

vSECC

Communication Controller for High Power Charging Stations

What is vSECC?

vSECC (Supply Equipment Communication Controller) is a communication controller for charging stations. It serves as a communication interface between the electric vehicle, the charging station management system (CSMS) and the power electronics. vSECC supports charging communication over CCS, CHAdeMO and inverted or roof-mounted pantograph charging. It covers the communication protocols ISO 15118, DIN SPEC 70121, OppCharge and CHAdeMO.

Typical use cases for vSECC are high-power double dispenser charging stations in public areas, residential or company parking lots. vSECC is also suitable for both destination and opportunity charge points along with roof-mounted and inverted pantographs using an external WLAN module. Moreover, it supports Value-Added-Services, for example for the preconditioning of buses.

Main Features

- > Charging communication according to ISO 15118, DIN 70121, CHAdeMO and OppCharge
- > Supports OCPP 2.0.1 for the backend communication
- > Manages two charge points in parallel
- > Vehicle identification possible via External Identification Means (EIM), RFID, Autocharge, Plug & Charge ready
- > Device configuration, log file analysis and PLC tracing possible in web interface
- > 24 V industrial power supply

Overview of Advantages

- > Universal controller for present and future EV charging use cases
- > High performance multi-core processor to cover further project-specific requirements
- > One device for all communication functions of the charging station
- > Turnkey solution: Immediate installation in the charging station
- > Compact industrial DIN rail design for easy integration into a switching cabinet
- > Specified for industrial outdoor conditions
- > CE marking
- > Functional Safety: Control pilot and proximity pin supervision designed for SIL 2
- > Comprehensive security analysis based on ISO 15408, ISO 27001, IEC 62443
- > Developer-friendly debugging features in web interface
- > Remote software updates via OCPP for standard conformity and functionality extensions
- > OCPP 2.0.1 implementation for more efficient error handling and configuration of the charge controller in the CSMS

More information: www.vector.com/vsecc

vSECC: Ready-to-use Communication Controller

Technical Data:

Feature		vSECC					
Main CPU	i.MX 6Quad Core 4 x 1 G	i.MX 6Quad Core 4 x 1 GHz, 2 GB RAM, 8 GB eMMC					
Power supply	18 V - 30 V DC	18 V - 30 V DC					
Communication	2 x CAN	2 x 1000Base-Tx		1 x RS232		1 x RS485	
Charging interfaces	2 charge points manage	2 charge points managed simultaneously					
Considered standards DC	IEC 61851-23 DIN 70121 ISO 15118-2/-3 OppCharge	DIN 70121 ISO 15118-2/-3			ISO 15118-20 SAE J1772 CHAdeMO		
Considered standards AC	IEC 61851-1	IEC 61851-1 ISO 157		ISO 15118-20			
Charging environment	2 x fullbridge out (Imax	2 x fullbridge out (Imax = 1 A)			2 x analog input position feedback		
Digital inputs	8 x IEC 61131-2 Type 1 di	8 x IEC 61131-2 Type 1 digital input					
Analog inputs	2 x 0 - 10 V analog inpu	2 x O - 10 V analog input			9 x temperature sensor input		
Safety output	3x relay output (NO)	3x relay output (NO)					
Digital output	16 x digital out (Imax = 2	16 x digital out (Imax = 200 mA)					
Housing dimensions (L/W/H)	162 mm x 89,7 mm x 62,	162 mm x 89,7 mm x 62,2 mm (plastic)					
Technical usage and storage requirements	Altitude: 0 – 2000 m al	Temperature: -40 °C +70 °C Altitude: 0 - 2000 m above sea level Humidity: not condensing					
IP protection class	IP 20	IP 20					

CAN: Controller Area Network **CCS:** Combined Charging System

CP: Control Pilot
NO: Normally open
OCPP: Open Charge Point Protocol

PE: Power Electronics
PEP: Power Electronics Protocol
PLC: Power Line Communication

RFID: Radio-frequency Identification **SIL:** Safety Integrity Level