



#### **DECLARATION OF PERFORMANCE**

#### **DoP 0379**

for fischer Bolt Anchor FWA Plus (Mechanical anchor for use in concrete)

ΕN

1/2

1. <u>Unique identification code of the product-type:</u> **DoP 0379** 

2. Intended use/es: Post-installed mechanical anchor für use in uncracked concrete, see appendix, especially annexes

B1 - B3.

3. Manufacturer: fischerwerke GmbH & Co. KG, Klaus-Fischer-Str. 1, 72178 Waldachtal, Germany

4. Authorised representative:

5. System/s of AVCP: 1

6. European Assessment Document: EAD 330232-01-0601
European Technical Assessment: ETA-24/0714; 2025-04-22
Technical Assessment Body: ETA-Danmark A/S
Notified body/ies: 2873 TU Darmstadt

#### 7. Declared performance/s:

#### Mechanical resistance and stability (BWR 1)

Characteristic resistance to tension load (static and quasi-static loading) Method A:

Resistance to steel failure: Annex C1
Resistance to pull- out failure: Annex C1
Resistance to concrete cone failure: Annex C1

Robustness: Annex C1

Minimum edge distance and spacing: Annex C2 Edge distance to prevent splitting under load: Annex C1

#### Characteristic resistance to shear load (static and quasi-static loading):

Resistance to steel failure (shear load): Annex C2

Resistance to pry-out failure: Annex C2

## Characteristic Resistance for simplified design:

Method B: NPD Method C: NPD

#### Displacements:

Displacements under static and quasi-static loading: Annex C2

#### Characteristic resistance and displacements for seismic performance categories C1 and C2:

Resistance to tension load, displacements, category C1: NPD Resistance to tension load, displacements, category C2: NPD Resistance to shear load, displacements, category C1: NPD Resistance to shear load, displacements, category C2: NPD

Factor for annular gap: NPD

#### Safety in case of fire (BWR 2)

Reaction to fire: Class (A1)

## Resistance to fire:

Fire resistance to steel failure (tension load): NPD Fire resistance to pull-out failure (tension load): NPD Fire resistance to steel failure (shear load): NPD

#### **Durability:**

Durability: Annexes A3, B1



Fischer DATA DOP\_ECs\_V103.xlsm





Appropriate Technical Documentation and/or Specific Technical Documentation:

The performance of the product identified above is in conformity with the set of declared performance/s. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

M. C. June Derill

Dieter Pfaff, Head of International Production Federation and Quality Management

Dr. Ronald Mihala, Head of Development and Production Management Tumlingen, 2025-05-02

This DoP has been prepared in different languages. In case there is a dispute on the interpretation the English version shall always prevail.

The Appendix includes voluntary and complementary information in English language exceeding the (language-neutrally specified) legal requirements.



Translation guidance Essential Characteristics and Performance Parameters for Annexes

|     | aracteristic resistance under static and quasi-static loading, Method A             |                                                                                                |
|-----|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| 1   | Resistance to steel failure:                                                        | N                                                                                              |
| '   | nesistance to steer familie.                                                        | $N_{Rk,s}$ [kN], $E_s$ [N/mm <sup>2</sup> ]                                                    |
| 2   | Resistance to pull- out failure:                                                    | $N_{Rk,p}$ [kN], $\psi_c$                                                                      |
| 3   | Resistance to concrete cone failure:                                                | k <sub>cr,N</sub> , k <sub>ucr,N</sub> [-], h <sub>ef</sub> , c <sub>cr,N</sub> [mm]           |
| 4   | Robustness:                                                                         | Yinst [-]                                                                                      |
| 5   | Minimum edge distance and spacing:                                                  | c <sub>min</sub> , s <sub>min</sub> , h <sub>min</sub> [mm]                                    |
| 6   | Edge distance to prevent splitting under load:                                      | N <sup>0</sup> <sub>Rk,sp</sub> [kN], c <sub>cr,sp</sub> [mm]                                  |
| Ch  | aracteristic resistance to shear load (static and quasi-static loading), Method A   |                                                                                                |
| 7   | Resistance to steel failure under shear load:                                       | V <sup>0</sup> <sub>Rk,s</sub> [kN], M <sup>0</sup> <sub>Rk,s</sub> [Nm], k <sub>7</sub> [-]   |
| 8   | Resistance to pry-out failure:                                                      | k <sub>8</sub> [-]                                                                             |
| Ch  | L<br>aracteristic Resistance for simplified design                                  | ļ                                                                                              |
| 9   | Method B:                                                                           | F <sup>0</sup> <sub>Rk</sub> [kN], c <sub>cr</sub> , s <sub>cr</sub> [mm]                      |
| 10  | Method C:                                                                           | F <sub>Rk</sub> [kN]                                                                           |
| Dis | placements                                                                          |                                                                                                |
| 11  | Displacements under static and quasi-static loading:                                | $\delta_{N0},\delta_{N^{\infty},}\delta_{V0,}\delta_{V^{\infty}}[mm]$                          |
| 12  | Stiffness characteristics for tension loading for non-linear spring models:         | k <sub>1,ucr</sub> , k <sub>2,ucr</sub> , k <sub>3,ucr</sub> , k <sub>4,ucr</sub> ,            |
| Ch  | Laracteristic resistance and displacements for seismic performance categories C1 ar | k <sub>1,cr</sub> , k <sub>2,cr</sub> , k <sub>3,cr</sub> , k <sub>4,cr</sub> [kN/mm]<br>nd C2 |
| 13  | Resistance to tension load, displacements, category C1:                             | N <sub>Rk,s,C1</sub> [kN], N <sub>Rk,p,C1</sub> [kN]                                           |
|     | Resistance to tension load, displacements, category C2:                             | $N_{Rk,s,C2}  [kN],  N_{Rk,p,C2}  [kN],  \delta_{N,C2}  [mm]$                                  |
| 14  | Resistance to shear load, displacements, category C1:                               | V <sub>Rk,s,C1</sub> [kN]                                                                      |
|     | Resistance to shear load, displacements, category C2:                               | $V_{Rk,s,C2}$ [kN], $\delta_{V,C2}$ [mm]                                                       |
| 15  | Factor for annular gap                                                              | α <sub>gap</sub> [-]                                                                           |
| Sa  | [ fety in case of fire (BWR 2)                                                      |                                                                                                |
| 16  | Reaction to fire:                                                                   | Class                                                                                          |
| Re  | sistance to fire:                                                                   |                                                                                                |
| 17  | Fire resistance to steel failure (tension load):                                    | N <sub>Rk,s,fi</sub> [kN]                                                                      |
| 18  | Fire resistance to pull-out failure (tension load):                                 | N <sub>Rk,p,fi</sub> [kN]                                                                      |
| 19  | Fire resistance to steel failure (shear load):                                      | V <sub>Rk,s,fi</sub> [kN], M <sup>0</sup> <sub>Rk,s,fi</sub> [Nm]                              |
| _   | pects of durability                                                                 |                                                                                                |
| As  | pools of darability                                                                 |                                                                                                |

# II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

# 1 Technical description of product

The FWA Plus is a torque-controlled expansion anchor made of galvanised steel. It is available in the sizes M8, M10, M12 and M16. The expansion is achieved by torque acting on the bolt. As the anchor is prestressed, the cone is pulled into the expansion sleeve and the load applied to the anchor is transferred to the concrete mainly by friction. The anchor body of sizes M8 to M16 is cold-formed. The FWA Plus is suitable for use in uncracked concrete of strength classes C20/25 to C50/60

The product description is given in Annex A and the intended use specifications of the product are detailed in Annex B.

# 2 Specification of the intended use(s) in accordance with the applicable European Assessment Document (hereinafter EAD)

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed intended working life of the anchor of 50 years.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

# 3 Performance of the product and references to the methods used for its assessment

## Characteristic

# Assessment of characteristic

# 3.1 Mechanical resistance and stability (BWR1)

# Characteristic resistance to tension load (static and quasi-static loading) Method A

Resistance to steel failure Annex C1

Resistance to pull-out failure Annex C1

Resistance to concrete cone failure Annex C1

Robustness Annex B

Minimum edge distance and spacing Annex C2

Edge distance to prevent splitting under load Annex C1

# Characteristic resistance to shear load (static and quasi-static loading)

Resistance to steel failure under shear load Annex C2

Resistance to pry-out failure Annex C2

# Characteristic resistance for simplified design

Method B Not relevant

Method C Not relevant

# **Displacements**

Displacements under static and quasi-static

loading

Annex C2

# Characteristic resistance and displacements for seismic performance categories C1 and C2

Resistance to tension load, displacements No performance assessed

Resistance to shear load, displacements No performance assessed

Factor for annual gap

No performance assessed

#### Characteristic

#### **Assessment of characteristic**

# 3.2 Safety in case of fire (BWR2)

Reaction to fire

The anchors are made from steel classified as performance **class A1** of the characteristic reaction to fire, in accordance with the provisions of EC decision 96/603/EC, amended by EC Decision 2000/605/EC.

#### Resistance to fire

Fire resistance to steel failure (tension load)

No performance assessed

Fire resistance to pull-out failure (tension load)

No performance assessed

Fire resistance to steel failure (shear load)

No performance assessed

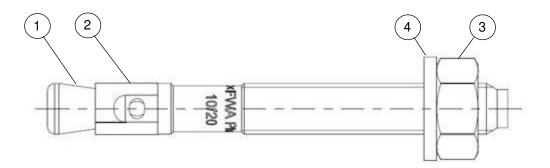
# 3.3 Aspects of durability

Durability

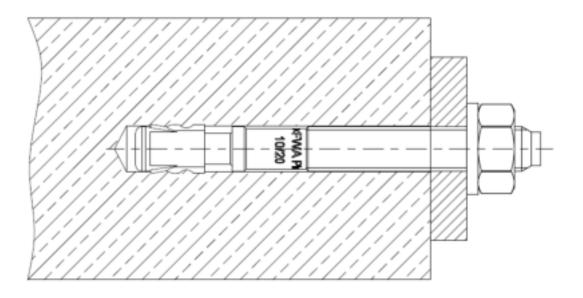
Annex B

See additional information in section 3.9

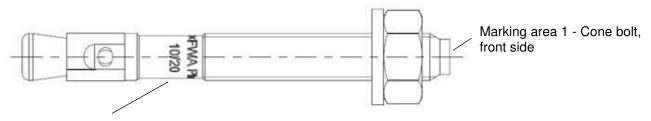
# 3.9 General aspects related to the performance of the product


The European Technical Assessment is issued for the product on the basis of agreed data/information, deposited with ETA-Danmark, which identifies the product that has been assessed and judged. Changes to the product or production process, which could result in this deposited data/information being incorrect, should be notified to ETA-Danmark before the changes are introduced. ETA-Danmark will decide whether or not such changes affect the ETA and consequently the validity of the CE marking on the basis of the ETA and if so whether further assessment or alterations to the ETA, shall be necessary.

4 Assessment and verification of constancy of performance (AVCP) (hereinafter AVCP) system applied, with reference to its legal base.


# 4.1 AVCP system

According to the decision 1996/582/EC of the European Commission, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No. 305/2011) is 1.


# Cone bolt manufactured by cold - forming:



- ① Cone bolt (cold formed)
- ② Expansion sleeve
- 3 Hexagon nut
- Washer



| fischer Bolt Anchor FWA Plus            |                 |
|-----------------------------------------|-----------------|
| Product description Installed condition | Annex A1        |
|                                         | Appendix 5 / 12 |



Marking area 2 - Cone Bolt, lateral surface

Product marking, example: FWA Plus 10/20x94

Brand | type of fastener placed at marking area 2

Thread size / max. thickness of fixture ( $t_{\text{fix}}$ ) x fastener length (L) placed at marking area 2

Table A2.1: Letter-code on marking area 1 and maximum thickness of fixture tfix:

| Marking               | Α | В  | С  | D  | Е  | F  | G  | Н  | 1  | K  | L  | М  | N  | 0  | Р   | R   | S   | Т   | U   | V   | W   | Χ   | Υ | Ζ   |
|-----------------------|---|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|-----|-----|-----|-----|---|-----|
| Max. t <sub>fix</sub> | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 60 | 70 | 80 | 90 | 100 | 120 | 140 | 160 | 180 | 200 | 250 | 300 |   | 400 |

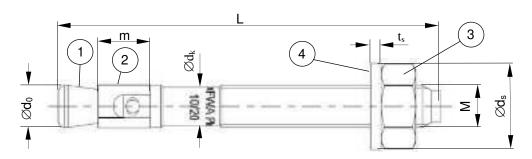



Table A2.2: Fastener dimensions [mm]

| David   | Desimation       |                  |                |      | FWA  | Plus |      |
|---------|------------------|------------------|----------------|------|------|------|------|
| Part    | Designation      |                  |                | M8   | M10  | M12  | M16  |
|         |                  | М                |                | 8    | 10   | 12   | 16   |
| 1       | Cone bolt        | Ø d₀             | =              | 7,8  | 9,8  | 11,8 | 15   |
|         |                  | Ø <b>d</b> k     | _              | 7,1  | 8,9  | 10,7 | 14,6 |
| 2       | Expansion sleeve | m                | =              | 10,0 | 12,0 | 14,0 | 20,0 |
| 3       | Hexagon nut      | SW               | =              | 13   | 17   | 19   | 24   |
| 1       | Washer           | ts               | ,              | 1,6  | 2,0  | 2,5  | 3,0  |
| 4       |                  | $\emptyset d_s$  | <del>-</del> ≥ | 16   | 20   | 24   | 30   |
| T1: 1   |                  | 4                | ≥              |      | (    | )    |      |
| HIICKI  | ness of fixture  | $t_{fix}$        | <u></u>        | 100  | 200  | 200  | 300  |
| الجمعيا | h of footones    | L <sub>min</sub> |                | 71   | 84   | 108  | 144  |
| Lengti  | h of fastener    | L <sub>max</sub> | _ =            | 166  | 274  | 202  | 421  |

| fischer Bolt Anchor FWA Plus                                             |                 |
|--------------------------------------------------------------------------|-----------------|
| Product description Product marking, letter code and fastener dimensions | Annex A2        |
|                                                                          | Appendix 6 / 12 |

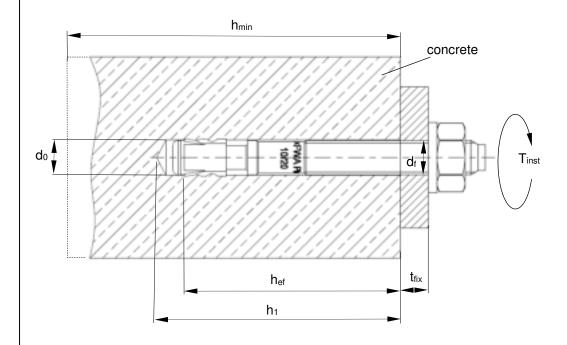
| Part | Designation             | Mate                         | erial |
|------|-------------------------|------------------------------|-------|
| 1    | Cone bolt               | Cold form steel              |       |
| 2    | Expansion sleeve        | Cold strip                   |       |
| 3    | Hexagon nut             | Steel, property class min. 8 |       |
| 4    | Washer                  | Cold strip                   |       |
|      |                         |                              |       |
|      | er Bolt Anchor FWA Plus |                              |       |

| Specifications of intended use |    |     |     |     |  |  |  |
|--------------------------------|----|-----|-----|-----|--|--|--|
| fischer Bolt Anchor FWA Plus   | M8 | M10 | M12 | M16 |  |  |  |
| Material: steel, zinc plated   |    |     |     |     |  |  |  |
| Static and quasi-static loads  | /  |     |     |     |  |  |  |
| Uncracked concrete             |    |     |     |     |  |  |  |

#### Base materials:

 Reinforced or unreinforced normal concrete without fibres of strength classes C20/25 to C50/60 according to EN 206:2013+A2:2021

# Use conditions (Environmental conditions):


· Structures subject to dry internal conditions.

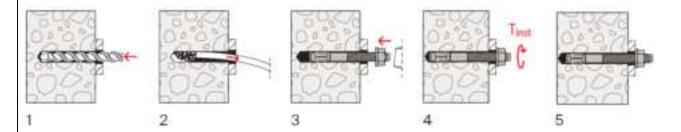
## Design:

- The structural design is conducted under responsibility of a designer experienced in the field of fastenings and concrete works.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The
  position of the fastener is indicated on the design drawings (e.g. position of the fastener relative to
  reinforcement or to supports, etc.)
- Design of fastenings according to EN 1992-4:2018 and TR 055:2018.

| fischer Bolt Anchor FWA Plus |                 |
|------------------------------|-----------------|
| Intended Use Specifications  | Annex B1        |
| opeoino ano no               | Appendix 8 / 12 |

| Type of factorer / size                   | FWA Plus           |      |       |      |      |  |  |
|-------------------------------------------|--------------------|------|-------|------|------|--|--|
| Type of fastener / size                   | M8                 | M10  | M12   | M16  |      |  |  |
| Nominal drill hole diameter               | d <sub>0</sub> =   | 8    | 10    | 12   | 16   |  |  |
| Cutting diameter of drill bit             | d <sub>cut</sub> ≤ | 8,45 | 10,45 | 12,5 | 16,5 |  |  |
| Effective embedment depth                 | $h_{ef} \ge [mm]$  | 48   | 50    | 70   | 84   |  |  |
| Depth of drill hole in concrete           | $h_1 \ge$          | 65   | 75    | 100  | 120  |  |  |
| Diameter of clearance hole in the fixture | d <sub>f</sub> ≤   | 9    | 12    | 14   | 18   |  |  |
| Required setting torque                   | $T_{inst} = [Nm]$  | 10   | 15    | 35   | 110  |  |  |




h<sub>ef</sub> = Effective embedment depth Thickness of the fixture

 $h_1$  = Depth of drill hole to deepest point  $h_{min}$  = Minimum thickness of concrete member  $T_{inst}$  = Required setting torque

| fischer Bolt Anchor FWA Plus         |                 |
|--------------------------------------|-----------------|
| Intended Use Installation parameters | Annex B2        |
| · ·                                  | Appendix 9 / 12 |

# **Installation instructions**

- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site
- Use of the fastener only as supplied by the manufacturer without exchanging the components of the fastener
- Hammer drilling
- Drill hole created perpendicular +/- 5° to concrete surface, positioning without damaging the reinforcement
- In case of aborted hole: new drilling at a minimum distance twice the depth of the aborted drill hole or smaller distance if the aborted drill hole is filled with high strength mortar and if under shear or combined shear/tension load it is not in the direction of load application



| No. | Description                                     |
|-----|-------------------------------------------------|
| 1   | Drill the hole by hammer drilling.              |
| 2   | Clean the hole.                                 |
| 3   | Set the fastener.                               |
| 4   | Apply required setting torque T <sub>inst</sub> |
| 5   | Installed fastener                              |

| fischer Bolt Anchor FWA Plus           |                  |
|----------------------------------------|------------------|
| Intended Use Installation instructions | Annex B3         |
|                                        | Appendix 10 / 12 |

Table C1.1: Characteristic values of tension resistance under static and quasi-static action

| Type of factorer / size                                         |                         |        | FWA Plus                                                                |      |                   |      |  |  |
|-----------------------------------------------------------------|-------------------------|--------|-------------------------------------------------------------------------|------|-------------------|------|--|--|
| Type of fastener / size                                         |                         |        | М8                                                                      | M10  | M12               | M16  |  |  |
| Steel failure                                                   |                         |        |                                                                         |      |                   |      |  |  |
| Characteristic resistance                                       | $N_{Rk,s}$              | [kN]   | 15,5                                                                    | 22,0 | 35,0              | 46,0 |  |  |
| Partial factor                                                  | $\gamma \text{Ms}^{1)}$ | [-]    |                                                                         |      | 1,50              |      |  |  |
| Pullout failure                                                 |                         |        |                                                                         |      |                   |      |  |  |
| Characteristic resistance in uncracked concrete C20/25          | $N_{Rk,p}$              | [kN]   | 10,4                                                                    | 13,8 | 22,8              | 29,0 |  |  |
|                                                                 |                         | C25/30 |                                                                         |      | 1,12              |      |  |  |
|                                                                 |                         | C30/37 |                                                                         |      | 1,22              |      |  |  |
| Increasing factors $\psi_c$ for $N_{Rk,p}$                      |                         | C35/45 | 1,32                                                                    |      |                   |      |  |  |
| N <sub>Rk,p</sub> = ψ <sub>c</sub> · N <sub>Rk,p</sub> (C20/25) | Ψc                      | C40/50 | 1,41                                                                    |      |                   |      |  |  |
| ТИНК,р — ФС - ТИНК,р (О20/23)                                   |                         | C45/55 | 1,50                                                                    |      |                   |      |  |  |
|                                                                 |                         | C50/60 | 1,58                                                                    |      |                   |      |  |  |
| Partial installation factor                                     | γinst                   | [-]    | 1,0                                                                     |      |                   |      |  |  |
| Concrete cone and splitting f                                   | ailure                  |        |                                                                         |      |                   |      |  |  |
| Effective embedment depth                                       | h <sub>ef</sub>         | [mm]   | 48                                                                      | 50   | 70                | 84   |  |  |
| Factor for uncracked concrete                                   | k <sub>ucr,N</sub>      | [-]    |                                                                         | 1    | 1,02)             |      |  |  |
| Characteristic spacing                                          | Scr,N                   | _      |                                                                         |      | 3 h <sub>ef</sub> |      |  |  |
| Characteristic edge distance                                    | C <sub>cr,N</sub>       | _      | 1,5 h <sub>ef</sub>                                                     |      |                   |      |  |  |
| Characteristic spacing for splitting failure                    | <b>S</b> cr,sp          | [mm]   | 192                                                                     | 250  | 350               | 504  |  |  |
| Characteristic distance for splitting failure                   | <b>C</b> cr,sp          |        | 96                                                                      | 125  | 175               | 252  |  |  |
| Characteristic resistance to splitting                          | $N^0_{Rk,sp}$           | [kN]   | min {N <sup>0</sup> <sub>Rk,c</sub> , N <sub>Rk,p</sub> } <sup>3)</sup> |      |                   |      |  |  |

| fischer Bolt Anchor FWA Plus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Performance Characteristic values of tension resistance under static and quasi-static action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Annex C1         |
| and quantities and actions and actions and actions are quantities are quantities and actions are quantities are quant | Appendix 11 / 12 |

 $<sup>^{1)}</sup>$  In absence of other national regulations  $^{2)}$  Based on concrete strength as cylinder strength  $^{3)}\,N^0_{Rk,c}$  according to EN 1992-4:2018

Table C2.1: Characteristic values of shear resistance under static and quasi-static action

| Type of factorer / size                                  |                       |        | FWA Plus |      |      |       |  |
|----------------------------------------------------------|-----------------------|--------|----------|------|------|-------|--|
| Type of fastener / size                                  |                       |        | M8       | M10  | M12  | M16   |  |
| Installation factor                                      | γinst                 | [-]    |          | 1,0  | 0    |       |  |
| Steel failure without lever arm                          | •                     |        |          |      |      |       |  |
| Characteristic resistance                                | $V^0_{Rk,s}$          | [kN]   | 11,0     | 17,0 | 25,3 | 30,0  |  |
| Partial factor for steel failure                         | $\gamma$ Ms $^{1)}$   | [-]    | 1,25     |      |      |       |  |
| Steel failure with lever arm and concrete pryout failure |                       |        |          |      |      |       |  |
| Characteristic bending moment                            | $M^0_{Rk,s}$          | [Nm]   | 22,5     | 44,8 | 78,6 | 199,0 |  |
| Partial factor for steel failure                         | γ <sub>Ms</sub> 1)    |        |          | 1,2  | 5    |       |  |
| Factor for ductility                                     | <b>k</b> <sub>7</sub> | [-]    | 0,8      |      |      |       |  |
| Factor for pryout                                        | k <sub>8</sub>        |        | 1 2      |      |      | 2     |  |
| Concrete edge failure                                    |                       | •      |          |      |      |       |  |
| Effective length of fastener                             | If                    | [mm]   | 48       | 50   | 70   | 84    |  |
| Effective diameter of fastener                           | d <sub>nom</sub>      | — [mm] | 8        | 10   | 12   | 16    |  |

<sup>1)</sup> In absence of other national regulations

**Table C2.2:** Minimum thickness of concrete members, minimum spacing and minimum edge distances

| Tune of factories / pize    |                  | FWA Plus |     |     |     |     |
|-----------------------------|------------------|----------|-----|-----|-----|-----|
| Type of fastener / size     |                  |          | М8  | M10 | M12 | M16 |
| Minimum thickness of member | h <sub>min</sub> |          | 100 | 120 | 140 | 170 |
| Minimum spacing             | Smin             | <br>[mm] | 65  | 95  | 100 | 115 |
| Minimum edge distance       | Cmin             |          | 65  | 95  | 100 | 115 |

Table C2.3: Displacements under static and quasi static tension action

| Type of factories / size |     |                     | FWA Plus |     |      |      |
|--------------------------|-----|---------------------|----------|-----|------|------|
| Type of fastener / size  |     |                     | M8       | M10 | M12  | M16  |
| Tension load             | N   | [kN]                | 4,9      | 6,5 | 10,8 | 13,8 |
| Dianlacamenta            | δηο | [mm]                | 0,8      | 1,0 | 1,2  | 1,3  |
| Displacements            | δn∞ | — [mm] <del> </del> | 1,2      | 1,5 | 1,8  | 2,0  |

Table C2.4: Displacements under static and quasi static shear action

| Tune of feetener / cize |     |                     | FWA Plus |     |      |      |
|-------------------------|-----|---------------------|----------|-----|------|------|
| Type of fastener / size |     |                     | M8       | M10 | M12  | M16  |
| Shear load              | V   | [kN]                | 6,3      | 9,7 | 14,5 | 17,1 |
| Dianlacemente           | δνο | [mm]                | 1,9      | 2,7 | 3,5  | 3,5  |
| Displacements           | δν∞ | — [mm] <del> </del> | 2,9      | 4,1 | 5,3  | 3,5  |

| fischer Bolt Anchor FWA Plus                                                                  |                  |
|-----------------------------------------------------------------------------------------------|------------------|
| Performance Characteristic values of shear resistance, minimum thickness of concrete members, | Annex C2         |
| minimum spacing and edge distances, displacements due to tension and shear action             | Appendix 12 / 12 |