtrlThreadMask and cpuCoreMask are not provided
 #numServiceCtrlThreadCPU: 1

 # Set no of cores to be used for schedulerLcores if CPU is not provided in the QOS
scheduler profile
 #numberOfSchedulerLcores: 2

 # restoreInterfaces: setting this to true will restore the interfaces

394

 # back to their original state in case vrouter pod crashes or restarts
 restoreInterfaces: false

 # Enable bond interface configurations L2 only or L2 L3 deployment

 #bondInterfaceConfigs:
 # - name: "bond0"
 # mode: 1 # ACTIVE_BACKUP MODE
 # slaveInterfaces:
 # - "enp59s0f0v0"
 # - "enp59s0f0v1"
 # primaryInterface: "enp59s0f0v0"
 # slaveNetworkDetails: # This section only applies, when network
attachment definition is used as the input
 # - name: srif0net0
 # namespace: default

 # MTU for all physical interfaces(all VF’s and PF’s)
 mtu: "9000"

 # define the QoS scheduler profiles for fabric interfaces
 #qosSchedulerProfiles:
 # sched_profile_1:
 # bandwidth: 10 #Gbps
 # sched_profile_2:
 # cpu: 14
 # bandwidth: 25 #Gbps

 # rate limit profiles for bum traffic on fabric interfaces in bytes per second
 stormControlProfiles:
 rate_limit_pf1:
 bandwidth:
 level: 0
 #rate_limit_pf2:
 # bandwidth:
 # level: 0

 dpdkCommandAdditionalArgs: "--yield_option 0"

 # enable monitoring thread example:
 # - logs appear every 100 seconds

395

 # - log nl_counter & profile_histogram
 # loggingMask explanation:
 # 0b001 = nl_counter
 # 0b010 = lcore_timestamp
 # 0b100 = profile_histogram
 # dpdk_monitoring_thread_config:
 # loggingMask: 5
 # loggingInterval: 100

 # Set ddp to enable Dynamic Device Personalization (DDP)
 # Provides datapath optimization at NIC for traffic like GTPU, SCTP etc.
 # Options include auto or on or off; default: off
 ddp: "auto"

 # Set TWAMP port for vrouter dpdk, allowed ports 862, 49152 – 65535
 #twampPort: 862

 # uio driver will be vfio-pci or uio_pci_generic. For azure, the driver is
uio_hv_generic
 vrouter_dpdk_uio_driver: "vfio-pci"

 # agentModeType will be dpdk or xdp. set agentModeType dpdk will bringup dpdk
datapath. set agentModeType to xdp to use ebpf.
 agentModeType: dpdk

 # fabricRpfCheckDisable: Set this flag to false to enable the RPF check on all the
fabric interfaces of the JNCR, by default RPF check is disabled
 #fabricRpfCheckDisable: false

 #telemetry:
 # disable: false
 # metricsPort: 8072
 # logLevel: info #Possible options: warn, warning, info, debug, trace, or
verbose
 # gnmi:
 # enable: true
 # port: 8076
 #vrouter:
 # telemetry:
 # metricsPort: 8070
 # logLevel: info #Possible options: warn, warning, info, debug, trace, or

396

verbose
 # gnmi:
 # enable: true
 # port: 8075
 # persistConfig: set this flag to true if you wish jcnr-operator generated pod
configuration to persist even after uninstallation
 # use this option only in case of l2 mode
 # default value is false if not specied
 # to enable persist config
 #persistConfig: true

 # enableLocalPersistence: set this flag to true if you wish to persist the
configuration which is pushed through CLI or netConf.
 # enableLocalPersistence: true retains configurations locally, even after node
restart and JCNR upgrade
 #enableLocalPersistence: false

 ################### jcnr-operator/windriver section ###################
 # Interface bound type (0 - unbound interface, 1 - sriov pre-bound interface)
 # For WRCP deployment with pre-bound interface please set the field
(interfaceBoundType: 1)
 #interfaceBoundType: 1

 # NetworkDetails - list of network attachment definition
 #networkDetails:
 # - ddp: "off" # ddp parameter is optional; options include on or off;
default: off
 # name: srif0net0 # network attachment definition name
 # namespace: default # namespace name where the network attachment definition
is created
 # - ddp: "on"
 # name: srif1net1
 # namespace: default

 # NetworkDeviceResources
 #networkResources:
 # limits:
 # intel.com/pci_sriov_net_datanet0: "1"
 # intel.com/pci_sriov_net_datanet1: "1"
 # requests:
 # intel.com/pci_sriov_net_datanet0: "1"

397

 # intel.com/pci_sriov_net_datanet1: "1"
 #

contrail-tools:
#set it to true to install contrail-tools
 install: false

Configure Repository Credentials

SUMMARY

Read this topic to understand how to configure the enterprise-hub.juniper.net repository credentials
for Cloud-Native Router installation.

Use this procedure to configure your repository login credentials in your Cloud-Native Router Helm
chart.

The Cloud-Native Router Helm chart uses your enterprise-hub.juniper.net credentials to pull images from
the enterprise-hub.juniper.net repository.

The Cloud-Native Router Helm chart expects your credentials to be in a specific format. One way of
ensuring your credentials are in the proper format is to use docker (podman).

1. Install docker if you don't already have docker installed.

For example, for Rocky Linux:

dnf install -y docker

2. Create a .docker directory. This is where you'll store our credentials.

mkdir ~/.docker

398

3. Log in to the Juniper Networks enterprise-hub.juniper.net repository.

docker login enterprise-hub.juniper.net --authfile=/root/.docker/config.json

Enter your enterprise-hub.juniper.net username and password when prompted. Your credentials are
now stored in ~/.docker/config.json.

4. Encode your credentials in base64 and store the resulting string.

ENCODED_CREDS=$(base64 -w 0 config.json)

Take a look at the encoded credentials.

echo $ENCODED_CREDS

5. Navigate to the Juniper_Cloud_Native_Router_<release-number>/helmchart/jcnr directory. Replace the
credentials placeholder in values.yaml with the encoded credentials.

The values.yaml file has a <base64-encoded-credential> credentials placeholder. Simply replace the
placeholder with the encoded credentials.

sed -i s/'<base64-encoded-credential>'/$ENCODED_CREDS/ values.yaml

Double check by searching for the encoded credentials in values.yaml.

grep $ENCODED_CREDS values.yaml

You should see the encoded credentials.

Deploy Prepackaged Images

Use this procedure to import Cloud-Native Router images to the container runtime from the
downloaded Cloud-Native Router software packages.
Your cluster can pull Cloud-Native Router images from the enterprise-hub.juniper.net repository or your
cluster can use the Cloud-Native Router images that are included in the downloaded Cloud-Native
Router software packages.

399

This latter option is useful if your cluster doesn't have access to the Internet or if you want to set up
your own repository.

Setting up your own repository is beyond the scope of this document, but your cluster can still use the
included images if you manually import them to the container runtime on each cluster node where you
want to run the downloaded software. Simply use the respective container runtime commands. We
show you how to do this in the procedure below.

1. Locate the gzipped images tar file in the downloaded software package.

• For regular Cloud-Native Router images, the gzipped images tar file is
Juniper_Cloud_Native_Router_<release>/images/jcnr-images.tar.gz.

• For Cloud-Native Router Service Module images, the gzipped images tar file is
Juniper_Cloud_Native_Router_Service_Module_<release>/images/jcnr-images.tar.gz.

• For Cloud-Native Router Validation Factory images, the gzipped images tar file is
JCNR_Validation_Factory_<release>/images/jcnr-valfac-images.tar.gz.

2. Gunzip the images tar file.

gunzip jcnr-images.tar.gz

or

gunzip jcnr-valfac-images.tar.gz

3. Copy the gunzipped images tar file to every node where you're installing the downloaded software.

4. SSH to one of the nodes and go to the directory where you copied the gunzipped images tar file.

5. Import the images to the container runtime.

For regular Cloud-Native Router images:

• containerd: sudo ctr -n k8s.io images import jcnr-images.tar

• docker: sudo docker load -i jcnr-images.tar

For Cloud-Native Router Service Module images:

• podman: sudo podman load -i jcnr-images.tar

For Cloud-Native Router Validation Factory images:

• containerd: sudo ctr -n k8s.io images import jcnr-valfac-images.tar

• docker: sudo docker load -i jcnr-valfac-images.tar

6. Check that the images have been imported.

400

• containerd: ctr -n k8s.io images ls

• docker: docker images

• podman: podman images

7. Repeat steps 4 to 6 on each node where you're installing the downloaded software.

When you install Cloud-Native Router later on, the cluster first searches locally for the required images
before reaching out to enterprise-hub.juniper.net. Since you manually imported the images locally on each
node, the cluster finds the images locally and does not need to download them from an external source.

Configure Huge Pages

SUMMARY

Learn how to configure huge pages for the Cloud-
Native Router vRouter.

IN THIS SECTION

Configure the Number of Huge Pages
Available on a Node | 401

Configure the Number of Huge Pages to
Use | 403

Huge pages make memory accesses more efficient by reducing the number of TLB (translation look-
aside buffer) misses and are instrumental in getting the best performance from your Cloud-Native
Router vRouter installation.

Configuring huge pages is a two-part procedure. First, specify the number and size of huge pages that
you want the node to make available ("Configure the Number of Huge Pages Available on a Node" on
page 401) and then configure the Cloud-Native Router vRouter to use these huge pages ("Configure the
Number of Huge Pages to Use" on page 403).

By default, the Cloud-Native Router vRouter is already configured to use huge pages, so the second part
is only necessary if you want to change the number of huge pages that you want the Cloud-Native
Router vRouter to use.

Configure the Number of Huge Pages Available on a Node

Use this procedure to specify the number and size of huge pages that you want to make available on a
node.

401

NOTE: This procedure does not apply to a Red Hat OpenShift or a Wind River Cloud
Platform deployment.

1. Log in as root to the cluster node where you want to configure huge pages.

2. Configure GRUB to boot up the node with the desired number of huge pages.

Add GRUB_CMDLINE_LINUX_DEFAULT values in /etc/default/grub.

For example, the following configures the node to boot up with 10 x 1 GB huge pages (and SR-IOV
pass-through support):

GRUB_CMDLINE_LINUX_DEFAULT="console=tty1 console=ttyS0 default_hugepagesz=1G hugepagesz=1G
hugepages=10 intel_iommu=on iommu=pt"

3. Update GRUB.

grub2-mkconfig -o /boot/grub2/grub.cfg

4. Reboot.

reboot

5. Log back in to the node.

6. Verify that the node has acquired the requested number of huge pages.

Look at the output to confirm that GRUB has been configured to request the desired number of huge
pages:

cat /proc/cmdline

Look at the output to confirm that the node has successfully acquired and made available the desired
number of huge pages:

grep -i hugepages /proc/meminfo

402

Configure the Number of Huge Pages to Use

By default, the Cloud-Native Router vRouter is already configured to use huge pages. Use this procedure
to change the number of huge pages that the Cloud-Native Router vRouter uses.

1. On the host where you're running the Cloud-Native Router installation procedures, go to the Helm
chart directory for the Cloud-Native Router vRouter.

cd helmchart/jcnr/charts/jcnr-vrouter

2. Configure the number of huge pages in the Cloud-Native Router vRouter values.yaml file.

Change the below default hugepages-1Gi value in limits and requests to the number of your choice:

contrail_vrouter_agent_dpdk:
 image: contrail-vrouter-dpdk
 tag: *vrouter_tag
 pullPolicy: IfNotPresent
 resources:
 limits:
 cpu: 4
 memory: 1Gi
 hugepages-1Gi: 6Gi # Hugepages must be enabled with default size as 1G;
minimum 6Gi to be used
 requests:
 cpu: 4
 memory: 1Gi
 hugepages-1Gi: 6Gi

For example, to set huge pages to 10 GB:

hugepages-1Gi: 10Gi

NOTE: The number you specify here must not be greater than the number of huge
pages you've made available on the node.

3. Save and exit the file.

403

List of Cloud-Native Router Readiness Checks

SUMMARY

This section provides the list of Cloud-Native Router
Readiness checks. This list may change from release
to release.

IN THIS SECTION

Preflight and Postflight Checks | 404

Preflight and Postflight Checks

Table 46 on page 404 lists the hard preflight checks. A hard preflight check stops the installation if the
check fails.

Table 46: Hard Preflight Checks

Preflight Check Name Description

cpuavailability Checks that the requested CPU cores are available.

cpuinstructionset Checks that the processor supports the required
instruction set.

crpdlicense Checks for the presence of jcnr-secrets.

dpdk Checks that the proper DPDK driver is installed.

hugepages Checks that the required hugepages are available.

nads Checks the network configuration when running with
pre-bound interfaces in a Wind River deployment. This
check is disabled in all other situations.

noderesources Checks that the required CPU, memory, and storage
resources are available.

404

Table 46: Hard Preflight Checks (Continued)

Preflight Check Name Description

ports Checks that there are no port conflicts.

Table 47 on page 405 lists the soft preflight checks. A soft preflight check does not stop the installation
if the check fails.

Table 47: Soft Preflight Checks

Preflight Check Name Description

crpd-prerequisites Checks that the prerequisite modules for cRPD are
installed.

k8sversion Checks that the Kubernetes version is supported.

nic Checks that the NIC is supported.

ntp Checks that NTP is configured and the NTP server is
reachable.

os Checks that the OS version is supported.

Table 48 on page 405 lists the hard postflight checks. A hard postflight check stops the installation if the
check fails.

Table 48: Hard Postflight Checks

Postflight Check Name Description

jcnrresources Checks the status of various Cloud-Native Router
resources.

405

CloudFormation Template for EKS Cluster

You can use the CloudFormation template below to bring up an Amazon EKS cluster. This template
creates a cluster that meets all the system requirements in "Minimum Host System Requirements for
EKS" on page 149. Use it to quickly get a cluster up and running.

This template assumes you have a VPC and you have subnets associated with at least two availability
zones (AZs).

AWSTemplateFormatVersion: '2010-09-09'
Description: 'Amazon EKS Cluster with Node Group'

Metadata:
 AWS::CloudFormation::Interface:
 ParameterGroups:
 -
 Label:
 default: "EKS Configuration"
 Parameters:
 - ClusterName
 - ClusterVersion
 - NodeImageIdSSMParam
 - VpcId
 - SubnetIds
 - ExistingClusterSecurityGroups

 -
 Label:
 default: "NodeGroup Configuration"
 Parameters:
 - NodeGroupName
 - NodeInstanceType
 - NodeImageId
 - KeyName
 - ASGAutoAssignPublicIp
 - NodeAutoScalingGroupMinSize
 - NodeAutoScalingGroupDesiredSize
 - NodeAutoScalingGroupMaxSize
 - NodeVolumeSize
 - HugePageSize

406

 - ExistingNodeSecurityGroups
 - ExtraNodeSecurityGroups
 - ExtraNodeLabels

Parameters:
 ClusterName:
 Description: "Provide EKS cluster name for JCNR deployment. Ex: jcnr-payg-cloud-1"
 Type: String

 ClusterVersion:
 Description: Cluster Version
 Type: String
 Default: "1.28"
 AllowedValues:
 - "1.24"
 - "1.25"
 - "1.26"
 - "1.27"
 - "1.28"
 - "latest"

 VpcId:
 Description: "Provide VPC for JCNR EKS cluster"
 Type: AWS::EC2::VPC::Id

 SubnetIds:
 Description: Select minimum 2 subnets from each AvailabilityZones in above VPC
 Type: List<AWS::EC2::Subnet::Id>
 ConstraintDescription: Must be a list of at least two existing subnets associated with at
least two different availability zones. They should be residing in the selected Virtual Private
Cloud

 KeyName:
 Description: Key Pair to access Worker Nodes via SSH
 Type: AWS::EC2::KeyPair::KeyName

 NodeImageId:
 Type: String
 Default: ""
 Description: OPTIONAL - Only Specify AMI id for custom AMI to overwrite NodeImageIdSSMParam

 NodeImageIdSSMParam:

407

 Type: "AWS::SSM::Parameter::Value<AWS::EC2::Image::Id>"
 Default: /aws/service/eks/optimized-ami/1.28/amazon-linux-2/recommended/image_id
 Description: "Match ClusterVersion in default value Ex: If ClusterVersion is 1.27 , replace
1.28 with 1.27"
 AllowedValues:
 - /aws/service/eks/optimized-ami/1.24/amazon-linux-2/recommended/image_id
 - /aws/service/eks/optimized-ami/1.25/amazon-linux-2/recommended/image_id
 - /aws/service/eks/optimized-ami/1.26/amazon-linux-2/recommended/image_id
 - /aws/service/eks/optimized-ami/1.27/amazon-linux-2/recommended/image_id
 - /aws/service/eks/optimized-ami/1.28/amazon-linux-2/recommended/image_id
 - /aws/service/eks/optimized-ami/latest/amazon-linux-2/recommended/image_id
 ConstraintDescription: Must matches with ClusterVersion parameter

 NodeInstanceType:
 Description: Worker Node Instance Type
 Type: String
 Default: m5.8xlarge
 ConstraintDescription: Must be a valid EC2 instance type

 NodeVolumeSize:
 Type: Number
 Description: Worker Node volume size
 Default: 30

 NodeAutoScalingGroupMinSize:
 Type: Number
 Description: Minimum size of Node Group ASG.
 Default: 1

 NodeAutoScalingGroupDesiredSize:
 Type: Number
 Description: Desired size of Node Group ASG.
 Default: 2

 NodeAutoScalingGroupMaxSize:
 Type: Number
 Description: Maximum size of Node Group ASG.
 Default: 2

 ASGAutoAssignPublicIp:
 Type: String
 Description: "auto assign public IP address for ASG instances"
 AllowedValues:

408

 - "yes"
 - "no"
 Default: "no"

 ExistingClusterSecurityGroups:
 Type: String
 Description: OPTIONAL - attach existing security group ID(s) for your nodegroup
 Default: ""

 ExtraNodeSecurityGroups:
 Type: String
 Description: OPTIONAL - attach extra existing security group ID(s) for your nodegroup
 Default: ""

 ExistingNodeSecurityGroups:
 Type: String
 Description: OPTIONAL - attach extra existing security group ID(s) for your nodegroup
 Default: ""

 ExtraNodeLabels:
 Description: Extra Node Labels(seperated by comma)
 Type: String
 Default: "jcnrcluster=cloud"

 NodeGroupName:
 Description: "Provide Worker Node group name. Ex: jcnr-nodegroup-1"
 Type: String

 HugePageSize:
 Type: Number
 Description: Huge Page size, minimum is 8GB
 Default: 8

Conditions:
 CreateLatestVersionCluster: !Equals [!Ref ClusterVersion, latest]
 CreateCustomVersionCluster: !Not [!Equals [!Ref ClusterVersion, latest]]
 HasNodeImageId: !Not [!Equals [!Ref NodeImageId, ""]]
 IsASGAutoAssignPublicIp: !Equals [!Ref ASGAutoAssignPublicIp , "yes"]
 AddExistingSG: !Not [!Equals [!Ref ExistingClusterSecurityGroups, ""]]
 CreateNewNodeSG: !Equals [!Ref ExistingNodeSecurityGroups, ""]
 AttachExistingNodeSG: !Not [!Equals [!Ref ExistingNodeSecurityGroups, ""]]
 AttachExtraNodeSG: !Not [!Equals [!Ref ExtraNodeSecurityGroups, ""]]

409

Rules:
 SubnetsInVPC:
 Assertions:
 - Assert:
 Fn::EachMemberIn:
 - Fn::ValueOfAll:
 - AWS::EC2::Subnet::Id
 - VpcId
 - Fn::RefAll: AWS::EC2::VPC::Id
 AssertDescription: All subnets must in the VPC

#
Control Plane
#

Resources:
 EKSCluster:
 Type: "AWS::EKS::Cluster"
 Properties:
 Name: !Ref ClusterName
 ResourcesVpcConfig:
 SecurityGroupIds:
 !If
 - AddExistingSG
 - !Split [",", !Sub "${ControlPlaneSecurityGroup},${ExistingClusterSecurityGroups}"]
 -
 - !Ref ControlPlaneSecurityGroup
 SubnetIds: !Ref SubnetIds
 RoleArn: !GetAtt EksServiceRole.Arn
 AccessConfig:
 AuthenticationMode: "API_AND_CONFIG_MAP"
 Version:
 Fn::If:
 - CreateCustomVersionCluster
 - !Ref ClusterVersion
 - 1.28

 EksServiceRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:

410

 - Effect: "Allow"
 Principal:
 Service: "eks.amazonaws.com"
 Action: "sts:AssumeRole"
 Path: "/"
 ManagedPolicyArns:
 - arn:aws:iam::aws:policy/AmazonEKSClusterPolicy
 - arn:aws:iam::aws:policy/AmazonEKSServicePolicy
 RoleName: !Sub "EksSvcRole-${ClusterName}"

 ControlPlaneSecurityGroup:
 Type: AWS::EC2::SecurityGroup
 Properties:
 GroupDescription: Cluster communication with worker nodes
 VpcId: !Ref VpcId
 Tags:
 - Key: Name
 Value: !Sub "${ClusterName}-ControlPlaneSecurityGroup"

 ControlPlaneIngressFromWorkerNodesHttps:
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 Description: Allow incoming HTTPS traffic (TCP/443) from worker nodes (for API server)
 GroupId: !Ref ControlPlaneSecurityGroup
 SourceSecurityGroupId: !Ref NodeSecurityGroup
 IpProtocol: tcp
 ToPort: 443
 FromPort: 443

 ControlPlaneEgressToWorkerNodesKubelet:
 Type: AWS::EC2::SecurityGroupEgress
 Properties:
 Description: Allow outgoing kubelet traffic (TCP/10250) to worker nodes
 GroupId: !Ref ControlPlaneSecurityGroup
 DestinationSecurityGroupId: !Ref NodeSecurityGroup
 IpProtocol: tcp
 FromPort: 10250
 ToPort: 10250

 ControlPlaneEgressToWorkerNodesHttps:
 Type: AWS::EC2::SecurityGroupEgress
 Properties:
 Description: Allow outgoing HTTPS traffic (TCP/442) to worker nodes (for pods running

411

extension API servers)
 GroupId: !Ref ControlPlaneSecurityGroup
 DestinationSecurityGroupId: !Ref NodeSecurityGroup
 IpProtocol: tcp
 FromPort: 443
 ToPort: 443

#
Worker Nodes
#

 NodeSecurityGroup:
 Condition: CreateNewNodeSG
 Type: AWS::EC2::SecurityGroup
 Properties:
 GroupDescription: Security group for all nodes in the cluster
 VpcId:
 !Ref VpcId
 Tags:
 - Key: !Sub "kubernetes.io/cluster/${ClusterName}"
 Value: "owned"
 - Key: Name
 Value: !Sub "${ClusterName}-cluster/NodeSecurityGroup"

 NodeSecurityGroupIngress:
 Condition: CreateNewNodeSG
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 Description: Allow node to communicate with each other
 GroupId: !Ref NodeSecurityGroup
 SourceSecurityGroupId: !Ref NodeSecurityGroup
 IpProtocol: '-1'

 NodeSecurityGroupFromControlPlaneIngress:
 Condition: CreateNewNodeSG
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 Description: Allow worker Kubelets and pods to receive communication from the cluster
control plane
 GroupId: !Ref NodeSecurityGroup
 SourceSecurityGroupId: !Ref ControlPlaneSecurityGroup
 IpProtocol: tcp
 FromPort: 10250

412

 ToPort: 10250

 NodeSecurityGroupFromControlPlaneOn443Ingress:
 Condition: CreateNewNodeSG
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 Description: Allow pods running extension API servers on port 443 to receive communication
from cluster control plane
 GroupId: !Ref NodeSecurityGroup
 SourceSecurityGroupId: !Ref ControlPlaneSecurityGroup
 IpProtocol: tcp
 FromPort: 443
 ToPort: 443

 NodeSecurityGroupFromSSHIngress:
 Condition: CreateNewNodeSG
 Type: AWS::EC2::SecurityGroupIngress
 Properties:
 Description: Allow ssh to worker nodes
 GroupId: !Ref NodeSecurityGroup
 IpProtocol: tcp
 FromPort: 22
 ToPort: 22
 CidrIp: 0.0.0.0/0

 NodeInstanceRole:
 DependsOn: EKSCluster
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Principal:
 Service: "ec2.amazonaws.com"
 Action: "sts:AssumeRole"
 Path: "/"
 ManagedPolicyArns:
 - arn:aws:iam::aws:policy/AmazonEKSWorkerNodePolicy
 - arn:aws:iam::aws:policy/AmazonEKS_CNI_Policy
 - arn:aws:iam::aws:policy/AmazonEC2ContainerRegistryReadOnly
 - arn:aws:iam::aws:policy/service-role/AmazonEBSCSIDriverPolicy
 - arn:aws:iam::aws:policy/AmazonSSMManagedInstanceCore

413

 TG:
 DependsOn: EKSCluster
 Type: "AWS::ElasticLoadBalancingV2::TargetGroup"
 Properties:
 HealthCheckIntervalSeconds: 15
 HealthCheckPath: /
 # HealthCheckPort: String
 HealthCheckProtocol: HTTP
 HealthCheckTimeoutSeconds: 5
 HealthyThresholdCount: 2
 # Matcher: Matcher
 Name: !Sub "${ClusterName}"
 Port: 31742
 Protocol: HTTP
 TargetType: instance
 UnhealthyThresholdCount: 2
 VpcId: !Ref VpcId

 NodeGroup:
 DependsOn: EKSCluster
 Type: "AWS::EKS::Nodegroup"
 Properties:
 UpdateConfig:
 MaxUnavailable: 1
 ScalingConfig:
 MinSize: !Ref NodeAutoScalingGroupMinSize
 DesiredSize: !Ref NodeAutoScalingGroupDesiredSize
 MaxSize: !Ref NodeAutoScalingGroupMaxSize
 Labels: {}
 Taints: []
 CapacityType: "ON_DEMAND"
 NodegroupName: !Ref NodeGroupName
 NodeRole: !GetAtt NodeInstanceRole.Arn
 Subnets: !Ref SubnetIds
 AmiType: "CUSTOM"
 LaunchTemplate:
 Version: !GetAtt MyLaunchTemplate.LatestVersionNumber
 Id: !Ref MyLaunchTemplate
 ClusterName: !Ref ClusterName
 InstanceTypes: []

 CSIDriverAddon:

414

 DependsOn: EKSCluster
 Type: "AWS::EKS::Addon"
 Properties:
 AddonName: "aws-ebs-csi-driver"
 AddonVersion: "v1.28.0-eksbuild.1"
 ClusterName: !Ref ClusterName

 VPCCNIAddon:
 DependsOn: EKSCluster
 Type: "AWS::EKS::Addon"
 Properties:
 AddonName: "vpc-cni"
 AddonVersion: "v1.15.1-eksbuild.1"
 ClusterName: !Ref ClusterName

#
Launch Template
#
 MyLaunchTemplate:
 Type: AWS::EC2::LaunchTemplate
 Properties:
 LaunchTemplateName: !Sub "eksLaunchTemplate-${AWS::StackName}"
 LaunchTemplateData:
 # SecurityGroupIds:
 # - !Ref NodeSecurityGroup
 TagSpecifications:
 -
 ResourceType: instance
 Tags:
 - Key: ltname
 Value: !Sub "eksLaunchTemplate-${AWS::StackName}"
 - Key: "eks:cluster-name"
 Value: !Sub "${ClusterName}"
 - Key: !Sub "kubernetes.io/cluster/${ClusterName}"
 Value: "owned"
 UserData:
 Fn::Base64:
 !Sub |
 #!/bin/bash
 echo '#!/bin/bash
 modprobe vfio-pci
 modprobe vfio_iommu_type1
 modprobe allow_unsafe_interrupts=1

415

 modprobe 8021q
 echo Y > /sys/module/vfio/parameters/enable_unsafe_noiommu_mode
 echo Y > /sys/module/vfio_iommu_type1/parameters/allow_unsafe_interrupts
 cd /sys/module/vfio/parameters/
 echo Y > enable_unsafe_noiommu_mode
 exit 0' > /usr/local/bin/jcnr_startup
 chmod +x /usr/local/bin/jcnr_startup

 echo '[Unit]
 Description=/usr/local/bin/jcnr_startup Compatibility
 ConditionPathExists=/usr/local/bin/jcnr_startup

 [Service]
 Type=forking
 ExecStart=/usr/local/bin/jcnr_startup start
 TimeoutSec=0
 StandardOutput=tty
 RemainAfterExit=yes
 SysVStartPriority=99

 [Install]
 WantedBy=multi-user.target' > /etc/systemd/system/jcnr-startup.service
 sudo systemctl enable jcnr-startup
 sudo systemctl start jcnr-startup

 if [! -f /var/jcnr_startup_flag]; then
 sudo sed -i 's/\(GRUB_CMDLINE_LINUX_DEFAULT=".*\)"/\1 default_hugepagesz=1G
hugepagesz=1G hugepages=${HugePageSize} intel_iommu=on iommu=pt"/' /etc/default/grub
 grub2-mkconfig -o /boot/grub2/grub.cfg
 set -o xtrace
 /etc/eks/bootstrap.sh ${ClusterName}
 /opt/aws/bin/cfn-signal \
 --exit-code $? \
 --stack ${AWS::StackName} \
 --resource NodeGroup \
 --region ${AWS::Region}
 touch /var/jcnr_startup_flag
 sleep 2m
 reboot
 fi
 KeyName: !Ref KeyName
 NetworkInterfaces:
 - DeviceIndex: 0

416

 AssociatePublicIpAddress:
 !If
 - IsASGAutoAssignPublicIp
 - 'true'
 - 'false'
 Groups:
 !If
 - CreateNewNodeSG
 - !If
 - AttachExtraNodeSG
 - !Split [",", !Sub "${NodeSecurityGroup},${ExtraNodeSecurityGroups}"]
 -
 - !Ref NodeSecurityGroup
 - !Split [",", !Ref ExistingNodeSecurityGroups]
 ImageId:
 !If
 - HasNodeImageId
 - !Ref NodeImageId
 - !Ref NodeImageIdSSMParam
 InstanceType: !Ref NodeInstanceType
 BlockDeviceMappings:
 - DeviceName: /dev/xvda
 Ebs:
 VolumeSize: !Ref NodeVolumeSize
 VolumeType: gp2
 DeleteOnTermination: true

Cloud-Native Router Operator Service Module:
Host-Based Routing Example Configuration Files

SUMMARY

This section contains example scripts and
configuration files that you can use to create a
service module host-based routing deployment.

IN THIS SECTION

Host-Based Routing: Example Scripts and
Configuration Files to Install cRPD | 418

417

Host-Based Routing: Example Calico
Configuration | 436

Host-Based Routing: Example VxLAN and
Route Target Pools | 440

Host-Based Routing: Example JCNR
Configuration | 441

Host-Based Routing: Example Secondary CNI
Configuration Files | 442

Host-Based Routing: Example Scripts and Configuration Files to Install
cRPD

IN THIS SECTION

Example cRPD Installation Script | 418

Example Control Plane Node Configuration File | 419

Example Worker Node Configuration File | 428

Example cRPD Installation Script

The following example script installs cRPD on the node where you run the script. If cRPD is already
running on the node, the script removes the running cRPD instance and installs a new instance. If the
script finds an existing cRPD configuration file, it will reuse that configuration file. Otherwise, it will use
the configuration file specified by the CONFIG_TEMPLATE variable that you set in the script.

Run this script with the proper CONFIG_TEMPLATE configuration file on every node in your cluster.

We provide sample CONFIG_TEMPLATE configuration files in "Example Control Plane Node
Configuration File" on page 419 and "Example Worker Node Configuration File" on page 428.

install-crpd.sh:

set -o nounset

418

set -o errexit
SCRIPT_DIR=$(cd -P `dirname $0`; pwd)
NETWORK_NS="ns:/run/netns/crpd"
Specify the config file. For example:
ctl_plane_crpd_connectivity_template_5_node.conf or
worker_crpd_connectivity_template_5_node.conf
CONFIG_TEMPLATE=ctl_plane_crpd_connectivity_template_5_node.conf
POD_NAME=crpd
CONTAINER_NAME=crpd01
Remove existing pod
Stop all containers in pod crpd
POD_ID=$(sudo podman pod ls -fname=${POD_NAME} -q)
if [-n "$POD_ID"]; then
 sudo podman pod stop ${POD_ID}
 sudo podman pod rm ${POD_ID}
fi
Create Pod in NS (Tested with podman 4.6.2)
#
sudo podman pod create --name ${POD_NAME} --network ${NETWORK_NS}
create config dir
CRPD_CONFIG_DIR=/etc/crpd/config
sudo rm -rf ${CRPD_CONFIG_DIR}
sudo mkdir -p ${CRPD_CONFIG_DIR}
if [[-f ${CRPD_CONFIG_DIR}/juniper.conf || -f ${CRPD_CONFIG_DIR}/juniper.conf.gz]]; then
 echo "conf file exists"
else
 echo "initialize with base config"
 envsubst < ${CONFIG_TEMPLATE} > crpd_base_connectivity.conf
 sudo cp ${SCRIPT_DIR}/crpd_base_connectivity.conf ${CRPD_CONFIG_DIR}/juniper.conf
fi
sudo podman volume create crpd01-varlog --ignore
sudo podman run --rm -d --name ${CONTAINER_NAME} --pod ${POD_NAME} --privileged -v /etc/crpd/
config:/config:Z -v crpd01-varlog:/var/log -it enterprise-hub.juniper.net:/jcnr-container-prod/
crpd:24.4R1.9
List
sudo podman pod ps --ctr-status --ctr-names --ctr-ids

Example Control Plane Node Configuration File

This configuration file is referenced by CONFIG_TEMPLATE in the cRPD installation script. There is one
control plane node configuration file per control plane node. See Table 49 on page 425 through Table 51
on page 427 for the variable values to set for each control plane node.

419

ctl_plane_crpd_connectivity_template_5_node.conf:

groups {
 base {
 apply-flags omit;
 system {
 root-authentication {
 encrypted-password "<encrypted_password>"
 }
 commit {
 xpath;
 constraints {
 direct-access;
 }
 notification {
 configuration-diff-format xml;
 }
 }
 scripts {
 action {
 max-datasize 256m;
 }
 language python3;
 }
 services {
 netconf {
 ssh;
 }
 ssh {
 root-login allow;
 port 24;
 }
 }
 license {
 keys {
 key "<crpd-license-key>";
 }
 }
 }
 }
 connectivity {

420

 interfaces {
 lo0 {
 mtu 9216;
 unit 0 {
 family inet {
 address ${LO0_IP}/32;
 }
 }
 }
 veth-crpd {
 mtu 9216;
 unit 0 {
 family inet {
 address ${VETH_CRPD}/30;
 }
 # *** uncomment below if running dual stack ***
 #family inet6 {
 # address ${VETH6_CRPD}/126;
 }
 }
 }
 }
 policy-options {
 policy-statement accept-podcidr {
 term accept {
 from {
 route-filter ${POD_CIDR} orlonger;
 }
 then accept;
 }
 then reject;
 }
 policy-statement export-direct {
 term 1 {
 from {
 route-filter ${LO0_IP_POOL} orlonger;
 }
 then accept;
 }
 then reject;
 }
 policy-statement export-evpn {
 term 1 {

421

 from protocol evpn;
 then accept;
 }
 then reject;
 }
 policy-statement export-veth {
 term 1 {
 from {
 protocol direct;
 route-filter ${VETH_PREFIX}/30 exact;
 }
 then accept;
 }
 term 2 {
 from protocol bgp;
 then accept;
 }
 then {

 # *** uncomment below if running dual stack ***
 #next policy;
 reject;
 }
 }
 # *** uncomment below if running dual stack ***
 #policy-statement export-veth-v6 {
 # term 1 {
 # from {
 # protocol direct;
 # route-filter ${VETH6_PREFIX}/126 exact;
 # }
 # then accept;
 # }
 # term 2 {
 # from protocol bgp;
 # then accept;
 # }
 # then reject;
 #}
 }
 routing-instances {
 master-calico-ri {
 instance-type vrf;

422

 protocols {
 bgp {
 group calico-bgprtrgrp-master {
 multihop;
 local-address ${VETH_CRPD};
 import accept-podcidr;
 export export-evpn;
 remove-private no-peer-loop-check;
 peer-as 64512;
 local-as 64600;
 neighbor ${VETH_K8S};
 }
 # *** uncomment below if running dual stack ***
 #group calico-bgprtrgrp-master6 {
 # multihop;
 # local-address ${VETH6_CRPD};
 # export export-evpn;
 # remove-private no-peer-loop-check;
 # peer-as 64512;
 # local-as 64600;
 # neighbor ${VETH6_K8S};
 #}
 }
 evpn {
 ip-prefix-routes {
 advertise direct-nexthop;
 encapsulation vxlan;
 vni 4096;
 # ***Include below line when running IPv4 only. Comment out if running dual
stack.***
 export export-veth;
 # ***Include below line when running dual stack. Comment out if running
IPv4 only.***
 #export [export-veth export-veth-v6];
 route-attributes {
 community {
 import-action allow;
 export-action allow;
 }
 }
 }
 }
 }

423

 interface veth-crpd;
 vrf-target target:1:4;
 }
 }
 routing-options {
 route-distinguisher-id ${LO0_IP};
 router-id ${LO0_IP};
 }
 protocols {
 bgp {
 group crpd-master-bgprtrgrp {
 export export-direct;
 peer-as 64500;
 local-as 64500;
 neighbor ${MASTER1_PEER_ENS4_IP};
 neighbor ${MASTER2_PEER_ENS4_IP};
 }
 group crpd-worker-bgprtrgrp {
 multihop;
 export export-direct;
 peer-as 64500;
 local-as 64500;
 neighbor ${WORKER1_PEER_ENS4_IP};
 neighbor ${WORKER2_PEER_ENS4_IP};
 }
 group crpd-master-lo-bgprtrgrp {
 local-address ${LO0_IP};
 family evpn {
 signaling;
 }
 peer-as 64600;
 local-as 64600;
 neighbor ${MASTER1_EVPN_PEER_IP};
 neighbor ${MASTER2_EVPN_PEER_IP};
 }
 group crpd-worker-lo-bgprtrgrp {
 local-address ${LO0_IP};
 family evpn {
 signaling;
 }
 peer-as 64600;
 local-as 64600;
 neighbor ${WORKER1_EVPN_PEER_IP};

424

 neighbor ${WORKER2_EVPN_PEER_IP};
 }
 cluster ${LO0_IP};
 }
 }
 }
}
apply-groups base;
apply-groups connectivity;

Table 49: Node 1 (Control Plane Node) Example Settings

Variable Setting

LO0_IP_POOL 10.12.0.0/24

LO0_IP 10.12.0.1

VETH_CRPD 10.1.1.2

VETH6_CRPD 2001:db8:1::2

VETH_PREFIX 10.1.1.0

VETH6_PREFIX 2001:db8:1::0

VETH_K8S 10.1.1.1

VETH6_K8S 2001:db8:1::1

POD_CIDR 192.168.0.0/24

MASTER1_EVPN_PEER_IP 10.12.0.2

MASTER2_EVPN_PEER_IP 10.12.0.3

425

Table 49: Node 1 (Control Plane Node) Example Settings (Continued)

Variable Setting

WORKER1_EVPN_PEER_IP 10.12.0.4

WORKER2_EVPN_PEER_IP 10.12.0.5

MASTER1_PEER_ENS4_IP 192.168.1.102

MASTER2_PEER_ENS4_IP 192.168.1.103

WORKER1_PEER_ENS4_IP 192.168.1.104

WORKER2_PEER_ENS4_IP 192.168.1.105

Table 50: Node 2 (Control Plane Node) Example Settings

Variable Setting

LO0_IP_POOL 10.12.0.0/24

LO0_IP 10.12.0.2

VETH_CRPD 10.1.2.2

VETH6_CRPD 2001:db8:2::2

VETH_PREFIX 10.1.2.0

VETH6_PREFIX 2001:db8:2::0

VETH_K8S 10.1.2.1

VETH6_K8S 2001:db8:2::1

426

Table 50: Node 2 (Control Plane Node) Example Settings (Continued)

Variable Setting

POD_CIDR 192.168.0.0/24

MASTER1_EVPN_PEER_IP 10.12.0.1

MASTER2_EVPN_PEER_IP 10.12.0.3

WORKER1_EVPN_PEER_IP 10.12.0.4

WORKER2_EVPN_PEER_IP 10.12.0.5

MASTER1_PEER_ENS4_IP 192.168.1.1

MASTER2_PEER_ENS4_IP 192.168.1.3

WORKER1_PEER_ENS4_IP 192.168.1.4

WORKER2_PEER_ENS4_IP 192.168.1.5

Table 51: Node 3 (Control Plane Node) Example Settings

Variable Setting

LO0_IP_POOL 10.12.0.0/24

LO0_IP 10.12.0.3

VETH_CRPD 10.1.3.2

VETH6_CRPD 2001:db8:3::2

VETH_PREFIX 10.1.3.0

427

Table 51: Node 3 (Control Plane Node) Example Settings (Continued)

Variable Setting

VETH6_PREFIX 2001:db8:3::0

VETH_K8S 10.1.3.1

VETH6_K8S 2001:db8:3::1

POD_CIDR 192.168.0.0/24

MASTER1_EVPN_PEER_IP 10.12.0.1

MASTER2_EVPN_PEER_IP 10.12.0.2

WORKER1_EVPN_PEER_IP 10.12.0.4

WORKER2_EVPN_PEER_IP 10.12.0.5

MASTER1_PEER_ENS4_IP 192.168.1.1

MASTER2_PEER_ENS4_IP 192.168.1.2

WORKER1_PEER_ENS4_IP 192.168.1.4

WORKER2_PEER_ENS4_IP 192.168.1.5

Example Worker Node Configuration File

This configuration file is referenced by CONFIG_TEMPLATE in the cRPD installation script. There is one
worker node configuration file per worker node. See Table 52 on page 433 and Table 53 on page 435 for
the variable values to set for each worker node.

428

worker_crpd_connectivity_template_5_node.conf:

groups {
 base {
 apply-flags omit;
 system {
 root-authentication {
 encrypted-password "<encrypted_password>"
 }
 commit {
 xpath;
 constraints {
 direct-access;
 }
 notification {
 configuration-diff-format xml;
 }
 }
 scripts {
 action {
 max-datasize 256m;
 }
 language python3;
 }
 services {
 netconf {
 ssh;
 }
 ssh {
 root-login allow;
 port 24;
 }
 }
 license {
 keys {
 key "<crpd_license_key>";
 }
 }
 }
 }
 connectivity {

429

 interfaces {
 lo0 {
 mtu 9216;
 unit 0 {
 family inet {
 address ${LO0_IP}/32;
 }
 }
 }
 veth-crpd {
 mtu 9216;
 unit 0 {
 family inet {
 address ${VETH_CRPD}/30;
 }
 # *** uncomment below if running dual stack ***
 #family inet6 {
 # address ${VETH6_CRPD}/126;
 #}
 }
 }
 }
 policy-options {
 policy-statement accept-podcidr {
 term accept {
 from {
 route-filter ${POD_CIDR} orlonger;
 }
 then accept;
 }
 then reject;
 }
 policy-statement export-direct {
 term 1 {
 from {
 route-filter ${LO0_IP_POOL} orlonger;
 }
 then accept;
 }
 then reject;
 }
 policy-statement export-evpn {
 term 1 {

430

 from protocol evpn;
 then accept;
 }
 then reject;
 }
 policy-statement export-veth {
 term 1 {
 from {
 protocol direct;
 route-filter ${VETH_PREFIX}/30 exact;
 }
 then accept;
 }
 term 2 {
 from protocol bgp;
 then accept;
 }
 then {
 # *** uncomment below if running dual stack ***
 #next policy;
 reject;
 }
 }
 # *** uncomment below if running dual stack ***
 #policy-statement export-veth-v6 {
 # term 1 {
 # from {
 # protocol direct;
 # route-filter ${VETH6_PREFIX}/126 exact;
 # }
 # then accept;
 # }
 # term 2 {
 # from protocol bgp;
 # then accept;
 # }
 # then reject;
 #}
 }
 routing-instances {
 worker-calico-ri {
 instance-type vrf;
 protocols {

431

 bgp {
 group calico-bgprtrgrp-worker {
 multihop;
 local-address ${VETH_CRPD};
 import accept-podcidr;
 export export-evpn;
 remove-private no-peer-loop-check;
 peer-as 64512;
 local-as 64600;
 neighbor ${VETH_K8S};
 }
 # *** uncomment below if running dual stack ***
 #group calico-bgprtrgrp-worker6 {
 # multihop;
 # local-address ${VETH6_CRPD};
 # export export-evpn;
 # remove-private no-peer-loop-check;
 # peer-as 64512;
 # local-as 64600;
 # neighbor ${VETH6_K8S};
 #}
 }
 evpn {
 ip-prefix-routes {
 advertise direct-nexthop;
 encapsulation vxlan;
 vni 4300;
 # ***Include below line when running IPv4 only. Comment out if running dual
stack.***
 export export-veth;
 # ***Include below line when running dual stack. Comment out if running
IPv4 only.***
 #export [export-veth export-veth-v6];
 route-attributes {
 community {
 import-action allow;
 export-action allow;
 }
 }
 }
 }
 }
 interface veth-crpd;

432

 vrf-target target:1:4;
 }
 }
 routing-options {
 route-distinguisher-id ${LO0_IP};
 router-id ${LO0_IP};
 }
 protocols {
 bgp {
 group crpd-master-bgprtrgrp {
 multihop;
 export export-direct;
 peer-as 64500;
 local-as 64500;
 neighbor ${MASTER1_PEER_ENS4_IP};
 neighbor ${MASTER2_PEER_ENS4_IP};
 neighbor ${MASTER3_PEER_ENS4_IP};
 }
 group crpd-master-lo-bgprtrgrp {
 local-address ${LO0_IP};
 family evpn {
 signaling;
 }
 peer-as 64600;
 local-as 64600;
 neighbor ${MASTER1_EVPN_PEER_IP};
 neighbor ${MASTER2_EVPN_PEER_IP};
 neighbor ${MASTER3_EVPN_PEER_IP};
 }
 }
 }
 }
}
apply-groups base;
apply-groups connectivity;

Table 52: Node 4 (Worker Node) Example Settings

Variable Setting

LO0_IP_POOL 10.12.0.0/24

433

Table 52: Node 4 (Worker Node) Example Settings (Continued)

Variable Setting

LO0_IP 10.12.0.4

VETH_CRPD 10.1.4.2

VETH6_CRPD 2001:db8:4::2

VETH_PREFIX 10.1.4.0

VETH6_PREFIX 2001:db8:4::0

VETH_K8S 10.1.4.1

VETH6_K8S 2001:db8:4::1

POD_CIDR 192.168.0.0/24

MASTER1_EVPN_PEER_IP 10.12.0.1

MASTER2_EVPN_PEER_IP 10.12.0.2

MASTER3_EVPN_PEER_IP 10.12.0.3

MASTER1_PEER_ENS4_IP 192.168.1.101

MASTER2_PEER_ENS4_IP 192.168.1.102

MASTER3_PEER_ENS4_IP 192.168.1.103

434

Table 53: Node 5 (Worker Node) Example Settings

Variable Setting

LO0_IP_POOL 10.12.0.0/24

LO0_IP 10.12.0.5

VETH_CRPD 10.1.5.2

VETH6_CRPD 2001:db8:5::2

VETH_PREFIX 10.1.5.0

VETH6_PREFIX 2001:db8:5::0

VETH_K8S 10.1.5.1

VETH6_K8S 2001:db8:5::1

POD_CIDR 192.168.0.0/24

MASTER1_EVPN_PEER_IP 10.12.0.1

MASTER2_EVPN_PEER_IP 10.12.0.2

MASTER3_EVPN_PEER_IP 10.12.0.3

MASTER1_PEER_ENS4_IP 192.168.1.101

MASTER2_PEER_ENS4_IP 192.168.1.102

MASTER3_PEER_ENS4_IP 192.168.1.103

435

Host-Based Routing: Example Calico Configuration

IN THIS SECTION

BGP Configuration Example | 436

IP Pool Configuration Example | 436

BGP Peer Configuration Example | 437

BGP Configuration Example

bgpconfig.yaml:

apiVersion: crd.projectcalico.org/v1
kind: BGPConfiguration
metadata:
 name: default
spec:
 asNumber: 64512
 listenPort: 1179
 logSeverityScreen: Debug
 nodeToNodeMeshEnabled: false

IP Pool Configuration Example

ippool-v4.yaml:

apiVersion: crd.projectcalico.org/v1
kind: IPPool
metadata:
 name: default-ipv4-ippool
 spec:
 allowedUses:
 - Workload
 blockSize: 26

436

 cidr: 192.168.7.0/24
 ipipMode: Never
 natOutgoing: true
 nodeSelector: all()
 vxlanMode: Never

ippool-v6.yaml:

apiVersion: crd.projectcalico.org/v1
kind: IPPool
metadata:
 name: default-ipv6-ippool
 spec:
 allowedUses:
 - Workload
 blockSize: 122
 cidr: 2001:db8:42:0::/56
 ipipMode: Never
 natOutgoing: true
 nodeSelector: all()
 vxlanMode: Never

BGP Peer Configuration Example

bgppeers-v4.yaml:

apiVersion: crd.projectcalico.org/v1
kind: BGPPeer
metadata:
 name: node1
spec:
 sourceAddress: None
 asNumber: 64600
 node: node1
 peerIP: 10.1.1.2:179

apiVersion: crd.projectcalico.org/v1
kind: BGPPeer

437

metadata:
 name: node2
spec:
 sourceAddress: None
 asNumber: 64600
 node: node2
 peerIP: 10.1.2.2:179

apiVersion: crd.projectcalico.org/v1
kind: BGPPeer
metadata:
 name: node3
spec:
 sourceAddress: None
 asNumber: 64600
 node: node3
 peerIP: 10.1.3.2:179

apiVersion: crd.projectcalico.org/v1
kind: BGPPeer
metadata:
 name: node4
spec:
 sourceAddress: None
 asNumber: 64600
 node: node4
 peerIP: 10.1.4.2:179

apiVersion: crd.projectcalico.org/v1
kind: BGPPeer
metadata:
 name: node5
spec:
 sourceAddress: None
 asNumber: 64600
 node: node5
 peerIP: 10.1.5.2:179

bgppeers-v6.yaml:

apiVersion: crd.projectcalico.org/v1

438

kind: BGPPeer
metadata:
Change for every node
 name: node1-ipv6
spec:
 sourceAddress: None
 asNumber: 64600
 node: node1
 peerIP: '[2001:db8:1::2]:179'

apiVersion: crd.projectcalico.org/v1
kind: BGPPeer
metadata:
Change for every node
 name: node2-ipv6
spec:
 sourceAddress: None
 asNumber: 64600
 node: node2
 peerIP: '[2001:db8:2::2]:179'

apiVersion: crd.projectcalico.org/v1
kind: BGPPeer
metadata:
Change for every node
 name: node3-ipv6
spec:
 sourceAddress: None
 asNumber: 64600
 node: node3
 peerIP: '[2001:db8:3::2]:179'

apiVersion: crd.projectcalico.org/v1
kind: BGPPeer
metadata:
Change for every node
 name: node4-ipv6
spec:
 sourceAddress: None
 asNumber: 64600
 node: node4
 peerIP: '[2001:db8:4::2]:179'

439

apiVersion: crd.projectcalico.org/v1
kind: BGPPeer
metadata:
Change for every node
 name: node5-ipv6
spec:
 sourceAddress: None
 asNumber: 64600
 node: node5
 peerIP: '[2001:db8:5::2]:179'

Host-Based Routing: Example VxLAN and Route Target Pools

IN THIS SECTION

VxLAN Pool Example | 440

Route Target Pool Example | 441

VxLAN Pool Example

vxlan-pool.yaml:

apiVersion: core.svcmodule.juniper.net/v1
kind: Pool
metadata:
 name: default-vni
 namespace: svcmodule-system
spec:
 vxlanId:
 start: 4096
 end: 16777215

440

Route Target Pool Example

rt-pool.yaml:

apiVersion: core.svcmodule.juniper.net/v1
kind: Pool
metadata:
 name: default-route-target-number
 namespace: svcmodule-system
spec:
 routeTarget:
 start: 8000000
 size: 2048

Host-Based Routing: Example JCNR Configuration

IN THIS SECTION

JCNR Configuration | 441

JCNR Configuration

jcnr-config.yaml:

apiVersion: configplane.juniper.net/v1
kind: Jcnr
metadata:
 name: crpd-master
 namespace: hbn
spec:
 replicas: 3
 jcnrTemplate:
 externallyInitialized: true
 loopbackAddressInitialized: true

441

 nodeSelector:
 master: ""

apiVersion: configplane.juniper.net/v1
kind: Jcnr
metadata:
 name: crpd-worker
 namespace: hbn
spec:
 replicas: 2
 jcnrTemplate:
 externallyInitialized: true
 loopbackAddressInitialized: true
 nodeSelector:
 worker: ""

Host-Based Routing: Example Secondary CNI Configuration Files

IN THIS SECTION

Example MACVLAN Custom Resource | 442

Example MACVLAN Pods | 445

Example IPVLAN Custom Resource | 447

Example IPVLAN Pods | 450

Example MACVLAN Custom Resource

macvlan-cr.yaml:

apiVersion: core.svcmodule.juniper.net/v1
kind: RoutingInstance
metadata:
 name: macvlan-ri-master
 namespace: hbn
spec:

442

 crpdGroupReference:
 name: crpd-master
 instanceType: mac-vrf
 vrfTarget:
 importExport:
 name: target:64512:8000000
 routingOptions:
 routeDistinguisherId: 192.168.100.2:11
 bridgeDomains:
 - name: test-domain
 interface: vrf-end
 vLanId: 100
 vni: 4200

apiVersion: core.svcmodule.juniper.net/v1
kind: RoutingInstance
metadata:
 name: macvlan-ri-worker
 namespace: hbn
spec:
 crpdGroupReference:
 name: crpd-worker
 instanceType: mac-vrf
 vrfTarget:
 importExport:
 name: target:64512:8000000
 routingOptions:
 routeDistinguisherId: 192.168.100.2:11
 bridgeDomains:
 - name: test-domain
 interface: vrf-end
 vLanId: 100
 vni: 4200

apiVersion: core.svcmodule.juniper.net/v1
kind: EVPN
metadata:
 name: macvlan-evpn-master
 namespace: hbn
spec:
 encapsulation: vxlan
 defaultGateway: no-gateway-community
 routingInstanceParent:

443

 name: macvlan-ri-master

apiVersion: core.svcmodule.juniper.net/v1
kind: EVPN
metadata:
 name: macvlan-evpn-worker
 namespace: hbn
spec:
 encapsulation: vxlan
 defaultGateway: no-gateway-community
 routingInstanceParent:
 name: macvlan-ri-worker

apiVersion: core.svcmodule.juniper.net/v1
kind: InterfaceGroup
metadata:
 name: jcnr-macvlan-master
 namespace: hbn
spec:
 instanceParent:
 parentType: jcnr
 reference:
 name: crpd-master
interfaceName: vrf-end
interfaceTemplate:
 encapsulation: vlan-bridge
 families:
 - addressFamily: bridge

apiVersion: core.svcmodule.juniper.net/v1
kind: InterfaceGroup
metadata:
 name: jcnr-macvlan-worker
 namespace: hbn
spec:
 instanceParent:
 parentType: jcnr
 reference:
 name: crpd-worker
 interfaceName: vrf-end
 interfaceTemplate:
 encapsulation: vlan-bridge

444

 families:
 - addressFamily: bridge

Example MACVLAN Pods

macvlan-pods.yaml:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: macvlan-conf
spec:
 config: '{
 "cniVersion": "0.3.1",
 "plugins": [
 {
 "type": "macvlan",
 "capabilities": { "ips": true },
 "master": "host-end",
 "mode": "bridge",
 "ipam": {
 "type": "static",
 "routes": [
 {
 "dst": "0.0.0.0/0",
 "gw": "10.9.1.1"
 }
]
 }
 }, {
 "capabilities": { "mac": true },
 "type": "tuning"
 }
]
 }'

apiVersion: v1
kind: Pod
metadata:
 name: l2-pod-1

445

 annotations:
 k8s.v1.cni.cncf.io/networks: '[
 { "name": "macvlan-conf",
 "ips": ["10.9.1.101/24"],
 "mac": "00:53:57:49:47:aa",
 "gateway": ["10.9.1.1"]
 }]'
spec:
 containers:
 - name: l2-pod-1
 command: ["/bin/bash", "-c", "trap : TERM INT; sleep infinity & wait"]
 image: google-containers/toolbox
 ports:
 - containerPort: 80
 securityContext:
 capabilities:
 add:
 - NET_ADMIN
 privileged: true
 automountServiceAccountToken: false
 nodeName: ${node-name}

apiVersion: v1
kind: Pod
metadata:
 name: l2-pod-2
 annotations:
 k8s.v1.cni.cncf.io/networks: '[
 { "name": "macvlan-conf",
 "ips": ["10.9.1.102/24"],
 "mac": "00:53:57:49:47:bb",
 "gateway": ["10.9.1.1"]
 }]'
spec:
 containers:
 - name: samplepod
 command: ["/bin/bash", "-c", "trap : TERM INT; sleep infinity & wait"]
 image: google-containers/toolbox
 ports:
 - containerPort: 80
 securityContext:
 capabilities:
 add:

446

 - NET_ADMIN
 privileged: true
 automountServiceAccountToken: false
 nodeName: ${node-name}

Example IPVLAN Custom Resource

ipvlan-cr.yaml:

apiVersion: core.svcmodule.juniper.net/v1
kind: RoutingPolicy
metadata:
 name: static-rt
 namespace: hbn
spec:
 terms:
 - name: learned-from-static
 from:
 protocol: static
 then:
 accept: true
 default:
 accept: false

apiVersion: core.svcmodule.juniper.net/v1
kind: RoutingInstance
metadata:
 name: ipvlan-ri-master
 namespace: hbn
spec:
 crpdGroupReference:
 name: crpd-master
 instanceType: vrf
 interfaces:
 - ipvlan-vrf
 vrfTarget:
 importExport:
 name: target:11:11
 routingOptions:
 routeDistinguisherId: 11:11

447

apiVersion: core.svcmodule.juniper.net/v1
kind: RoutingInstance
metadata:
 name: ipvlan-ri-worker
 namespace: hbn
spec:
 crpdGroupReference:
 name: crpd-worker
 instanceType: vrf
 interfaces:
 - ipvlan-vrf
 vrfTarget:
 importExport:
 name: target:11:11
 routingOptions:
 routeDistinguisherId: 11:11

apiVersion: core.svcmodule.juniper.net/v1
kind: EVPN
metadata:
 name: ipvlan-evpn-master
 namespace: hbn
spec:
 encapsulation: vxlan
 exportPolicy:
 name: static-rt
 routingInstanceParent:
 name: ipvlan-ri-master

apiVersion: core.svcmodule.juniper.net/v1
kind: EVPN
metadata:
 name: ipvlan-evpn-worker
 namespace: hbn
spec:
 encapsulation: vxlan
 exportPolicy:
 name: static-rt
 routingInstanceParent:
 name: ipvlan-ri-worker

apiVersion: core.svcmodule.juniper.net/v1
kind: InterfaceGroup

448

metadata:
 name: jcnr-ipvlan-master
 namespace: hbn
spec:
 instanceParent:
 parentType: jcnr
 reference:
 name: crpd-master
 interfaceName: ipvlan-vrf
 interfaceTemplate:
 families:
 - addressFamily: inet
 ipAddress: 10.19.19.1/24

apiVersion: core.svcmodule.juniper.net/v1
kind: InterfaceGroup
metadata:
 name: jcnr-ipvlan-worker
 namespace: hbn
spec:
 instanceParent:
 parentType: jcnr
 reference:
 name: crpd-worker
 interfaceName: ipvlan-vrf
 interfaceTemplate:
 families:
 - addressFamily: inet
 ipAddress: 10.19.19.1/24

apiVersion: configplane.juniper.net/v1
kind: NodeConfiglet
metadata:
 labels:
 core.juniper.net/nodeName: <node-name where ipvlan-pod-1 will be scheduled>
 name: ipvlan-addon-node-1
 namespace: hbn
spec:
 clis:
 - set routing-instances <name of RI to which node belongs to> routing-options static route
10.19.19.101/32 nexthop 10.19.19.101
 nodeName: <node-name where ipvlan-pod-1 will be scheduled>

449

apiVersion: configplane.juniper.net/v1
kind: NodeConfiglet
metadata:
 labels:
 core.juniper.net/nodeName: <node-name where ipvlan-pod-2 will be scheduled>
 name: ipvlan-addon-node-2
 namespace: hbn
spec:
 clis:
 - set routing-instances <name of RI to which node belongs to> routing-options static route
10.19.19.102/32 nexthop 10.19.19.102
 nodeName: <node-name where ipvlan-pod-2 will be scheduled>

Example IPVLAN Pods

ipvlan-pods.yaml:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: ipvlan-conf
spec:
 config: '{
 "cniVersion": "0.3.1",
 "name": "ipvlan-conf",
 "type": "ipvlan",
 "master": "ipvlan-host",
 "mode": "l2",
 "ipam": {
 "type": "static"
 }
 }'

apiVersion: v1
kind: Pod
metadata:
 name: ipvlan-pod-1
 annotations:
 k8s.v1.cni.cncf.io/networks: '[
 { "name": "ipvlan-conf",

450

 "ips": ["10.19.19.101/24"]
 }]'
spec:
 containers:
 - name: samplepod-1
 command: ["/bin/bash", "-c", "trap : TERM INT; sleep infinity & wait"]
 image: google-containers/toolbox
 ports:
 - containerPort: 80
 securityContext:
 capabilities:
 add:
 - NET_ADMIN
 privileged: true
 automountServiceAccountToken: false
 nodeName: ${node-name}

apiVersion: v1
kind: Pod
metadata:
 name: ipvlan-pod-2
 annotations:
 k8s.v1.cni.cncf.io/networks: '[
 { "name": "ipvlan-conf",
 "ips": ["10.19.19.102/24"]
 }]'
spec:
 containers:
 - name: samplepod
 command: ["/bin/bash", "-c", "trap : TERM INT; sleep infinity & wait"]
 image: google-containers/toolbox
 ports:
 - containerPort: 80
 securityContext:
 capabilities:
 add:
 - NET_ADMIN
 privileged: true
 automountServiceAccountToken: false
 nodeName: ${node-name}

451

Juniper Technology Preview

Tech Previews enable you to test functionality and provide feedback during the development process of
innovations that are not final production features. The goal of a Tech Preview is for the feature to gain
wider exposure and potential full support in a future release. Customers are encouraged to provide
feedback and functionality suggestions for a Technology Preview feature before it becomes fully
supported.

Tech Previews may not be functionally complete, may have functional alterations in future releases, or
may get dropped under changing markets or unexpected conditions, at Juniper’s sole discretion. Juniper
recommends that you use Tech Preview features in non-production environments only.

Juniper considers feedback to add and improve future iterations of the general availability of the
innovations. Your feedback does not assert any intellectual property claim, and Juniper may implement
your feedback without violating your or any other party's rights.

These features are "as is" and voluntary use. Juniper Support will attempt to resolve any issues that
customers experience when using these features and create bug reports on behalf of support cases.
However, Juniper may not provide comprehensive support services to Tech Preview features. Certain
features may have reduced or modified security, accessibility, availability, and reliability standards
relative to General Availability software. Tech Preview features are not eligible for P1/P2 JTAC cases,
and should not be subject to existing SLAs or service agreements.

For additional details, please contact Juniper Support or your local account team.

452

https://support.juniper.net/support/

	Table of Contents
	Introduction
	Juniper Cloud-Native Router Overview
	Juniper Cloud-Native Router Components
	Juniper Cloud-Native Router vRouter Datapath
	Cloud-Native Router Deployment Modes
	Cloud-Native Router Interfaces Overview

	Install Cloud-Native Router on Baremetal Server
	Install and Verify Juniper Cloud-Native Router for Baremetal Servers
	Install Juniper Cloud-Native Router Using Helm Chart
	Verify Installation

	System Requirements for Baremetal Servers
	Customize Cloud-Native Router Helm Chart for Bare Metal Servers
	Customize Cloud-Native Router Configuration
	Cloud-Native Router Operator Service Module: Host-Based Routing
	Overview
	Install Host-Based Routing
	Prepare the Nodes
	Create Virtual Ethernet Interface (VETH) Pairs and Configure Static Routes
	Install the Operator Service Module
	Set Up Secondary CNI for Host-Based Routing

	Install Cloud-Native Router on Red Hat OpenShift
	Install and Verify Juniper Cloud-Native Router for OpenShift Deployment
	Install Juniper Cloud-Native Router Using Helm Chart
	Verify Installation

	System Requirements for OpenShift Deployment
	Customize Cloud-Native Router Helm Chart for OpenShift Deployment
	Customize Cloud-Native Router Configuration

	Install Cloud-Native Router on Amazon EKS
	Install and Verify Juniper Cloud-Native Router on Amazon EKS
	Install Juniper Cloud-Native Router Using Juniper Support Site Package
	Install Juniper Cloud-Native Router Using AWS Marketplace Subscription (BYOL)
	Verify Cloud-Native Router Installation on Amazon EKS

	System Requirements for EKS Deployment
	Customize Cloud-Native Router Helm Chart for EKS Deployment
	Customize Cloud-Native Router Configuration
	Cloud-Native Router Operator Service Module: VPC Gateway
	Cloud-Native Router VPC Gateway Overview
	Install the Cloud-Native Router VPC Gateway
	Prepare the MetalLB Cluster
	Prepare the Cloud-Native Router VPC Gateway Cluster
	Prepare the On-Premises Cluster

	Install Cloud-Native Router on Google Cloud Platform
	Install and Verify Juniper Cloud-Native Router for GCP Deployment
	Install Juniper Cloud-Native Router Using Juniper Support Site Package
	Install Juniper Cloud-Native Router Via Google Cloud Marketplace
	Verify Installation

	System Requirements for GCP Deployment
	Customize Cloud-Native Router Helm Chart for GCP Deployment
	Customize Cloud-Native Router Configuration

	Install Cloud-Native Router on Wind River Cloud Platform
	Install and Verify Juniper Cloud-Native Router for Wind River Deployment
	Install Juniper Cloud-Native Router Using Helm Chart
	Verify Installation

	System Requirements for Wind River Deployment
	Customize Cloud-Native Router Helm Chart for Wind River Deployment
	Customize Cloud-Native Router Configuration

	Install Cloud-Native Router on Microsoft Azure Cloud Platform
	Install and Verify Juniper Cloud-Native Router for Azure Deployment
	Install Juniper Cloud-Native Router Using Helm Chart
	Verify Installation

	System Requirements for Azure Deployment
	Customize Cloud-Native Router Helm Chart for Azure Deployment
	Customize Cloud-Native Router Configuration

	Install Cloud-Native Router on VMWare Tanzu
	Install and Verify Juniper Cloud-Native Router for VMWare Tanzu
	System Requirements for Tanzu Deployment
	Customize Cloud-Native Router Helm Chart for Tanzu Deployment
	Customize Cloud-Native Router Configuration

	Deploying Service Chain (cSRX) with JCNR
	Deploying Service Chain (cSRX) with JCNR
	Install cSRX on an Existing Cloud-Native Router Installation
	Install cSRX During Cloud-Native Router Installation
	Apply the cSRX License and Configure cSRX
	Customize cSRX Helm Chart

	Manage
	Manage Cloud-Native Router Software
	Upgrade from Cloud-Native Router Release 23.4 and Earlier
	Upgrade from Cloud-Native Router Release 24.2 and Later
	Downgrade/Rollback JCNR
	Uninstall JCNR

	Manage Cloud-Native Router Licenses
	Installing Your License
	Renewing Your License

	Allocate CPUs to the Cloud-Native Router Forwarding Plane
	Allocate CPUs Using the Kubernetes CPU Manager
	Allocate CPUs Using Static CPU Allocation

	Host Protection using Control Plane Policing

	Validate and Troubleshoot
	Cloud-Native Router Readiness Checks
	Validation Factory
	Overview
	Test Topology Manifest
	Execute the Test Profiles

	Troubleshoot Deployment
	Common Problems
	Check Deployer Logs
	Verify vRouter and cRPD Health
	Verify cRPD Configuration
	View Log Files

	Appendix
	Kubernetes Overview
	Cloud-Native Router Software Download Packages
	Cloud-Native Router Default Helm Chart
	Configure Repository Credentials
	Deploy Prepackaged Images
	Configure Huge Pages
	Configure the Number of Huge Pages Available on a Node
	Configure the Number of Huge Pages to Use

	List of Cloud-Native Router Readiness Checks
	CloudFormation Template for EKS Cluster
	Cloud-Native Router Operator Service Module: Host-Based Routing Example Configuration Files
	Host-Based Routing: Example Scripts and Configuration Files to Install cRPD
	Host-Based Routing: Example Calico Configuration
	Host-Based Routing: Example VxLAN and Route Target Pools
	Host-Based Routing: Example JCNR Configuration
	Host-Based Routing: Example Secondary CNI Configuration Files

	Juniper Technology Preview

