
Contrail® Networking

Contrail Networking Monitoring and
Troubleshooting Guide

Published

2024-01-24

RELEASE

21.4

https://manuals.plus/m/9a4a4b2a21b55fe6a7931fe6e50354543443ca078b4e21f3cb4809f8eeda3cc2

Juniper Networks, Inc.
1133 Innovation Way
Sunnyvale, California 94089
USA
408-745-2000
www.juniper.net

Juniper Networks, the Juniper Networks logo, Juniper, and Junos are registered trademarks of Juniper Networks, Inc.
in the United States and other countries. All other trademarks, service marks, registered marks, or registered service
marks are the property of their respective owners.

Juniper Networks assumes no responsibility for any inaccuracies in this document. Juniper Networks reserves the right
to change, modify, transfer, or otherwise revise this publication without notice.

Contrail® Networking Contrail Networking Monitoring and Troubleshooting Guide
21.4
Copyright © 2024 Juniper Networks, Inc. All rights reserved.

The information in this document is current as of the date on the title page.

YEAR 2000 NOTICE

Juniper Networks hardware and software products are Year 2000 compliant. Junos OS has no known time-related
limitations through the year 2038. However, the NTP application is known to have some difficulty in the year 2036.

END USER LICENSE AGREEMENT

The Juniper Networks product that is the subject of this technical documentation consists of (or is intended for use
with) Juniper Networks software. Use of such software is subject to the terms and conditions of the End User License
Agreement ("EULA") posted at https://support.juniper.net/support/eula/. By downloading, installing or using such
software, you agree to the terms and conditions of that EULA.

ii

Table of Contents

About This Guide | xii

1 Monitoring and Troubleshooting Contrail

Understanding Contrail Analytics | 2

Understanding Contrail Analytics | 2

Contrail Alert Streaming | 3

Underlay Overlay Mapping in Contrail | 8

Overview: Underlay Overlay Mapping using Contrail Analytics | 9

Underlay Overlay Analytics Available in Contrail | 9

Architecture and Data Collection | 9

New Processes/Services for Underlay Overlay Mapping | 10

External Interfaces Configuration for Underlay Overlay Mapping | 11

Physical Topology | 11

SNMP Configuration | 12

Link Layer Discovery Protocol (LLDP) Configuration | 12

IPFIX and sFlow Configuration | 12

Sending pRouter Information to the SNMP Collector in Contrail | 14

pRouter UVEs | 15

Contrail User Interface for Underlay Overlay Analytics | 17

Enabling Physical Topology on the Web UI | 17

Viewing Topology to the Virtual Machine Level | 17

Viewing the Traffic of any Link | 18

Trace Flows | 18

Search Flows and Map Flows | 19

Overlay to Underlay Flow Map Schemas | 20

Module Operations for Overlay Underlay Mapping | 23

SNMP Collector Operation | 23

Topology Module Operation | 25

IPFIX and sFlow Collector Operation | 26

Troubleshooting Underlay Overlay Mapping | 27

Script to add pRouter Objects | 27

iii

Encryption Between Analytics API Servers and Client Servers | 29

Configuring Contrail Analytics | 32

Analytics Scalability | 32

High Availability for Analytics | 34

vRouter Command Line Utilities | 34

Overview | 35

vif Command | 36

clear Command | 41

flow Command | 41

vrfstats Command | 43

rt Command | 44

dropstats Command | 45

mpls Command | 49

mirror Command | 51

vxlan Command | 53

nh Command | 55

dpdkinfo Command | 58

dpdkconf Command | 67

Tracing the vRouter Packet Path | 68

Unicast Packet Path - Intra-VN | 69

Unicast Packet Path - Inter-VN | 75

Broadcast, Unknown Unicast, and Multicast Packet Path | 80

Using Contrail Tools | 92

Using Sandump Tool | 94

Security Logging Object | 101

Defining an SLO | 101

Attaching an SLO to a Virtual Network and Virtual Machine Interface | 102

Attaching an SLO to a Virtual Network | 103

Attaching an SLO to a Virtual Machine Interface | 103

Editing an Existing SLO | 104

System Log Receiver in Contrail Analytics | 104

Overview | 105

iv

Redirecting System Logs to Contrail Collector | 105

Exporting Logs from Contrail Analytics | 105

Sending Flow Messages to the Contrail System Log | 105

User Configuration for Analytics Alarms and Log Statistics | 107

Configuring Alarms Based on User-Visible Entities Data | 107

Examples: Detecting Anomalies | 109

Configuring the User-Defined Log Statistic | 111

Implementing the User-Defined Log Statistic | 114

Contrail Networking Alarms | 117

Alarms History | 122

Node Memory and CPU Information | 125

Role- and Resource-Based Access Control for the Contrail Analytics API | 126

Configuring Analytics as a Standalone Solution | 127

Agent Modules in Contrail Networking | 130

Configuring Secure Sandesh and Introspect for Contrail Analytics | 142

Configuring Traffic Mirroring to Monitor | 144

Configuring Traffic Analyzers and Packet Capture for Mirroring | 144

Traffic Analyzer Images | 144

Configuring Traffic Analyzers | 145

Setting Up Traffic Mirroring Using Configure > Networking > Services | 145

Configuring Interface Monitoring and Mirroring | 152

Mirroring Enhancements | 153

Analyzer Service Virtual Machine | 155

Using the Wireshark Plugin to Analyze Packets Between vRouter and vRouter Agent on pkt0
Interface | 158

Mapping VLAN Tags from a Physical NIC to a VMI (NIC-Assisted Mirroring) | 163

Using Contrail Web UI to Monitor and Troubleshoot the Network | 165

Monitoring the System | 165

Monitor > Infrastructure > Dashboard | 169

v

Monitor Dashboard | 170

Monitor Individual Details from the Dashboard | 170

Using Bubble Charts | 171

Color-Coding of Bubble Charts | 172

Monitor > Infrastructure > Control Nodes | 173

Monitor Control Nodes Summary | 173

Monitor Individual Control Node Details | 174

Monitor Individual Control Node Console | 176

Monitor Individual Control Node Peers | 179

Monitor Individual Control Node Routes | 181

Monitor > Infrastructure > Virtual Routers | 184

Monitor vRouters Summary | 184

Monitor Individual vRouters Tabs | 186

Monitor Individual vRouter Details Tab | 186

Monitor Individual vRouters Interfaces Tab | 188

Monitor Individual vRouters Networks Tab | 190

Monitor Individual vRouters ACL Tab | 191

Monitor Individual vRouters Flows Tab | 193

Monitor Individual vRouters Routes Tab | 194

Monitor Individual vRouter Console Tab | 195

Monitor > Infrastructure > Analytics Nodes | 198

Monitor Analytics Nodes | 198

Monitor Analytics Individual Node Details Tab | 200

Monitor Analytics Individual Node Generators Tab | 201

Monitor Analytics Individual Node QE Queries Tab | 202

Monitor Analytics Individual Node Console Tab | 203

Monitor > Infrastructure > Config Nodes | 206

Monitor Config Nodes | 206

Monitor Individual Config Node Details | 207

Monitor Individual Config Node Console | 208

Monitor > Networking | 210

Monitor > Networking Menu Options | 210

Monitor > Networking > Dashboard | 211

vi

Monitor > Networking > Projects | 213

Monitor Projects Detail | 214

Monitor > Networking > Networks | 217

Query > Flows | 222

Query > Flows > Flow Series | 223

Example: Query Flow Series | 226

Query > Flow Records | 228

Query > Flows > Query Queue | 231

Query > Logs | 232

Query > Logs Menu Options | 233

Query > Logs > System Logs | 233

Sample Query for System Logs | 235

Query > Logs > Object Logs | 237

Debugging Processes Using the Contrail Introspect Feature | 239

Example: Debugging Connectivity Using Monitoring for Troubleshooting | 244

Using Monitoring to Debug Connectivity | 245

Contrail Analytics Optional Modules | 251

Using Contrail Command to Monitor and Troubleshoot the Network | 275

Viewing Overlay Routes | 275

Monitoring Bond Interfaces in DPDK Enabled Devices | 276

Top N View in Contrail Command | 280

Contrail Command UI—Top N Feature | 280

Top N Filter Options | 282

Chart View | 285

Viewing Topology Maps from Contrail Command | 286

Viewing Packet Path in Topology View | 291

Assign Custom Names to Privileged Ports and VXLAN IDs | 296

Viewing the Monitoring Dashboards | 302

Creating a Query for Flows | 306

vii

Contrail Analytics Optional Modules | 315

Contrail Insights in Contrail Command | 338

Contrail Insights Overview | 338

Contrail Insights Flows in Contrail Command | 339

Configuring Contrail Insights Flows from Contrail Command | 339

Configuring Contrail Insights Flows During Fabric Onboarding | 340

Configuring Contrail Insights Flows by Assigning Telemetry and sFlow Profiles to Devices | 341

Removing a Telemetry Profile | 351

Viewing Telemetry KPI Alarms for Fabric Devices and Ports | 353

Adding, Editing, and Deleting sFlow Collector Nodes in Contrail Command | 364

Adding or Deleting sFlow Collector Nodes by Modifying instances.yml | 378

Configuring Contrail Insights Alarms using Contrail Command | 381

Configuring Instances in Contrail Insights | 406

Viewing Cluster Node Details and Metric Values | 412

Common Support Answers | 417

Debugging Ping Failures for Policy-Connected Networks | 417

Debugging BGP Peering and Route Exchange in Contrail | 425

Example Cluster | 425

Verifying the BGP Routers | 425

Verifying the Route Exchange | 428

Debugging Route Exchange with Policies | 431

Debugging Peering with an MX Series Router | 432

Debugging a BGP Peer Down Error with Incorrect Family | 434

Configuring MX Peering (iBGP) | 437

Checking Route Exchange with an MX Series Peer | 439

Checking the Route in the MX Series Router | 441

Troubleshooting the Floating IP Address Pool in Contrail | 443

Example Cluster | 444

Example | 445

Example: MX80 Configuration for the Gateway | 446

Ping the Floating IP from the Public Network | 449

viii

Troubleshooting Details | 450

Get the UUID of the Virtual Network | 450

View the Floating IP Object in the API Server | 451

View floating-ips in floating-ip-pools in the API Server | 455

Check Floating IP Objects in the Virtual Machine Interface | 458

View the BGP Peer Status on the Control Node | 462

Querying Routes in the Public Virtual Network | 463

Verification from the MX80 Gateway | 465

Viewing the Compute Node Vnsw Agent | 467

Advanced Troubleshooting | 469

Removing Stale Virtual Machines and Virtual Machine Interfaces | 472

Problem Example | 472

Show Virtual Machines | 474

Delete Methods | 475

Troubleshooting Link-Local Services in Contrail | 476

Overview of Link-Local Services | 476

Troubleshooting Procedure for Link-Local Services | 476

Metadata Service | 478

Troubleshooting Procedure for Link-Local Metadata Service | 478

2 Contrail Commands and APIs

Contrail Commands | 481

Getting Contrail Node Status | 481

Overview | 481

UVE for NodeStatus | 482

Node Status Features | 482

Using Introspect to Get Process Status | 489

contrail-status script | 491

contrail-logs (Accessing Log File Messages) | 493

contrail-status (Viewing Node Status) | 496

contrail-version (Viewing Version Information) | 498

Contrail Application Programming Interfaces (APIs) | 501

Contrail Analytics Application Programming Interfaces (APIs) and User-Visible Entities (UVEs) | 501

ix

User-Visible Entities | 502

Common UVEs in Contrail | 503

Virtual Network UVE | 503

Virtual Machine UVE | 504

vRouter UVE | 504

UVEs for Contrail Nodes | 505

Wild Card Query of UVEs | 505

Filtering UVE Information | 505

Log and Flow Information APIs | 515

HTTP GET APIs | 515

HTTP POST API | 516

POST Data Format Example | 516

Query Types | 518

Examining Asynchronous Query Status | 518

Examining Query Chunks | 519

Example Queries for Log and Flow Data | 519

Working with Neutron | 523

Data Structure | 523

Network Sharing in Neutron | 524

Commands for Neutron Network Sharing | 525

Support for Neutron APIs | 525

Contrail Neutron Plugin | 526

DHCP Options | 526

Incompatibilities | 527

Support for Amazon VPC APIs on Contrail OpenStack | 527

Overview of Amazon Virtual Private Cloud | 528

Mapping Amazon VPC Features to OpenStack Contrail Features | 528

VPC and Subnets Example | 529

Euca2ools CLI for VPC and Subnets | 530

Security in VPC: Network ACLs Example | 530

Euca2ools CLI for Network ACLs | 532

Security in VPC: Security Groups Example | 532

Euca2ools CLI for Security Groups | 533

Elastic IPs in VPC | 534

x

Euca2ools CLI for Elastic IPs | 534

Euca2ools CLI for Route Tables | 535

Supported Next Hops | 535

Internet Gateway Next Hop Euca2ools CLI | 536

NAT Instance Next Hop Euca2ools CLI | 536

Example: Creating a NAT Instance with Euca2ools CLI | 536

xi

About This Guide

Use this guide to understand Contrail Insights (formerly AppFormix) and Contrail Networking analytics.
Contrail Insights provides monitoring availability of the Contrail Networking control plane services.
Contrail Networking analytics nodes are responsible for the collection of system state information,
usage statistics, and debug information from all of the software modules across all of the nodes of the
system.

Contrail Networking product documentation is organized into multiple guides as shown in Table 1 on
page xii , according to the task you want to perform or the deployment scenario.

Table 1: Contrail Networking Guides

Guide Name Description

Contrail Networking Installation
and Upgrade Guide

Provides step-by-step instructions to install and bring up Contrail and its
various components.

Contrail Networking for
Container Networking
Environments User Guide

Provides information about installing and using Contrail Networking in
containerized environments using Kubernetes orchestration.

Contrail Networking Fabric
Lifecycle Management Guide

Provides information about Contrail underlay management and data center
automation.

Contrail Networking and
Security User Guide

Provides information about creating and orchestrating highly secure virtual
networks.

Contrail Networking Service
Provider Focused Features
Guide

Provides information about the features that are used by service providers.

Contrail Networking
Monitoring and
Troubleshooting Guide

Provides information about Contrail Insights and Contrail analytics.

xii

RELATED DOCUMENTATION

README Access to Contrail Networking Registry 21xx

Contrail Networking Release Notes 21xx

Tungsten Fabric Architecture Guide

Juniper Networks TechWiki: Contrail Networking

xiii

1
PART

Monitoring and Troubleshooting
Contrail

Understanding Contrail Analytics | 2

Configuring Contrail Analytics | 32

Configuring Traffic Mirroring to Monitor | 144

Using Contrail Web UI to Monitor and Troubleshoot the Network | 165

Using Contrail Command to Monitor and Troubleshoot the Network | 275

Contrail Insights in Contrail Command | 338

Common Support Answers | 417

CHAPTER 1

Understanding Contrail Analytics

IN THIS CHAPTER

Understanding Contrail Analytics | 2

Contrail Alert Streaming | 3

Underlay Overlay Mapping in Contrail | 8

Encryption Between Analytics API Servers and Client Servers | 29

Understanding Contrail Analytics

Contrail is a distributed system of compute nodes, control nodes, configuration nodes, database nodes,
web UI nodes, and analytics nodes.

The analytics nodes are responsible for the collection of system state information, usage statistics, and
debug information from all of the software modules across all of the nodes of the system. The analytics
nodes store the data gathered across the system in a database that is based on the Apache Cassandra
open source distributed database management system. The database is queried by means of an SQL-like
language and representational state transfer (REST) APIs.

System state information collected by the analytics nodes is aggregated across all of the nodes.

Debug information collected by the analytics nodes includes the following types:

• System log (syslog) messages—informational and debug messages generated by system software
components.

• Object log messages—records of changes made to system objects such as virtual machines, virtual
networks, service instances, virtual routers, BGP peers, routing instances, and the like.

• Trace messages—records of activities collected locally by software components and sent to analytics
nodes only on demand.

Statistics information related to flows, CPU and memory usage, and the like is also collected by the
analytics nodes and can be queried to provide historical analytics and time-series information. The
queries are performed using REST APIs.

2

Analytics data is written to a database in Contrail. The data expires after the default time-to-live (TTL)
period of 48 hours. This default TTL time can be changed as needed by changing the value of the
database_ttl value in the cluster configuration.

RELATED DOCUMENTATION

Contrail Alert Streaming | 3

Analytics Scalability | 32

High Availability for Analytics | 34

Underlay Overlay Mapping in Contrail | 8

Monitoring the System | 165

Debugging Processes Using the Contrail Introspect Feature | 239

Fat Flows

System Log Receiver in Contrail Analytics | 104

Example: Debugging Connectivity Using Monitoring for Troubleshooting | 244

Contrail Alert Streaming

IN THIS SECTION

Alert API Format | 4

Analytics APIs for Alerts | 5

Analytics APIs for SSE Streaming | 6

Built-in Node Alerts | 6

Contrail alerts are provided on a per-user visible entity (UVE) basis. Contrail analytics raise or clear alerts
using Python-coded rules that examine the contents of the UVE and the configuration of the object.
Some rules are built in. Others can be added using Python stevedore plugins.

This topic describes Contrail alerts capabilities.

3

Alert API Format

The Contrail alert analytics API provides the following:

• Read access to the alerts as part of the UVE GET APIs.

• Alert acknowledgement using POST requests.

• UVE and alert streaming using server-sent events (SSEs).

For example:

GET http://<analytics-ip>:8081/analytics/alarms

{
 analytics-node: [
 {
 name: "nodec40",
 value: {
 UVEAlarms: {
 alarms: [
 {
 any_of: [
 {
 all_of: [
 {
 json_operand1_value: ""PROCESS_STATE_STOPPED"",
 rule: {
 oper: "!=",
 operand1: {
 keys: [
 "NodeStatus",
 "process_info",
 "process_state"
]
 },
 operand2: {
 json_value: ""PROCESS_STATE_RUNNING""
 }
 },
 json_vars: {
 NodeStatus.process_info.process_name: "contrail-
topology"
 }

4

 }
]
 }
],
 severity: 3,
 ack: false,
 timestamp: 1457395052889182,
 token: "eyJ0aW1lc3RhbXAiOiAxNDU3Mzk1MDUyODg5MTgyLCAiaHR0cF9wb3J0I
................................... jogNTk5NSwgImhvc3RfaXAiOiAiMTAuMjA0LjIxNy4yNCJ9",
 type: "ProcessStatus"
 }
]
 }
 }
 }
]
}

In the example:

• An any_of attribute contains alarm rules defined in the format [[rule1 AND rule2 AND ... AND ruleN] ... OR
[rule11 AND rule22 AND ... AND ruleNN]]

• Alerts are raised on a per-UVE basis and can be retrieved by a GET on a UVE.

• An ack indicates if the alert has been acknowledged or not.

• A token is used by clients when requesting acknowledgements.

Analytics APIs for Alerts

The following examples show the API to use to display alerts and alarms and to acknowledge alarms.

• To retrieve a list of alerts raised against the control node named aXXsYY.

GET http://<analytics-ip>:<rest-api-port>/analytics/uves/control-node/aXXsYY&cfilt=UVEAlarms

This is available for all UVE table types.

• To retrieve a list of all alarms in the system.

GET http://<analytics-ip>:<rest-api-port>/analytics/alarms

5

• To acknowledge an alarm.

POST http://<analytics-ip>:<rest-api-port>/analytics/alarms/acknowledge
Body: {“table”: <object-type>,“name”: <key>, “type”: <alarm type>, “token”: <token>}

Acknowledged and unacknowledged alarms can be queried specifically using the following URL
query parameters along with the GET operations listed previously.

ackFilt=True
ackFilt=False

Analytics APIs for SSE Streaming

The following examples show the API to use to retrieve all or portions of SE streams.

• To retrieve an SSE-based stream of UVE updates for the control node alarms.

GET http://<analytics-ip>:<rest-api-port>/analytics/uve-stream?tablefilt=control-node

This is available for all UVE table types. If the tablefilt URL query parameter is not provided, all UVEs
are retrieved.

• To retrieve only the alerts portion of the SSE-based stream of UVE updates instead of the entire
content.

GET http://<analytics-ip>:<rest-api-port>/analytics/alarm-stream?tablefilt=control-node

This is available for all UVE table types. If the tablefilt URL query parameter is not provided, all UVEs
are retrieved.

Built-in Node Alerts

The following built-in node alerts can be retrieved using the APIs listed in Analytics APIs for Alerts.

control‐node: {
PartialSysinfoControl: "Basic System Information is absent for this node in
BgpRouterState.build_info",
ProcessStatus: "NodeMgr reports abnormal status for process(es) in NodeStatus.process_info",
XmppConnectivity: "Not enough XMPP peers are up in BgpRouterState.num_up_bgp_peer",

6

BgpConnectivity: "Not enough BGP peers are up in BgpRouterState.num_up_bgp_peer",
AddressMismatch: “Mismatch between configured IP Address and operational IP Address",
ProcessConnectivity: "Process(es) are reporting non‐functional components in
NodeStatus.process_status"
},

vrouter: {
PartialSysinfoCompute: "Basic System Information is absent for this node in
VrouterAgent.build_info",
ProcessStatus: "NodeMgr reports abnormal status for process(es) in NodeStatus.process_info",
ProcessConnectivity: "Process(es) are reporting non‐functional components in
NodeStatus.process_status",
VrouterInterface: "VrouterAgent has interfaces in error state in VrouterAgent.error_intf_list”,
VrouterConfigAbsent: “Vrouter is not present in Configuration”,
},

config‐node: {
PartialSysinfoConfig: "Basic System Information is absent for this node in
ModuleCpuState.build_info",
ProcessStatus: "NodeMgr reports abnormal status for process(es) in NodeStatus.process_info",
ProcessConnectivity: "Process(es) are reporting non‐functional components in
NodeStatus.process_status"
},

analytics‐node: {
ProcessStatus: "NodeMgr reports abnormal status for process(es) in NodeStatus.process_info"
PartialSysinfoAnalytics: "Basic System Information is absent for this node in
CollectorState.build_info",
ProcessConnectivity: "Process(es) are reporting non‐functional components in
NodeStatus.process_status"
},

database‐node: {
ProcessStatus: "NodeMgr reports abnormal status for process(es) in NodeStatus.process_info",
ProcessConnectivity: "Process(es) are reporting non‐functional components in
NodeStatus.process_status"
},

7

Underlay Overlay Mapping in Contrail

IN THIS SECTION

Overview: Underlay Overlay Mapping using Contrail Analytics | 9

Underlay Overlay Analytics Available in Contrail | 9

Architecture and Data Collection | 9

New Processes/Services for Underlay Overlay Mapping | 10

External Interfaces Configuration for Underlay Overlay Mapping | 11

Physical Topology | 11

SNMP Configuration | 12

Link Layer Discovery Protocol (LLDP) Configuration | 12

IPFIX and sFlow Configuration | 12

Sending pRouter Information to the SNMP Collector in Contrail | 14

pRouter UVEs | 15

Contrail User Interface for Underlay Overlay Analytics | 17

Enabling Physical Topology on the Web UI | 17

Viewing Topology to the Virtual Machine Level | 17

Viewing the Traffic of any Link | 18

Trace Flows | 18

Search Flows and Map Flows | 19

Overlay to Underlay Flow Map Schemas | 20

Module Operations for Overlay Underlay Mapping | 23

SNMP Collector Operation | 23

Topology Module Operation | 25

IPFIX and sFlow Collector Operation | 26

Troubleshooting Underlay Overlay Mapping | 27

Script to add pRouter Objects | 27

8

Overview: Underlay Overlay Mapping using Contrail Analytics

NOTE: This topic applies to Contrail Networking Release 2005 and earlier. Starting in Contrail
Networking Release 2008, you can view the path a packet takes in a network. See "Viewing
Packet Path in Topology View" on page 291 .

Today’s cloud data centers consist of large collections of interconnected servers that provide computing
and storage capacity to run a variety of applications. The servers are connected with redundant TOR
switches, which in turn, are connected to spine routers. The cloud deployment is typically shared by
multiple tenants, each of whom usually needs multiple isolated networks. Multiple isolated networks
can be provided by overlay networks that are created by forming tunnels (for example, gre, ip-in-ip, mac-
in-mac) over the underlay or physical connectivity.

As data flows in the overlay network, Contrail can provide statistics and visualization of the traffic in the
underlay network.

Underlay Overlay Analytics Available in Contrail

Contrail allows you to view a variety of analytics related to underlay and overlay traffic in the Contrail
Web user interface. The following are some of the analytics that Contrail provides for statistics and
visualization of overlay underlay traffic.

• View the topology of the underlay network.

A user interface view of the physical underlay network with a drill down mechanism to show
connected servers (contrail computes) and virtual machines on the servers.

• View the details of any element in the topology.

You can view details of a pRouter, vRouter, or virtual machine link between two elements. You can
also view traffic statistics in a graphical view corresponding to the selected element.

• View the underlay path of an overlay flow.

Given an overlay flow, you can get the underlay path used for that flow and map the path in the
topology view.

Architecture and Data Collection

Accumulation of the data to map an overlay flow to its underlay path is performed in several steps
across Contrail modules.

The following outlines the essential steps:

1. The SNMP collector module polls physical routers.

9

The SNMP collector module receives the authorizations and configurations of the physical routers
from the Contrail config module, and polls all of the physical routers, using SNMP protocol. The
collector uploads the data to the Contrail analytics collectors. The SNMP information is stored in the
pRouter UVEs (physical router user visible entities).

2. IPFIX and sFlow protocols are used to collect the flow statistics.

The physical router is configured to send flow statistics to the collector, using one of the collection
protocols: Internet Protocol Flow Information Export (IPFIX) or sFlow (an industry standard for
sampled flow of packet export at Layer 2).

3. The topology module reads the SNMP information.

The Contrail topology module reads SNMP information from the pRouter UVEs from the analytics
API, computes the neighbor list, and writes the neighbor information into the pRouter UVEs. This
neighbor list is used by the Contrail WebUI to display the physical topology.

4. The Contrail user interface reads and displays the topology and statistics.

The Contrail user interface module reads the topology information from the Contrail analytics and
displays the physical topology. It also uses information stored in the analytics to display graphs for
link statistics, and to show the map of the overlay flows on the underlay network.

New Processes/Services for Underlay Overlay Mapping

The contrail-snmp-collector and the contrail-topology are new daemons that are both added to the contrail-
analytics node. The contrail-analytics package contains these new features and their associated files. The
contrail-status displays the new services.

Example: contrail-status

The following is an example of using contrail-status to show the status of the new process and service
for underlay overlay mapping.

user@host:~# contrail-status

== Contrail Control ==

supervisor-control: active

contrail-control active

…

== Contrail Analytics ==

supervisor-analytics: active

10

…

contrail-query-engine active

contrail-snmp-collector active

contrail-topology active

Example: Service Command

The service command can be used to start, stop, and restart the new services. See the following example.

user@host:~# service contrail-snmp-collector status

contrail-snmp-collector RUNNING pid 12179, uptime 1 day, 14:59:11

External Interfaces Configuration for Underlay Overlay Mapping

This section outlines the external interface configurations necessary for successful underlay overlay
mapping for Contrail analytics.

Physical Topology

The typical physical topology includes:

• Servers connected to the ToR switches.

• ToR switches connected to spine switches.

• Spine switches connected to core switches.

The following is an example of how the topology is depicted in the Contrail WebUI analytics.

11

Figure 1: Analytics Topology

SNMP Configuration

Configure SNMP on the physical devices so that the contrail-snmp-collector can read SNMP data.

The following shows an example SNMP configuration from a Juniper Networks device.

set snmp community public authorization read-only

Link Layer Discovery Protocol (LLDP) Configuration

Configure LLDP on the physical device so that the contrail-snmp-collector can read the neighbor
information of the routers.

The following is an example of LLDP configuration on a Juniper Networks device.

set protocols lldp interface all

set protocols lldp-med interface all

IPFIX and sFlow Configuration

Flow samples are sent to the contrail-collector by the physical devices. Because the contrail-collector
supports the sFlow and IPFIX protocols for receiving flow samples, the physical devices, such as MX
Series devices or ToR switches, must be configured to send samples using one of those protocols.

Example: sFlow Configuration

The following shows a sample sFlow configuration. In the sample, the IP variable <source ip>refers to
the loopback or IP that can be reachable of the device that acts as an sflow source, and the other IP
variable <collector_IP_data> is the address of the collector device.

root@host> show configuration protocols sflow | display set

12

set protocols sflow polling-interval 0

set protocols sflow sample-rate ingress 10

set protocols sflow source-ip <source ip>4

set protocols sflow collector <collector_IP_data> udp-port 6343

set protocols sflow interfaces ge-0/0/0.0

set protocols sflow interfaces ge-0/0/1.0

set protocols sflow interfaces ge-0/0/2.0

set protocols sflow interfaces ge-0/0/3.0

set protocols sflow interfaces ge-0/0/4.0

Example: IPFIX Configuration

The following is a sample IPFIX configuration from a Juniper Networks device. The IP address variable
<ip_sflow collector> represents the sflow collector (control-collector analytics node) and <source ip>
represents the source (outgoing) interface on the router/switch device used for sending flow data to the
collector. This could also be the lo0 address, if it s reachable from the Contrail cluster.

root@host> show configuration chassis | display set

set chassis tfeb slot 0 sampling-instance sample-ins1

set chassis network-services

root@host> show configuration chassis tfeb | display set

set chassis tfeb slot 0 sampling-instance sample-ins1

root@host > show configuration services flow-monitoring | display set

set services flow-monitoring version-ipfix template t1 flow-active-timeout 30

13

set services flow-monitoring version-ipfix template t1 flow-inactive-timeout 30

set services flow-monitoring version-ipfix template t1 template-refresh-rate packets 10

set services flow-monitoring version-ipfix template t1 ipv4-template

root@host > show configuration interfaces | display set | match sampling

set interfaces ge-1/0/0 unit 0 family inet sampling input

set interfaces ge-1/0/1 unit 0 family inet sampling input

root@host> show configuration forwarding-options sampling | display set

set forwarding-options sampling instance sample-ins1 input rate 1

set forwarding-options sampling instance sample-ins1 family inet output flow-server <ip_sflow
collector> port 4739

set forwarding-options sampling instance sample-ins1 family inet output flow-server <ip_sflow
collector> version-ipfix template t1

set forwarding-options sampling instance sample-ins1 family inet output inline-jflow source-
address <source ip>

Sending pRouter Information to the SNMP Collector in Contrail

Information about the physical devices must be sent to the SNMP collector before the full analytics
information can be read and displayed. Typically, the pRouter information is taken from the contrail-
config.

SNMP collector getting pRouter information from contrail-config

The physical routers are added to the contrail-config by using the Contrail user interface or by using
direct API, by means of provisioning or other scripts. Once the configuration is in the contrail-config, the
contrail-snmp-collector gets the physical router information from contrail-config. The SNMP collector uses
this list and the other configuration parameters to perform SNMP queries and to populate pRouter
UVEs.

14

Figure 2: Add Physical Router Window

pRouter UVEs

pRouter UVEs are accessed from the REST APIs on your system from contrail-analytics-api, using a URL
of the form:

http://<host ip>:8081/analytics/uves/prouters

The following is sample output from a pRouter REST API:

Figure 3: Sample Output From a pRouter REST API

Details of a pRouter UVE can be obtained from your system, using a URL of the following form:

15

http://<host ip>:8081/analytics/uves/prouter/a7-ex3?flat

The following is sample output of a pRouter UVE.

Figure 4: Sample Output From a pRouter UVE

16

Contrail User Interface for Underlay Overlay Analytics

The topology view and related functionality is accessed from the Contrail Web user interface, Monitor >
Physical Topology.

Enabling Physical Topology on the Web UI

To enable the Physical Topology section in the Contrail Web UI:

1. Add the following lines to the /etc/contrail/config.global.js file of all the contrail-webui nodes:

config.optFeatureList = {};
config.optFeatureList.mon_infra_underlay = true;

2. Restart webui supervisor.

service supervisor-webui restart

The Physical Topology section is now available on the Contrail Web UI.

Viewing Topology to the Virtual Machine Level

In the Contrail user interface, it is possible to drill down through displayed topology to the virtual
machine level. The following diagram shows the virtual machines instantiated on a7s36 vRouter and the
full physical topology related to each.

Figure 5: Physical Topology Related to a vRouter

17

Viewing the Traffic of any Link

At Monitor > Physical Topology, double click any link on the topology to display the traffic statistics
graph for that link. The following is an example.

Figure 6: Traffic Statistics Graph

Trace Flows

Click the Trace Flows tab to see a list of active flows. To see the path of a flow, click a flow in the active
flows list, then click the Trace Flow button. The path taken in the underlay by the selected flow displays.
The following is an example.

18

Figure 7: List of Active Flows

Limitations of Trace Flow Feature

Because the Trace Flow feature uses ip traceroute to determine the path between the two vRouters
involved in the flow, it has the same limitations as the ip traceroute, including that Layer 2 routers in the
path are not listed, and therefore do not appear in the topology.

Search Flows and Map Flows

Click the Search Flows tab to open a search dialog, then click the Search button to list the flows that
match the search criteria. You can select a flow from the list and click Map Flow to display the underlay
path taken by the selected flow in the topology. The following is an example.

19

Figure 8: Underlay Path

Overlay to Underlay Flow Map Schemas

The schema to query the underlay mapping information for an overlay flow is obtained from a REST API,
which can be accessed on your system using a URL of the following form:

http://<host ip>:8081/analytics/table/OverlayToUnderlayFlowMap/schema

Example: Overlay to Underlay Flow Map Schema

{"type": "FLOW",

"columns": [

{"datatype": "string", "index": true, "name": "o_svn", "select": false, "suffixes": ["o_sip"]},

{"datatype": "string", "index": false, "name": "o_sip", "select": false, "suffixes": null},

{"datatype": "string", "index": true, "name": "o_dvn", "select": false, "suffixes": ["o_dip"]},

{"datatype": "string", "index": false, "name": "o_dip", "select": false, "suffixes": null},

20

{"datatype": "int", "index": false, "name": "o_sport", "select": false, "suffixes": null},

{"datatype": "int", "index": false, "name": "o_dport", "select": false, "suffixes": null},

{"datatype": "int", "index": true, "name": "o_protocol", "select": false, "suffixes":
["o_sport", "o_dport"]},

{"datatype": "string", "index": true, "name": "o_vrouter", "select": false, "suffixes": null},

{"datatype": "string", "index": false, "name": "u_prouter", "select": null, "suffixes": null},

{"datatype": "int", "index": false, "name": "u_pifindex", "select": null, "suffixes": null},

{"datatype": "int", "index": false, "name": "u_vlan", "select": null, "suffixes": null},

{"datatype": "string", "index": false, "name": "u_sip", "select": null, "suffixes": null},

{"datatype": "string", "index": false, "name": "u_dip", "select": null, "suffixes": null},

{"datatype": "int", "index": false, "name": "u_sport", "select": null, "suffixes": null},

{"datatype": "int", "index": false, "name": "u_dport", "select": null, "suffixes": null},

{"datatype": "int", "index": false, "name": "u_protocol", "select": null, "suffixes": null},

{"datatype": "string", "index": false, "name": "u_flowtype", "select": null, "suffixes": null},

{"datatype": "string", "index": false, "name": "u_otherinfo", "select": null, "suffixes": null}]}

The schema for underlay data across pRouters is defined in the Contrail installation at:

http://<host ip>:8081/analytics/table/StatTable.UFlowData.flow/schema

Example: Flow Data Schema for Underlay

{"type": "STAT",

"columns": [

{"datatype": "string", "index": true, "name": "Source", "suffixes": null},

{"datatype": "int", "index": false, "name": "T", "suffixes": null},

21

{"datatype": "int", "index": false, "name": "CLASS(T)", "suffixes": null},

{"datatype": "int", "index": false, "name": "T=", "suffixes": null},

{"datatype": "int", "index": false, "name": "CLASS(T=)", "suffixes": null},

{"datatype": "uuid", "index": false, "name": "UUID", "suffixes": null},

{"datatype": "int", "index": false, "name": "COUNT(flow)", "suffixes": null},

{"datatype": "string", "index": true, "name": "name", "suffixes": ["flow.pifindex"]},

{"datatype": "int", "index": false, "name": "flow.pifindex", "suffixes": null},

{"datatype": "int", "index": false, "name": "SUM(flow.pifindex)", "suffixes": null},

{"datatype": "int", "index": false, "name": "CLASS(flow.pifindex)", "suffixes": null},

{"datatype": "int", "index": false, "name": "flow.sport", "suffixes": null},

{"datatype": "int", "index": false, "name": "SUM(flow.sport)", "suffixes": null},

{"datatype": "int", "index": false, "name": "CLASS(flow.sport)", "suffixes": null},

{"datatype": "int", "index": false, "name": "flow.dport", "suffixes": null},

{"datatype": "int", "index": false, "name": "SUM(flow.dport)", "suffixes": null},

{"datatype": "int", "index": false, "name": "CLASS(flow.dport)", "suffixes": null},

{"datatype": "int", "index": true, "name": "flow.protocol", "suffixes": ["flow.sport",
"flow.dport"]},

{"datatype": "int", "index": false, "name": "SUM(flow.protocol)", "suffixes": null},

{"datatype": "int", "index": false, "name": "CLASS(flow.protocol)", "suffixes": null},

{"datatype": "string", "index": true, "name": "flow.sip", "suffixes": null},

{"datatype": "string", "index": true, "name": "flow.dip", "suffixes": null},

{"datatype": "string", "index": true, "name": "flow.vlan", "suffixes": null},

22

{"datatype": "string", "index": false, "name": "flow.flowtype", "suffixes": null},

{"datatype": "string", "index": false, "name": "flow.otherinfo", "suffixes": null}]}

Example: Typical Query for Flow Map

The following is a typical query. Internally, the analytics-api performs a query into the FlowRecordTable, then
into the StatTable.UFlowData.flow, to return list of (prouter, pifindex) pairs that give the underlay path taken
for the given overlay flow.

FROM

OverlayToUnderlayFlowMap

SELECT

prouter, pifindex

WHERE

o_svn, o_sip, o_dvn, o_dip, o_sport, o_dport, o_protocol = <overlay flow>

Module Operations for Overlay Underlay Mapping

SNMP Collector Operation

The Contrail SNMP collector uses a Net-SNMP library to talk to a physical router or any SNMP agent.
Upon receiving SNMP packets, the data is translated to the Python dictionary, and corresponding UVE
objects are created. The UVE objects are then posted to the SNMP collector.

The SNMP module sleeps for some configurable period, then forks a collector process and waits for the
process to complete. The collector process goes through a list of devices to be queried. For each device,
it forks a greenlet task (Python coroutine), accumulates SNMP data, writes the summary to a JSON file,
and exits. The parent process then reads the JSON file, creates UVEs, sends the UVEs to the collector,
then goes to sleep again.

The pRouter UVE sent by the SNMP collector carries only the raw MIB information.

Example: pRouter Entry Carried in pRouter UVE

The definition below shows the pRouterEntry carried in the pRouterUVE. Additionally, an example LldpTable
definition is shown.

23

The following create a virtual table as defined by:

http://<host ip>:8081/analytics/table/StatTable.UFlowData.flow/schema

struct LldpTable {

 1: LldpLocalSystemData lldpLocalSystemData

 2: optional list<LldpRemoteSystemsData> lldpRemoteSystemsData

}

struct PRouterEntry {

 1: string name (key="ObjectPRouter")

 2: optional bool deleted

 3: optional LldpTable lldpTable

 4: optional list<ArpTable> arpTable

 5: optional list<IfTable> ifTable

 6: optional list<IfXTable> ifXTable

 7: optional list<IfStats> ifStats (tags="name:.ifIndex")

 8: optional list<IpMib> ipMib

}

uve sandesh PRouterUVE {

 1: PRouterEntry data

}

24

Topology Module Operation

The topology module reads UVEs posted by the SNMP collector and computes the neighbor table,
populating the table with remote system name, local and remote interface names, the remote type
(pRouter or vRouter) and local and remote ifindices. The topology module sleeps for a while, reads UVEs,
then computes the neighbor table and posts the UVE to the collector.

The pRouter UVE sent by the topology module carries the neighbor list, so the clients can put together
all of the pRouter neighbor lists to compute the full topology.

The corresponding pRouter UVE definition is the following.

struct LinkEntry {

 1: string remote_system_name

 2: string local_interface_name

 3: string remote_interface_name

 4: RemoteType type

 5: i32 local_interface_index

 6: i32 remote_interface_index

}

struct PRouterLinkEntry {

 1: string name (key="ObjectPRouter")

 2: optional bool deleted

 3: optional list<LinkEntry> link_table

}

uve sandesh PRouterLinkUVE {

 1: PRouterLinkEntry data

}

25

IPFIX and sFlow Collector Operation

An IPFIX and sFlow collector has been implemented in the Contrail collector. The collector receives the
IPFIX and sFlow samples and stores them as statistics samples in the analytics database.

Example: IPFIX sFlow Collector Data

The following definition shows the data stored for the statistics samples and the indices that can be
used to perform queries.

struct UFlowSample {

 1: u64 pifindex

 2: string sip

 3: string dip

 4: u16 sport

 5: u16 dport

 6: u16 protocol

 7: u16 vlan

 8: string flowtype

 9: string otherinfo

}

struct UFlowData {

 1: string name (key="ObjectPRouterIP")

 2: optional bool deleted

 3: optional list<UFlowSample> flow

26

(tags="name:.pifindex, .sip, .dip, .protocol:.sport, .protocol:.dport, .vlan")

}

Troubleshooting Underlay Overlay Mapping

This section provides a variety of links where you can research errors that may occur with underlay
overlay mapping.

System Logs

Logs for contrail-snmp-collector and contrail-topology are in the following locations on an installed Contrail
system:

/var/log/contrail/contrail-snmp-collector-stdout.log

/var/log/contrail/contrail-topology.log

Introspect Utility

Use URLs of the following forms on your Contrail system to access the introspect utilities for SNMP
data and for topology data.

• SNMP data introspect

http://<host ip>:5920/Snh_SandeshUVECacheReq?x=PRouterEntry

• Topology data introspect

http://<host ip>:5921/Snh_SandeshUVECacheReq?x=PRouterLinkEntry

Script to add pRouter Objects

The usual mechanism for adding pRouter objects to contrail-config is through Contrail UI. But you also
have the ability to add these objects using the Contrail vnc-api. To add one pRouter, save the file with the
name cfg-snmp.py, and then execute the command as shown:

python cfg-snmp.py

27

Example: Content for cfg-snmp.py

#!python

from vnc_api import vnc_api

from vnc_api.gen.resource_xsd import SNMPCredentials

vnc = vnc_api.VncApi('admin', 'abcde123', 'admin')

apr = vnc_api.gen.resource_client.PhysicalRouter(name='a7-mx80-1')

apr.set_physical_router_management_ip('ip_address')

apr.set_physical_router_dataplane_ip(''ip_address')

apr.set_physical_router_snmp_credentials(SNMPCredentials(version=2, v2_community='public'))

vnc.physical_router_create(apr)

#$ABC123

apr = vnc_api.gen.resource_client.PhysicalRouter(name='a7-mx80-2')

apr.set_physical_router_management_ip('ip_address')

apr.set_physical_router_dataplane_ip('ip_address')

apr.set_physical_router_snmp_credentials(SNMPCredentials(version=2, v2_community='public'))

vnc.physical_router_create(apr)

#$ABC123'

apr = vnc_api.gen.resource_client.PhysicalRouter(name='a7-ex3')

apr.set_physical_router_management_ip('source_ip')

apr.set_physical_router_dataplane_ip('source_ip'')

28

apr.set_physical_router_snmp_credentials(SNMPCredentials(version=2, v2_community='public'))

vnc.physical_router_create(apr)

#$ABC123'

apr = vnc_api.gen.resource_client.PhysicalRouter(name='a7-ex2')

apr.set_physical_router_management_ip('ip_address')

apr.set_physical_router_dataplane_ip('ip_address')

apr.set_physical_router_snmp_credentials(SNMPCredentials(version=2, v2_community='public'))

vnc.physical_router_create(apr)

#$ABC123'

RELATED DOCUMENTATION

Understanding Contrail Analytics | 2

Contrail Alert Streaming | 3

Encryption Between Analytics API Servers and Client Servers

Contrail Networking Release 1910 supports SSL encryption for the connection between Analytics API
servers and Client servers. The Client servers are Service Monitor and Contrail Command, which
connects to the Analytics API server through the REST API Port. In releases prior to release 1910, the
connection between Analytics API servers and the Client servers was not encrypted, which could pose a
security threat.

SSL encryption is supported in Contrail Networking Release 1910 only when Contrail Networking is
deployed with Red Hat OpenStack Platform (RHOSP). In the RHOSP deployment, a global flag is added,
which determines the status of the SSL encryption.

If the global flag is enabled:

• You do not have to modify the configuration files as SSL encryption is automatically enabled.

• You must modify the configuration files if you want to disable SSL encryption.

29

If the global flag is disabled:

• You do not have to modify the configuration files as SSL encryption is automatically disabled.

• You cannot enable SSL encryption, even if you modify the configuration files. The certificates are not
generated during deployment as the global flag is disabled.

The configuration files are contrail-analytics-api.conf, contrail-svc-monitor.conf, and command_servers.yml. In
the configuration files, modify the following parameters in the Table 2 on page 30 below to enable or
disable SSL based encryption:

Table 2: SSL Encryption Parameters

Parameters Description Default

analytics_api_ssl_enable Enables or disables support
for SSL encryption between
Analytics API server and
Client server.

If the value is assigned TRUE: Support for SSL
encryption is enabled.

If the value is assigned FALSE: Support for SSL
encryption is not enabled and the Analytics
API server does not accept HTTPS requests.

analytics_api_insecure_enable Enables or disables support
for required certificates in
HTTPS requests.

If the value is assigned TRUE: HTTPS
connection is supported without the
certificates.

If the value is assigned FALSE: HTTPS
connection is not supported without the
certificates.

analytics_api_ssl_keyfile Path to the node’s private key. /etc/contrail/ssl/private/server-privkey.pem

analytics_api_ssl_certfile Path to the node's public
certificate.

/etc/contrail/ssl/certs/server.pem

analytics_api_ssl_ca_cert Path to the CA certificate /etc/ipa/ca.crt

Once these parameters are configured, the Analytics API server starts using SSL certificates, which
enables SSL encryption support for connection between Analytics API servers and Client servers.

Change History Table

30

Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

1910 Contrail Networking Release 1910 supports SSL encryption for the connection between Analytics API
servers and Client servers.

31

CHAPTER 2

Configuring Contrail Analytics

IN THIS CHAPTER

Analytics Scalability | 32

High Availability for Analytics | 34

vRouter Command Line Utilities | 34

Tracing the vRouter Packet Path | 68

Using Contrail Tools | 92

Using Sandump Tool | 94

Security Logging Object | 101

System Log Receiver in Contrail Analytics | 104

Sending Flow Messages to the Contrail System Log | 105

User Configuration for Analytics Alarms and Log Statistics | 107

Contrail Networking Alarms | 117

Alarms History | 122

Node Memory and CPU Information | 125

Role- and Resource-Based Access Control for the Contrail Analytics API | 126

Configuring Analytics as a Standalone Solution | 127

Agent Modules in Contrail Networking | 130

Configuring Secure Sandesh and Introspect for Contrail Analytics | 142

Analytics Scalability

The Contrail monitoring and analytics services (collector role) collect and store data generated by
various system components and provide the data to the Contrail interface by means of representational
state transfer (REST) application program interface (API) queries.

The Contrail components are horizontally scalable to ensure consistent performance as the system
grows. Scalability is provided for the generator components (control and compute roles) and for the
REST API users (webui role).

32

This section provides a brief description of the recommended configuration of analytics in Contrail to
achieve horizontal scalability.

The following is the recommended locations for the various component roles of the Contrail system for
a 5-node configuration.

• Node 1 —config role, web-ui role

• Node 2 —control role, analytics role, database role

• Node 3 —control role, analytics role, database role

• Node 4 —compute role

• Node 5 —compute role

Figure 9 on page 33 illustrates scalable connections for analytics in a 5-node system, with the nodes
configured for roles as recommended above. The analytics load is distributed between the two analytics
nodes. This configuration can be extended to any number of analytics nodes.

Figure 9: Analytics Scalability

33

The analytics nodes collect and store data and provide this data through various REST API queries.
Scalability is provided for the control nodes, the compute nodes, and the REST API users, with the API
output displayed in the Contrail user interface. As the number of control and compute nodes increase in
the system, the analytics nodes can also be increased.

High Availability for Analytics

Contrail supports multiple instances of analytics for high availability and load balancing.

Contrail analytics provides two broad areas of functionality:

• contrail-collector —Receives status, logs, and flow information from all Contrail processing elements
(for example, generators) and records them.

Every generator is connected to one of the contrail-collector instances at any given time. If an
instance fails (or is shut down), all the generators that are connected to it are automatically moved to
another functioning instance, typically in a few seconds or less. Some messages may be lost during
this movement. UVEs are resilient to message loss, so the state shown in a UVE is kept consistent to
the state in the generator.

• contrail-opserver —Provides an external API to report UVEs and to query logs and flows.

Each analytics component exposes a northbound REST API represented by the contrail-opserver
service (port 8081) so that the failure of one analytics component or one contrail-opserver service
should not impact the operation of other instances.

These are the ways to manage connectivity to the contrail-opserver endpoints:

• Periodically poll the contrail-opserver service on a set of analytics nodes to determine the list of
functioning endpoints, then make API requests from one or more of the functioning endpoints.

• The Contrail user interface makes use of the same northbound REST API to present dashboards,
and reacts to any contrail-opserver high availability event automatically.

vRouter Command Line Utilities

IN THIS SECTION

Overview | 35

34

vif Command | 36

clear Command | 41

flow Command | 41

vrfstats Command | 43

rt Command | 44

dropstats Command | 45

mpls Command | 49

mirror Command | 51

vxlan Command | 53

nh Command | 55

dpdkinfo Command | 58

dpdkconf Command | 67

Overview

vRouter is the component that takes packets from VMs and forwards them to their destinations. In this
effort, vRouter depends on the vRouter agent to make sense of the overall topology, understand the
various policies that govern the communication between VMs, and program them in vRouter in a way
vRouter understands.

vRouter has a few fundamental data structures that abstracts out the various communication paths.
There is "interface," "flow," "route," and "nexthop" that enables vRouter to push packets to their eventual
destinations. In addition, vRouter also has good statistics that can help understand and debug packet
paths. Various command line utilities provided by the vRouter can be used to display these data
structures and better understand the behavior that one sees in a compute node.

This section describes the shell prompt utilities available for examining the state of the vRouter kernel
module in Contrail.

The most useful commands for inspecting the Contrail vRouter module are summarized in the following
table.

Command Description

vif Inspect vRouter interfaces associated with the vRouter module.

35

(Continued)

Command Description

flow Display active flows in a system.

vrfstats Display next hop statistics for a particular VRF.

rt Display routes in a VRF.

dropstats Inspect packet drop counters in the vRouter.

mpls Display the input label map programmed into the vRouter.

mirror Display the mirror table entries.

vxlan Display the VXLAN table entries.

nh Display the next hops that the vRouter knows.

--help Display all command options available for the current command.

dpdkinfo Displays internal data structure details of a DPDK enabled vRouter.

dpdkconf Use this command to add or delete a DDP profile.

The following sections describe each of the vRouter utilities in detail.

vif Command

The vRouter requires vRouter interfaces (vif) to forward traffic. Use the vif command to see the
interfaces that are known by the vRouter.

36

NOTE: Having interfaces only in the OS (Linux) is not sufficient for forwarding. The relevant
interfaces must be added to vRouter. Typically, the set up of interfaces is handled by components
like nova-compute or vRouter agent.

The vif command can be used to see the interfaces that the vRouter is aware of by including the
--list option.

Example: vif --list

bash$ vif --list
Vrouter Interface Table

Flags: P=Policy, X=Cross Connect, S=Service Chain, Mr=Receive Mirror
 Mt=Transmit Mirror, Tc=Transmit Checksum Offload, L3=Layer 3, L2=Layer 2
 D=DHCP, Vp=Vhost Physical, Pr=Promiscuous, Vnt=Native Vlan Tagged
 Mnp=No MAC Proxy

vif0/0 OS: eth0 (Speed 1000, Duplex 1)
 Type:Physical HWaddr:00:25:90:c3:08:68 IPaddr:0
 Vrf:0 Flags:L3L2Vp MTU:1514 Ref:22
 RX packets:2664341 bytes:702708970 errors:0
 TX packets:1141456 bytes:234609942 errors:0

vif0/1 OS: vhost0
 Type:Host HWaddr:00:25:90:c3:08:68 IPaddr:0
 Vrf:0 Flags:L3L2 MTU:1514 Ref:3
 RX packets:716612 bytes:155442906 errors:0
 TX packets:2248399 bytes:552491888 errors:0

vif0/2 OS: pkt0
 Type:Agent HWaddr:00:00:5e:00:01:00 IPaddr:0
 Vrf:65535 Flags:L3 MTU:1514 Ref:2
 RX packets:450524 bytes:94618532 errors:0
 TX packets:437968 bytes:66753290 errors:0

vif0/3 OS: tap519615d8-a2
 Type:Virtual HWaddr:00:00:5e:00:01:00 IPaddr:0
 Vrf:1 Flags:PL3L2 MTU:9160 Ref:6
 RX packets:134 bytes:15697 errors:0
 TX packets:8568 bytes:945944 errors:0

37

Table 3: vif Fields

vif Output Field Description

vif0/X The vRouter assigned name, where 0 is the router ID and X is the index allocated
to the interface within the vRouter.

OS: pkt0 The pkt0 (in this case) is the name of the actual OS (Linux) visible interface name.
For physical interfaces, the speed and the duplex settings are also displayed.

Type:xxxxx Type:Virtual HWaddr:00:00:5e:00:01:00 IPaddr:0

The type of interface and its IP address, as defined by vRouter. The values can
be different from what is seen in the OS. Types defined by vRouter include:

• Virtual – Interface of a virtual machine (VM).

• Physical – Physical interface (NIC) in the system.

• Host – An interface toward the host.

• Agent – An interface used to trap packets to the vRouter agent when
decisions need to be made for the forwarding path.

38

Table 3: vif Fields (Continued)

vif Output Field Description

Vrf:xxxxx Vrf:65535 Flags:L3 MTU:1514 Ref:2

The identifier of the vrf to which the interface is assigned, the flags set on the
interface, the MTU as understood by vRouter, and a reference count of how
many individual entities actually hold reference to the interface (mainly of
debugging value).

Flag options identify that the following are enabled for the interface:

• P - Policy. All traffic that comes to vRouter from this interface are subjected
to policy.

• L3 - Layer 3 forwarding

• L2 - Layer 2 bridging

• X - Cross connect mode, only set on physical and host interfaces, indicating
that packets are moved between physical and host directly, with minimal
intervention by vRouter. Typically set when the agent is not alive or not in
good shape.

• Mt - Mirroring transmit direction. All packets that egresses this interface are
mirrored.

• Mr - Mirroring receive direction. All packets that ingresses this interface will
be mirrored.

• Tc - Checksum offload on the transmit side. Valid only on the physical
interface.

Rx RX packets:60 bytes:4873 errors:0

Packets received by vRouter from this interface.

Tx TX packets:21 bytes:2158 errors:0

Packets transmitted out by vRouter on this interface.

vif Options

Use vif –-help to display all options available for the vif command. Following is a brief description of
each option.

39

NOTE: It is not recommended to use the following options unless you are very experienced with
the system utilities.

vif --help
Usage: vif [--create <intf_name> --mac < --mac <C>]
 [--add <C>> --mac <mac> --vrf <vrf>
 --type [vhost|agent|physical|virtual|monitoring]
 --transport [eth|pmd|virtual|socket]
 --xconnect <physical interface name>
 --policy, --vhost-phys, --dhcp-enable]
 --vif <vif ID> --id <intf_id> --pmd --pci]
 [--delete <intf_id>|<intf_name>]
 [--get <intf_id>][--kernel]
 [--set <intf_id> --vlan <vlan_id> --vrf <vrf_id>]
 [--list][--core <core number>][--rate]
 [--sock-dir <sock dir>]
 [--clear][--id <intf_id>][--core <core_number>]
 [--help}

Option Description

--create Creates a “host” interface with name <intf_name> and mac <mac> on the host
kernel. The vhost0 interface that you see on Linux is a typical example of
invocation of this command.

--add Adds the existing interfaces in the host OS to vRouter, with type and flag
options.

--delete Deletes the interface from vRouter. The <intf_id> i is the vRouter interface ID
as given by vif0/X, where X is the ID. So, in vif0/1, 1 is the interface index of
that vif inside the vRouter module.

--get Displays a specific interface. The <intf_id> is the vRouter interface ID, unless
the command is appended by the —kernel option, in which case the ID is the
kernel ID.

40

(Continued)

Option Description

--set Set working parameters of an interface. The ones supported are the vlan id
and the vrf. The vlan id as understood by vRouter differs from what one
typically expects and is relevant for interfaces of service instances.

--list Display all of the interfaces of which the vRouter is aware.

--help Display all options available for the current command.

--clear Clears statistics for all interfaces on all cores. For more information, see "clear
Command" on page 41 .

clear Command

Contrail Networking Release 2008 supports clearing of vif statistics counters for all interfaces by using
the --clear command. For more information on --clear command options, see Table 4 on page 41 .

Table 4: clear Command Options

Option Description

--clear Clears statistics for all interfaces on all cores.

--clear --id <vif-id> Clears statistics for a specific interface.

--clear --core <core-id> Clears statistics on a specific core for all interfaces.

--clear --id <vif-id> --core
<core-id>

Clears statistics for a specific interface on a specific core.

flow Command

Use the flow command to display all active flows in a system.

Example: flow -l

41

Use -l to list everything in the flow table. The -1 is the only relevant debugging option.

 # flow –l
Flow table
 Index Source:Port Destination:Port Proto(V)

 263484 1.1.1.252:1203 1.1.1.253:0 1 (3)
 (Action:F, S(nh):91, Statistics:22/1848)
 379480 1.1.1.253:1203 1.1.1.252:0 1 (3)
 (Action:F, S(nh):75, Statistics:22/1848)

Each record in the flow table listing displays the index of the record, the source IP: source port, the
destination ip: destination port, the inet protocol, and the source VRF (V) to which the flow belongs.

Each new flow has to be approved by the vRouter agent. The agent does this by setting actions for each
flow. There are three main actions associated with a flow table entry: Forward (‘F’), Drop (‘D’), and Nat
(‘N’).

For NAT, there are additional flags indicating the type of NAT to which the flow is subject, including:
SNAT (S), DNAT (D), source port translation (Ps), and destination port translation (Pd).

S(nh) indicates the source nexthop index used for the RPF check to validate that the traffic is from a
known source. If the packet must go to an ECMP destination, E:X is also displayed, where ‘X’ indicates
the destination to be used through the index within the ECMP next hop.

The Statistics field indicates the Packets/Bytes that hit this flow entry.

There is a Mirror Index field if the traffic is mirrored, listing the indices into the mirror table (which can
be dumped by using mirror –-dump).

If there is an explicit association between the forward and the reverse flows, as is the case with NAT,
you will see a double arrow in each of the records with either side of the arrow displaying the flow index
for that direction.

Example: flow -r

Use -r to view all of the flow setup rates.

flow –r
New = 2, Flow setup rate = 3 flows/sec, Flow rate = 3 flows/sec, for last 548 ms
New = 2, Flow setup rate = 3 flows/sec, Flow rate = 3 flows/sec, for last 543 ms
New = -2, Flow setup rate = -3 flows/sec, Flow rate = -3 flows/sec, for last 541 ms

42

New = 2, Flow setup rate = 3 flows/sec, Flow rate = 3 flows/sec, for last 544 ms
New = -2, Flow setup rate = -3 flows/sec, Flow rate = -3 flows/sec, for last 542 ms

Example: flow --help

Use --help to display all options available for the flow command.

flow –-help
Usage:flow [-f flow_index][-d flow_index][-i flow_index]
 [--mirror=mirror table index]
 [-l]
 -f <flow_index> Set forward action for flow at flow_index <flow_index>
 -d <flow_index> Set drop action for flow at flow_index <flow_index>
 -i <flow_index> Invalidate flow at flow_index <flow_index>
 --mirror mirror index to mirror to
 -l List all flows
 -r Start dumping flow setup rate
 --help Print this help

vrfstats Command

Use vrfstats to display statistics per next hop for a vrf. It is typically used to determine if packets are
hitting the expected next hop.

Example: vrfstats --dump

The —dump option displays the statistics for all VRFs that have seen traffic. In the following example, there
was traffic only in Vrf 0 (the public VRF). Receives shows the number of packets that came in the fabric
destined to this location. Encaps shows the number of packets destined to the fabric.

If there is VM traffic going out on the fabric, the respective tunnel counters will increment.

 # vrfstats --dump
 Vrf: 0
 Discards 414, Resolves 3, Receives 165334
 Ecmp Composites 0, L3 Mcast Composites 0, L2 Mcast Composites 0, Fabric Composites 0, Multi
Proto Composites 0
 Udp Tunnels 0, Udp Mpls Tunnels 0, Gre Mpls Tunnels 0
 L2 Encaps 0, Encaps 130955

Example: vrfstats --get 0

43

Use --get 0 to retrieve statistics for a particular vrf.

 # vrfstats --get 0
 Vrf: 0
 Discards 418, Resolves 3, Receives 166929
 Ecmp Composites 0, L3 Mcast Composites 0, L2 Mcast Composites 0, Fabric Composites 0, Multi
Proto Composites 0
 Udp Tunnels 0, Udp Mpls Tunnels 0, Gre Mpls Tunnels 0
 L2 Encaps 0, Encaps 132179

Example: vrfstats --help

Usage: vrfstats --get <vrf>
 --dump
 --help

--get <vrf> Displays packet statistics for the vrf <vrf>

--dump Displays packet statistics for all vrfs

--help Displays this help message

rt Command

Use the rt command to display all routes in a VRF.

Example: rt --dump

The following example displays inet family routes for vrf 0.

rt --dump 0

Kernel IP routing table 0/0/unicast

Destination PPL Flags Label Nexthop

0.0.0.0/8 0 - 5

1.0.0.0/8 0 - 5

2.0.0.0/8 0 - 5

44

3.0.0.0/8 0 - 5

4.0.0.0/8 0 - 5

5.0.0.0/8 0 - 5

In this example output, the first line displays the routing table that is being dumped. In 0/0/unicast, the
first 0 is for the router ID, the next 0 is for the VRF ID, and unicast identifies the unicast table. The
vRouter maintains separate tables for unicast and multicast routes. By default, if the —table option is not
specified, only the unicast table is dumped.

Each record in the table output specifies the destination prefix length, the parent route prefix length
from which this route has been expanded, the flags for the route, the MPLS label if the destination is a
VM in another location, and the next hop ID. To understand the second field “PPL”, it is good to keep in
mind that the unicast routing table is internally implemented as an ‘mtrie’.

The Flags field can have two values. L indicates that the label field is valid, and H indicates that vroute
should proxy arp for this IP.

The Nexthop field indicates the next hop ID to which the route points.

Example: rt --dump --table mcst

To dump the multicast table, use the —table option with mcst as the argument.

rt --dump 0 --table mcst

Kernel IP routing table 0/0/multicast

(Src,Group) Nexthop

0.0.0.0,255.255.255.255

dropstats Command

Use the dropstats command to see packet drop counters in vRouter. Use the dropstats --debug command to
view the Cloned Original counters.

Example: dropstats

(vrouter-agent-dpdk)[root@nodec56 /]$ dropstats

45

Invalid IF 0
Trap No IF 0
IF TX Discard 0
IF Drop 0
IF RX Discard 0

Flow Unusable 0
Flow No Memory 0
Flow Table Full 0
Flow NAT no rflow 0
Flow Action Drop 0
Flow Action Invalid 0
Flow Invalid Protocol 0
Flow Queue Limit Exceeded 0
New Flow Drops 0
Flow Unusable (Eviction) 0

Original Packet Trapped 0

Discards 0
TTL Exceeded 0
Mcast Clone Fail 0

Invalid NH 2
Invalid Label 0
Invalid Protocol 0
Etree Leaf to Leaf 0
Bmac/ISID Mismatch 0
Rewrite Fail 0
Invalid Mcast Source 0
Packet Loop 0

Push Fails 0
Pull Fails 0
Duplicated 0
Head Alloc Fails 0
PCOW fails 0
Invalid Packets 0

Misc 0
Nowhere to go 0
Checksum errors 0
No Fmd 0

46

Invalid VNID 0
Fragment errors 0
Invalid Source 0
Jumbo Mcast Pkt with DF Bit 0
No L2 Route 0
Memory Failures 0
Fragment Queueing Failures 0
No Encrypt Path Failures 0
Invalid HBS received packet 0

VLAN fwd intf failed TX 0
VLAN fwd intf failed enq 0

(vrouter-agent-dpdk)[root@nodec56 /]$ dropstats --debug
Cloned Original 0

NOTE: Cloned Original drops are still included in the Drops section in the output of the vif --list
command.

dropstats ARP Block

GARP packets from VMs are dropped by vRouter, an expected behavior. In the example output, the first
counter GARP indicates how many packets were dropped.

ARP requests that are not handled by vRouter are dropped, for example, requests for a system that is
not a host. These drops are counted by ARP notme counters.

The Invalid ARPs counter is incremented when the Ethernet protocol is ARP, but the ARP operation was
neither a request nor a response.

dropstats Interface Block

Invalid IF counters are incremented normally during transient conditions, and should not be a concern.

Trap No IF counters are incremented when vRouter is not able to find the interface to trap the packets to
vRouter agent, and should not happen in a working system.

IF TX Discard and IF RX Discard counters are incremented when vRouter is not in a state to transmit and
receive packets, and typically happens when vRouter goes through a reset state or when the module is
unloaded.

47

IF Drop counters indicate packets that are dropped in the interface layer. The increase can typically
happen when interface settings are wrong.

dropstats Flow Block

When packets go through flow processing, the first packet in a flow is cached and the vRouter agent is
notified so it can take actions on the packet according to the policies configured. If more packets arrive
after the first packet but before the agent makes a decision on the first packet, then those new packets
are dropped. The dropped packets are tracked by the Flow unusable counter.

The Flow No Memory counter increments when the flow block doesn't have enough memory to perform
internal operations.

The Flow Table Full counter increments when the vRouter cannot install a new flow due to lack of
available slots. A particular flow can only go in certain slots, and if all those slots are occupied, packets
are dropped. It is possible that the flow table is not full, but the counter might increment.

The Flow NAT no rflow counter tracks packets that are dropped when there is no reverse flow associated
with a forward flow that had action set as NAT. For NAT, the vRouter needs both forward and reverse
flows to be set properly. If they are not set, packets are dropped.

The Flow Action Drop counter tracks packets that are dropped due to policies that prohibit a flow.

The Flow Action Invalid counter usually does not increment in the normal course of time, and can be
ignored.

The Flow Invalid Protocol usually does not increment in the normal course of time, and can be ignored.

The Flow Queue Limit Exceeded usually does not increment in the normal course of time, and can be ignored.

dropstats Miscellaneous Operational Block

The Discard counter tracks packets that hit a discard next hop. For various reasons interpreted by the
agent and during some transient conditions, a route can point to a discard next hop. When packets hit
that route, they are dropped.

The TTL Exceeded counter increments when the MPLS time-to-live goes to zero.

The Mcast Clone Fail happens when the vRouter is not able to replicate a packet for flooding.

The Cloned Original is an internal tracking counter. It is harmless and can be ignored.

48

The Invalid NH counter tracks the number of packets that hit a next hop that was not in a state to be
used (usually in transient conditions) or a next hop that was not expected, or no next hops when there
was a next hop expected. Such increments happen rarely, and should not continuously increment.

The Invalid Label counter tracks packets with an MPLS label unusable by vRouter because the value is
not in the expected range.

The Invalid Protocol typically increments when the IP header is corrupt.

The Rewrite Fail counter tracks the number of times vRouter was not able to write next hop rewrite data
to the packet.

The Invalid Mcast Source tracks the multicast packets that came from an unknown or unexpected source
and thus were dropped.

The Duplicated counter tracks the number of duplicate packets that are created after dropping the original
packets. An original packet is duplicated when generic send offload (GSO) is enabled in the vRouter or
the original packet is unable to include the header information of the vRouter agent.

The Invalid Source counter tracks the number of packets that came from an invalid or unexpected source
and thus were dropped.

The remaining counters are of value only to developers.

mpls Command

The mpls utility command displays the input label map that has been programmed in the vRouter.

Example: mpls --dump

The —dump command dumps the complete label map. The output is divided into two columns. The first
field is the label and the second is the next hop corresponding to the label. When an MPLS packet with
the specified label arrives in the vRouter, it uses the next hop corresponding to the label to forward the
packet.

mpls –dump

MPLS Input Label Map

 Label NextHop

49

 16 9

 17 11

You can inspect the operation on nh 9 as follows:

nh --get 9

Id:009 Type:Encap Fmly: AF_INET Flags:Valid, Policy, Rid:0 Ref_cnt:4

 EncapFmly:0806 Oif:3 Len:14 Data:02 d0 60 aa 50 57 00 25 90 c3 08 69 08 00

The nh output shows that the next hop directs the packet to go out on the interface with index 3 (Oif:3)
with the given rewrite data.

To check the index of 3, use the following:

vif –get 3

vif0/3 OS: tapd060aa50-57

 Type:Virtual HWaddr:00:00:5e:00:01:00 IPaddr:0

 Vrf:1 Flags:PL3L2 MTU:9160 Ref:6

 RX packets:1056 bytes:103471 errors:0

 TX packets:1041 bytes:102372 errors:0

The -get 3 output shows that the index of 3 corresponds to a tap interface that goes to a VM.

You can also dump individual entries in the map using the —get option, as follows:

mpls –get 16

MPLS Input Label Map

 Label NextHop

50

 16 9

Example: mpls -help

mpls –help

Usage: mpls --dump

 mpls --get <label>

 mpls --help

--dump Dumps the mpls incoming label map

--get Dumps the entry corresponding to label <label>
 in the label map

--help Prints this help message

mirror Command

Use the mirror command to dump the mirror table entries.

Example: Inspect Mirroring

The following example inspects a mirror configuration where traffic is mirrored from network vn1
(1.1.1.0/24) to network vn2 (2.2.2.0/24). A ping is run from 1.1.1.253 to 2.2.2.253, where both IPs are
valid VM IPs, then the flow table is listed:

flow -l

Flow table

Index Source:Port Destination:Port Proto(V)

135024 2.2.2.253:1208 1.1.1.253:0 1 (1)

51

 (Action:F, S(nh):17, Statistics:208/17472 Mirror Index : 0)

387324 1.1.1.253:1208 2.2.2.253:0 1 (1)

 (Action:F, S(nh):8, Statistics:208/17472 Mirror Index : 0)

In the example output, Mirror Index:0 is listed, it is the index to the mirror table. The mirror table can be
dumped with the —dump option, as follows:

mirror --dump

Mirror Table

Index NextHop Flags References

--

 0 18 3

The mirror table entries point to next hops. In the example, the index 0 points to next hop 18. The
References indicate the number of flow entries that point to this entry.

A next hop get operation on ID 18 is performed as follows:

nh --get 18

Id:018 Type:Tunnel Fmly: AF_INET Flags:Valid, Udp, Rid:0 Ref_cnt:2

 Oif:0 Len:14 Flags Valid, Udp, Data:00 00 00 00 00 00 00 25 90 c3 08 69 08 00

 Vrf:-1 Sip:192.168.1.10 Dip:250.250.2.253

 Sport:58818 Dport:8099

The nh --get output shows that mirrored packets go to a system with IP 250.250.2.253. The packets are
tunneled as a UDP datagram and sent to the destination. Vrf:-1 indicates that a lookup has to be done in
the source Vrf for the destination.

52

You can also get an individual mirror table entry using the —get option, as follows:

mirror --get 10

Mirror Table

Index NextHop Flags References

 10 1 1

Example: mirror --help

mirror --help

Usage: mirror --dump

 mirror --get <index>

 mirror --help

--dump Dumps the mirror table

--get Dumps the mirror entry corresponding to index <index>

--help Prints this help message

vxlan Command

The vxlan command can be used to dump the VXLAN table. The vxlan table maps a network ID to a next
hop, similar to an MPLS table.

If a packet comes with a VXLAN header and if the VNID is one of those in the table, the vRouter will use
the next hop identified to forward the packet.

Example: vxlan --dump

vxlan --dump

53

VXLAN Table

VNID NextHop

 4 16

 5 16

Example: vxlan --get

You can use the —get option to dump a specific entry, as follows:

vxlan --get 4

VXLAN Table

 VNID NextHop

 4 16

Example: vxlan --help

vxlan --help

Usage: vxlan --dump

 vxlan --get <vnid>

 vxlan --help

--dump Dumps the vxlan table

--get Dumps the entry corresponding to <vnid>

--help Prints this help message

54

nh Command

The nh command enables you to inspect the next hops that are known by the vRouter. Next hops tell the
vRouter the next location to send a packet in the path to its final destination. The processing of the
packet differs based on the type of the next hop. The next hop types are described in the following
table.

Next Hop Type Description

Receive Indicates that the packet is destined for itself and the vRouter should
perform Layer 4 protocol processing. As an example, all packets
destined to the host IP will hit the receive next hop in the default VRF.
Similarly, all traffic destined to the VMs hosted by the server and
tunneled inside a GRE will hit the receive next hop in the default VRF
first, because the outer packet that carries the traffic to the VM is that
of the server.

Encap (Interface) Used only to determine the outgoing interface and the Layer 2
information. As an example, when two VMs on the same server
communicate with each other, the routes for each of them point to an
encap next hop, because the only information needed is the Layer 2
information to send the packet to the tap interface of the destination
VM. A packet destined to a VM hosted on one server from a VM on a
different server will also hit an encap next hop, after tunnel
processing.

Tunnel Encapsulates VM traffic in a tunnel and sends it to the server that
hosts the destination VM. There are different types of tunnel next
hops, based on the type of tunnels used. vRouter supports two main
tunnel types for Layer 3 traffic: MPLSoGRE and MPLSoUDP. For Layer
2 traffic, a VXLAN tunnel is used. A typical tunnel next hop indicates
the kind of tunnel, the rewrite information, the outgoing interface, and
the source and destination server IPs.

Discard A catch-all next hop. If there is no route for a destination, the packet
hits the discard next hop, which drops the packet.

Resolve Used by the agent to lazy install Layer 2 rewrite information.

55

(Continued)

Next Hop Type Description

Composite Groups a set of next hops, called component next hops or sub next
hops. Typically used when multi-destination distribution is needed, for
example for multicast, ECMP, and so on.

Vxlan A VXLAN tunnel is used for Layer 2 traffic. A typical tunnel next hop
indicates the kind of tunnel, the rewrite information, the outgoing
interface, and the source and destination server IPs.

Example: nh --list

Id:000 Type:Drop Fmly: AF_INET Flags:Valid, Rid:0 Ref_cnt:1781

Id:001 Type:Resolve Fmly: AF_INET Flags:Valid, Rid:0 Ref_cnt:244

Id:004 Type:Receive Fmly: AF_INET Flags:Valid, Policy, Rid:0

 Ref_cnt:2 Oif:1

Id:007 Type:Encap Fmly: AF_INET Flags:Valid, Multicast, Rid:0 Ref_cnt:3

 EncapFmly:0806 Oif:3 Len:14 Data:ff ff ff ff ff ff 00 25 90 c4 82 2c 08 00

Id:010 Type:Encap Fmly:AF_BRIDGE Flags:Valid, L2, Rid:0 Ref_cnt:3

 EncapFmly:0000 Oif:3 Len:0 Data:

Id:012 Type:Vxlan Vrf Fmly: AF_INET Flags:Valid, Rid:0 Ref_cnt:2

 Vrf:1

Id:013 Type:Composite Fmly: AF_INET Flags:Valid, Fabric, Rid:0 Ref_cnt:3

 Sub NH(label): 19(1027)

Id:014 Type:Composite Fmly: AF_INET Flags:Valid, Multicast, L3, Rid:0 Ref_cnt:3

56

 Sub NH(label): 13(0) 7(0)

Id:015 Type:Composite Fmly:AF_BRIDGE Flags:Valid, Multicast, L2, Rid:0 Ref_cnt:3

 Sub NH(label): 13(0) 10(0)

Id:016 Type:Tunnel Fmly: AF_INET Flags:Valid, MPLSoGRE, Rid:0 Ref_cnt:1

 Oif:2 Len:14 Flags Valid, MPLSoGRE, Data:00 25 90 aa 09 a6 00 25 90 c4 82 2c 08 00

 Vrf:0 Sip:10.204.216.72 Dip:10.204.216.21

Id:019 Type:Tunnel Fmly: AF_INET Flags:Valid, MPLSoUDP, Rid:0 Ref_cnt:7

 Oif:2 Len:14 Flags Valid, MPLSoUDP, Data:00 25 90 aa 09 a6 00 25 90 c4 82 2c 08 00

 Vrf:0 Sip:10.204.216.72 Dip:10.204.216.21

Id:020 Type:Composite Fmly:AF_UNSPEC Flags:Valid, Multi Proto, Rid:0 Ref_cnt:2

 Sub NH(label): 14(0) 15(0)

Example: nh --get

Use the --get option to display information for a single next hop.

nh –get 9

Id:009 Type:Encap Fmly:AF_BRIDGE Flags:Valid, L2, Rid:0 Ref_cnt:4

 EncapFmly:0000 Oif:3 Len:0 Data:

Example: nh --help

nh –help

Usage: nh --list

 nh --get <nh_id>

 nh --help

57

--list Lists All Nexthops

--get <nh_id> Displays nexthop corresponding to <nh_id>

--help Displays this help message

dpdkinfo Command

In Contrail Networking Release 2008, the dpdkinfo command enables you to see the details of the
internal data structures of a DPDK enabled vRouter.

dpdkinfo Options

Use dpdkinfo –-help to display all options available for the dpdkinfo command. The dpdkinfo command
options are described in the following table:

Option Description

--bond Displays the bond interface information for primary and backup devices in a bond
interface.

--lacp all Displays the Link Aggregation Control Protocol (LACP) configuration for Slow and Fast
LACP timers along with port details of actor and partner interfaces in a LACP
exchange.

--mempool all Displays summary of used and available memory buffers from all memory pools.

--mempool <mempool_name> Displays information about the specified memory pool.

--stats eth Displays NIC statistics information for the packets received (Rx) and transmitted (Tx)
by the vRouter.

--xstats all Displays extended NIC statistics information from NIC cards.

--xstats=<interface-id> Displays extended NIC information of the primary and backup devices for the given
interface-id (Primary->0, Slave_0->1, Slave_1 ->2).

58

(Continued)

Option Description

--lcore Displays the Rx queue mapped interfaces along with Queue ID.

--app Displays the overall application information like actual physical interface name,
number of cores, VLAN, queues, and so on.

dpdkinfo --ddp list Displays the list of DDP profiles added in the vRouter.

Example: dpdkinfo --bond

The dpdkinfo --bond displays the following information for primary and backup devices: actor/partner
status, actor/partner key, actor/partner system priority, actor/partner MAC address, actor/partner port
priority, actor/partner port number, and so on.

dpdkinfo --bond
No. of bond slaves: 2
Bonding Mode: 802.3AD Dynamic Link Aggregation
Transmit Hash Policy: Layer 3+4 (IP Addresses + UDP Ports) transmit load balancing
MII status: UP
MII Link Speed: 1000 Mbps
MII Polling Interval (ms): 10
Up Delay (ms): 0
Down Delay (ms): 0
Driver: net_bonding

802.3ad info :
LACP Rate: slow
Aggregator selection policy (ad_select): Stable
System priority: 32512
System MAC address:00:50:00:00:00:00
Active Aggregator Info:
 Aggregator ID: 0
 Number of ports: 2
 Actor Key: 4096
 Partner Key: 0
 Partner Mac Address: 00:00:80:7a:9b:05

Slave Interface(0): 0000:02:00.0

59

Slave Interface Driver: net_ixgbe
MII status: DOWN
MII Link Speed: 0 Mbps
Permanent HW addr:00:aa:7b:93:00:00
Aggregator ID: 13215
Duplex: half
Bond MAC addr:ac:1f:6b:a5:0f:de
Details actor lacp pdu:
 system priority: 0
 system mac address:00:aa:7b:93:00:00
 port key: 0
 port priority: 0
 port number: 63368
 port state: 0 ()

Details partner lacp pdu:
 system priority: 15743
 system mac address:00:00:80:01:9c:05
 port key: 0
 port priority: 0
 port number: 28836
 port state: 117 (ACT AGG COL DIST DEF)

Slave Interface(1): 0000:02:00.1
Slave Interface Driver: net_ixgbe
MII status: UP
MII Link Speed: 1000 Mbps
Permanent HW addr:ac:1f:6b:a5:0f:df
Aggregator ID: 1
Duplex: full
Bond MAC addr:ac:1f:6b:a5:0f:df
Details actor lacp pdu:
 system priority: 65535
 system mac address:ac:1f:6b:a5:0f:df
 port key: 17
 port priority: 255
 port number: 2
 port state: 61 (ACT AGG SYNC COL DIST)

Details partner lacp pdu:
 system priority: 127
 system mac address:ec:3e:f7:5f:f0:40
 port key: 3

60

 port priority: 127
 port number: 10
 port state: 63 (ACT TIMEOUT AGG SYNC COL DIST)

Example: dpdkinfo --lacp all

The dpdkinfo --lacp all command displays the following information for primary devices: LACP rate and
LACP configuration details, which include Fast periodic (ms), Slow periodic (ms), Short timeout (ms), Long
timeout (ms), LACP packet statistics for Tx and Rx counters, and so on. Also, dpdkinfo --lacp all displays
actor and partner port status details of all the backup devices.

dpdkinfo --lacp all
LACP Rate: fast

Fast periodic (ms): 900
Slow periodic (ms): 29000
Short timeout (ms): 3000
Long timeout (ms): 90000
Aggregate wait timeout (ms): 2000
Tx period (ms): 500
Update timeout (ms): 100
Rx marker period (ms): 2000

Slave Interface(0): 0000:04:00.0
Details actor lacp pdu:
 port state: 63 (ACT TIMEOUT AGG SYNC COL DIST)

Details partner lacp pdu:
 port state: 61 (ACT AGG SYNC COL DIST)

Slave Interface(1): 0000:04:00.1
Details actor lacp pdu:
 port state: 63 (ACT TIMEOUT AGG SYNC COL DIST)

Details partner lacp pdu:
 port state: 61 (ACT AGG SYNC COL DIST)

LACP Packet Statistics:
 Tx Rx
0000:04:00.0 6 28
0000:04:00.1 7 30

61

Example: dpdkinfo --mempool all and dpdk --mempool <mempool-name>

The dpdkinfo --mempool all displays a summary of the memory pool information of the primary and backup
devices, which include number of available memory pools, size of the memory pool, and so on.

The dpdk --mempool <mempool-name> displays detailed information of the memory pool you have specified in
the command.

dpdkinfo --mempool all

Name Size Used Available

rss_mempool 16384 620 15765
frag_direct_mempool 4096 0 4096
frag_indirect_mempool 4096 0 4096
slave_port0_pool 8193 0 8193
packet_mbuf_pool 8192 4 8188
slave_port1_pool 8193 125 8068

 dpdkinfo --mempool rss_mempool
rss_mempool
flags = 10
nb_mem_chunks = 77
size = 16384
populated_size = 16384
header_size = 64
elt_size = 9648
trailer_size = 80
total_obj_size = 9792
private_data_size = 64
avg bytes/object = 9856.000000
Internal cache infos:
 cache_size=256
 cache_count[0]=65
 cache_count[8]=219
 cache_count[9]=2
 cache_count[10]=156
 cache_count[11]=195
total_cache_count=637
common_pool_count=15137

Example: dpdkinfo --stats eth

62

The dpdkinfo --stats eth command reads Rx and Tx packets statistics from the NIC card and displays the
information.

dpdkinfo --stats eth
Master Info:
RX Device Packets:1289, Bytes:148651, Errors:0, Nombufs:0
Dropped RX Packets:0
TX Device Packets:2051, Bytes:237989, Errors:0
Queue Rx: [0]1289
 Tx: [0]2051
 Rx Bytes: [0]148651
 Tx Bytes: [0]234429
 Errors:

Slave Info(0000:02:00.0):
RX Device Packets:0, Bytes:0, Errors:0, Nombufs:0
Dropped RX Packets:0
TX Device Packets:0, Bytes:0, Errors:0
Queue Rx:
 Tx:
 Rx Bytes:
 Tx Bytes:
 Errors:

Slave Info(0000:02:00.1):
RX Device Packets:1289, Bytes:148651, Errors:0, Nombufs:0
Dropped RX Packets:0
TX Device Packets:2051, Bytes:237989, Errors:0
Queue Rx: [0]1289
 Tx: [0]2051
 Rx Bytes: [0]148651
 Tx Bytes: [0]234429
 Errors:

Example: dpdkinfo --xstats

63

The dpdkinfo --xstats command reads the Rx and Tx from the NIC cards and displays the packet statistics
in detail.

dpdkinfo --xstats
Master Info:
Rx Packets:
 rx_good_packets: 1459
 rx_q0packets: 1459
Tx Packets:
 tx_good_packets: 2316
 tx_q0packets: 2316
Rx Bytes:
 rx_good_bytes: 161175
 rx_q0bytes: 161175
Tx Bytes:
 tx_good_bytes: 265755
 tx_q0bytes: 261915
Errors:
Others:

Slave Info(0):0000:02:00.0
Rx Packets:
Tx Packets:
Rx Bytes:
Tx Bytes:
Errors:
 mac_local_errors: 2
Others:

Slave Info(1):0000:02:00.1
Rx Packets:
 rx_good_packets: 1459
 rx_q0packets: 1459
 rx_size_64_packets: 677
 rx_size_65_to_127_packets: 641
 rx_size_128_to_255_packets: 54
 rx_size_256_to_511_packets: 48
 rx_size_512_to_1023_packets: 3
 rx_size_1024_to_max_packets: 36
 rx_broadcast_packets: 3

64

 rx_multicast_packets: 772
 rx_total_packets: 1461
Tx Packets:
 tx_good_packets: 2316
 tx_q0packets: 2316
 tx_total_packets: 2316
 tx_size_64_packets: 276
 tx_size_65_to_127_packets: 582
 tx_size_128_to_255_packets: 1433
 tx_size_256_to_511_packets: 4
 tx_size_512_to_1023_packets: 3
 tx_size_1024_to_max_packets: 18
 tx_multicast_packets: 1431
 tx_broadcast_packets: 9
Rx Bytes:
 rx_good_bytes: 161175
 rx_q0bytes: 161175
 rx_total_bytes: 161567
Tx Bytes:
 tx_good_bytes: 265755
 tx_q0bytes: 261915
Errors:
 mac_local_errors: 2
Others:
 out_pkts_untagged: 2316

Example: dpdkinfo --lcore

The dpdkinfo --lcore displays Logical core (lcore) information, which includes number of forwarding lcores,
the interfaces mapped to the lcore, and queue-ID of the interfaces.

dpdkinfo --lcore
No. of forwarding lcores: 2
No. of interfaces: 4
Lcore 0:
 Interface: bond0.102 Queue ID: 0
 Interface: vhost0 Queue ID: 0

Lcore 1:
 Interface: bond0.102 Queue ID: 1
 Interface: tapd1b53efb-9e Queue ID: 0

65

dpdkinfo --app

The dpdkinfo --app command displays the following information:

• Application related information about number of lcores, the names of the existing backup interfaces,
and so on.

• For VLAN configured devices the command displays VLAN name, tag, and vlan_vif name.

• For bond interfaces the command displays ethdev information, which include Max rx queues, Max tx
queues, Reta size, Port id, number of ethdev slaves, Tapdev information, and so on.

• Monitoring interface names (if available) and SR-IOV information, which includes logical core, ethdev
port ID, and driver name.

dpdkinfo --app
No. of lcores: 12
No. of forwarding lcores: 2
Fabric interface: bond0.102
Slave interface(0): enp2s0f0
Slave interface(1): enp2s0f1
Vlan name: bond0
Vlan tag: 102
Vlan vif: bond0
Ethdev (Master):
 Max rx queues: 128
 Max tx queues: 64
 Ethdev nb rx queues: 2
 Ethdev nb tx queues: 64
 Ethdev nb rss queues: 2
 Ethdev reta size: 128
 Ethdev port id: 2
 Ethdev nb slaves: 2
 Ethdev slaves: 0 1 0 0 0 0

Ethdev (Slave 0): 0000:02:00.0
 Nb rx queues: 2
 Nb tx queues: 64
 Ethdev reta size: 128

Ethdev (Slave 1): 0000:02:00.1
 Nb rx queues: 2
 Nb tx queues: 64
 Ethdev reta size: 128

66

Tapdev:
 fd: 39 vif name: bond0
 fd: 48 vif name: vhost0

Example: dpdkinfo --ddp list

In Contrail Networking Release 2011, you can use the dpdkinfo --ddp list command to display the list of
DDP profiles added in the vRouter.

The dpdkinfo --ddp list displays a summary of the DDP profile added in the vRouter. The summary of the
profile information includes tracking ID of the profile, version number, and profile name.

(contrail-tools)[root@cs-scale-02 /]$ dpdkinfo --ddp list
Profile count is: 1

Profile 0:
Track id: 0x8000000c
Version: 1.0.0.0
Profile name: L2/L3 over MPLSoGRE/MPLSoUDP

dpdkconf Command

In Contrail Networking Release 2011, the dpdkconf command enables you to configure a DPDK enabled
vRouter. In release 2011, you can use the dpdkconf command to enable or delete a DDP profile in
vRouter.

Example: dpdkconf --ddp add

Use the dpdkconf --ddp add command during runtime to enable a DDP profile in a DPDK enabled vRouter.

(contrail-tools)[root@cs-scale-02 /]$ dpdkconf --ddp add
Programming DDP image mplsogreudp - success

Example: dpdkconf --ddp delete

Use the dpdkconf --ddp delete command to delete a DDP profile, which is already loaded in the vRouter.

(contrail-tools)[root@cs-scale-02 /]$ dpdkconf --ddp delete
vr_dpdk_ddp_del: Removed DDP image mplsogreudp - success

Change History Table

67

Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

2011 In Contrail Networking Release 2011, you can use the dpdkinfo --ddp list command to display the list of
DDP profiles added in the vRouter.

2011 In Contrail Networking Release 2011, the dpdkconf command enables you to configure a DPDK enabled
vRouter. In release 2011, you can use the dpdkconf command to enable or delete a DDP profile in
vRouter.

2008 Contrail Networking Release 2008 supports clearing of vif statistics counters for all interfaces by using
the --clear command.

2008 In Contrail Networking Release 2008, the dpdkinfo command enables you to see the details of the
internal data structures of a DPDK enabled vRouter.

Tracing the vRouter Packet Path

IN THIS SECTION

Unicast Packet Path - Intra-VN | 69

Unicast Packet Path - Inter-VN | 75

Broadcast, Unknown Unicast, and Multicast Packet Path | 80

Contrail Networking vRouter is the component that takes packets from virtual machines (VM)s and
forwards them to their destinations. Tracing is a useful tool for debugging the packet path.

In this topic, we trace the vRouter packet path in the following use cases:

• Unicast Packet Path - Intra-VN

• Unicast Packet Path - Inter-VN

• Broadcast, Unknown Unicast, and Multicast Packet Path

68

Unicast Packet Path - Intra-VN

IN THIS SECTION

Intra-Compute Use Case | 69

Inter-Compute Use Case | 72

This procedure steps through debugging the unicast packet path for intra-virtual network (intra-VN)
traffic from VM1 to VM2 (on same compute node) and VM3 (on different compute node). In this
example, the VMs listed are in the same subnet 10.1.1.0/24. Intra-VN traffic is within the same virtual
network.

VM1 IP address 10.1.1.5/32 (Compute 1)

VM2 IP address 10.1.1.6/32 (Compute 1)

VM3 IP address 10.1.1.7/32 (Compute 2)

Intra-Compute Use Case

1. Discover the vif interfaces corresponding to the virtual machine interfaces (VMI)s of the VM by using
the command:

vif --list

You can also discover the vif interfaces by entering the introspect URL.

Example:

http://10.1.1.5:8085/Snh_ItfReq?
name=&type=&uuid=&vn=&mac=&ipv4_address=&ipv6_address=&parent_uuid=&ip_active=&ip6_active=&l2_
active=

NOTE: Replace the IP address with the actual compute IP address in the introspect HTTP
URL.

69

2. Run the vif --get <index> command to verify the virtual routing and forwarding (VRF) and Policy flags
are set in the vRouter interface (VIF).

Example output verifying flags for each vif:

vif0/4 OS: tapdd789d34-27
 Type:Virtual HWaddr:00:00:5e:00:01:00 IPaddr:10.1.1.5
 Vrf:2 Mcast Vrf:2 Flags:PL3L2Er QOS:-1 Ref:6
 RX packets:30 bytes:8676 errors:0
 TX packets:170 bytes:7140 errors:0
 ISID: 0 Bmac: 02:dd:78:9d:34:27
 Drops:81

vif0/6 OS: tapaedbc037-bf
 Type:Virtual HWaddr:00:00:5e:00:01:00 IPaddr:10.1.1.6
 Vrf:2 Mcast Vrf:2 Flags:PL3L2Er QOS:-1 Ref:6
 RX packets:96316 bytes:4858043 errors:0
 TX packets:96562 bytes:4884177 errors:0
 ISID: 0 Bmac: 02:ae:db:c0:37:bf
 Drops:2

3. Run the following command to display all of the entries from the bridge table:

rt --dump <vrf id> --family bridge

Example:

rt --dump 2 --family bridge
Flags: L=Label Valid, Df=DHCP flood, Mm=Mac Moved, L2c=L2 Evpn Control Word, N=New Entry,
Ec=EvpnControlProcessing
vRouter bridge table 0/2
Index DestMac Flags Label/VNID Nexthop Stats
31264 0:0:5e:0:1:0 Df - 3 206834
79784 2:dd:78:9d:34:27 Df - 44 4
112924 ff:ff:ff:ff:ff:ff LDf 5 48 35
115240 2:0:0:0:0:2 Df - 12 0
169408 2:ae:db:c0:37:bf Df - 25 1
183944 2:99:ef:64:96:e1 LDf 27 20 0
205564 2:0:0:0:0:1 Df - 12 0
252380 0:25:90:c5:58:94 Df - 3 0

70

Highlighted in the example is the destination MAC address of the destination VM in the bridge table
and the next-hop identifier associated with it.

4. Run nh --get <nh id> to display the next-hop details.

Example:

nh --get 25
Id:25 Type:Encap Fmly:AF_BRIDGE Rid:0 Ref_cnt:3 Vrf:2
 Flags:Valid, Policy, Etree Root,
 EncapFmly:0806 Oif:6 Len:14
 Encap Data: 02 ae db c0 37 bf 00 00 5e 00 01 00 08 00

In the example, Oif:6 is the OIF index in the next hop which is the outgoing interface for the packet.
The Encap Data corresponds to the L2 encapsulation that is added to the IP packet before the packet is
forwarded to the outgoing interface.

5. Run vif --get <oifindex> to get the outgoing VIF details.

Example:

vif --get 6
vif0/6 OS: tapaedbc037-bf
 Type:Virtual HWaddr:00:00:5e:00:01:00 IPaddr:10.1.1.6
 Vrf:2 Mcast Vrf:2 Flags:PL3L2Er QOS:-1 Ref:6
 RX packets:96935 bytes:4892936 errors:0
 TX packets:97235 bytes:4921004 errors:0
 ISID: 0 Bmac: 02:ae:db:c0:37:bf
 Drops:2

The received packet RX and transmitted packet TX counters for the corresponding VIF interfaces are
incremented when traffic is flowing through.

6. Run the flow -l command to list the flows created. If the Policy flag is enabled on the VIFs, a flow is
created as shown in the example.

Example: Ping 10.1.1.6 from 10.1.1.5.

flow -l
Index Source:Port/Destination:Port Proto(V)

 876<=>1020 10.1.1.6:1599 1 (2)
 10.1.1.5:0

71

(Gen: 12, K(nh):21, Action:F, Flags:, QOS:-1, S(nh):21, Stats:9/882,
 SPort 54920, TTL 0, Sinfo 6.0.0.0)

 1020<=>876 10.1.1.5:1599 1 (2)
 10.1.1.6:0
(Gen: 2, K(nh):29, Action:F, Flags:, QOS:-1, S(nh):29, Stats:9/882, SPort 58271,
 TTL 0, Sinfo 4.0.0.0)

The statistics in the forward and reverse flow are incremented when traffic is flowing through. If
statistics are not getting incremented for a particular flow, that can indicate a potential problem in
that direction. The flow action should be F or N for the packets to be forwarded or NATed out. A flow
action of D indicates that packets will be dropped.

7. Run the vrouter_agent_debug script to collect all of the relevant logs.

Inter-Compute Use Case

In an inter-compute case, the next-hop lookup points to the tunnel that takes the packet to the other
compute node. The bridge entry will also indicate the Label/VNID added to the packet during
encapsulation. Inter-compute traffic is between VMs on different compute nodes.

For Compute 1:

1. Discover the vif interfaces corresponding to the virtual machine interfaces (VMI)s of the VM by using
the command:

vif --list

You can also discover the vif interfaces by entering the introspect URL:

Example:

http://10.1.1.5:8085/Snh_ItfReq?
name=&type=&uuid=&vn=&mac=&ipv4_address=&ipv6_address=&parent_uuid=&ip_active=&ip6_active=&l2_
active=

NOTE: Replace the IP address with the actual compute IP address in the introspect HTTP
URL.

2. Run the vif --get <index> command to verify the virtual routing and forwarding (VRF) and Policy flags
are set in the vRouter interface (VIF).

72

Example output verifying flags for each vif:

vif0/4 OS: tapdd789d34-27
 Type:Virtual HWaddr:00:00:5e:00:01:00 IPaddr:10.1.1.5
 Vrf:2 Mcast Vrf:2 Flags:PL3L2Er QOS:-1 Ref:6
 RX packets:30 bytes:8676 errors:0
 TX packets:170 bytes:7140 errors:0
 ISID: 0 Bmac: 02:dd:78:9d:34:27
 Drops:81

vif0/6 OS: tapaedbc037-bf
 Type:Virtual HWaddr:00:00:5e:00:01:00 IPaddr:10.1.1.6
 Vrf:2 Mcast Vrf:2 Flags:PL3L2Er QOS:-1 Ref:6
 RX packets:96316 bytes:4858043 errors:0
 TX packets:96562 bytes:4884177 errors:0
 ISID: 0 Bmac: 02:ae:db:c0:37:bf

3. Run the following command to display all of the entries from the bridge table:

rt --dump <vrf id> --family bridge

Example:

rt --dump 2 --family bridge
Flags: L=Label Valid, Df=DHCP flood, Mm=Mac Moved, L2c=L2 Evpn Control Word, N=New Entry,
Ec=EvpnControlProcessing
vRouter bridge table 0/2
Index DestMac Flags Label/VNID Nexthop Stats
31264 0:0:5e:0:1:0 Df - 3 206834
79784 2:dd:78:9d:34:27 Df - 44 4
112924 ff:ff:ff:ff:ff:ff LDf 5 48 35
115240 2:0:0:0:0:2 Df - 12 0
169408 2:ae:db:c0:37:bf Df - 25 1
183944 2:99:ef:64:96:e1 LDf 27 20 0
205564 2:0:0:0:0:1 Df - 12 0
252380 0:25:90:c5:58:94 Df - 3 0

In the example, 2:99:ef:64:96:e1 belongs to IP address 10.1.1.7 and label 27 is used to encapsulate the
packet.

4. Run nh --get <nh id> to get the next hop details.

73

Example:

nh --get 20
Id:20 Type:Tunnel Fmly: AF_INET Rid:0 Ref_cnt:12 Vrf:0
 Flags:Valid, MPLSoGRE, Etree Root,
 Oif:0 Len:14 Data:00 25 90 c5 62 1c 00 25 90 c5 58 94 08 00
 Sip:10.204.217.86 Dip:10.204.217.70

In the example, the next-hop output indicates the next-hop type as Tunnel, encapsulation used as
MPLSoGRE, the outgoing interface as Oif:0, and the corresponding source and destination IP addresses of
the tunnel.

For Compute 2:

1. Run the mpls --get <label> command to see the next hop mapped to the particular incoming MPLS
table.

Example:

mpls --get 27
MPLS Input Label Map

 Label NextHop

 27 28

2. Run nh --get <nh_id> to get the next hop details.

Example:

nh --get 28
Id:28 Type:Encap Fmly:AF_BRIDGE Rid:0 Ref_cnt:3 Vrf:2
 Flags:Valid, Policy, Etree Root,
 EncapFmly:0806 Oif:3 Len:14
 Encap Data: 02 99 ef 64 96 e1 00 00 5e 00 01 00 08 00

3. Run vif --get <oifindex> to get the outgoing VIF details.

74

Example:

vif --get 3

vif0/3 OS: tap99ef6496-e1
 Type:Virtual HWaddr:00:00:5e:00:01:00 IPaddr:10.1.1.7
 Vrf:2 Mcast Vrf:2 Flags:PL3L2Er QOS:-1 Ref:6
 RX packets:34 bytes:10044 errors:0
 TX packets:1699 bytes:78990 errors:0
 Drops:93

NOTE: If you are using VXLAN encapsulation, do the following on Compute 2:

a. For Step "1" on page 74 , instead of running the mpls --get command, run the vxlan --get
<vxlanid> command to get the mapping from VXLAN ID to the next hop.

b. With VXLAN, the next hop points to a VRF translated next hop. Use the bridge lookup in
the corresponding VRF, as shown in Step "3" on page 73 to get the final outgoing next
hop, which will point to the VIF interface.

Unicast Packet Path - Inter-VN

IN THIS SECTION

Intra-Compute Use Case | 76

Inter-Compute Use Case | 79

The following procedure steps through debugging the packet path from VM1 to VM2 (on the same
compute node) and VM3 (on a different compute node). In this example, the virtual machines (VMs)
listed are in the same subnet 10.1.1.0/24.

VM1 IP address 10.1.1.5/32 (Compute 1)

VM2 IP address 20.1.1.6/32 (Compute 1)

VM3 IP address 20.1.1.5/32 (Compute 2)

75

NOTE: Replace the IP address with the actual compute IP address in all of the introspect URLs.

Intra-Compute Use Case

1. Discover the vif interfaces corresponding to the virtual machine interfaces (VMI)s of the VM using
the command:

vif --list

You can also discover the vif interfaces by entering the introspect URL:

Example:

http://10.1.1.5:8085/Snh_ItfReq?
name=&type=&uuid=&vn=&mac=&ipv4_address=&ipv6_address=&parent_uuid=&ip_active=&ip6_active=&l2_
active=

NOTE: Replace the IP address with the actual compute IP address in the introspect HTTP
URLs.

2. Run the vif --get <index> command to verify the virtual routing and forwarding (VRF) and Policy flags
are set in the vRouter interface (VIF).

Example output verifying flags for each vif:

vif0/4 OS: tapdd789d34-27
 Type:Virtual HWaddr:00:00:5e:00:01:00 IPaddr:10.1.1.5
 Vrf:2 Mcast Vrf:2 Flags:PL3L2Er QOS:-1 Ref:6
 RX packets:30 bytes:8676 errors:0
 TX packets:170 bytes:7140 errors:0
 ISID: 0 Bmac: 02:dd:78:9d:34:27
 Drops:81

vif0/6 OS: tapaedbc037-bf
 Type:Virtual HWaddr:00:00:5e:00:01:00 IPaddr:10.1.1.6
 Vrf:2 Mcast Vrf:2 Flags:PL3L2Er QOS:-1 Ref:6

76

 RX packets:96316 bytes:4858043 errors:0
 TX packets:96562 bytes:4884177 errors:0
 ISID: 0 Bmac: 02:ae:db:c0:37:bf
 Drops:2

3. Run the following command to display all of the entries from the bridge table:

rt --dump <vrf id> --family bridge

Example:

rt --dump 2 --family bridge
Flags: L=Label Valid, Df=DHCP flood, Mm=Mac Moved, L2c=L2 Evpn Control Word, N=New Entry,
Ec=EvpnControlProcessing
vRouter bridge table 0/2
Index DestMac Flags Label/VNID Nexthop Stats
31264 0:0:5e:0:1:0 Df - 3 212744
79784 2:dd:78:9d:34:27 Df - 44 408
112924 ff:ff:ff:ff:ff:ff LDf 5 51 38
115240 2:0:0:0:0:2 Df - 12 0
169408 2:ae:db:c0:37:bf Df - 25 405
183944 2:99:ef:64:96:e1 LDf 5 37 0
205564 2:0:0:0:0:1 Df - 12 0
252380 0:25:90:c5:58:94 Df - 3 0

In the case of inter-virtual network (VN)s, the packets are Layer 3 routed instead of Layer 2 switched.
The vRouter does a proxy ARP for the destination network providing it’s virtual MAC address
0:0:5e:0:1:0 back for the ARP request from the source. This can be seen from the rt –dump of the
source VN inet table. This results in the packet being received by the vRouter, which does the route
lookup to send the packet to the correct destination.

4. Run nh --get <nh id> to display the next-hop details.

Example:

nh --get 3
Id:3 Type:L2 Receive Fmly: AF_INET Rid:0 Ref_cnt:8 Vrf:0
 Flags:Valid, Etree Root,

5. Run rt --dump 2 --family inet | grep <ip address> to display inet family routes on the specified IP
address.

77

Example:

rt --dump 2 --family inet | grep 20.1.1.6
Destination PPL Flags Label Nexthop Stitched MAC(Index)

20.1.1.6/32 32 P - 30 -
20.1.1.60/32 0 - 0 -
20.1.1.61/32 0 - 0 -
20.1.1.62/32 0 - 0 -
20.1.1.63/32 0 - 0 -
20.1.1.64/32 0 - 0 -
20.1.1.65/32 0 - 0 -
20.1.1.66/32 0 - 0 -
20.1.1.67/32 0 - 0 -
20.1.1.68/32 0 - 0 -
20.1.1.69/32 0 - 0 -
20.1.106.0/24 0 - 0 -

6. Run nh --get <nh id> to get the next hop details.

Example:

nh --get 30
Id:30 Type:Encap Fmly: AF_INET Rid:0 Ref_cnt:5 Vrf:3
 Flags:Valid, Policy, Etree Root,
 EncapFmly:0806 Oif:3 Len:14
 Encap Data: 02 60 fc 55 cb bf 00 00 5e 00 01 00 08 00

7. Run vif --get <oifindex> to get the outgoing VIF details.

Example:

vif --get 3
vif0/3 OS: tap60fc55cb-bf
 Type:Virtual HWaddr:00:00:5e:00:01:00 IPaddr:20.1.1.6
 Vrf:3 Mcast Vrf:3 Flags:PL3L2Er QOS:-1 Ref:6
 RX packets:356 bytes:32586 errors:0
 TX packets:3930 bytes:177290 errors:0
 ISID: 0 Bmac: 02:60:fc:55:cb:bf
 Drops:84

78

Inter-Compute Use Case

In the case of inter-compute, the next hop looked up to send the packet out, will point to a tunnel next
hop. Depending on the encapsulation priority, the appropriate encapsulation is added and the packet is
tunneled out. Inter-compute traffic is between VMs on different compute nodes.

For Compute 1:

1. Run rt --dump 2 --family inet | grep <ip address> to display inet family routes for a specified IP address.

Example:

rt --dump 2 --family inet | grep 20.1.1.5
20.1.1.5/32 32 LP 32 49 -
20.1.1.50/32 0 - 0 -
20.1.1.51/32 0 - 0 -
20.1.1.52/32 0 - 0 -
20.1.1.53/32 0 - 0 -
20.1.1.54/32 0 - 0 -
20.1.1.55/32 0 - 0 -
20.1.1.56/32 0 - 0 -
20.1.1.57/32 0 - 0 -
20.1.1.58/32 0 - 0 -

2. Run nh --get <nh id> to display the next-hop details, which points to a tunnel next hop.

Example:

nh --get 49
Id:49 Type:Tunnel Fmly: AF_INET Rid:0 Ref_cnt:9 Vrf:0
 Flags:Valid, MPLSoUDP, Etree Root,
 Oif:0 Len:14 Data:00 25 90 c5 62 1c 00 25 90 c5 58 94 08 00
 Sip:10.204.217.86 Dip:10.204.217.70

For Compute 2:

1. Run the mpls --get <label> command to see the next hop mapped to the particular incoming MPLS
table.

79

Example:

mpls --get 32
MPLS Input Label Map

 Label NextHop

 32 36

2. Run nh --get <nh id> to view the next hop details.

Example:

nh --get 36
Id:36 Type:Encap Fmly: AF_INET Rid:0 Ref_cnt:5 Vrf:3
 Flags:Valid, Policy, Etree Root,
 EncapFmly:0806 Oif:4 Len:14
 Encap Data: 02 f3 37 7b 53 25 00 00 5e 00 01 00 08 00

In the example, Oif:4 is the OIF index in the next hop which is the outgoing interface for the packet.
The Encap Data corresponds to the L2 encapsulation that is added to the IP packet before the packet is
forwarded to the outgoing interface.

3. Run vif --get <oifindex> to get the outgoing VIF details.

Example:

vif --get 4
vif0/4 OS: tapf3377b53-25
 Type:Virtual HWaddr:00:00:5e:00:01:00 IPaddr:20.1.1.5
 Vrf:3 Mcast Vrf:3 Flags:PL3L2Er QOS:-1 Ref:6
 RX packets:100 bytes:16915 errors:0
 TX packets:3955 bytes:178363 errors:0
 ISID: 0 Bmac: 02:f3:37:7b:53:25
 Drops:78

For details about EVPN type 5 routing in Contrail Networking, see Support for EVPN Route Type 5.

Broadcast, Unknown Unicast, and Multicast Packet Path

80

The following procedure steps through debugging the packet path for broadcast, unknown unicast, and
multicast (BUM) traffic in Contrail Networking. In this example, the virtual machines (VMs) listed are in
the same subnet 70.70.70.0/24.

The ToR Service Node (TSN) actively holds the contrail-tor-agent and is responsible for:

1. Acting as a receiver of all BUM traffic coming from the ToR switch.

2. Acting as DNS/DHCP responder for the BMS connected to the ToR switch.

Contrail Networking releases earlier than 5.x, used an Open vSwitch Database (OVSDB)-managed
VXLAN environment.

Topology example for an OVSDB-managed VXLAN:

• Top-of-Rack Switch 1 (ToR SW1) - 10.204.74.229 (lo0.0 = 1.1.1.229)

• Top-of-Rack Switch 2 (ToR SW2) - 10.204.74.230 (lo0.0 = 1.1.1.230)

• ToR Services Node 1 (TSN1) = 10.219.94.7

• ToR Services Node 2 (TSN2) = 10.219.94.8

• Controller1 = 10.219.94.4

• Controller2 = 10.219.94.5

• Controller3 = 10.219.94.6

• Compute1 = 10.219.94.9

• Compute2 = 19.219.94.18

• Virtual Network (VN) = 70.70.70.0/24

• Virtual Machine 1 (VM1) = 70.70.70.3 residing on Compute2

• Virtual Machine 2 (VM2) = 70.70.70.5 residing on Compute1

• Bare Metal Server 1 (BMS1) = 70.70.70.100

• Bare Metal Server 2 (BMS2) = 70.70.70.101

1. Run the set protocols ovsdb interfaces <interface> command to configure the physical interfaces that
you want the OVSDB protocol to manage.

81

Example:

set protocols ovsdb interfaces ge-0/0/46
set protocols ovsdb interfaces ge-0/0/90

The ToR interfaces from which the BMS hangs are marked as ovsdb interfaces.

2. View packets coming into these interfaces by displaying the ovsdb mac table for the ToR switch.

Example:

root@QFX5100-229> show ovsdb mac
Logical Switch Name: Contrail-9ed1f70a-6eac-4cdb-837a-1579728fd9a1
 Mac IP Encapsulation Vtep
 Address Address Address
 ff:ff:ff:ff:ff:ff 0.0.0.0 Vxlan over Ipv4 1.1.1.229
 40:a6:77:d8:37:1d 0.0.0.0 Vxlan over Ipv4 1.1.1.229
 02:3b:ce:56:61:98 0.0.0.0 Vxlan over Ipv4 10.219.94.18
 02:53:89:c4:29:1c 0.0.0.0 Vxlan over Ipv4 10.219.94.18
 02:72:e9:7a:cd:f5 0.0.0.0 Vxlan over Ipv4 10.219.94.9
 02:75:a1:33:65:3c 0.0.0.0 Vxlan over Ipv4 10.219.94.9
 ff:ff:ff:ff:ff:ff 0.0.0.0 Vxlan over Ipv4 10.219.94.7

{master:0}

The entry marked in red (ff:ff:ff:ff:ff:ff:ff - broadcast route) indicates the next hop for a BUM
packet coming into the ToR SW’s ovsdb interface. In this case, VTEP address 10.219.94.7 is the next
hop, which is TSN1. This changes based on which TSN has the active contrail-tor-agent for the ToR
switch in question. With this, the BUM packet is forwarded to the TSN node in a VXLAN tunnel
(local VTEP source interface is 1.1.1.229 and RVTEP source interface is 10.219.94.7).

The VXLAN encapsulated packet is sent with a VXLAN Network Identifier (VNI) that is
predetermined by Contrail Networking when logical interfaces are created. For example, when
ge-0/0/46 was configured as a logical port in Contrail Networking, the following configuration was
committed on the ToR.

Example:

set vlans Contrail-9ed1f70a-6eac-4cdb-837a-1579728fd9a1 interface ge-0/0/46.0
set vlans Contrail-9ed1f70a-6eac-4cdb-837a-1579728fd9a1 interface ge-0/0/90.0
set vlans Contrail-9ed1f70a-6eac-4cdb-837a-1579728fd9a1 vxlan vni 4

82

As the VXLAN encapsulated packet arrives on the TSN node, let’s examine how the vRouter
handles this packet.

3. Run vxlan --dump to dump the VXLAN table. The VXLAN table maps a network ID to a next hop.

Example:

root@contrail61:~# vxlan --dump
VXLAN Table

 VNID NextHop

 4 13

In the example, next hop 13 is programmed for VNI 4.

4. Run nh --get <nh id> to display the next-hop details and determine the virtual routing and forwarding
(VRF) associated.

Example:

root@contrail61:~# nh --get 13
Id:13 Type:Vrf_Translate Fmly: AF_INET Rid:0 Ref_cnt:2 Vrf:1
 Flags:Valid, Vxlan,
 Vrf:1

5. Run the following command to display all of the entries from the bridge table:

rt --dump <vrf id> --family bridge

Example:

root@contrail61:~# rt --dump 1 --family bridge
Flags: L=Label Valid, Df=DHCP flood
vRouter bridge table 0/1
Index DestMac Flags Label/VNID Nexthop
30780 0:1a:a0:e:30:26 - 1
57812 2:53:89:c4:29:1c LDf 17 15
70532 2:3b:ce:56:61:98 LDf 20 15
87024 2:72:e9:7a:cd:f5 LDf 17 14
97192 ff:ff:ff:ff:ff:ff LDf 4 24

83

121160 0:1a:a0:a:b4:87 - 1
225832 40:a6:77:d8:37:1d LDf 4 19
237084 0:11:a:6c:50:d4 Df - 3
244992 aa:bb:cc:dd:3e:f4 - 1
252916 0:0:5e:0:1:0 Df - 3
256476 2:75:a1:33:65:3c LDf 20 14

In the example bridge table, since we are tracing the BUM packet path, we need to examine the
ff:ff:ff:ff:ff:ff:ff route by selecting the next hop programmed. In the example, it is 24. Note that a
series of composite next hops are programmed.

6. Run nh --get <nh id> to display the next-hop details.

Example:

root@contrail61:~# nh --get 24
Id:24 Type:Composite Fmly:AF_BRIDGE Rid:0 Ref_cnt:4 Vrf:1
 Flags:Valid, Multicast, L2,
 Sub NH(label): 20(0) 22(0) 21(0)

Id:20 Type:Composite Fmly: AF_INET Rid:0 Ref_cnt:2 Vrf:1
 Flags:Valid, Tor,
 Sub NH(label): 19(4)

Id:19 Type:Tunnel Fmly: AF_INET Rid:0 Ref_cnt:3 Vrf:0
 Flags:Valid, Vxlan,
 Oif:0 Len:14 Flags Valid, Vxlan, Data:00 00 5e 00 01 21 00 11 0a 6c 50 d4 08
00
 Vrf:0 Sip:10.219.94.7 Dip:1.1.1.229 << Source where the BUM Traffic came
from.

Id:22 Type:Composite Fmly: AF_INET Rid:0 Ref_cnt:2 Vrf:1
 Flags:Valid, Evpn,
 Sub NH(label):

Id:21 Type:Composite Fmly: AF_INET Rid:0 Ref_cnt:2 Vrf:1
 Flags:Valid, Fabric,
 Sub NH(label): 15(4099)

Id:15 Type:Tunnel Fmly: AF_INET Rid:0 Ref_cnt:6 Vrf:0
 Flags:Valid, MPLSoGRE,
 Oif:0 Len:14 Flags Valid, MPLSoGRE, Data:f8 bc 12 33 43 31 00 11 0a 6c 50 d4
08 00

84

 Vrf:0 Sip:10.219.94.7 Dip:10.219.94.18 << Compute node which has a VM in
this VN.

The multicast tree in the example shows that there are two Dynamic IPs (DIP)s. The DIP where the
packet came from is ignored. Therefore, packet gets forwarded to DIP 10.219.94.18 only.

7. Run vxlan --get <vnid> to examine what DIP 10.219.94.18 does with the incoming VXLAN
encapsulated packet.

Example:

root@contrail4:~# vxlan --get 4
VXLAN Table

 VNID NextHop

 4 20

8. Run nh --get <nh id> to display the next-hop details.

Example:

root@contrail4:~# nh --get 20
Id:20 Type:Vrf_Translate Fmly: AF_INET Rid:0 Ref_cnt:2 Vrf:1
 Flags:Valid, Vxlan,
 Vrf:1

9. Run the following command to display all of the entries from the bridge table:

rt --dump <vrf id> --family bridge

Example:

root@contrail4:~# rt --dump 1 --family bridge
Flags: L=Label Valid, Df=DHCP flood
vRouter bridge table 0/1
Index DestMac Flags Label/VNID Nexthop
57812 2:53:89:c4:29:1c - 15
70532 2:3b:ce:56:61:98 - 22
87024 2:72:e9:7a:cd:f5 LDf 17 25

85

97192 ff:ff:ff:ff:ff:ff LDf 4 50
112856 f8:bc:12:33:43:31 Df - 3
225832 40:a6:77:d8:37:1d LDf 4 18
252916 0:0:5e:0:1:0 Df - 3
256476 2:75:a1:33:65:3c LDf 20 25

In the example bridge table, since we are tracing the BUM packet path, we need to examine the
ff:ff:ff:ff:ff:ff:ff route by selecting the next hop programmed. In the example, it is 50.

10. Run nh --get <nh id> to display the next-hop details.

Example:

root@contrail4:~# nh --get 50
Id:50 Type:Composite Fmly:AF_BRIDGE Rid:0 Ref_cnt:4 Vrf:1
 Flags:Valid, Multicast, L2,
 Sub NH(label): 43(0) 49(0)

Id:43 Type:Composite Fmly: AF_INET Rid:0 Ref_cnt:2 Vrf:1
 Flags:Valid, Fabric,
 Sub NH(label): 31(4612) 25(4617)

Id:31 Type:Tunnel Fmly: AF_INET Rid:0 Ref_cnt:2 Vrf:0
 Flags:Valid, MPLSoGRE,
 Oif:0 Len:14 Flags Valid, MPLSoGRE, Data:00 11 0a 6c 50 d4 f8 bc 12 33 43 31
08 00
 Vrf:0 Sip:10.219.94.18 Dip:10.219.94.7 <<< Source where the BUM traffic
came from.

Id:25 Type:Tunnel Fmly: AF_INET Rid:0 Ref_cnt:2562 Vrf:0
 Flags:Valid, MPLSoGRE,
 Oif:0 Len:14 Flags Valid, MPLSoGRE, Data:44 a8 42 3a 94 f4 f8 bc 12 33 43 31
08 00
 Vrf:0 Sip:10.219.94.18 Dip:10.219.94.9 <<< Compute node which has a VM in
this VN.

Id:49 Type:Composite Fmly: AF_INET Rid:0 Ref_cnt:2 Vrf:1
 Flags:Valid, Encap,
 Sub NH(label): 14(0) 21(0)

Id:14 Type:Encap Fmly:AF_BRIDGE Rid:0 Ref_cnt:2 Vrf:1
 Flags:Valid,
 EncapFmly:0806 Oif:4 Len:14

86

 Encap Data: 02 53 89 c4 29 1c 00 00 5e 00 01 00 08 00

Id:21 Type:Encap Fmly:AF_BRIDGE Rid:0 Ref_cnt:2 Vrf:1
 Flags:Valid,
 EncapFmly:0806 Oif:3 Len:14
 Encap Data: 02 3b ce 56 61 98 00 00 5e 00 01 00 08 00 <<< Local VM belonging
to this VN that is an intended receiver of this multicast traffic.

In the example, you only have to inspect DIP 10.219.94.9. The remaining endpoints are either local or
the source where the BUM traffic came from. Now, let us examine, what DIP 10.219.94.9 does with
the incoming VXLAN encapsulated packet.

11. Run vxlan --get <vnid> to examine what DIP 10.219.94.9 does with the incoming VXLAN encapsulated
packet.

Example:

root@contrail101:~# vxlan --get 4
VXLAN Table

 VNID NextHop

 4 20

12. Run nh --get <nh id> to display the next-hop details.

Example:

root@contrail101:~# nh --get 20
Id:20 Type:Vrf_Translate Fmly: AF_INET Rid:0 Ref_cnt:2 Vrf:1
 Flags:Valid, Vxlan,
 Vrf:1

13. Display the bridge table for the VRF by using the following command:

rt --dump <vrf id> --family bridge

87

Example:

root@contrail101:~# rt --dump 1 --family bridge
Flags: L=Label Valid, Df=DHCP flood
vRouter bridge table 0/1
Index DestMac Flags Label/VNID Nexthop
57812 2:53:89:c4:29:1c LDf 17 28
70532 2:3b:ce:56:61:98 LDf 20 28
87024 2:72:e9:7a:cd:f5 - 15
97192 ff:ff:ff:ff:ff:ff LDf 4 31
140744 44:a8:42:3a:94:f4 Df - 3
225832 40:a6:77:d8:37:1d LDf 4 24
252916 0:0:5e:0:1:0 Df - 3
256476 2:75:a1:33:65:3c - 22
 Encap Data: f8 bc 12 33 43 31 44 a8 42 3a 94 f4 08 00

14. Run nh --get <nh id> to display the next-hop details.

Example:

root@contrail101:~# nh --get 31
Id:31 Type:Composite Fmly:AF_BRIDGE Rid:0 Ref_cnt:4 Vrf:1
 Flags:Valid, Multicast, L2,
 Sub NH(label): 30(0) 36(0)

Id:30 Type:Composite Fmly: AF_INET Rid:0 Ref_cnt:2 Vrf:1
 Flags:Valid, Fabric,
 Sub NH(label): 29(4612) 28(4099)

Id:29 Type:Tunnel Fmly: AF_INET Rid:0 Ref_cnt:2 Vrf:0
 Flags:Valid, MPLSoGRE,
 Oif:0 Len:14 Flags Valid, MPLSoGRE, Data:00 11 0a 6c 50 ac 44 a8 42 3a 94 f4
08 00
 Vrf:0 Sip:10.219.94.9 Dip:10.219.94.8 << TSN2 in this topology that is
managing a ToR with an end-point belonging to this VN.

Id:28 Type:Tunnel Fmly: AF_INET Rid:0 Ref_cnt:2566 Vrf:0
 Flags:Valid, MPLSoGRE,
 Oif:0 Len:14 Flags Valid, MPLSoGRE, Data:f8 bc 12 33 43 31 44 a8 42 3a 94 f4
08 00
 Vrf:0 Sip:10.219.94.9 Dip:10.219.94.18 << Source where the BUM traffic came

88

from.

Id:36 Type:Composite Fmly: AF_INET Rid:0 Ref_cnt:2 Vrf:1
 Flags:Valid, Encap,
 Sub NH(label): 14(0) 21(0)

Id:14 Type:Encap Fmly:AF_BRIDGE Rid:0 Ref_cnt:2 Vrf:1
 Flags:Valid,
 EncapFmly:0806 Oif:3 Len:14
 Encap Data: 02 72 e9 7a cd f5 00 00 5e 00 01 00 08 00 << local VM that is an
intended receiver of this traffic as it is tagged to this VN

Id:21 Type:Encap Fmly:AF_BRIDGE Rid:0 Ref_cnt:2 Vrf:1
 Flags:Valid,
 EncapFmly:0806 Oif:4 Len:14
 Encap Data: 02 75 a1 33 65 3c 00 00 5e 00 01 00 08 00 << Local VM that is an
intended receiver of this traffic since it is tagged to this VN.

From the above output, the only DIP that you have to further examine is 10.219.94.8. The remaining
DIPs are either local or the source where the BUM traffic came from. Now, let’s examine what DIP
10.219.94.8 does with the incoming VXLAN encapsulated packet.

15. Run vxlan --get <vnid> to examine what DIP 10.219.94.9 does with the incoming VXLAN encapsulated
packet.

Example:

root@contrail66:~# vxlan --get 4
VXLAN Table

 VNID NextHop

 4 14

16. Run nh --get <nh id> to display the next-hop details.

Example:

root@contrail66:~# nh --get 14
Id:14 Type:Vrf_Translate Fmly: AF_INET Rid:0 Ref_cnt:2 Vrf:1

89

 Flags:Valid, Vxlan,
 Vrf:1

17. Display the bridge table for the VRF by using the following command:

rt --dump <vrf id> --family bridge

Example:

root@contrail66:~# rt --dump 1 --family bridge
Flags: L=Label Valid, Df=DHCP flood
vRouter bridge table 0/1
Index DestMac Flags Label/VNID Nexthop
30780 0:1a:a0:e:30:26 - 1
57812 2:53:89:c4:29:1c LDf 17 17
70532 2:3b:ce:56:61:98 LDf 20 17
87024 2:72:e9:7a:cd:f5 LDf 17 16
97192 ff:ff:ff:ff:ff:ff LDf 4 24
121160 0:1a:a0:a:b4:87 - 1
217208 0:11:a:6c:50:ac Df - 3
225832 40:a6:77:d8:37:1d LDf 4 20
244992 aa:bb:cc:dd:3e:f4 - 1
252916 0:0:5e:0:1:0 Df - 3
256476 2:75:a1:33:65:3c LDf 20 16

18. Run nh --get <nh id> to display the next-hop details.

Example:

root@contrail66:~# nh --get 24
Id:24 Type:Composite Fmly:AF_BRIDGE Rid:0 Ref_cnt:4 Vrf:1
 Flags:Valid, Multicast, L2,
 Sub NH(label): 23(0) 25(0) 21(0)

Id:23 Type:Composite Fmly: AF_INET Rid:0 Ref_cnt:2 Vrf:1
 Flags:Valid, Tor,
 Sub NH(label): 22(4)

Id:22 Type:Tunnel Fmly: AF_INET Rid:0 Ref_cnt:2 Vrf:0
 Flags:Valid, Vxlan,

90

 Oif:0 Len:14 Flags Valid, Vxlan, Data:00 00 5e 00 01 21 00 11 0a 6c 50 ac 08
00
 Vrf:0 Sip:10.219.94.8 Dip:1.1.1.230 <<< Another ToR switch that has an end-
point belonging to this VN.

Id:25 Type:Composite Fmly: AF_INET Rid:0 Ref_cnt:2 Vrf:1
 Flags:Valid, Evpn,
 Sub NH(label):

Id:21 Type:Composite Fmly: AF_INET Rid:0 Ref_cnt:2 Vrf:1
 Flags:Valid, Fabric,
 Sub NH(label): 16(4617)

Id:16 Type:Tunnel Fmly: AF_INET Rid:0 Ref_cnt:6 Vrf:0
 Flags:Valid, MPLSoGRE,
 Oif:0 Len:14 Flags Valid, MPLSoGRE, Data:44 a8 42 3a 94 f4 00 11 0a 6c 50 ac
08 00
 Vrf:0 Sip:10.219.94.8 Dip:10.219.94.9 <<< Source where the BUM traffic came
from.

Now, you just have one DIP 1.1.1.230 which is the ToR SW2 in the topology. This should also be
present in the multicast tree as this ToR SW also has an end-point (which is BMS2) in the same VN
(VNI=4) as the one we are tracing.

This completes all levels of forwarding and tracing the BUM packet from one ToR switch and is
replicated to other intended receivers in the topology.

These multicast trees are programmed by the controllers that the TSN is connected to. If you want to
inspect the controller’s memory and what eventually gets programmed on all TSN computes, enter the
following introspect URL using your controller IP address:

http://<controller_ip>:8083/Snh_ShowMulticastManagerDetailReq?x=default-domain:admin:seventy-
network:seventy-network.ermvpn.0

RELATED DOCUMENTATION

Assisted Replication of Broadcast, Unknown Unicast, and Multicast Traffic

vRouter Command Line Utilities | 34

91

Using Contrail Tools

Contrail-tools container provides centralized location for all the available tools and CLI commands in one
place.

Starting with Contrail Networking Release 2008, contrail-tools command will be installed by default.

contrail-tools command enables you to log in to the contrail-tools container and execute the tool.
Additionally, the command will kill the container on exit.

Table 5 on page 92 provides a list of available tools and CLI options in the contrail-tools package.

Table 5: Available Tools and CLI options

Tools and CLI commands Description

dpdkinfo Adds support to display bond, lacp, Nic, mempool, core, and app information.

dpdkvifstats.py Display the PPS statistics of DPDK vRouter.

dropstats Inspects packet drop counters in the vRouter.

flow Displays active flows in the system.

mirror Displays the mirror table entries.

mpls Displays the input label map programmed into the vRouter.

nh Displays the next hops that the vRouter knows.

qosmap Retrieves and sets QoS mappings.

rt Displays routes in virtual routing and forwarding (VRF).

sandump Captures the Sandesh messages from the netlink connection between Agent and
vRouter.

vif Inspects vRouter interfaces associated with the vRouter module.

92

Table 5: Available Tools and CLI options (Continued)

Tools and CLI commands Description

vifdump Captures and analyzes packets from DPDK interface.

vrfstats Displays the next hop statistics for the VRF.

vrftable Displays the interface mapping for each VRF for a host-based firewall feature.

vrinfo Displays internal state of DPDK/Kernel vRouter.

vrmemstats Displays the vRouter memory usage statistics.

vrouter Display the vRouter information.

vxlan Displays the vxlan table entries.

There are 2 ways to execute the contrail-tools command:

• Execute contrail-tools command to login to the container.

For example:

[root]# contrail-tools
(contrail-tools)[root /]$ vif
Usage: vif [--create <intf_name> --mac <mac>]
 [--add <intf_name> --mac <mac> --vrf <vrf>
 --type [vhost|agent|physical|virtual|monitoring]
 --transport [eth|pmd|virtual|socket]
 --xconnect <physical interface name>
 --policy, --vhost-phys, --dhcp-enable]
 --vif <vif ID> --id <intf_id> --pmd --pci]
 [--delete <intf_id>|<intf_name>]
 [--get <intf_id>][--kernel][--core <core number>][--rate] [--get-drop-stats]
 [--set <intf_id> --vlan <vlan_id> --vrf <vrf_id>]
 [--list][--core <core number>][--rate]
 [--sock-dir <sock dir>]
 [--help]

93

• Execute contrail-tools command with the CLI as argument.

For example:

[root]# contrail-tools vif
Usage: vif [--create <intf_name> --mac <mac>]
 [--add <intf_name> --mac <mac> --vrf <vrf>
 --type [vhost|agent|physical|virtual|monitoring]
 --transport [eth|pmd|virtual|socket]
 --xconnect <physical interface name>
 --policy, --vhost-phys, --dhcp-enable]
 --vif <vif ID> --id <intf_id> --pmd --pci]
 [--delete <intf_id>|<intf_name>]
 [--get <intf_id>][--kernel][--core <core number>][--rate] [--get-drop-stats]
 [--set <intf_id> --vlan <vlan_id> --vrf <vrf_id>]
 [--list][--core <core number>][--rate]
 [--sock-dir <sock dir>]
 [--help]

Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

2008 Starting with Contrail Networking Release 2008, contrail-tools command will be installed by default.

RELATED DOCUMENTATION

Using Sandump Tool | 94

Using Sandump Tool

Starting with Contrail Networking Release 2008, Sandump tool is available in contrail-tools container.
You can use the Sandump tool on macOS machines.

Sandump tool captures the Sandesh messages from netlink connection between Agent and vRouter
(only DPDK mode) and provides interpretation of all the captured bytes.

Starting with Contrail Networking Release 2011, you can use Sandump tool on Windows machines.

94

Sandesh is a southbound interface protocol based on Apache Thrift, to send analytics data such as
system logs, object logs, UVEs, flow logs, and the like, to the collector service in the Contrail Insights
node.

You can analyze the captured bytes in Wireshark. The Wireshark plugin parses the hex dumps of all
Sandesh objects. You must use Wireshark Release 3.2 and later.

You must have Wireshark application installed on your machine. You can download Wireshark from the
Download Wireshark page.

For more details on Wireshark, see https://www.wireshark.org/docs/.

Follow the procedure to use Sandump tool:

1. Run the sandump command. It gives summary of each message which is being transferred between the
agent and the vRouter.

 (vrouter-agent-dpdk)[root]$./sandump -h
Sandump - Sandesh dump utility
Usage:
 ./sandump -w <filename> [filename to write the sandesh packets]
 ./sandump -c <filename> [force cleanup]
(vrouter-agent-dpdk)[root]$

2. Copy the output into a file.

(vrouter-agent-dpdk)[root]$./sandump -w <filename>.pcap
Dumping into <filename>.pcap
Running as user "root" and group "root". This could be dangerous.
Capturing on 'lo'
12 ^C
./sandump: closing...
(vrouter-agent-dpdk)[root]$

The command generates a file which contains sniffed bytes converted in to the pcap format.

3. Analyze the captured packets transferred between the agent and the vRouter.

(vrouter-agent-dpdk)[root]$./sandump
Running as user "root" and group "root". This could be dangerous.
Capturing on 'lo'
 1 2020-08-04 09:51:01.233639252 Agent → Vrouter Vif 790 Operation: Dump
Type: Host ID: 0

95

 2 2020-08-04 09:51:01.251279611 Vrouter → Agent Response, Vif 3966 Response:
0x0000000, Multiple vr_interface_req
 3 2020-08-04 09:51:33.290323560 Agent → Vrouter Mem Stats 869 Operation: Get
 4 2020-08-04 09:51:33.290964111 Vrouter → Agent Response, Mem Stats 899
Response: 0x00000000
 5 2020-08-04 09:51:46.175797696 Agent → Vrouter Info 137 ID: 0 Operation:
Dump
 6 2020-08-04 09:51:46.176494123 Vrouter → Agent Response, Info 1949
Response: 0x00000001 ID: 0
 7 2020-08-04 09:51:58.920197081 Agent → Vrouter Nexthop 280 Nexthop ID: 0
Operation: Dump
 8 2020-08-04 09:51:58.920905495 Vrouter → Agent Response, Nexthop 3898
Response: 0x4000001, Multiple vr_nexthop_req
 9 2020-08-04 09:51:58.922297667 Agent → Vrouter Nexthop 280 Nexthop ID: 0
Operation: Dump
 10 2020-08-04 09:51:58.922425514 Vrouter → Agent Response, Nexthop 3930
Response: 0x4000001, Multiple vr_nexthop_req
 11 2020-08-04 09:51:58.923525453 Agent → Vrouter Nexthop 280 Nexthop ID: 0
Operation: Dump
 12 2020-08-04 09:51:58.926925821 Vrouter → Agent Response, Nexthop 792
Response: 0x0000000, Multiple vr_nexthop_req
^C12 packets captured
./sandump: closing...
(vrouter-agent-dpdk)[root]$

4. Analyze the pcap file in WireShark.

• Follow the procedure to analyze the packets in Wireshark for Windows OS.

a. Download the sandump_wireshark_plugin folder from the https://github.com/
tungstenfabric/tf-vrouter/tree/master/utils/sandump repository.

b. Copy the sandump_wireshark_plugin/main.lua file in C:\Program Files\Wireshark\plugins\
folder.

Create new lua folder in C:\Program Files\Wireshark\ and copy the rest of the lua files
present in sandump_wireshark_plugin folder to the newly created lua folder.

NOTE: Wireshark installation directory for 32-bit Windows is present in C:\Program
Files (x86)\Wireshark\and for 64-bit Windows is present in C:\Program Files
\Wireshark\.

c. Run Notepad as administrator and open C:/Windows/System32/drivers/etc/hosts file.

96

d. Add the host names with the following details:

• Agent IP address—0.0.0.0

• vRouter IP address—1.1.1.1

Figure 10 on page 97 shows the host file with the required IP addresses.

Figure 10: host file

e. Open the pcap file generated from Sandump tool for further debugging in Wireshark.

97

Figure 11: File debugging in Wireshark

• Follow the procedure to analyze the packets in Wireshark for macOS.

a. Download the sandump_wireshark_plugin folder from the https://github.com/
tungstenfabric/tf-vrouter/tree/master/utils/sandump repository.

b. Copy the sandump_wireshark_plugin folder in /Applications/Wireshark.app/Contents/
PlugIns/wireshark directory which is also know as Global Lua Plugins directory.

c. Un-comment the package.prepend_path(…) line in main.lua, common.lua and helpers.lua files found
in sandump_wireshark_plugin folder.

d. Navigate to Wireshark > About Wireshark > Folders > Personal configuration to edit the
configuration.

e. Create hosts file in the Personal configuration directory and add the host names with the
following details:

• Agent IP address—0.0.0.0

• vRouter IP address—1.1.1.1

Figure 12 on page 99 shows the host file with the required IP addresses.

98

Figure 12: host file

f. Navigate to Wireshark > Preferences > Name Resolution and check Resolve network (IP)
addresses option.

Figure 13: Wireshark—Preferences

g. Open the pcap file generated from Sandump tool for further debugging in Wireshark.

99

Figure 14: File debugging in Wireshark

Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

2011 Starting with Contrail Networking Release 2011, you can use Sandump tool on Windows machines.

2008 Starting with Contrail Networking Release 2008, Sandump tool is available in contrail-tools container.
You can use the Sandump tool on macOS machines.

RELATED DOCUMENTATION

Using Contrail Tools | 92

100

Security Logging Object

IN THIS SECTION

Defining an SLO | 101

Attaching an SLO to a Virtual Network and Virtual Machine Interface | 102

Editing an Existing SLO | 104

You can define a security logging object (SLO) to log sessions that match a specific policy rule or security
group. An SLO also enables selective session logging. This reduces the amount of data sent from
vRouter agent to Contrail Analytics.

You can attach an SLO to a:

• Virtual network

• Virtual machine interface

These topics provide information on how you can define an SLO, attach an SLO to a virtual network and
virtual machine interface, associate a policy rule or security group to SLO, and edit the name of an
existing SLO.

Defining an SLO

Follow these steps to define an SLO by using the Contrail Command user interface (UI).

These steps also describe how you can associate a network policy rule or security group to an SLO.

1. Navigate to Security>Security Logging Object.

The Security Logging Object page is displayed.

2. Click Create to define a new security logging object.

3. Enter the following information in the Create Security Logging Object page.

a. Enter a name for the SLO in the Name field.

b. Enter the number of sessions logged in the Rate field.

Rate indicates the number of sessions logged. The first session in every R (rate) number of
sessions matching the SLO is logged. When the rate is set to 1, all sessions are logged.

c. Select Up from the Admin State list to indicate the admin state of the security logging object.

d. Select the network policy you want to attach to the SLO from the Network Policies list.

101

This enables logging of sessions for all virtual network interfaces that the selected network policy
is attached to.

e. Select the security groups you want to attach to the SLO from the Security Group list.

This enables logging of sessions for all virtual machine interfaces that the selected security group
is attached to.

f. You can also define a new SLO rule for a network policy and security group from the Rules section
of the Create Security Logging Object page.

To define an SLO rule for a network policy,

i. Select Network Policy from the Type list.

ii. Select the network policy you want this SLO rule to be applied to, from the Network Policy
list.

iii. Enter the number of sessions you want logged in the Rate field.

iv. To add another rule, click +Add.

To define an SLO rule for a security group,

a. Select Security Group from the Type list.

b. Select the security group you want this SLO rule to be applied to, from the Security Groups list.

c. Enter the number of sessions you want logged in the Rate field.

d. To add another rule, click +Add.

4. Click Create to create the SLO.

The Security Logging Object page is displayed.

Attaching an SLO to a Virtual Network and Virtual Machine Interface

IN THIS SECTION

Attaching an SLO to a Virtual Network | 103

Attaching an SLO to a Virtual Machine Interface | 103

After you have defined an SLO, you can attach the SLO to a virtual network and a virtual machine
interface.

Follow these steps to attach an SLO to a virtual machine and a virtual machine interface.

102

Attaching an SLO to a Virtual Network

You can attach an SLO to a virtual network while creating the virtual network or after you have created
the virtual network˙.

For steps to attach an SLO while creating a virtual network, see Create Virtual Network.

Follow these steps to attach an SLO to an existing virtual network.

1. Navigate to Overlay>Virtual Networks.

The All networks page is displayed.

2. Select the virtual network you want to edit by click the Edit icon at the end of the row.

The Edit Virtual Network page is displayed.

3. Click the Advanced section.

4. Select the SLO from the Security Logging Object list.

5. Click Save to save configuration.

Attaching an SLO to a Virtual Machine Interface

IN THIS SECTION

Attaching an SLO to a Virtual Machine Interface while creating a Virtual Port | 103

Attaching an SLO to an existing Virtual Machine Interface | 104

You can attach an SLO to a virtual machine interface while creating a virtual port or after you have
created the virtual port.

Attaching an SLO to a Virtual Machine Interface while creating a Virtual Port

Follow these steps to attach an SLO to a virtual machine interface while creating a virtual port.

1. Navigate to Overlay>Virtual Ports.

The Virtual Ports page is displayed.

2. Click Create to create a virtual port.

The Create Virtual Port page is displayed.

3. Enter a name for the virtual port in the Port Name field.

4. Select a network from the Network list that you want to associate with the virtual port.

5. Select a security group from the Security Group list that you want to apply to the virtual port.

6. Select floating IPs from the Floating IPs list that you want to associate with the virtual port.

103

7. To add an SLO, click the Advanced Options section and select an SLO from the Security Logging
Object(s) list.

8. Click Create to create the virtual port.

Attaching an SLO to an existing Virtual Machine Interface

Follow these steps to attach an SLO to an existing virtual machine.

1. Navigate to Overlay>Virtual Ports.

The Virtual Ports page is displayed.

2. Select the virtual port by selecting the check box next to the name of the virtual port, and click the
Edit icon.

The Edit Virtual Port page is displayed.

3. To add an SLO, click the Advanced Options section and select an SLO from the Security Logging
Object(s) list.

4. Click Save to save configuration.

Editing an Existing SLO

Follow these steps to edit the name of an existing SLO.

1. Navigate to Security>Security Logging Object.

The Security Logging Object page is displayed.

2. To edit an existing SLO, click the Edit icon at the end of the row.

3. Update the necessary information.

4. Click Save to save configuration.

System Log Receiver in Contrail Analytics

IN THIS SECTION

Overview | 105

Redirecting System Logs to Contrail Collector | 105

Exporting Logs from Contrail Analytics | 105

104

Overview

The contrail-collector process on the Contrail Analytics node can act as a system log receiver.

Redirecting System Logs to Contrail Collector

You can enable the contrail-collector to receive system logs by giving a valid syslog_port as a command
line option:

--DEFAULT.syslog_port <arg>

or by adding syslog_port in the DEFAULT section of the configuration file at /etc/contrail/contrail-
collector.conf .

For nodes to send system logs to the contrail-collector, the system log configuration for the node should
be set up to direct the system logs to contrail-collector.

Example

Add the following line in /etc/rsyslog.d/50-default.conf on an Ubuntu system to redirect the system logs to
contrail-collector.

. @<collector_ip>:<collector_syslog_port> :: @ for udp, @@ for tcp

The logs can be retrieved by using Contrail tool, either by using the contrail-logs utility on the analytics
node or by using the Contrail user interface on the system log query page.

Exporting Logs from Contrail Analytics

You can also export logs stored in Contrail analytics to another system log receiver by using the contrail-
logs utility.

The contrail-logs utility can take these options: --send-syslog, --syslog-server, --syslog-port, to query
Contrail analytics, then send the results as system logs to a system log server. This is an on-demand
command, one can write a cron job or a job that continuously invokes contrail-logs to achieve continuous
sending of logs to another system log server.

Sending Flow Messages to the Contrail System Log

The common_vrouter.env can be configured to send flow logs to external syslog server. You can configure
common_vrouter.env, if you wish to recompose the docker. Update common.sh , if you do not wish to
recompose the docker.

If you wish to recompose the docker:

105

1. Update /etc/contrail/common_vrouter.env.

This is applicable only for the docker-based deployment.

SLO_DESTINATION=syslog
SAMPLE_DESTINATION=syslog

2. Recompose the docker.

docker-compose -f /etc/contrail/vrouter/docker-compose.yaml down

docker-compose -f /etc/contrail/vrouter/docker-compose.yaml up -d

3. Configure the session export rate.

If you do not wish to recompose the docker:

1. Update common.sh .

SLO_DESTINATION="syslog file"
SAMPLE_DESTINATION="syslog file”
if [-n "$XFLOW_NODE_IP"];

2. Configure the session export rate.

3. Then restart contrail-vrouter-agent.

Flow log sampling settings apply regardless of the flow log destination specified. If sampling is enabled,
the syslog messages will be sampled using the same rules that would apply to Contrail Analytics. If non-
sampled flow data is required, sampling must be disabled by means of configuration settings.

Flow events for termination will include both the appropriate tear-down fields and the appropriate setup
fields.

The flow messages will be sent to the syslog with a severity of INFO.

The user can configure the remote system log (rsyslog) on the compute node to send syslog messages
with facility LOCAL0, severity of INFO (and lower), to the remote syslog server. Messages with a higher
severity than INFO can be logged to a local file to allow for debugging.

Flow messages appear in the syslog in a format similar to the following log example:

May 24 14:40:13 a7s10 contrail-vrouter-agent[29930]: 2016-05-24 Tue 14:40:13:921.098 PDT a7s10 [Thread
139724471654144, Pid 29930]: [SYS_INFO]: FlowLogDataObject: flowdata= [[[flowuuid = 7ea8bf8f-b827-496e-
b93e-7622a0c8eeea direction_ing = 1 sourcevn = default-domain:mock-gen-test:vn8 sourceip = 1.0.0.9 destvn =

106

default-domain:mock-gen-test:vn58 destip = 1.0.0.59 protocol = 1 sport = -29520 dport = 20315 setup_time =
1464125225556930 bytes = 1035611592 packets = 2024830 diff_bytes = 27240 diff_packets = 40],]]

NOTE: Several individual flow messages might be packed into a single syslog message for
improved efficiency.

User Configuration for Analytics Alarms and Log Statistics

IN THIS SECTION

Configuring Alarms Based on User-Visible Entities Data | 107

Examples: Detecting Anomalies | 109

Configuring the User-Defined Log Statistic | 111

Implementing the User-Defined Log Statistic | 114

Configuring Alarms Based on User-Visible Entities Data

Contrail allows you to dynamically configure alarms based on the user-visible entities (UVE) data. An
alarm configuration object is created based on the alarm configuration XSD schema. The alarm
configuration object is added to the Contrail configuration database, using the Contrail API server REST
API interface.

An alarm configuration object can be anchored in the configuration data model under global-system-config
or project, depending on the alarm type. Under global-system-config, you should configure virtual network
system-wide alarms, such as those for the analytics node, the config node, and so on. Under project, you
should configure alarms related to project objects, such as virtual networks and similar objects.

To configure and monitor alarms using the Contrail UI:

1. Navigate to Configure > Alarms> Project, and select the desired project to access the Alarm Rules
page.

107

2. Click the Gear icon to add a new alarm configuration or to edit an existing alarm configuration. Use
the Edit screen to define descriptions and to set up alarm rules. See Table 6 on page 108 for field
descriptions.

Table 6: Alarm Rules Fields

Field Description

Name Enter a name for the alarm.

Severity Select the severity level of the alarm from the list.

UVE Keys Select the list of UVE types to apply to this alarm.

108

Table 6: Alarm Rules Fields (Continued)

Field Description

Description Enter a description of the alarm.

Rule Set up the alarm rules. Alarm rules are expressed as OR of AND terms.
Each term has operand1, operand2, and the operation. Operand1 is the
UVE attribute. Operand2 can be either another UVE attribute or a JSON
value. The rules are evaluated in the contrail-alarm-gen service and an
alarm is raised or cleared as needed on respective conditions.

3. To monitor alarms, navigate to Monitor > Alarms> Dashboard. The Dashboard screen lists the active
alarms in the system.

Examples: Detecting Anomalies

The purpose of anomaly detection in Contrail is to identify a condition in which a metric deviates from
its expected value, within given parameters.

Contrail uses a statistical process control model for time-series anomaly detection that can be computed
online, in real-time. Raw metrics are sent as statistics by Sandesh generators embedded inside the UVEs.
The model uses the running average and running standard deviation for a given raw metric. The model
does not account for seasonality and linear trends in the metric.

The following example represents part of the UVE sent by the vRouter to the collector. The raw metrics
are phy_band_in_bps and phy_band_out_bps.

109

The derived statistics are in in_bps_ewm and out_bps_ewm, which are generated when the model’s EWM
algorithm is applied to the raw metrics. The raw metrics and the derived statistics are part of the UVE
and are sent to the collector.

struct EWMResult {
 3: u64 samples
 6: double mean
 7: double stddev
}

struct VrouterStatsAgent { // Agent stats

1: string name (key="ObjectVRouter")

2: optional bool deleted …

/** @display_name:Vrouter Physical Interface Input bandwidth Statistics*/

50: optional map<string,u64> phy_band_in_bps (tags="name:.__key")

/** @display_name:Vrouter Physical Interface Output bandwidth Statistics*/

51: optional map<string,u64> phy_band_out_bps (tags="name:.__key")

52: optional map<string,derived_stats_results.EWMResult> in_bps_ewm
(mstats="phy_band_in_bps:DSEWM:0.2")

53: optional map<string,derived_stats_results.EWMResult> out_bps_ewm
(mstats="phy_band_out_bps:DSEWM:0.2")
}

The following shows part of the UVE that lists the raw metric phy_band_out_bps and the derived statistic
out_bps_ewm. The user can define an alarm based on the values in sigma or in stddev.

110

Configuring the User-Defined Log Statistic

Any deployment of Contrail cloud over an orchestration system requires tools for monitoring and
troubleshooting the entire cloud deployment. Cloud data centers are built with a large collection of
interconnected servers that provide computing and storage capacity for a variety of applications. The
monitoring of the cloud and its infrastructure requires monitoring logs and messages sent to a variety of
servers from many micro services.

Contrail analytics stores all of the monitored messages in the Contrail database node, and the analytics
generates a large amount of useful information that aids in monitoring and troubleshooting the network.

With Contrail, the user-defined log statistic feature provides additional abilities for monitoring and
troubleshooting by enabling the user to set a counter on any regular Perl-type expression. Each time the
pattern is found in any system logs, UVEs, or object logs, the counter is incremented.

The user-defined log statistic can be configured from the Contrail UI or from the command line, using
vnc_api.

To configure the user-defined log statistic from the Contrail UI:

1. Navigate to Configure > Infrastructure > Global Config and select Log Statistic.

111

2. To create a log statistic, click the plus (+) icon to access the Create Log Statistic screen. Enter a name
for the user-defined log statistic, and in the RegExp Pattern field, enter the Perl-type expression to
look for and count.

3. To edit an existing log statistic, select the name of the statistic and click the Gear icon, then select
Edit to access the Edit Log Statistic screen.

112

4. To delete a log statistic, select the name of the statistic and click the gear icon, then select the Delete
option.

To configure the user-defined statistic from the vnc_api:

user@host:~# python
Python 2.7.6 (default, Jun 22 2015, 17:58:13)
[GCC 4.8.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.

>> from vnc_api import vnc_api
>> from vnc_api.gen.resource_xsd import UserDefinedLogStat
>> from vnc_api.gen.resource_client import GlobalSystemConfig
>> vnc = vnc_api.VncApi('<username>', '<password>', '<tenant>')
>> gsc_uuid = vnc.global_system_configs_list()['global-system-configs'][0]['uuid']
>> gsc = vnc.global_system_config_read(id=gsc_uuid)

113

To list the counters:

>> [(x.name, x.pattern) for x in gsc.user_defined_log_statistics.statlist]

[('HostnameCounter', 'dummy'), ('MyIp', '10.84.14.38')]

To add a counter:

>> g=GlobalSystemConfig()
>> g.add_user_defined_counter(UserDefinedLogStat('Foo', 'Ba.*r'))
>> vnc.global_system_config_update(g)

To verify an addition:

>> gsc = vnc.global_system_config_read(id=gsc_uuid)
>> [(x.name, x.pattern) for x in gsc.user_defined_log_statistics.statlist]

[('HostnameCounter', 'dummy'), ('MyIp', '10.84.14.38'), ('Foo', 'Ba.*r')]

Implementing the User-Defined Log Statistic

The statistics are sent as a counter that has been aggregated over a time period of 60 seconds.

A current sample from your system can be obtained from the UVE at:

http://<analytics-ip>:8081/analytics/uves/user-defined-log-statistic/<name>

You can also use the statistics table UserDefinedLogStatTable to get historical data with all supported
aggregations such as SUM, AVG, and the like.

The schema for the table is at the following location:

http://<ip>:8081/analytics/table/StatTable.UserDefinedCounter.count/schema

Schema for User-Defined Statistics Table

The following is the schema for the user-defined statistic table:

{
 "type": "STAT",
 "columns": [
 {

114

 "datatype": "string",
 "index": true,
 "name": "Source",
 "suffixes": null
},
 {
 "datatype": "int",
 "index": false,
 "name": "T",
 "suffixes": null
},
 {
 "datatype": "int",
 "index": false,
 "name": "CLASS(T)",
 "suffixes": null
},
 {
 "datatype": "int",
 "index": false,
 "name": "T=",
 "suffixes": null
},
 {
 "datatype": "int",
 "index": false,
 "name": "CLASS(T=)",
 "suffixes": null
},
 {
 "datatype": "uuid",
 "index": false,
 "name": "UUID",
 "suffixes": null
},
 {
 "datatype": "int",
 "index": false,
 "name": "COUNT(count)",
 "suffixes": null
},
 {
 "datatype": "int",

115

 "index": false,
 "name": "count.previous",
 "suffixes": null
},
 {
 "datatype": "int",
 "index": false,
 "name": "SUM(count.previous)",
 "suffixes": null
},
 {
 "datatype": "int",
 "index": false,
 "name": "CLASS(count.previous)",
 "suffixes": null
},
 {
 "datatype": "int",
 "index": false,
 "name": "MAX(count.previous)",
 "suffixes": null
},
 {
 "datatype": "int",
 "index": false,
 "name": "MIN(count.previous)",
 "suffixes": null
},
 {
 "datatype": "percentiles",
 "index": false,
 "name": "PERCENTILES(count.previous)",
 "suffixes": null
},
 {
 "datatype": "avg",
 "index": false,
 "name": "AVG(count.previous)",
 "suffixes": null
},
 {
 "datatype": "string",
 "index": true,

116

 "name": "name",
 "suffixes": null
}
]
}

Contrail Networking Alarms

Table 7 on page 117 lists the default alarms in Contrail Networking and their severity levels.

An alarm with severity level 0 (zero) is critical, 1 (one) is major, and 2 (two) is minor.

Table 7: Contrail Networking Alarms and Severity Level

Alarm Name Severit
y

Description Steps to Resolve This Alarm

system-defined-address-
mismatch-
compute

1 Compute Node IP
Address mismatch.

The compute node IP address
provided in the configuration file
and the IP address provided as part
of creating (provisioning) vrouter-
agent do not match.

system-defined-address-
mismatch-
control

1 Control Node IP Address
mismatch.

IP address for control node is
different in config node and control
node.

system-defined-bgp-connectivity 1 BGP peer mismatch. Not
enough BGP peers are up.

Total number of BGP peers is
different from the configured
number of BGP peers.

117

Table 7: Contrail Networking Alarms and Severity Level (Continued)

Alarm Name Severit
y

Description Steps to Resolve This Alarm

system-defined-bottle-request-
size-limit

- Bottle request size limit
exceeded.

Request Size received by API server
is too large.

In most cases, this can be resolved
by increasing the value set for the
variable max_request_size in
the /etc/contrail/contrail-api.conf
file in config API Docker container.
However, as a good practice,
investigate as to why such a huge
request is being sent to the Config
API server.

system-defined-conf-incorrect 1 ContrailConfig missing or
incorrect. Configuration
pushed to Ifmap as
ContrailConfig is missing
or incorrect.

Config node did not send
ContrailConfig for this node. This
could be due to name mismatch
between the node configured
compared to actual node.

system-defined-disk-usage-high 1 Disk usage exceeds high
threshold limit.

Corresponding disk is filled between
70%-90% capacity. Delete some
files to create disk space.

system-defined-disk-usage-critical 0 Disk usage crosses critical
threshold limit.

Corresponding disk is filled up >
90%. Delete some files to create
disk space.

system-defined-node-status 0 Node Failure. NodeStatus
UVE not present.

NodeStatus UVE is not present or
process is non-functional for this
node. Verify that the process and
nodemgr is up.

system-defined-partial-sysinfo 1 System Info Incomplete. build_info is not present in
NodeStatus. Cause unknown at this
time.

118

Table 7: Contrail Networking Alarms and Severity Level (Continued)

Alarm Name Severit
y

Description Steps to Resolve This Alarm

system-defined-process-
connectivity

0 Process(es) reporting as
non-functional.

One or more processes have
connections missing.

system-defined-process-status 0 Process Failure. Review the docker logs to
understand the reason for process
failure.

system-defined-prouter-
connectivity

1 Prouter connectivity to
controlling tor agent does
not exist. Contrail looks
for non-empty value for
connected_agent_list

Check for OVSDB connectivity
status on the physical device. Debug
for link failures between physical
device or OVSDB connection failure
between the vrouter-agent and
physical router.

system-defined-prouter-tsn-
connectivity

1 Prouter connectivity to
controlling TSN agent
does not exist. Contrail
looks for non-empty value
for tsn_agent_list.

Check for OVSDB connectivity
status on the physical device. Debug
for link failures between physical
device or OVSDB connection failure
between the vrouter-agent and
physical router.

system-defined-storage-cluster-
state

1 Storage Cluster warning
or errors.

Since Contrail is not provisioning
storage this alarm is not generated.

119

Table 7: Contrail Networking Alarms and Severity Level (Continued)

Alarm Name Severit
y

Description Steps to Resolve This Alarm

system-defined-vrouter-interface 1 vRouter interface(s) down. This alarm is raised if forwarding
and bridging is disabled or if health
check has failed. Other reasons for
this alarm include the following:

• no IP or subnet assignment

• admin state is down

• parent interface is down

• VLAN is down

• oper state is down

• config is missing

Resolve above items based on
information available from the
introspect page for interface.

system-defined-xmpp-connectivity 1 XMPP peer mismatch. Number of XMPP peers is different
from configured XMPP peers.

system-defined-xmpp-close-
reason

1 XMPP connection closed
towards peer. Alarm has
reason to close.

This alarm is deprecated.

system-defined-core-files 0 A core file has been
generated on the node.

There is some core file in the node.

system-defined-pending-
cassandra-
compaction-tasks

1 Pending compaction tasks
in cassandra crossed the
configured threshold.

This alarm is raised when disk space
is insufficient. Check Cassandra
system logs to understand the
reason for pending compaction.

120

Table 7: Contrail Networking Alarms and Severity Level (Continued)

Alarm Name Severit
y

Description Steps to Resolve This Alarm

system-defined-package-version-
mismatch

0 There is a mismatch
between installed and
running package version.

Package version for the package
mentioned in the alarm is not
matching with the required version.

system-defined-vrouter-limit-
exceeded

1 Agent resource usage
exceeded configured
watermark for resource.

This alarm is raised when the next
hop count or the used mpls label
count crosses the high watermark.

The alarm is reset when the next
hop count or the used MPLS label
count becomes less than the low
watermark.

To reset alarm, delete the nexthop
and mpls label, which can be
achieved by deleting virtual
machines on the compute.

Alarm can also be cleared by
increasing the default watermark,
which is 80 (80% of the maximum
number of nexthops configured in
vRouter after which alarm is raised).

For this, you need to change the
configuration in the contrail-
vrouter-agent.conf file and restart
the vRouter agent.

121

Table 7: Contrail Networking Alarms and Severity Level (Continued)

Alarm Name Severit
y

Description Steps to Resolve This Alarm

system-defined-vrouter-table-
limit-
exceeded

0 Agent resource usage
exceeded table size for
resource in vRouter.

This alarm is raised when the next
hop count reaches the nexthop count
configured in vRouter, or when the
maximum number of MPLS labels
on the compute are used.

This alarm is cleared when the next
hop count goes below 95% of the
next hop count in vRouter, or the
number of used MPLS label count
becomes 95 % of the maximum
labels or less.

To reset the alarm, delete the
nexthop and MPLS labels, which
can be achieved by deleting virtual
machines on the compute for which
alarm is raised.

This alarm can also be reset by
increasing the maximum number of
nexthop and MPLS labels configured
in vRouter, if it is not already
configured to the maximum
supported limit.

Alarms History

IN THIS SECTION

Viewing Alarms History | 123

Contrail allows you to view a history of alarms that were raised or reset. You can also view a history of
user-visible entities (UVEs) that have been changed.

122

Viewing Alarms History

In the Contrail Web user interface, new fields at Monitor > Alarms > Dashboard > Alarms History now
display alarms history, including alarms that were set or reset. Figure 15 on page 123 shows the alarms
history, identifying the volume and types of alarms by time and the node types in which events are
occurring. The right side panel lists by name the nodes in which active events are occurring.

You can also use a contrail-status query to view the alarms history. Additionally, the contrail-status
displays a history of added, updated, and removed information for UVEs in Contrail.

Figure 15: Alarms History Page

Tooltips are available on the Alarms History page. In the Events area, you can click on any node type
listed to display a tooltip showing details of the events that have been added and cleared in that node,
see Figure 16 on page 124 .

123

Figure 16: Events Log Tooltip

You can expand the event log in the right side panel to display a detailed event log. Click the name of
any node in the list in the right panel, and the details of the current alarms are visible in the expanded
view, see Figure 17 on page 125 .

124

Figure 17: Detailed Event Log

RELATED DOCUMENTATION

User Configuration for Analytics Alarms and Log Statistics | 107

Node Memory and CPU Information

To help in monitoring and debugging, the following statistics have been added for all node types. The
statistics are updated every 60 seconds.

• System CPU info

• System memory and CPU usage

• Memory and CPU usage of all processes

You can see a current sample from the UVE in your system at:

http://<analytics-ip>:8081/analytics/uves/<node-type>/<hostname>?flat

125

You can also use the statistics tables to get historical data with all supported aggregations, such as SUM,
AVG, and so on:

• NodeStatus.process_mem_cpu_usage

• NodeStatus.system_mem_cpu_usage

The schema for the tables are at the following locations on your system:

http://<analytics-ip>:8081/analytics/table/StatTable.NodeStatus.process_mem_cpu_usage/schema

http://<analytics-ip>:8081/analytics/table/StatTable.NodeStatus.system_mem_cpu_usage/schema

RELATED DOCUMENTATION

User Configuration for Analytics Alarms and Log Statistics | 107

Role- and Resource-Based Access Control for the Contrail Analytics API

In previous releases of Contrail, any user can access the Contrail analytics API by using queries to get
historical information and by using UVEs to get state information.

With Contrail, it is possible to restrict access such that only the cloud-admin user can access the Contrail
analytics API.

Implementation details are as follows:

• An external user makes a REST API call to contrail-analytics-api, passing a token representing the user
with the HTTP header X-Auth-Token.

• Based on the user role, contrail-analytics-api will only allow access for the cloud-admin user and reject
the request (HTTPUnauthorized) for other users.

To set the cloud_admin user, use the following fields in /etc/contrail/contrail-analytics-api.conf:

• aaa_mode—Takes one of these values:

• no-auth

• cloud-admin

• cloud_admin_role—The user with this role has full access to everything. By default, this is set to "admin".
This role must be configured in Keystone.

126

RELATED DOCUMENTATION

User Configuration for Analytics Alarms and Log Statistics | 107

Configuring Analytics as a Standalone Solution

IN THIS SECTION

Overview: Contrail Analytics as a Standalone Solution | 127

Configuration Examples for Standalone | 127

Starting with Contrail 4.0, it is possible to configure Contrail Analytics as a standalone solution.

Overview: Contrail Analytics as a Standalone Solution

Starting with Contrail 4.0 (containerized Contrail), Contrail Analytics can be configured as a standalone
solution.

The following services are necessary for a standalone solution:

• config

• webui

• analytics

• analyticsdb

A standalone Contrail Analytics solution consists of the following containers:

• controller container with only config and webui services enabled

• analytics container

• analyticsdb container

Configuration Examples for Standalone

The following are examples of default inventory file configurations for the controller container for
standalone Contrail analytics.

127

Examples: Inventory File Controller Components

The following are example analytics standalone solution inventory file configurations for Contrail
controller container components.

Single Node Cluster

[contrail-controllers]
10.xx.32.10 controller_components=['config','webui']

[contrail-analyticsdb]
10.xx.32.10

[contrail-analytics]
10.xx.32.10

Multi-Node Cluster

[contrail-controllers]
10.xx.32.10 controller_components=['config','webui']
10.xx.32.11 controller_components=['config','webui']
10.xx.32.12 controller_components=['config','webui']

[contrail-analyticsdb]
10.xx.32.10
10.xx.32.11
10.xx.32.12

[contrail-analytics]
10.xx.32.10
10.xx.32.11
10.xx.32.12

JSON Configuration Examples

The following are example JSON file configurations for (server.json) for Contrail analytics standalone
solution.

128

Example: JSON Single Node Cluster

{
 "cluster_id": "cluster1",
 "domain": "sm-domain.com",
 "id": "server1",
 "parameters" : {
 "provision": {
 "contrail_4": {
 "controller_components": "['config',’webui']"
 },
 …
 …
}

Example: JSON Multi-Node Cluster

{
 "cluster_id": "cluster1",
 "domain": "sm-domain.com",
 "id": "server1",
 "parameters" : {
 "provision": {
 "contrail_4": {
 "controller_components": "['config',’webui']"
 },
 …
 …
},
{
 "cluster_id": "cluster1",
 "domain": "sm-domain.com",
 "id": "server2",
 "parameters" : {
 "provision": {
 "contrail_4": {
 "controller_components": "['config',’webui']"
 },
 …
 …

129

},
{
 "cluster_id": "cluster1",
 "domain": "sm-domain.com",
 "id": "server3",
 "parameters" : {
 "provision": {
 "contrail_4": {
 "controller_components": "['config',’webui']"
 },
 …
 …
}

RELATED DOCUMENTATION

Configuring Secure Sandesh and Introspect for Contrail Analytics | 142

Understanding Contrail Analytics | 2

Agent Modules in Contrail Networking

IN THIS SECTION

Config | 132

Oper-DB | 133

Controller | 139

Agent KSync | 141

UVE | 141

Services | 141

130

The VNsw Agent (also called Agent) in Contrail Networking is responsible for managing the data plane
component. It is similar to any datapath agent that runs on the line cards of a network node. Agent
responsibilities include:

• Interface with contrail-controller to get the configuration. Agent receives the configuration and
translates it into a form that the datapath can understand.

• Interface with contrail-controller to manage routes.

• Collect and export statistics from datapath.

• Translate the data model from IF-MAP to the data model used by datapath.

Agent contains the following modules:

• Config

• Oper-DB

• Controller

• UVE

• Pkt

• Services

• KSync

Agent by itself is not a program or daemon. Based on the platform, daemons are built using the modules
listed above. The contrail-vxlan-agent is the port of contrail-vrouter-agent on platforms supporting VXLAN
bridges. Figure 18 on page 132 provides an overview of the different modules involved.

131

Figure 18: Overview of Agent Modules

Config

Config module implements the northbound interface for Agent. Agent gets two types of configurations,
virtual machine ports and IF-MAP.

Virtual-Machine Ports

Agent opens a thrift service (name InstanceService) to listen for Port-Add/Port-Delete message. Port-
Add informs agent about a virtual machine (VM) interface created on the compute node. The Port-Add
message also contains the following information:

• Name of virtual machine port.

• Virtual machine for the port.

• Mac and IP address for the port.

132

• Virtual network for the port.

Once agent knows about the creation of a port, it will send a subscribe message to contrail-controller for
virtual-machine. When contrail-controller receives the subscribe message for a virtual-machine, it walks
through the IF-MAP graph and sends all configuration relevant for the virtual-machine to the Agent. The
module invoking port add message is platform dependent. In the case of OpenStack, nova-compute service
invokes the message.

IF-MAP

All of the Contrail Virtual Network Controller (VNC) configuration is stored as a Metadata Access Point
(MAP) database. The MAP database is accessed using IF-MAP protocol.

Agent does not access the MAP database directly. Instead, Agent opens an XMPP connection to
contrail-controller to get the MAP configuration. The contrail-controller works on a subscription model.
Agent must subscribe to the virtual machines of interest and contrail-controller will download all of the
configuration relevant to the virtual-machine. As a result, Agent receives only the minimal configuration
needed. Agent subscribes to a virtual-machine when it receives a port add message for a virtual-machine-
interface.

Agent uses the ifmap-agent-client library to parse the IF-MAP messages from the XMPP channel to the
contrail-controller. The ifmap-agent-client defines a DBTable for every IF-MAP node type. A special DBTable is
defined to store the IF-MAP links. The ifmap-agent-client also creates a graph for ease of navigating the
IF-MAP configuration. An IF-MAP node is vertex in the graph and links form the edges in the graph.

Configuration Management

Config module registers DBTables of interest from the ifmap-agent-client library. Any add, delete, or update
of the configuration results in a callback to the Config module. The Config module then does basic
validation on the config nodes and then triggers the operational module to process the configuration.

Redundancy

Agent connects to two different control nodes for redundancy. When the XMPP connection for one of
the control node fails, it will subscribe to the other control node for configuration. When connecting to
the new control node, Config module audits the configuration to remove stale configuration.

Oper-DB

The Oper-DB module holds the operational state of the different objects in Agent. The operational state
processes the configuration and creates different tables appropriate for Agent.

Following are the principal tables in Oper-DB:

133

Virtual Network

Table of all virtual-networks with UUID as the key. It contains the following information:

Table 8: Virtual Network Table

Item Description

VRF The routing-instance for the virtual-network.

IPAM Data The IP Address Management (IPAM) configured for the virtual-network. It includes DHCP
configuration, DNS configuration, subnet configuration, and so on.

Network Policy Network policy access control list (ACL) for the virtual-network.

Mirroring Mirroring ACL for the virtual-network.

VXLAN-ID Virtual Extensible Local Area Network ID (VXLAN-ID) to be used when VXLAN
encapsulation is used.

Layer 3 Forwarding Specifies if layer3_forwarding is enabled for IPv4 and IPv6 packets.

Bridging Specifies if bridge forwarding is enabled. Even if layer3_forwarding is disabled, IPv4 and
IPv6 packets are bridge forwarded.

VRF

The virtual routing and forwarding (VRF) table represents a routing-instance in configuration. Each virtual-
network has a "native" VRF. Other than the per virtual-network VRF, there can be other internal VRFs. The
internal VRFs are used in features, such as service chaining.

Each VRF has a set of routing tables as its members.

134

Table 9: VRF Routing Tables

Table Description

Inet4 Unicast Table Table containing inet4 unicast routes.

Inet4 Multicast Table Table containing inet4 multicast routes.

EVPN Table Table containing EVPN routes keyed with MAC address, IP address, and vxlan/
ethernet_tag.

Bridge Table Table containing MAC addresses. The bridge table is currently used only in the case of a
"native" VRF for a virtual-network.

Based the platform used, Agent creates some VRFs implicitly:

OpenStack Agent implicitly creates a VRF for fabric-network with the name default-domain:default-
project:ip-fabric:__default__.

Xen Agent implicitly creates a VRF for fabric-network with the name default-domain:default-
project:__link_local__.

Virtual Machine

The virtual machine table stores all virtual-machines created on the compute node.

Interface

The interface table contains all of the interfaces in Agent. Based on the type of interface, the trigger to
create an interface can vary. Also, the key fields used to uniquely identify the interface and the data
fields in an interface can vary based on the type of interface.

Agent supports the following different types of interfaces:

135

Table 10: Interface Types Supported by Agent

Item Description

Physical
Interface

Represents physical ports on the compute node. Physical interfaces are created based on the
config-file for Agent.

Key for physical interface is <interface-name>.

Packet
Interface

Interface used to exchange packets between vRouter and Agent. Typically named pkt0, this
interface is automatically created in Agent.

Key for packet interface is <interface-name>.

Inet interface he layer 3 inet interfaces are managed by Agent. Agent can have one or more inet interfaces
based on the platform used.

• OpenStack: In the case of OpenStack, Agent creates the vhost0 inet-interface. vhost0 is a
layer 3 interface in host-os. Agent uses this layer 3 interface for tunnel encapsulation and
decapsulation. The interface is added into the fabric VRF.

• Xen: In the case of Xen, Agent creates the xapi0 interface. The xapi0 interface is added into
the Xen link-local VRF.

• vGW: Every vGW Virtual Gateway instance has a vGW interface created. The vGW interface
is an unnumbered interface and does not have an IP address.

Key for inet interface is <interface-name>.

VM Interface This interface represents a virtual-machine-interface. The interface is created when Agent
receives an AddPort message from the Apache Thrift service InstanceService.

Key for VM interface is UUID for the interface.

An interface is in Active state if all of the necessary configuration for the interface is available and it can
be made operational.

An interface is in Inactive state if it cannot be made operational. The reason can be missing
configuration, the link-state down, and so on.

136

Routes

Every VRF has a set of routing tables for inet4 unicast routes, inet4 mulitcast routes, EVPN routes, and
bridge MAC entries.

Every route specifies the forwarding action for a destination. Agent has multiple modules that can have
different views of forwarding action for a destination. Each forwarding action is specified in the form of
a path. Each module that adds a path is identified by a peer in the path.

Route keeps the list of paths sorted. The head of this list is treated as the Active path for the route.

Every path contains next hop that describes forwarding action.

The unicast routing table also maintains route entries in the Patricia tree form to support longest prefix
match (LPM) on the tree.

Next Hop

Next hop describes the forwarding action for routes pointing to it. When route lookup for an address
hits the route, the forwarding action for the packet is defined by the next hop.

The different types of next hop supported in Agent are:

Table 11: Next Hop Types Supported by Agent

Type Description

Discard Packets hitting Discard next hop must be dropped.

Receive Packets hitting Receive next hop are destined to the host-os. The next hop has an interface on
which packets must be transmited.

Resolve Packets hitting Resolve next hop need ARP resolution. For example, if IP address 10.1.1.1/24 is
assigned to interface vhost0, the following routes and next hop are generated.

• Route 10.1.1.1/32 is added with Receive next hop pointing to vhost0.

• Route 10.1.1.0/24 is added with Resolve next hop. Any packet hitting this route triggers
ARP resolution.

ARP Routes created as a result of ARP resolution, that point to ARP next hop. In the example
above, you can have routes 10.1.1.1.2/32, 10.1.1.3/32, and so on pointing to ARP next hop.

137

Table 11: Next Hop Types Supported by Agent (Continued)

Type Description

Interface Specifies that packets hitting this next hop must be transmitted on the interface.

Tunnel Specifies that packets hitting this next hop must be encapsulated in a tunnel. The tunnel next
hop specifies tunnel destination IP address. The packet post tunneling is routed on the fabric
network.

Multicast
Composite

Mulitcast composite next hop contains a list of component next hops. Packets hitting the
multicast composite next hop are replicated and transmitted on all the component next hops.

ECMP
Composite

Equal Cost Multi-Path (ECMP) composite next hop contains a list of component next hops.
Packets hitting the ECMP composite next hop must be sent out on one of the component next
hops. Packet forwarding component must ensure that packets for a connection are always
transmitted on the same component next hop of a ECMP composite next hop.

ECMP composite next hop is used to load balance traffic across multiple next hops.

MPLS

The MPLS label defines the forwarding action for MPLS tunneled packets received on the fabric
network.

Agent assigns the following labels:

• Two labels are allocated for every VM interface.

• A label for layer 3 packets.

• A label for bridge packets.

• A label for every ECMP composite next hop.

• A label for every multicast composite next hop.

The label-range for multicast composite next hop is preallocated and does not overlap with other labels.

Multicast

Multicast module is responsible for managing multicast routes.

138

VXLAN

The VXLAN table contains an entry for every VXLAN ID created.

Controller

This module manages the communication between Agent and contrail-controller. Agent connects to two
Contrail controllers for redundancy. Two XMPP channels are opened with each of the Contrail
controllers.

Configuration Channel

The Contrail controller uses this channel to send IF-MAP configuration to Agent. Agent subscribes to
configuration from only one of the XMPP channels at a time. If the subscribed channel fails, it will switch
subscription to the other channel.

Route Channel

This channel is used to exchange routes between Agent and Contrail controller. Agent connects to two
Contrail controllers at a time and routes are exchanged between both of the channels. Routes from each
of the channels is added with a different "Route Peer." When one of the channels fails, it only deletes
"Route Path" from the channel that failed.

Route Export

Agent exports routes for virtual-machines created on the local compute node. Agent exports the route
with the following information:

• Routing instance for the route.

• Destination network for the route (also called a route-prefix).

• Next hop information:

• MPLS label for route if MPLSoGRE or MPLSoUDP encapsulation is used.

• VXLAN ID for route if VXLAN encapsulation is used.

• Gateway for the route. This is implicitly derived from the XMPP channel.

• Security group membership for the routes.

The control node implicitly derives the virtual-network name for the route from the routing-instance.

139

Route Import

Agent subscribes to all routing-instances in the VRF table. The contrail-controller collects routes from all
Agents. Controller synchronizes routes in a routing-instance if Agent is subscribed to the routing-instance.

Routes are exchanged between Agent and contrail-controller over the XMPP channel in XML format.

Controller module decodes the XMPP messages and adds or deletes "Route Paths" into the routing
tables. The contrail-controller provides the following information for every route:

• Routing instance for the route.

• Destination network for the route.

• MPLS label for the route if MPLSoGRE or MPLSoUDP encapsulation is being used.

• VXLAN ID for route if VXLAN encapsulation is used.

• Gateway for the route. This is implicitly derived from the XMPP channel.

• Security group membership for the routes.

• Virtual network for the route.

The contrail-controller also reflects back the routes added by Agent itself. When the route is received,
Agent looks at the gateway IP address to identify if the route is hosted on a local compute node or a
remote compute node. If the route is hosted on a remote compute node, the Controller module creates
a next hop tunnel to be used in route. If the route is hosted on a local compute node, a route pointing to
the next hop interface is added.

Headless Mode

When the XMPP channel from Agent to the Contrail controller fails, Agent flushes all of the "Route
Paths" added by the controller. If the connection to both of the Contrail controllers fail, this can result in
deleting routes distributed by the controller.

Connections to Contrail controllers can fail for many reasons including network failure, Contrail
controller node failing, and so on. Deleting paths can result in connectivity loss between virtual
machines.

Headless mode is introduced as a resilient mode of operation for Agent. When running in headless
mode, Agent retains the last "Route Path" from Contrail controller. The "Route Paths" are held until a
new stable connection is established to one of the Contrail controllers. Once the XMPP connection is up
and is stable for a predefined duration, the "Route Paths" from the old XMPP connection are flushed.

140

Agent KSync

Oper-DB in Agent contains different tables and defines the data model used in the Agent. While the
Agent data model was initially developed for Contrail vRouter agent, it is mostly independent of the
underlying forwarding platform.

The data model used by datapath can vary based on the platform being ports. Agent KSync module is
responsible to do the translation between the data model used by Agent and the datapath.

The functionality of Agent KSync includes:

• Provide translation between the data model of Agent and the forwarding plane.

• KSync will be aware of the data model used in the data plane.

• Oper-DB defines the data module for Agent.

• Keeps the operational state of Agent in sync with the forwarding plane.

• Keep Agent platform independent.

Ex: KSync in Contrail vRouter agent is the only module that knows which flow table is memory
mapped into the Contrail vRouter Agent memory.

UVE

UVE module is responsible for generating UVE messages to the collector. UVE module registers with
Oper-DB and also polls the flows/vrouter to generate the UVE messages to the collector.

Services

This module is responsible to run the following services in Agent:

• ARP

• DHCP

• DNS

• Ping

• ICMP error generation

RELATED DOCUMENTATION

vRouter Command Line Utilities | 34

141

Contrail Networking Architecture Guide

Configuring Secure Sandesh and Introspect for Contrail Analytics

IN THIS SECTION

Configuring Secure Sandesh Connection | 142

Configuring Secure Introspect Connection | 143

Configuring Secure Sandesh Connection

All Contrail services use Sandesh, a southbound interface protocol based on Apache Thrift, to send
analytics data such as system logs, object logs, UVEs, flow logs, and the like, to the collector service in
the Contrail Analytics node. The Transport Layer Security (TLS) protocol is used for certificate exchange,
mutual authentication, and negotiating ciphers to secure the Sandesh connection from potential
tampering and eavesdropping.

To configure a secure Sandesh connection, configure the following parameters in all Contrail services
that connect to the collector (Sandesh clients) and the Sandesh server.

Parameter Description Default

[SANDESH].sandesh_keyfile Path to the node's private key /etc/contrail/ssl/private/server-
privkey.pem

[SANDESH].sandesh_certfile Path to the node's public certificate /etc/contrail/ssl/certs/server.pem

[SANDESH].sandesh_ca_cert Path to the CA certificate /etc/contrail/ssl/certs/ca-cert.pem

[SANDESH].sandesh_ssl_enable Enable or disable secure Sandesh
connection

false

142

Configuring Secure Introspect Connection

All Contrail services are embedded with a web server that can be used to query the internal state of the
data structures, view trace messages, and perform other extensive debugging. The Transport Layer
Security (TLS) protocol is used for certificate exchange, mutual authentication, and negotiating ciphers
to secure the introspect connection from potential tampering and eavesdropping.

To configure a secure introspect connection, configure the following parameters in the Contrail service,
see Table 12 on page 143 .

Table 12: Secure Introspect Parameters

Parameter Description Default

[SANDESH].sandesh_keyfile Path to the node's private key. /etc/contrail/ssl/private/server-
privkey.pem

[SANDESH].sandesh_certfile Path to the node's public
certificate.

/etc/contrail/ssl/certs/server.pem

[SANDESH].sandesh_ca_cert Path to the CA certificate. /etc/contrail/ssl/certs/ca-cert.pem

[SANDESH].introspect_ssl_enable Enable or disable secure introspect
connection.

false

RELATED DOCUMENTATION

Agent Modules in Contrail Networking | 130

Debugging Processes Using the Contrail Introspect Feature | 239

143

CHAPTER 3

Configuring Traffic Mirroring to Monitor

IN THIS CHAPTER

Configuring Traffic Analyzers and Packet Capture for Mirroring | 144

Configuring Interface Monitoring and Mirroring | 152

Mirroring Enhancements | 153

Analyzer Service Virtual Machine | 155

Using the Wireshark Plugin to Analyze Packets Between vRouter and vRouter Agent on pkt0 Interface | 158

Mapping VLAN Tags from a Physical NIC to a VMI (NIC-Assisted Mirroring) | 163

Configuring Traffic Analyzers and Packet Capture for Mirroring

IN THIS SECTION

Traffic Analyzer Images | 144

Configuring Traffic Analyzers | 145

Setting Up Traffic Mirroring Using Configure > Networking > Services | 145

Contrail provides traffic mirroring so you can mirror specified traffic to a traffic analyzer where you can
perform deep traffic inspection. Traffic mirroring enables you to designate certain traffic flows to be
mirrored to a traffic analyzer, where you can view traffic flows in great detail.

This section describes how to set up packet capture to mirror traffic packets to an analyzer.

Traffic Analyzer Images

Before using the Contrail interface to configure traffic analyzers and packet capture for mirroring, make
sure that the following analyzer images are available in the VM image list for your system. The traffic
analyzer images are enhanced for viewing details of captured packets in Wireshark. When creating a

144

policy for the traffic analyzer, the traffic analyzer instance should always have the Mirror to field
selected in the policy, do not select the Apply Service field for a traffic analyzer.

• analyzer-vm-console-qcow2—Standard traffic analyzer; should be named analyzer in the image list.
This type of traffic analyzer is always configured with a single interface, and the interface should be a
Left interface.

• analyzer-vm-console-two-if qcow2—This type of traffic analyzer has two interfaces, Left and
Management. This traffic analyzer can have any name except the name analyzer, which is reserved
for the single interface analyzer.

NOTE: The analyzer-vm images are valid for all versions of Contrail. Download the images from the
Contrail 1.0 software download page: https://www.juniper.net/support/downloads/?
p=contrail#sw .

Configuring Traffic Analyzers

Contrail Controller enables you to mirror captured packet traffic to a traffic analyzer. Follow these steps
to mirror captured packet traffic:

1. Configure analyzer(s) on the host.

2. Set up rules for packet capture.

You can set up traffic mirroring using Configure > Networking > Services. For more information, see
"Setting Up Traffic Mirroring Using Configure > Networking > Services" on page 145 .

Setting Up Traffic Mirroring Using Configure > Networking > Services

Follow these steps to set up traffic mirroring using Configure > Networking > Services.

1. Access Configure > Services > Service Templates.

The Service Templates screen appears; see Figure 19 on page 146 .

145

Figure 19: Service Templates

2. To create a new service template, click the + icon.

The Create window appears. Select the Service Template tab; see Figure 20 on page 146 .

Figure 20: Create Service Template

3. Complete the fields by using the guidelines in Table 13 on page 147 .

146

Table 13: Create Service Template Fields

Field Description

Name Enter a descriptive text name for this service template.

Version Select v2 from the drop-down list to indicate that this service template is based on
templates version 2, valid for Contrail 3.0 and later.

Virtualization Type Select Virtual Machine from the drop-down list to indicate the virtualization type for
mirroring for this template.

Service Mode Select Transparent from the drop-down list to indicate that this service template is for
transparent mirroring.

Service Type Select Analyzer from the drop-down list to indicate that this service template is for a
traffic analyzer.

Interface(s) From the drop-down list, click the check boxes to indicate which interface types are
used for this analyzer service template:

• Left

• Right

• Management

Save When finished, click OK to commit the changes

Cancel Click Cancel to clear the fields and start over.

4. Create a service instance by clicking the Service Instances link and clicking the + icon.

The Create window appears; make sure the Service Instance tab is selected. See Figure 21 on page
148 .

147

Figure 21: Create Service Instances

5. Complete the fields by using the guidelines in Table 14 on page 148 .

Table 14: Create Service Instances Fields

Field Description

Name Enter a text name for this service instance.

Service Template Select from a drop-down list of available service templates the
template to use for this service instance, analyzer-service-
template in this example.

Interface Type Each interface configured in the service template for this
instance appears in a list.

Virtual Network Select from a drop-down list of available virtual networks the
network for each interface that is configured for the instance.

148

Table 14: Create Service Instances Fields (Continued)

Field Description

Save Click Save to commit your changes.

Cancel Click Cancel to clear your changes and start over.

6. To create a network policy rule for this service instance, click Configure > Networking > Policies.
The Policies window appears. Click the + icon to get to the Create window; see Figure 22 on page
149 .

Figure 22: Create Policy

7.

8. Enter a name for the policy, then click the + icon in the lower portion of the screen to configure
rules for the policy, see Figure 23 on page 150 .

149

Figure 23: Create Policy Rules

9. To add policy rules, complete the fields, using the guidelines in Table 15 on page 150 .

NOTE: When there is a network policy attached to the virtual network, any conflicting rules
configured for the analyzer will not take effect.

Table 15: Add Rule Fields

Field Description

Action Select PASS or DENY as the rule action.

Protocol Select the protocol for the policy rule, or select ANY.

Source Select from multiple drop-down lists the source for this rule,
including options under CIDR, Network, Policy, or Security
Group.

Ports Select from a drop-down list the source ports for the rule.

Direction Select the direction of flow for the packets to be captured:

• <> (bidirectional)

• > (unidirectional)

150

Table 15: Add Rule Fields (Continued)

Field Description

Destination Select from multiple drop-down lists the destination for this rule,
including options under CIDR, Network, Policy, or Security
Group.

Ports Select from a list the destination ports for the packets to be
captured.

check boxes Check any box that applies to this rule: Log, Services, Mirror,
QoS.

Save Click Save to commit your changes.

Cancel Click Cancel to clear your changes and start over.

10. When finished, click Save.

11. To verify packet capture, at Configure > Services > Service Instances, select the analyzer service
instance and click View Console.

The packet capture displays; see Figure 24 on page 151 . The analyzer service VM launches the
Contrail-enhanced Wireshark as it starts and captures the mirrored packets destined to this service.

Figure 24: Service Instances View Console

RELATED DOCUMENTATION

Configuring Interface Monitoring and Mirroring | 152

151

Mirroring Enhancements | 153

Analyzer Service Virtual Machine | 155

Mapping VLAN Tags from a Physical NIC to a VMI (NIC-Assisted Mirroring) | 163

Configuring Interface Monitoring and Mirroring

Contrail supports user monitoring of traffic on any guest virtual machine interface when using the
Juniper Contrail user interface.

When interface monitoring (packet capture) is selected, a default analyzer is created and all traffic from
the selected interface is mirrored and sent to the default analyzer. If a mirroring instance is already
launched, the traffic will be redirected to the selected instance. The interface traffic is only mirrored
during the time that the monitor packet capture interface is in use. When the capture screen is closed,
interface mirroring stops.

To configure interface mirroring:

1. Select Monitor > Infrastructure > Virtual Routers, then select the vRouter that has the interface to
mirror.

2. In the list of attributes for the vRouter, select Interfaces; see Figure 25 on page 152 .

Figure 25: Individual vRouter

152

A list of interfaces for that vRouter appears.

3. For the interface to mirror, click the Action icon in the last column and select the option Packet
Capture; see Figure 26 on page 153 .

Figure 26: Interfaces

The mirror packet capture starts and displays at this screen.

The mirror packet capture stops when you exit this screen.

RELATED DOCUMENTATION

Configuring Traffic Analyzers and Packet Capture for Mirroring | 144

Mirroring Enhancements | 153

Analyzer Service Virtual Machine | 155

Mapping VLAN Tags from a Physical NIC to a VMI (NIC-Assisted Mirroring) | 163

Mirroring Enhancements

IN THIS SECTION

Mirroring Specified Traffic | 154

Configuring Headers and Next Hops | 154

How Mirroring is Implemented | 154

153

Mirroring Specified Traffic

Specific traffic can be mirrored to a traffic analyzer in Contrail by:

• Configuring rules to identify the flows to be mirrored, and

• Specifying the analyzer to which the traffic is mirrored

Additionally, mirroring can be configured on virtual machine (VM) interfaces to send all the traffic to and
from the interface to the specified analyzer.

Configuring Headers and Next Hops

When a packet is mirrored, a Juniper header is added to provide additional information in the analyzer,
then the packet is encapsulated and sent to the destination.

Starting with Contrail 3.x releases, mirroring is enhanced with the following options:

• Option to control addition of the Juniper header in the mirrored packet.

• When disabled, the Juniper header is not added to the mirrored packet.

• Option to control whether the next hop used is dynamic or static.

• If dynamic is selected, the next hop based on the destination is used. Packets are forwarded to
the destination based on the encapsulation priority.

• If static is chosen, the next hop is created for the specified destination with VxLAN encapsulation
using the configured VNI, destination VTEP, and MAC to transmit the mirrored packets.

The following combinations are supported:

• Dynamic next hop with Juniper header added

The default combination and the only supported case up to Release 3.0.2

• Dynamic next hop, without Juniper header

• Static next hop, without Juniper header, with the original Layer 2 packet

How Mirroring is Implemented

The Contrail vrouter agent adds a mirror entry in the vrouter and points to the next hop to be used. The
data for the Juniper header is taken from the flow entry. For interface mirroring, the Juniper header has
a TLV in the metadata to use the interface name instead of providing a destination VN.

154

For more information about implementation details, see https://github.com/Juniper/contrail-controller/
wiki/Mirroring.

RELATED DOCUMENTATION

Configuring Traffic Analyzers and Packet Capture for Mirroring | 144

Configuring Interface Monitoring and Mirroring | 152

Analyzer Service Virtual Machine | 155

Mapping VLAN Tags from a Physical NIC to a VMI (NIC-Assisted Mirroring) | 163

Analyzer Service Virtual Machine

IN THIS SECTION

Packet Format for Analyzer | 155

Metadata Format | 156

Wireshark Changes | 157

Troubleshooting Packet Display | 157

The analyzer service virtual machine (analyzer-vm-console.qcow2) launches a Contrail-enhanced version of
the network protocol analyzer Wireshark as the analyzer starts capturing mirror packets destined to the
analyzer service.

Packet Format for Analyzer

The analyzer uses the PCAP format, which has these parts:

• Global header

• PCAP packet header

• Packet data (original packet data)

The global header is added by the analyzer service by means of the Wireshark instance. The vRouter DP
uses the configured UDP session to send mirrored packets to the analyzer, adding the PCAP packet
header to the packet data as it sends it over the UDP socket to the analyzer.

155

The following additional information is also added to the packet data as metadata:

• Captured host (IP address)

• Ingress or egress

• Action (Pass/Deny/...)

• Source VN (fully qualified name)

• Destination VN (fully qualified name)

In the existing PCAP, a network ID is added in the global header. The metadata (additional flow
information) is added in front of the existing packet as follows.

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+

| Global header | Packet header| Meta data |Packet data| Packet header| Meta data |Packet data|

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+

Metadata Format

The metadata is in type-length-value (TLV) format as follows.

1. Type: 1 Byte

2. Length: 1 Byte

3. Value: up to length

Type

1. 1 – Captured host IPv4 address

2. 2 - Action field

3. 3 – Source VN

4. 4 – Destination VN

5. 255 – TLV end

Captured host address

Length is 4 or 16 bytes based on IP address type

Action field

156

Length is 2 bytes. Multiple bits might be turned on, if there are more actions. Ingress or egress bit will be
present in the Action field.

Source VN or Destination VN

Length is variable and up to 256 characters

TLV end

A special type 255 (0xFF) is used to identify the end of TLV entries. The TLV end must be last, at the end
of the metadata.

Wireshark Changes

A plugin is added to the Wireshark code. The plugin parses the metadata and displays the packet fields;
see example in Figure 27 on page 157 .

Figure 27: Wireshark Packet Display

Troubleshooting Packet Display

Follow these steps if the packets are not displaying:

157

1. Use tcpdump on the tap interfaces to see if packets are going towards the analyzer VM.

2. Check introspect to see whether the flow action has mirror activity in it or not.

RELATED DOCUMENTATION

Configuring Traffic Analyzers and Packet Capture for Mirroring | 144

Configuring Interface Monitoring and Mirroring | 152

Mirroring Enhancements | 153

Mapping VLAN Tags from a Physical NIC to a VMI (NIC-Assisted Mirroring) | 163

Using the Wireshark Plugin to Analyze Packets Between vRouter and
vRouter Agent on pkt0 Interface

Wireshark is a an application that analyzes packets from a network and displays the packet information
in detail.

Contrail Networking Release 2008 and later supports the Wireshark agent_header.lua plugin, which
enables you to capture and analyze the packets exchanged between a vRouter data plane and vRouter
agent. You can capture the packets by executing the vifdump -i 2 and the tcpdump -i pkt0 commands in
DPDK mode and kernel mode respectively. In release 2008, the Wireshark agent_header.lua plugin is
supported on Macintosh OS computers only. .Starting from release 2011, the Wireshark
agent_header.lua plugin is supported on Macintosh OS as well as Windows OS computers. Wireshark
also enables you to add agent header information to the captured packets.

Before you begin

You must ensure that the Wireshark application is installed on your computer. You can download
Wireshark from the Download Wireshark page.

Configuration

Follow these steps to configure the Wireshark plugin and dissect agent header information in a packet:

1. Download the Wireshark plugin from GitHub: https://github.com/tungstenfabric/tf-vrouter/tree/
master/utils/agent_hdr_plugin.

2. Copy the plugin in to the following Wireshark directory on your Macintosh OS computer: /
Applications/Wireshark.app/Contents/PlugIns/wireshark/.

158

3. Verify that the agent_hdr.lua plugin is loaded successfully in Wireshark. Relaunch Wireshark and
navigate to Wireshark > About Wireshark > Plugins to verify that the plugin is loaded in the Plugins
section. See Figure 28 on page 159 .

Figure 28: The Plugin is Loaded in Wireshark

4. Pass the pcap file through editcap to add a custom encapsulation type for a packet:

editcap -T user0 <pcap-file-to-be-read> <output.pcap>

5. In Wireshark, navigate to Wireshark > Preferences > Protocols > DLT_USER > Edit Encapsulation
Table. See Figure 29 on page 160 .

159

Figure 29: Edit Encapsulation Table

6. In the Edit Encapsulation Table, add the agent_hdr as a payload protocol for the packet. See Figure 30
on page 161 .

160

Figure 30: Add Agent Header to a Packet

7. Using Wireshark, open the modified pcap file you generated in step 4. Wireshark displays the parsed
packets. See Figure 31 on page 161 .

Figure 31: Packets Expanded Using the Wireshark Plugin

161

Follow these steps to configure the Wireshark plugin in a Windows OS computer and dissect agent
header information in a packet:

1. Download the Wireshark plugin from GitHub: https://github.com/tungstenfabric/tf-vrouter/tree/
master/utils/agent_hdr_plugin.

2. If you are using Windows 32-bit OS, copy the plugin in to the following Wireshark directory on your
computer: C:\Program Files (x86)\Wireshark\.

If you are using Windows 64-bit OS, copy the plugin in to the following Wireshark directory on your
computer: C:\Program Files\Wireshark\plugins\.

3. Verify that the agent_hdr.lua plugin is loaded successfully in Wireshark. Relaunch Wireshark and
navigate to Help > About Wireshark > Plugins to verify that the plugin is loaded in the Plugins
section.

4. Open command prompt in Run as administrator mode and navigate to C:\Program Files\Wireshark
to use editcap. Pass the pcap file through editcap to add a custom encapsulation type for a packet:

editcap -T user0 <pcap-file-to-be-read> <output.pcap>

5. In Wireshark, navigate to Edit > Preferences > Protocols > DLT_USER > Edit Encapsulation Table.

6. In the Edit Encapsulation Table, add the agent_hdr as a payload protocol for the packet. See .

7. Using Wireshark, open the modified pcap file you generated in step "4" on page 162 . Wireshark
displays the parsed packets.

The agent_header.lua plugin is also available in contrail-tools container. You must perform the following
steps to use the plugin from the contrail-tools container:

1. Log in to vRouter as a root user.

2. Use the following command to view the summary of eachpacket in the pcap file:

tshark3_2 -nr <pcap file> -o "uat:user_dlts:\"User 0(DLT=147)\",\"ag_hdr\",\"0\",\"\",\"0\",\"\"" -t ad

3. Use the following command to view detailed informationof the packets in the pcap file:

tshark3_2 -nr <pcap file> -o "uat:user_dlts:\"User0 (DLT=147)\",\"ag_hdr\",\"0\",\"\",\"0\",\"\"" -T pdml

Change History Table

162

Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

2011 Starting from release 2011, the Wireshark agent_header.lua plugin is supported on Macintosh OS as
well as Windows OS computers.

2008 Contrail Networking Release 2008 and later supports the Wireshark agent_header.lua plugin, which
enables you to capture and analyze the packets exchanged between a vRouter data plane and vRouter
agent.

RELATED DOCUMENTATION

Using Contrail Tools | 92

Configuring Traffic Analyzers and Packet Capture for Mirroring | 144

Analyzer Service Virtual Machine | 155

Mapping VLAN Tags from a Physical NIC to a VMI (NIC-Assisted
Mirroring)

When mirroring is enabled, the vRouter throughput reduces because of the additional packet handling
overhead caused by cloning the packet to be mirrored, encapsulating it in the required header, and
forwarding it to the mirror destination. Impact to throughput increases in proportion to the amount of
traffic that needs to be mirrored.

A solution to avoid impact on throughput due to mirroring is to use the mirroring capabilities of an
installed Network Interface Card (NIC).

Contrail Release 4.0 has the ability to mirror specific traffic to a traffic analyzer or to a physical probe
using the Network interface card (NIC) instead of the vRouter to mirror packets. When NIC-assisted
mirroring is enabled, ingress packets to be mirrored sent from a VM are routed to the NIC with a
configured VLAN tag. The NIC is configured for VLAN port-mirroring and mirrors any packet with the
VLAN tag.

In this approach, the vRouter doesn’t mirror the packets. When NIC-assisted mirroring is enabled, the
ingress packets coming from the VM that are to be mirrored are sent to the NIC with a configured VLAN
tag.

163

The NIC is programmed to do VLAN port mirroring, so that iany packet with the configured VLAN is
mirrored additionally by the NIC. This change in vRouter is only for traffic coming from the VMs. Traffic
coming from the fabric is directly mirrored from the NIC itself and there is no additional mirroring need
in vRouter. The programming of the NIC itself for appropriate mirroring is outside the scope of the
current activity. An example is the Niantic 82599 10G NIC, which supports VLAN port mirroring
options.

The following are cautions to observe when using NIC-assisted mirroring:

• VM traffic sent to another VM running on the same compute node will not be mirrored when NIC-
assisted mirroring is selected.

• Traffic coming in from the fabric interface will not be mirrored.

• When a VLAN interface is used as the fabric interface, traffic will be tagged first with the NIC-
assisted mirroring VLAN, followed by the VLAN tag on the fabric interface. The NIC-assisted
mirroring VLAN will be the inner tag and the fabric interface VLAN will be the outer tag.

The NIC must be programmed for VLAN port mirroring. While configuring mirroring in Contrail, the user
can indicate NIC-assisted mirroring with the VLAN tag. The Contrail UI supports NIC-assisted mirroring
configuration in the Ports page and in the Policies page with an additional flag for NIC-assisted mirroring
and the VLAN tag to be used.

RELATED DOCUMENTATION

Configuring Traffic Analyzers and Packet Capture for Mirroring | 144

Configuring Interface Monitoring and Mirroring | 152

Mirroring Enhancements | 153

Analyzer Service Virtual Machine | 155

164

CHAPTER 4

Using Contrail Web UI to Monitor and Troubleshoot
the Network

IN THIS CHAPTER

Monitoring the System | 165

Monitor > Infrastructure > Dashboard | 169

Monitor > Infrastructure > Control Nodes | 173

Monitor > Infrastructure > Virtual Routers | 184

Monitor > Infrastructure > Analytics Nodes | 198

Monitor > Infrastructure > Config Nodes | 206

Monitor > Networking | 210

Query > Flows | 222

Query > Logs | 232

Debugging Processes Using the Contrail Introspect Feature | 239

Example: Debugging Connectivity Using Monitoring for Troubleshooting | 244

Contrail Analytics Optional Modules | 251

Monitoring the System

The Monitor icon on the Contrail Controller provides numerous options so you can view and analyze
usage and other activity associated with all nodes of the system, through the use of reports, charts, and
detailed lists of configurations and system activities.

Monitor pages support monitoring of infrastructure components—control nodes, virtual routers,
analytics nodes, and config nodes. Additionally, users can monitor networking and debug components.

Use the menu options available from the Monitor icon to configure and view the statistics you need for
better understanding of the activities in your system. See Figure 32 on page 166

165

Figure 32: Monitor Menu

See Table 16 on page 166 for descriptions of the items available under each of the menu options from
the Monitor icon.

Table 16: MonitorMenu Options

Option Description

Infrastructure > Dashboard Shows “at-a-glance” status view of the infrastructure components,
including the numbers of virtual routers,control nodes, analytics nodes,
and config nodes currently operational, and a bubble chart of virtual
routers showing the CPU and memory utilization, log messages, system
information, and alerts. See "Monitor > Infrastructure > Dashboard" on
page 169 .

166

Table 16: MonitorMenu Options (Continued)

Option Description

Infrastructure > Control Nodes View a summary for all control nodes in the system, and for each control
node, view:

• Graphical reports of memory usage and average CPU load.

• Console information for a specified time period.

• A list of all peers with details about type, ASN, and the like.

• A list of all routes, including next hop, source, local preference, and
the like.

See "Monitor > Infrastructure > Control Nodes" on page 173 .

Infrastructure > Virtual Routers View a summary of all vRouters in the system, and for each vRouter,
view:

• Graphical reports of memory usage and average CPU load.

• Console information for a specified time period.

• A list of all interfaces with details such as label, status, associated
network, IP address, and the like.

• A list of all associated networks with their ACLs and VRFs.

• A list of all active flows with source and destination details, size, and
time.

See "Monitor > Infrastructure > Virtual Routers" on page 184 .

Infrastructure > Analytics Nodes View activity for the analytics nodes, including memory and CPU usage,
analytics host names, IP address, status, and more. See "Monitor >
Infrastructure > Analytics Nodes" on page 198 .

Infrastructure > Config Nodes View activity for the config nodes, including memory and CPU usage,
config host names, IP address, status, and more. See "Monitor >
Infrastructure > Config Nodes" on page 206 .

167

Table 16: MonitorMenu Options (Continued)

Option Description

Networking > Networks For all virtual networks for all projects in the system, view graphical
traffic statistics, including:

• Total traffic in and out.

• Inter VN traffic in and out.

• The most active ports, peers, and flows for a specified duration.

• All traffic ingress and egress from connected networks, including
their attached policies.

See "Monitor > Networking" on page 210 .

Networking > Dashboard For all virtual networks for all projects in the system, view graphical
traffic statistics, including:

• Total traffic in and out.

• Inter VN traffic in and out.

You can view the statistics in varying levels of granularity, for example,
for a whole project, or for a single network. See "Monitor > Networking"
on page 210 .

Networking > Projects View essential information about projects in the system including name,
associated networks, and traffic in and out.

Networking > Networks View essential information about networks in the system including name
and traffic in and out.

Networking > Instances View essential information about instances in the system including
name, associated networks, interfaces, vRouters, and traffic in and out.

168

Table 16: MonitorMenu Options (Continued)

Option Description

Debug > Packet Capture • Add and manage packet analyzers.

• Attach packet captures and configure their details.

• View a list of all packet analyzers in the system and the details of
their configurations, including source and destination networks,
ports, and IP addresses.

RELATED DOCUMENTATION

Monitor > Infrastructure > Dashboard | 169

Monitor > Infrastructure > Control Nodes | 173

Monitor > Infrastructure > Virtual Routers | 184

Monitor > Networking | 210

Query > Logs | 232

Query > Flows | 222

Monitor > Infrastructure > Dashboard

IN THIS SECTION

Monitor Dashboard | 170

Monitor Individual Details from the Dashboard | 170

Using Bubble Charts | 171

Color-Coding of Bubble Charts | 172

Use Monitor > Infrastructure > Dashboard to get an “at-a-glance” view of the system infrastructure
components, including the numbers of virtual routers, control nodes, analytics nodes, and config nodes

169

currently operational, a bubble chart of virtualrouters showing the CPU and memory utilization, log
messages, system information, and alerts.

Monitor Dashboard

Click Monitor > Infrastructure > Dashboard on the left to view the Dashboard. See Figure 33 on page
170 .

Figure 33: Monitor > Infrastructure > Dashboard

Monitor Individual Details from the Dashboard

Across the top of the Dashboard screen are summary boxes representing the components of the system
that are shown in the statistics. See Figure 34 on page 171 . Any of the control nodes, virtual routers,
analytics nodes, and config nodes can be monitored individually and in detail from the Dashboard by
clicking an associated box, and drilling down for more detail.

170

Figure 34: Dashboard Summary Boxes

Detailed information about monitoring each of the areas represented by the boxes is provided in the
links in Table 17 on page 171 .

Table 17: Dashboard Summary Boxes

Box For More Information

vRouters "Monitor > Infrastructure > Virtual Routers" on page 184

Control Nodes "Monitor > Infrastructure > Control Nodes" on page 173

Analytics Nodes "Monitor > Infrastructure > Analytics Nodes" on page 198

Config Nodes "Monitor > Infrastructure > Config Nodes" on page 206

Using Bubble Charts

Bubble charts show the CPU and memory utilization of components contributing to the current
analytics display, including vRouters, control nodes, config nodes, and the likeso on. You can hover over
any bubble to get summary information about the component it represents; see Figure 35 on page 172 .
You can click through the summary information to get more details about the component.

171

Figure 35: Bubble Summary Information

Color-Coding of Bubble Charts

Bubble charts use the following color-coding scheme:

Control Nodes

• Blue—working as configured.

• Red—error, at least one configured peer is down.

vRouters

• Blue—working, but no instance is launched.

• Green—working with at least one instance launched.

• Red—error, there is a problem with connectivity or a vRouter is in a failed state.

RELATED DOCUMENTATION

Monitor > Infrastructure > Virtual Routers | 184

Monitor > Infrastructure > Control Nodes | 173

Monitor > Infrastructure > Analytics Nodes | 198

Monitor > Infrastructure > Config Nodes | 206

172

Monitor > Infrastructure > Control Nodes

IN THIS SECTION

Monitor Control Nodes Summary | 173

Monitor Individual Control Node Details | 174

Monitor Individual Control Node Console | 176

Monitor Individual Control Node Peers | 179

Monitor Individual Control Node Routes | 181

Navigate to Monitor > Infrastructure > Control Nodes to gain insight into usage statistics for control
nodes.

Monitor Control Nodes Summary

Select Monitor > Infrastructure > Control Nodes to see a graphical chart of average memory usage
versus average CPU percentage usage for all control nodes in the system. Also on this screen is a list of
all control nodes in the system. See Figure 36 on page 173 . See Table 18 on page 174 for descriptions
of the fields on this screen.

Figure 36: Control Nodes Summary

173

Table 18: Control Nodes Summary Fields

Field Description

Host name The name of the control node.

IP Address The IP address of the control node.

Version The software version number that is installed on the control node.

Status The current operational status of the control node — Up or Down.

CPU (%) The CPU percentage currently in use by the selected control node.

Memory The memory in MB currently in use and the total memory available for this control
node.

Total Peers The total number of peers for this control node.

Established in Sync Peers The total number of peers in sync for this control node.

Established in Sync vRouters The total number of vRouters in sync for this control node.

Monitor Individual Control Node Details

Click the name of any control nodes listed under the Control Nodes titleto view an array of graphical
reports of usage and numerous details about that node. There are several tabs available to help you
probe into more details about the selected control node. The first tab is the Details tab; see Figure 37 on
page 175 .

174

Figure 37: Individual Control Node—Details Tab

The Details tab provides a summary of the status and activity on the selected node, and presents
graphical displays of CPU and memory usage. See Table 19 on page 175 for descriptions of the fields on
this tab.

Table 19: Individual Control Node—Details Tab Fields

Field Description

Hostname The host name defined for this control node.

IP Address The IP address of the selected node.

Status The operational status of the control node.

Control Node Manager The operational status of the control node manager.

175

Table 19: Individual Control Node—Details Tab Fields (Continued)

Field Description

Config Node The IP address of the configuration node associated with this control node.

Analytics Node The IP address of the node from which analytics (monitor) information is derived.

Analytics Messages The total number of analytics messages in and out from this node.

Peers The total number of peers established for this control node and how many are in
sync and of what type.

CPU The average percent of CPU load incurred by this control node.

Memory The average memory usage incurred by this control node.

Last Log The date and time of the last log message issued about this control node.

Control Node CPU/
Memory Utilization

A graphic display x, y chart of the average CPU load and memory usage incurred by
this control node over time.

Monitor Individual Control Node Console

Click the Console tab for an individual control node to display system logging information for a defined
time period, with the last 5 minutes of information as the default display. See Figure 38 on page 177 .

176

Figure 38: Individual Control Node—Console Tab

See Table 20 on page 177 for descriptions of the fields on the Console tab screen.

Table 20: Control Node: Console Tab Fields

Field Description

Time Range Select a timeframe for which to review logging information as sent to the console. There are 11
options, ranging from the Last 5 mins through to the Last 24 hrs. The default display is for the
Last 5 mins.

Log Category Select a log category to display:

1. All

2. _default_

3. XMPP

4. TCP

177

Table 20: Control Node: Console Tab Fields (Continued)

Field Description

Log Type Select a log type to display.

Log Level Select a log severity level to display:

1. SYS_EMERG

2. SYS_ALERT

3. SYS_CRIT

4. SYS_ERR

5. SYS_WARN

6. SYS_NOTICE

7. SYS_INFO

8. SYS_DEBUG

Search Enter any text string to search and display logs containing that string.

Limit Select from a list an amount to limit the number of messages displayed:

1. No Limit

2. Limit 10 messages

3. Limit 50 messages

4. Limit 100 messages

5. Limit 200 messages

6. Limit 500 messages

Auto Refresh Click the check box to automatically refresh the display if more messages occur.

Display Logs Click this button to refresh the display if you change the display criteria.

178

Table 20: Control Node: Console Tab Fields (Continued)

Field Description

Reset Click this button to clear any selected display criteria and reset all criteria to their default settings.

Time This column lists the time received for each log message displayed.

Category This column lists the log category for each log message displayed.

Log Type This column lists the log type for each log message displayed.

Log This column lists the log message for each log displayed.

Monitor Individual Control Node Peers

The Peers tab displays the peers for an individual control node and their peering state. Click the
expansion arrow next to the address of any peer to reveal more details. See Figure 39 on page 180 .

179

Figure 39: Individual Control Node—Peers Tab

See Table 21 on page 180 for descriptions of the fields on the Peers tab screen.

Table 21: Control Node: Peers Tab Fields

Field Description

Peer The hostname of the peer.

Peer Type The type of peer.

Peer ASN The autonomous system number of the peer.

Status The current status of the peer.

180

Table 21: Control Node: Peers Tab Fields (Continued)

Field Description

Last flap The last flap detected for this peer.

Messages (Recv/Sent) The number of messages sent and received from this peer.

Monitor Individual Control Node Routes

The Routes tab displays active routes for this control node and lets you query the results. Use horizontal
and vertical scroll bars to view more results. Click the expansion icon next to a routing table name to
reveal more details about the selected route. See Figure 40 on page 181 .

Figure 40: Individual Control Node—Routes Tab

See Table 22 on page 182 for descriptions of the fields on the Routes tab screen.

181

Table 22: Control Node: Routes Tab Fields

Field Description

Routing Instance You can select a single routing instance from a list of all instances for which to display the
active routes.

Address Family Select an address family for which to display the active routes:

1. All (default)

2. l3vpn

3. inet

4. inetmcast

(Limit Field) Select to limit the display of active routes:

1. Limit 10 Routes

2. Limit 50 Routes

3. Limit 100 Routes

4. Limit 200 Routes

Peer Source Select from a list of available peers the peer for which to display the active routes, or select
All.

Prefix Enter a route prefix to limit the display of active routes to only those with the designated
prefix.

Protocol Select a protocol for which to display the active routes:

1. All (default)

2. XMPP

3. BGP

4. ServiceChain

5. Static

182

Table 22: Control Node: Routes Tab Fields (Continued)

Field Description

Display Routes Click this button to refresh the display of routes after selecting different display criteria.

Reset Click this button to clear any selected criteria and return the display to default values.

Column Description

Routing Table The name of the routing table that stores this route.

Prefix The route prefix for each active route displayed.

Protocol The protocol used by the route.

Source The host source for each active route displayed.

Next hop The IP address of the next hop for each active route displayed.

Label The label for each active route displayed.

Security The security value for each active route displayed.

Origin VN The virtual network from which the route originates.

AS Path The AS path for each active route displayed.

183

Monitor > Infrastructure > Virtual Routers

IN THIS SECTION

Monitor vRouters Summary | 184

Monitor Individual vRouters Tabs | 186

Monitor Individual vRouter Details Tab | 186

Monitor Individual vRouters Interfaces Tab | 188

Monitor Individual vRouters Networks Tab | 190

Monitor Individual vRouters ACL Tab | 191

Monitor Individual vRouters Flows Tab | 193

Monitor Individual vRouters Routes Tab | 194

Monitor Individual vRouter Console Tab | 195

Monitor vRouters Summary

Click Monitor > Infrastructure > Virtual Routers to view the vRouters summary screen. See Figure 41 on
page 185 .

184

Figure 41: vRouters Summary

See Table 23 on page 185 for descriptions of the fields on the vRouters Summary screen.

Table 23: vRouters Summary Fields

Field Description

Host name The name of the vRouter. Click the name of any vRouter to reveal more details.

IP Address The IP address of the vRouter.

Version The version of software installed on the system.

Status The current operational status of the vRouter — Up or Down.

CPU (%) The CPU percentage currently in use by the selected vRouter.

185

Table 23: vRouters Summary Fields (Continued)

Field Description

Memory (MB) The memory currently in use and the total memory available for this vRouter.

Networks The total number of networks for this vRouter.

Instances The total number of instances for this vRouter.

Interfaces The total number of interfaces for this vRouter.

Monitor Individual vRouters Tabs

Click the name of any vRouter to view details about performance and activities for that vRouter. Each
individual vRouters screen has the following tabs.

• Details—similar display of information as on individual control nodes Details tab. See Figure 42 on
page 187 .

• Console—similar display of information as on individual control nodes Console tab. See Figure 48 on
page 196 .

• Interfaces—details about associated interfaces. See Figure 43 on page 189 .

• Networks—details about associated networks. See Figure 44 on page 190 .

• ACL—details about access control lists. See Figure 45 on page 192 .

• Flows—details about associated traffic flows. See Figure 46 on page 193 .

• Routes—details about associated routes. See Figure 47 on page 195 .

Monitor Individual vRouter Details Tab

The Details tab provides a summary of the status and activity on the selected node, and presents
graphical displays of CPU and memory usage; see Figure 42 on page 187 . SeeTable 24 on page 187 for
descriptions of the fields on this tab.

186

Figure 42: Individual vRouters—Details Tab

Table 24: vRouters Details Tab Fields

Field Description

Hostname The hostname of the vRouter.

IP Address The IP address of the selected vRouter.

Status The operational status of the vRouter.

vRouter Node Manager The operational status of the vRouter node manager.

Analytics Node The IP address of the node from which analytics (monitor) information is derived.

Control Nodes The IP address of the configuration node associated with this vRouter.

Analytics Messages The total number of analytics messages in and out from this node.

XMPP Messages The total number of XMPP messages that have gone in and out of this vRouter.

Flow The number of active flows and the total flows for this vRouter.

187

Table 24: vRouters Details Tab Fields (Continued)

Field Description

Networks The number of networks associated with this vRouter.

Interfaces The number of interfaces associated with this vRouter.

Instances The number of instances associated with this vRouter.

Last Log The date and time of the last log message issued about this vRouter.

vRouter CPU/Memory
Utilization

Graphs (x, y) displaying CPU and memory utilization averages over time for this
vRouter, in comparison to system utilization averages.

Monitor Individual vRouters Interfaces Tab

The Interfaces tab displays details about the interfaces associated with an individual vRouter. Click the
expansion arrow next to any interface name to reveal more details. Use horizontal and vertical scroll
bars to access all portions of the screen. See Figure 43 on page 189 . See Table 25 on page 189 for
descriptions of the fields on the Interfaces tab screen.

188

Figure 43: Individual vRouters—Interfaces Tab

Table 25: vRouters: Interfaces Tab Fields

Field Description

Name The name of the interface.

Label The label for the interface.

Status The current status of the interface.

Network The network associated with the interface.

IP Address The IP address of the interface.

Floating IP Displays any floating IP addresses associated with the interface.

189

Table 25: vRouters: Interfaces Tab Fields (Continued)

Field Description

Instance The name of any instance associated with the interface.

Monitor Individual vRouters Networks Tab

The Networks tab displays details about the networks associated with an individual vRouter. Click the
expansion arrow at the name of any network to reveal more details. See Figure 44 on page 190 . See
Table 26 on page 191 for descriptions of the fields on the Networks tab screen.

Figure 44: Individual vRouters—Networks Tab

190

Table 26: vRouters: Networks Tab Fields

Field Description

Name The name of each network associated with this vRouter.

ACLs The name of the access control list associated with the listed network.

VRF The identifier of the VRF associated with the listed network.

Action Click the icon to select the action: Edit, Delete

Monitor Individual vRouters ACL Tab

The ACL tab displays details about the access control lists (ACLs) associated with an individual vRouter.
Click the expansion arrow next to the UUID of any ACL to reveal more details. See Figure 45 on page
192 . See Table 27 on page 192 for descriptions of the fields on the ACL tab screen.

191

Figure 45: Individual vRouters—ACL Tab

Table 27: vRouters: ACL Tab Fields

Field Description

UUID The universal unique identifier (UUID) associated with the listed ACL.

Flows The flows associated with the listed ACL.

Action The traffic action defined by the listed ACL.

Protocol The protocol associated with the listed ACL.

Source Network or Prefix The name or prefix of the source network associated with the listed ACL.

Source Port The source port associated with the listed ACL.

192

Table 27: vRouters: ACL Tab Fields (Continued)

Field Description

Destination Network or Prefix The name or prefix of the destination network associated with the listed ACL.

Destination Port The destination port associated with the listed ACL.

ACE Id The ACE ID associated with the listed ACL.

Monitor Individual vRouters Flows Tab

The Flows tab displays details about the flows associated with an individual vRouter. Click the expansion
arrrow next to any ACL/SG UUID to reveal more details. Use the horizontal and vertical scroll bars to
access all portions of the screen. See Figure 46 on page 193 . See Table 28 on page 194 for descriptions
of the fields on the Flows tab screen.

Figure 46: Individual vRouters—Flows Tab

193

Table 28: vRouters: Flows Tab Fields

Field Description

ACL UUID The default is to show All flows, however, you can select from a drop down list any single flow
to view its details.

ACL / SG UUID The universal unique identifier (UUID) associated with the listed ACL or SG.

Protocol The protocol associated with the listed flow.

Src Network The name of the source network associated with the listed flow.

Src IP The source IP address associated with the listed flow.

Src Port The source port of the listed flow.

Dest Network The name of the destination network associated with the listed flow.

Dest IP The destination IP address associated with the listed flow.

Dest Port The destination port associated with the listed flow.

Bytes/Pkts The number of bytes and packets associated with the listed flow.

Setup Time The setup time associated with the listed flow.

Monitor Individual vRouters Routes Tab

The Routes tab displays details about unicast and multicast routes in specific VRFs for an individual
vRouter. Click the expansion arrow next to the route prefix to reveal more details. See Figure 47 on page
195 . See Table 29 on page 195 for descriptions of the fields on the Routes tab screen.

194

Figure 47: Individual vRouters—Routes Tab

Table 29: vRouters: Routes Tab Fields

Field Description

VRF Select from a drop down list the virtual routing and forwarding (VRF) to view.

Show Routes Select to show the route type: Unicast or Multicast.

Prefix The IP address prefix of a route.

Next hop The next hop method for this route.

Next hop details The next hop details for this route.

Monitor Individual vRouter Console Tab

Click the Console tab for an individual vRouter to display system logging information for a defined time
period, with the last 5 minutes of information as the default display. See Figure 48 on page 196 . See
Table 30 on page 196 for descriptions of the fields on the Console tab screen.

195

Figure 48: Individual vRouter—Console Tab

Table 30: Control Node: Console Tab Fields

Field Description

Time Range Select a timeframe for which to review logging information as sent to the console. There are
several options, ranging from Last 5 mins through to the Last 24 hrs, plus a Custom time range.

From Time If you select Custom in Time Range, enter the start time.

To Time If you select Custom in Time Range, enter the end time.

Log Category Select a log category to display:

• All

• _default_

• XMPP

• TCP

Log Type Select a log type to display.

196

Table 30: Control Node: Console Tab Fields (Continued)

Field Description

Log Level Select a log severity level to display:

• SYS_EMERG

• SYS_ALERT

• SYS_CRIT

• SYS_ERR

• SYS_WARN

• SYS_NOTICE

• SYS_INFO

• SYS_DEBUG

Limit Select from a list an amount to limit the number of messages displayed:

• No Limit

• Limit 10 messages

• Limit 50 messages

• Limit 100 messages

• Limit 200 messages

• Limit 500 messages

Auto Refresh Click the check box to automatically refresh the display if more messages occur.

Display Logs Click this button to refresh the display if you change the display criteria.

Reset Click this button to clear any selected display criteria and reset all criteria to their default settings.

Columns

197

Table 30: Control Node: Console Tab Fields (Continued)

Field Description

Time This column lists the time received for each log message displayed.

Category This column lists the log category for each log message displayed.

Log Type This column lists the log type for each log message displayed.

Log This column lists the log message for each log displayed.

Monitor > Infrastructure > Analytics Nodes

IN THIS SECTION

Monitor Analytics Nodes | 198

Monitor Analytics Individual Node Details Tab | 200

Monitor Analytics Individual Node Generators Tab | 201

Monitor Analytics Individual Node QE Queries Tab | 202

Monitor Analytics Individual Node Console Tab | 203

Select Monitor> Infrastructure > Analytics Nodes to view the console logs, generators, and query
expansion (QE) queries of the analytics nodes.

Monitor Analytics Nodes

Select Monitor > Infrastructure > Analytics Nodes to view a summary of activities for the analytics
nodes; see Figure 49 on page 199 . See Table 31 on page 199 for descriptions of the fields on the
analytics summary.

198

Figure 49: Analytics Nodes Summary

Table 31: Fields on Analytics Nodes Summary

Field Description

Host name The name of this node.

IP address The IP address of this node.

Version The version of software installed on the system.

Status The current operational status of the node — Up or Down — and the length of time it is in that
state.

CPU (%) The average CPU percentage usage for this node.

Memory The average memory usage for this node.

Generators The total number of generators for this node.

199

Monitor Analytics Individual Node Details Tab

Click the name of any analytics node displayed on the analytics summary to view the Details tab for that
node. See Figure 50 on page 200 .

See Table 32 on page 200 for descriptions of the fields on this screen.

Figure 50: Monitor Analytics Individual Node Details Tab

Table 32: Monitor Analytics Individual Node Details Tab Fields

Field Description

Hostname The name of this node.

IP Address The IP address of this node.

Version The installed version of the software.

Overall Node Status The current operational status of the node — Up or Down — and the length of time in this
state.

Processes The current status of each analytics process, including Collector, Query Engine, and
OpServer.

200

Table 32: Monitor Analytics Individual Node Details Tab Fields (Continued)

Field Description

CPU (%) The average CPU percentage usage for this node.

Memory The average memory usage of this node.

Messages The total number of messages for this node.

Generators The total number of generators associated with this node.

Last Log The date and time of the last log message issued about this node.

Monitor Analytics Individual Node Generators Tab

The Generators tab displays information about the generators for an individual analytics node; see
Figure 51 on page 201 . Click the expansion arrow next to any generator name to reveal more details.
See Table 33 on page 202 for descriptions of the fields on the Peers tab screen.

Figure 51: Individual Analytics Node—Generators Tab

201

Table 33: Monitor Analytics Individual Node Generators Tab Fields

Field Description

Name The host name of the generator.

Status The current status of the peer— Up or Down — and the length of time in that state.

Messages The number of messages sent and received from this peer.

Bytes The total message size in bytes.

Monitor Analytics Individual Node QE Queries Tab

The QE Queries tab displays the number of query expansion (QE) messages that are in the queue for
this analytics node. See Figure 52 on page 202 .

See Table 34 on page 202 for descriptions of the fields on the QE Queries tab screen.

Figure 52: Individual Analytics Node—QE QueriesTab

Table 34: Analytics Node QE Queries Tab Fields

Field Description

Enqueue Time The length of time this message has been in the queue waiting to be delivered.

Query The query message.

202

Table 34: Analytics Node QE Queries Tab Fields (Continued)

Field Description

Progress (%) The percentage progress for the message delivery.

Monitor Analytics Individual Node Console Tab

Click the Console tab for an individual analytics node to display system logging information for a defined
time period. See Figure 53 on page 203 . See Table 35 on page 203 for descriptions of the fields on the
Console tab screen.

Figure 53: Analytics Individual Node—Console Tab

Table 35: Monitor Analytics Individual Node Console Tab Fields

Field Description

Time Range Select a timeframe for which to review logging information as sent to the console. There are 11
options, ranging from the Last 5 mins through to the Last 24 hrs. The default display is for the
Last 5 mins.

203

Table 35: Monitor Analytics Individual Node Console Tab Fields (Continued)

Field Description

Log Category Select a log category to display:

1. All

2. _default_

3. XMPP

4. TCP

Log Type Select a log type to display.

Log Level Select a log severity level to display:

1. SYS_EMERG

2. SYS_ALERT

3. SYS_CRIT

4. SYS_ERR

5. SYS_WARN

6. SYS_NOTICE

7. SYS_INFO

8. SYS_DEBUG

Keywords Enter any text string to search for and display logs containing that string.

204

Table 35: Monitor Analytics Individual Node Console Tab Fields (Continued)

Field Description

(Limit field) Select the number of messages to display:

1. No Limit

2. Limit 10 messages

3. Limit 50 messages

4. Limit 100 messages

5. Limit 200 messages

6. Limit 500 messages

Auto Refresh Click the check box to automatically refresh the display if more messages occur.

Display Logs Click this button to refresh the display if you change the display criteria.

Reset Click this button to clear any selected display criteria and reset all criteria to their default settings.

Time This column lists the time received for each log message displayed.

Category This column lists the log category for each log message displayed.

Log Type This column lists the log type for each log message displayed.

Log This column lists the log message for each log displayed.

205

Monitor > Infrastructure > Config Nodes

IN THIS SECTION

Monitor Config Nodes | 206

Monitor Individual Config Node Details | 207

Monitor Individual Config Node Console | 208

Select Monitor > Infrastructure > Config Nodes to view the information about the system config nodes.

Monitor Config Nodes

Select Monitor > Infrastructure > Config Nodes to view a summary of activities for the analytics nodes.
See Figure 54 on page 206 .

Figure 54: Config Nodes Summary

Table 36 on page 206 describes the fields in the Config Nodes summary.

Table 36: Config Nodes Summary Fields

Field Description

Host name The name of this node.

206

Table 36: Config Nodes Summary Fields (Continued)

Field Description

IP address The IP address of this node.

Version The version of software installed on the system.

Status The current operational status of the node — Up or Down — and the length of time it is in that
state.

CPU (%) The average CPU percentage usage for this node.

Memory The average memory usage for this node.

Monitor Individual Config Node Details

Click the name of any config node displayed on the config nodes summary to view the Details tab for
that node; see Figure 55 on page 207 .

Figure 55: Individual Config Nodes— Details Tab

Table 37 on page 208 describes the fields on the Details screen.

207

Table 37: Individual Config Nodes— Details Tab Fields

Field Description

Hostname The name of the config node.

IP Address The IP address of this node.

Version The installed version of the software.

Overall Node Status The current operational status of the node — Up or Down — and the length of time it is in
this state.

Processes The current operational status of the processes associated with the config node, including
AI Server, Schema Transformer, Service Monitor, and the like.

Analytics Node The analytics node associated with this node.

CPU (%) The average CPU percentage usage for this node.

Memory The average memory usage by this node.

Monitor Individual Config Node Console

Click the Console tab for an individual config node to display system logging information for a defined
time period. See Figure 56 on page 209 .

208

Figure 56: Individual Config Node—Console Tab

See Table 38 on page 209 for descriptions of the fields on the Console tab screen.

Table 38: Individual Config Node-Console Tab Fields

Field Description

Time Range Select a timeframe for which to review logging information as sent to the console. Use the drop
down calendar in the fields From Time and To Time to select the date and times to include in the
time range for viewing.

Log Category Select from the drop down menu a log category to display. The option to view All is also
available.

Log Type Select a log type to display.

Log Level Select a log severity level to display:

Limit Select from a list an amount to limit the number of messages displayed:

1. All

2. Limit 10 messages

3. Limit 50 messages

4. Limit 100 messages

5. Limit 200 messages

6. Limit 500 messages

209

Table 38: Individual Config Node-Console Tab Fields (Continued)

Field Description

Keywords Enter any key words by which to filter the log messages displayed.

Auto Refresh Click the check box to automatically refresh the display if more messages occur.

Display Logs Click this button to refresh the display if you change the display criteria.

Reset Click this button to clear any selected display criteria and reset all criteria to their default settings.

Monitor > Networking

IN THIS SECTION

Monitor > Networking Menu Options | 210

Monitor > Networking > Dashboard | 211

Monitor > Networking > Projects | 213

Monitor Projects Detail | 214

Monitor > Networking > Networks | 217

The Monitor -> Networking pages give an overview of the networking traffic statistics and health of
domains, projects within domains, virtual networks within projects, and virtual machines within virtual
networks.

Monitor > Networking Menu Options

Figure 57 on page 211 shows the menu options available under Monitor > Networking.

210

Figure 57: Monitor Networking Menu Options

Monitor > Networking > Dashboard

Select Monitor > Networking > Dashboard to gain insight into usage statistics for domains, virtual
networks, projects, and virtual machines. When you select this option, the Traffic Statistics for Domain
window is displayed as shown in Figure 58 on page 212 .

211

Figure 58: Traffic Statistics for Domain Window

Table 39 on page 212 describes the fields in the Traffic Statistics for Domain window.

Table 39: Projects Summary Fields

Field Description

Total Traffic In The volume of traffic into this domain

Total Traffic Out The volume of traffic out of this domain.

Inter VN Traffic In The volume of inter-virtual network traffic into this domain.

Inter VN Traffic Out The volume of inter-virtual network traffic out of this domain.

212

Table 39: Projects Summary Fields (Continued)

Field Description

Projects This chart displays the networks and interfaces for projects with the most throughput over
the past 30 minutes. Click Projects then select Monitor > Networking > Projects, to display
more detailed statistics.

Networks This chart displays the networks for projects with the most throughput over the past 30
minutes. Click Networks then select Monitor > Networking > Networks, to display more
detailed statistics.

Monitor > Networking > Projects

Select Monitor > Networking > Projects to see information about projects in the system. See Figure 59
on page 213 .

Figure 59: Monitor > Networking > Projects

See Table 40 on page 214 for descriptions of the fields on this screen.

213

Table 40: Projects Summary Fields

Field Description

Projects The name of the project. You can click the name to access details about connectivity for this project.

Networks The volume of inter-virtual network traffic out of this domain.

Traffic In The volume of traffic into this domain.

Traffic Out The volume of traffic out of this domain.

Monitor Projects Detail

You can click any of the projects listed on the Projects Summary to get details about connectivity, source
and destination port distribution, and instances. When you click an individual project, the Summary tab
for Connectivity Details is displayed as shown in Figure 60 on page 214 . Hover over any of the
connections to get more details.

Figure 60: Monitor Projects Connectivity Details

In the Connectivity Details window you can click the links between the virtual networks to view the
traffic statistics between the virtual networks.

214

The Traffic Statistics information is also available when you select Monitor > Networking > Networks as
shown in Figure 61 on page 215 .

Figure 61: Traffic Statistics Between Networks

In the Connectivity Details window you can click the Instances tab to get a summary of details for each
of the instances in this project.

Figure 62: Projects Instances Summary

See Table 3 for a description of the fields on this screen.

215

Table 41: Projects Instances Summary Fields

Field Description

Instance The name of the instance. Click the name then select Monitor > Networking > Instances to
display details about the traffic statistics for this instance.

Virtual Network The virtual network associated with this instance.

Interfaces The number of interfaces associated with this instance.

vRouter The name of the vRouter associated with this instance.

IP Address Any IP addresses associated with this instance.

Floating IP Any floating IP addresses associated with this instance.

Traffic (In/Out) The volume of traffic in KB or MB that is passing in and out of this instance.

Select Monitor > Networking > Instances to display instance traffic statistics as shown in Figure 63 on
page 217 .

216

Figure 63: Instance Traffic Statistics

Monitor > Networking > Networks

Select Monitor > Networking > Networks to view a summary of the virtual networks in your system. See
Figure 64 on page 217 .

Figure 64: Network Summary

217

Table 42: Network Summary Fields

Field Description

Network The domain and network name of the virtual network. Click the arrow next to the name to
display more information about the network, including the number of ingress and egress
flows, the number of ACL rules, the number of interfaces, and the total traffic in and out.

Instances The number of instances launched in this network.

Traffic (In/Out) The volume of inter-virtual network traffic in and out of this network.

Throughput (In/Out) The throughput of inter-virtual network traffic in and out of this network.

At Monitor > Networking > Networks you can click on the name of any of the listed networks to get
details about the network connectivity, traffic statistics, port distribution, instances, and other details, by
clicking the tabs across the top of the page.

Figure 65 on page 218 shows the Summary tab for an individual network, which displays connectivity
details and traffic statistics for the selected network.

Figure 65: Individual Network Connectivity Details—Summary Tab

218

Figure 66 on page 219 shows the Port Map tab for an individual network, which displays the relative
distribution of traffic for this network by protocol, by port.

Figure 66: Individual Network-– Port Map Tab

Figure 67 on page 220 shows the Port Distribution tab for an individual network, which displays the
relative distribution of traffic in and out by source port and destination port.

219

Figure 67: Individual Network-– Port Distribution Tab

Figure 68 on page 221 shows the Instances tab for an individual network, which displays details for each
instance associated with this network, including the number of interfaces, the associated vRouter, the
instance IP address, and the volume of traffic in and out.

Additionally, you can click the arrow near the instance name to reveal even more details about the
instance—the interfaces and their addresses, UUID, CPU (usage), and memory used of the total amount
available.

220

Figure 68: Individual Network Instances Tab

Figure 69 on page 222 shows the Details tab for an individual network, which displays the code used to
define this network -–the User Virtual Environment (UVE) code.

221

Figure 69: Individual Network Details Tab

Query > Flows

IN THIS SECTION

Query > Flows > Flow Series | 223

Example: Query Flow Series | 226

Query > Flow Records | 228

Query > Flows > Query Queue | 231

222

Select Query > Flows to perform rich and complex SQL-like queries on flows in the Contrail Controller.
You can use the query results for such things as gaining insight into the operation of applications in a
virtual network, performing historical analysis of flow issues, and pinpointing problem areas with flows.

Query > Flows > Flow Series

Select Query > Flows > Flow Series to create queries of the flow series table. The results are in the form
of time series data for flow series. See Figure 70 on page 223 .

Figure 70: Query Flow Series Window

The query fields available on the screen for the Flow Series tab are described in Table 43 on page 224 .
Enter query data into the fields to create a SQL-like query to display and analyze flows.

223

Table 43: Query Flow Series Fields

Field Description

Time Range Select a range of time to display the flow series:

• Last 10 Mins

• Last 30 Mins

• Last 1 Hr

• Last 6 Hrs

• Last 12 Hrs

• Custom

Click Custom to enter a specific custom time range in two fields: From Time and To Time.

Select Click the edit button (pencil icon) to open a Select window (Figure 71 on page 225), where you
can click one or more boxes to select the fields to display from the flow series, such as Source
VN, Dest VN, Bytes, Packets, and more.

Where Click the edit button (pencil icon) to open a query-writing window, where you can specify query
values for variables such as sourcevn, sourceip, destvn, destip, protocol, sport, dport.

Direction Select the desired flow direction: INGRESS or EGRESS.

Filter Click the edit button (pencil icon) to open a Filter window (Figure 72 on page 226), where you
can select filter items to sort by, the sort order, and limits to the number of results returned.

Run Query Click Run Query to retrieve the flows that match the query you created. The flows are listed on
the lower portion of the screen in a box with columns identifying the selected fields for each
flow.

(graph buttons) When Time Granularity is selected, you have the option to view results in graph or flowchart
form. Graph buttons appear on the screen above the Export button. Click a graph button to
transform the tabular results into a graphical chart display.

224

Table 43: Query Flow Series Fields (Continued)

Field Description

Export The Export button is displayed after you click Run Query. This allows you to export the list of
flows to a text .csv file.

The Select window allows you to select one or more attributes of a flow series by clicking the check box
for each attribute desired, see Figure 71 on page 225 . The upper section of the Select window includes
field names, and the lower portion lets you select units. Select Time Granularity and then select
SUM(Bytes) or SUM(Packets) to aggregate bytes and packets in intervals.

Figure 71: Flow Series Select

Use the Filter window to refine the display of query results for flows, by defining an attribute by which
to sort the results, the sort order of the results, and any limit needed to restrict the number of results.
See Figure 72 on page 226 .

225

Figure 72: Flow Series Filter

Example: Query Flow Series

The following is an example flow series query that returns the time series of the summation traffic in
bytes for all combinations of source VN and destination VN for the last 10 minutes, with the bytes
aggregated in 10 second intervals. See Figure 73 on page 226 .

Figure 73: Example: Query Flow Series

226

The query returns tabular time series data, see Figure 74 on page 227 , for the following combinations
of Source VN and Dest VN:

1. Flow Class 1: Source VN = default-domain:demo:front-end, Dest VN=__UNKNOWN__

2. Flow Class 2: Source VN = default-domain:demo:front-end, Dest VN=default-domain:demo:back-end

Figure 74: Query Flow Series Tabular Results

Because Time Granularity is selected, the results can also be displayed as graphical charts. Click the
graph button on the right side of the tabular results. The results are displayed in a graphical flow chart.
See Figure 75 on page 228 .

227

Figure 75: Query Flow Series Graphical Results

Query > Flow Records

Select Query > Flow Records to create queries of individual flow records for detailed debugging of
connectivity issues between applications and virtual machines. Queries at this level return records of the
active flows within a given time period.

Figure 76: Flow Records

The query fields available on the screen for the Flow Records tab are described in Table 44 on page
229 . Enter query data into the fields to create an SQL-like query to display and analyze flows.

228

Table 44: Query Flow Records Fields

Field Description

Time Range Select a range of time for the flow records:

• Last 10 Mins

• Last 30 Mins

• Last 1 Hr

• Last 6 Hrs

• Last 12 Hrs

• Custom

Click Custom to enter a specified custom time range in two fields: From Time and To Time.

Select Click the edit button (pencil icon) to open a Select window (Figure 77 on page 230), where you
can click one or more boxes to select attributes to display for the flow records, including Setup
Time, Teardown Time, Aggregate Bytes, and Aggregate Packets.

Where Click the edit button (pencil icon) to open a query-writing window where you can specify query
values for sourcevn, sourceip, destvn, destip, protocol, sport, dport. .

Direction Select the desired flow direction: INGRESS or EGRESS.

Run Query Click Run Query to retrieve the flow records that match the query you created. The records are
listed on the lower portion of the screen in a box with columns identifying the fields for each flow.

Export The Export button is displayed after you click Run Query, allowing you to export the list of flows to
a text .csv file.

The Select window allows you to select one or more attributes to display for the flow records selected,
see Figure 77 on page 230 .

229

Figure 77: Flow Records Select Window

You can restrict the query to a particular source VN and destination VN combination using the Where
section.

The Where Clause supports logical AND and logical OR operations, and is modeled as a logical OR of
multiple AND terms. For example: ((term1 AND term2 AND term3..) OR (term4 AND term5) OR…).

Each term is a single variable expression such as Source VN = VN1.

230

Figure 78: Where Clause Window

Query > Flows > Query Queue

Select Query > Flows > Query Queue to display queries that are in the queue waiting to be performed
on the data. See Figure 79 on page 231 .

Figure 79: Flows Query Queue

231

The query fields available on the screen for the Flow Records tab are described in Table 45 on page
232 . Enter query data into the fields to create an SQL-like query to display and analyze flows.

Table 45: Query Flow Records Fields

Field Description

Date The date and time the query was started.

Query A display of the parameters set for the query.

Progress The percentage completion of the query to date.

Records The number of records matching the query to date.

Status The status of the query, such as completed.

Time Taken The amount of time in seconds it has taken the query to return the matching records.

(Action icon) Click the Action icon and select View Results to view a list of the records that match the query, or
click Delete to remove the query from the queue.

RELATED DOCUMENTATION

Fat Flows

Query > Logs

IN THIS SECTION

Query > Logs Menu Options | 233

Query > Logs > System Logs | 233

Sample Query for System Logs | 235

232

Query > Logs > Object Logs | 237

The Query > Logs option allows you to access the system log and object log activity of any Contrail
Controller component from one central location.

Query > Logs Menu Options

Click Query > Logs to access the Query Logs menu, where you can select System Logs to view system
log activity, Object Logs to view object logs activity, and Query Queue to create custom queries of log
activity; see Figure 80 on page 233 .

Figure 80: Query > Logs

Query > Logs > System Logs

Click Query > Logs > System Logs to access the Query System Logs menu, where you can view system
logs according to criteria that you determine. See Figure 81 on page 234 .

233

Figure 81: Query > Logs > System Logs

The query fields available on the Query System Logs screen are described in Table 46 on page 234 .

Table 46: Query System Logs Fields

Field Description

Time Range Select a range of time for which to see the system logs:

• Last 10 Mins

• Last 30 Mins

• Last 1 Hr

• Last 6 Hrs

• Last 12 Hrs

• Custom

If you click Custom, enter a desired time range in two new fields: From Time and To Time.

Where Click the edit button (pencil icon) to open a query-writing window, where you can specify query
values for variables such as Source, Module, MessageType, and the like, in order to retrieve specific
information.

234

Table 46: Query System Logs Fields (Continued)

Field Description

Level Select the message severity level to view:

• SYS_NOTICE

• SYS_EMERG

• SYS_ALERT

• SYS_CRIT

• SYS_ERR

• SYS_WARN

• SYS_INFO

• SYS_DEBUG

Run Query Click this button to retrieve the system logs that match the query. The logs are listed in a box with
columns showing the Time, Source, Module Id, Category, Log Type, and Log message.

Export This button appears after you click Run Query, allowing you to export the list of system messages
to a text/csv file.

Sample Query for System Logs

This section shows a sample system logs query designed to show all System Logs from ModuleId =
VRouterAgent on Source = b1s16 and filtered by Level = SYS_DEBUG.

1. At the Query System Logs screen, click in the Where field to access the Where query screen and
enter information defining the location to query in the Edit Where Clause section and click OK; see
Figure 82 on page 236 .

235

Figure 82: Edit Where Clause

2. The information you defined at the Where screen displays on the Query System Logs. Enter any
more defining information needed; see Figure 83 on page 237 . When finished, click Run Query to
display the results.

236

Figure 83: Sample Query System Logs

Query > Logs > Object Logs

Object logs allow you to search for logs associated with a particular object, for example, all logs for a
specified virtual network. Object logs record information related to modifications made to objects,
including creation, deletion, and other modifications; see Figure 84 on page 237 .

Figure 84: Query > Logs > Object Logs

The query fields available on the Object Logs screen are described in Table 47 on page 238 .

237

Table 47: Object Logs Query Fields

Field Description

Time Range Select a range of time for which to see the logs:

• Last 10 Mins

• Last 30 Mins

• Last 1 Hr

• Last 6 Hrs

• Last 12 Hrs

• Custom

If you click Custom, enter a desired time range in two new fields: From Time and To Time.

Object Type Select the object type for which to show logs:

• Virtual Network

• Virtual Machine

• Virtual Router

• BGP Peer

• Routing Instance

• XMPP Connection

Object Id Select from a list of available identifiers the name of the object you wish to use.

Select Click the edit button (pencil icon) to open a window where you can select searchable types by
clicking a checkbox:

• ObjectLog

• SystemLog

238

Table 47: Object Logs Query Fields (Continued)

Field Description

Where Click the edit button (pencil icon) to open the query-writing window, where you can specify query
values for variables such as Source, ModuleId, and MessageType, in order to retrieve information
as specific as you wish.

Run Query Click this button to retrieve the system logs that match the query. The logs are listed in a box with
columns showing the Time, Source, Module Id, Category, Log Type, and Log message.

Export This button appears after you click Run Query, allowing you to export the list of system messages
to a text/csv file.

Debugging Processes Using the Contrail Introspect Feature

This topic describes how to use the Sandesh infrastructure and the Contrail Introspect feature to debug
processes.

Introspect is a mechanism for taking a program object and querying information about it.

Sandesh is the name of a unified infrastructure in the Contrail Virtual Networking solution.

Sandesh is a way for the Contrail daemons to provide a request-response mechanism. Requests and
responses are defined in Sandesh format and the Sandesh compiler generates code to process the
requests and send responses.

Sandesh also provides a way to use a Web browser to send Sandesh requests to a Contrail daemon and
get the Sandesh responses. This feature is used to debug processes by looking into the operational
status of the daemons.

Each Contrail daemon starts an HTTP server, with the following page types:

• The main index.html listing all Sandesh modules and the links to them.

• Sandesh module pages that present HTML forms for each Sandesh request.

• XML-based dynamically-generated pages that display Sandesh responses.

• An automatically generated page that shows all code needed for rendering and all HTTP server-client
interactions.

239

You can display the HTTP introspect of a Contrail daemon directly by accessing the following Introspect
ports:

• <controller-ip>:8083. This port displays the contrail-control introspect port.

• <compute-ip>:8085 This port displays the contrail-vrouter-agent introspect port.

• <controller-ip>:8087 This port displays the contrail-schema introspect port.

• <controller-ip>:8088 This port displays the contrail-svc-monitor introspect port.

• <controller-ip>:8092 This port displays the contrail-dns introspect port.

• <controller-ip>:8084 This port displays the contrail-api introspect port. (:8084/
Snh_SandeshTraceRequest?x=RestApiTraceBuf)

You can use the config editor to review configured objects.

Another way to launch the Introspect page is by browsing to a particular node page using the Contrail
Web user interface.

Figure 85 on page 241 shows the contrail-control infrastructure page. Notice the Introspect link at the
bottom of the Control Nodes Details tab window.

240

Figure 85: Control Nodes Details Tab Window

The following are the Sandesh modules for the Contrail control process (contrail-control) Introspect port.

• bgp_peer.xml

• control_node.xml

• cpuinfo.xml

• discovery_client_stats.xml

• ifmap_log.xml

• ifmap_server_show.xml

• rtarget_group.xml

241

• sandesh_trace.xml

• sandesh_uve.xml

• service_chaining.xml

• static_route.xml

• task.xml

• xmpp_server.xml

Figure 86 on page 242 shows the Controller Introspect window.

Figure 86: Controller Introspect Window

Figure 87 on page 242 shows an example of the BGP Peer (bgp_peer.xml) Introspect page.

Figure 87: BGP Peer Introspect Page

242

Figure 88 on page 243 shows an example of the BGP Neighbor Summary Introspect page.

Figure 88: BGP Neighbor Summary Introspect Page

The following are the Sandesh modules for the Contrail vRouter agent (contrail-vrouter-agent)
Introspect port.

• agent.xml

• agent_stats_interval.xml

• cfg.xml

• controller.xml

• cpuinfo.xml

• diag.xml

• discovery_client_stats.xml

• flow_stats_interval.xml

• ifmap_agent.xml

• kstate.xml

• multicast.xml

• pkt.xml

• port_ipc.xml

• sandesh_trace.xml

243

• sandesh_uve.xml

• services.xml

• stats_interval.xml

• task.xml

• xmpp_server.xml

Figure 89 on page 244 shows an example of the Agent (agent.xml) Introspect page.

Figure 89: Agent Introspect Page

RELATED DOCUMENTATION

Agent Modules in Contrail Networking | 130

Configuring Secure Sandesh and Introspect for Contrail Analytics | 142

Example: Debugging Connectivity Using Monitoring for Troubleshooting

IN THIS SECTION

Using Monitoring to Debug Connectivity | 245

244

Using Monitoring to Debug Connectivity

This example shows how you can use monitoring to debug connectivity in your Contrail system. You can
use the demo setup in Contrail to use these steps on your own.

1. Navigate to Monitor -> Networking -> Networks -> default-domain:demo:vn0, Instance
ed6abd16-250e-4ec5-a382-5cbc458fb0ca with IP address 192.168.0.252 in the virtual network vn0. See Figure
90 on page 245 .

Figure 90: Navigate to Instance

2. Click the instance to view Traffic Statistics for Instance. See Figure 91 on page 245 .

Figure 91: Traffic Statistics for Instance

3. Instance d26c0b31-c795-400e-b8be-4d3e6de77dcf with IP address 192.168.0.253 in the virtual network vn16.
See Figure 92 on page 246 and Figure 93 on page 246 .

245

Figure 92: Navigate to Instance

Figure 93: Traffic Statistics for Instance

4. From Monitor->Infrastructure->Virtual Routers->a3s18->Interfaces, we can see that Instance
ed6abd16-250e-4ec5-a382-5cbc458fb0ca is hosted on Virtual Router a3s18. See Figure 94 on page 246 .

Figure 94: Navigate to a3s18 Interfaces

5. From Monitor->Infrastructure->Virtual Routers->a3s19->Interfaces, we can see that Instance
d26c0b31-c795-400e-b8be-4d3e6de77dcf is hosted on Virtual Router a3s19. See Figure 95 on page 247 .

246

Figure 95: Navigate to a3s19 Interfaces

6. Virtual Routers a3s18 and a3s19 have the ACL entries to allow connectivity between default-
domain:demo:vn0 and default-domain:demo:vn16 networks. See Figure 96 on page 247 and Figure 97 on
page 247 .

Figure 96: ACL Connectivity a3s18

Figure 97: ACL Connectivity a3s19

7. Next, verify the routes on the control node for routing instances default-domain:demo:vn0:vn0 and
default-domain:demo:vn16:vn16. See Figure 98 on page 248 and Figure 99 on page 248 .

247

Figure 98: Routes default-domain:demo:vn0:vn0

Figure 99: Routes default-domain:demo:vn16:vn16

8. We can see that VRF default-domain:demo:vn0:vn0 on Virtual Router a3s18 has the appropriate route and
next hop to reach VRF default-domain:demo:front-end on Virtual Router a3s19. See Figure 100 on page
249 .

248

Figure 100: Verify Route and Next Hop a3s18

9. We can see that VRF default-domain:demo:vn16:vn16 on Virtual Router a3s19 has the appropriate route
and next hop to reach VRF default-domain:demo:vn0:vn0 on Virtual Router a3s18. See Figure 101 on
page 250 .

249

Figure 101: Verify Route and Next Hop a3s19

10. Finally, flows between instances (IPs 192.168.0.252 and 192.168.16.253) can be verified on Virtual
Routers a3s18 and a3s19. See Figure 102 on page 250 and Figure 103 on page 251 .

Figure 102: Flows for a3s18

250

Figure 103: Flows for a3s19

Contrail Analytics Optional Modules

IN THIS SECTION

Analytics Optional Components | 251

Contrail Web UI | 260

Tripleo Provisioning | 268

Appendix | 269

Analytics Optional Components

Contrail analytics is comprised of four building blocks. The last three listed are optional components.

• Analytics collector

• Analytics alarm

• Analytics SNMP

• Analytics database

251

Figure 104: Contrail Analytics Components

Regardless that the alarm, SNMP, and database analytics roles have not been installed and if installed are
disabled, these components show as active when you run the Linux $sudo commands or view in Contrail
Command. For more information, see the section “TripleO Provisioning” below.

Contrail Infrastructure Installed without Optional Analytics Components

Two topologies are considered in this example: multi-nodes or single node.

Multi-nodes Contrail controller components are split onto three servers (Contrail controller, Contrail
analytics, and Contrail analytics database). Only the first two servers are mandatory since
Contrail analytics database is an optional component. This type of topology is used in
production deployments.

Single node This type of topology is used in test deployments.

Multi-Nodes Contrail Controller

Contrail Controller Node

Following is an example of the Contrail status on the Contrail controller node:

$ sudo contrail-status
== Contrail control ==
control: active
nodemgr: active
named: active
dns: active

252

== Contrail config-database ==
nodemgr: active
zookeeper: active
rabbitmq: active
cassandra: active

== Contrail config ==
svc-monitor: active
nodemgr: active
device-manager: active
api: active
schema: active

== Contrail webui ==
web: active
job: active

Contrail Analytics Node (with All Optional Components)

Following is the Contrail status on Contrail analytics node when Contrail analytics SNMP and Contrail
analytics alarm have both been deployed:

$ sudo contrail-status
Pod Service Original Name
Original Version State Id Status
analytics api contrail-analytics-api rhel-
queens-1910-23 running 62980f3e6479 Up 2 weeks
analytics collector contrail-analytics-collector rhel-
queens-1910-23 running b777437946c2 Up 2 weeks
analytics nodemgr contrail-nodemgr rhel-
queens-1910-23 running aeeb744a5b5e Up 2 weeks
analytics redis contrail-external-redis rhel-
queens-1910-23 running 150b6225bd93 Up 2 weeks
analytics-alarm alarm-gen contrail-analytics-alarm-gen rhel-
queens-1910-23 running d655146cb8d0 Up 2 weeks
analytics-alarm kafka contrail-external-kafka rhel-
queens-1910-23 running 8cfa8c7da4bd Up 2 weeks
analytics-alarm nodemgr contrail-nodemgr rhel-
queens-1910-23 running 685a5f817f0b Up 2 weeks
analytics-alarm zookeeper contrail-external-zookeeper rhel-
queens-1910-23 running a41dc5658c72 Up 2 weeks

253

analytics-snmp nodemgr contrail-nodemgr rhel-
queens-1910-23 running 0afd301ccbd8 Up 2 weeks
analytics-snmp snmp-collector contrail-analytics-snmp-collector rhel-
queens-1910-23 running 2bde6aa39250 Up 2 weeks
analytics-snmp topology contrail-analytics-snmp-topology rhel-
queens-1910-23 running a16f983ed162 Up 2 weeks

== Contrail analytics ==
nodemgr: active
api: active
collector: active

== Contrail analytics-alarm ==
nodemgr: active
kafka: active
alarm-gen: active

== Contrail analytics-snmp ==
snmp-collector: active
nodemgr: active
topology: active

Contrail analytics alarm and SNMP are deployed and active.

Contrail Analytics Node (without Analytics Optional Components)

Following is an example of the Contrail status on Contrail analytics node when Contrail analytics SNMP
and Contrail analytics alarm have not been deployed:

$ sudo contrail-status
Pod Service Original Name Original Version
State Id Status
analytics api contrail-analytics-api rhel-queens-2005-62
running 489b07cbbbef Up 18 hours
analytics collector contrail-analytics-collector rhel-queens-2005-62
running 5da4f99b045f Up 18 hours
analytics nodemgr contrail-nodemgr rhel-queens-2005-62
running 28053f64f1bc Up 18 hours
analytics provisioner contrail-provisioner rhel-queens-2005-62
running faa8de6d17e4 Up 18 hours
analytics redis contrail-external-redis rhel-queens-2005-62
running 3e29dcc475d1 Up 18 hours

254

analytics stunnel contrail-external-stunnel rhel-queens-2005-62
running 11a30f0f5e3b Up 18 hours

== Contrail analytics ==
nodemgr: active
api: active
collector: active

Only Contrail analytics collector is deployed and active.

Contrail Analytics Database Node

Contrail analytics database is only deployed when the analytics database component is enabled. The
following example shows the Contrail status on the Contrail analytics database node:

$ sudo contrail-status
Pod Service Original Name Original Version
State Id Status
database cassandra contrail-external-cassandra rhel-queens-1910-
23 running ec05bd8c34c4 Up 2 weeks
database nodemgr contrail-nodemgr rhel-queens-1910-
23 running 25a6c58d5144 Up 2 weeks
database query-engine contrail-analytics-query-engine rhel-queens-1910-
23 running f90f7ae16b48 Up 2 weeks

== Contrail database ==
nodemgr: active
query-engine: active
cassandra: active

Single Node Contrail Controller

Contrail Controller Node (with All Analytics Optional Components)

Following is the Contrail status on Contrail controller node when Contrail analytics SNMP, Contrail
analytics alarm, and Contrail analytics database have been deployed:

$ sudo contrail-status
Pod Service Original Name
Original Version State Id Status

255

analytics api contrail-analytics-api
rhel-queens-1912-46 running bf87cc51fb36 Up 8 weeks
analytics collector contrail-analytics-collector
rhel-queens-1912-46 running 0ae1ca0fb1f2 Up 8 weeks
analytics nodemgr contrail-nodemgr
rhel-queens-1912-46 running 24e9174056d0 Up 8 weeks
analytics redis contrail-external-redis
rhel-queens-1912-46 running 9d7135b6b9d8 Up 8 weeks
analytics stunnel contrail-external-stunnel
rhel-queens-1912-46 running 30d413bad4f1 Up 8 weeks
analytics-alarm alarm-gen contrail-analytics-alarm-gen
rhel-queens-1912-46 running 2f40aeb42154 Up 8 weeks
analytics-alarm kafka contrail-external-kafka
rhel-queens-1912-46 running 8cd54b9520af Up 8 weeks
analytics-alarm nodemgr contrail-nodemgr
rhel-queens-1912-46 running afeadd231273 Up 8 weeks
analytics-alarm zookeeper contrail-external-zookeeper
rhel-queens-1912-46 running 118b116b2721 Up 8 weeks
analytics-snmp nodemgr contrail-nodemgr
rhel-queens-1912-46 running f623346fff53 Up 8 weeks
analytics-snmp snmp-collector contrail-analytics-snmp-collector
rhel-queens-1912-46 running 152b037af72d Up 8 weeks
analytics-snmp topology contrail-analytics-snmp-topology
rhel-queens-1912-46 running 5226847e74f3 Up 8 weeks
config api contrail-controller-config-api
rhel-queens-1912-46 running b8ba22697cfe Up 8 weeks
config device-manager contrail-controller-config-devicemgr
rhel-queens-1912-46 running 29f9b248f850 Up 8 weeks
config nodemgr contrail-nodemgr
rhel-queens-1912-46 running 2f3f84d5d2b4 Up 8 weeks
config schema contrail-controller-config-schema
rhel-queens-1912-46 running 334906b962fb Up 8 weeks
config svc-monitor contrail-controller-config-svcmonitor
rhel-queens-1912-46 running a8581c37f9ab Up 8 weeks
config-database cassandra contrail-external-cassandra
rhel-queens-1912-46 running e47a3e430fe6 Up 8 weeks
config-database nodemgr contrail-nodemgr
rhel-queens-1912-46 running 4798399f0ec5 Up 8 weeks
config-database rabbitmq contrail-external-rabbitmq
rhel-queens-1912-46 running d80a5e8e8801 Up 8 weeks
config-database zookeeper contrail-external-zookeeper
rhel-queens-1912-46 running b1c430201497 Up 8 weeks
control control contrail-controller-control-control

256

rhel-queens-1912-46 running e478128385f7 Up 8 weeks
control dns contrail-controller-control-dns
rhel-queens-1912-46 running f9752a324d71 Up 8 weeks
control named contrail-controller-control-named
rhel-queens-1912-46 running 66c992adced5 Up 8 weeks
control nodemgr contrail-nodemgr
rhel-queens-1912-46 running 3c9a0270ab1a Up 8 weeks
database cassandra contrail-external-cassandra
rhel-queens-1912-46 running f85ead18fb26 Up 8 weeks
database nodemgr contrail-nodemgr
rhel-queens-1912-46 running 0d9f471003ea Up 8 weeks
database query-engine contrail-analytics-query-engine
rhel-queens-1912-46 running 40a092abbccf Up 8 weeks
webui job contrail-controller-webui-job
rhel-queens-1912-46 running 432f686a8abf Up 8 weeks
webui web contrail-controller-webui-web
rhel-queens-1912-46 running 4341432ce9a4 Up 8 weeks

== Contrail control ==
control: active
nodemgr: active
named: active
dns: active

== Contrail analytics-alarm ==
nodemgr: active
kafka: active
alarm-gen: active

== Contrail database ==
nodemgr: active
query-engine: active
cassandra: active

== Contrail analytics ==
nodemgr: active
api: active
collector: active

== Contrail config-database ==
nodemgr: active
zookeeper: active
rabbitmq: active

257

cassandra: active

== Contrail webui ==
web: active
job: active

== Contrail analytics-snmp ==
snmp-collector: active
nodemgr: active
topology: active

== Contrail config ==
svc-monitor: active
nodemgr: active
device-manager: active
api: active
schema: active

Contrail database (query), analytics alarm, and SNMP are deployed and active.

Contrail Controller Node (without Analytics Optional Components)

Following is an example of the Contrail status on Contrail controller node when Contrail analytics SNMP,
Contrail analytics alarm, and Contrail analytics database have not been deployed:

$ sudo contrail-status
Pod Service Original Name
Original Version State Id Status
analytics api contrail-analytics-api
rhel-queens-2005-62 running b1ddca562595 Up 10 hours
analytics collector contrail-analytics-collector
rhel-queens-2005-62 running f6860911ee16 Up 10 hours
analytics nodemgr contrail-nodemgr
rhel-queens-2005-62 running 37a0d8744e31 Up 10 hours
analytics provisioner contrail-provisioner
rhel-queens-2005-62 running e2f9a4605d63 Up 10 hours
analytics redis contrail-external-redis
rhel-queens-2005-62 running 1d0a193983b0 Up 10 hours
analytics stunnel contrail-external-stunnel
rhel-queens-2005-62 running 695d61045e63 Up 10 hours
config api contrail-controller-config-api
rhel-queens-2005-62 running 41eb0caef12d Up 10 hours

258

config device-manager contrail-controller-config-devicemgr
rhel-queens-2005-62 running f3158c67d792 Up 10 hours
config nodemgr contrail-nodemgr
rhel-queens-2005-62 running 4138cc386e69 Up 10 hours
config provisioner contrail-provisioner
rhel-queens-2005-62 running 45aae86bb41a Up 10 hours
config schema contrail-controller-config-schema
rhel-queens-2005-62 running 2497392980d0 Up 10 hours
config svc-monitor contrail-controller-config-svcmonitor
rhel-queens-2005-62 running b2ed20209aa7 Up 10 hours
config-database cassandra contrail-external-cassandra
rhel-queens-2005-62 running abd3efad8075 Up 10 hours
config-database nodemgr contrail-nodemgr
rhel-queens-2005-62 running bcc74ecb37cc Up 10 hours
config-database provisioner contrail-provisioner
rhel-queens-2005-62 running 9de114119be5 Up 10 hours
config-database rabbitmq contrail-external-rabbitmq
rhel-queens-2005-62 running d623f5d3da79 Up 10 hours
config-database zookeeper contrail-external-zookeeper
rhel-queens-2005-62 running 2c4f47c2fdc1 Up 10 hours
control control contrail-controller-control-control
rhel-queens-2005-62 running 56e238791c60 Up 10 hours
control dns contrail-controller-control-dns
rhel-queens-2005-62 running 6cfc801451f9 Up 10 hours
control named contrail-controller-control-named
rhel-queens-2005-62 running f033a8bf5b88 Up 10 hours
control nodemgr contrail-nodemgr
rhel-queens-2005-62 running 7381053ff80f Up 10 hours
control provisioner contrail-provisioner
rhel-queens-2005-62 running a3851c25f427 Up 10 hours
webui job contrail-controller-webui-job
rhel-queens-2005-62 running 80cd5c06ff39 Up 10 hours
webui web contrail-controller-webui-web
rhel-queens-2005-62 running 51a2f164a259 Up 10 hours

== Contrail control ==
control: active
nodemgr: active
named: active
dns: active

== Contrail analytics ==
nodemgr: active

259

api: active
collector: active

== Contrail config-database ==
nodemgr: active
zookeeper: active
rabbitmq: active
cassandra: active

== Contrail config ==
svc-monitor: active
nodemgr: active
device-manager: active
api: active
schema: active

== Contrail webui ==
web: active
job: active

Contrail database (query), analytics alarm, and SNMP are not deployed.

Contrail Web UI

Web UI with Optional Components

Figure 105 on page 261 displays the Contrail Web UI dashboard with all optional analytics components
deployed.

260

Figure 105: Web UI - All Optional Analytics Components Deployed

A database node is visible in the infrastructure dashboard.

261

Figure 106: Web UI - Database Node in Dashboard

Web UI without Optional Components

Figure 107 on page 263 displays the Contrail Web UI dashboard without optional analytics components
deployed.

262

Figure 107: Web UI - Optional Analytics Components Not Deployed

No database node is visible in the infrastructure dashboard:

Figure 108: Web UI - Database Node Not Visible in Dashboard

263

Analytics Alarm Feature Enabled

Figure 109 on page 264 displays the Monitor > Alarms menu.

Figure 109: Web UI - Monitor > Alarms Menu

Figure 110 on page 264 displays the Configure > Alarms menu.

Figure 110: Web UI - Configure > Alarms Menu

Figure 111 on page 265 displays the dialog box which appears when Global Alarm, next to Logged in
User in the upper right, is selected.

264

Figure 111: Web UI - Global Alarm Settings

Analytics Alarm Feature Disabled

If the alarm analytics component is not deployed, then Contrail Web UI should not display the following
alarm references:

• Global Alarm (Next to Logged in User)

• Monitor > Alarms

• Configure > Alarms

There is not an appearance of Global Alarm or Alarms entry in the Monitor menu:

Figure 112: Analytics Alarm Disabled - Global Alarm and Alarm Not Available

Alarms menu still available in Configure menu.

265

Figure 113: Analytics Alarm Disabled - Configure > Alarms

Analytics SNMP Feature Enabled

Figure 114 on page 266 displays the Physical Topology option in the Monitor menu.

Figure 114: Analytics SNMP Feature Enabled - Physical Topology Menu Available

Analytics SNMP Feature Disabled

If the alarm analytics component is not provisioned, then Contrail Web UI does not display the Physical
Topology menu option.

266

Figure 115: Analytics SNMP Feature Disabled - Physical Topology Menu Not Available

Analytics Database Enabled

If analytics database is provisioned, then Contrail Web UI displays the Query page.

Figure 116: Analytics Database Enabled - Query Page Available

Analytics Database Disabled

If analytics database is not provisioned, then Contrail Web UI should not display the Query page. Query
page logo is unavailable to launch Query page.

267

Figure 117: Analytics Database Disabled - Query Page Logo Not Available

Tripleo Provisioning

Multi-Nodes Contrail Controller Topology

In order to enable or disable the Contrail analytics optional components, TripleO templates have to be
modified.

• In ContrailAnalytics role, ContrailAnalyticsSnmp, and ContrailAnalyticsAlarm resources can be
removed:

 - OS::TripleO::Services::ContrailAnalytics
 - OS::TripleO::Services::ContrailAnalyticsSnmp
 - OS::TripleO::Services::ContrailAnalyticsAlarm

• ContrailAnalyticsDatabase role can also be removed (not selected using
ContrailAnalyticsDatabaseCount = 0) into a rollout as this role is deploying only
ContrailAnalyticsDatabase resource:

- OS::TripleO::Services::ContrailAnalyticsDatabase

• ContrailController role is kept unchanged.

Single Node Contrail Controller Topology

In order to enable or disable the Contrail analytics optional components, TripleO templates have to be
modified. In ContrailController role, ContrailAnalyticsSnmp, ContrailAnalyticsAlarm, and
ContrailAnalyticsDatabase resources can be removed, other contrail resources are kept:

- name: ContrailController
 - OS::TripleO::Services::ContrailAnalytics
 - OS::TripleO::Services::ContrailAnalyticsAlarm

268

 - OS::TripleO::Services::ContrailAnalyticsDatabase
 - OS::TripleO::Services::ContrailAnalyticsSnmp
 - OS::TripleO::Services::ContrailCertmongerUser
 - OS::TripleO::Services::ContrailConfig
 - OS::TripleO::Services::ContrailConfigDatabase
 - OS::TripleO::Services::ContrailControl
 - OS::TripleO::Services::ContrailWebui

TripleO Template Update

TripleO templates were updated in June 2020 to allow disabling the provisioning of Contrail analytics
components.

Earlier Contrail TripleO templates have to be patched in order to replace docker/services/contrail/contrail-
base.yaml file in which optional analytics component provision is hardcoded:

...
 ANALYTICS_ALARM_ENABLE: 'False'
 ANALYTICS_SNMP_ENABLE: 'True'
 ANALYTICSDB_ENABLE: 'True'
...

Appendix

Contrail Command UI

The disabled roles and charts are visible on the Query page but they are not operational.

269

Figure 118: Query Page Visible in Dashboard

Regardless that the alarm, SNMP, and database analytics roles have been disabled, they are still reported
by Contrail Command.

Figure 119: Disabled Roles Still Visible in Contrail Command

The following five charts will always display empty.

270

Figure 120: Empty Charts in Compute Nodes

Figure 121: Empty Charts in Config Nodes

271

Figure 122: Empty Charts in Analytics Nodes

Figure 123: Empty Charts in Control Nodes

272

Figure 124: Empty Charts in Database Nodes

The Alarms page displays alarms pulled from the Contrail analytics_alarm component. When the
analytics_alarm component is disabled, the Alarms page will always display no data.

Figure 125: Empty Alarms Page

Change History Table

273

Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

2008 TripleO templates were updated in June 2020 to allow disabling the provisioning of Contrail analytics
components.

274

CHAPTER 5

Using Contrail Command to Monitor and
Troubleshoot the Network

IN THIS CHAPTER

Viewing Overlay Routes | 275

Monitoring Bond Interfaces in DPDK Enabled Devices | 276

Top N View in Contrail Command | 280

Viewing Topology Maps from Contrail Command | 286

Viewing Packet Path in Topology View | 291

Assign Custom Names to Privileged Ports and VXLAN IDs | 296

Viewing the Monitoring Dashboards | 302

Creating a Query for Flows | 306

Contrail Analytics Optional Modules | 315

Viewing Overlay Routes

Contrail Networking Controller peers with Multi-Protocol BGP (MP-BGP) routers with both data center
devices, such as underlay switches (leaf and spine), as well as SDN gateways. The controller receives and
advertises the routes through control nodes. Starting with Contrail Networking Release 1910, you can
view, filter and search the overlay MP-BGP routes on Contrail Command.

Being able to view control node data enables you to debug and troubleshoot networking issues.

To view the overlay routes, perform the following steps.

• Navigate to the Infrastructure > Cluster page. The Overview tab is displayed with an overview of the
cluster infrastructure components, including the numbers of control nodes, compute nodes, analytics
nodes, config nodes, and database nodes currently operational and also virtual networks. You can
also view charts displaying config nodes response sizes against response time as well as analytics
message sizes against time.

275

• Click Cluster Nodes to view more details on each of these nodes. The Cluster Name Nodes page
appears with lists of control nodes, compute nodes, service nodes, multicloud gateway nodes, and
baremetal servers in their separate respective tabs.

• To view more details on control nodes, select a control node on the Control Nodes tab. The
Control_Node Details page appears.

• The Control_Node Details page has multiple tabs.

• The Summary tab provides a summary of the status and activity on the selected node. It also
displays charts detailing host CPU usage, memory usage, and so on. In the Contrail Web UI,
similar information was available under Monitor > Infrastructure > Control Nodes > Summary.
However, Contrail Command displays more details since it uses Contrail Insights to generate the
data.

• Click the Peers tab to view information about peers established for this control node. The Peers
tab displays the peers for an individual control node and their peering state. Click the ▸ icon next
to the peer name to expand, view, and copy peer information. You can use the search field on the
top right of the page to search for peers based on specified input strings.

• Click the Routes tab to view information on the routes. The Routes tab displays active routes for
this control node and lets you query the results. Click the filter icon on the top right of the page to
apply filters while searching for routes. You can also apply multiple filters.

• Click the Alarms tab to view all alarms on the control node. Click the ▸ icon next to the alarm
name to expand and view alarm details.

Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

1910 Starting with Contrail Networking Release 1910, you can view, filter and search the overlay MP-BGP
routes on Contrail Command.

Monitoring Bond Interfaces in DPDK Enabled Devices

Starting with Contrail Networking Release 1910, you can use the Contrail Command user interface (UI)
to monitor the status of primary and secondary devices that are members of a bond interface. This
feature is available for device systems configured with Data Plane Development Kit (DPDK). In releases
prior to release 1910, you could only see a bond interface in the Contrail Command UI. In release 1910,

276

you can view the details and receive notifications about the status of the primary as well as secondary
devices in the bond interface.

To monitor the members in a bond interface, perform the following steps:

1. Click Infrastructure>Cluster.

The Overview page is displayed.

2. Click Cluster Nodes. The Cluster AIO Nodes page is displayed.

Click Compute Nodes tab. A list of nodes is displayed.

3. Click any node to view the Node Details. The Summary tab is displayed.

4. Click Interfaces tab. A list of interfaces deployed in the node is displayed.

Click on a bond interface to view and monitor the bond interface. See Figure 126 on page 277 .

Figure 126: Members of the Bond Interface

5. Click Alarms tab. A list of alarms is displayed.

This tab overrides the old alarms and shows you the latest alarm generated when the primary or
secondary device in the bond interface goes DOWN. This indicates that the member has become
inactive. See Figure 127 on page 278 .

277

Figure 127: Alarms Generated by Bond Interface Members

NOTE: In a multi-node setup, when the primary interface goes down in a DPDK enabled
device, the Contrail Command UI cannot display the status as the connection between the
controller and the primary interface is inactive. The Contrail Command UI obtains the
previous status from the cache and displays it.

You can also use vif—list command on the CLI to view the details of the bond interface members.

Executing the vif—list command gives you the following output when all interface members are UP:

vif0/0 PMD: 0 (Speed 1000, Duplex 1)
 Type:Physical HWaddr:9e:b1:2a:68:e8:58 IPaddr:0.0.0.0
 Vrf:0 Mcast Vrf:65535 Flags:XTcL3L2VpDpdk QOS:0 Ref:19
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Fabric Interface: eth_bond_bond0 Status: UP Driver: net_bonding
 Slave Interface(1): 0000:04:00.0 Status: UP Driver: net_ixgbe
 Slave Interface(2): 0000:04:00.1 Status: UP Driver: net_ixgbe
 RX packets:0 bytes:0 errors:0
 TX packets:5 bytes:430 errors:0
 Drops:0

278

 TX port packets:5 errors:0
 TX device packets:5 bytes:450 errors:0

Executing the vif—list command gives you the following output when all interface members are DOWN:

vif0/0 PMD: 0 (Speed 1000, Duplex 1)
 Type:Physical HWaddr:9e:b1:2a:68:e8:58 IPaddr:0.0.0.0
 Vrf:0 Mcast Vrf:65535 Flags:XTcL3L2VpDpdk QOS:0 Ref:19
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Fabric Interface: eth_bond_bond0 Status: DOWN Driver: net_bonding
 Slave Interface(1): 0000:04:00.0 Status: DOWN Driver: net_ixgbe
 Slave Interface(2): 0000:04:00.1 Status: DOWN Driver: net_ixgbe
 RX packets:0 bytes:0 errors:0
 TX packets:5 bytes:430 errors:0
 Drops:0
 TX port packets:5 errors:0
 TX device packets:5 bytes:450 errors:0

Executing the vif—list command gives you the following output when bond interface is not configured
and there are no secondary devices:

vif0/0 PMD: 0 (Speed 1000, Duplex 1)
 Type:Physical HWaddr:9e:b1:2a:68:e8:58 IPaddr:0.0.0.0
 Vrf:0 Mcast Vrf:65535 Flags:XTcL3L2VpDpdk QOS:0 Ref:19
 RX queue errors to lcore 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 Fabric Interface: 0000:04:00.0 Status: DOWN Driver: net_ixgbe
 RX packets:0 bytes:0 errors:0
 TX packets:5 bytes:430 errors:0
 Drops:0
 TX port packets:5 errors:0
 TX device packets:5 bytes:450 errors:0

Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

1910 Starting with Contrail Networking Release 1910, you can use the Contrail Command user interface (UI)
to monitor the status of primary and secondary devices that are members of a bond interface.

279

RELATED DOCUMENTATION

vRouter Command Line Utilities | 34

Top N View in Contrail Command

SUMMARY

This topic covers the Top N feature in the Contrail
Command GUI. Contrail Insights has a new Top N or
“top talkers” query engine with tabular and charted
views. These Contrail Insights diagnostics enable
engineers to proactively mitigate issues like network
congestion and resource contention.

IN THIS SECTION

Contrail Command UI—Top N Feature | 280

Top N Filter Options | 282

Chart View | 285

Contrail Command UI—Top N Feature

Follow the steps to navigate to the Top N View.

1. Log in to a cluster via Contrail Command by browsing to https://<Contrail-Command-Server-IP-
Address>:9091.

2. Navigate to Infrastructure > Fabrics.

3. Select the desired Fabric from the available list.

4. Click on Top N View.

The feature offers table view and chart view.

The default view is the table view.

280

In addition to the standard Top N results, you can also define custom Top N fields to group the results.
Click on the + button to group the results based on different attributes. You can add or remove the
desired attributes. The following grouping values are available:

• Packets

• Average speed

• Average number of packets

• Average size of packets

• Source IP

• Destination IP

• Source Port

• Destination Port

• Protocol

• Source Virtual Network

• Destination Virtual Network

• Overlay Source IP

• Overlay Destination IP

• Overlay Source Port

• Overlay Destination Port

• Overlay Protocol

• Network Device

• Source Interface

• Destination Interface

• IP Version

• IP Tos

• Source ASN

• Destination ASN

• Source Network Mask

281

• Destination Network Mask

• Source MAC Address

• Destination MAC Address

Top N Filter Options

The top–N results show the Top N contributors or “top talkers” to the network traffic and how the Top
N contributors change over time. These results are generated from the sampled packets exported by
sFlow.

The following network traffic Top N options are available—

Top N Options Description Default Values

Predefined Time Select the period in the history for which data is to be
displayed.

Time range Use the calendar or type directly into the fields to select the
desired start and end time.
Additionally, you can select a time interval by dragging the
mouse.

Network Device Filter data passing through the network device

Source Interface Filter the source interface on the selected network device

Destination Interface Filter the destination interface on the selected network
device

N Records Select the number of records for the top talkers of traffic 15

Include Missing Enable to see the results including traffic between physical
devices that are not related to overlay

Disabled

Deduplication Enable to see the results for the actual scale of traffic
transferred between source IP and destination IP. It
eliminates counting the duplicate traffic reported by multiple
network devices.

Disabled

282

(Continued)

Top N Options Description Default Values

Overlay Network

Source Virtual Network Filter data with this source virtual network

Destination Virtual Network Filter data with this destination virtual network

Source IP/Mask Filter data with the source IP or in the subnet range with
mask

Destination IP/Mask Filter data with the destination IP or in the subnet range with
mask

Source Port Filter data with the source port

Destination Port Filter data with the destination port

Protocol Filter data with the protocol type Available Options:

• ICMP

• TCP

• UDP

Underlay Network

Source IP/Mask Filter data with the source IP or in the subnet range with
mask

Destination IP/Mask Filter data with the destination IP or in the subnet range with
mask

Source Port Filter data with the source port

283

(Continued)

Top N Options Description Default Values

Destination Port Filter data with the destination port

Protocol Filter data with the protocol type Available Options:

• ICMP

• OSPFIGP

• TCP

• UDP

Additional filters

IP Version Filter data with the IP Version Available Options:

• IPv4

• IPv6

IP Tos Filter data with the IP type of service

Source ASN Filter data with the source autonomous system number
(ASN)

Destination ASN Filter data with the destination autonomous system number
(ASN)

Source Net Filter the data with source network

Destination Net Filter the data with destination network

Source MAC Filter data with the source MAC address

Destination MAC Filter data with the destination MAC address

284

(Continued)

Top N Options Description Default Values

Encapsulation type Filter data with the encapsulation type Available Options:

• vxlan

• mpls

Chart View

You can also analyze the Top N results in the chart view.

Click on the Chart View button on the Top N View page.

Click on the Configure button to customize the results.

The following types of charts are available:

• Bar Chart

• Pie Chart

• Donut Chart

• Treemap

You can customize the Y-axis based on—

• Bytes

• Packages

• Average Packet Size

• Average Speed

• Average Packet Number

You can also add heatmap for Y-axis parameters by enabling the option, Custom heatmap. It adds
another dimension to the chart view. The option will sort the colors of the chart based on the selected
heatmap parameter.

Select the desired fields from the PARAMETERS DISPLAYED list to group the results by various
parameters. You can hover your mouse over the chart to see these parameters.

Click Apply to see the results.

285

RELATED DOCUMENTATION

Contrail Insights Flows in Contrail Command | 339

Viewing the Network Topology

Viewing Topology Maps from Contrail Command

IN THIS SECTION

Filters | 291

You can view heatmaps from the Infrastructure > Fabrics > Fabric Name > Topology View page.

The Topology View feature helps visualize the heatmaps generated based on the metrics collected
through sources such as sFlows and SNMP. You can select a time range from the Summary section on
the left panel to view the network statistics during a specific time period.

The metrics are represented in color and with a temperature scale displayed on the right of the topology
as shown in Figure 128 on page 287 . The maximum numeric value retrieved for the metric among all
possible nodes or edges are represented as red on the scale. The lowest possible value, 0 (zero), is
represented as Green. The color gradation is from Red to Green with Yellow at 50%. For metrics
represented in percentages, the maximum (100%) is represented as Red, yellow is 50% and green is 0%.
For a node, the heat color is based on the maximum of the sum of either ingress or egress traffic.

286

Figure 128: Topology View

Figure 128 on page 287 shows the Bytes/sec metric to visualize the heatmap. The temperature scale on
the right indicates that 34 Kb/sec is the maximum rate discovered among all devices and is color coded
in red. The lowest value is 0 Bytes/sec, which is shown as green. You can hover on the edge devices or
nodes to view the actual values as shown in Figure 129 on page 288 .

287

Figure 129: Edge Devices Heatmap Metric

The node color for a7-ex2 is based on the values of the maximum of sum of ingress versus the egress
traffic.

For example, in Figure 130 on page 289 , the sum of egress traffic is 13.32 KB/sec and ingress is traffic
is 12.30 KB/sec. Hence, for this node, the traffic is shown as 13.21 KB/sec and is marked red. This is
because this value is close to the maximum values obtained from all the links and the nodes.

288

Figure 130: Node Heatmap Metric

Figure 131 on page 289 shows the sample traffic data collected and provided by the Contrail Insights
Flows API.

Figure 131: Sample Traffic from Contrail Insights Flows API

Table 48 on page 289 describes the metrics, its source, and the method of calculation.

Table 48: Metrics and Its Source

Metric Source/Collector Calculation Method

Bytes/sec sFlow / Contrail Insights Flows Calculated by dividing the sum of bytes by time range in
seconds.

289

Table 48: Metrics and Its Source (Continued)

Metric Source/Collector Calculation Method

Packets/sec sFlow / Contrail Insights Flows Calculated by dividing the sum of packets by time range
in seconds.

Utilization sFlow / Contrail Insights Flows Utilization is % of link capacity used and is calculated
based on the link capacity. The total utilization divided by
time range in seconds is used to show average utilization
over the time range.

Host/Instances—All host and instances metrics collected by Contrail Insights.

Memory Usage Contrail Insights Percentage

CPU Usage Contrail Insights Percentage

Disk I/O Read Contrail Insights Average

Disk I/O Write Contrail Insights Average

Ingress Errors Contrail Insights Average

Egress Errors Contrail Insights Average

Ingress Drops Contrail Insights Average

Egress Drops Contrail Insights Average

User SNMP Metrics Contrail Insights All the SNMP metrics collected by Contrail Insights.

For Contrail Insights to collect SNMP data, you need to
configure SNMP and select IFMIB.

For more information, see Metrics Collected by Contrail Insights.

290

Filters

Clicking on a node or edge device filters data for the selected connection, network device, host,
instance, or baremetal server. You can select the filter criteria from the Heatmap parameters section on
the right pane. You can apply multiple filters at a time.

Table 49: Filter Parameters

Field Description

Source Virtual Network Filter traffic data for a particular source virtual network.

Destination Virtual Network Filter traffic data for a particular destination virtual network.

Network Device Filter traffic for the selected network device.

Host/Instance Filter traffic data for the selected host or node instance.

Source Interface Filter traffic for the selected source interface.

Destination Interface Filter traffic for the selected destination interface.

RELATED DOCUMENTATION

Contrail Insights Flows in Contrail Command | 339

Viewing Packet Path in Topology View | 291

Viewing Packet Path in Topology View

IN THIS SECTION

View Packet Paths | 292

Fabric-Only Path Finding | 295

291

Starting in Contrail Networking Release 2008, you can view the path a packet takes in a network.
Visualizing the packet path on a topology view alongside the traffic assists the administrator when
troubleshooting. The visualization is possible by using the sFlow and topology data that a packet
consumes traveling in a network. When the node and edge details are obtained, the topology is plotted
and the path can be visualized in the topology view.

NOTE: To view the packet path, both Contrail Insights and Contrail Insights Flows must be
installed. See How to Install Contrail Command and Provision Your Contrail Cluster in the
Contrail Networking Installation and Upgrade Guide.

View Packet Paths

To view packet paths in the Topology View:

1. Log in to a cluster using Contrail Command by browsing to:

https://<Contrail-Command-Server-IP-Address>:9091

2. Select Infrastructure > Fabrics.

3. Select the desired Fabric from the available list.

4. Click Topology View.

The packet path will look similar to the following example.

Figure 132: Packet Path in Topology View

292

Right-click to show details about traffic on the path.

To change a path or create a new one, right-click to select the packet path source and destination nodes.

Figure 133: Packet Path Source and Destination nodes

The following options are available to filter the path.

293

Table 50: Packet Path Filter Options

Packet Path Option Description

Predefined Time Select the period in the history for which data is to be displayed.

Time Range Use the calendar or type directly into the fields to select the desired start and end
time. Additionally, you can select a time interval by moving the selector left or
right..

Underlay

Source IP Filter data with the source IP address.

Source Port Filter data with the source port.

Destination IP Filter data with the destination IP address.

Destination Port Filter data with the destination port.

Protocol Filter data with these available protocol types:

• ICMP

• OSPFIGP

• TCP

• UDP

Overlay

Source Virtual Network Filter data with the source virtual network.

Source IP Filter data with the source IP address.

Source Port Filter data with the source port.

294

Table 50: Packet Path Filter Options (Continued)

Packet Path Option Description

Destination Virtual Network Filter data with the destination virtual network.

Destination IP Filter data with the destination IP address.

Destination Port Filter data with the destination port.

Protocol Filter data with these available protocol types:

• ICMP

• TCP

• UDP

Fabric-Only Path Finding

Contrail Networking Release 2011 supports fabric-only path finding.

In fabric-only path finding, each virtual port group (VPG) is treated as a bare metal server (BMS). These
BMSs are named bms_<vpg_name>. Contrail Networking does not allocate IP addresses of the VPG. The IP
addresses are discovered by mapping the Contrail Config virtual-port-group object with the gRPC (gRPC
remote procedure calls) Sensor data, "/network-instances/network-instance/macip-table".

When a Contrail vRouter Agent is present in the path of a flow between two virtual machines that is
hosted on Contrail compute nodes, Contrail Insights Flows collector receives information from Contrail
Flows for the corresponding sFlow packet. However, when the traffic flow is between two bare metal
servers and there is no Contrail vRouter Agent, no information is received from Contrail flows. In this
scenario, the gRPC sensor is subscribed to, to determine virtual network information and connections
between leaf and BMS.

NOTE: Fabric-only path finding feature is supported on network devices that run Junos OS
Release 20.2 or later.

Change History Table

295

Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

2011 Contrail Networking Release 2011 supports fabric-only path finding.

2008 Starting in Contrail Networking Release 2008, you can view the path a packet takes in a network.

RELATED DOCUMENTATION

Viewing Topology Maps from Contrail Command | 286

Contrail Insights Flows in Contrail Command | 339

Assign Custom Names to Privileged Ports and VXLAN IDs

IN THIS SECTION

Assign a Custom Name to Privileged Ports | 296

Map a Route with Custom Named Ports | 299

Search for a Port Using the Custom Name | 300

Assign a Custom Name to VXLAN IDs | 300

Starting with Contrail Networking Release 2011, you can assign custom names to privileged ports (for
example HTTP, HTTPs, BGP, DNS, SSH) and VXLANs in order to make them easier to identify in the
topology mapping and queries. When you make queries for traffic flows in the Topology View, the
custom name displays instead of the port number or VXLAN ID.

Assign a Custom Name to Privileged Ports

To assign a custom name to a privileged port:

1. Navigate to Infrastructure > Fabrics.

The Fabrics page displays.

296

2. Select <Fabric Name>.

The Fabric Devices page displays for the selected fabric.

3. Click the Application Page tab.

By default, all the privileged ports are displayed.

Figure 134: Application Page Showing Privileged Ports

4. Click New Application.

The Create new application dialog box opens.

297

Figure 135: Create New Application

Table 51: Create New Application: Port Field Information

Field Description

New Name Enter the new custom name.

Privileged Ports Select to assign the new custom name to a privileged port.

Port Number Enter a port number to rename with the new custom name.

5. Click Create.

You are returned to the Application Page.

6. Click the Topology tab.

The topology for the fabric displays.

7. In the Topology map, hover over the node, and select Set as Source node.

8. In the Overlay section in the topology sidebar, select that same Source IP from the drop-down list.

298

Figure 136: Overlay Source IP

Locate the port number that you named, which shows the custom name.

Map a Route with Custom Named Ports

Custom names were previously assigned to two ports and the custom names are shown for two host IP
addresses.

To map a route with custom named ports for both the source IP address and destination IP address:

1. Navigate to Infrastructure > Fabrics.

299

The Fabrics page displays.

2. Select <Fabric Name>.

The Fabric Devices page displays for the selected fabric.

3. Click the Topology tab.

The topology for the fabric displays.

4. In the Overlay section in the topology sidebar, select Source IP from the drop-down list.

5. Select a port with a custom name next to the port number.

6. Select Destination IP from the drop-down list.

7. Select a port with a custom name next to the port number.

A path is shown between the two selected nodes.

Search for a Port Using the Custom Name

A custom name was previously assigned to a port.

To search for a port using custom name:

1. Navigate to Infrastructure > Fabrics.

The Fabrics page displays.

2. Select <Fabric Name>.

The Fabric Devices page displays for the selected fabric.

3. Click the Topology tab.

The topology for the fabric displays.

4. In the Overlay section in the topology sidebar, select Source IP from the drop-down list.

5. Enter the custom name in the Port field.

Port drop-down shows only the port with the custom name.

Assign a Custom Name to VXLAN IDs

To assign a custom name to VXLAN ID:

1. Navigate to Infrastructure > Fabrics.

300

The Fabrics page displays.

2. Select <Fabric Name>.

The Fabric Devices page displays for the selected fabric.

3. Click the Application Page tab.

By default, all the privileged ports are displayed.

4. Click New Application.

The Create new application dialog box opens.

Table 52: Create New Application: VXLAN Field Information

Field Description

New Name Enter the new custom name.

VXLAN ID Select to assign the new custom name to a VXLAN ID of a corresponding Virtual Network.

VXLAN ID Enter a VXLAN ID to rename with the new custom name.

5. Click Create.

You are returned to the Application page.

6. Click the Topology tab.

The topology for the fabric displays.

7. In the Topology map, hover over the node, and select Set as Source node.

8. In the Overlay section in the topology sidebar, select Source Virtual Network from the drop-down
list.

9. Locate the VXLAN ID of a Virtual Network that you named.

Next to the VXLAN ID in the drop-down list is the custom name you added.

Change History Table

301

Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

2011 Starting with Contrail Networking Release 2011, you can assign custom names to privileged ports (for
example HTTP, HTTPs, BGP, DNS, SSH) and VXLANs in order to make them easier to identify in the
topology mapping and queries. When you make queries for traffic flows in the Topology View, the
custom name displays instead of the port number or VXLAN ID.

RELATED DOCUMENTATION

Top N View in Contrail Command | 280

Viewing Topology Maps from Contrail Command | 286

Viewing Packet Path in Topology View | 291

Viewing the Monitoring Dashboards

IN THIS SECTION

Monitoring Dashboards | 302

Monitor Individual Details from the Dashboard | 303

Chart Data Values | 303

Monitor Config Nodes | 303

Monitor Analytics Nodes | 304

The Dashboards page in Contrail Command provides an “at-a-glance” view of the system infrastructure
components, including the number of compute nodes, config nodes, analytics nodes, control nodes, and
database nodes currently operational, CPU and memory utilization for the system, active flows, and
packet drops.

Monitoring Dashboards

Select Monitoring > Dashboards to view the Dashboards page.

302

Figure 137: Monitoring > Dashboards

Monitor Individual Details from the Dashboard

Across the top of the Dashboards page are tabs representing the components of the system that are
shown in the statistics. See Figure 137 on page 303 . Any of the compute nodes, config nodes, analytics
nodes, control nodes, and database nodes can be monitored individually and in detail from the
Dashboards page by clicking an associated tab, and drilling down for more detail.

Chart Data Values

The charts show the latest data, updating in real-time from a stream of data from the Contrail platform.
When the cursor is positioned over the charts, a pop-up box shows the data values at that particular
time. Charts can be zoomed in or out using the mouse scroll wheel.

Monitor Config Nodes

Select Monitoring > Dashboards > Config Nodes to view a summary of activities for the analytics nodes.
See Figure 138 on page 304 . Hover over any chart axis to get summary information about the
component it represents.

303

Figure 138: Config Nodes Summary

Table 53 on page 304 describes the fields in the Config Nodes summary.

Table 53: Config Nodes Summary Fields

Field Description

Host Name The name of this node.

Response Size Response size (MB) at specified time.

Response Time Response time (ms) at specified time.

Monitor Analytics Nodes

Select Monitoring > Dashboards > Analytics Nodes to view a summary of activities for the analytics
nodes. See Figure 139 on page 305 . Hover over any chart axis or bubble to get summary information
about the component it represents. See Table 54 on page 305 for descriptions of the fields on the
analytics summary.

304

Figure 139: Analytics Node Summary

Table 54: Fields in Analytics Nodes Summary

Field Description

Host Name The name of this node.

DB Writes Number of writes to database in Contrail made in specific time period.

Message Traffic per Min Number of messages received per minute.

Queries Number of queries made and time run.

305

Table 54: Fields in Analytics Nodes Summary (Continued)

Field Description

Analytics Messages Number of analytics messages received during specific time period on represented
node.

Creating a Query for Flows

IN THIS SECTION

Query Flow Series Table | 306

Query Individual Flow Records | 310

Using the Query Window | 313

Display Flows Query Queue | 314

Select Query > Flows to perform rich and complex SQL-like queries on flows in the Contrail Controller.
You can use the query results for such things as gaining insight into the operation of applications in a
virtual network, performing historical analysis of flow issues, and pinpointing problem areas with flows.

Query Flow Series Table

Select Query > Flows > Series to create queries of the flow series table. The results are in the form of
time series data for flow series. See Figure 140 on page 307 .

306

Figure 140: Query Flow Series Window

The query fields available on the screen for the Series tab are described in Table 55 on page 307 . Enter
query data into the fields to create a SQL-like query to display and analyze flows.

Table 55: Query Flow Series Fields

Field Description

Time Range Select a range of time to display the flow series:

• Last 10 Mins

• Last 30 Mins

• Last 1 Hr

• Last 6 Hrs

• Last 12 Hrs

• Custom

Click Custom to enter a specific custom time range in two fields: Start Time and End Time.

Select Terms Click the edit button (pencil icon) to open a Select Terms window (Figure 141 on page 309),
where you can click one or more fields to display from the flow series, such as Virtual Router,
Source VN, Destination VN, SUM(bytes), SUM(packets), and more.

307

Table 55: Query Flow Series Fields (Continued)

Field Description

Direction Select the desired flow direction: Ingress or Egress.

Where Click the +Add to open a query-writing window, where you can specify query values for
variables such as destvn, protocol, sourcevn, and vrouter.

Filter Click the edit button (pencil icon) to open a Filters window (Figure 140 on page 307), where
you can select filter items to sort by, the sort order, and limits to the number of results
returned.

Time Granularity When Time Granularity is selected, you have the option to view results in graph or flowchart
form. Graph buttons appear on the screen above the Export button. Click a graph button to
transform the tabular results into a graphical chart display.

Unit Select minutes or seconds for unit of measurement.

Run Click Run to retrieve the flows that match the query you created. The flows are listed on the
lower portion of the screen in a box with columns identifying the selected fields for each flow.

Export The Export button is displayed after you click Run. This allows you to export the list of flows
to a text .csv file.

The Select Terms window allows you to select one or more attributes of a flow series by clicking each
attribute desired. See Figure 141 on page 309 . Select SUM(Bytes) or SUM(Packets) to aggregate bytes
and packets in intervals.

308

Figure 141: Flow Series Select Terms

Use the Filters window to refine the display of query results for flows, by defining an attribute by which
to sort the results, the sort order of the results, and any limit needed to restrict the number of results.
See Figure 142 on page 310 .

309

Figure 142: Flows Series Filter

Query Individual Flow Records

Select Query > Flow > Records to create queries of individual flow records for detailed debugging of
connectivity issues between applications and virtual machines. Queries at this level return records of the
active flows within a given time period.

310

Figure 143: Flows Records

The query fields available on the screen for the Records tab are described in Table 56 on page 311 .
Enter query data into the fields to create an SQL-like query to display and analyze flows.

Table 56: Query Flow Records Fields

Field Description

Time Range Select a range of time for the flow records:

• Last 10 Mins

• Last 30 Mins

• Last 1 Hr

• Last 6 Hrs

• Last 12 Hrs

• Custom

Click Custom to enter a specified custom time range in two fields: Start Time and End Time.

Select Terms Click the edit button (pencil icon) to open a Select Terms window (Figure 143 on page 311),
where you can click one or more attributes to display for the flow records, including vrouter,
sourcevn, sourceip, destvn, destip, protocol, dport, and action.

311

Table 56: Query Flow Records Fields (Continued)

Field Description

Direction Select the desired flow direction: Ingress or Egress.

Where Click +Add to open a query window where you can specify query values for destvn, protocol,
sourcevn, and vrouter.

Run Click Run to retrieve the flow records that match the query you created. The records are listed on
the lower portion of the screen in a box with columns identifying the fields for each flow.

Export The Export button is displayed after you click Run, allowing you to export the list of flows to a
text .csv file.

The Select Terms window allows you to select one or more attributes to display for the flow records
selected. See Figure 144 on page 312 .

Figure 144: Flows Records Select Terms

312

Using the Query Window

The query window is available by clicking the +Add in the Where field. Use the query window to enter
query statements. See Figure 144 on page 312 .

You can restrict the query to a particular source VN and destination VN combination using the Select
section.

The Where supports logical AND and logical OR operations, and is modeled as a logical OR of multiple
AND terms. For example: ((term1 AND term2 AND term3..) OR (term4 AND term5) OR…).

Each term is a single variable expression such as sourcevn = vn1.

See Table 57 on page 313 for descriptions of the fields in the query window.

Table 57: Query Window Fields and Descriptions

Item Description

— Select from a list of available item types the type from which to query.

• destvn

• protocol

• sourcevn

• vrouter

(operator) =(equal to) and Starts with are available.

AND + Click the +Add to add more elements to your query. Repeat to include additional query elements to
your query statement.

Apply Click to enter the query into the fields on the main screen.

The Where clause supports logical AND and logical OR operations.

The Where can be modeled as logical OR of multiple AND terms. ((term1 AND term2 AND term3..) OR
(term4 AND term5) OR…).

Each term is a single variable expression such as Source VN = VN1.

313

Display Flows Query Queue

Select Query > Flows > Query Queue to display queries that are in the queue waiting to be performed
on the data.

The query fields available on the screen for the Records tab are described in Table 58 on page 314 .
Enter query data into the fields to create an SQL-like query to display and analyze flows.

Table 58: Query Flow Records Fields

Field Description

Date The date and time the query was started.

Query A display of the parameters set for the query.

Progress The percentage completion of the query to date.

Records The number of records matching the query to date.

Status The status of the query, such as completed.

Time Taken The amount of time in seconds it has taken the query to return the matching records.

(Action icon) Click the Action icon and select View Results to view a list of the records that match the query, or
click Delete to remove the query from the queue.

RELATED DOCUMENTATION

Fat Flows

314

Contrail Analytics Optional Modules

IN THIS SECTION

Analytics Optional Components | 315

Contrail Web UI | 324

Tripleo Provisioning | 331

Appendix | 332

Analytics Optional Components

Contrail analytics is comprised of four building blocks. The last three listed are optional components.

• Analytics collector

• Analytics alarm

• Analytics SNMP

• Analytics database

Figure 145: Contrail Analytics Components

Regardless that the alarm, SNMP, and database analytics roles have not been installed and if installed are
disabled, these components show as active when you run the Linux $sudo commands or view in Contrail
Command. For more information, see the section “TripleO Provisioning” below.

315

Contrail Infrastructure Installed without Optional Analytics Components

Two topologies are considered in this example: multi-nodes or single node.

Multi-nodes Contrail controller components are split onto three servers (Contrail controller, Contrail
analytics, and Contrail analytics database). Only the first two servers are mandatory since
Contrail analytics database is an optional component. This type of topology is used in
production deployments.

Single node This type of topology is used in test deployments.

Multi-Nodes Contrail Controller

Contrail Controller Node

Following is an example of the Contrail status on the Contrail controller node:

$ sudo contrail-status
== Contrail control ==
control: active
nodemgr: active
named: active
dns: active

== Contrail config-database ==
nodemgr: active
zookeeper: active
rabbitmq: active
cassandra: active

== Contrail config ==
svc-monitor: active
nodemgr: active
device-manager: active
api: active
schema: active

== Contrail webui ==
web: active
job: active

316

Contrail Analytics Node (with All Optional Components)

Following is the Contrail status on Contrail analytics node when Contrail analytics SNMP and Contrail
analytics alarm have both been deployed:

$ sudo contrail-status
Pod Service Original Name
Original Version State Id Status
analytics api contrail-analytics-api rhel-
queens-1910-23 running 62980f3e6479 Up 2 weeks
analytics collector contrail-analytics-collector rhel-
queens-1910-23 running b777437946c2 Up 2 weeks
analytics nodemgr contrail-nodemgr rhel-
queens-1910-23 running aeeb744a5b5e Up 2 weeks
analytics redis contrail-external-redis rhel-
queens-1910-23 running 150b6225bd93 Up 2 weeks
analytics-alarm alarm-gen contrail-analytics-alarm-gen rhel-
queens-1910-23 running d655146cb8d0 Up 2 weeks
analytics-alarm kafka contrail-external-kafka rhel-
queens-1910-23 running 8cfa8c7da4bd Up 2 weeks
analytics-alarm nodemgr contrail-nodemgr rhel-
queens-1910-23 running 685a5f817f0b Up 2 weeks
analytics-alarm zookeeper contrail-external-zookeeper rhel-
queens-1910-23 running a41dc5658c72 Up 2 weeks
analytics-snmp nodemgr contrail-nodemgr rhel-
queens-1910-23 running 0afd301ccbd8 Up 2 weeks
analytics-snmp snmp-collector contrail-analytics-snmp-collector rhel-
queens-1910-23 running 2bde6aa39250 Up 2 weeks
analytics-snmp topology contrail-analytics-snmp-topology rhel-
queens-1910-23 running a16f983ed162 Up 2 weeks

== Contrail analytics ==
nodemgr: active
api: active
collector: active

== Contrail analytics-alarm ==
nodemgr: active
kafka: active
alarm-gen: active

== Contrail analytics-snmp ==

317

snmp-collector: active
nodemgr: active
topology: active

Contrail analytics alarm and SNMP are deployed and active.

Contrail Analytics Node (without Analytics Optional Components)

Following is an example of the Contrail status on Contrail analytics node when Contrail analytics SNMP
and Contrail analytics alarm have not been deployed:

$ sudo contrail-status
Pod Service Original Name Original Version
State Id Status
analytics api contrail-analytics-api rhel-queens-2005-62
running 489b07cbbbef Up 18 hours
analytics collector contrail-analytics-collector rhel-queens-2005-62
running 5da4f99b045f Up 18 hours
analytics nodemgr contrail-nodemgr rhel-queens-2005-62
running 28053f64f1bc Up 18 hours
analytics provisioner contrail-provisioner rhel-queens-2005-62
running faa8de6d17e4 Up 18 hours
analytics redis contrail-external-redis rhel-queens-2005-62
running 3e29dcc475d1 Up 18 hours
analytics stunnel contrail-external-stunnel rhel-queens-2005-62
running 11a30f0f5e3b Up 18 hours

== Contrail analytics ==
nodemgr: active
api: active
collector: active

Only Contrail analytics collector is deployed and active.

Contrail Analytics Database Node

Contrail analytics database is only deployed when the analytics database component is enabled. The
following example shows the Contrail status on the Contrail analytics database node:

$ sudo contrail-status
Pod Service Original Name Original Version

318

State Id Status
database cassandra contrail-external-cassandra rhel-queens-1910-
23 running ec05bd8c34c4 Up 2 weeks
database nodemgr contrail-nodemgr rhel-queens-1910-
23 running 25a6c58d5144 Up 2 weeks
database query-engine contrail-analytics-query-engine rhel-queens-1910-
23 running f90f7ae16b48 Up 2 weeks

== Contrail database ==
nodemgr: active
query-engine: active
cassandra: active

Single Node Contrail Controller

Contrail Controller Node (with All Analytics Optional Components)

Following is the Contrail status on Contrail controller node when Contrail analytics SNMP, Contrail
analytics alarm, and Contrail analytics database have been deployed:

$ sudo contrail-status
Pod Service Original Name
Original Version State Id Status
analytics api contrail-analytics-api
rhel-queens-1912-46 running bf87cc51fb36 Up 8 weeks
analytics collector contrail-analytics-collector
rhel-queens-1912-46 running 0ae1ca0fb1f2 Up 8 weeks
analytics nodemgr contrail-nodemgr
rhel-queens-1912-46 running 24e9174056d0 Up 8 weeks
analytics redis contrail-external-redis
rhel-queens-1912-46 running 9d7135b6b9d8 Up 8 weeks
analytics stunnel contrail-external-stunnel
rhel-queens-1912-46 running 30d413bad4f1 Up 8 weeks
analytics-alarm alarm-gen contrail-analytics-alarm-gen
rhel-queens-1912-46 running 2f40aeb42154 Up 8 weeks
analytics-alarm kafka contrail-external-kafka
rhel-queens-1912-46 running 8cd54b9520af Up 8 weeks
analytics-alarm nodemgr contrail-nodemgr
rhel-queens-1912-46 running afeadd231273 Up 8 weeks
analytics-alarm zookeeper contrail-external-zookeeper
rhel-queens-1912-46 running 118b116b2721 Up 8 weeks

319

analytics-snmp nodemgr contrail-nodemgr
rhel-queens-1912-46 running f623346fff53 Up 8 weeks
analytics-snmp snmp-collector contrail-analytics-snmp-collector
rhel-queens-1912-46 running 152b037af72d Up 8 weeks
analytics-snmp topology contrail-analytics-snmp-topology
rhel-queens-1912-46 running 5226847e74f3 Up 8 weeks
config api contrail-controller-config-api
rhel-queens-1912-46 running b8ba22697cfe Up 8 weeks
config device-manager contrail-controller-config-devicemgr
rhel-queens-1912-46 running 29f9b248f850 Up 8 weeks
config nodemgr contrail-nodemgr
rhel-queens-1912-46 running 2f3f84d5d2b4 Up 8 weeks
config schema contrail-controller-config-schema
rhel-queens-1912-46 running 334906b962fb Up 8 weeks
config svc-monitor contrail-controller-config-svcmonitor
rhel-queens-1912-46 running a8581c37f9ab Up 8 weeks
config-database cassandra contrail-external-cassandra
rhel-queens-1912-46 running e47a3e430fe6 Up 8 weeks
config-database nodemgr contrail-nodemgr
rhel-queens-1912-46 running 4798399f0ec5 Up 8 weeks
config-database rabbitmq contrail-external-rabbitmq
rhel-queens-1912-46 running d80a5e8e8801 Up 8 weeks
config-database zookeeper contrail-external-zookeeper
rhel-queens-1912-46 running b1c430201497 Up 8 weeks
control control contrail-controller-control-control
rhel-queens-1912-46 running e478128385f7 Up 8 weeks
control dns contrail-controller-control-dns
rhel-queens-1912-46 running f9752a324d71 Up 8 weeks
control named contrail-controller-control-named
rhel-queens-1912-46 running 66c992adced5 Up 8 weeks
control nodemgr contrail-nodemgr
rhel-queens-1912-46 running 3c9a0270ab1a Up 8 weeks
database cassandra contrail-external-cassandra
rhel-queens-1912-46 running f85ead18fb26 Up 8 weeks
database nodemgr contrail-nodemgr
rhel-queens-1912-46 running 0d9f471003ea Up 8 weeks
database query-engine contrail-analytics-query-engine
rhel-queens-1912-46 running 40a092abbccf Up 8 weeks
webui job contrail-controller-webui-job
rhel-queens-1912-46 running 432f686a8abf Up 8 weeks
webui web contrail-controller-webui-web
rhel-queens-1912-46 running 4341432ce9a4 Up 8 weeks

320

== Contrail control ==
control: active
nodemgr: active
named: active
dns: active

== Contrail analytics-alarm ==
nodemgr: active
kafka: active
alarm-gen: active

== Contrail database ==
nodemgr: active
query-engine: active
cassandra: active

== Contrail analytics ==
nodemgr: active
api: active
collector: active

== Contrail config-database ==
nodemgr: active
zookeeper: active
rabbitmq: active
cassandra: active

== Contrail webui ==
web: active
job: active

== Contrail analytics-snmp ==
snmp-collector: active
nodemgr: active
topology: active

== Contrail config ==
svc-monitor: active
nodemgr: active
device-manager: active
api: active
schema: active

321

Contrail database (query), analytics alarm, and SNMP are deployed and active.

Contrail Controller Node (without Analytics Optional Components)

Following is an example of the Contrail status on Contrail controller node when Contrail analytics SNMP,
Contrail analytics alarm, and Contrail analytics database have not been deployed:

$ sudo contrail-status
Pod Service Original Name
Original Version State Id Status
analytics api contrail-analytics-api
rhel-queens-2005-62 running b1ddca562595 Up 10 hours
analytics collector contrail-analytics-collector
rhel-queens-2005-62 running f6860911ee16 Up 10 hours
analytics nodemgr contrail-nodemgr
rhel-queens-2005-62 running 37a0d8744e31 Up 10 hours
analytics provisioner contrail-provisioner
rhel-queens-2005-62 running e2f9a4605d63 Up 10 hours
analytics redis contrail-external-redis
rhel-queens-2005-62 running 1d0a193983b0 Up 10 hours
analytics stunnel contrail-external-stunnel
rhel-queens-2005-62 running 695d61045e63 Up 10 hours
config api contrail-controller-config-api
rhel-queens-2005-62 running 41eb0caef12d Up 10 hours
config device-manager contrail-controller-config-devicemgr
rhel-queens-2005-62 running f3158c67d792 Up 10 hours
config nodemgr contrail-nodemgr
rhel-queens-2005-62 running 4138cc386e69 Up 10 hours
config provisioner contrail-provisioner
rhel-queens-2005-62 running 45aae86bb41a Up 10 hours
config schema contrail-controller-config-schema
rhel-queens-2005-62 running 2497392980d0 Up 10 hours
config svc-monitor contrail-controller-config-svcmonitor
rhel-queens-2005-62 running b2ed20209aa7 Up 10 hours
config-database cassandra contrail-external-cassandra
rhel-queens-2005-62 running abd3efad8075 Up 10 hours
config-database nodemgr contrail-nodemgr
rhel-queens-2005-62 running bcc74ecb37cc Up 10 hours
config-database provisioner contrail-provisioner
rhel-queens-2005-62 running 9de114119be5 Up 10 hours
config-database rabbitmq contrail-external-rabbitmq
rhel-queens-2005-62 running d623f5d3da79 Up 10 hours

322

config-database zookeeper contrail-external-zookeeper
rhel-queens-2005-62 running 2c4f47c2fdc1 Up 10 hours
control control contrail-controller-control-control
rhel-queens-2005-62 running 56e238791c60 Up 10 hours
control dns contrail-controller-control-dns
rhel-queens-2005-62 running 6cfc801451f9 Up 10 hours
control named contrail-controller-control-named
rhel-queens-2005-62 running f033a8bf5b88 Up 10 hours
control nodemgr contrail-nodemgr
rhel-queens-2005-62 running 7381053ff80f Up 10 hours
control provisioner contrail-provisioner
rhel-queens-2005-62 running a3851c25f427 Up 10 hours
webui job contrail-controller-webui-job
rhel-queens-2005-62 running 80cd5c06ff39 Up 10 hours
webui web contrail-controller-webui-web
rhel-queens-2005-62 running 51a2f164a259 Up 10 hours

== Contrail control ==
control: active
nodemgr: active
named: active
dns: active

== Contrail analytics ==
nodemgr: active
api: active
collector: active

== Contrail config-database ==
nodemgr: active
zookeeper: active
rabbitmq: active
cassandra: active

== Contrail config ==
svc-monitor: active
nodemgr: active
device-manager: active
api: active
schema: active

== Contrail webui ==

323

web: active
job: active

Contrail database (query), analytics alarm, and SNMP are not deployed.

Contrail Web UI

Web UI with Optional Components

Figure 146 on page 324 displays the Contrail Web UI dashboard with all optional analytics components
deployed.

Figure 146: Web UI - All Optional Analytics Components Deployed

A database node is visible in the infrastructure dashboard.

324

Figure 147: Web UI - Database Node in Dashboard

Web UI without Optional Components

Figure 148 on page 326 displays the Contrail Web UI dashboard without optional analytics components
deployed.

325

Figure 148: Web UI - Optional Analytics Components Not Deployed

No database node is visible in the infrastructure dashboard:

Figure 149: Web UI - Database Node Not Visible in Dashboard

326

Analytics Alarm Feature Enabled

Figure 150 on page 327 displays the Monitor > Alarms menu.

Figure 150: Web UI - Monitor > Alarms Menu

Figure 151 on page 327 displays the Configure > Alarms menu.

Figure 151: Web UI - Configure > Alarms Menu

Figure 152 on page 328 displays the dialog box which appears when Global Alarm, next to Logged in
User in the upper right, is selected.

327

Figure 152: Web UI - Global Alarm Settings

Analytics Alarm Feature Disabled

If the alarm analytics component is not deployed, then Contrail Web UI should not display the following
alarm references:

• Global Alarm (Next to Logged in User)

• Monitor > Alarms

• Configure > Alarms

There is not an appearance of Global Alarm or Alarms entry in the Monitor menu:

Figure 153: Analytics Alarm Disabled - Global Alarm and Alarm Not Available

Alarms menu still available in Configure menu.

328

Figure 154: Analytics Alarm Disabled - Configure > Alarms

Analytics SNMP Feature Enabled

Figure 155 on page 329 displays the Physical Topology option in the Monitor menu.

Figure 155: Analytics SNMP Feature Enabled - Physical Topology Menu Available

Analytics SNMP Feature Disabled

If the alarm analytics component is not provisioned, then Contrail Web UI does not display the Physical
Topology menu option.

329

Figure 156: Analytics SNMP Feature Disabled - Physical Topology Menu Not Available

Analytics Database Enabled

If analytics database is provisioned, then Contrail Web UI displays the Query page.

Figure 157: Analytics Database Enabled - Query Page Available

Analytics Database Disabled

If analytics database is not provisioned, then Contrail Web UI should not display the Query page. Query
page logo is unavailable to launch Query page.

330

Figure 158: Analytics Database Disabled - Query Page Logo Not Available

Tripleo Provisioning

Multi-Nodes Contrail Controller Topology

In order to enable or disable the Contrail analytics optional components, TripleO templates have to be
modified.

• In ContrailAnalytics role, ContrailAnalyticsSnmp, and ContrailAnalyticsAlarm resources can be
removed:

 - OS::TripleO::Services::ContrailAnalytics
 - OS::TripleO::Services::ContrailAnalyticsSnmp
 - OS::TripleO::Services::ContrailAnalyticsAlarm

• ContrailAnalyticsDatabase role can also be removed (not selected using
ContrailAnalyticsDatabaseCount = 0) into a rollout as this role is deploying only
ContrailAnalyticsDatabase resource:

- OS::TripleO::Services::ContrailAnalyticsDatabase

• ContrailController role is kept unchanged.

Single Node Contrail Controller Topology

In order to enable or disable the Contrail analytics optional components, TripleO templates have to be
modified. In ContrailController role, ContrailAnalyticsSnmp, ContrailAnalyticsAlarm, and
ContrailAnalyticsDatabase resources can be removed, other contrail resources are kept:

- name: ContrailController
 - OS::TripleO::Services::ContrailAnalytics
 - OS::TripleO::Services::ContrailAnalyticsAlarm

331

 - OS::TripleO::Services::ContrailAnalyticsDatabase
 - OS::TripleO::Services::ContrailAnalyticsSnmp
 - OS::TripleO::Services::ContrailCertmongerUser
 - OS::TripleO::Services::ContrailConfig
 - OS::TripleO::Services::ContrailConfigDatabase
 - OS::TripleO::Services::ContrailControl
 - OS::TripleO::Services::ContrailWebui

TripleO Template Update

TripleO templates were updated in June 2020 to allow disabling the provisioning of Contrail analytics
components.

Earlier Contrail TripleO templates have to be patched in order to replace docker/services/contrail/contrail-
base.yaml file in which optional analytics component provision is hardcoded:

...
 ANALYTICS_ALARM_ENABLE: 'False'
 ANALYTICS_SNMP_ENABLE: 'True'
 ANALYTICSDB_ENABLE: 'True'
...

Appendix

Contrail Command UI

The disabled roles and charts are visible on the Query page but they are not operational.

332

Figure 159: Query Page Visible in Dashboard

Regardless that the alarm, SNMP, and database analytics roles have been disabled, they are still reported
by Contrail Command.

Figure 160: Disabled Roles Still Visible in Contrail Command

The following five charts will always display empty.

333

Figure 161: Empty Charts in Compute Nodes

Figure 162: Empty Charts in Config Nodes

334

Figure 163: Empty Charts in Analytics Nodes

Figure 164: Empty Charts in Control Nodes

335

Figure 165: Empty Charts in Database Nodes

The Alarms page displays alarms pulled from the Contrail analytics_alarm component. When the
analytics_alarm component is disabled, the Alarms page will always display no data.

Figure 166: Empty Alarms Page

Change History Table

336

Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

2008 TripleO templates were updated in June 2020 to allow disabling the provisioning of Contrail analytics
components.

337

CHAPTER 6

Contrail Insights in Contrail Command

IN THIS CHAPTER

Contrail Insights Overview | 338

Contrail Insights Flows in Contrail Command | 339

Viewing Telemetry KPI Alarms for Fabric Devices and Ports | 353

Adding, Editing, and Deleting sFlow Collector Nodes in Contrail Command | 364

Adding or Deleting sFlow Collector Nodes by Modifying instances.yml | 378

Configuring Contrail Insights Alarms using Contrail Command | 381

Configuring Instances in Contrail Insights | 406

Viewing Cluster Node Details and Metric Values | 412

Contrail Insights Overview

Contrail Insights is a cloud service optimization tool that provides advanced monitoring, scheduling, and
performance management for software-defined infrastructure, where containers and virtual machines
(VMs) can have life cycles much shorter than in traditional development environments.

Contrail Insights leverages big-data analytics and machine learning in a distributed architecture that puts
the power of self-driving infrastructure at the core of most any cloud. It redefines the state-of-the-art in
telemetry and management across software-defined infrastructure and application software layers. On
top of all of this, real-time and historic monitoring, performance visibility and dynamic optimization
features improve cloud orchestration, security, accounting and planning to users.

Starting with Contrail release 5.1, the following Contrail Insights features are supported in Contrail
Command:

• Installing Contrail Insights using Contrail Command

• Configuring Contrail Insights Alarms using Contrail Command

• Configuring Instances in Contrail Insights

338

• Viewing Cluster Node Details and Metric Values

NOTE: For information about installing Contrail Insights, see the Contrail Installation and
Configuration Guide. For more information about Contrail Insights, see the Contrail Insights User
Guide.

RELATED DOCUMENTATION

How to Install Contrail Command and Provision Your Contrail Cluster

Configuring Contrail Insights Alarms using Contrail Command | 381

Configuring Instances in Contrail Insights | 406

Viewing Cluster Node Details and Metric Values | 412

Contrail Insights Flows in Contrail Command

IN THIS SECTION

Configuring Contrail Insights Flows from Contrail Command | 339

Configuring Contrail Insights Flows During Fabric Onboarding | 340

Configuring Contrail Insights Flows by Assigning Telemetry and sFlow Profiles to Devices | 341

Removing a Telemetry Profile | 351

These topics describe how to configure Contrail Insights Flows from Contrail Command.

Configuring Contrail Insights Flows from Contrail Command

Starting with Contrail Networking Release 1910, Contrail Insights Flows is integrated in the Contrail
Command UI. Contrail Insights Flows enables you to view telemetry information for the devices in a
Contrail-managed data center fabric. With the addition of this feature, Contrail Command acts as a
single pane of glass where you can access the features of both Contrail Networking and telemetry
feature of Contrail Insights, providing you a unified telemetry experience.

339

For Contrail Networking Release 1910, the flow collector provisioning is disabled by default in the
provisioning wizard. To enable flow collector provisioning, log in to the contrail_command container and edit
the /usr/share/contrail/public/feature-list.json file. Set the value for cluster_user.xflow to true.

In Contrail Networking Release 1911 and later, the flow collector provisioning is enabled by default.

Contrail Networking Release 1911 supports provisioning of both in-band and out-of-band collectors.
You can configure Contrail Insights Flows during initial setup, during fabric onboarding, or by creating
and assigning telemetry and sFlow profiles to devices. For more information about configuring Contrail
Insights Flows during Contrail Command installation, see Installing Contrail Insights and Contrail Insights
Flows using Contrail Command in the Contrail Installation and Upgrade Guide.

Configuring Contrail Insights Flows During Fabric Onboarding

You use this procedure to provision an In-Band collector during the fabric onboarding workflow. Here,
the information that you entered during initial setup is displayed and you can specify the Device Port
that you want to associate with the flow collector.

Figure 167: Configure Device Port

When you click Next, configuration similar to the following is pushed to the device:

set groups __contrail_underlay_infra_bms_access interfaces xe-0/0/2 unit 0 family ethernet-
switching vlan members elemetry_infra_network_ipam-vlan
set groups __contrail_underlay_infra_bms_access interfaces xe-0/0/47 unit 0 family ethernet-

340

switching vlan members elemetry_infra_network_ipam-vlan
set groups __contrail_underlay_infra_bms_access interfaces irb unit 11 family inet address
30.1.1.1/24
set groups __contrail_underlay_infra_bms_access vlans elemetry_infra_network_ipam-vlan vlan-id 11
set groups __contrail_underlay_infra_bms_access vlans elemetry_infra_network_ipam-vlan l3-
interface irb.11

After fabric provisioning is complete, you can view the flow data from the Infrastructure > Fabrics >
Fabric Name > Topology View page.

Figure 168: Topology View

Configuring Contrail Insights Flows by Assigning Telemetry and sFlow Profiles to
Devices

This topic describes how to provision Contrail Insights Flows and assign telemetry profiles after setting
up Contrail Command and discovering devices.

The benefit of assigning telemetry profiles is that you can monitor the health of different devices and
their interfaces from Contrail Command after the telemetry profile gets configured on these devices.

341

NOTE: If telemetry profiles are not configured, there will be “No data” for the “top talkers” in the
Contrail Command Top-N-View. See "Top N View in Contrail Command" on page 280 .

After Contrail Command is set up and devices are discovered, you can attach telemetry profiles to
devices. You can attach only one telemetry profile per device. Each telemetry profile is linked to sub-
profile(s). The telemetry profile can contain all types of sub-profiles but only one instance each of the
sFlow, gRPC, Netconf, or SNMP sub-profiles. You can either link a telemetry profile to an existing sub-
profile or create a new sub-profile while creating the telemetry profile.

Default sFlow profiles and telemetry profiles are predefined in the system when you bring up the cluster.
You cannot edit or delete these default profiles. However, you can create custom profiles and associate
them to the telemetry profile.

The sFlow monitoring technology collects samples of network packets and sends them to a monitoring
station called a collector. The sFlow technology implements two sampling mechanisms:

• Packet-based sampling—Samples one packet out of a specified number of packets from an interface
enabled for sFlow technology.

• Time-based sampling—Samples interface statistics (counters) at a specified interval from an interface
enabled for sFlow technology.

Contrail Networking Release 2011 supports gRPC, Netconf, and SNMP protocol-based telemetry
profiles. Contrail Insights collects key performance indicators (KPIs) from network devices using
preconfigured values to monitor the fabric health.

To view the health of your fabric devices, ports, and any alerts associated with exceeding KPI thresholds,
navigate to Infrastructure > Fabrics > <Fabric Name>.

The default sFlow telemetry profiles are:

• sflow-access-interfaces—Indicates that sFlow is enabled on all the access interfaces on the device.

• sflow-fabric-interfaces—Indicates that sFlow is enabled on all the fabric interfaces.

• sflow-all-interfaces—Indicates that sFlow is enabled on all the interfaces on the device that has an
sFlow profile attached to it.

The default protocol-based telemetry profiles are:

• grpc-default-profile—Indicates that the health parameters for health/environment, interface, and
control plane sensors are enabled for monitoring. This profile includes an Allowed Clients List with a
default value of 0.0.0.0/0. See Figure 173 on page 347 and Table 60 on page 348 .

342

• netconf-default-profile—Indicates that the health parameters for health/environment, interface, and
control plane sensors are enabled for monitoring.

• snmp-default-profile—Indicates that the health parameters for health/environment, interface, and
control plane sensors are enabled for monitoring.

You can apply default profiles to network devices and generate alerts based on predefined KPIs and
preconfigured alert generation rules.

To create a telemetry profile:

1. Log in to Contrail Command UI and navigate to Infrastructure > Fabrics.

2. Click the Telemetry Profiles tab.

Figure 169: Telemetry Profiles Tab

Click profile tabs (sFlow, GRPC, Netconf, SNMP) to view existing profiles.

3. Click Create to define a new telemetry profile.

You can assign one or more profiles to the telemetry profile by selecting existing profiles from the
list(s). You can create new profile(s) by clicking Create New and then assign it to the telemetry profile.

Figure 170 on page 344 shows assigning an existing sFlow profile. Mouse over the sFlow name to
view the profile details.

343

Figure 170: Assign an Existing sFlow Profile

344

Figure 171: Assign an Existing gRPC Profile

4. (Optional) Click Create New next to the profile fields to create a new profile.

Figure 172 on page 346 shows an example of creating a sFlow profile.

345

Figure 172: Create New sFlow Profile

Table 59: sFlow Profile Fields

Field Description

Profile Name Enter a name for the profile you are creating.

Sample Rate The configured number of egress or ingress packets out of which one packet is
sampled. For example, with the default sample rate of 2000, meaning one packet out
of 2000, is sampled.

Polling Interval
(second)

Configure the interval (in seconds) that the device waits between port statistics
update messages. Default should be set to 0 (recommended).

Adaptive Sample
Rate

Process of monitoring the overall incoming traffic rate on the network device and
providing intelligent feedback to interfaces to dynamically adapt the sampling rates
on interfaces on the basis of traffic conditions. The default is one out of every 300
packets.

346

Table 59: sFlow Profile Fields (Continued)

Field Description

Sampling Direction Packets are sampled either at the ingress or egress interfaces for a given network
path flow.

Applicable Interfaces
Type

Select the type of interface you want to monitor.

Configure a gRPC, Netconf, or SNMP profile to monitor the health of your network and generate
alarms to identify any anomalies. Alarms are generated based on the collected metrics and
preconfigured thresholds in the alarm rules.

Figure 173 on page 347 shows an example of creating a gRPC profile.

Figure 173: Create New gRPC Profile

347

Table 60: gRPC, Netconf, and SNMP Profile Fields

Field Description

Profile Name Enter a name for the gRPC, Netconf, or SNMP profile you are creating.

Health Parameters

• Physical/Environmental

• Interface

• Control Plane

Mouse over the ? to view a table listing the applicable sensors, commands, or
MIBs for physical/environmental, interface, and control plane monitoring. By
default, all three settings are On, which is recommended. See Figure 173 on
page 347 .

Allowed Client List NOTE: This field applies to grpc-default-profile only. Default value is 0.0.0.0/0.

Prepopulated subnets are from the Contrail Insights node. Add additional IP
addresses (using the CIDR format 1.1.1.1/32) and/or subnets and Enter. You can
also copy and paste entries.

5. Attach new sFlow profile to the telemetry profile.

348

Figure 174: Assign New sFlow Profile to Telemetry Profile

349

Figure 175: Assign New gRPC Profile to Telemetry Profile

6. Click Create.

Continue with the remaining steps to assign your telemetry profile to a device.

7. Click Infrastructure > Fabrics > Fabric Name to assign a telemetry profile to one or more devices in a
fabric.

8. Select the device or devices for which you want to assign telemetry profile and click Assign
Telemetry Profile as shown in Figure 176 on page 351 .

350

Figure 176: Assign Telemetry Profile

9. Select a telemetry profile from the list and click Ok as shown in Figure 177 on page 351 .

Figure 177: Select Telemetry Profile to Assign to Device

The selected telemetry profile is now assigned to the device.

To view the health of your fabric, navigate to Infrastructure > Fabrics > <Fabric Name>.

Removing a Telemetry Profile

To remove a telemetry profile assigned to a device:

1. Navigate to Infrastructure > Fabrics > <Fabric Name>.

2. Click Remove Telemetry Profile as shown in Figure 178 on page 352 .

351

Figure 178: Remove Telemetry Profile

3. Click Confirm to remove the telemetry profile attached to the device.

Figure 179: Confirm Removing Telemetry Profile

Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

2011 Contrail Networking Release 2011 supports gRPC, Netconf, and SNMP protocol-based telemetry
profiles. Contrail Insights collects key performance indicators (KPIs) from network devices using
preconfigured values to monitor the fabric health.

352

1911 Contrail Networking Release 1911 supports provisioning of both in-band and out-of-band collectors.

1910 Starting with Contrail Networking Release 1910, Contrail Insights Flows is integrated in the Contrail
Command UI.

RELATED DOCUMENTATION

Adding, Editing, and Deleting sFlow Collector Nodes in Contrail Command | 364

Viewing Telemetry KPI Alarms for Fabric Devices and Ports | 353

Top N View in Contrail Command | 280

Adding or Deleting sFlow Collector Nodes by Modifying instances.yml | 378

Viewing Telemetry KPI Alarms for Fabric Devices and Ports

IN THIS SECTION

Fabric Devices | 353

Ports | 357

Alarms | 358

Alarms Count, Ports Count, and Device Overview | 359

Configure and Assign Telemetry Profiles from Fabric Overview | 361

In Contrail Networking Release 2011, the Fabrics page displays additional detail about the health of your
devices and interfaces, gathering data from telemetry metrics and profiles configured on these devices.
These pages will show if any key performance indicators (KPIs) have crossed a threshold value. You can
also configure metrics and assign telemetry profiles from the Fabrics Overview page. See Figure 189 on
page 362 .

Fabric Devices

To view fabric devices:

353

1. Navigate to Infrastructure > Fabrics.

The Fabrics page displays. An error icon displays next to the fabrics name if there are critical or major
alarms present.

Figure 180: Infrastructure > Fabrics

Table 61: Fabrics Page Information

Column Description

Name Name of the fabric.

NOTE: A red alert icon displays next to the fabric name if there are any active critical
or major alarms.

Physical Devices Number of connected physical devices.

Ports Number of physical ports.

Ports Down Number of physical ports nonfunctional.

Critical/Major Alarm Number of critical alarms reported by the telemetry profiles.

Spine Number of spine devices connected in the fabric.

Leaf Number of leaf devices connected in the fabric.

Overlay ASN Autonomous system number for the EVPN overlay.

354

2. Select the <Fabric Name> to view more details about devices, ports, and alarms.

The Fabric Devices page displays an overview of the fabric devices and their real-time status.

Figure 181: Fabric Devices Page

Table 62: Fabric Devices Page Information

Column Description

Alarms Count A progress bar chart of critical, error, or warning
alarms. Click Critical, Error, or Warning to display only
alarms with that severity level.

Ports Count A pie chart of connected ports showing up or down
operational status and administrative status for
physical ports.

Name Name of the fabric device. Click a <device name> to
navigate to the device’s detailed overview page.

Interfaces Number of connected physical interfaces for that
device.

Interfaces Down Number of physical interfaces nonfunctional for that
device.

Operational Status Device status as Up, Down or At Risk/Changed. This
status is based on the telemetry profiles.

355

Table 62: Fabric Devices Page Information (Continued)

Column Description

Administrative Status Device status as Active, Inactive, or Changed. This
status applies to the Contrail Networking
configuration component versus telemetry profiles.

Management IP IP address used as the management IP address.
Contrail Command uses this IP address to connect to
the Contrail Insights Flows node.

Loopback IP Loopback subnets are used to auto-assign loopback IP
addresses to the fabric devices.

Model Brand and device type.

Physical Role Device roles define the routing and bridging
responsibilities for each device in a fabric. A fabric
device can have one physical role and one or more
routing bridging roles. Use this page to assign roles to
each device in the fabric. See the “Device Roles”
section of the Contrail Enterprise Multicloud for
Fabric Management guide for information on device
roles.

Overlay Role Routing-bridging role, such as CRBGateway,
ERBGateway, and so on.

Namespaces Refers to the objects, such as BGP ASN pool,
Management Subnet, or peer-to-peer (P2P) interface
subnet that is assigned to a fabric.

Intent High level abstract operations that user refers to in
terms of the application-to-application connectivity
he is looking for. For example VN, logical router,
physical network function (PNF), and so on.

Device Credentials Credentials for accessing fabric devices.

356

Ports

Click the Ports tab to view details about ports.

Figure 182: Fabrics Ports Page Information

The Ports tab displays the following information:

Table 63: Fabrics Ports Page Information

Column Description

Device Device name

Ports Number of ports reported by telemetry profiles.

Operational Status Device status as Up, Down or At risk/Changed. This is based on information received
from the telemetry profiles.

Administrative Status Device status as Active, Inactive, or Changed. This status applies to the Contrail
Networking configuration component versus telemetry profiles.

357

Alarms

Click the Alarms tab to view all alarms on the fabric.

Figure 183: Fabrics Alarm Page

The Alarms tab displays the following information:

Table 64: Fabrics Alarm Page Information

Column Description

Device Device Name

Severity Alarm severity. Ranging from none to critical. Corresponds with Alarms Count at top of page.

Name Alarm name.

Description Brief description of alarm, that is pulled from telemetry profiles.

358

Alarms Count, Ports Count, and Device Overview

In Alarms Count, click Critical, Error, or Warning to display only alarms with that severity level.

Figure 184: Display Alarms by Severity from Alarms Count

To return to displaying all alarms, click the Open filters icon and select the filter values or click Reset.

Figure 185: Open Filters Icon in Fabric Alarms

359

Figure 186: Select Filter Values in Fabric Alarms

NOTE: The same behavior applies to the legend items next to the Ports Count pie chart.

The Device Overview page shows more detail provided by the telemetry profiles. The Alarms panel
displays up to eight alarms. Click View all critical alarms for this device to see any additional alarms.

Figure 187: Fabric Device Overview Page

This returns you to the Fabric page and displays device and severity dependent on your choices. Click
Open filters and select Reset to return the page to displaying all devices and alarms. See

360

In Ports Count, you can click a port name to see more detail. This launches the Port Overview page.
Overview charts are drawn specifically for the port that you are viewing. To return to full view of all
ports, click the Open filters icon and select Reset.

Figure 188: Select Fabric Port to View Alarms Specific to Selected Port

Configure and Assign Telemetry Profiles from Fabric Overview

When there are no telemetry metrics configured and assigned to applicable fabric devices, you can
accomplish this from the Fabric Overview page. For more information about telemetry profiles, see
"Contrail Insights Flows in Contrail Command" on page 339 .

361

Figure 189: Configure Metrics from Fabric Overview Page

Figure 190: Assign Telemetry Profile Icon

362

Figure 191: Assign Telemetry Profile from Fabric Overview Page

Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

2011 In Contrail Networking Release 2011, the Fabrics page displays additional detail about the health of your
devices and interfaces, gathering data from telemetry metrics and profiles configured on these devices.
These pages will show if any key performance indicators (KPIs) have crossed a threshold value. You can
also configure metrics and assign telemetry profiles from the Fabrics Overview page.

RELATED DOCUMENTATION

Contrail Insights Flows in Contrail Command | 339

Adding, Editing, and Deleting sFlow Collector Nodes in Contrail Command | 364

363

Adding, Editing, and Deleting sFlow Collector Nodes in Contrail
Command

IN THIS SECTION

Add Collector Node - No Existing Collector Nodes, No Available Server | 364

Add Collector Node - No Existing Collector Nodes, Available Server | 368

Add Collector Node - Existing Collector Nodes, No Available Server | 371

Add Collector Node - Existing Collector Nodes, Available Server | 373

Connect Collector Nodes to Fabric | 374

Edit Existing Collector Nodes | 376

Remove Collector Nodes from a Contrail Cluster | 376

Contrail Networking Release 2011 supports adding, removing, and reconfiguring collector nodes (also
known as sFlow nodes) after the system is up and running. Prior to this release, collector nodes could
only be added during provisioning.

The provisioning workflow for the collector nodes is:

1. When there are not any existing collector nodes in the deployment, you need to specify the
provisioning type (out-of-band or in-band) and the corresponding configuration parameters.

2. After specifying the provisioning type, you create server nodes if none are available or select from
the listed server nodes.

3. Next assign the selected server nodes as new collector nodes.

The Add Collector Nodes wizard guides you through the steps, which vary depending on the availability
of collector nodes and server nodes. See the following procedures for the add collector nodes
workflows.

Add Collector Node - No Existing Collector Nodes, No Available Server

An available server node is one that's not currently assigned as a Contrail Insights sFlow node.

To add an out-of-band collector node when there are not any existing collector nodes and no available
server nodes:

1. Select Infrastructure > Cluster.

364

The Cluster Overview page displays.

2. Click the Collector Nodes tab.

The Collector Nodes page displays without any collector nodes listed.

3. Click the link Add Collector Node or navigate to Add > Collector Node.

The page opens with Step 1 - Provisioning Type.

4. Select the Collector Node provisioning type to identify how the Insights Flows node is managed.

• Out of Band: Contrail Insights Flows nodes are managed from an out-of-band management
network by default. See Table 65 on page 365 .

• In-Band: Select the in-band option if you want to manage Contrail Insights from an in-band
network interface. See Table 66 on page 365 .

Table 65: Provisioning Type: Out of Band Configuration Information

Field Description

Virtual IP Address Enter the virtual IP address on the Insights Flows node that connects the node to the
management network. The address is entered as a four-octet IP address with no mask;
for example, 10.1.1.20.

Show Advanced (Check box)

Retention Period Time duration in seconds that you want to keep the collected data. For example,
7200.

Max Retention Bytes Maximum size of the data to be collected. Default is 0 which indicates unlimited size.

Table 66: Provisioning Type: In-Band Configuration Information

Field Description

In-Band Collector Configuration

CIDR Enter the underlay telemetry infrastructure subnet. The in-band interface on the
Contrail Insights Flows node is assigned an IP address from this subnet.

365

Table 66: Provisioning Type: In-Band Configuration Information (Continued)

Field Description

VLAN ID Enter the VLAN ID used for the telemetry network.

Management Virtual IP
Address

Enter an unused IP address which will be used as the management IP Address.
Contrail Command uses this IP address to connect to the Contrail Insights Flows
node.

Show Advanced (Check box)

Retention Period Time duration in seconds that you want to keep the collected data. For example,
7200.

Max Retention Bytes Maximum size of the data to be collected. Default is 0 which indicates unlimited
size.

AppFormix Flows
Configuration
Parameters

Key Enter a key value for a key value pair on the Contrail Insights Flows server. Key
value pairs might need to be entered to use Contrail Insights and Contrail Insights
Flows on the same server. See How to Install Contrail Command and Provision
Your Contrail Cluster. In all other scenarios, key value pairs should only be used by
expert users or by users in specialized circumstances.

Value Enter a value for a key value pair on the Contrail Insights Flows server. Key value
pairs might need to be entered to use Contrail Insights and Contrail Insights Flows
on the same server. See How to Install Contrail Command and Provision Your
Contrail Cluster. In all other scenarios, key value pairs should only be used by
expert users or by users in specialized circumstances.

5. Click Next.

Without a server available, you are directed to Step 2 - Adding Servers.

366

Figure 192: Collector Nodes: Adding Servers

6. Complete the required fields. See Table 67 on page 367 .

Table 67: Collector Nodes: Adding Servers Configuration Information

Field Description

Management Virtual
IP address

Server IP address (for example, 1.1.1.1).

Choose Mode Options include: Express, Detailed, or Bulk Import (CSV). We recommend using the
Detailed or Bulk Import (CSV) modes in most environments to ensure all server field
data is entered and to avoid performing manual configuration tasks later in the
procedure.

• Express—includes a limited number of required fields to enter for each server or
VM.

• Detailed—provides all fields to enter for each server or VM.

• Bulk Import (CSV)—Import the physical server or VM fields from a CSV file.

Hostname Name of the physical server or VM.

Management IP Management IP address of the physical server or VM.

Management Interface Name of the management-network facing interface on the physical server or VM.

367

Table 67: Collector Nodes: Adding Servers Configuration Information (Continued)

Field Description

Credentials Select any credentials that appear in the drop-down list.

Disk Partition(s) (Optional) Specify the disk partitions that you want to use. This field is often left
blank.

Name (Network interfaces)—the name of a network-facing interface on the physical server
or VM.

IP Address (Network interfaces)—the IP address of the network-facing interface on the physical
server or VM.

7. Click Next after completing all fields to add the server or VM.

The page continues to Step 3 Assigning Nodes.

You can see the added server in the Available Servers box. Listed are the servers that can be
provisioned as Contrail Insights nodes. Contrail Insights provides end-to-end visibility into your cloud
environment to improve the operations of your network. A Contrail Insights node is needed to run
Contrail Insights.

8. Click the > icon next to a server to assign it as a Contrail Insights node. The server is moved into the
Assigned Contrail Insights Nodes table.

9. Click Provision.

The cluster provisioning begins and the page displays provisioning progress. When the provisioning is
completed, you are directed to log in to Contrail Command.

Continue to "Connect Collector Nodes to Fabric" on page 374 .

Add Collector Node - No Existing Collector Nodes, Available Server

To add an out of band collector node, when there is an available server node but there are no collector
nodes:

1. Select Infrastructure > Cluster.

The Cluster Overview page displays.

368

2. Click the Collector Nodes tab.

The Collector Nodes page displays without any collector nodes listed.

3. Click Add > Collector Node.

The page opens with Step 1 - Provisioning Type.

4. Select the Collector Node provisioning type to identify how the Insights Flows node is managed.

• Out of Band: Contrail Insights Flows nodes are managed from an out-of-band management
network by default. See Table 68 on page 369 .

• In-Band: Select the in-band option if you want to manage Contrail Insights from an in-band
network interface. See Table 69 on page 369 .

Table 68: Provisioning Type: Out of Band Configuration Information

Field Description

Virtual IP Address Enter the virtual IP address on the Insights Flows node that connects the node to the
management network. The address is entered as a four-octet IP address with no mask;
for example, 10.1.1.20.

Show Advanced (Check box)

Retention Period Time duration in seconds that you want to keep the collected data. For example,
7200.

Max Retention Bytes Maximum size of the data to be collected. Default is 0 which indicates unlimited size.

Table 69: Provisioning Type: In-Band Configuration Information

Field Description

In-Band Collector Configuration

CIDR Enter the underlay telemetry infrastructure subnet. The in-band interface on the
Contrail Insights Flows node is assigned an IP address from this subnet.

369

Table 69: Provisioning Type: In-Band Configuration Information (Continued)

Field Description

VLAN ID Enter the VLAN ID used for the telemetry network.

Management Virtual IP
Address

Enter an unused IP address which will be used as the management IP Address.
Contrail Command uses this IP address to connect to the Contrail Insights Flows
node.

Show Advanced (Check box)

Retention Period Time duration in seconds that you want to keep the collected data. For example,
7200.

Max Retention Bytes Maximum size of the data to be collected. Default is 0 which indicates unlimited
size.

AppFormix Flows Configuration Parameters

Key Enter a key value for a key value pair on the Contrail Insights Flows server. Key
value pairs might need to be entered to use Contrail Insights and Contrail Insights
Flows on the same server. See How to Install Contrail Command and Provision Your
Contrail Cluster. In all other scenarios, key value pairs should only be used by
expert users or by users in specialized circumstances.

Value Enter a value for a key value pair on the Contrail Insights Flows server. Key value
pairs might need to be entered to use Contrail Insights and Contrail Insights Flows
on the same server. See How to Install Contrail Command and Provision Your
Contrail Cluster. In all other scenarios, key value pairs should only be used by
expert users or by users in specialized circumstances.

5. Click Next.

The page continues to Step 2 - Assigning Nodes.

The Available Servers table lists the servers that can be provisioned as Contrail Insights nodes.
Contrail Insights provides end-to-end visibility into your cloud environment to improve the
operations of your network. A Contrail Insights node is needed to run Contrail Insights.

370

6. Click the > icon next to a server to assign it as a Contrail Insights node. The server is moved into the
Assigned Contrail Insights Nodes table.

7. Click Provision.

The cluster provisioning begins and the page displays provisioning progress. When the provisioning is
completed, you are directed to log in to Contrail Command.

Continue to "Connect Collector Nodes to Fabric" on page 374 .

Add Collector Node - Existing Collector Nodes, No Available Server

When there are existing collector nodes in the deployment, you are not required to specify the
provisioning type.

To add a collector node when there are existing collector nodes and no available server nodes:

1. Select Infrastructure > Cluster.

The Cluster Overview page displays.

2. Click the Collector Nodes tab.

The Collector Nodes page displays with collector nodes listed.

3. Click Add > Collector Node.

The page opens with Step 1 Adding Servers.

4. Complete the required fields. See Table 70 on page 371

Table 70: Collector Nodes: Adding Servers Configuration Information

Field Description

Management Virtual
IP address

Server IP address (for example, 1.1.1.1).

371

Table 70: Collector Nodes: Adding Servers Configuration Information (Continued)

Field Description

Choose Mode Options include: Express, Detailed, or Bulk Import (CSV). We recommend using the
Detailed or Bulk Import (CSV) modes in most environments to ensure all server field
data is entered and to avoid performing manual configuration tasks later in the
procedure.

• Express—includes a limited number of required fields to enter for each server or
VM.

• Detailed—provides all fields to enter for each server or VM.

• Bulk Import (CSV)—Import the physical server or VM fields from a CSV file.

Hostname Name of the physical server or VM.

Management IP Management IP address of the physical server or VM.

Management Interface Name of the management-network facing interface on the physical server or VM.

Credentials Select any credentials that appear in the drop-down list.

Disk Partition(s) (Optional) Specify the disk partitions that you want to use. This field is often left
blank.

Name (Network interfaces)—the name of a network-facing interface on the physical server
or VM.

IP Address (Network interfaces)—the IP address of the network-facing interface on the physical
server or VM.

5. Click Next after completing all fields to add the server or VM.

The page continues to Step 2 Assigning Nodes.

You can see the added server in the Available Servers box. Listed are the servers that can be
provisioned as Contrail Insights nodes. Contrail Insights provides end-to-end visibility into your cloud
environment to improve the operations of your network. A Contrail Insights node is needed to run
Contrail Insights.

372

6. Click the > icon next to a server to assign it as a Contrail Insights node. The server is moved into the
Assigned Contrail Insights Nodes table. If you are assigning an in-band server, you are prompted to
enter the in-band interface.

7. Click Provision.

The cluster provisioning begins and the page displays provisioning progress. When the provisioning is
completed, you are directed to log in to Contrail Command.

Continue to "Connect Collector Nodes to Fabric" on page 374 .

Add Collector Node - Existing Collector Nodes, Available Server

To add a collector node when there are existing collector nodes and an available server node:

1. Select Infrastructure > Cluster.

The Cluster Overview page displays.

2. Click the Collector Nodes tab.

The page displays the existing collector nodes.

3. Click Add > Collector Nodes.

Add Collector Nodes page with Step 1 - Assigning Nodes.

4. Click the > icon next to a server to assign it as a Contrail Insights node. The server is moved into the
Assigned Contrail Insights Nodes table. If you are assigning an in-band server, you are prompted to
enter the in-band interface.

373

Figure 193: Collector Nodes: Assigning Nodes

5. Click Provision.

The cluster provisioning begins and the page displays provisioning progress. When the provisioning is
completed, you are directed to log in to Contrail Command.

Continue to "Connect Collector Nodes to Fabric" on page 374 .

Connect Collector Nodes to Fabric

To connect collector nodes to a fabric:

1. Select Infrastructure > Cluster.

The Cluster Overview page displays.

2. Click the Collector Nodes tab.

The Collector Nodes page displays with a message stating the new collector nodes need to be
associated to a fabric device. In the Connected Fabric column, if the collector node is connected to a
fabric the fabric name displays. When a collector node is not connected, the Connect to Fabric drop-
down list shows the unconnected nodes. Two options to connect are offered:

374

Figure 194: Collector Nodes: Connect to Fabric

Two options to connect are offered:

• Click Connect to Fabric to connect a singular collector node to a fabric device.

• Click Bulk Connect to connect multiple selected collector nodes to a fabric device.

3. Click Connect to Fabric, then select the unconnected node from the drop-down list.

4. Complete the required fields. See Table 71 on page 375 .

Table 71: Collector Nodes: In-Band Collector Configuration

Field Description

In-Band Collector Configuration

CIDR Enter the underlay telemetry infrastructure subnet. The in-band interface on the
Contrail Insights Flows node is assigned an IP address from this subnet.

Virtual IP Address Enter the virtual IP address on the Insights Flows node that connects the node to
the management network. The address is entered as a four-octet IP address with
no mask; for example, 10.1.1.20.

In-Band Collector
Details

All in-band configured collector nodes will display here.

5. Click Next after completing all fields to connect to a fabric.

The page continues to the Assign Telemetry Profiles step.

375

See "Configuring Contrail Insights Flows by Assigning Telemetry and sFlow Profiles to Devices" on
page 341 .

Edit Existing Collector Nodes

To edit existing collector nodes:

1. Select Infrastructure > Cluster.

The Cluster Overview page displays.

2. Click the Collector Nodes tab.

The Collector Nodes page displays the existing flow collector nodes.

3. Click the Collector Nodes Management icon.

The Collector Nodes Management dialog box displays details about provisioning type and flow
parameters.

Figure 195: Collector Nodes: Collector Nodes Management

4. Complete the edits and click Provision.

The cluster provisioning begins and the page displays provisioning progress. When the provisioning is
completed, you are directed to log in to Contrail Command.

Remove Collector Nodes from a Contrail Cluster

To delete an existing collector node:

376

1. Select Infrastructure > Cluster.

The Cluster Overview page displays.

2. Click the Collector Nodes tab.

The Collector Nodes page displays the existing flow collector nodes.

3. Click the trash can icon in the row for the flow collector node you want to remove.

4. Click Delete.

A dialog box displays asking you to confirm.

If your deletion takes the sFlow project below the thresholds, then you are alerted that this will
enable sFlow to become unstable. To continue removing the collector node, select the Unsafe Delete
check box.

5. Click Delete.

The cluster provisioning begins and the page displays provisioning progress.

6. Click Proceed to login.

The log in dialog box appears.

7. Log in to Contrail Command.

The Collector Nodes page displays and confirms the node is deleted.

Change History Table
Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

2011 Contrail Networking Release 2011 supports adding, removing, and reconfiguring collector nodes (also
known as sFlow nodes) after the system is up and running. Prior to this release, collector nodes could
only be added during provisioning.

RELATED DOCUMENTATION

Contrail Insights Flows in Contrail Command | 339

Viewing Telemetry KPI Alarms for Fabric Devices and Ports | 353

377

Adding or Deleting sFlow Collector Nodes by Modifying instances.yml

IN THIS SECTION

Caveats | 380

Contrail Networking Release 2011 supports adding, removing, and reconfiguring collector nodes (also
known as sFlow nodes) after the system is up and running. Prior to this release, collector nodes could
only be added during provisioning.

This topic describes adding or deleting flow collector nodes to an existing Contrail cluster by modifying
the instances.yml file, which gets generated when Contrail cluster is provisioned by using Contrail
Command UI. The instances.yml file is created inside /var/tmp/contrail_cluster/<contrail_cluster_id> in
contrail_command container.

You can:

• Add flow collector nodes to a Contrail cluster without any existing flow collector node.

• Add flow collector nodes to a Contrail cluster with existing flow collector nodes.

• Delete flow collector nodes from a Contrail cluster.

When a new flow collector node is added, or an existing flow collector node is deleted by modifying the
existing instances.yml file:

1. Ansible playbook will run to first cleanup the flow collector nodes which need to be deleted.

2. Then Ansible playbook will run to set up the new flow collector nodes and to rebuild the cluster.

To add flow collector nodes:

1. Modify the instances.yml file to add flow-collector nodes.

Existing cluster details are in the instances.yml. The appformix_flows role designates Contrail Insights
Flows node. The following example shows a snippet of section for instances.yml for existing Contrail
Insights Flows node details:

instances:
 host1:
 ip: 10.87.3.85
 provider: bms

378

 roles:
 appformix_bare_host:
 appformix_flows:

New snippet for instances.yml to register one more node, host2, in the Contrail Insights Flows cluster:

instances:
 host1:
 ip: 10.87.3.85
 provider: bms
 roles:
 appformix_flows:
 host2:
 ip: 10.87.3.86
 provider: bms
 roles:

2. Run the following commands to add flow collector nodes:

cd /usr/share/contrail/appformix-ansible-deployer/xflow/
. venv/bin/activate
bash deploy_insights_flows.sh <instance.yml file> --cluster-id <contrail_cluster_id>

To delete nodes from the Contrail cluster:

1. Modify the instances.yml file to delete flow collector nodes. The following example shows a snippet of
section for instances.yml for existing Contrail Insights Flows node details:

instances:
 host1:
 ip: 10.87.3.85
 provider: bms
 roles:
 appformix_bare_host:
 appformix_flows:
 host2:
 ip: 10.87.3.86
 provider: bms
 roles:

379

 appformix_bare_host:
 appformix_flows:

New snippet for instances.yml to deregister host2 from the Contrail Insights Flows cluster by detaching
the appformix_flows role from host2:

instances:
 host1:
 ip: 10.87.3.85
 provider: bms
 roles:
 appformix_bare_host:
 appformix_flows:
 host2:
 ip: 10.87.3.86
 provider: bms
 roles:
 appformix_bare_host:

2. Run the following commands to delete the flow collector nodes:

cd /usr/share/contrail/appformix-ansible-deployer/xflow/
. venv/bin/activate
bash deploy_insights_flows.sh <instance.yml file> -cluster-id <contrail_cluster_id>

Caveats

• You can provision the collectors only once before fabric onboarding.

• You cannot add new Contrail Insights Flows nodes to the cluster after initial provisioning.

• Currently, only sFlow targets are supported.

• Contrail Insights Flows nodes can be connected to only one leaf.

Change History Table

380

Feature support is determined by the platform and release you are using. Use Feature Explorer to
determine if a feature is supported on your platform.

Release Description

2011 Contrail Networking Release 2011 supports adding, removing, and reconfiguring collector nodes (also
known as sFlow nodes) after the system is up and running. Prior to this release, collector nodes could
only be added during provisioning.

RELATED DOCUMENTATION

Adding, Editing, and Deleting sFlow Collector Nodes in Contrail Command | 364

Contrail Insights Flows in Contrail Command | 339

Configuring Contrail Insights Alarms using Contrail Command

IN THIS SECTION

Contrail Insights Alarms Overview | 382

Contrail Insights Alarms Operation | 383

Alarm Definition | 387

Configuring an Alarm Rule | 403

With Contrail Insights Alarms, you can configure an alarm to be generated when a condition is met in
the infrastructure. Contrail Insights performs distributed analysis of metrics at the point of collection for
efficient and responsive detection of events that match an alarm. Contrail Insights has two types of
alarms:

Static User-provided static threshold is used for comparison.

Dynamic Dynamically-learned adaptive threshold is used for comparison.

381

NOTE: For Contrail Insights releases prior to 3.2.6: In order to configure alarms, your Contrail
Insights license subscription must be active.

Contrail Insights Alarms Overview

For both static and dynamic alarms, Contrail Insights Agent continuously collects measurements of
metrics (see Metrics Collected by Contrail Insights) for different entities, such as hosts, instances, and
network devices. Beyond simple collection, the agent also analyzes the stream of metrics at the time of
collection to identify alarm rules that match. For a particular alarm, the agent aggregates the samples
according to a user-specified function (average, standard deviation, min, max, sum) and produces a single
measurement for each user-specified measurement interval. For a given measurement interval, the agent
compares each measurement to a threshold. For an alarm with a static threshold, a measurement is
compared to a fixed value using a user-specified comparison function (above, below, equal). For dynamic
thresholds, a measurement is compared with a value learned by Contrail Insights over time.

You can further configure alarm parameters that require multiple intervals to match. This allows you to
configure alarms to match sustained conditions, while also detecting performance over small time
periods. Maximum values over a wide time range can be over-exaggerate conditions. Yet, averages can
dilute the information. A balance is better achieved by measuring over small intervals and watching for
repeated matches in multiple intervals. For example, to monitor CPU usage over a three-minute period,
an alarm may be configured to compare average CPU utilization over fiveseconds intervals, yet only
raise an alarm when 36 (or some subset of 36) intervals match the alarm condition. This provides better
visibility into sustained performance conditions than a simple average or maximum over three minutes.

Dynamic thresholds enable outlier detection in resource consumption based on historical trends.
Resource consumption may vary significantly at various hours of the day and days of the week. This
makes it difficult to set a static threshold for a metric. For example, 70% CPU usage may be considered
normal for Monday mornings between 10:00 AM and 12:00 PM, but the same amount of CPU usage
may be considered abnormally high for Saturday nights between 9:00 PM and 10:00 PM.

With dynamic thresholds, Contrail Insights learns trends in metrics across all resources in scope to which
an alarm applies. For example, if an alarm is configured for a host aggregate, Contrail Insights learns a
baseline from metric values collected for hosts in that aggregate. Similarly, an alarm with a dynamic
threshold configured for a project learns a baseline from metric values collected for instances in that
project. Then, the agent generates an alarm when a measurement deviates from the baseline value
learned for a particular time period.

When creating an alarm with a dynamic threshold, you select a metric, a period of time over which to
establish a baseline, and the sensitivity to measurements that deviate from the baseline. The sensitivity
can be configured as high, medium, or low. Higher sensitivity will report smaller deviations from the
baseline and vice versa.

382

Contrail Insights Alarms Operation

Contrail Insights Agent performs distributed, real-time statistical analysis on a time-series data stream.
Agent analyzes metrics over multiple measurement intervals using a configurable sliding window
mechanism. An alarm is generated when the Contrail Insights Agent determines that metric data
matches the alarm criteria over a configurable number of measurement intervals. The type of sample
aggregation and the threshold for an alarm is configurable. Two types of alarms are supported: static and
dynamic. The difference is how the threshold is determined and used to compare measured metric data.
The following sections describe the overall sliding window analysis, and explains the details of static
thresholds and dynamic baselines used by the analysis.

Sliding Window Analysis

Contrail Insights Agent evaluates alarms using sliding window analysis. The sliding window analysis
compares a stream of metrics within a configurable measurement interval to a static threshold or
dynamic baseline. The length of each measurement interval is configurable to one-second granularity. In
each measurement interval, raw time-series data samples are combined using an aggregation function,
such as average, max, and min. The aggregated value is compared against the static threshold or
dynamic baseline using a configurable comparison function, such as above or below. Multiple
measurement intervals comprise a sliding window. A configurable number of intervals in the sliding
window must match the rule criteria for the agent to generate a notification for the alarm.

383

Figure 196: Alarm Generation Mechanics

Figure 196 on page 384 shows an example in which the sliding window consists of six adjacent
measurement intervals (i1 to i6), as specified by the Interval Count parameter. In measurement interval
i1, the average of samples S1, S2, S3 is computed as Savg. Depending on the alarm type static or
dynamic, Savg is then compared with the configured static threshold or dynamically learned baseline
using a user-specified comparison function such as above or below. The output of the comparison
determines whether a specific measurement interval is marked as an interval with exception. This
evaluation is repeated for each measurement interval within the sliding window (for example, i1 to i6).

In the example in Figure 196 on page 384 , the agent determines that two intervals, i2 and i5, are
intervals with exception by comparing the aggregate value for the measurement interval with a static
threshold or dynamic baseline, depending on alarm type. Assuming interval i1 is the first interval for
which the alarm is configured, the alarm becomes active at end of interval i6, when Contrail Insights
Agent determines that at least two out of the most recent six measurement intervals are marked as
exceptions. When an alarm is configured using the Dashboard, Interval Count, and Intervals with
Exception are set to 1 by default. As a result, the agent can generate an alarm after processing data for
one measurement interval.

Static Alarm

A static alarm threshold is provided at the time of alarm definition. Figure 197 on page 385 depicts an
example of a static alarm definition, followed by the equivalent JSON used for API configuration of an

384

alarm. The condition defined in the example is to evaluate an average of host.cpu.usage samples over a 60
second measurement interval. The measured value is compared against a static threshold of 80% to
determine if a given measurement interval matches the alarm rule. Figure 197 on page 385 identifies the
components in a static alarm definition.

Figure 197: Static Alarm Definition

Dynamic Alarm

A dynamic alarm threshold is learned by Contrail Insights using historical data for the set of entities for
which an alarm is configured. Figure 198 on page 386 shows an example of a dynamic alarm definition
and identifies the components in a dynamic alarm definition.

385

Figure 198: Dynamic Alarm Definition

When using a dynamic threshold, you do not configure a static threshold value. Instead, you specify
three parameters that control how the learning is performed. The learning algorithm produces a baseline
across the entities. The baseline is comprised of a mean value and a standard deviation. The baseline is
updated continuously as additional metric data is collected.

Following is a list of the three learning parameters and information about how they work:

BaselineAnalysisAlgorithm Selects the machine learning algorithm used for determining the dynamic
threshold. The following algorithms are available:

k-
means

Contrail Insights employs a k-means algorithm to produce an
expected operating range for a set of entities at a granularity of
each hour of each day (up to one week). The learned baselines are
computed using data from a configurable learning period duration.
The baselines are updated continuously over time, based on the
most recent data. The k-means Baseline Analysis Algorithm is
useful for observing performance that is unexpected for a given
time of day.

For example, a k-means algorithm may learn a dynamic baseline
for 1:00 PM - 2:00 PM that may be 80% +/- 10%, whereas, the
baseline between 3:00 AM - 4:00 AM may be 20% +/- 5%. An
alarm is raised if the measured metric is 75% of the value

386

between 3:00 AM - 4:00 AM, but the same measurement is
acceptable during 1:00 PM - 2:00 PM time period.

ewma The Exponentially Weighted Moving Average (EWMA) algorithm
produces a single baseline that is updated hourly. The
configurable Learning Period duration allows you to control the
relative weight assigned to recent data versus older data. This
algorithm is useful to create an alarm that can detect sudden
changes in a metric.

For example, an EWMA algorithm can learn a dynamic baseline of
60% +/- 10% from data over the last 24 hours. This baseline is
used for the next 1-hour interval to determine if real-time data
deviates from the normal operating region. After every 1-hour
interval, the EWMA baseline is updated and a new updated
baseline is used for alarm generation in the future.

LearningPeriodDuration A dynamic baseline is determined using the historical data. This parameter
determines the length of time period from which most recent historical
data is used to compute a dynamic baseline. For example, 1 hour, 1 day, or
1 week. At the time of rule configuration, Contrail Insights might not yet
have enough historical data for a given entity. In this case, learning is
performed as data becomes available. Alarm evaluation begins after one
Learning Period of data is available and baselines are generated.

Sensitivity The sensitivity of a dynamic alarm controls the allowable magnitude of
deviation from the learned mean. The sensitivity parameter controls a
multiplier of the learned standard deviation. You can select low, medium, or
high as sensitivity. Contrail Insights Agent compares real-time
measurements to the range defined by:

mean - sensitivity * std_dev < x < mean + sensitivity * std_dev

Alarm Definition

Figure 197 on page 385 shows an example of a static alarm definition. Every alarm definition has the
following components shown in Table 72 on page 388 .

387

Table 72: Alarm Definition Components

Item Options Description

Module Alarms, Service Alarms When Alarms is selected, you can
configure alarms for entities such as
hosts, instances, and network devices.
When Service Alarms is selected, then
you are able to configure alarms for
services such as RabbitMQ, MySQL,
ScaleIO, and OpenStack services.

Alarm Rule Type Static, Dynamic This determines the type of threshold
that alarm uses to determine if alarm
should be generated or not. Following
are the two types that are supported.

• Static—When an alarm is defined as
static, the rule definition should
include a predefined static threshold.
For example, cpu.usage static
threshold can be 80%.

• Dynamic—When an alarm is defined
as dynamic, the baseline is learned
using historical data. Additional
parameters are required such as
baseline analysis algorithm, learning
period duration, and sensitivity.

Name Alarm name A name identifies the alarm. Name is
displayed in the Dashboard and is the
user-facing identifier for external
notification systems.

Scope Host, Instance, Network Device, Virtual
Network

Type of entity such as host, instance, or
network device to which the alarm
applies. For example, if scope is selected
as Instance, then you can further select
to configure rule to all instances present
in the infrastructure, or instances that
are present in a specific project or an
aggregate.

388

Table 72: Alarm Definition Components (Continued)

Item Options Description

Service RabbitMQ, MySQL, Ceph, OpenStack,
Cassandra, Contrail, ScaleIO

When selected, you can configure alarms
for RabbitMQ, MySQL, Ceph, OpenStack,
Cassandra, Contrail, and ScaleIO
services.

Metric Scope Cluster, Node, Queue Select the metric scope of what you
want to monitor, such as cluster, node, or
queue and then the metric to monitor.

Object Options dependent on Metric Scope
selection.

Object that will be monitored.

Generate Event, Alarm When conditions for the alarm are met,
generate an event or alarm.

For Metric cpu.usage, memory.usage Metrics that will be monitored. For
example, host.cpu.usage or
instance.cpu.usage.

When Value —

Interval (seconds) Value in seconds The duration of one measurement
interval in seconds. Depending on the
sampling frequency of a metric under
observation, one or more raw samples
might be received within an interval
duration. All raw samples received within
Interval duration are processed using
aggregation functions such as average,
sum, max, min, and std-dev.

Is Value Example: When Value Is Above
Threshold -8. Italics in example represent
variables.

389

Table 72: Alarm Definition Components (Continued)

Item Options Description

Threshold Threshold value A numeric value to which measurements
are compared. Contrail Insights supports
two types of thresholds: static or
dynamic.

• Static Threshold—A fixed value that is
specified when an alarm is
configured. For example
host.cpu.usage above 90%, where
90% is the static threshold.

• Dynamic Threshold—The threshold is
learned dynamically by the system.
Unsupervised learning is used to
learn about historical trends to
determine the dynamic threshold. For
example, if an event rule is defined
for Host aggregate, then the dynamic
baseline is determined for the
aggregate by applying the baseline
analysis algorithm to data received
from all member hosts of the
aggregate. Figure 201 on page 402
shows the dynamic baseline
determined using the most recent
24-hour time frame of historical data
and k-means clustering algorithm.
This baseline is used for the next 24
hours for alarm generation while
considering the hour of the day and
its corresponding baseline mean and
standard deviation. For example, on
Tuesday 8:00 AM - 9:00 AM, a
baseline computed for Monday
8:00 AM - 9:00 AM is used as a
reference threshold for alarm
generation.

The required parameters for dynamic
threshold are:

390

Table 72: Alarm Definition Components (Continued)

Item Options Description

• Baseline Analysis Algorithm

• Learning Period Duration

• Sensitivity

Table 73 on page 394 describes the
required parameters for a dynamic alarm
and the supported options.

Baseline Analysis
Algorithm

k-means, ewma Table 73 on page 394 describes these
options. See Figure 201 on page 402 and
Figure 202 on page 403 for baseline
analysis examples

Learning Period Duration 1 week, 1 month Table 73 on page 394 describes these
options.

Sensitivity Low, medium, high Table 73 on page 394 describes these
options.

Severity None, information, warning, error, critical Indicates seriousness of the alarm.
Critical indicates a major alarm.
Information indicates a minor alarm.

Advanced When selected, includes Intervals with
Exception, Interval Count, and Status.

—

Aggregate/Project All hosts, all instances. AggregateId,
ProjectId

Select the set of entities an alarm will
monitor. If Scope is Instance, then you
can configure an alarm for the set of
instances present in a specific project,
aggregate, or all instances in the
infrastructure. If Scope is Host, then you
can configure an alarm for a set of hosts
present in a specific aggregate or all
hosts in the infrastructure.

391

Table 72: Alarm Definition Components (Continued)

Item Options Description

Alarm Mode Alert, Event Mode can be configured as an alert or
event.

Aggregation Function Average, Max, Min, Sum, Std-dev Determines how data samples received
in one measurement interval are
processed to generate an aggregated
value for comparison. Agent collects
multiple samples of a metric during a
measurement interval. Agent combines
the samples according to the aggregation
function, in order to determine a single
value for comparison with the threshold
(static or dynamic) in a measurement
interval. Table 76 on page 397 lists and
describes the aggregation functions for
alarm processing.

Comparison Function Above, Below, Equal, Increasing-at-a-
minimum-rate-of, Decreasing-at-a-
minimum-rate-of

Determines how to compare output of
the Aggregation Function with the static
or dynamic threshold. Table 77 on page
398 shows different comparison
functions supported for Contrail Insights
alarms. Figure 199 on page 400 and
Figure 200 on page 401 show examples
of the Comparison Function, showing
both increases and decreases at a
minimum rate.

Static Threshold When alarm rule type is “static” —

Alarm Severity None, information, warning, error, critical Indicates seriousness of the alarm.
Critical indicates a major alarm.
Information indicates a minor alarm.

Notification None, PagerDuty, Custom Service,
Service Now, Slack

Methods of notification alerting you to
conditions of operation.

392

Table 72: Alarm Definition Components (Continued)

Item Options Description

Intervals with Exception For example, “2” This is the minimum number of
measurement intervals within the sliding
window for which a condition for an
alarm must be met to raise the alarm. In
Figure 198 on page 386 , there are two
Intervals with Exception: i2 and i5. When
configuring an alarm in the Dashboard,
Intervals with Exception is set to 1 by
default. The Interval with Exception can
be specified in the Dashboard by
selecting Monitoring > Alarms > Add
Rule. Intervals with Exception can not be
greater than the Interval Count.

Interval Count For example, “3” Maximum number of adjacent
measurement intervals for which a
statistical analysis is performed before
deciding if an alarm is generated or not.
In Figure 198 on page 386 , there are 6
measurement Intervals (i1 to i6) in the
sliding window. Each measurement
interval has duration specified by the
Interval Duration parameter. When
configuring an alarm in Dashboard,
Interval Count is set to 1 by default. The
Interval Count can be specified in the
Dashboard by selecting Monitoring >
Alarms > Add New Rule.

Status Enable, Disable Used to set and also verify status of
alarm rule. Set status as enabled or
disabled.

Required Parameters for Dynamic Alarms

Table 73 on page 394 describes the required parameters for a dynamic alarm and the supported options.

393

Table 73: Required Parameters for Dynamic Alarm

Required
Parameters
for Dynamic
Threshold

Description Supported Options

Baseline
Analysis
Algorithm

Baseline Analysis Algorithm is used to perform
unsupervised learning on historical data. The baseline
analysis is performed continuously as new data is
received.

• K-Means clustering

• Exponential Weighted Mean
Average (EWMA)

Learning
Period
Duration

The Learning Period Duration specifies the amount of
historical data used by the Baseline Analysis Algorithm
to determine a baseline. The dynamic baseline is
continuously updated using data from the most recent
Learning Duration.

When a dynamic alarm is configured, baseline analysis
is performed using data from the most recent Learning
Duration, if available. If there is not sufficient data
available, Contrail Insights Agent evaluates metrics as
soon as enough data is present to learn the first set of
baselines.

Example: When Learning Duration is 1 day, the agent
compares metrics to per-hour baselines for the last 24
hours.

Example: When Learning Duration is 1 week, the agent
compares metrics to per-hour baselines for the last 7 x
24 hours.

• 1 week—Baseline is determined for
each hour of last 1 week of data.
Next 1 week of baselines are
determined based on data of the
last week.

• 1 month—Baseline is determined
based on last 4 weeks of data.
Baselines are learned for each hour
of each day of week (7 x 24
baselines). Next 1 week of
baselines are determined based on
data of the last 4 weeks. For
example, a baseline on Monday at
2:00 PM - 3:00 PM is learned using
metric data from the last 4
Mondays at 2:00 PM - 3:00 PM.

394

Table 73: Required Parameters for Dynamic Alarm (Continued)

Required
Parameters
for Dynamic
Threshold

Description Supported Options

Sensitivity The dynamic baseline provides a normal operating
region of a given metric for a given scope. As seen in
Figure 201 on page 402 , the dynamic baseline is a
tuple which has mean and std-dev applicable for a
specific hour of the day.

The sensitivity factor determines what is the allowable
band of operation. Measurements outside of the band
of operation cause an interval with exception. For
example, if the baseline mean is 20 and std-dev is 2,
then normal operating region is between 18 and 22.
When sensitivity is low then normal operating region
is treated as 10 (mean - 5*std-dev) and 30 (mean +
5*std-dev). In this case, if the measured average of a
metric is between 10 and 30, then no alarm is raised.
In contrast, if the average is 5 or 35, then an alarm is
raised.

• Low—Any data point beyond 5 *
std-dev from the baseline mean is
outlier.

• Medium—Any data point beyond 3
* std-dev from baseline mean is
outlier.

• High—Any data point beyond 2 *
std-dev from baseline mean is
outlier.

States for Alarm Mode

Table 74 on page 395 shows all possible states for an alarm with the mode configured as alert.

Table 74: States for Alarm Mode Defined as Alert

State Description

Learning This is the initial state of each alarm. In this state, the alarm is processing real-time data and alarm
stays in this state until sufficient data has been processed to make the decision about if an alarm
should be generated or not. The duration of the learning period depends on the sliding window
parameters.

Active The condition specified by an alarm is met. Alarm will stay in this state as long as alarm conditions are
satisfied.

395

Table 74: States for Alarm Mode Defined as Alert (Continued)

State Description

Inactive Condition specified by an alarm is not met. For example, after the learning state, the alarm transitions
from active to inactive state because CPU usage was below the set threshold.

Disabled Agent is not actively analyzing data for this alarm. The alarm is either deleted or temporarily disabled
by the user.

Table 75 on page 396 shows all possible states for an alarm with the mode configured as event.

Table 75: States for Alarm Mode Defined as Event

State Description

Enabled This is the initial state of the alarm with the mode set to Event when a rule is configured. It stays in
this state until conditions are met to generate an alarm.

Triggered When conditions for alarm generation are satisfied, then an alarm is generated with a state of
triggered. Alarm generation is logged at the end of each measurement interval as long conditions for
alarms continue to be met.

Disabled Agent is not actively analyzing data for this alarm. The alarm is either deleted or has been temporarily
disabled by the user.

Aggregation Functions for Alarm Processing

Table 76 on page 397 lists and describes the aggregation functions for alarm processing.

396

Table 76: Aggregation Functions for Alarm Processing

Aggregation
Function

Description

Average Statistical average of all data samples received within one measurement interval.

Example: Generate Host Alert when Cpu-Usage Average during a 60 seconds interval is Above
80% of 2 of the last 3 measurement intervals.

In this example, the measurement interval is 60 seconds. An alarm is generated if the average of
the CPU usage samples exceeds 80% in any 2 measurement intervals out of 3 adjacent
measurement intervals.

Sum Sum of all data samples received within one measurement interval.

Example: Generate Host Alert when Cpu-Usage Sum during a 60 seconds interval is Above
250% of 2 of the last 3 measurement intervals.

In this example, An alarm is generated if the CPU usage sum is above 250% in any 2
measurement intervals out of 3 adjacent measurement intervals, where each measurement
interval is 60 seconds in duration.

Max Maximum sample value observed within one measurement interval.

Example: Generate Host Alert when Cpu-Usage Max during a 60 seconds interval is Above 95%
of 2 of the last 3 measurement intervals.

In this example, the alarm is generated if the maximum CPU usage is above 95% in any 2
measurement intervals out of 3 adjacent measurement intervals, where each measurement
interval is 60 seconds in duration.

Min Minimum sample value observed within one measurement interval.

Example: Generate Host Alert when Cpu-Usage Min during a 60 seconds interval is Below 5%
of 2 of the last 3 measurement intervals.

In this example, the alarm is generated if the minimum CPU usage is below 5% in any 2
measurement intervals out of 3 adjacent measurement intervals, where each measurement
interval is 60 seconds in duration.

397

Table 76: Aggregation Functions for Alarm Processing (Continued)

Aggregation
Function

Description

Std-Dev Standard Deviation of the time-series data is determined based on the samples received until
current measurement interval.

Example: Generate Host Alert when Cpu-Usage std-dev during a 60 seconds interval is Above 2
sigma of 2 of the last 3 measurement intervals.

In this example, the alarm is generated when the raw time series samples are above mean +
2*sigma in at least 2 measurement intervals out of the last 3 measurement intervals, where each
measurement interval is a duration of 60 seconds.

Comparison Functions for Alarm Processing

Figure 199 on page 400 and Figure 200 on page 401 show examples of the Comparison Function,
showing both increases and decreases at a minimum rate.

Table 77 on page 398 shows different comparison functions supported for Contrail Insights alarms.

Table 77: Comparison Functions for Alarm Processing

Comparison
Operator

Description

Above Determine if result of the aggregation function within a given measurement interval is above
the threshold.

NOTE: For dynamic threshold above, Contrail Insights compares whether the result of the
aggregation function is outside of the normal operating region (mean +/- sigma*sensitivity).

Below Determine if result of the aggregation function determined for a given measurement interval
is below the threshold.

NOTE: For dynamic threshold, below compares whether the result of aggregation function is
within the normal operating region (mean +/- sigma*sensitivity).

Equal Determine if result of the aggregation function is equal to the threshold.

398

Table 77: Comparison Functions for Alarm Processing (Continued)

Comparison
Operator

Description

Increasing-at-a-
minimum-rate-
of

This comparison function is useful when you are interested in tracking a sudden increase in
the value of a given metric instead of its absolute value. For example, if ingress or egress
network bandwidth starts increasing within short intervals then you might want to raise an
alarm. Figure 199 on page 400 shows sudden increase in metric average between
measurement interval i1 and i2. Similarly, sudden increase is observed in metric average
between measurement intervals i4 to i5.

Example: Generate Host Alert when the host.network.ingress.bit_rate average during a 60
seconds interval is increasing-at-a-minimum-rate-of 25% of 2 of the last 3 measurement
intervals.

In the example, if the mean ingress bit rate increases by at least 25% in 2 measurement
intervals out of 3, then an alarm is raised.

Decreasing-at-
a-minimum-
rate-of

This comparison function is useful when you are interested in tracking sudden decrease in the
value of a given metric instead of its absolute value. For example, egress network bandwidth
starts decreasing within short intervals then you might want to raise an alarm to investigate
the root cause. Figure 200 on page 401 shows sudden decrease in metric average between
measurement interval i1 and i2. Similarly, sudden decrease is observed in metric average
between measurement intervals i3 and i4.

Example: Generate Host Alert when the host.network.egress.bit_rate average during a 60
seconds interval is decreasing-at-a-minimum-rate-of 25% of 2 of the last 3 measurement
intervals.

In the example, if the mean egress bit rate decreases by at least 25% in 2 measurement
intervals out of 3, then an alarm is raised.

399

Figure 199: Comparison Function Showing Increasing-at-a-minimum-rate-of

400

Figure 200: Comparison Function Showing Decreasing-at-a-minimum-rate-of

Dynamic Baseline Examples

Figure 201 on page 402 shows the dynamic baseline computed by 24 hours of data and the k-means
clustering algorithm. For a given hour of the day, the blue dot is the mean; the green bar is the mean + std-
dev; the purple bar is mean - std-dev.

401

Figure 201: Dynamic Baseline Determined by Last 24 Hours of Data and K-Means Clustering Algorithm

Figure 202 on page 403 shows the dynamic baseline computed by 24 hours of historical data using the
EWMA algorithm. This baseline is used for the next 1 hour for alarm generation until it is updated again
using the most recent 24 hours of data.

402

Figure 202: Dynamic Baseline Determined by Last 24 Hours of Historical Data Using EWMA

Configuring an Alarm Rule

To configure an alarm:

1. Select Monitoring > Alarms.

2. In the Alarm Rules panel, click Add Rule to create a new rule to trigger an alarm when a user-defined
condition is met on one of the selected entities in the network.

403

Figure 203: Alarm Active Alerts and Alarm Rules Panel in Contrail Command

3. For Module, select one of the following options. Based on your selection, the fields differ.

Alarms When Alarms is selected, you can configure alarms for entities such as hosts,
instances, and network devices.

Service
Alarms

When Service Alarms is selected, then you are able to configure alarms for services in
your environment, such as RabbitMQ, MySQL, ScaleIO, and OpenStack services.

404

Figure 204: Create and Configure an Alarm in Contrail Command

405

4. Select Alarm Rule Type.

• Static—When an alarm is defined as static, the rule definition should include a predefined static
threshold determined by the user.

• Dynamic—When alarm is defined as dynamic, the threshold is dynamically determined by the
baseline algorithm, which can be either k-means or ewma.

5. Select the metric for the rule and specify interval when the rule should trigger an alarm. For other
parameters, see Table 72 on page 388 and descriptions in section "Alarm Definition."

6. Click Create to save the alarm.

RELATED DOCUMENTATION

Configuring Instances in Contrail Insights | 406

Viewing Cluster Node Details and Metric Values | 412

Metrics Collected by Contrail Insights

Configuring Instances in Contrail Insights

IN THIS SECTION

Instance Details Overview | 407

Creating Instances | 407

This section describes the Instances detail screen and how to configure instances for virtual or physical
servers using Contrail Command.

NOTE: For Contrail Insights releases prior to 3.2.6: In order to view and configure instances, your
Contrail Insights license subscription must be active.

406

Instance Details Overview

Table 78 on page 407 provides descriptions for the instances column headers.

Table 78: Instance Details Headers and Columns

Header Description

Status The lights indicate the provisioning status of an instance and has multiple states: Red indicates an
alert state, green indicates a normal state, yellow indicates warning state and grey for other
states. Spinning circle means “in progress” and solid dot means “static.” If status information is
missing (no-data), this field is empty.

Name Shows the name of each instance.

State Shows the current state of the instance. Power On: Active means the instance is running.

Server Type Indicates which server type is in use, such as Baremetal Server. No LCM (lifecycle management)
means that Contrail Command is not managing the server.

Networks Displays the virtual network (VLAN) associated with the instance.

IP Addresses Shows the IP address of the server.

Console Indicates if a console port is available for the server.

Creating Instances

A virtual network in the Contrail environment allows hosts in the same network to communicate with
each other. This is similar to assigning a VLAN to each host so that hosts on the same VLAN can reach
each other. An instance then matches the virtual network to devices and their interfaces, as shown in
Figure 205 on page 408 .

To configure an instance to map a virtual network to devices and interfaces:

1. Select Infrastructure > Workloads > Instances. All virtual machine instances and baremetal server
instances created appear on the Instances screen.

407

Figure 205: Workloads > Instances

2. Click Create, as shown in Figure 205 on page 408 , to add a new instance.

NOTE: (Optional) Click the ellipsis (…) to edit or remove an instance.

3. Select Server Type, which is either physical or virtual.

a. When either Virtual Machine or New Baremetal Server are selected, complete the following fields,
described in Table 79 on page 409 , to define an instance for the selected server:

408

Figure 206: Create an Instance for a Virtual Machine or New Baremetal Server

Table 79: Create Instance Fields—Virtual Machine or New Baremetal Server

Field Description

Instance Name Enter a name for this instance you are creating.

Select Boot Source Select an image or clone from the list as your boot source.

Select Image Select the software image from the list.

409

Table 79: Create Instance Fields—Virtual Machine or New Baremetal Server (Continued)

Field Description

Select Flavor Select the default configurations for virtual machines.

Available Networks Network resources that are currently available.

Allocated Networks Network resources that can be allocated according to the demands of workloads.

Select SSH Key Select an SSH key credential.

Availability Zone Select an availability zone. An availability zone groups network nodes that run
services like DHCP, L3, FW, and others. This allows you to associate an availability
zone with their resources so that the resources get high availability.

Count Select a number from 1 - 10, which represents the number of instances to launch.

a. When Existing Baremetal Server is selected, complete the following fields, described in Table 80
on page 411 , to define an instance for the selected server:

410

Figure 207: Create an Instance for an Existing Baremetal Server

Table 80: Create Instance Fields—Existing Baremetal Server

Field Description

Create Existing Baremetal Server

Instance Name Enter a name for instance you are creating.

Baremetal Node Select the name of the server.

Associate interfaces

Interface Name of the physical interface and MAC address for the server.

IP Address IP address of the server’s physical interface.

VLAN ID Identifier for the VLAN.

411

Table 80: Create Instance Fields—Existing Baremetal Server (Continued)

Field Description

Virtual Network Name of the virtual network to be mapped to this instance.

Select Security Groups Defines which devices are in a security group.

4. Click Create to finish creating the instance.

5. To add other instances, click Create, as shown in Figure 205 on page 408 .

RELATED DOCUMENTATION

Configuring Contrail Insights Alarms using Contrail Command | 381

Viewing Cluster Node Details and Metric Values | 412

Metrics Collected by Contrail Insights

Viewing Cluster Node Details and Metric Values

IN THIS SECTION

Time | 413

Legend | 413

Chart Data Values | 413

Viewing Cluster Node Details and Host Charts | 414

With cluster node details and host charts, you can view real-time and historical values of all metrics that
Contrail Insights monitors. Charts provide you with a way to view metrics for multiple entities across
layers and organized by physical host, project, or aggregate. The charts update with the latest data
streamed from the Contrail Insights Platform without needing to refresh. You can select which entities
to display on the charts, and select the time period that is displayed. When you hover over the charts, a

412

pop-up box shows the actual values for the selected entities at a specific point in time. Figure 209 on
page 415 shows real-time metric values streamed from Contrail Insights.

NOTE: For Contrail Insights releases prior to 3.2.6: In order to view host charts, your Contrail
Insights license subscription must be active.

Time

The Time in the Settings dialog box (see Figure 209 on page 415) provides navigation to a specific point
in time that you want to view. Use the time and date drop-down list to select a range. Using the range
selected, you can use the time slider to fine tune the time range by scaling up or down. This time range
is used to query data that will be drawn in the visualizations.

Legend

The Legend shows which entities are currently being displayed in the charts. See Figure 209 on page
415 . You can select a subset of entities to display to improve the clarity of the charts and focus on
specific entities. The first five series are selected by default. The entity list is categorized and searchable
in the Settings dialog box.

Chart Data Values

The host charts show the latest data for up to four different metrics, updating in real-time from a stream
of data from the Contrail Insights Platform. When the cursor is positioned over the charts, a pop-up box
shows the data values at that particular time. Charts can be zoomed in or out by opening the Settings
dialog box and adjusting the time range. Four charts are displayed on the Dashboard at all times.

413

Figure 208: Chart Data Values Tool Tip for a Particular Time

Viewing Cluster Node Details and Host Charts

To view cluster node details and charts:

1. Select Infrastructure > Cluster > Cluster Nodes.

2. Select the Control Nodes name to view node details.

3. In the Summary tab page, by default, basic information for the selected host is listed. Use the toggle
button to switch between the textual information list and a JSON view for further technical
processing.

414

Figure 209: Real-Time Metric Values Streamed from the Contrail Insights Platform

4. Click Edit to launch the Settings dialog box, where you can set the time range and legend. With an
active Contrail Insights subscription, you have access to the Contrail Insights data source and a
separate 4-charts dashboard will show on the right to provide visualizations of data metrics.

• Time—For time range selection, use the time/date drop-down list to select a range. Using the
range selected from the drop-down, use the time slider to fine tune (narrowing down or scaling
up) the time range at a fixed step. This time range is used to query data that will be drawn in the
visualizations.

• Legend—For legend or list of series, use the expanded list to add or remove entities drawn in a
chart.

5. Select the Cluster Nodes name for further detail.

• Peers tab—Includes JSON values, peer type, peer ASN, status, and messages count.

• Routes tab—Includes routing table JSON values, prefix, protocol, source, next hop, label, security
group, and origin virtual-network object (VN).

• Alarms tab—Includes severity, time, alarm type, and source.

415

RELATED DOCUMENTATION

Configuring Contrail Insights Alarms using Contrail Command | 381

Contrail Networking Alarms | 117

Configuring Instances in Contrail Insights | 406

Metrics Collected by Contrail Insights

416

CHAPTER 7

Common Support Answers

IN THIS CHAPTER

Debugging Ping Failures for Policy-Connected Networks | 417

Debugging BGP Peering and Route Exchange in Contrail | 425

Troubleshooting the Floating IP Address Pool in Contrail | 443

Removing Stale Virtual Machines and Virtual Machine Interfaces | 472

Troubleshooting Link-Local Services in Contrail | 476

Debugging Ping Failures for Policy-Connected Networks

This topic presents troubleshooting scenarios and steps for resolving reachability issues (ping failures)
when working with policy-connected virtual networks.

These are the methods used to configure reachability for a virtual network or virtual machine:

• Use network policy to exchange virtual network routes.

• Use a floating IP address pool to associate an IP address from a destination virtual network to virtual
machine(s) in the source virtual network.

• Use an ASN/RT configuration to exchange virtual network routes with an MX Series router gateway.

• Use a service instance static route configuration to route between service instances in two virtual
networks.

This topic focuses on troubleshooting reachability for the first method --- using network policy to
exchange routes between virtual networks.

Troubleshooting Procedure for Policy-Connected Network

1. Check the state of the virtual machine and interface.

Before doing anything else, check the status of the source and destination virtual machines.

• Is the Status of each virtual machine Up?

417

• Are the corresponding tap interfaces Active?

Check the virtual machine status in the Contrail UI:

Figure 210: Virtual Machine Status Window

Check the tap interface status in the http agent introspect, for example:

https://<host ip address>:8085/Snh_ItfReq?name=

Figure 211: Tap Interface Status Window

When the virtual machine status is verified Up, and the tap interface is Active, you can focus on
other factors that affect traffic, including routing, network policy, security policy, and service
instances with static routes.

2. Check reachability and routing.

Use the following troubleshooting guidelines whenever you are experiencing ping failures on virtual
network routes that are connected by means of network policy.

Check the network policy configuration:

• Verify that the policy is attached to each of the virtual networks.

• Each attached policy should have either an explicit rule allowing traffic from one virtual network
to the other, or an allow all traffic rule.

• Verify that the order of the actions in the policy rules is correct, because the actions are applied in
the order in which they are listed.

418

• If there are multiple policies attached to a virtual network, verify that the policies are attached in a
logical order. The first policy listed is applied first, and its rules are applied first, then the next
policy is applied.

• Finally, if either of the virtual networks does not have an explicit rule to allow traffic from the
other virtual network, the traffic flow will be treated as an UNRESOLVED or SHORT flow and all
packets will be dropped.

Use the following sequence in the Contrail UI to check policies, attachments, and traffic rules:

Check VN1-VN2 ACL information from the compute node:

Figure 212: Policies, Attachments, and Traffic Rule Status Window

Check the virtual network policy configuration with route information:

Figure 213: Virtual Network Policy Configuration Window

419

Check the VN1 route information for VN2 routes:

Figure 214: Virtual Network Route Information Window

If a route is missing, ping fails. Flow inspection in the compute node displays Action: D(rop).

Repeated dropstats commands confirms the drop by incrementing the Flow Action Drop counter
with each iteration of dropstats.

Flow and dropstats commands issued at the compute node:

420

Figure 215: Flow and Dropstats Command List

To help in debugging flows, you can use the detailed flow query from the agent introspect page for
the compute node.

Fields of interest include:

• Inputs [from flow –l output]: src/dest ip, src/dest ports, protocol, and vrf

• Output from detailed flow query: short_flow, src_vn, action_str->action

Flow command output:

Figure 216: Flow Command Output Window

Fetching details of a single flow:

421

Figure 217: Fetch Flow Record Window

Output from FetchFlowRecord shows unresolved IP addresses:

Figure 218: Unresolved IP Address Window

You can also retrieve information about unresolved flows from the Contrail UI, as shown in the
following:

422

Figure 219: Unresolved Flow Details Window

3. Check for protocol-specific network policy action.

If you are still experiencing reachability issues, troubleshoot any protocol-specific action, where
routes are exchanged, but only specific protocols are allowed.

The following shows a sample query on a protocol-specific flow in the agent introspect:

Figure 220: Protocol-Specific Flow Sample

The following shows that the policy action clearly displays deny as the action.

423

Figure 221: Protocol-Specific Flow Sample With Deny Action

Summary

This topic explores one area —debugging for policy-based routing. However, in a complex system, a
virtual network might have one or more configuration methods combined that influence reachability and
routing.

For example, an environment might have a virtual network VN-X configured with policy-based routing
to another virtual network VN-Y. At the same time, there are a few virtual machines in VN-X that have a
floating IP to another virtual network VN-Z, which is connected to VN-XX via a NAT service instance.
This is a complex scenario, and you need to debug step-by-step, taking into account all of the features
working together.

Additionally, there are other considerations beyond routing and reachability that can affect traffic flow.
For example, the rules of network policies and security groups can affect traffic to the destination. Also,
if multi-path is involved, then ECMP and RPF need to be taken into account while debugging.

424

Debugging BGP Peering and Route Exchange in Contrail

IN THIS SECTION

Example Cluster | 425

Verifying the BGP Routers | 425

Verifying the Route Exchange | 428

Debugging Route Exchange with Policies | 431

Debugging Peering with an MX Series Router | 432

Debugging a BGP Peer Down Error with Incorrect Family | 434

Configuring MX Peering (iBGP) | 437

Checking Route Exchange with an MX Series Peer | 439

Checking the Route in the MX Series Router | 441

Use the troubleshooting steps and guidelines in this topic when you have errors with Contrail BGP
peering and route exchange.

Example Cluster

Examples in this document refer to a virtual cluster that is set up as follows:

Config Nodes : [‘nodea22’, ‘nodea20’]

Control Nodes : [‘nodea22’, ‘nodea20’]

Compute Nodes : [‘nodea22’, ‘nodea20’]

Collector : [‘nodea22’]

WebU : nodea22

Openstack : nodea22

Verifying the BGP Routers

Use this procedure to launch various introspects to verify the setup of the BGP routers in your system.

425

Use this procedure to launch various introspects to verify the setup of the BGP routers in your system.

1. List BGP routers with the following Contrail API request.

bgp-router is created in Contrail for each control node, BGPaaS, and external BGP routers. These are
visible from the following location, shown using the sample node setup.

http: //<host ip address>:8082/bgp-routers

NOTE: Throughout this procedure, replace <host ip address> with the correct location for your
system to see the setup in your system.

Figure 222: Sample Output, BGP Routers

2. Verify the BGP peering.

The following statement is entered to check the bgp_router_refs object on the API server to validate
the peering on the sample setup.

http: //<host ip address>:8082/bgp-router/1da579c5-0907-4c98-a7ad-37671f00cf60

426

Figure 223: Sample Output, BGP Router References

3. Verify the command line arguments that are passed to the control-node.

On the control-node, use ps aux | grep control-node to see the arguments that are passed to the
control-node.

Example

/usr/bin/control-node --map-user <ip address> --map-password <ip address>--hostname nodea22 --
host-ip <ip address> --bgp-port 179 --discovery-server <ip address>

The hostname is the bgp-router name. Ensure that the bgp-router config can be found for the
hostname, using the procedure in Step 1.

4. Validate the BGP neighbor config and the BGP peering config object available on the control node.
The control node receives the configuration from Cassandra (starting with Contrail Networking
Release 4.0) or from IF-MAP (earlier than Contrail Networking Release 4.0).

http: //<host ip address>:8083/Snh_ShowBgpNeighborConfigReq?

427

Figure 224: Sample Output, BGP Neighbor Config

http: //<host ip address>:8083/Snh_ShowBgpPeeringConfigReq?

Figure 225: Sample Output, BGP Peering Config

5. Check the BGP neighbor states on the control node.

http: //<host ip address>:8083/Snh_ShowBgpNeighborSummaryReq

Verifying the Route Exchange

The following two virtual networks are used in the sample debugging session for route exchange.

 vn1 -> 1.1.1.0/24

 vn2 -> 2.2.2.0/24

Example Procedure for Verifying Route Exchange

1. Validate the presence of the routing instance for each virtual network in the sample system.

http ://<host ip address>:8083/Snh_ShowRoutingInstanceReq?name=

428

NOTE: Throughout this example, replace <host ip address> with the correct location for the
control node on your system.

Figure 226: Sample Output, Show Routing Instance

In the sample output, you can see the import_target and the export_target configured on the routing
instance. Also shown are the xmpp peers (vroutes) registered to the table.

The user can click on the inet table of the required routing instance to display the routes that belong
to the instance.

Use the information in Step 2 to validate a route.

2. Validate a route in a given routing instance in the sample setup:

http ://<host ip address>:8083/Snh_ShowRouteReq?x=default-domain:demo:vn1:vn1.inet.0

In the following sample output (truncated), the user can validate the BGP paths for the protocol and
for the source of the route to verify which XMPP agent or vRouter has pushed the route. If the path
source is BGP, the route is imported to the VRF table from a BGP peer, either another control-node
or an external bgp router such as an MX Series router. BGP paths are displayed in the order of path
selection.

429

Figure 227: Sample Output, Validate Route

3. Validate the l3vpn table.

http: //<host ip address>:8083/Snh_ShowRouteReq?x=bgp.l3vpn.0

Figure 228: Sample Output, Validate L3vpn Table

The following sample output has been scrolled horizontally to display the BGP path attributes of
each route’s. policies.

The extended community (communities column), determines the VRF table to which this VPN route
is imported. The origin_vn shows the virtual network where this route was created, information
useful for applying ACL.

The label (MPLS) and tunnel encap columns can be used for debugging data path issues.

430

Figure 229: Sample Output, Validate L3vpn Table, Scrolled

Debugging Route Exchange with Policies

This section uses the sample output and the sample vn1 and vn2 to demonstrate methods of debugging
route exchange with policies.

1. Create a network policy to allow vn1 and vn2 traffic and associate the policy to the virtual networks.

Figure 230: Create Policy Window

2. Validate that the routing instances have the correct import_target configuration.

http: //<host ip address>:8083/Snh_ShowRoutingInstanceReq?name=

431

Figure 231: Sample Output, Validate Import Target

3. Validate that the routes are imported from VRF.

Use the BGP path attribute to check the replication status of the path. The route from the
destination VRF should be replicated and validate the origin-vn.

Figure 232: Sample Output, Route Import

Debugging Peering with an MX Series Router

This section sets up an example BGP MX Series peer and provides some troubleshooting scenarios.

432

1. Set the Global AS number of the control-node for an MX Series BGP peer, using the Contrail WebUI
(eBGP).

Figure 233: Edit Global ASN Window

2. Configure the eBGP peer for the MX Series router. Use the Contrail Web UI or Python provisioning.

Figure 234: Create BGP Peer Window

Configuring the MX Series BGP peer with the Python provision utility:

python ./provision_mx.py --router_name mx --router_ip <ip address> --router_asn 12345 --
api_server_ip <ip address> --api_server_port 8082 --oper add --admin_user admin --
admin_password <password> --admin_tenant_name admin

433

3. Configure a control-node peer on the MX Series router, using Junos CLI:

set protocols bgp group contrail-control-nodes type external

set protocols bgp group contrail-control-nodes local-address <ip address>

set protocols bgp group contrail-control-nodes keep all

set protocols bgp group contrail-control-nodes peer-as 54321

set protocols bgp group contrail-control-nodes local-as 12345

set protocols bgp group contrail-control-nodes neighbor <ip address>

Debugging a BGP Peer Down Error with Incorrect Family

Use this procedure to identify and resolve errors that arise from families mismatched configurations.

NOTE: This example uses locations at http: //<host ip address>:. Be sure to replace <host ip
address> with the correct address for your environment.

1. Check the BGP peer UVE.

http: //<host ip address>:8081/analytics/uves/bgp-peers

2. Search for the MX Series BGP peer by name in the list.

In the sample output, families is the family advertised by the peer and configured_families is what is
provisioned. In the sample output, the families configured on the peer has a mismatch, thus the peer
doesn’t move to an established state. You can verify it in the peer UVE.

434

Figure 235: Sample BGP Peer UVE

3. Fix the families mismatch in the sample by updating the configuration on the MX Series router, using
Junos CLI:

set protocols bgp group contrail-control-nodes family inet-vpn unicast

4. After committing the CLI configuration, the peer comes up. Verify this with UVE.

http: //<host ip address>:8081/analytics/uves/bgp-peers

435

Figure 236: Sample Established BGP Peer UVE

5. Verify the peer status on the MX Series router, using Junos CLI:

run show bgp neighbor <ip address>
Peer: <ip address> AS 54321 Local: <ip address> AS 12345

 Type: External State: Established Flags: <ImportEval Sync>

 Last State: OpenConfirm Last Event: RecvKeepAlive

 Last Error: None

 Options: <Preference LocalAddress KeepAll AddressFamily PeerAS LocalAS Rib-group Refresh>

 Address families configured: inet-vpn-unicast

 Local Address: <ip address> Holdtime: 90 Preference: 170 Local AS: 12345 Local System AS:
64512

 Number of flaps: 0

 Error: 'Cease' Sent: 0 Recv: 2

436

 Peer ID: <ip address> Local ID: <ip address> Active Holdtime: 90

 Keepalive Interval: 30 Group index: 1 Peer index: 0

 BFD: disabled, down

 Local Interface: ge-1/0/2.0

 NLRI for restart configured on peer: inet-vpn-unicast

 NLRI advertised by peer: inet-vpn-unicast

 NLRI for this session: inet-vpn-unicast

 Peer does not support Refresh capability

 Stale routes from peer are kept for: 300

 Peer does not support Restarter functionality

 Peer does not support Receiver functionality

 Peer does not support 4 byte AS extension

 Peer does not support Addpath

Configuring MX Peering (iBGP)

1. Edit the Global ASN.

437

Figure 237: Edit Global ASN Window

2. Configure the MX Series IBGP peer, using Contrail WebUI or Python provisioning.

Figure 238: Create BGP Peer Window

Configuring the MX Series BGP peer with the Python provision utility:

python ./provision_mx.py --router_name mx--router_ip <ip address> --router_asn 64512 --api_server_ip <ip
address> --api_server_port 8082 --oper add --admin_user admin --admin_password <password> --admin_tenant_name
admin

3. Verify the peer from UVE.

http ://<host ip address>:8081/analytics/uves/bgp-peers

438

Figure 239: Sample Established IBGP Peer UVE

4. You can verify the same information at the HTTP introspect page of the control node (8443 in this
example).

http: //<host ip address>:8083/Snh_BgpNeighborReq?ip_address=&domain=

Figure 240: Sample Established IBGP Peer Introspect Window

Checking Route Exchange with an MX Series Peer

1. Check the route table in the bgp.l3vpn.0 table.

439

Figure 241: Routing Instance Route Table

2. Configure a public virtual network.

Figure 242: Routing Instance Route Table

3. Verify the routes in the public.inet.0 table.

http: //<host ip address>:8083/Snh_ShowRouteReq?x=default-domain:admin:public:public.inet.0

Figure 243: Routing Instance Public IPv4 Route Table

4. Launch a virtual machine in the public network and verify the route in the public.inet.0 table.

440

http: //<host ip address>:8083/ Snh_ShowRouteReq?x=default-domain:admin:public:public.inet.0

Figure 244: Virtual Machine Routing Instance Public IPv4 Route Table

5. Verify the route in the bgp.l3vpn.0 table.

http: //<host ip address>:8083/Snh_ShowRouteReq?x=bgp.l3vpn.0

Figure 245: BGP Routing Instance Route Table

Checking the Route in the MX Series Router

Use Junos CLI show commands from the router to check the route. These commands assume that the
routing instance with the imported route table from Contrail is configured on the MX Series router,
either manually or by using Device Manager.

run show route table public.inet.0

441

public.inet.0: 5 destinations, 6 routes (5 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[Static/5] 15w6d 08:50:34

 > to <ip address> via ge-1/0/1.0

<ip address> *[Direct/0] 15w6d 08:50:35

 > via ge-1/0/1.0

<ip address> *[Local/0] 15w6d 08:50:51

 Local via ge-1/0/1.0

<ip address> *[BGP/170] 01:13:34, localpref 100, from <ip address>

 AS path: ?, validation-state: unverified

 > via gr-1/0/0.32771, Push 16

 [BGP/170] 01:13:34, localpref 100, from <ip address>

 AS path: ?, validation-state: unverified

 > via gr-1/0/0.32771, Push 16

<ip address> *[BGP/170] 00:03:20, localpref 100, from <ip address>

 AS path: ?, validation-state: unverified

 > via gr-1/0/0.32769, Push 16

run show route table bgp.l3vpn.0 receive-protocol bgp <ip address> detail

bgp.l3vpn.0: 92 destinations, 130 routes (92 active, 0 holddown, 0 hidden)

* <ip address> (1 entry, 0 announced)

442

 Import Accepted

 Route Distinguisher: <ip address>

 VPN Label: 16

 Nexthop: <ip address>

 Localpref: 100

 AS path: ?

 Communities: target:64512:1 target:64512:10003 unknown iana 30c unknown iana 30c unknown
type 8004 value fc00:1 unknown type 8071 value fc00:4

Troubleshooting the Floating IP Address Pool in Contrail

IN THIS SECTION

Example Cluster | 444

Example | 445

Example: MX80 Configuration for the Gateway | 446

Ping the Floating IP from the Public Network | 449

Troubleshooting Details | 450

Get the UUID of the Virtual Network | 450

View the Floating IP Object in the API Server | 451

View floating-ips in floating-ip-pools in the API Server | 455

Check Floating IP Objects in the Virtual Machine Interface | 458

View the BGP Peer Status on the Control Node | 462

Querying Routes in the Public Virtual Network | 463

Verification from the MX80 Gateway | 465

Viewing the Compute Node Vnsw Agent | 467

443

Advanced Troubleshooting | 469

This document provides troubleshooting methods to use when you have errors with the floating IP
address pool when using Contrail.

Example Cluster

Examples in this document refer to a virtual cluster that is set up as follows:

Config Nodes : ['nodec6', 'nodec7', 'nodec8']

Control Nodes : [‘nodec7', 'nodec8']

Compute Nodes : ['nodec9', 'nodec10']

Collector : ['nodec6', 'nodec8']

WebUI : nodec7

Openstack : nodec6

The following virtual networks are used in the examples in this document:

Public virtual network:

• Virtual network name: public_vn

• Public addresses range: 10.204.219.32 to 10.204.219.37

• Route Target: 64512:10003

• Floating IP pool name: public_pool

Private virtual network:

• Virtual network name: vn1

• Subnet: 10.1.1.0/24

444

Example

A virtual machine is created in the virtual network VN1 with the name VN1_VM1 and with the IP
address 10.1.1.253. A floating IP address of 10.204.219.37 is associated to the VN1_VM1 instance.

An MX80 router is configured as a gateway to peer with control nodes nodec7 and nodec8.

445

Example: MX80 Configuration for the Gateway

The following is the Junos OS configuration for the MX80 gateway. The route 10.204.218.254 is the
route to the external world.

chassis {

 fpc 1 {

 pic 0 {

 tunnel-services;

 }

 }

}

interfaces {

 ge-1/0/1 {

 unit 0 {

446

 family inet {

 address 10.204.218.1/24;

 }

 }

 }

 ge-1/0/2 {

 unit 0 {

 family inet {

 address 10.204.216.253/24;

 }

 }

 }

}

routing-options {

 static {

 route 0.0.0.0/0 next-hop 10.204.216.254;

 }

 router-id 10.204.216.253;

 route-distinguisher-id 10.204.216.253;

 autonomous-system 64512;

 dynamic-tunnels {

 tun1 {

447

 source-address 10.204.216.253;

 gre;

 destination-networks {

 10.204.216.0/24;

 10.204.217.0/24;

 }

 }

 }

}

protocols {

 bgp {

 group control-nodes {

 type internal;

 local-address 10.204.216.253;

 keep all;

 family inet-vpn {

 unicast;

 }

 neighbor 10.204.216.64;

 neighbor 10.204.216.65;

 }

448

 }

}

routing-instances {

 public {

 instance-type vrf;

 interface ge-1/0/1.0;

 vrf-target target:64512:10003;

 vrf-table-label;

 routing-options {

 static {

 route 0.0.0.0/0 next-hop 10.204.218.254;

 }

 }

 }

}

Ping the Floating IP from the Public Network

From the public network, ping the floating IP 10.204.219.37.

user1-test:~ user1$ ping 10.204.219.37

PING 10.204.219.37 (10.204.219.37): 56 data bytes

64 bytes from 10.204.219.37: icmp_seq=0 ttl=54 time=62.439 ms

64 bytes from 10.204.219.37: icmp_seq=1 ttl=54 time=56.018 ms

449

64 bytes from 10.204.219.37: icmp_seq=2 ttl=54 time=55.915 ms

64 bytes from 10.204.219.37: icmp_seq=3 ttl=54 time=57.755 ms

^C

--- 10.204.219.37 ping statistics ---

5 packets transmitted, 4 packets received, 20.0% packet loss

round-trip min/avg/max/stddev = 55.915/58.032/62.439/2.647 ms

Troubleshooting Details

The following sections show details of ways to get related information, view, troubleshoot, and validate
floating IP addresses in Contrail Networking.

Get the UUID of the Virtual Network

Use the following to get the universal unique identifier (UUID) of the virtual network.

[root@nodec6 ~]# (source /etc/contrail/openstackrc; openstack network list) 2>/dev/null

+--------------------------------------+-------------------------+

| id | name |

+--------------------------------------+-------------------------+

| 43707766-75f3-4d48-80d9-1b7240fb161d | public_vn |

| 2ab7ea04-8f5f-4b8d-acbf-a7c29c9b4112 | VN1 |

| 1c59ded0-38e8-4168-b91f-4c51aba10d30 | default-virtual-network |

| 5b0a1040-91e4-47ff-bd4c-0a81e1901a1f | ip-fabric |

| 7efddf64-ff3c-44d2-aeb2-45d7472b7a64 | __link_local__ |

+--------------------------------------+-------------------------+

450

View the Floating IP Object in the API Server

Use the following to view the floating IP pool information in the API server. API server requests can be
made on http port 8082.

The Contrail API servers have the virtual-network public_vn object that contains floating IP pool
information. Use the following to view the floating-ip-pools object information.

curl -s -X GET -H "X-Auth-Token: $(openstack token issue | grep '| id' | awk '{print $4}')" http://<API-
Server_IP>:8082/virtual-network/<UUID_of_VN>

Example

root@nodec6 ~]# curl http://nodec6:8082/virtual-network/43707766-75f3-4d48-80d9-1b7240fb161d |
python -m json.tool

{

 "virtual-network": {

 "floating_ip_pools": [

 {

 "href": "http://127.0.0.1:8095/floating-ip-pool/663737c1-f3ab-40ff-9442-
bdb6c225e3c3",

 "to": [

 "default-domain",

 "admin",

 "public_vn",

 "public_pool"

],

 "uuid": "663737c1-f3ab-40ff-9442-bdb6c225e3c3"

 }

451

],

 "fq_name": [

 "default-domain",

 "admin",

 "public_vn"

],

 "href": "http://127.0.0.1:8095/virtual-network/43707766-75f3-4d48-80d9-1b7240fb161d",

 "id_perms": {

 "created": "2014-02-07T08:58:40.892803",

 "description": null,

 "enable": true,

 "last_modified": "2014-02-07T10:06:42.234423",

 "permissions": {

 "group": "admin",

 "group_access": 7,

 "other_access": 7,

 "owner": "admin",

 "owner_access": 7

 },

 "uuid": {

 "uuid_lslong": 9284482284331406877,

452

 "uuid_mslong": 4859515279882014024

 }

 },

 "name": "public_vn",

 "network_ipam_refs": [

 {

 "attr": {

 "ipam_subnets": [

 {

 "default_gateway": "10.204.219.38",

 "subnet": {

 "ip_prefix": "10.204.219.32",

 "ip_prefix_len": 29

 }

 }

]

 },

 "href": "http://127.0.0.1:8095/network-ipam/39b0e8da-
fcd4-4b35-856c-8d18570b1483",

 "to": [

 "default-domain",

 "default-project",

453

 "default-network-ipam"

],

 "uuid": "39b0e8da-fcd4-4b35-856c-8d18570b1483"

 }

],

 "parent_href": "http://127.0.0.1:8095/project/deef6549-8e6c-4e3e-9cde-c9bc2b72ce6f",

 "parent_type": "project",

 "parent_uuid": "deef6549-8e6c-4e3e-9cde-c9bc2b72ce6f",

 "route_target_list": {

 "route_target": [

 "target:64512:10003"

]

 },

 "routing_instances": [

 {

 "href": "http://127.0.0.1:8095/routing-instance/3c6254ac-cfde-417e-916d-
e7a1c0efad92",

 "to": [

 "default-domain",

 "admin",

 "public_vn",

 "public_vn"

454

],

 "uuid": "3c6254ac-cfde-417e-916d-e7a1c0efad92"

 }

],

 "uuid": "43707766-75f3-4d48-80d9-1b7240fb161d",

 "virtual_network_properties": {

 "extend_to_external_routers": null,

 "forwarding_mode": "l2_l3",

 "network_id": 4,

 "vxlan_network_identifier": null

 }

 }

}

View floating-ips in floating-ip-pools in the API Server

Once you have located the floating-ip-pools object, use the following to review its floating-ips object.

The floating-ips object should display the floating IP that is shown in the Contrail UI. The floating IP
should have a reference to the virtual machine interface (VMI) object that is bound to the floating IP.

Example

[root@nodec6 ~]# curlhttp://nodec6:8082/floating-ip-pool/663737c1-f3ab-40ff-9442-bdb6c225e3c3 |
python -m json.tool

{

455

 "floating-ip-pool": {

 "floating_ips": [

 {

 "href": "http://127.0.0.1:8095/floating-ip/f3eec4d6-889e-46a3-a8f0-879dfaff6ca0",

 "to": [

 "default-domain",

 "admin",

 "public_vn",

 "public_pool",

 "f3eec4d6-889e-46a3-a8f0-879dfaff6ca0"

],

 "uuid": "f3eec4d6-889e-46a3-a8f0-879dfaff6ca0"

 }

],

 "fq_name": [

 "default-domain",

 "admin",

 "public_vn",

 "public_pool"

],

 "href": "http://127.0.0.1:8095/floating-ip-pool/663737c1-f3ab-40ff-9442-bdb6c225e3c3",

456

 "id_perms": {

 "created": "2014-02-07T08:58:41.136572",

 "description": null,

 "enable": true,

 "last_modified": "2014-02-07T08:58:41.136572",

 "permissions": {

 "group": "admin",

 "group_access": 7,

 "other_access": 7,

 "owner": "admin",

 "owner_access": 7

 },

 "uuid": {

 "uuid_lslong": 10683309858715198403,

 "uuid_mslong": 7365417021744038143

 }

 },

 "name": "public_pool",

 "parent_href": "http://127.0.0.1:8095/virtual-network/
43707766-75f3-4d48-80d9-1b7240fb161d",

 "parent_type": "virtual-network",

 "parent_uuid": "43707766-75f3-4d48-80d9-1b7240fb161d",

457

 "project_back_refs": [

 {

 "attr": {},

 "href": "http://127.0.0.1:8095/project/deef6549-8e6c-4e3e-9cde-c9bc2b72ce6f",

 "to": [

 "default-domain",

 "admin"

],

 "uuid": "deef6549-8e6c-4e3e-9cde-c9bc2b72ce6f"

 }

],

 "uuid": "663737c1-f3ab-40ff-9442-bdb6c225e3c3"

 }

}

Check Floating IP Objects in the Virtual Machine Interface

Use the following to retrieve the virtual machine interface of the virtual machine from either the
quantum port-list command or from the Contrail UI. Then get the virtual machine interface identifier and
check its floating IP object associations.

• Using openstack portlist to get the virtual machine interface:

Example

[root@nodec6 ~]# openstack portlist

+--------------------------------------
+---+

458

| id |
fixed_ips |

+--------------------------------------
+---+

| cdca35ce-84ad-45da-9331-7bc67b7fcca6 | {"subnet_id":
"e80f480b-98d4-43cc-847c-711e637295db", "ip_address": "10.1.1.253"} |

+--------------------------------------
+---+

• Using Contrail UI to get the virtual machine interface:

Checking Floating IP Objects on the Virtual Machine Interface

Once you have obtained the virtual machine interface identifier, check the floating-ip objects that are
associated with the virtual machine interface.

[root@nodec6 ~]# curl http://127.0.0.1:8095/floating-ip/f3eec4d6-889e-46a3-a8f0-879dfaff6ca0 |
python -m json.tool

459

{

 "floating-ip": {

 "floating_ip_address": "10.204.219.37",

 "fq_name": [

 "default-domain",

 "admin",

 "public_vn",

 "public_pool",

 "f3eec4d6-889e-46a3-a8f0-879dfaff6ca0"

],

 "href": "http://127.0.0.1:8095/floating-ip/f3eec4d6-889e-46a3-a8f0-879dfaff6ca0",

 "id_perms": {

 "created": "2014-02-07T10:07:05.869899",

 "description": null,

 "enable": true,

 "last_modified": "2014-02-07T10:36:36.820926",

 "permissions": {

 "group": "admin",

 "group_access": 7,

 "other_access": 7,

 "owner": "admin",

460

 "owner_access": 7

 },

 "uuid": {

 "uuid_lslong": 12173378905373109408,

 "uuid_mslong": 17577202821367744163

 }

 },

 "name": "f3eec4d6-889e-46a3-a8f0-879dfaff6ca0",

 "parent_href": "http://127.0.0.1:8095/floating-ip-pool/663737c1-f3ab-40ff-9442-
bdb6c225e3c3",

 "parent_type": "floating-ip-pool",

 "parent_uuid": "663737c1-f3ab-40ff-9442-bdb6c225e3c3",

 "project_refs": [

 {

 "attr": null,

 "href": "http://127.0.0.1:8095/project/deef6549-8e6c-4e3e-9cde-c9bc2b72ce6f",

 "to": [

 "default-domain",

 "admin"

],

 "uuid": "deef6549-8e6c-4e3e-9cde-c9bc2b72ce6f"

 }

461

],

 "uuid": "f3eec4d6-889e-46a3-a8f0-879dfaff6ca0",

 "virtual_machine_interface_refs": [

 {

 "attr": null,

 "href": "http://127.0.0.1:8095/virtual-machine-interface/
cdca35ce-84ad-45da-9331-7bc67b7fcca6",

 "to": [

 "54bb44e1-50e4-43d7-addd-44be809f1e40",

 "cdca35ce-84ad-45da-9331-7bc67b7fcca6"

],

 "uuid": "cdca35ce-84ad-45da-9331-7bc67b7fcca6"

 }

]

 }

}

View the BGP Peer Status on the Control Node

Use the Contrail UI or the control node http introspect on port 8083 to view the BGP peer status. In the
following example, the control nodes are nodec7 and nodec8.

Ensure that the BGP peering state is displayed as Established for the control nodes and the gateway
MX.

Example

• Using the Contrail UI:

462

• Using the control-node Introspect:

http://nodec7:8083/Snh_BgpNeighborReq?ip_address=&domain=

http://nodec8:8083/Snh_BgpNeighborReq?ip_address=&domain=

Querying Routes in the Public Virtual Network

On each control-node, a query on the routes in the public_vn lists the routes that are pushed by the MX
gateway, which in the following example are 0.0.0.0/0 and 10.204.218.0/24.

In the following results, the floating IP route of 10.204.217.32 is installed by the compute node
(nodec10) that hosts that virtual machine.

Example

• Using the Contrail UI:

• Using the http Introspect:

Following is the format for using an introspect query.

http://<nodename/ip>:8083/Snh_ShowRouteReq?x=<RoutingInstance of public VN>.inet.0

Example

463

http://nodec8:8083/Snh_BgpNeighborReq?ip_address=&domain=

View Corresponding BGP L3VPN Routes

Use the Contrail UI or the http introspect to view the public route’s corresponding BGP L3VPN routes,
as in the following example.

Example

• Using the Contrail UI:

• Using the control-node Introspect:

http://nodec7:8083/Snh_ShowRouteReq?x=bgp.l3vpn.0

464

http://nodec8:8083/Snh_ShowRouteReq?x=bgp.l3vpn.0

Verification from the MX80 Gateway

This section provides options for verifying floating IP pools from the MX80 gateway.

Verify BGP Sessions are Established

Use the following commands from the gateway to verify that BGP sessions are established with the
control nodes nodec7 and nodec8:

root@mx-host> show bgp neighbor 10.204.216.64

Peer: 10.204.216.64+59287 AS 64512 Local: 10.204.216.253+179 AS 64512

 Type: Internal State: Established Flags: <Sync>

 Last State: OpenConfirm Last Event: RecvKeepAlive

 Last Error: Hold Timer Expired Error

 Options: <Preference LocalAddress KeepAll AddressFamily Rib-group Refresh>

 Address families configured: inet-vpn-unicast

 Local Address: 10.204.216.253 Holdtime: 90 Preference: 170

 Number of flaps: 216

 Last flap event: HoldTime

 Error: 'Hold Timer Expired Error' Sent: 68 Recv: 0

 Error: 'Cease' Sent: 0 Recv: 43

 Peer ID: 10.204.216.64 Local ID: 10.204.216.253 Active Holdtime: 90

 Keepalive Interval: 30 Group index: 0 Peer index: 3

 BFD: disabled, down

 NLRI for restart configured on peer: inet-vpn-unicast

465

 NLRI advertised by peer: inet-vpn-unicast

 NLRI for this session: inet-vpn-unicast

 Peer does not support Refresh capability

 Stale routes from peer are kept for: 300

 Peer does not support Restarter functionality

 Peer does not support Receiver functionality

 Peer does not support 4 byte AS extension

 Peer does not support Addpath

Show Routes Learned from Control Nodes

From the MX80, use show route to display the routes for the virtual machine 10.204.219.37 that are
learned from both control-nodes.

In the following example, the routes learned are 10.204.216.64 and 10.204.216.65, pointing to a
dynamic GRE tunnel next hop with a label of 16 (of the virtual machine).

public.inet.0: 4 destinations, 5 routes (4 active, 0 holddown, 0 hidden)

+ = Active Route, - = Last Active, * = Both

0.0.0.0/0 *[Static/5] 10w6d 18:47:50

 > to 10.204.218.254 via ge-1/0/1.0

10.204.218.0/24 *[Direct/0] 10w6d 18:47:51

 > via ge-1/0/1.0

10.204.218.1/32 *[Local/0] 10w6d 18:48:07

 Local via ge-1/0/1.0

466

10.204.219.37/32 *[BGP/170] 09:42:43, localpref 100, from 10.204.216.64

 AS path: ?, validation-state: unverified

 > via gr-1/0/0.32779, Push 16

 [BGP/170] 09:42:43, localpref 100, from 10.204.216.65

 AS path: ?, validation-state: unverified

 > via gr-1/0/0.32779, Push 16

Viewing the Compute Node Vnsw Agent

The compute node introspect can be accessed from port 8085. In the following examples, the compute
nodes are nodec9 and nodec10.

View Routing Instance Next Hops

On the routing instance of VN1, the routes 0.0.0.0/0 and 10.204.218.0/24 should have the next hop
pointing to the MX gateway (10.204.216.253).

Example

1. Using the Contrail UI:

Using the Unicast Route Table Index to View Next Hops

Alternatively, from the agent introspect, you can view the next hops at the unicast route table.

First, use the following to get the unicast route table index (ucindex) for the routing instance default-
domain:admin:public_vn:public_vn.

467

http://nodec10:8085/Snh_VrfListReq?x=default-domain:admin:public_vn:public_vn

Example

1. In the following example, the unicast route table index is 2.

Next, perform a route request query on ucindex 2, as shown in the following. The tunnel detail indicates
the source and destination endpoints of the tunnel and the MPLS label 16 (the label of the virtual
machine).

The query should also show a route for 10.204.219.37 with an interface next hop of tap-interface.
http://nodec10:8085/Snh_Inet4UcRouteReq?x=2

468

A ping from the MX gateway to the virtual machine’s floating IP in the public routing-instance should
work.

Advanced Troubleshooting

If you still have reachability problems after performing all of the tests in this article, for example, a ping
between the virtual machine and the MX IP or to public addresses is failing, try the following:

• Validate that all the required Contrail processes are running by using the contrail-status command on
all of the nodes.

• On the compute node where the virtual machine is present (nodec10 in this example), perform a
tcpdump on the tap interface (tcpdump –ni tapcdca35ce-84). The output should show the incoming
packets from the virtual machine.

• Check to see if any packet drops occur in the kernel vrouter module:

http://nodec10:8085/Snh_KDropStatsReq?

In the output, scroll down to find any drops. Note: You can ignore any ds_invalid_arp increments.

• On the physical interface where packets transmit onto the compute-node, perform a tcpdump
matching the host IP of the MX to show the UDP and GRE encapsulated packets, as in the following.

[root@nodec10 ~]# cat /etc/contrail/agent.conf |grep -A 1 eth-port

 <eth-port>

469

 <name>p1p0p0</name>

 </eth-port>

 <metadata-proxy>

[root@nodec10 ~]# tcpdump -ni p1p0p0 host 10.204.216.253 -vv

tcpdump: WARNING: p1p0p0: no IPv4 address assigned

tcpdump: listening on p1p0p0, link-type EN10MB (Ethernet), capture size 65535 bytes

02:06:51.729941 IP (tos 0x0, ttl 64, id 57430, offset 0, flags [DF], proto GRE (47), length
112)

 10.204.216.253 > 10.204.216.67: GREv0, Flags [none], length 92

 MPLS (label 16, exp 0, [S], ttl 54)

 IP (tos 0x0, ttl 54, id 35986, offset 0, flags [none], proto ICMP (1), length 84)

 172.29.227.6 > 10.204.219.37: ICMP echo request, id 53240, seq 242, length 64

02:06:51.730052 IP (tos 0x0, ttl 64, id 324, offset 0, flags [none], proto GRE (47), length
112)

 10.204.216.67 > 10.204.216.253: GREv0, Flags [none], length 92

 MPLS (label 16, exp 0, [S], ttl 64)

 IP (tos 0x0, ttl 64, id 33909, offset 0, flags [none], proto ICMP (1), length 84)

 10.204.219.37 > 172.29.227.6: ICMP echo reply, id 53240, seq 242, length 64

02:06:52.732283 IP (tos 0x0, ttl 64, id 12675, offset 0, flags [DF], proto GRE (47), length
112)

 10.204.216.253 > 10.204.216.67: GREv0, Flags [none], length 92

 MPLS (label 16, exp 0, [S], ttl 54)

470

 IP (tos 0x0, ttl 54, id 54155, offset 0, flags [none], proto ICMP (1), length 84)

 172.29.227.6 > 10.204.219.37: ICMP echo request, id 53240, seq 243, length 64

02:06:52.732355 IP (tos 0x0, ttl 64, id 325, offset 0, flags [none], proto GRE (47), length
112)

 10.204.216.67 > 10.204.216.253: GREv0, Flags [none], length 92

 MPLS (label 16, exp 0, [S], ttl 64)

 IP (tos 0x0, ttl 64, id 33910, offset 0, flags [none], proto ICMP (1), length 84)

 10.204.219.37 > 172.29.227.6: ICMP echo reply, id 53240, seq 243, length 64

^C

4 packets captured

5 packets received by filter

0 packets dropped by kernel

[root@nodec10 ~]#

• On the MX gateway, use the following to inspect the GRE tunnel rx/tx (received/transmitted) packet
count:

root@mx-host> show interfaces gr-1/0/0.32779 |grep packets

 Input packets : 542

 Output packets: 559

root@blr-mx1> show interfaces gr-1/0/0.32779 |grep packets

 Input packets : 544

471

 Output packets: 561

• Look for any packet drops in the FPC, as in the following:

show pfe statistics traffic fpc <id>

• Also inspect the dynamic tunnels, using the following:

show dynamic-tunnels database

Removing Stale Virtual Machines and Virtual Machine Interfaces

IN THIS SECTION

Problem Example | 472

Show Virtual Machines | 474

Delete Methods | 475

This topic gives examples for removing stale VMs (virtual machines) and VMIs (virtual machine
interfaces). Before you can remove a stale VM or VMI, you must first remove any back references
associated to the VM or VMI.

Problem Example

The troubleshooting examples in this topic are based on the following problem example. A net-delete of
the virtual machine 2a8120ec-bd18-49f4-aca0-acfc6e8fe74f returned the following messages that
there are two VMIs that still have back-references to the stale VM.

The two VMIs must be deleted first, then the Neutron net-delete <vm_ID> command will complete without
errors.

From neutron.log:

2014-03-10 14:18:05.208

DEBUG [urllib3.connectionpool]

472

"DELETE/virtual-network/2a8120ec-bd18-49f4-aca0-acfc6e8fe74f HTTP/1.1" 409 203

2014-03-10 14:18:05.278

ERROR [neutron.api.v2.resource] delete failed

Traceback (most recent call last):

 File "/usr/lib/python2.7/dist-packages/neutron/api/v2/resource.py", line

84, in resource

 result = method(request=request, **args)

 File "/usr/lib/python2.7/dist-packages/neutron/api/v2/base.py", line

432, in delete

 obj_deleter(request.context, id, **kwargs)

 File

"/usr/lib/python2.7/dist-packages/neutron/plugins/juniper/contrail/contrail

plugin.py", line 294, in delete_network

 raise e

RefsExistError: Back-References from

http: //127.0.0.1:8082/virtual-machine-interface/51daf6f4-7366-4463-a819-bd1

17fe3a8c8,

http: //127.0.0.1:8082/virtual-machine-interface/30882e66-e175-4fbb-862e-354

bb700b579 still exist

473

Show Virtual Machines

Use the following command to show all of the virtual machines known to the Contrail API server.
Replace the variable <config-node-IP> shown in the example with the IP address of the config-node in your
setup.

http://<config-node-IP>:8082/virtual-machines

Example

In the following example, 03443891-99cc-4784-89bb-9d1e045f8aa6 is a stale VM that needs to be
removed.

virtual-machines:

 [

 {

 href:"http: //example-node:8082/virtual-machine/
03443891-99cc-4784-89bb-9d1e045f8aa6",

 fq_name:

 [

 "03443891-99cc-4784-89bb-9d1e045f8aa6"

],

 uuid:"03443891-99cc-4784-89bb-9d1e045f8aa6"

 },

When the user attempts to delete the stale VM, a message displays that children to the VM still exist:

root@example-node:~# curl -X DELETE -H "Content-Type: application/json; charset=UTF-8" http: //
127.0.0.1:8082/virtual-machine/03443891-99cc-4784-89bb-9d1e045f8aa6
Children http: //127.0.0.1:8082/virtual-machine-interface/0c32a82a-7bd3-46c7-b262-6d85b9911a0d
still exist
root@example-node:~#

474

The user opens http: //example-node:8082/virtual-machine/
03443891-99cc-4784-89bb-9d1e045f8aa6, and sees a virtual-machine-interface (VMI) attached to it. The
VMI must be removed before the VM can be removed.

However, when the user attempts to delete the VMI from the stale VM, they get a message that there is
still a back-reference:

root@example-node:~# curl -X DELETE -H "Content-Type: application/json; charset=UTF-8" http: //
<example-IP>:8082/virtual-machine-interface/0c32a82a-7bd3-46c7-b262-6d85b9911a0d

Back-References from http: //<example-IP>:8082/instance-ip/6ffa29a1-023f-462b-b205-353da8e3a2a4
still exist

root@example-node:~#

Because there is a back-reference from an instance-ip object still present, the instance-ip object must first
be deleted, as follows:

root@example-node:~# curl -X DELETE -H "Content-Type: application/json; charset=UTF-8" http: //
<example-IP>:8082/instance-ip/6ffa29a1-023f-462b-b205-353da8e3a2a4

root@example-node:~#

When the instance-ip is deleted, then the VMI and the VM can be deleted.

NOTE: To prevent inconsistency, be certain that the VM is not present in the Nova database
before deleting the VM.

Delete Methods

Use help (vh) to show all delete methods supported.

Typical commands for deleting VMs and VMIs include:

• virtual_machine_delete() to delete a virtual machine

• instance_ip_delete() to delete an instance-ip.

475

Troubleshooting Link-Local Services in Contrail

IN THIS SECTION

Overview of Link-Local Services | 476

Troubleshooting Procedure for Link-Local Services | 476

Metadata Service | 478

Troubleshooting Procedure for Link-Local Metadata Service | 478

Use the troubleshooting steps and guidelines in this topic when you have errors with Contrail link-local
services.

Overview of Link-Local Services

Virtual machines might be set up to access specific services hosted on the fabric infrastructure. For
example, a virtual machine might be a Nova client that requires access to the Nova API service running
in the fabric network. Access to services hosted on the fabric network can be provided by configuring
the services as link-local services.

A link-local address and a service port is chosen for the specific service running on a TCP / UDP port on
a server in the fabric. With the link-local service configured, virtual machines can access the service
using the link-local address. For link-local services, Contrail uses the address range 169.254.169.x.

Link-local service can be configured using the Contrail WebUI: Configure > Infrastructure > Link Local
Services.

Troubleshooting Procedure for Link-Local Services

Use the following steps when you are troubleshooting link-local services errors.

476

1. Verify the reachability of the fabric server that is hosting the link-local service from the compute
node.

2. Check the state of the virtual machine and the interface:

• Is the Status of virtual machine Up?

• Is the corresponding tap interface Active?

Checking the virtual machine status in the Contrail UI:

Checking the tap interface status in the http agent introspect:

http://<compute-node-ip>:8085/Snh_ItfReq?name=

3. Check the link-local configuration in the vrouter agent. Make sure the configured link-local service is
displayed.

http://<compute-node-ip>:8085/Snh_LinkLocalServiceInfo?

4. Validate the BGP neighbor config and the BGP peering config object. When the virtual machine
communicates with the configured link-local service, a forward and reverse flow for the
communication is set up. Check that the flow for this communication is created and the flow action is
NAT.

http://<compute-node-ip>:8085/Snh_KFlowReq?flow_idx=

Check that all flow entries display NAT action programmed and display flags for the fields (source or
destination IP and ports) that have NAT programmed. Also shown are the number of packets and
bytes transmitted in the respective flows.

477

The forward flow displays the source IP of the virtual machine and the destination IP of the link-local
service. The reverse flow displays the source IP of the fabric host and the destination IP of the
compute node’s vhost interface. If the service is hosted on the same compute node, the destination
address of the reverse flow displays the metadata address allocated to the virtual machine.

Note that the index and rflow index for the two flows are reversed.

You can also view similar information in the vrouter agent introspect page, where you can see the
policy and security group for the flow. Check that the flow actions display as pass.

http://<compute-node-ip>:8085/Snh_FetchAllFlowRecords?

Metadata Service

OpenStack allows virtual instances to access metadata by sending an HTTP request to the link-local
address 169.254.169.254. The metadata request from the instance is proxied to Nova, with additional
HTTP header fields added, which Nova uses to identify the source instance. Then Nova responds with
appropriate metadata.

The Contrail vrouter acts as the proxy, trapping the metadata requests, adding the necessary header
fields, and sending the requests to the Nova API server.

Troubleshooting Procedure for Link-Local Metadata Service

Metadata service is also a link-local service, with a fixed service name (metadata), a fixed service address
(169.254.169.254:80), and a fabric address pointing to the server where the OpenStack Nova API server
is running. All of the configuration and troubleshooting procedures for Contrail link-local services also
apply to the metadata service.

However, for metadata service, the flow is always set up to the compute node, so the vrouter agent will
update and proxy the HTTP request. The vrouter agent listens on a local port to receive the metadata
requests. Consequently, the reverse flow has the compute node as the source IP, the local port on which
the agent is listening is the source port, and the instance’s metadata IP is the destination IP address.

After performing all of the troubleshooting procedures for link-local services, the following additional
steps can be used to further troubleshoot metadata service.

1. Check the metadata statistics for: the number of metadata requests received by the vrouter agent,
the number of proxy sessions set up with the Nova API server, and number of internal errors
encountered.

http://<compute-node-ip>:8085/Snh_MetadataInfo?

The port on which the vrouter agent listens for metadata requests is also displayed.

478

2. Check the metadata trace messages, which show the trail of metadata requests and responses.

http://<compute-node-ip>:8085/Snh_SandeshTraceRequest?x=Metadata
3. Check the Nova configuration. On the server running the OpenStack service, inspect the nova.conf

file.

• Ensure that the metadata proxy is enabled, as follows:

service_neutron_metadata_proxy = True

service_quantum_metadata_proxy = True (on older installations)

• Check to see if the metadata proxy shared secret is set:

neutron_metadata_proxy_shared_secret

quantum_metadata_proxy_shared_secret (on older installations)

If the shared secret is set in nova.conf, the same secret must be configured on each compute node
in the file /etc/contrail/contrail-vrouter-agent.conf, and the same shared secret must be updated in
the METADATA section as metadata_proxy_secret=<secret>.

4. Restart the vrouter agent after modifying the shared secret:

service contrail-vrouter restart

479

2
PART

Contrail Commands and APIs

Contrail Commands | 481

Contrail Application Programming Interfaces (APIs) | 501

CHAPTER 8

Contrail Commands

IN THIS CHAPTER

Getting Contrail Node Status | 481

contrail-logs (Accessing Log File Messages) | 493

contrail-status (Viewing Node Status) | 496

contrail-version (Viewing Version Information) | 498

Getting Contrail Node Status

IN THIS SECTION

Overview | 481

UVE for NodeStatus | 482

Node Status Features | 482

Using Introspect to Get Process Status | 489

contrail-status script | 491

Overview

This topic describes how to view the status of a Contrail node on a physical server. Contrail nodes
include config, control, analytics, compute, and so on.

481

UVE for NodeStatus

The User-Visible Entity (UVE) mechanism is used to aggregate and send the status information. All node
types send a NodeStatus structure in their respective node UVEs. The following is a control node UVE
of NodeStatus:

struct NodeStatus {

 1: string name (key="ObjectBgpRouter")

 2: optional bool deleted

 3: optional string status

 // Sent by process

 4: optional list<process_info.ProcessStatus> process_status (aggtype="union")

 // Sent by node manager

 5: optional list<process_info.ProcessInfo> process_info (aggtype="union")

 6: optional string description

}

uve sandesh NodeStatusUVE {

 1: NodeStatus data

}

Node Status Features

The most important features of NodeStatus include:

ProcessStatus

ProcessInfo

ProcessStatus

482

Also process_status, is sent by the processes corresponding to the virtual node, and displays the status
of the process and an aggregate state indicating if the process is functional or non-functional. The
process_status includes the state of the process connections (ConnectionInfo) to important services and
other information necessary for the process to be functional. Each process sends its NodeStatus
information, which is aggregated as union (aggtype="union") at the analytics node. The following is the
ProcessStatus structure:

1. struct ProcessStatus {

2. 1: string module_id

3. 2: string instance_id

4. 3: string state

5. 4: optional list<ConnectionInfo> connection_infos

6. 5: optional string description

7. }

8.

9. struct ConnectionInfo {

10. 1: string type

11. 2: string name

12. 3: optional list<string> server_addrs

13. 4: string status

14. 5: optional string description

15. }

ProcessInfo

483

Sent by the node manager, /usr/bin/contrail-nodemgr. Node manager is a monitor process per contrail
virtual node that tracks the running state of the processes. The following is the ProcessInfo structure:

16. struct ProcessInfo {

17. 1: string process_name

18. 2: string process_state

19. 3: u32 start_count

20. 4: u32 stop_count

21. 5: u32 exit_count

22. // time when the process last entered running stage

23. 6: optional string last_start_time

24. 7: optional string last_stop_time

25. 8: optional string last_exit_time

26. 9: optional list<string> core_file_list

27. }

Example: NodeStatus

The following is an example output of NodeStatus obtained from the Rest API:

http://:8081/analytics/uves/control-...ilt=NodeStatus .

{

 NodeStatus:
{

 process_info:
[

484

{

 process_name: "contrail-control",

 process_state: "PROCESS_STATE_RUNNING",

 last_stop_time: null,

 start_count: 1,

 core_file_list: [],

 last_start_time: "1409002143776558",

 stop_count: 0,

 last_exit_time: null,

 exit_count: 0

 },

{

 process_name: "contrail-control-nodemgr",

 process_state: "PROCESS_STATE_RUNNING",

 last_stop_time: null,

 start_count: 1,

 core_file_list: [],

 last_start_time: "1409002141773481",

 stop_count: 0,

 last_exit_time: null,

 exit_count: 0

485

 },

{

 process_name: "contrail-dns",

 process_state: "PROCESS_STATE_RUNNING",

 last_stop_time: null,

 start_count: 1,

 core_file_list: [],

 last_start_time: "1409002145778383",

 stop_count: 0,

 last_exit_time: null,

 exit_count: 0

 },

{

 process_name: "contrail-named",

 process_state: "PROCESS_STATE_RUNNING",

 last_stop_time: null,

 start_count: 1,

 core_file_list: [],

 last_start_time: "1409002147780118",

 stop_count: 0,

 last_exit_time: null,

486

 exit_count: 0

 }

],

 process_status:
[

{

 instance_id: "0",

 module_id: "ControlNode",

 state: "Functional",

 description: null,

 connection_infos:
[

{

 server_addrs:
[

 "10.84.13.45:8443"

],

{

 server_addrs:
[

 "10.84.13.45:8086"

],

487

 status: "Up",

 type: "Collector",

 name: null,

 description: "Established"

 },

{

 server_addrs:
[

 "10.84.13.45:5998"

],

 status: "Up",

 type: "Discovery",

 name: "Collector",

 description: "SubscribeResponse"

 },

{

 server_addrs:
[

 "10.84.13.45:5998"

],

 status: "Up",

488

 type: "Discovery",

 name: "IfmapServer",

 description: "SubscribeResponse"

 },

{

 server_addrs:
[

 "10.84.13.45:5998"

],

 status: "Up",

 type: "Discovery",

 name: "xmpp-server",

 description: "Publish Response - HeartBeat"

 }

]

 }

]

 }

}

Using Introspect to Get Process Status

The user can also view the state of a specific process by using the introspect mechanism.

Example: Introspect of NodeStatus

489

The following is an example of the process state of contrail-control that is obtained by using

http://server-ip:8083/Snh_SandeshUVECacheReq?x=NodeStatus

NOTE: The example output is the ProcessStatus of only one process of contrail-control. It does
not show the full aggregated status of the control node through its UVE (as in the previous
example).

root@a6s45:~# curl http://10.84.13.45:8083/Snh_SandeshU...q?x=NodeStatus

<?xml-stylesheet type="text/xsl" href="/universal_parse.xsl"?><__NodeStatusUVE_list
type="slist"><NodeStatusUVE type="sandesh"><data type="struct" identifier="1"><NodeStatus><name
type="string" identifier="1" key="ObjectBgpRouter">a6s45</name><process_status type="list"
identifier="4" aggtype="union"><list type="struct" size="1"><ProcessStatus><module_id
type="string" identifier="1">ControlNode</module_id><instance_id type="string" identifier="2">0</
instance_id><state type="string" identifier="3">Functional</state><connection_infos type="list"
identifier="4"><list type="struct" size="5"><ConnectionInfo><type type="string"
identifier="1">IFMap</type><name type="string" identifier="2">IFMapServer</name><server_addrs
type="list" identifier="3"><list type="string" size="1"><element>10.84.13.45:8443</element></
list></server_addrs><status type="string" identifier="4">Up</status><description type="string"
identifier="5">Connection with IFMap Server (irond)</description></
ConnectionInfo><ConnectionInfo><type type="string" identifier="1">Collector</type><name
type="string" identifier="2"></name><server_addrs type="list" identifier="3"><list type="string"
size="1"><element>10.84.13.45:8086</element></list></server_addrs><status type="string"
identifier="4">Up</status><description type="string" identifier="5">Established</description></
ConnectionInfo><ConnectionInfo><type type="string" identifier="1">Discovery</type><name
type="string" identifier="2">Collector</name><server_addrs type="list" identifier="3"><list
type="string" size="1"><element>10.84.13.45:5998</element></list></server_addrs><status
type="string" identifier="4">Up</status><description type="string"
identifier="5">SubscribeResponse</description></ConnectionInfo><ConnectionInfo><type
type="string" identifier="1">Discovery</type><name type="string" identifier="2">IfmapServer</
name><server_addrs type="list" identifier="3"><list type="string"
size="1"><element>10.84.13.45:5998</element></list></server_addrs><status type="string"
identifier="4">Up</status><description type="string" identifier="5">SubscribeResponse</
description></ConnectionInfo><ConnectionInfo><type type="string" identifier="1">Discovery</
type><name type="string" identifier="2">xmpp-server</name><server_addrs type="list"
identifier="3"><list type="string" size="1"><element>10.84.13.45:5998</element></list></
server_addrs><status type="string" identifier="4">Up</status><description type="string"
identifier="5">Publish Response - HeartBeat</description></ConnectionInfo></list></
connection_infos><description type="string" identifier="5"></description></ProcessStatus></
list></process_status></NodeStatus></data></NodeStatusUVE><SandeshUVECacheResp

490

type="sandesh"><returned type="u32" identifier="1">1</returned><more type="bool"
identifier="0">false</more></SandeshUVECacheResp></__NodeStatusUVE_list>

contrail-status script

The contrail-status script is used to give the status of the Contrail processes on a server.

The contrail-status script first checks if a process is running, and if it is, performs introspect into the
process to get its functionality status, then outputs the aggregate status.

The possible states to display include:

• active - the process is running and functional; the internal state is good

• inactive - not started or stopped by user

• failed – the process exited too quickly and has not restarted

• initializing - the process is running, but the internal state is not yet functional.

Example Output: Contrail-Status Script

The following is an example output from the contrail-status script.

root@a6s45:~# contrail-status

== Contrail vRouter ==

supervisor-vrouter: active

contrail-vrouter-agent active

contrail-vrouter-nodemgr active

== Contrail Control ==

supervisor-control: active

contrail-control active

contrail-control-nodemgr active

contrail-dns active

491

contrail-named active

== Contrail Analytics ==

supervisor-analytics: active

contrail-analytics-api active

contrail-analytics-nodemgr active

contrail-collector active

contrail-query-engine active

== Contrail Config ==

supervisor-config: active

contrail-api:0 active

contrail-config-nodemgr active

contrail-schema active

contrail-svc-monitor active

rabbitmq-server active

== Contrail Web UI ==

supervisor-webui: active

contrail-webui active

contrail-webui-middleware active

492

redis-webui active

== Contrail Database ==

supervisord-contrail-database:active

contrail-database active

contrail-database-nodemgr active

contrail-logs (Accessing Log File Messages)

IN THIS SECTION

Command-Line Options for Contrail-Logs | 493

Option Descriptions | 494

Example Uses | 495

A command-line utility, contrail-logs, uses REST APIs to retrieve system log messages, object log
messages, and trace messages.

Command-Line Options for Contrail-Logs

The command-line utility for accessing log file information is contrail-logs in the analytics node. The
following are the options supported at the command line for contrail-logs, as viewed using the -–help
option.

[root@host]# contrail-logs --help
usage: contrail-logs [-h]
 [--opserver-ip OPSERVER_IP]
 [--opserver-port OPSERVER_PORT]

493

 [--start-time START_TIME]
 [--end-time END_TIME]
 [--last LAST]
 [--source SOURCE]
 [--module {ControlNode, VRouterAgent, ApiServer, Schema, OpServer,
Collector, QueryEngine, ServiceMonitor, DnsAgent}]
 [--category CATEGORY]
 [--level LEVEL]
 [--message-type MESSAGE_TYPE]
 [--reverse]
 [--verbose]
 [--all]
 [--object {ObjectVNTable, ObjectVMTable, ObjectSITable, ObjectVRouter,
ObjectBgpPeer, ObjectRoutingInstance, ObjectBgpRouter, ObjectXmppConnection,
ObjectCollectorInfo, ObjectGeneratorInfo, ObjectConfigNode}]
 [--object-id OBJECT_ID]
 [--object-select-field {ObjectLog,SystemLog}]
 [--trace TRACE]

Option Descriptions

The following are the descriptions for each of the option arguments available for contrail-logs.

optional arguments:
 -h, --help
 show this help message and exit
 --opserver-ip OPSERVER_IP
 IP address of OpServer (default: 127.0.0.1)
 --opserver-port OPSERVER_PORT
 Port of OpServer (default: 8081)
 --start-time START_TIME
 Logs start time (format now-10m, now-1h) (default: now-10m)
 --end-time END_TIME
 Logs end time (default: now)
 --last LAST
 Logs from last time period (format 10m, 1d) (default: None)
 --source SOURCE
 Logs from source address (default: None)
 --module {ControlNode, VRouterAgent, ApiServer, Schema, OpServer, Collector, QueryEngine,
ServiceMonitor, DnsAgent}

494

 Logs from module (default: None)
 --category CATEGORY
 Logs of category (default: None)
 --level LEVEL
 Logs of level (default: None)
 --message-type MESSAGE_TYPE
 Logs of message type (default: None)
 --reverse
 Show logs in reverse chronological order (default: False)
 --verbose
 Show internal information (default: True)
 --all
 Show all logs (default: False)
 --object {ObjectVNTable, ObjectVMTable, ObjectSITable, ObjectVRouter, ObjectBgpPeer,
ObjectRoutingInstance, ObjectBgpRouter, ObjectXmppConnection, ObjectCollectorInfo,
ObjectGeneratorInfo, ObjectConfigNode}
 Logs of object type (default: None)
 --object-id OBJECT_ID
 Logs of object name (default: None)
 --object-select-field {ObjectLog,SystemLog}
 Select field to filter the log (default: None)
 --trace TRACE
 Dump trace buffer (default: None)

Example Uses

The following examples show how you can use the option arguments available for contrail-logs to
retrieve the information you specify.

1. View only the system log messages from all boxes for the last 10 minutes.

contrail-logs

2. View all log messages (systemlog, objectlog, uve, ...) from all boxes for the last 10 minutes.

contrail-logs --all

3. View only the control node system log messagess from all boxes for the last 10 minutes.

contrail-logs --module ControlNode

--module accepts the following values - ControlNode, VRouterAgent, ApiServer, Schema, ServiceMonitor,
Collector, OpServer, QueryEngine, DnsAgent

495

4. View the control node system log messages from source a6s23.contrail.juniper.net for the last 10
minutes.

contrail-logs --module ControlNode --source a6s23.contrail.juniper.net

5. View the XMPP category system log messages from all modules on all boxes for the last 10 minutes.

contrail-logs --category XMPP

6. View the system log messages from all the boxes from the last hour.

contrail-logs --last 1h

7. View the system log messages from the VN object named demo:admin:vn1 from all boxes for the last 10
minutes.

contrail-logs --object ObjectVNTable --object-id demo:admin:vn1

--object accepts the following values - ObjectVNTable, ObjectVMTable, ObjectSITable, ObjectVRouter,
ObjectBgpPeer, ObjectRoutingInstance, ObjectBgpRouter, ObjectXmppConnection, ObjectCollectorInfo

8. View the system log messages from all boxes for the last 10 minutes in reverse chronological order:

contrail-logs --reverse

9. View the system log messages from a specific time interval and display them in a specified date
format.

contrail-logs --start-time "2020 May 12 18:30:27.0" --end-time "2020 May 12 18:31:27.0"

contrail-status (Viewing Node Status)

IN THIS SECTION

Syntax | 497

Description | 497

Required Privilege Level | 497

Sample Output | 497

Release Information | 498

496

Syntax

[root@host ~]# contrail-status

Description

Display a list of all components of a Contrail server node (such as control, configuration, database, Web-
UI, analytics, or vrouter) and report their current status of active or inactive.

Required Privilege Level

admin

Sample Output

The following example usage displays on a server that is configured for the roles of vrouter, controller,
analytics, configuration, web-ui, and database.

Sample Output

root@host:~# contrail-status
== Contrail vRouter ==
supervisor-vrouter: active
contrail-vrouter-agent active
contrail-vrouter-nodemgr active

== Contrail Control ==
supervisor-control: active
contrail-control active
contrail-control-nodemgr active
contrail-dns active
contrail-named active

== Contrail Analytics ==
supervisor-analytics: active
contrail-analytics-api active
contrail-analytics-nodemgr active
contrail-collector active
contrail-query-engine active

497

== Contrail Config ==
supervisor-config: active
contrail-api:0 active
contrail-config-nodemgr active
contrail-discovery:0 active
contrail-schema active
contrail-svc-monitor active
ifmap active
rabbitmq-server active

== Contrail Web UI ==
supervisor-webui: active
contrail-webui active
contrail-webui-middleware active
redis-webui active

== Contrail Database ==
supervisord-contrail-database:active
contrail-database active
contrail-database-nodemgr active

Release Information

Command introduced in Contrail Release 1.0.

contrail-version (Viewing Version Information)

IN THIS SECTION

Syntax | 499

Description | 499

Required Privilege Level | 499

Sample Output | 499

Sample Output | 500

Release Information | 500

498

Syntax

[root@host]# contrail-version

Description

Display a list of all installed components with their version and build numbers.

Required Privilege Level

admin

Sample Output

The following example shows version and build information for all installed components.

Sample Output

root@host> contrail-version
Package Version Build-ID | Repo | RPM Name
-------------------------------------- ----------------------- ----------------------------------
contrail-analytics 1-1309090026.el6 141
contrail-analytics-venv 0.1-1309062310.el6 141
contrail-api 0.1-1309090026.el6 141
contrail-api-lib 0.1-1309090026.el6 141
contrail-api-venv 0.1-1309080539.el6 141
contrail-control 2012.0-1309090026.el6 141
contrail-database 0.1-1309050028 141
contrail-dns 1-1309090026.el6 141
contrail-fabric-utils 1-1309090026 141
contrail-libs 1-1309090026.el6 141
contrail-nodejs 0.8.15-1309090026.el6 141
contrail-openstack-analytics 0.1-1309090026.el6 141
contrail-openstack-cfgm 0.1-1309090026.el6 141
contrail-openstack-control 0.1-1309090026.el6 141

499

Sample Output

The following example shows version and build information for only the installed contrail components.

Sample Output

root@host> contrail-version | grep contrail
Package Version Build-ID | Repo | RPM Name
-------------------------------------- ----------------------- ----------------------------------
contrail-analytics 1-1309090026.el6 141
contrail-analytics-venv 0.1-1309062310.el6 141
contrail-api 0.1-1309090026.el6 141
contrail-api-lib 0.1-1309090026.el6 141
contrail-api-venv 0.1-1309080539.el6 141
contrail-control 2012.0-1309090026.el6 141
contrail-database 0.1-1309050028 141
contrail-dns 1-1309090026.el6 141
contrail-fabric-utils 1-1309090026 141
contrail-libs 1-1309090026.el6 141
contrail-nodejs 0.8.15-1309090026.el6 141
contrail-openstack-analytics 0.1-1309090026.el6 141
contrail-openstack-cfgm 0.1-1309090026.el6 141
contrail-openstack-control 0.1-1309090026.el6 141
contrail-openstack-database 0.1-1309090026.el6 141
contrail-openstack-webui 0.1-1309090026.el6 141
contrail-setup 1-1309090026.el6 141
contrail-webui 1-1309090026 141
openstack-quantum-contrail 2013.2-1309090026 141

Release Information

Command introduced in Contrail Release 1.0.

500

CHAPTER 9

Contrail Application Programming Interfaces (APIs)

IN THIS CHAPTER

Contrail Analytics Application Programming Interfaces (APIs) and User-Visible Entities (UVEs) | 501

Log and Flow Information APIs | 515

Working with Neutron | 523

Support for Amazon VPC APIs on Contrail OpenStack | 527

Contrail Analytics Application Programming Interfaces (APIs) and User-
Visible Entities (UVEs)

IN THIS SECTION

User-Visible Entities | 502

Common UVEs in Contrail | 503

Virtual Network UVE | 503

Virtual Machine UVE | 504

vRouter UVE | 504

UVEs for Contrail Nodes | 505

Wild Card Query of UVEs | 505

Filtering UVE Information | 505

The Contrail analytics-api server provides a REST API interface to extract the operational state of the
Contrail system.

APIs are used by the Contrail Web user interface to present the operational state to users. Other
applications might also use the server's REST APIs for analytics or other uses.

501

This section describes some of the more common APIs and their uses. To see all of the available APIs,
navigate the URL tree at the REST interface, starting at the root http://<ip>:<analytics-api-port>. You
can also view the Contrail Networking API Reference Guide.

User-Visible Entities

In Contrail, a User-Visible Entity (UVE) is an object entity that might span multiple components in
Contrail and might require aggregation before the complete information of the UVE is presented.
Examples of UVEs in Contrail are virtual network, virtual machine, vRouter, and similar objects.
Complete operational information for a virtual network might span multiple vRouters, config nodes,
control nodes, and the like. The analytics-api server aggregates all of this information through REST
APIs.

To get information about a UVE, you must have the UVE type and the UVE key. In Contrail, UVEs are
identified by type, such as virtual network, virtual machine, vRouter, and so on. A system-wide unique
key is associated with each UVE. The key type could be different, based on the UVE type. For example,
perhaps a virtual network uses its name as its UVE key, and in the same system, a virtual machine uses
its UUID as its key.

The URL /analytics/uves shows the list of all UVE types available in the system.

The following is sample output from /analytics/uves:

[
{
href: "http://<system IP>:8081/analytics/uves/xmpp-peers",
name: "xmpp-peers"
},
{
href: "http://<system IP>:8081/analytics/uves/service-instances",
name: "service-instances"
},
{
href: "http://<system IP>:8081/analytics/uves/config-nodes",
name: "config-nodes"
},
{
href: "http://<system IP>:8081/analytics/uves/virtual-machines",
name: "virtual-machines"
},
{
href: "http://<system IP>:8081/analytics/uves/bgp-routers",
name: "bgp-routers"
},

502

{
href: "http://<system IP>:8081/analytics/uves/collectors",
name: "collectors"
},
{
href: "http://<system IP>:8081/analytics/uves/service-chains",
name: "service-chains"
},
{
href: "http://<system IP>:8081/analytics/uves/generators",
name: "generators"
},
{
href: "http://<system IP>:8081/analytics/uves/bgp-peers",
name: "bgp-peers"
},
{
href: "http://<system IP>:8081/analytics/uves/virtual-networks",
name: "virtual-networks"
},
{
href: "http://<system IP>:8081/analytics/uves/vrouters",
name: "vrouters"
},
{
href: "http://<system IP>:8081/analytics/uves/dns-nodes",
name: "dns-nodes"
}
]

Common UVEs in Contrail

This section presents descriptions of some common UVEs in Contrail.

Virtual Network UVE

This UVE provides information associated with a virtual network, such as:

• list of networks connected to this network

• list of virtual machines spawned in this network

• list of access control lists (ACLs) associated with this virtual network

503

• global input and output statistics

• input and output statistics per virtual network pair

The REST API to get a UVE for a specific virtual network is through HTTP GET, using the URL:

/analytics/uves/virtual-network/<key>

The REST API to get UVEs for all virtual machines is through HTTP GET, using the URL:

/analytics/uves/virtual-networks

Virtual Machine UVE

This UVE provides information associated with a virtual machine, such as:

• list of interfaces in this virtual machine

• list of floating IPs associated with each interface

• input and output statistics

The REST API to get a UVE for a specific virtual machine is through HTTP GET, using the URL:

/analytics/uves/virtual-machine/<key>

The REST API to get UVEs for all virtual machines is through HTTP GET, using the URL:

/analytics/uves/virtual-machines

vRouter UVE

This UVE provides information associated with a vRouter, such as:

• virtual networks present on this vRouter

• virtual machines spawned on the server of this vRouter

• statistics of the traffic flowing through this vRouter

The REST API to get a UVE for a specific vRouter is through HTTP GET, using the URL:

/analytics/uves/vrouter/<key>

The REST API to get UVEs for all virtual machines is through HTTP GET, using the URL:

/analytics/uves/vrouters

504

UVEs for Contrail Nodes

There are multiple node types in Contrail (including the node type vRouter previously described). Other
node types include control node, config node, analytics node, and compute node.

There is a UVE for each node type. The common information associated with each node UVE includes:

• the IP address of the node

• a list of processes running on the node

• the CPU and memory utilization of the running processes

Each UVE also has node-specific information, such as:

• the control node UVE has information about its connectivity to the vRouter and other control nodes

• the analytics node UVE has information about the number of generators connected

The REST API to get a UVE for a specific config node is through HTTP GET, using the URL:

/analytics/uves/config-node/<key>

The REST API to get UVEs for all config nodes is through HTTP GET, using the URL:

/analytics/uves/config-nodes

NOTE: Use similar syntax to get UVES for each of the different types of nodes, substituting the
node type that you want in place of config-node.

Wild Card Query of UVEs

You can use wildcard queries when you want to get multiple UVEs at the same time. Example queries
are the following:

The following HTTP GET with wildcard retrieves all virtual network UVEs:

/analytics/uves/virtual-network/*

The following HTTP GET with wildcard retrieves all virtual network UVEs with name starting with
project1:

/analytics/uves/virtual-network/project1*

Filtering UVE Information

It is possible to retrieve filtered UVE information. The following flags enable you to retrieve partial,
filtered information about UVEs.

505

Supported filter flags include:

1. sfilt : filter by source (usually the hostname of the generator)

2. mfilt : filter by module (the module name of the generator)

3. cfilt : filter by content, useful when only part of a UVE needs to be retrieved

4. kfilt : filter by UVE keys, useful to get multiple, but not all, UVEs of a particular type

Examples

The following HTTP GET with filter retrieves information about virtual network vn1 as provided by the
source src1:

/analytics/uves/virtual-network/vn1?sfilt=src1

The following HTTP GET with filter retrieves information about virtual network vn1 as provided by all
ApiServer modules:

/analytics/uves/virtual-network/vn1?mfilt=ApiServer

Example Output: Virtual Network UVE

Example output for a virtual network UVE:

[user@host ~]# curl <system IP>:8081/analytics/virtual-network/default-domain:demo:front-end |
python -mjson.tool
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 2576 100 2576 0 0 152k 0 --:--:-- --:--:-- --:--:-- 157k
{
 "UveVirtualNetworkAgent": {
 "acl": [
 [
 {
 "@type": "string"
 },
 "a3s18:VRouterAgent"
]
],
 "in_bytes": {
 "#text": "2232972057",
 "@aggtype": "counter",

506

 "@type": "i64"
 },
 "in_stats": {
 "@aggtype": "append",
 "@type": "list",
 "list": {
 "@size": "3",
 "@type": "struct",
 "UveInterVnStats": [
 {
 "bytes": {
 "#text": "2114516371",
 "@type": "i64"
 },
 "other_vn": {
 "#text": "default-domain:demo:back-end",
 "@aggtype": "listkey",
 "@type": "string"
 },
 "tpkts": {
 "#text": "5122001",
 "@type": "i64"
 }
 },
 {
 "bytes": {
 "#text": "1152123",
 "@type": "i64"
 },
 "other_vn": {
 "#text": "__FABRIC__",
 "@aggtype": "listkey",
 "@type": "string"
 },
 "tpkts": {
 "#text": "11323",
 "@type": "i64"
 }
 },
 {
 "bytes": {
 "#text": "8192",
 "@type": "i64"

507

 },
 "other_vn": {
 "#text": "default-domain:demo:front-end",
 "@aggtype": "listkey",
 "@type": "string"
 },
 "tpkts": {
 "#text": "50",
 "@type": "i64"
 }
 }
]
 }
 },
 "in_tpkts": {
 "#text": "5156342",
 "@aggtype": "counter",
 "@type": "i64"
 },
 "interface_list": {
 "@aggtype": "union",
 "@type": "list",
 "list": {
 "@size": "1",
 "@type": "string",
 "element": [
 "tap2158f77c-ec"
]
 }
 },
 "out_bytes": {
 "#text": "2187615961",
 "@aggtype": "counter",
 "@type": "i64"
 },
 "out_stats": {
 "@aggtype": "append",
 "@type": "list",
 "list": {
 "@size": "4",
 "@type": "struct",
 "UveInterVnStats": [
 {

508

 "bytes": {
 "#text": "2159083215",
 "@type": "i64"
 },
 "other_vn": {
 "#text": "default-domain:demo:back-end",
 "@aggtype": "listkey",
 "@type": "string"
 },
 "tpkts": {
 "#text": "5143693",
 "@type": "i64"
 }
 },
 {
 "bytes": {
 "#text": "1603041",
 "@type": "i64"
 },
 "other_vn": {
 "#text": "__FABRIC__",
 "@aggtype": "listkey",
 "@type": "string"
 },
 "tpkts": {
 "#text": "9595",
 "@type": "i64"
 }
 },
 {
 "bytes": {
 "#text": "24608",
 "@type": "i64"
 },
 "other_vn": {
 "#text": "__UNKNOWN__",
 "@aggtype": "listkey",
 "@type": "string"
 },
 "tpkts": {
 "#text": "408",
 "@type": "i64"
 }

509

 },
 {
 "bytes": {
 "#text": "8192",
 "@type": "i64"
 },
 "other_vn": {
 "#text": "default-domain:demo:front-end",
 "@aggtype": "listkey",
 "@type": "string"
 },
 "tpkts": {
 "#text": "50",
 "@type": "i64"
 }
 }
]
 }
 },
 "out_tpkts": {
 "#text": "5134830",
 "@aggtype": "counter",
 "@type": "i64"
 },
 "virtualmachine_list": {
 "@aggtype": "union",
 "@type": "list",
 "list": {
 "@size": "1",
 "@type": "string",
 "element": [
 "dd09f8c3-32a8-456f-b8cc-fab15189f50f"
]
 } }
 },
 "UveVirtualNetworkConfig": {
 "connected_networks": {
 "@aggtype": "union",
 "@type": "list",
 "list": {
 "@size": "1",
 "@type": "string",
 "element": [

510

 "default-domain:demo:back-end"
]
 }
 },
 "routing_instance_list": {
 "@aggtype": "union",
 "@type": "list",
 "list": {
 "@size": "1",
 "@type": "string",
 "element": [
 "front-end"
]
 }
 },
 "total_acl_rules": [
 [
 {
 "#text": "3",
 "@type": "i32"
 },
 ":",
 "a3s14:Schema"
]
]
 }
}

Example Output: Virtual Machine UVE

Example output for a virtual machine UVE:

[user@host ~]# curl <system IP>:8081/analytics/virtual-machine/
f38eb47e-63d2-4b39-80de-8fe68e6af1e4 | python -mjson.tool
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 736 100 736 0 0 160k 0 --:--:-- --:--:-- --:--:-- 179k
{
 "UveVirtualMachineAgent": {
 "interface_list": [
 [
 {

511

 "@type": "list",
 "list": {
 "@size": "1",
 "@type": "struct",
 "VmInterfaceAgent": [
 {
 "in_bytes": {
 "#text": "2188895907",
 "@aggtype": "counter",
 "@type": "i64"
 },
 "in_pkts": {
 "#text": "5130901",
 "@aggtype": "counter",
 "@type": "i64"
 },
 "ip_address": {
 "#text": "192.168.2.253",
 "@type": "string"
 },
 "name": {
 "#text": "f38eb47e-63d2-4b39-80de-8fe68e6af1e4:ccb085a0-
c994-4034-be0f-6fd5ad08ce83",
 "@type": "string"
 },
 "out_bytes": {
 "#text": "2201821626",
 "@aggtype": "counter",
 "@type": "i64"
 },
 "out_pkts": {
 "#text": "5153526",
 "@aggtype": "counter",
 "@type": "i64"
 },
 "virtual_network": {
 "#text": "default-domain:demo:back-end",
 "@aggtype": "listkey",
 "@type": "string"
 }
 }
]
 }

512

 },
 "a3s19:VRouterAgent"
]
]
 }
}

Example Output: vRouter UVE

Example output for a vRouter UVE:

[user@host ~]# curl <system IP>:8081/analytics/vrouter/a3s18 | python -mjson.tool
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 706 100 706 0 0 142k 0 --:--:-- --:--:-- --:--:-- 172k
{
 "VrouterAgent": {
 "collector": [
 [
 {
 "#text": "10.xx.17.1",
 "@type": "string"
 },
 "a3s18:VRouterAgent"
]
],
 "connected_networks": [
 [
 {
 "@type": "list",
 "list": {
 "@size": "1",
 "@type": "string",
 "element": [
 "default-domain:demo:front-end"
]
 }
 },
 "a3s18:VRouterAgent"
]
],
 "interface_list": [

513

 [
 {
 "@type": "list",
 "list": {
 "@size": "1",
 "@type": "string",
 "element": [
 "tap2158f77c-ec"
]
 }
 },
 "a3s18:VRouterAgent"
]
],
 "virtual_machine_list": [
 [
 {
 "@type": "list",
 "list": {
 "@size": "1",
 "@type": "string",
 "element": [
 "dd09f8c3-32a8-456f-b8cc-fab15189f50f"
]
 }
 },
 "a3s18:VRouterAgent"
]
],
 "xmpp_peer_list": [
 [
 {
 "@type": "list",
 "list": {
 "@size": "2",
 "@type": "string",
 "element": [
 "10.xx.17.2",
 "10.xx.17.3"
]
 }
 },
 "a3s18:VRouterAgent"

514

]
]
 }
}

RELATED DOCUMENTATION

Juniper Contrail Configuration API Server Documentation

Log and Flow Information APIs | 515

Log and Flow Information APIs

IN THIS SECTION

HTTP GET APIs | 515

HTTP POST API | 516

POST Data Format Example | 516

Query Types | 518

Examining Asynchronous Query Status | 518

Examining Query Chunks | 519

Example Queries for Log and Flow Data | 519

In Contrail, log and flow analytics information is collected and stored using a horizontally scalable
Contrail collector and NoSQL database. The analytics-api server provides REST APIs to extract this
information using queries. The queries use well-known SQL syntax, hiding the underlying complexity of
the NoSQL tables.

HTTP GET APIs

Use the following GET APIs to identify tables and APIs available for querying.

/analytics/tables -- lists the SQL-type tables available for querying, including the hrefs for each of the
tables

515

/analytics/table/<table> -- lists the APIs available to get information for a given table

/analytics/table/<table>/schema -- lists the schema for a given table

HTTP POST API

Use the following POST API information to extract data from a table.

/analytics/query -- format your query using the following SQL syntax:

1. SELECT field1, field2 ...

2. FROM table1

3. WHERE field1 = value1 AND field2 = value2 ...

4. FILTER BY ...

5. SORT BY ...

6. LIMIT n

Additionally, it is mandatory to include the start time and the end time for the data range to define the
time period for the query data. The parameters of the query are passed through POST data, using the
following fields:

1. start_time — the start of the time period

2. end_time — the end of the time period

3. table — the table from which to extract data

4. select_fields — the columns to display in the extracted data

5. where — the list of match conditions

POST Data Format Example

The POST data is in JSON format, stored in an idl file. A sample file is displayed in the following.

NOTE: The result of the query API is also in JSON format.

/*
* Copyright (c) 2013 Juniper Networks, Inc. All rights reserved.
*/

516

/*
* query_rest.idl
*
* IDL definitions for query engine REST API
*
* PLEASE NOTE: After updating this file, do update json_parse.h
*
*/

enum match_op {
 EQUAL = 1,
 NOT_EQUAL = 2,
 IN_RANGE = 3,
 NOT_IN_RANGE = 4, // not supported currently
 // following are only for numerical column fields
 LEQ = 5, // column value is less than or equal to filter value
 GEQ = 6, // column value is greater than or equal to filter value
 PREFIX = 7, // column value has the "value" field as prefix
 REGEX_MATCH = 8 // for filters only
}

enum sort_op {
 ASCENDING = 1,
 DESCENDING = 2,
}

struct match {
 1: string name;
 2: string value;
 3: match_op op;
 4: optional string value2; // this is for only RANGE match
}

typedef list<match> term; (AND of match)

enum flow_dir_t {
 EGRESS = 0,
 INGRESS = 1
}
struct query {
 1: string table; // Table to query (FlowSeriesTable, MessageTable, ObjectVNTable,
ObjectVMTable, FlowRecordTable)
 2: i64 start_time; // Microseconds in UTC since Epoch

517

 3: i64 end_time; // Microseconds in UTC since Epoch
 4: list<string>> select_fields; // List of SELECT fields
 5: list<term> where; // WHERE (OR of terms)
 6: optional sort_op sort;
 7: optional list<string> sort_fields;
 8: optional i32 limit;
 9: optional flow_dir_t dir; // direction of flows being queried
 10: optional list<match> filter; // filter the processed result by value
}

struct flow_series_result_entry {
 1: optional i64 T; // Timestamp of the flow record
 2: optional string sourcevn;
 3: optional string sourceip;
 4: optional string destvn;
 5: optional string destip;
 6: optional i32 protocol;
 7: optional i32 sport;
 8: optional i32 dport;
 9: optional flow_dir_t direction_ing;
 10: optional i64 packets; // mutually exclusive to 12,13
 11: optional i64 bytes; // mutually exclusive to 12,13
 12: optional i64 sum_packets; // represented as "sum(packets)" in JSON
 13: optional i64 sum_bytes; // represented as "sum(bytes)" in JSON
};
typedef list<flow_series_result_entry> flow_series_result;

Query Types

The analytics-api supports two types of queries. Both types use the same POST parameters as described
in POST API.

• sync — Default query mode. The results are sent inline with the query processing.

• async — To execute a query in async mode. The result is "202 Accepted." This status code indicates
the request has been accepted for processing but the processing has not been completed.

Examining Asynchronous Query Status

For an asynchronous query, the analytics-api responds with the code: 202 Accepted. The response contents
are a status entity href URL of the form: /analytics/query/<QueryID>. The QueryID is assigned by the
analytics-api. To view the response contents, poll the status entity by performing a GET action on the
URL. The status entity has a variable named progress, with a number between 0 and 100, representing

518

the approximate percentage completion of the query. When progress is 100, the query processing is
complete.

Examining Query Chunks

The status entity has an element named chunks that lists portions (chunks) of query results. Each element
of this list has three fields: start_time, end_time, href. The analytics-api determines how many chunks to
list to represent the query data. A chunk can include an empty string ("") to indicate that the data query
is not yet available. If a partial result is available, the chunk href is of the form: /analytics/query/<QueryID>/
chunk-partial/<chunk number>. When the final result of a chunk is available, the href is of the form: /
analytics/query/<QueryID>/chunk-final/<chunk number>.

Example Queries for Log and Flow Data

The following example query lists the tables available for query.

[root@host ~]# curl 127.0.0.1:8081/analytics/tables | python -mjson.tool
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 846 100 846 0 0 509k 0 --:--:-- --:--:-- --:--:-- 826k
[
 {
 "href": "http://127.0.0.1:8081/analytics/table/MessageTable",
 "name": "MessageTable"
 },
 {
 "href": "http://127.0.0.1:8081/analytics/table/ObjectVNTable",
 "name": "ObjectVNTable"
 },
 {
 "href": "http://127.0.0.1:8081/analytics/table/ObjectVMTable",
 "name": "ObjectVMTable"
 },
 {
 "href": "http://127.0.0.1:8081/analytics/table/ObjectVRouter",
 "name": "ObjectVRouter"
 },
 {
 "href": "http://127.0.0.1:8081/analytics/table/ObjectBgpPeer",
 "name": "ObjectBgpPeer"
 },
 {
 "href": "http://127.0.0.1:8081/analytics/table/ObjectRoutingInstance",

519

 "name": "ObjectRoutingInstance"
 },
 {
 "href": "http://127.0.0.1:8081/analytics/table/ObjectXmppConnection",
 "name": "ObjectXmppConnection"
 },
 {
 "href": "http://127.0.0.1:8081/analytics/table/FlowRecordTable",
 "name": "FlowRecordTable"
 },
 {
 "href": "http://127.0.0.1:8081/analytics/table/FlowSeriesTable",
 "name": "FlowSeriesTable"
 }
]

The following example query lists details for the table named MessageTable.

[root@host ~]# curl 127.0.0.1:8081/analytics/table/MessageTable | python -mjson.tool
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 192 100 192 0 0 102k 0 --:--:-- --:--:-- --:--:-- 187k
[
 {
 "href": "http://127.0.0.1:8081/analytics/table/MessageTable/schema",
 "name": "schema"
 },
 {
 "href": "http://127.0.0.1:8081/analytics/table/MessageTable/column-values",
 "name": "column-values"
 }
]

The following example query lists the schema for the table named MessageTable.

[root@host ~]# curl 127.0.0.1:8081/analytics/table/MessageTable/schema | python -mjson.tool
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 630 100 630 0 0 275k 0 --:--:-- --:--:-- --:--:-- 307k
{
 "columns": [

520

 {
 "datatype": "int",
 "index": "False",
 "name": "MessageTS"
 },
 {
 "datatype": "string",
 "index": "True",
 "name": "Source"
 },
 {
 "datatype": "string",
 "index": "True",
 "name": "ModuleId"
 },
 {
 "datatype": "string",
 "index": "True",
 "name": "Category"
 },
 {
 "datatype": "int",
 "index": "True",
 "name": "Level"
 },
 {
 "datatype": "int",
 "index": "False",
 "name": "Type"
 },
 {
 "datatype": "string",
 "index": "True",
 "name": "Messagetype"
 },
 {
 "datatype": "int",
 "index": "False",
 "name": "SequenceNum"
 },
 {
 "datatype": "string",
 "index": "False",

521

 "name": "Context"
 },
 {
 "datatype": "string",
 "index": "False",
 "name": "Xmlmessage"
 }
],
 "type": "LOG"
}

The following set of example queries explore a message table.

root@a6s45:~# cat filename
{ "end_time": "now" , "select_fields": ["MessageTS", "Source", "ModuleId", "Category",
"Messagetype", "SequenceNum", "Xmlmessage", "Type", "Level", "NodeType", "InstanceId"] , "sort":
1 , "sort_fields": ["MessageTS"] , "start_time": "now-10m" , "table": "MessageTable" , "where":
{"name": "ModuleId", "value": "contrail-control", "op": 1, "suffix": null, "value2": null},
{"name": "Messagetype", "value": "BGPRouterInfo", "op": 1, "suffix": null, "value2": null} }

root@a6s45:~#
root@a6s45:~# curl -X POST --data @filename 127.0.0.1:8081/analytics/query --header "Content-
Type:application/json" | python -mjson.tool
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 9765 0 9297 100 468 9168 461 0:00:01 0:00:01 --:--:-- 9177
{
 "value": [
 {
 "Category": null,
 "InstanceId": "0",
 "Level": 2147483647,
 "MessageTS": 1428442589947392,
 "Messagetype": "BGPRouterInfo",
 "ModuleId": "contrail-control",
 "NodeType": "Control",
 "SequenceNum": 1302,
 "Source": "a6s45",
 "Type": 6,
 "Xmlmessage": "<BGPRouterInfo type=""><data type=""><BgpRouterState><name type=""
>a6s45</name><cpu_info type=""><CpuLoadInfo><num_cpu type="">4</num_cpu

522

><meminfo type=""><MemInfo><virt type="">438436</virt><peakvirt type=""
>561048</peakvirt><res type="">12016</res></MemInfo></meminfo><cpu_share
type="">0.0416667</cpu_share></CpuLoadInfo></cpu_info><cpu_share type=""
>0.0416667</cpu_share></BgpRouterState></data></BGPRouterInfo>" },
 {
 "Category": null,
 "InstanceId": "0",
 "Level": 2147483647,

...

Working with Neutron

IN THIS SECTION

Data Structure | 523

Network Sharing in Neutron | 524

Commands for Neutron Network Sharing | 525

Support for Neutron APIs | 525

Contrail Neutron Plugin | 526

DHCP Options | 526

Incompatibilities | 527

OpenStack’s networking solution, Neutron, has representative elements for Contrail elements for
Network (VirtualNetwork), Port (VirtualMachineInterface), Subnet (IpamSubnets), and Security-Group.
The Neutron plugin translates the elements from one representation to another.

Data Structure

Although the actual data between Neutron and Contrail is similar, the listings of the elements differs
significantly. In the Contrail API, the networking elements list is a summary, containing only the UUID,
FQ name, and an href, however, in Neutron, all details of each resource are included in the list.

The Neutron plugin has an inefficient list retrieval operation, especially at scale, because it:

• reads a list of resources (for example. GET /virtual-networks), then

523

• iterates and reads in the details of the resource (GET /virtual-network/<uuid>).

As a result, the API server spends most of the time in this type of GET operation just waiting for results
from the Cassandra database.

The following features in Contrail improve performance with Neutron:

• An optional detail query parameter is added in the GET of collections so that the API server returns
details of all the resources in the list, instead of just a summary. This is accompanied by changes in
the Contrail API library so that a caller gets returned a list of the objects.

• The existing Contrail list API takes in an optional parent_id query parameter to return information
about the resource anchored by the parent.

• The Contrail API server reads objects from Cassandra in a multiget format into obj_uuid_cf, where
object contents are stored, instead of reading in an xget/get format. This reduces the number of
round-trips to and from the Cassandra database.

Network Sharing in Neutron

Using Neutron, a deployer can make a network accessible to other tenants or projects by using one of
two attributes on a network:

• Set the shared attribute to allow sharing.

• Set the router:external attribute, when the plugin supports an external_net extension.

Using the Shared Attribute

When a network has the shared attribute set, users in other tenants or projects, including non-admin
users, can access that network, using:

neutron net-list --shared

Users can also launch a virtual machine directly on that network, using:

nova boot <other-parameters> –nic net-id=<shared-net-id>

Using the Router:External Attribute

When a network has the router:external attribute set, users in other tenants or projects, including non-
admin users, can use that network for allocating floating IPs, using:

neutron floatingip-create <router-external-net-id>

then associating the IP address pool with their instances.

524

NOTE: The VN hosting the FIP pool should be marked shared and external.

Commands for Neutron Network Sharing

The following table summarizes the most common Neutron commands used with Contrail.

Table 81: Neutron commands

Action Command

List all shared networks. neutron net-list --shared

Create a network that has the shared attribute. neutron net-create <net-name> –shared

Set the shared attribute on an existing network. neutron net-update <net-name> -shared

List all router:external networks. neutron net-list --router:external

Create a network that has the router:externalattribute. neutron net-create <net-name> -router:external

Set the router:external attribute on an existing network. neutron net-update <net-name> -router:external

Support for Neutron APIs

The OpenStack Neutron project provides virtual networking services among devices that are managed
by the OpenStack compute service. Software developers create applications by using the OpenStack
Networking API v2.0 (Neutron).

Contrail provides the following features to increase support for OpenStack Neutron:

• Create a port independently of a virtual machine.

• Support for more than one subnet on a virtual network.

• Support for allocation pools on a subnet.

• Per tenant quotas.

• Enabling DHCP on a subnet.

525

• External router can be used for floating IPs.

For more information about using OpenStack Networking API v2.0 (Neutron), refer to: http://
docs.openstack.org/api/openstack-network/2.0/content/ and the OpenStack Neutron Wiki at: http://
wiki.openstack.org/wiki/Neutron.

Contrail Neutron Plugin

The Contrail Neutron plugin provides an implementation for the following core resources:

• Network

• Subnet

• Port

It also implements the following standard and upstreamed Neutron extensions:

• Security group

• Router IP and floating IP

• Per-tenant quota

• Allowed address pair

The following Contrail-specific extensions are implemented:

• Network IPAM

• Network policy

• VPC table and route table

• Floating IP pools

The plugin does not implement native bulk, pagination, or sort operations and relies on emulation
provided by the Neutron common code.

DHCP Options

In Neutron commands, DHCP options can be configured using extra-dhcp-options in port-create.

Example

neutron port-create net1 --extra-dhcp-opt opt_name=<dhcp_option_name>,opt_value=<value>

The opt_name and opt_value pairs that can be used are maintained in GitHub: https://github.com/
Juniper/contrail-controller/wiki/Extra-DHCP-Options .

526

Incompatibilities

In the Contrail architecture, the following are known incompatibilities with the Neutron API.

• Filtering based on any arbitrary key in the resource is not supported. The only supported filtering is
by id, name, and tenant_id.

• To use a floating IP, it is not necessary to connect the public subnet and the private subnet to a
Neutron router. Marking a public network with router:external is sufficient for a floating IP to be
created and associated, and packet forwarding to it will work.

• The default values for quotas are sourced from /etc/contrail/contrail-api.conf and not from /etc/
neutron/neutron.conf.

Support for Amazon VPC APIs on Contrail OpenStack

IN THIS SECTION

Overview of Amazon Virtual Private Cloud | 528

Mapping Amazon VPC Features to OpenStack Contrail Features | 528

VPC and Subnets Example | 529

Euca2ools CLI for VPC and Subnets | 530

Security in VPC: Network ACLs Example | 530

Euca2ools CLI for Network ACLs | 532

Security in VPC: Security Groups Example | 532

Euca2ools CLI for Security Groups | 533

Elastic IPs in VPC | 534

Euca2ools CLI for Elastic IPs | 534

Euca2ools CLI for Route Tables | 535

Supported Next Hops | 535

Internet Gateway Next Hop Euca2ools CLI | 536

NAT Instance Next Hop Euca2ools CLI | 536

Example: Creating a NAT Instance with Euca2ools CLI | 536

527

Overview of Amazon Virtual Private Cloud

The current Grizzly release of OpenStack supports Elastic Compute Cloud (EC2) API translation to
OpenStack Nova, Quantum, and Keystone calls. EC2 APIs are used in Amazon Web Services (AWS) and
virtual private clouds (VPCs) to launch virtual machines, assign IP addresses to virtual machines, and so
on. A VPC provides a container where applications can be launched and resources can be accessed over
the networking services provided by the VPC.

Contrail enhances its use of EC2 APIs to support the Amazon VPC APIs.

The Amazon VPC supports networking constructs such as: subnets, DHCP options, elastic IP addresses,
network ACLs, security groups, and route tables. The Amazon VPC APIs are now supported on the
Openstack Contrail distribution, so users of the Amazon EC2 APIs for their VPC can use the same
scripts to move to an Openstack Contrail solution.

Euca2ools are command-line tools for interacting with Amazon Web Services (AWS) and other AWS-
compatible web services, such as OpenStack. Euca2ools have been extended in OpenStack Contrail to
add support for the Amazon VPC, similar to the support that already exists for the Amazon EC2 CLI.

For more information about Amazon VPC and AWS EC2, see:

• Amazon VPC documentation: http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/
VPC_Introduction.html

• Amazon VPC API list: http://docs.aws.amazon.com/AWSEC2/latest/APIReference/query-apis.html

Mapping Amazon VPC Features to OpenStack Contrail Features

The following table compares Amazon VPC features to their equivalent features in OpenStack Contrail.

Table 82: Amazon VPC and OpenStack Contrail Feature Comparison

Amazon VPC Feature OpenStack Contrail Feature

VPC Project

Subnets Networks (Virtual Networks)

DHCP options IPAM

Elastic IP Floating IP

Network ACLs Network ACLs

528

Table 82: Amazon VPC and OpenStack Contrail Feature Comparison (Continued)

Amazon VPC Feature OpenStack Contrail Feature

Security Groups Security Groups

Route Table Route Table

VPC and Subnets Example

When creating a new VPC, the user must provide a classless inter-domain routing (CIDR) block of which
all subnets in this VPC will be part.

In the following example, a VPC is created with a CIDR block of 10.1.0.0/16. A subnet is created within
the VPC CIDR block, with a CIDR block of 10.1.1.0/24. The VPC has a default network ACL named acl-
default.

All subnets created in the VPC are automatically associated to the default network ACL. This association
can be changed when a new network ACL is created. The last command in the list below creates a
virtual machine using the image ami-00000003 and launches with an interface in subnet-5eb34ed2.

euca-create-vpc 10.1.0.0/16
VPC VPC:vpc-8352aa59 created

euca-describe-vpcs
VpcId CidrBlock DhcpOptions
----- --------- -----------
vpc-8352aa59 10.1.0.0/16 None

euca-create-subnet -c 10.1.1.0/24 vpc-8352aa59
Subnet: subnet-5eb34ed2 created

euca-describe-subnets
Subnet-id Vpc-id CidrBlock
--------- ------ ---------
subnet-5eb34ed2 vpc-8352aa59 10.1.1.0/24

euca-describe-network-acls
AclId

acl-default(def)

529

vpc-8352aa59
 Rule Dir Action Proto Port Range Cidr
 ---- --- ------ ----- ---- ----- ----
 100 ingress allow -1 0 65535 0.0.0.0/0
 100 egress allow -1 0 65535 0.0.0.0/0
 32767 ingress deny -1 0 65535 0.0.0.0/0
 32767 egress deny -1 0 65535 0.0.0.0/0

 Assocation SubnetId AclId
 ---------- -------- ------------
 aclassoc-0c549d66 subnet-5eb34ed2 acl-default

euca-run-instances -s subnet-5eb34ed2 ami-00000003

Euca2ools CLI for VPC and Subnets

The following euca2ools CLI commands are used to create, define, and delete VPCs and subnets:

• euca-create-vpc

• euca-delete-vpc

• euca-describe-vpcs

• euca-create-subnet

• euca-delete-subnet

• euca-describe-subnets

Security in VPC: Network ACLs Example

Network ACLs support ingress and egress rules for traffic classification and filtering. The network ACLs
are applied at a subnet level.

In the following example, a new ACL, acl-ba7158, is created and an existing subnet is associated to the
new ACL.

euca-create-network-acl vpc-8352aa59
acl-ba7158c

euca-describe-network-acls
AclId

530

acl-default(def)
vpc-8352aa59
 Rule Dir Action Proto Port Range Cidr
 ---- --- ------ ----- ---- ----- ----
 100 ingress allow -1 0 65535 0.0.0.0/0
 100 egress allow -1 0 65535 0.0.0.0/0
 32767 ingress deny -1 0 65535 0.0.0.0/0
 32767 egress deny -1 0 65535 0.0.0.0/0

 Assocation SubnetId AclId
 ---------- -------- ------------
 aclassoc-0c549d66 subnet-5eb34ed2 acl-default
AclId

acl-ba7158c
vpc-8352aa59
 Rule Dir Action Proto Port Range Cidr
 ---- --- ------ ----- ---- ----- ----
 32767 ingress deny -1 0 65535 0.0.0.0/0
 32767 egress deny -1 0 65535 0.0.0.0/0

euca-replace-network-acl-association -a aclassoc-0c549d66 acl-ba7158c
aclassoc-0c549d66

euca-describe-network-acls
AclId

acl-default(def)
vpc-8352aa59
 Rule Dir Action Proto Port Range Cidr
 ---- --- ------ ----- ---- ----- ----
 100 ingress allow -1 0 65535 0.0.0.0/0
 100 egress allow -1 0 65535 0.0.0.0/0
 32767 ingress deny -1 0 65535 0.0.0.0/0
 32767 egress deny -1 0 65535 0.0.0.0/0

 Assocation SubnetId AclId

531

 ---------- -------- ------------

AclId

acl-ba7158c
vpc-8352aa59
 Rule Dir Action Proto Port Range Cidr
 ---- --- ------ ----- ---- ----- ----
 32767 ingress deny -1 0 65535 0.0.0.0/0
 32767 egress deny -1 0 65535 0.0.0.0/0

 Assocation SubnetId AclId
 ---------- -------- ------------
 aclassoc-0c549d66 subnet-5eb34ed2 acl-ba7158c

Euca2ools CLI for Network ACLs

The following euca2ools CLI commands are used to create, define, and delete VPCs and subnets:

• euca-create-network-acl

• euca-delete-network-acl

• euca-replace-network-acl-association

• euca-describe-network-acls

• euca-create-network-acl-entry

• euca-delete-network-acl-entry

• euca-replace-network-acl-entry

Security in VPC: Security Groups Example

Security groups provide virtual machine level ingress/egress controls. Security groups are applied to
virtual machine interfaces.

In the following example, a new security group is created. The rules can be added or removed for the
security group based on the commands listed for euca2ools. The last line launches a virtual machine using
the newly created security group.

euca-describe-security-groups

532

GroupId VpcId Name Description
------- ----- ---- -----------
sg-6d89d7e2 vpc-8352aa59 default

 Direction Proto Start End Remote
 --------- ----- ----- --- ------
 Ingress any 0 65535 [0.0.0.0/0]
 Egress any 0 65535 [0.0.0.0/0]

euca-create-security-group -d "TestGroup" -v vpc-8352aa59 testgroup
GROUP sg-c5b9d22a testgroup TestGroup

euca-describe-security-groups

GroupId VpcId Name Description
------- ----- ---- -----------
sg-6d89d7e2 vpc-8352aa59 default

 Direction Proto Start End Remote
 --------- ----- ----- --- ------
 Ingress any 0 65535 [0.0.0.0/0]
 Egress any 0 65535 [0.0.0.0/0]

GroupId VpcId Name Description
------- ----- ---- -----------
sg-c5b9d22a vpc-8352aa59 testgroup TestGroup

 Direction Proto Start End Remote
 --------- ----- ----- --- ------
 Egress any 0 65535 [0.0.0.0/0]

euca-run-instances -s subnet-5eb34ed2 -g testgroup ami-00000003

Euca2ools CLI for Security Groups

The following euca2ools CLI commands are used to create, define, and delete security groups:

• euca-create-security-group

533

• euca-delete-security-group

• euca-describe-security-groups

• euca-authorize-security-group-egress

• euca-authorize-security-group-ingress

• euca-revoke-security-group-egress

• euca-revoke-security-group-ingress

Elastic IPs in VPC

Elastic IPs in VPCs are equivalent to the floating IPs in the Contrail Openstack solution.

In the following example, a floating IP is requested from the system and assigned to a particular virtual
machine. The prerequisite is that the provider or Contrail administrator has provisioned a network
named “public” and allocated a floating IP pool to it. This “public” floating IP pool is then internally used
by the tenants to request public IP addresses that they can use and attach to virtual machines.

euca-allocate-address --domain vpc
ADDRESS 10.84.14.253 eipalloc-78d9a8c9

euca-describe-addresses --filter domain=vpc
Address Domain AllocationId InstanceId(AssociationId)
------- ------ ------------ -------------------------
10.84.14.253 vpc eipalloc-78d9a8c9

euca-associate-address -a eipalloc-78d9a8c9 i-00000008
ADDRESS eipassoc-78d9a8c9

euca-describe-addresses --filter domain=vpc
Address Domain AllocationId InstanceId(AssociationId)
------- ------ ------------ -------------------------
10.84.14.253 vpc eipalloc-78d9a8c9 i-00000008(eipassoc-78d9a8c9)

Euca2ools CLI for Elastic IPs

The following euca2ools CLI commands are used to create, define, and delete elastic IPs:

• euca-allocate-address

• euca-release-address

534

• euca-describe-addresses

• euca-associate-address

• euca-disassociate-address

Euca2ools CLI for Route Tables

Route tables can be created in an Amazon VPC and associated with subnets. Traffic exiting a subnet is
then looked up in the route table and, based on the route lookup result, the next hop is chosen.

The following euca2ools CLI commands are used to create, define, and delete route tables:

• euca-create-route-table

• euca-delete-route-table

• euca-describe-route-tables

• euca-associate-route-table

• euca-disassociate-route-table

• euca-replace-route-table-association

• euca-create-route

• euca-delete-route

• euca-replace-route

Supported Next Hops

The supported next hops are:

• Local Next Hop

Designating local next hop indicates that all subnets in the VPC are reachable for the destination
prefix.

• Internet Gateway Next Hop

This next hop is used for traffic destined to the Internet. All virtual machines using the Internet
gateway next hop are required to use an Elastic IP to reach the Internet, because the subnet IPs are
private IPs.

• NAT instance

To create this next hop, the user needs to launch a virtual machine that provides network address
translation (NAT) service. The virtual machine has two interfaces: one internal and one external, both

535

of which are automatically created. The only requirement here is that a “public” network should have
been provisioned by the admin, because the second interface of the virtual machine is created in the
“public” network.

Internet Gateway Next Hop Euca2ools CLI

The following euca2ools CLI commands are used to create, define, and delete Internet gateway next hop:

• euca-attach-internet-gateway

• euca-create-internet-gateway

• euca-delete-internet-gateway

• euca-describe-internet-gateways

• euca-detach-internet-gateway

NAT Instance Next Hop Euca2ools CLI

The following euca2ools CLI commands are used to create, define, and delete NAT instance next hops:

• euca-run-instances

• euca-terminate-instances

Example: Creating a NAT Instance with Euca2ools CLI

The following example creates a NAT instance and creates a default route pointing to the NAT instance.

euca-describe-route-tables
RouteTableId Main VpcId AssociationId SubnetId
------------ ---- ----- ------------- --------
rtb-default yes vpc-8352aa59 rtbassoc-0c549d66 subnet-5eb34ed2

 Prefix NextHop
 ------ -------
 10.1.0.0/16 local

euca-describe-images
IMAGE ami-00000003 None (ubuntu) 2c88a895fdea4461a81e9b2c35542130
IMAGE ami-00000005 None (nat-service) 2c88a895fdea4461a81e9b2c35542130

euca-run-instances ami-00000005

euca-create-route --cidr 0.0.0.0/0 -i i-00000006 rtb-default

536

euca-describe-route-tables
RouteTableId Main VpcId AssociationId SubnetId
------------ ---- ----- ------------- --------
rtb-default yes vpc-8352aa59 rtbassoc-0c549d66 subnet-5eb34ed2

 Prefix NextHop
 ------ -------
 10.1.0.0/16 local
 0.0.0.0/0 i-00000006

537

	Table of Contents
	About This Guide
	Monitoring and Troubleshooting Contrail
	Understanding Contrail Analytics
	Understanding Contrail Analytics
	Contrail Alert Streaming
	Underlay Overlay Mapping in Contrail
	Overview: Underlay Overlay Mapping using Contrail Analytics
	Underlay Overlay Analytics Available in Contrail
	Architecture and Data Collection
	New Processes/Services for Underlay Overlay Mapping
	External Interfaces Configuration for Underlay Overlay Mapping
	Physical Topology
	SNMP Configuration
	Link Layer Discovery Protocol (LLDP) Configuration
	IPFIX and sFlow Configuration
	Sending pRouter Information to the SNMP Collector in Contrail
	pRouter UVEs
	Contrail User Interface for Underlay Overlay Analytics
	Enabling Physical Topology on the Web UI
	Viewing Topology to the Virtual Machine Level
	Viewing the Traffic of any Link
	Trace Flows
	Search Flows and Map Flows
	Overlay to Underlay Flow Map Schemas
	Module Operations for Overlay Underlay Mapping
	SNMP Collector Operation
	Topology Module Operation
	IPFIX and sFlow Collector Operation
	Troubleshooting Underlay Overlay Mapping
	Script to add pRouter Objects

	Encryption Between Analytics API Servers and Client Servers

	Configuring Contrail Analytics
	Analytics Scalability
	High Availability for Analytics
	vRouter Command Line Utilities
	Overview
	vif Command
	clear Command
	flow Command
	vrfstats Command
	rt Command
	dropstats Command
	mpls Command
	mirror Command
	vxlan Command
	nh Command
	dpdkinfo Command
	dpdkconf Command

	Tracing the vRouter Packet Path
	Unicast Packet Path - Intra-VN
	Unicast Packet Path - Inter-VN
	Broadcast, Unknown Unicast, and Multicast Packet Path

	Using Contrail Tools
	Using Sandump Tool​
	Security Logging Object
	Defining an SLO
	Attaching an SLO to a Virtual Network and Virtual Machine Interface
	Attaching an SLO to a Virtual Network
	Attaching an SLO to a Virtual Machine Interface
	Attaching an SLO to a Virtual Machine Interface while creating a Virtual Port
	Attaching an SLO to an existing Virtual Machine Interface

	Editing an Existing SLO

	System Log Receiver in Contrail Analytics
	Overview
	Redirecting System Logs to Contrail Collector
	Exporting Logs from Contrail Analytics

	Sending Flow Messages to the Contrail System Log
	User Configuration for Analytics Alarms and Log Statistics
	Configuring Alarms Based on User-Visible Entities Data
	Examples: Detecting Anomalies
	Configuring the User-Defined Log Statistic
	Implementing the User-Defined Log Statistic

	Contrail Networking Alarms
	Alarms History
	Node Memory and CPU Information
	Role- and Resource-Based Access Control for the Contrail Analytics API
	Configuring Analytics as a Standalone Solution
	Agent Modules in Contrail Networking
	Configuring Secure Sandesh and Introspect for Contrail Analytics

	Configuring Traffic Mirroring to Monitor
	Configuring Traffic Analyzers and Packet Capture for Mirroring
	Traffic Analyzer Images
	Configuring Traffic Analyzers
	Setting Up Traffic Mirroring Using Configure > Networking > Services

	Configuring Interface Monitoring and Mirroring
	Mirroring Enhancements
	Analyzer Service Virtual Machine
	Using the Wireshark Plugin to Analyze Packets Between vRouter and vRouter Agent on pkt0 Interface
	Mapping VLAN Tags from a Physical NIC to a VMI (NIC-Assisted Mirroring)

	Using Contrail Web UI to Monitor and Troubleshoot the Network
	Monitoring the System
	Monitor > Infrastructure > Dashboard
	Monitor Dashboard
	Monitor Individual Details from the Dashboard
	Using Bubble Charts
	Color-Coding of Bubble Charts

	Monitor > Infrastructure > Control Nodes
	Monitor Control Nodes Summary
	Monitor Individual Control Node Details
	Monitor Individual Control Node Console
	Monitor Individual Control Node Peers
	Monitor Individual Control Node Routes

	Monitor > Infrastructure > Virtual Routers
	Monitor vRouters Summary
	Monitor Individual vRouters Tabs
	Monitor Individual vRouter Details Tab
	Monitor Individual vRouters Interfaces Tab
	Monitor Individual vRouters Networks Tab
	Monitor Individual vRouters ACL Tab
	Monitor Individual vRouters Flows Tab
	Monitor Individual vRouters Routes Tab
	Monitor Individual vRouter Console Tab

	Monitor > Infrastructure > Analytics Nodes
	Monitor Analytics Nodes
	Monitor Analytics Individual Node Details Tab
	Monitor Analytics Individual Node Generators Tab
	Monitor Analytics Individual Node QE Queries Tab
	Monitor Analytics Individual Node Console Tab

	Monitor > Infrastructure > Config Nodes
	Monitor Config Nodes
	Monitor Individual Config Node Details
	Monitor Individual Config Node Console

	Monitor > Networking
	Monitor > Networking Menu Options
	Monitor > Networking > Dashboard
	Monitor > Networking > Projects
	Monitor Projects Detail
	Monitor > Networking > Networks

	Query > Flows
	Query > Flows > Flow Series
	Example: Query Flow Series
	Query > Flow Records
	Query > Flows > Query Queue

	Query > Logs
	Query > Logs Menu Options
	Query > Logs > System Logs
	Sample Query for System Logs
	Query > Logs > Object Logs

	Debugging Processes Using the Contrail Introspect Feature
	Example: Debugging Connectivity Using Monitoring for Troubleshooting
	Using Monitoring to Debug Connectivity

	Contrail Analytics Optional Modules

	Using Contrail Command to Monitor and Troubleshoot the Network
	Viewing Overlay Routes
	Monitoring Bond Interfaces in DPDK Enabled Devices
	Top N View in Contrail Command
	Contrail Command UI—Top N Feature
	Top N Filter Options
	Chart View

	Viewing Topology Maps from Contrail Command
	Viewing Packet Path in Topology View
	Assign Custom Names to Privileged Ports and VXLAN IDs
	Viewing the Monitoring Dashboards
	Creating a Query for Flows
	Contrail Analytics Optional Modules

	Contrail Insights in Contrail Command
	Contrail Insights Overview
	Contrail Insights Flows in Contrail Command
	Configuring Contrail Insights Flows from Contrail Command
	Configuring Contrail Insights Flows During Fabric Onboarding
	Configuring Contrail Insights Flows by Assigning Telemetry and sFlow Profiles to Devices
	Removing a Telemetry Profile

	Viewing Telemetry KPI Alarms for Fabric Devices and Ports
	Adding, Editing, and Deleting sFlow Collector Nodes in Contrail Command
	Adding or Deleting sFlow Collector Nodes by Modifying instances.yml
	Configuring Contrail Insights Alarms using Contrail Command
	Configuring Instances in Contrail Insights
	Viewing Cluster Node Details and Metric Values

	Common Support Answers
	Debugging Ping Failures for Policy-Connected Networks
	Debugging BGP Peering and Route Exchange in Contrail
	Example Cluster
	Verifying the BGP Routers
	Verifying the Route Exchange
	Debugging Route Exchange with Policies
	Debugging Peering with an MX Series Router
	Debugging a BGP Peer Down Error with Incorrect Family
	Configuring MX Peering (iBGP)
	Checking Route Exchange with an MX Series Peer
	Checking the Route in the MX Series Router

	Troubleshooting the Floating IP Address Pool in Contrail
	Example Cluster
	Example
	Example: MX80 Configuration for the Gateway
	Ping the Floating IP from the Public Network
	Troubleshooting Details
	Get the UUID of the Virtual Network
	View the Floating IP Object in the API Server
	View floating-ips in floating-ip-pools in the API Server
	Check Floating IP Objects in the Virtual Machine Interface
	View the BGP Peer Status on the Control Node
	Querying Routes in the Public Virtual Network
	Verification from the MX80 Gateway
	Viewing the Compute Node Vnsw Agent
	Advanced Troubleshooting

	Removing Stale Virtual Machines and Virtual Machine Interfaces
	Problem Example
	Show Virtual Machines
	Delete Methods

	Troubleshooting Link-Local Services in Contrail
	Overview of Link-Local Services
	Troubleshooting Procedure for Link-Local Services
	Metadata Service
	Troubleshooting Procedure for Link-Local Metadata Service

	Contrail Commands and APIs
	Contrail Commands
	Getting Contrail Node Status
	Overview
	UVE for NodeStatus
	Node Status Features
	Using Introspect to Get Process Status
	contrail-status script

	contrail-logs (Accessing Log File Messages)
	contrail-status (Viewing Node Status)
	contrail-version (Viewing Version Information)

	Contrail Application Programming Interfaces (APIs)
	Contrail Analytics Application Programming Interfaces (APIs) and User-Visible Entities (UVEs)
	User-Visible Entities
	Common UVEs in Contrail
	Virtual Network UVE
	Virtual Machine UVE
	vRouter UVE
	UVEs for Contrail Nodes
	Wild Card Query of UVEs
	Filtering UVE Information

	Log and Flow Information APIs
	HTTP GET APIs
	HTTP POST API
	POST Data Format Example
	Query Types
	Examining Asynchronous Query Status
	Examining Query Chunks
	Example Queries for Log and Flow Data

	Working with Neutron
	Data Structure
	Network Sharing in Neutron
	Commands for Neutron Network Sharing
	Support for Neutron APIs
	Contrail Neutron Plugin
	DHCP Options
	Incompatibilities

	Support for Amazon VPC APIs on Contrail OpenStack
	Overview of Amazon Virtual Private Cloud
	Mapping Amazon VPC Features to OpenStack Contrail Features
	VPC and Subnets Example
	Euca2ools CLI for VPC and Subnets
	Security in VPC: Network ACLs Example
	Euca2ools CLI for Network ACLs
	Security in VPC: Security Groups Example
	Euca2ools CLI for Security Groups
	Elastic IPs in VPC
	Euca2ools CLI for Elastic IPs
	Euca2ools CLI for Route Tables
	Supported Next Hops
	Internet Gateway Next Hop Euca2ools CLI
	NAT Instance Next Hop Euca2ools CLI
	Example: Creating a NAT Instance with Euca2ools CLI

