

 www.cypress.com Document No. 001-89610 Rev. *E 1

AN89610

PSoC® Arm® Cortex® Code Optimization

Authors: Mark Ainsworth, Asha Ganesan, Mahesh Balan, Keith Mikoleit

Associated Part Family: All PSoC 4 and PSoC 5LP Parts

Software Version: PSoC Creator™ 3.0

Related Documents: For a complete list, click here.

To get the latest version of this application note, or the associated project file, please
visit http://www.cypress.com/go/AN89610.

AN89610 shows how to optimize C and assembler code for the Arm Cortex CPUs in PSoC 4 and PSoC 5LP. Coding

techniques exist for improved CPU performance and effective use of the PSoC memory architecture, which can lead to

increased efficiency and reduced power consumption. This application note covers both the gcc and Keil Microcontroller

Development Kit (MDK) C compilers supported by PSoC Creator.

Contents

1 Introduction .. 2
2 PSoC 4 and PSoC 5LP Architectures 2

2.1 Register Set .. 2
2.2 Address Map ... 3
2.3 Interrupts ... 6

3 Compiler General Topics ... 6
3.1 Compiler Predefined Macros 6
3.2 Viewing Compiler Output 7
3.3 Compiler Optimizations 7
3.4 Attributes ... 7

4 Accessing Variables .. 8
4.1 Global and Static Variables 8
4.2 Automatic Variables .. 9
4.3 Function Arguments and Result 9
4.4 LDR and STR instructions................................. 10

5 Mixing C and Assembler Code 10
5.1 Syntax ... 11
5.2 Automatic Variables .. 11
5.3 Global and Static Variables 13
5.4 Function Arguments .. 14

6 Special-Function Instructions 15
6.1 Saturation Instructions 15
6.2 Intrinsic Functions ... 16
6.3 Assembler ... 16

7 Packed and Unpacked Structures 17

8 Compiler Libraries ... 18
9 Placing Code and Variables 20

9.1 Linker Script Files ... 20
9.2 Placement Procedure 24
9.3 Example .. 26
9.4 General Considerations 26
9.5 EMIF Considerations (PSoC 5LP Only) 27

10 Cortex-M3 Bit Band (PSoC 5LP Only) 28
11 DMA Addresses (PSoC 5LP only) 29
12 Summary ... 29

12.1 Use All of the Resources in Your PSoC 30
13 Related Documents ... 30

13.1 Application Notes .. 30
13.2 C Documentation .. 30
13.3 ARM Cortex Documentation 31

Appendix A. Appendix A: Compiler Output Details 32
A.1 Assembler Examples,

gcc for Cortex-M3 ... 32
A.2 Assembler Examples,

gcc for Cortex-M0/M0+ 39
A.3 Assembler Examples,

MDK for Cortex-M3 ... 46
A.4 Assembler Examples,

MDK for Cortex-M0/M0+ 51
A.5 Compiler Test Program 56

http://www.cypress.com/
http://www.cypress.com/products/32-bit-arm-cortex-m0-psoc-4
http://www.cypress.com/products/32-bit-arm-cortex-m3-psoc-5lp
http://www.cypress.com/products/psoc-creator-integrated-design-environment-ide
http://www.cypress.com/go/AN89610

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 2

1 Introduction

The Arm Cortex CPUs in the PSoC 4 and PSoC 5LP devices are designed to implement C code in a highly efficient

manner. Thus, most of the time, you will not need any special knowledge to do C programming for PSoC 4 or

PSoC 5LP. This application note helps you to solve more advanced, unique problems, typically around:

▪ Fitting an application into a small amount of flash or SRAM

▪ Time-constrained applications, that is, maximizing code speed and efficiency

A number of methods are provided to solve these types of problems.

This application note assumes that you know how to program embedded applications in the C language. Some

knowledge of the gcc (GNU Compiler Collection) or Keil MDK (Microcontroller Development Kit) C compiler is

recommended. Knowledge of the Thumb-2 assembly language used by the CPUs will also help.

You should also know how to use PSoC Creator, the integrated development environment for PSoC 3, PSoC 4 and

PSoC 5LP. If you are new to PSoC 4 or PSoC 5LP, you can find introductions in AN79953 - Getting Started with PSoC 4

and AN77759 - Getting Started with PSoC 5LP. If you are new to PSoC Creator, see the PSoC Creator home page.

Note: Although many of the examples show code in Thumb-2, the Cortex assembly language, this application note is

not intended to be a tutorial on this language. For details and tutorials on Thumb-2 assembler, see Arm Cortex

Documentation.

For information on optimizing C code for the 8051 CPU in PSoC 3, see AN60630, PSoC 3 8051 Code and Memory

Optimization.

2 PSoC 4 and PSoC 5LP Architectures

To effectively use the methods described in this application note, it is important to understand the register and address

architectures on which they are based. This section describes those architectures.

2.1 Register Set

The Cortex register set and instruction set are the basis for implementing highly efficient C code. The PSoC 4 Cortex-

M0 and the PSoC 5LP Cortex-M3 registers are very similar, as Figure 1 shows. Note that the Cortex-M0+ registers in

PSoC 4100PS/PSoC 4000S/4100S devices are similar to Cortex-M0 registers below. Refer the section Processor core

registers summary in Cortex-M0+ Technical Reference Manual for details.

Figure 1. Cortex CPU Architectures

Cortex-M0 in PSoC 4

Cortex-M3 in PSoC 5LP

All registers are 32-bit. There are 12 general-purpose registers (low registers R0 – R7 have more extensive support in

the instruction set). Special registers include:

http://www.cypress.com/
http://www.cypress.com/?rID=78695&source=an89610
http://www.cypress.com/?rID=60890&source=an89610
http://www.cypress.com/?id=2494&source=an89610
http://www.cypress.com/index.cfm?rID=40986&source=an89610
http://www.cypress.com/index.cfm?rID=40986&source=an89610
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0484c/DDI0484C_cortex_m0p_r0p1_trm.pdf

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 3

▪ Dual stack pointers (R13) for more efficient implementation of a real-time operating system (RTOS)

▪ Link register (R14) for fast return from function calls

▪ Program counter (R15)

▪ Program status register (PSR) contains instruction results such as zero and carry flags

▪ Interrupt mask register (Cortex-M0) / exception mask registers (Cortex-M3)

▪ Control register

The PSoC 5LP Cortex-M3 has more features in stack management, and in the PSR, interrupt, and control registers.

The Cortex-M3 also has a more extensive instruction set, including divide (UDIV, SDIV), multiply and accumulate (MLA,

MLS), saturate (USAT, SSAT), and bitfield instructions. See Special-Function Instructions for information on how to

take advantage of these instructions.

2.2 Address Map

The Cortex-M0/M0+ and Cortex-M3 have a very similar address map, as Figure 2 shows.

Figure 2. Cortex Address Map

The address space is 4 Gbyte (32-bit addressing), and is divided into the access regions shown in Figure 2. The CPUs

can execute instructions in the Code, SRAM, and External RAM regions; you can put code or data in any of these

regions. The CPUs have a 3-instruction pipeline, which enables parallel fetch and execution of instructions.

Bit band feature on Cortex-M3 only.

For more information see Cortex-M3 Bit Band.

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 4

The PSoC 5LP Cortex-M3 has a bit band feature, where accessing an address in an alias region results in bit-level

access in the corresponding bit band region. This lets you quickly set, clear or test a single bit in the bottom 1 Mbyte of

the region. See Cortex-M3 Bit Band for more information.

Although the Cortex CPUs can access a 4 Gbyte address space, within the PSoC devices only a small fraction of these

addresses access PSoC memory or registers. Following is an overview of where in the Cortex address space the PSoC

memory and registers are located; for details see the memory maps in the device datasheets or Technical Reference

Manuals (TRMs).

2.2.1 PSoC 4 Address Map

Figure 3 shows that a single Cortex-M0/M0+ bus, the System Bus, is used to access most of the regions in the address

map.

Figure 3. PSoC 4 Address Map

Cortex-M0/M0+

Core

Code Region

0x0000 0000

0x1FFF FFFF

SRAM Region

0x2000 0000

0x3FFF FFFF

Peripheral

Region

0x4000 0000

0x5FFF FFFF

External

RAM Region

0x6000 0000

0x9FFF FFFF

External

Device

Region

0xA000 0000

0xDFFF FFFF

System Region

0xE000 0000

0xFFFF FFFF

System Bus

Up to 32 KB flash

Up to 4 KB SRAM

0x0000 0000

0x0000 7FFF

0x2000 0000

0x2000 0FFF

PSoC 4 Registers

See TRM for specific register addresses

Cortex-M0/M0+ Addresses

PSoC 4 Memory and

Register Addresses

The PSoC 4 memory and registers are addressed as follows:

▪ The flash starts at address 0, in the Cortex Code region. The flash block includes a read accelerator; see the device

datasheet for details.

▪ The SRAM starts at address 0x20000000, in the Cortex SRAM region.

▪ The registers are addressed starting at 0x40000000, in the Cortex Peripheral region. See Technical Reference

Manual (TRM) for specific register addresses.

All memory accesses are 32-bit.

Code can be placed in SRAM; see Placing Code and Variables for details.

Note: Because PSoC 4 has only one bus, the speed and efficiency of code execution and data access depend solely

on the speed of the memory occupying those regions. SRAM is usually faster than flash; however, the combination of

the Cortex instruction pipeline and the flash read accelerator makes Code region accesses almost as fast as SRAM

region accesses. It is possible to execute code from SRAM but significant performance gains may not necessarily be

realized.

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 5

2.2.2 PSoC 5LP Address Map

The PSoC 5LP / Cortex-M3 architecture is more complex and has more features than that of the PSoC 4, as Figure 4

shows. The Cortex-M3 has three buses instead of one:

▪ I (instruction) Bus and D (data) Bus: for reading instructions and accessing data, respectively, from the Code

region.

In PSoC 5LP, the I and D Buses are multiplexed to a single C (code) Bus for accessing the Code region.

▪ S (system) Bus: for reading instructions and accessing data from the other regions

Because the C Bus and the S Bus are separate, the Cortex-M3 can do simultaneous parallel accesses of the Code

region and the other regions, for more efficient operation.

Figure 4. PSoC 5LP Address Map

Cortex-M3

Core

Code Region

0x0000 0000

0x1FFF FFFF

SRAM Region

0x2000 0000

0x3FFF FFFF

Peripherals

Region

0x4000 0000

0x5FFF FFFF

External

Ram Region

0x6000 0000

0x9FFF FFFF

External

Device

Region

0xA000 0000

0xDFFF FFFF

System Region

0xE000 0000

0xFFFF FFFF

I Bus

D Bus

C Bus

S Bus

Up to 256 KB flash

Up to 64 KB SRAM

Bit band alias region

0x0000 0000

0x0003 FFFF

0x1FFF 8000

0x2000 7FFF

0x2200 0000

EMIF

0x6000 0000

0x60FF FFFF

Cortex-M3 Addresses

PSoC 5LP Registers

See TRM for specific register addresses

PSoC 5LP Memory and

Register Addresses

The PSoC 5LP memory and registers are addressed as follows:

▪ The PSoC 5LP flash starts at address 0, in the Cortex Code region. A flash cache is included; see a PSoC 5LP

device datasheet for details.

▪ The PSoC 5LP SRAM is logically split in half, centered at address 0x20000000. For example, in a device with

64 KB SRAM, half of the SRAM, 32 KB, is addressed below 0x20000000 and the other half above 0x20000000.

So the SRAM addresses range from 0x1FFF8000 to 0x20007FFF. The addresses in a device with 32 KB SRAM

range from 0x1FFFC000 to 0x20003FFF.

The lower half of SRAM, called code SRAM, is located in the Cortex Code region. The upper half, called upper

SRAM, is located in the Cortex SRAM region. The two halves are accessed by different buses, as Figure 4 shows.

Locating half of the SRAM in the Code region enables placement of code and data for possible faster access –

see Placing Code and Variables for details.

Note: Within the PSoC 5LP, SRAM accesses are usually faster than flash accesses, however the combination of the

Cortex instruction pipeline and the flash cache makes flash accesses almost as fast as SRAM accesses. It is possible

to execute code from either code SRAM or upper SRAM but significant performance gains may not necessarily be

realized.

Note that only upper SRAM is in the Cortex-M3 bit band region.

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 6

▪ The PSoC 5LP registers are addressed starting at 0x40000000, in the Cortex Peripheral region. See a PSoC 5LP

Technical Reference Manual (TRM) for specific register addresses.

▪ The PSoC 5LP External Memory Interface (EMIF) addresses start at 0x60000000, in the Cortex External RAM

region. For more information on PSoC 5LP EMIF see the device datasheet, TRM, or the EMIF Component

datasheet.

All memory accesses are 32-bit except EMIF, which can be set to either 8-bit or 16-bit.

The PSoC 5LP also includes a direct memory access (DMA) controller. It shares bandwidth with the CPU as dual bus

masters, using bus arbitration techniques. For more information, see AN52705, Getting Started with PSoC DMA. See

also DMA Addresses in this application note.

2.3 Interrupts

Both Cortex CPUs offer sophisticated support for rapid and deterministic interrupt handling. For more information see

a device datasheet or TRM, the PSoC Creator Interrupt Component datasheet, or AN54460 - PSoC Interrupts/AN90799

– PSoC 4 Interrupts

3 Compiler General Topics

Before we begin in-depth examination of the gcc and MDK compilers, let us examine a few general compiler topics.

Note: All of the C code examples shown in this application note are designed for use with the C compilers supported

by PSoC Creator 3.0: gcc 4.7.3 and the Keil Microcontroller Development Kit (MDK) version 5.03. The gcc 4.7.3

compiler is included free with your PSoC Creator installation. MDK must be purchased however an object-size-limited

evaluation version, MDK-Lite, is available free from Keil. Compiler optimizations are turned off (the PSoC Creator

default) except where noted.

All of the C code examples in this application note use ANSI standard C except for compiler-specific extensions.

3.1 Compiler Predefined Macros

It is a best practice to write C code that can be directly ported between as many different compilers as possible. However

there are cases where this is not possible and you must write multiple versions of the same code, to be used with

multiple compilers. If you need to do this you can use predefined macros, provided with most compilers, to identify

the compiler being used. This allows you to compile only the code for the compiler being used, for example:

#if defined(MY_COMPILER_MACRO)

 /* put your compiler-unique code here */

#endif

To apply this technique to PSoC Creator projects, use the following macros that are included with the gcc and MDK

compilers, respectively. Note that for MDK you are checking just for whether __ARMCC_VERSION is defined, indicating

that that compiler is being used. You do not necessarily need to care about its actual value, i.e., the compiler version.

#if defined(__GNUC__)

 /* put your gcc unique code here */

#elif defined(__ARMCC_VERSION)

 /* put your MDK unique code here */

#endif

http://www.cypress.com/
http://www.cypress.com/?rID=56752&source=an89610
http://www.cypress.com/?rID=56752&source=an89610
http://www.cypress.com/?rID=37793&source=an89610
http://www.cypress.com/?rID=46451&source=an89610
http://www.cypress.com/?rID=38267&source=an89610
http://www.cypress.com/documentation/application-notes/an90799-psoc-4-interrupts
http://www.cypress.com/documentation/application-notes/an90799-psoc-4-interrupts

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 7

3.2 Viewing Compiler Output

To understand how a compiler performs under

different conditions, you must review the output

assembler code. There are two ways to do that in

PSoC Creator.

1. Open the list file corresponding to the

compiled C file (filename.lst), as

2. Figure 5 shows.

The default PSoC Creator project build setting

is to create a list file; see menu item Project >

Build Settings > Compiler > General.

3. Use the disassembly window in the debugger

(menu item Debug > Windows >

Disassembly). Right-click in that window to

bring up options to show mixed source and

assembler.

Of course, this method has the disadvantage

that you must have working target hardware

and a PSoC Creator project that builds

correctly before you can use the debugger.

Note: The free evaluation version of MDK, MDK-

Lite, does not include assembler in the .lst file, so

method 2 must be used to see the output

assembler code.

Figure 5. Listing Files

3.3 Compiler Optimizations

Turning on optimization options makes the compiler attempt to improve the C code’s performance and/or size, at the

expense of compilation time and possibly the ability to debug the program.

PSoC Creator allows you to set compiler optimizations for an entire project, under Project > Build Settings > Compiler >

Optimization. The optimizations offered by PSoC Creator for both gcc and MDK are just for “speed” or “size”. (This is

different from the 11 levels of optimization offered for the Keil 8051 compiler.)

The optimization option selected in the Build Settings dialog applies to all C files in the project. You can also apply

optimizations to individual C files – in the Workspace Explorer window right-click on the file and select Build Settings.

With gcc you can’t set optimization levels for individual functions except for using certain function attributes. With MDK

you can use #pragma to set optimization for an individual function. For more information see C Documentation.

It is strongly recommended that after compiling C code with optimizations you carefully review the assembler output

and confirm that it is doing what you expect. Stepping through the assembler code in the debugger may also be helpful.

One best practice is to get your C code working without optimizations, then rebuild with optimizations and repeat your

tests. You can do this using the Debug and Release configurations in your PSoC Creator project build settings.

For specific examples of how various optimization options work, see Appendix A.

3.4 Attributes

An extension to the C language that is supported by both gcc and MDK is to apply attributes to functions, variables,

and structure types. Attributes can be used, for example, to control:

▪ specific function optimizations

▪ how structures occupy memory (see Packed and Unpacked Structures)

▪ function and variable location in memory (see Placing Code and Variables)

The syntax is (two underscore characters before and after the "attribute"):

__attribute__ ((<attribute-list>))

Specific attributes are described in detail in subsequent sections in this application note. For more information, see

C Documentation.

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 8

4 Accessing Variables

When reviewing compiler output, one of the first areas to examine is how variables (and arrays and structures) are read

and written. In their assembly language output, the gcc and MDK compilers both implement certain techniques for

accessing:

▪ global and static variables

▪ automatic (local) variables

▪ function arguments and function result

Let us examine how each of these is done.

4.1 Global and Static Variables

The Thumb-2 assembly language used by both Cortex CPUs does not generally support loading 32-bit immediate

values into a register. (There are exceptions; for example small immediate values can be loaded and sign-extended.)

This makes it difficult to load the address of a global or static variable, or in general to load any address. Table 1 shows

two methods for handling this problem, for the following example C code:

/* loading a global variable */

uint32 myVar;

. . .

myVar = 7;

Table 1. Example Methods for Loading Addresses into CPU Registers

Method 1: two 16-bit immediate loads Method 2: PC-relative load

; rx = address of myVar

; load the lower and upper halves of the

; address

movw rx, #<LS word> ; 32-bit instruction

movt rx, #<MS word> ; 32-bit instruction

. . .

movs ry, #7

str ry, [rx, #0] ; myVar = 7

; rx = address of myVar

; load the value stored in flash, below

ldr rx, [pc, #<offset>] ; 16-bit instruction

. . .

movs ry, #7

str ry, [rx, #0] ; myVar = 7

. . .

; address value stored after the end of

; the function

.word <address of myVar> ; 32-bit value

In general method 2 is preferred for size-limited applications because it uses two fewer bytes (one 16-bit word).

However, method 1 may execute faster due to the Cortex instruction pipeline. Note that with PSoC, instruction execution

speed also depends on the flash cache (PSoC 5LP) or accelerator (PSoC 4) and thus is not necessarily deterministic.

See Memory Map for details.

Different compiler optimizations implement one or the other of these two methods; for detailed examples see Appendix

A.

It is a coding best practice to minimize use of global variables. Doing so with the PSoC Cortex CPUs may also act to

reduce code size by reducing the loading of memory and PSoC register addresses.

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 9

4.2 Automatic Variables

In C, automatic variables are variables that are defined within (local to) a function. Depending on the size and complexity

of the function, and the compiler optimization setting, an automatic variable may be assigned to a CPU register or it

may be saved on the stack, as Table 2 shows:

Table 2. Example Methods for Using Automatic Variables

C Code Assembler Code

void MyFunc(void)

{

 uint8 i = 3;

 uint8 j = 10;

 . . .

}

; use rx as i, do NOT save it on the stack

movs rx, #3 ; initialize i

; store j on the stack; use ry to temporarily

; hold the initial value

movs ry, #10 ; initialize j

strb ry, [sp, #<offset>] ; on the stack

Both size and speed optimizations tend to reduce stack usage for automatic variables; see Appendix A for examples.

4.3 Function Arguments and Result

The Procedure Call Standard for Arm Architecture allocates registers R0 – R3 for passing arguments to a function, and

R0 for passing a function result. If the number of arguments is greater than four, the first four arguments are placed in

the registers and the rest are pushed onto the stack.

Within the function, the arguments may be maintained in their respective registers, transferred to other registers, or

saved on the stack. Given that a function’s automatic variables may also be stored on the stack (Table 2), stack

management may become complex. To handle this complexity two sequences of instructions, known as prolog and

epilog, may be included in a compiled function, as the example in Table 3 shows:

Table 3. Example Function With Prolog and Epilog Instructions

C Code Assembler Code

/* Function with 6 arguments and a return

 value */

uint32 MyFunc(uint32 a, uint32 b, uint32 c,

 uint32 d, uint32 e, uint32 f)

{

 return a + b + c + d + e + f;

}

; function prolog

push {r7} ; make room on the stack

sub sp, sp, #20 ; for the arguments

add r7, sp, #0 ; use r7 as a base pointer

str r0, [r7, #12] ; save the arguments

str r1, [r7, #8] ; on the stack

str r2, [r7, #4]

str r3, [r7, #0]

; function body

ldr r2, [r7, #12] ; build the sum

ldr r3, [r7, #8] ; in r2 and r3

adds r2, r2, r3

ldr r3, [r7, #4]

adds r2, r2, r3

ldr r3, [r7, #0]

adds r2, r2, r3

ldr r3, [r7, #24] ; argument e

adds r2, r2, r3

ldr r3, [r7, #28] ; argument f

adds r3, r2, r3

mov r0, r3 ; return value in r0

; function epilog

add r7, r7, #20 ; restore stack and r7

mov sp, r7

pop {r7}

bx lr ; return

To minimize code size and maximize speed, you should limit the number of function arguments to four.

http://www.cypress.com/
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042e/IHI0042E_aapcs.pdf

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 10

Depending on the size and complexity of the function, the size optimization tries to reduce the function prolog and

epilog code; see Appendix A for examples.

4.4 LDR and STR instructions

These instructions are used to read to and write from memory and PSoC registers. They are quite powerful and offer

many flexible options. Variants of the instructions support byte and halfword (16-bit) accesses, zero and sign

extensions, and immediate and register offsets. The offset options are particularly useful for handling pointer offsets

and for accessing members of arrays and structures, as Table 4 shows.

Table 4. Example Usage of LDR and STR Instructions

C Code Assembler Code

/* loading an array member */

uint8 myArray[100];

. . .

myArray[6] = 7;

ldr rx, [pc, #<offset>] ; rx = address of myArray

movs ry, #7

strb ry, [rx, #6]

uint8 myArray[100];

. . .

uint8 i;

. . .

myArray[i] = 7;

ldr rx, [pc, #<offset>] ; rx = address of myArray

ldrb ry, [sp, #<offset>] ; ry = i (automatic

variable)

movs rz, #7

strb rz, [rx, ry]

Note that the LDR and STR instructions are always register-relative, so before an LDR or STR instruction there is

always another instruction to load a register with the target address; see Table 1. Variations and options for these

instructions are different in the Cortex-M0 (PSoC 4) and the Cortex-M3 (PSoC 5LP). For more information, see Arm

Cortex Documentation.

5 Mixing C and Assembler Code

One of the most effective ways to make your code shorter, faster, and more efficient is to write it in assembler. Using

assembler may also enable you to take advantage of special-function instructions that are supported by the CPU but

are not used by the C compiler; see Special-Function Instructions. However, coding in assembler is a daunting task for

all but the smallest applications, and once written the code is not easy to maintain or port to other compilers or CPUs.

That is why most code is written in C, and if assembler is used at all it is used only for a few critical functions.

Another problem with assembler is that it must be written in its own file, separate from the C files with which it must

coexist. This can cause difficulties integrating and maintaining the code.

A solution to both of these problems is an extension to the C language called inline assembler, where assembler code

can be placed directly in C files and is treated as just another C statement. This lets you use assembler only where it’s

needed to increase efficiency, and makes it easier to mix C and assembler. The gcc and MDK compilers both support

inline assembler. In addition, MDK supports a similar feature called embedded assembler, where a function is written

entirely in assembler but is included in a C file.

This section shows how to use combined C and assembler code, for both the gcc and MDK compilers. To effectively

use the methods described in this section, it is important to understand the register architectures on which they are

based – see CPU Register Architectures for details.

Note: The following examples show assembler for the Cortex-M3; the Cortex-M0/M0+ uses a more limited subset of

the Cortex-M3 instructions. For details see Arm Cortex Documentation.

Note: Most assembler instructions act on the Cortex registers (see Register Set). The Procedure Call Standard for Arm

Architecture requires that some of these registers be preserved by functions. If needed, use the PUSH and POP

instructions to save and restore registers on the stack.

http://www.cypress.com/
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042e/IHI0042E_aapcs.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042e/IHI0042E_aapcs.pdf

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 11

5.1 Syntax

The gcc syntax for inline assembler is:

asm("assembler instruction");

which adds a single line of assembler code to the

C code. For example, the following increments the

R0 register:

asm("ADD r0, r0, #1")

; /* R0 = R0 + 1 */

The syntax for multi-line inline assembler is:

asm("line 1\n"

 "line 2\n"

 "line 3\n"

 . . .

 "line n");

For example:

/* R0 = R0 + 1; R1 = R0 */

asm("ADD r0, r0, #1\n"

 "MOV r1, r0");

Note: The keyword __asm__ can be used instead

of asm; see C Documentation for details.

Note: You can add the keyword volatile to

prevent the statement from being optimized out by

the compiler:

asm volatile(" ... ");

The MDK syntax for inline assembler is the same as that for

gcc, except that the “asm” is preceded by two underscore

characters:

__asm("assembler instruction");

__asm("line 1\n"

 "line 2\n"

 "line 3\n"

 . . .

 "line n");

The syntax for the MDK embedded assembler is:

__asm return-type

function-name(argument-list)

{

 /* This is a C comment */

 instruction ; assembler comment

 ...

 instruction

}

For example:

__asm int DoSum(int x, int y)

{

 ADD r0, r0, r1

 BX lr

}

5.2 Automatic Variables

With gcc, to access an automatic (or local) variable from inline assembler, you must first force the variable to occupy a

register Rx. Declare the variable as follows:

register int foo asm("r0"); /* foo occupies register R0 */

Note: gcc actually supports a complex language of C expression operands for the asm keyword. A tutorial on this

language is beyond the scope of this application note. Details can be found in C Documentation, especially section

6.41 of “Using the GNU Compiler Collection”.

As an example, let us define two automatic variables, ‘foo’ and ‘bar’, and do a simple math operation between them:

void main()

{

 register int foo asm("r0") = 5L; /* register variables can be initialized */

 register int bar asm("r1");

 bar = foo + 1; /* C code version */

 asm("ADD r1, r0, #1"); /* bar = foo + 1 */

}

In the above example, the C code and the inline assembler do the same operation. However, the compiled C code (no

optimization) uses an intermediate register and consequently produces 3x the instructions using 2x the flash memory,

as this excerpt from the .lst file shows:

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 12

20:.\main.c **** bar = foo + 1;

42 0008 0346 mov r3, r0

43 000a 03F10103 add r3, r3, #1

44 000e 1946 mov r1, r3

22:.\main.c **** asm("ADD r1, r0, #1"); /* bar = foo + 1 */

47 0010 00F10101 ADD r1, r0, #1

Depending on the function size and complexity it may be possible to eliminate the intermediate register by using a

compiler optimization option.

With MDK, there is no need to force an automatic (local) variable to occupy a register. Instead, you can access the

variables directly:

void main()

{

 /* no need to declare variables in registers */

 int foo = 5;

 int bar;

 bar = foo + 1; /* C code version */

 __asm("ADDS bar, foo, #1"); /* bar = foo + 1 */

}

In this example, the C code and the inline assembler do the same operation and produce the exact same code.

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 13

5.3 Global and Static Variables

The previous methods can also be used with global and static variables (“globals”). Note that before accessing a global

you must load a register with the address of the variable – see Global and Static Variables.

With gcc, use the following syntax to load an

address:

LDR rx, =variable_name

LDR ry, =0x1FFF9000 ; an address

Let us repeat the previous example using globals

instead of automatic variables:

int foo = 5L;

int bar;

void main()

{

 bar = foo + 1;

 /* bar = foo + 1 */

 asm("LDR r0, =foo\n"

 "LDR r1, =bar\n"

 "LDR r2, [r0]\n"

 "ADD r2, r2, #1\n"

 "STR r2, [r1]");

}

Again, the C code and the inline assembler do the

same operation but due to different address load

methods (see Table 1) the compiled C code (no

optimizations) produces two more instructions and

uses four more bytes of memory than the inline

assembler (for the Cortex-M3), as the following

debugger snip shows:

bar = foo + 1;

 F248130C movw r3, #810c

 F6C173FF movt r3, #1fff

 681B ldr r3, [r3, #0]

 F1030201 add.w r2, r3, #1

 F248132C movw r3, #812c

 F6C173FF movt r3, #1fff

 601A str r2, [r3, #0]

/* bar = foo + 1 */

asm("LDR r0, =foo\n"

 "LDR r1, =bar\n"

 "LDR r2, [r0]\n"

 "ADD r2, r2, #1\n"

 "STR r2, [r1]");

 4804 ldr r0, [pc, #10]

 4905 ldr r1, [pc, #14]

 6802 ldr r2, [r0, #0]

 F1020201 add.w r2, r2, #1

 600A str r2, [r1, #0]

The above results may be different if compiler

optimizations are used.

With MDK there are two methods to access global

variables. The first method, inline assembler, is similar to

that for accessing automatic variables:

/* bar = foo + 1 */

__asm("ADDS bar, foo, #1");

However, the assembler output is quite different:

4805 ldr r0, [pc, #14]

6800 ldr r0, [r0, #0]

1C40 adds r0, r0, #1

4905 ldr r1, [pc, #14]

6008 str r0, [r1, #0]

The additional instructions are required for loading the

variable addresses; see Global and Static Variables for

more information. In this case the inline assembler is

effectively a pseudoinstruction, generating five actual

assembler instructions. The output is the same as if it were

written in C, so in this case there is no advantage to using

inline assembler.

The embedded assembler method looks like this:

__asm void AddGlobals(void)

{

 extern foo

 extern bar

 LDR r0, =foo

 LDR r1, =bar

 LDR r0, [r0]

 ADD r0, r0, #1

 STR r0, [r1]

 BX lr

}

In this case the resultant code is the same as for the inline

assembler method.

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 14

5.4 Function Arguments

As noted in Function Arguments and Result, the Procedure Call Standard for Arm Architecture allocates registers R0 –

R3 for passing arguments to a function, and R0 for passing a function result. If the number of arguments is greater than

four, the first four arguments are placed in the registers and the rest are pushed onto the stack.

So if you limit the number of arguments to four, you can write assembler to directly access the registers that have those

arguments. The following example shows multiple ways to implement a function to calculate the sum of four arguments:

uint32 addFunc(uint32 a, uint32 b, uint32 c, uint32 d)

{

 return a + b + c + d;

}

gcc:

uint32 addFunc(uint32 a, uint32 b, uint32 c, uint32 d)

{

 /* define return value in R0 */

 /* does not overwrite input argument 'a' in R0 */

 register uint32 rtnval asm("r0");

 /* the arguments are in registers R0 – R3 */

 asm volatile ("add r0, r0, r1\n"

 "add r0, r0, r2\n"

 "add r0, r0, r3");

 return rtnval; /* return value in R0 */

}

MDK embedded assembler:

__asm uint32 addFunc(uint32 a, uint32 b, uint32 c, uint32 d)

{

 ; the arguments are in registers R0 – R3

 ADD r0, r0, r1

 ADD r0, r0, r2

 ADD r0, r0, r3

 ; return value in R0

 BX lr

}

http://www.cypress.com/
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042e/IHI0042E_aapcs.pdf

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 15

6 Special-Function Instructions

Some CPUs have special-function instructions which are not normally used by C compilers; this type of instruction can

be accessed with C intrinsic functions or in some cases can only be accessed using assembler. This section explains

how to use C intrinsic functions and mixed C and assembler to more easily gain access to these instructions.

Let us look at the PSoC 5 Cortex-M3 saturation instructions as an example; for other special-function instructions see

C Documentation.

6.1 Saturation Instructions

Saturation is commonly used in signal processing, for example when a signal is amplified, as Figure 6 shows. Suppose

we are using a 16 bit ADC and are interested in just the 12 LS bits. After amplification, if the value is adjusted by simply

removing the unused MS bits, overflow may seriously distort the resulting signal. Saturation avoids overflow and

reduces distortion.

Figure 6. Saturation Operation

Saturation can be done in C using multiple comparison and if-else statements, but the Cortex-M3 has two assembler

instructions that make the process far more efficient: SSAT and USAT for signed and unsigned, respectively. These

instructions work as follows:

6.1.1 SSAT Instruction

The SSAT instruction saturates to the signed range −2n–1 ≤ x ≤ 2n–1−1:

▪ if the value to be saturated is less than −2n−1, the result returned is −2n-1

▪ if the value to be saturated is greater than 2n−1−1, the result returned is 2n-1−1

▪ otherwise, the result returned is the same as the value to be saturated.

6.1.2 USAT Instruction

The USAT instruction saturates to the unsigned range 0 ≤ x ≤ 2n−1:

▪ if the value to be saturated is less than 0, the result returned is 0

▪ if the value to be saturated is greater than 2n−1, the result returned is 2n−1

▪ otherwise, the result returned is the same as the value to be saturated

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 16

6.1.3 Syntax

op Rd, #n, Rm

where:

▪ op is one of the following:

 SSAT saturates a signed value to a signed range

 USAT saturates a signed value to an unsigned range

▪ Rd is the destination register.

▪ n specifies the bit position to saturate to:

 n ranges from 1 to 32 for SSAT

 n ranges from 0 to 31 for USAT

▪ Rm is the register containing the value to saturate.

Note: The SSAT and USAT instructions operate on a 32-bit value in the input register. The corresponding C variable

should be of type int, int32 or uint32. Sign extension may be required before executing the saturation instruction.

6.2 Intrinsic Functions

In C, an intrinsic function has the appearance of a function call but is replaced during compilation by a specific sequence

of one or more assembler instructions. The Arm Cortex Microcontroller Software Interface Standard (CMSIS) library

includes a set of intrinsic functions for most of the Cortex special-function assembler instructions. After a PSoC Creator

project is built, you can find these functions in the Workspace Explorer window in the folder Generated Source >

PSoCx > cyboot > core_cmInstr.h.

The saturation intrinsics look like this:

__SSAT(ARG1, ARG2)

__USAT(ARG1, ARG2)

where ARG1 is the input value to be saturated and ARG2 is the bit position to saturate to. Call the functions as follows:

int data_unsat = -1L;

int data_sat = __USAT(data_unsat, 8);

In this example, we saturate data_unsat to 8 bits, unsigned. If the value of data_unsat exceeds 255 (0xFF), the result

is saturated to 255 (0xFF) and is stored in data_sat. If the value of data_unsat is negative, 0 is stored in data_sat.

6.3 Assembler

You can also use the techniques described in Mixing C and Assembler Code to insert special-function instructions, as

Table 5 shows.

Table 5. Using Saturation Instructions in Mixed C and Assembler

gcc Example MDK Example

void main()

{

 register int data_unsat asm("r0");

 register int data_sat asm("r3");

 asm("ssat r3, 8, r0");

 . . .

}

void main()

{

 int data_unsat;

 int data_sat;

 __asm("ssat data_sat, 8, data_unsat");

 . . .

}

In this example, we saturate data_unsat to 8 bits, signed. With 8-bit signed saturation the value can range from -128 to

+127. So if the value is less than -128, the result is -128 and if the value is greater than +127, the result is +127. So the

result is saturated to 0x7F in the positive direction and 0x80 in the negative direction.

http://www.cypress.com/
http://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 17

We can use the saturation instructions to saturate a value to the required number of saturation bits. USAT can be used

with an ADC configured in single ended mode and SSAT can be used with an ADC configured in differential mode.

7 Packed and Unpacked Structures

In most embedded systems, data is transmitted in a byte-by-byte fashion, for example with a UART or I2C port. (The

SPI protocol is an exception, for details see one of the PSoC Creator SPI Component datasheets.) With 8-bit CPUs

complex data structures can be transmitted and received byte by byte and the result will exactly match the original.

However with larger CPUs (16-bit, 32-bit, etc.) this is not necessarily true. Let us examine in detail why this is so, using

the PSoC 4 Cortex-M0 and PSoC 5LP Cortex-M3 CPUs as examples.

The 32-bit Cortex CPUs in PSoC access memory as 32-bit words, and therefore they work most efficiently when data

is stored on 32-bit boundaries, that is, where the two LS address bits are zero. If for example a 16-bit or 32-bit variable

is saved starting at an odd address, where the LS bit of the address is 1, then two 32-bit memory reads are required to

read it, and two read-modify-write cycles are required to write it. This can significantly impact execution speed.

Unfortunately, in C it is easy to create structures where words are on odd boundaries. Consider the following example:

struct myStruct

{

 uint8 m1; /* stored on a 32-bit boundary, address = ...xx00 */

 uint32 m2; /* stored on an 8-bit boundary, address = ...xx01 */

}

The above is called a packed structure, because the structures are placed in memory byte-by-byte regardless of

address boundary considerations. Compilers for 8-bit CPUs usually generate packed structures. The gcc and MDK

compilers as a default for the Cortex CPUs save structures in unpacked format, where the address is determined by

the size of the structure member. For example:

struct myUnpackedStruct

{

 uint8 m1; /* stored on a 32-bit boundary, address = ...xx00 */

 /* 3 unused filler bytes */

 uint32 m2; /* stored on a 32-bit boundary, address = ...yy00 */

}

An unpacked structure can be accessed more efficiently but is larger, which may be a problem with devices with limited

SRAM. But a more serious problem can occur when for example an unpacked structure is transmitted byte-by-byte and

the receiver saves the bytes in a packed structure – the data becomes corrupted causing hard-to-find system-level

defects.

There are several ways to correct this problem in code; the easiest is to simply optimize the order of structure member

declarations. For example, we could reorder the original structure as:

struct myStruct

{

 uint32 m2; /* stored on a 32-bit boundary, address = ...xx00 */

 uint8 m1; /* stored on a 32-bit boundary, address = ...yy00 */

}

Now the structure is packed and each of its members’ addresses are on 32-bit boundaries.

7.1.1 Compiler Considerat ions

For both gcc and MDK compilers, by default, structures are unpacked according to the following rules:

▪ A char or uint8 (one byte) is 1-byte aligned

▪ A short or uint16 (two bytes) is 2-byte aligned; LS address bit is 0

▪ A long or uint32 (four bytes) is 4-byte aligned; two LS address bits are 00

▪ A float (four bytes) is 4-byte aligned; two LS address bits are 00

▪ Any pointer, e.g., char *, int * (four bytes) is 4-byte aligned; two LS address bits are 00.

http://www.cypress.com/
http://www.cypress.com/?rID=48906&source=an89610

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 18

It is possible to force a structure to be packed, using the following syntax:

gcc:

struct myStruct

{

 . . .

} __attribute__ ((packed));

MDK:

__packed struct myStruct

{

 . . .

};

Note: It is recommended to use the packed statement in structure definitions only. It should not be used in declarations

of actual structure variables nor should it be used in typedef declarations.

8 Compiler Libraries

For both gcc and MDK compilers, replacing C standard library function calls with equivalent C statements can

significantly reduce memory usage. For example, consider the following C fragment:

#include <math.h>

uint32 a, b;

a = 5;

b = pow(a,3);

Table 6 shows the Flash and SRAM memory consumption for both compilers for PSoC 5LP and PSoC 4:

Table 6. Memory Consumption With a pow() Function Call

PSoC 5LP gcc MDK PSoC 4 gcc MDK

Flash 8939 7696 Flash 14374 7700

SRAM 405 196 SRAM 364 312

If the call to the pow() library function is replaced with the following equivalent code, you use a lot less memory, as

Table 7 shows:

b = a * a * a;

Table 7. Memory Consumption Without Using a pow() Function Call

PSoC 5LP gcc MDK PSoC 4 gcc MDK

Flash 1582 (-82.3%) 1444 (-81.2%) Flash 1198 (-91.7%) 1004 (-87.0%)

SRAM 301 (-25.7%) 200 (-32.4%) SRAM 252 (-30.8%) 216 (-30.8%)

The reason for the size reduction is that by ANSI C definition the pow() function takes arguments of type double and

returns a type double. When you call this function with integers they are automatically cast to the proper type before

and after the function call, and this requires a lot of code to implement.

With PSoC Creator 3.0, a choice of gcc libraries is available: newlib and newlib-nano. The newlib-nano library cuts

some less-used features from the standard C library functions, to reduce memory usage.

Note: One of features removed from newlib-nano is floating-point support in printf(), which may cause problems if you

intend to display floating-point values. For example, consider the following code fragment:

char My_String[30];

float My_Float = 3.14159;

sprintf(My_String, "Value of pi is: %.2f to 2dp", My_Float);

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 19

With newlib-nano, the string "Value of pi is: to 2dp" is created in My_String; the expected value 3.14 is not

included. There are two possible work-arounds:

1. Enable floating-point formatting support in newlib-nano, as Figure 7 shows. This feature is disabled as a default.

Enabling it increases flash usage by 10K to 15K bytes.

Figure 7. Enable floating-point formatting support in newlib-nano

2. Change the library to the full-featured newlib, as Figure 8 shows. Note that the Use Default Libraries option must

also be set to False. The default is to use newlib-nano; changing to newlib increases flash usage by 25K to 30K

bytes, and increases SRAM usage by approximately 2K bytes.

Figure 8. Disabling newlib-nano

MDK also offers a reduced-function library called Microlib. For more information see the MDK documentation.

http://www.cypress.com/
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0475c/BAJJIBHH.html

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 20

9 Placing Code and Variables
This section shows how to place C code and

variables into custom locations in memory. There

are a number of reasons to do this, see Define

Custom Locations for examples.

To effectively use the methods described in this

section, it is important to understand the CPU

architectures on which they are based – see

Address Map for details.

9.1 Linker Script Files

To place code and variables in custom locations,

you must know how to modify linker script files.

This section shows the basics of how linker script

files control the use of memory in PSoC 4 and

PSoC 5LP. Details can be found in your gcc or

MDK documentation.

After your PSoC Creator project is built, the default

linker script files can be found in the Generated

Source folder, as Figure 9 shows. For gcc the

linker script file is of type .ld, and for MDK the

linker script file is of type .scat (for “scatter”).

Note: Linker script files are automatically

generated by PSoC Creator at project build time,

and changes that you make to those files may be

overwritten on the next build. You can instruct

PSoC Creator to use a custom script file, using the

PSoC Creator menu Project > Build Settings >

Linker > General > Custom Linker Script.

If you use a custom linker script file, it is a best practice to

add it to the project (menu Project > Existing Item…) and

save it in the project folder. A custom .scat file must be

saved in the PSoCx folder under Generated Source.

Figure 9. PSoC Creator Linker Script Files

9.1.1 Linker Script Fi le for gcc

An .ld file has two major commands: MEMORY {} and SECTIONS {}. The MEMORY command describes the type,

location and usage of all physical memory in the PSoC. For example, for a PSoC 4 with 32 KB flash and 4 KB SRAM:

MEMORY

{

 rom (rx) : ORIGIN = 0x0, LENGTH = 32768

 ram (rwx) : ORIGIN = 0x20000000, LENGTH = 4096

}

The rom region describes PSoC flash and the region ram describes the PSoC SRAM. The letters "rwx" are memory

attribute indicators: read, write, and execute, respectively. All origin and length units are in bytes, and the values can

be in decimal or hexadecimal. PSoC 5LP is similar; the ram ORIGIN value describes the SRAM crossing the Cortex-

M3 Code / SRAM region boundary (Figure 4). For example, for PSoC 5LP with 256 KB flash and 64 KB SRAM:

MEMORY

{

 rom (rx) : ORIGIN = 0x0, LENGTH = 262144

 ram (rwx) : ORIGIN = 0x20000000 - (65536 / 2), LENGTH = 65536

}

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 21

The SECTIONS command lists all of the sections

in address order, for example:

SECTIONS

{

 .text: { ... }

 .rodata: { ... }

 .ramvectors: { ... }

 .noinit: { ... }

 .data: { ... }

 .bss: { ... }

 .heap: { ... }

 .stack: { ... }

}

(Not all of the sections are shown above, only the

major ones.) Figure 10 shows where these

sections are placed in PSoC 4 and PSoC 5LP

flash and SRAM:

▪ .text: executable code

▪ .rodata: const variables; initialization data

▪ .ramvectors: Cortex exception vectors table

▪ .noinit: variables that are not initialized

▪ .data: variables that are explicitly initialized

▪ .bss: variables that are initialized to 0

▪ heap

▪ stack

A closer examination of the linker script file shows

that many of the sections end with a region

statement. This statement tells the linker the

memory region in which to place the section, for

example:

 .text: { ... } >rom

 .data: { ... } >ram AT>rom

 .heap: { ... } >ram

The AT statement enables explicit initialization of

variables; see Variable Initialization.

Note: For PSoC 5LP, the placement of the

sections in SRAM are indeterminate relative to

position of the code SRAM / upper SRAM

boundary (0x20000000; see Figure 4.

Note: For most applications it can be assumed

that the stack is in upper SRAM and the other

sections are all in code SRAM. This can be

changed; see Modify the Linker Script File.

Complete documentation of .ld file usage can be

found in your gcc documentation.

Figure 10. SECTIONS Command and PSoC Memory

Flash

SRAM

EMIF

(PSoC 5LP)

ro
m

 (rx
)

.text

other sections

.rodata

ra
m

 (rw
x
)

.ramvectors

heap

stack

.noinit

.data

.bss

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 22

9.1.2 Linker Script Fi le for MDK

A .scat (for “scatter”) file has no commands;

instead it defines regions and sections. It has a

single load region called APPLICATION {}. The

load region contains several execution regions,

which in turn contain one or more section

attributes, for example:

APPLICATION ... // load region

{

 CODE ... // execution

region

 {

 * (+RO) // section

attribute

 }

 ISRVECTORS ...

 {

 * (.ramvectors)

 }

 NOINIT_DATA ...

 {

 * (.noinit)

 }

 DATA ...

 {

 .ANY (+RW, +ZI)

 }

 ARM_LIB_HEAP ... { }

 ARM_LIB_STACK ... { }

}

(Not all of the execution regions and section

attributes are shown above, only the major ones.)

Figure 11 shows where the regions and sections

are placed in PSoC 4 and PSoC 5LP flash and

SRAM. Special sections RO, RW, and ZI are

defined as follows:

▪ RO: all code, const variables, and

initialization bytes for the RW section

▪ RW: all variables that are explicitly initialized;

see Variable Initialization

▪ ZI: all variables that are initialized to zero; see

Variable Initialization

Other attributes such as .noinit cause

placement of code or variables that match that

attribute; see Define Custom Locations.

Note: For PSoC 5LP, the placement of the

regions and sections in SRAM is indeterminate

relative to the position of the code SRAM / upper

SRAM boundary (0x20000000; see Figure 4.

Note: For most applications it can be assumed

that the stack and heap are in upper SRAM and

the other sections are all in code SRAM. This can

be changed; see Modify the Linker Script File.

Complete documentation of .scat file usage can be found in

your MDK documentation.

Figure 11. .scat File Sections and PSoC Memory

Flash

SRAM

EMIF

(PSoC 5LP)

other sections

CODE { }

.ramvectors

heap

stack

.noinit

DATA { }

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 23

The following points are valid for both linker file types:

1. Only global and C static variables are included. C automatic variables are handled differently; see Automatic

Variables.

2. The size of the heap and stack are defined in the PSoC Creator project DWR window, System tab. The stack

pointer is initialized to the highest SRAM address plus 1, and the stack grows downward. The heap, which is used

by C functions such as malloc() and free(), grows upward from its base.

3. Although the heap has a defined size in the DWR window, in practice it can use all of SRAM between the sections

in SRAM and the current value of the stack pointer. Similarly, the stack can grow downward beyond the defined

stack section. If the stack starts to overlap the memory regions below it, hard-to-find defects can occur. One way

to detect stack overflow is to add code to each function to check the current value of the stack pointer.

9.1.3 Variable Ini t ial izat ion

When placing global and static variables in custom locations, it is important to understand how they are initialized. For

example, consider these global variable definitions:

uint8 foo = 5;

uint16 myArray[10] = {1234, 12, ... };

Because these variables are located in SRAM, their values are undefined when the PSoC is powered up. To properly

initialize them the values are saved in flash and the C startup code, i.e., the code that is executed before main(), copies

the values from flash to SRAM. The values in flash are in the .rodata section for gcc (Figure 10) or the CODE (RO)

section for MDK (Figure 11). They are copied into the variables in the .data section for gcc or the DATA (RW) section

for MDK – explicitly initialized variables must be located in these sections.

Global and static variables that are not explicitly initialized are set to zero by the C startup code. They must be located

in the .bss section (gcc) or the DATA (ZI) section (MDK).

Global and static variables that are located outside the above sections are not initialized and their initial values are

undefined – they must be initialized in your code. Explicit initializations are ignored.

9.1.4 Map Fi le

The gcc and MDK linkers both have an option to

produce a .map file when a project is built. You can

find the file in the Results tab in the Workspace

Explorer window, as Figure 12 shows.

The .map file shows where in memory all code

modules and variables have been placed by the

linker. You should review it after a build operation

and confirm that:

▪ All code and variables have been placed in

the expected locations, and

▪ There are no section overlaps.

For MDK, the linker’s default is to produce a .map

file with no symbols, which makes it difficult to

determine where your code and variables have

been placed. To include the symbols, add

--symbols to the linker command line, using

the PSoC Creator menu Project > Build Settings >

Linker > Command Line > Custom Flags.

Figure 12. .map File in PSoC Creator

Now that we have seen the basics of how linker script files work, we can examine how to use them to place code or

variables in custom locations in PSoC memory.

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 24

9.2 Placement Procedure

To place C functions or variables (including arrays and structures) in custom locations, do the following:

1. Define the custom locations.

2. In the C source code, declare the functions and variables that are to be located, along with their custom sections.

3. Build the PSoC Creator project. Copy the generated linker script file to a custom file, then modify it to add and

locate the sections from step 2.

4. Rebuild the PSoC Creator project. Review the .map file and confirm that the custom locations have been filled

correctly and that there are no section overlaps.

Let us examine each of these steps in detail.

9.2.1 Def ine Custom Locations

Before using custom locations, you should understand clearly the reasons why you want to use them. For example, do

you want to:

▪ Place a function, or a variable of type const, in a custom location in flash?

▪ Place a function in SRAM, for possible faster execution? If so, note that in PSoC 4 and PSoC 5LP flash accesses

are almost as fast as SRAM accesses, so significant performance gains may not be realized. See Cortex-M0/M0+

in PSoC 4 and Cortex-M3 in PSoC 5LP for details.

▪ Place a variable such that it is not initialized by C startup code? This is typically used to maintain a variable’s state

through a device reset (except for a power-cycle reset).

▪ Place variables in PSoC 5LP upper SRAM, for bit band access?

▪ Place variables in other custom locations in SRAM?

▪ Place variables in PSoC 5LP EMIF memory?

Your answers to the above questions will help you to determine the addresses of your custom locations.

9.2.2 Declare Functions and Variables

Once you have determined the custom location addresses, declare your functions and variables. In the declarations,

add the sections in which they will reside, using the __attribute__ keyword (two underscore characters before and

after the "attribute"):

uint8 foo __attribute__ ((section(".MY_section")));

This keyword can be used with both gcc and MDK. PSoC Creator provides a convenient macro CY_SECTION to simplify

the above statement. Following are some examples of its usage:

uint8 foo CY_SECTION(".MY_section"); /* no explicit initialization, = 0 */

uint8 foo CY_SECTION(".MY_section") = 10; /* explicit initialization */

/* declare a function’s section in the prototype only, and not in the actual

function */

uint16 MyFunction(char *x) CY_SECTION(".MY_section");

/* CYISR is a PSoC Creator macro to define an interrupt handler function.

 See Related Documents for more information. */

CYISR(MyFunction) CY_SECTION(".MY_section");

PSoC Creator also provides a convenient macro CY_NOINIT, which places a variable in the .noinit section; see

Figure 10 and Figure 11:

/* no initialization by C startup code, initial value is undefined */

uint8 foo CY_NOINIT;

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 25

9.2.3 Modify the Linker Script Fi le

The final task is to modify your project’s linker script file, to declare where you want the previously defined sections to

be placed.

For gcc, modify the linker script .ld file – change the SECTIONS {} command and possibly the MEMORY {} command.

A common way to modify it would be to add statements for EMIF memory, or to split the SRAM, for example:

MEMORY

{

 rom (rx) : ORIGIN = 0x0, LENGTH = 262144

 coderam (rwx) : ORIGIN = 0x20000000 - (65536 / 2), LENGTH = (65536 / 2)

 upperram (rwx) : ORIGIN = 0x20000000, LENGTH = (65536 / 2)

 EMIF (rwx) : ORIGIN = 0x60000000, LENGTH = 0x1000000

}

Note: Changing the SRAM region names will cause errors in some section definitions in the default file, so you must

change each section definition as needed. For example, change .stack: { ... } >ram to

.stack: { ... } >upperram .

To locate a section, add a section definition to the SECTIONS {} command. The syntax for a section definition is:

.MY_section <address> <(NOLOAD)> : <alignment>

{

 *(.MY_section)

} ><memory region>

Note that the section definition name and the name of the section within that section can be the same. Having the first

character of the name be a period “.” is not required but is a common convention.

Use a memory region name from the MEMORY {} command, as described previously.

You can also just place your section within an existing section, for example:

.data:

{

 ...

 *(.MY_section)

 ...

} >ram AT>rom

For MDK, modify the linker script .scat file. The procedure is similar to that for gcc but simpler – there is no MEMORY {}

or SECTIONS {} command to change. Instead, just add your execution region, for example:

MY_REGION <address> <UNINIT> <length>

{

 * (.MY_section)

}

You can also just place your section within an existing section, for example:

DATA

{

 * (.MY_section)

 .ANY (+RW, +ZI)

}

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 26

9.3 Example

As noted previously, there are several different applications for custom locations. Let us examine one of them as an

example of Placement Procedure. In this example we will place an array in PSoC 5LP upper SRAM so that it can be

accessed by the Cortex-M3 bit band feature – see Cortex-M3 Bit Band.

First, we define the array to occupy a section that we will call “.bitband”:

uint8 myArray[10] CY_SECTION(".bitband");

Then we must modify the linker script file to tell it that we want to place the .bitband section in upper SRAM, starting at

address 0x20000000. Table 8 shows how to do this for gcc (.ld file) or MDK (.scat file):

Table 8. Example Modifications of Linker Script Files

gcc Example, .ld File MDK Example, .scat File

/* put our .bitband section between the

 .heap section in code SRAM and the

 .stack section in upper SRAM */

.heap (NOLOAD) :

{

 . = _end;

 . += 256;

 __cy_heap_limit = .;

} >ram

.bitband 0x20000000 (NOLOAD) :

{

 *(.bitband)

} >ram

.stack (__cy_stack - 256) (NOLOAD) :

{

 __cy_stack_limit = .;

 . += 256;

} >ram

/* put our BITBAND execution region between the

 DATA exection region in code SRAM and the

 heap in upper SRAM */

DATA +0

{

 .ANY (+RW, +ZI)

}

BITBAND 0x20000000 UNINIT

{

 * (.bitband)

}

ARM_LIB_HEAP (0x20000000 +

 (65536 / 2) - 256 - 256) EMPTY 256

{

}

ARM_LIB_STACK (0x20000000 + (65536 / 2)) EMPTY -256

{

}

Build the project, then check the .map file and confirm that the array has been located correctly and that there are no

section overlaps.

Note the initial values of myArray are undefined; they must be initialized in your code. See Variable Initialization for

details.

See Cortex-M3 Bit Band for details on how to do bit-level access of variables located in the bit band region.

9.4 General Considerations

When declaring code and variables in custom sections, keep the following in mind:

▪ Explicitly initialized variables must be placed in the .data section (gcc, Figure 10) or the DATA execution region

(MDK, Figure 11). See Variable Initialization for details.

Similarly, variables for which there is no explicit initialization and which you expect to be auto-initialized to zero

must be placed in the .bss section (gcc) or the DATA execution region (MDK). (The MDK compiler automatically

gives variables an RW or ZI section attribute, depending on whether or not they’re explicitly initialized.)

Variables that are not placed in the above sections are not initialized. Explicit initializations are ignored.

▪ Functions that are to be located in SRAM must be placed in the .data section (gcc, Figure 10) or the DATA

execution region (MDK, Figure 11).

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 27

▪ It is more efficient to have all constant data, for example fixed data tables in arrays, be located in flash, however

the default is to place them in SRAM. To force placement of a variable in flash, set its type to const and explicitly

initialize it, for example:

uint32 const var_in_flash = 0x12345678;

▪ If you are using custom locations in flash, note that the PSoC Creator bootloader uses the top one or two rows of

flash to store information about bootloadable files. For more information see the Bootloader Component datasheet.

▪ With MDK, the easiest way to put a variable at any specified address is to use the

__attribute__((at(address))) variable attribute. For example:

uint32 const var_in_flash[] __attribute__((at(0x300))) = { . . . };

The linker defines a special section and places the variable at the desired address, adjusting the placement of

other code and variables as needed, as the following .map file snippet shows:

Symbol Name Value Ov Type Size Object(Section)

. . .

.text 0x000002f4 Section 0 indicate_semi.o(.text)

.text 0x000002f4 Section 0 exit.o(.text)

.ARM.__AT_0x00000300 0x00000300 Section 12

main.o(.ARM.__AT_0x00000300)

.text 0x0000030c Section 0 init_alloc.o(.text)

.text 0x00000394 Section 0 h1_free.o(.text)

. . .

For more information, see C Documentation.

▪ The .ramvectors section should always be at the bottom of SRAM and the stack section should always be at

the top of SRAM.

Complete documentation of .ld file usage can be found in your PSoC Creator installation folder, typically:

C:\Program Files\Cypress\PSoC Creator\3.0\PSoC Creator\import\gnu_cs\arm\4.7.3\share\doc\gcc-arm-none-

eabi\pdf\ld.pdf

Complete documentation of .scat file usage can be found in your MDK installation folder, typically:

C:\Keil\ARM\Hlp\armlink.chm and C:\Keil\ARM\Hlp\armlinkref.chm

9.5 EMIF Considerations (PSoC 5LP Only)

It is possible to place variables in the external memory (EMIF) supported by PSoC 5LP, using the techniques described

previously, but there are some restrictions:

▪ You must have an EMIF Component placed on your PSoC Creator project schematic. Note that the external

memory address, data and control lines can use a significant number of device pins – plan your design accordingly.

See the EMIF Component datasheet for details.

▪ You cannot access the external memory until the EMIF API function EMIF_Start() is called. So you can’t initialize

EMIF variables in C startup; you must initialize them after the code reaches main() and EMIF_Start() is called.

▪ The EMIF supports 8-bit and 16-bit memories; placement and access of different size variables may be a

consideration. It is recommended to align 16-bit and 32-bit variables and structure members on 2-byte and 4-byte

boundaries, respectively.

▪ Code can be executed from EMIF, but only with 16-bit external memories. The code executes much more slowly

than from device internal flash or SRAM. It is also difficult to initialize code in external memory. In general, having

code in external memory is not recommended.

http://www.cypress.com/
http://www.cypress.com/?rID=71586&source=an89610
http://www.cypress.com/?rID=56752&source=an89610

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 28

10 Cortex-M3 Bit Band (PSoC 5LP Only)

As indicated in Address Map, Figure 2 and Figure 4, the PSoC 5LP Cortex-M3 has a bit band feature, where accessing

an address in an alias region results in bit-level access in the corresponding bit band region. This lets you quickly set,

clear or test a single bit in the first 1 Mbyte of the region. For a given bit in a given byte address, the formula for the

corresponding alias address is:

alias_address = 0x22000000 + 32 * (byte_address – 0x20000000) + 4 * bit_number

So for example if you want to set bit 5 in address 0x20000001, write a 1 to address:

0x22000000 + 32 * 1 + 4 * 5 = 0x22000034.

Similarly, to clear the bit, write a 0 to the alias address. To test the bit, read the alias address and test bit 0.

Note: In addition to the SRAM region, the Cortex-M3 supports bit band for the peripheral region, in which all of the

PSoC 5LP registers are located. However, peripheral region bit band is not supported in the PSoC 5LP. Writing to the

peripheral region’s bit band alias region (0x42000000 – 0x43FFFFFF) may give unpredictable results in the PSoC 5LP

registers and is not recommended.

To use the bit band feature with a variable, first place the variable in upper SRAM using the techniques described in

Placing Code and Variables. Then, define macros to calculate and use the corresponding addresses in the bit band

alias region:

#define BIT_BAND_ALIAS_BASE 0x22000000

/* 'byte' should be a number 0x20000000 to 0x200FFFFF

 'bit' should be a number 0 to 7 */

#define BIT_BAND_ALIAS_ADDR(byte, bit) ((BIT_BAND_ALIAS_BASE + \

 32 * ((uint32)(byte) – \

 CYREG_SRAM_DATA_MBASE) + \

 4 * (uint8)(bit))

/* 'a' should be an address (uint32 *) */

#define GET_BIT(a, bit) *(uint32 *)BIT_BAND_ALIAS_ADDR(a, bit)

/* 'val' should be 0 or 1 */

#define SET_BIT(a, bit, val) GET_BIT(a, bit) = (uint32)(val)

#define TEST_BIT(a, bit, val) (GET_BIT(a, bit) == (uint32)(val))

You can then use the macros to set or test a bit:

SET_BIT(&foo, 5, 1); /* set bit 5 of foo */

if (TEST_BIT(&foo, 5, 1)) { ... } /* test bit 5 */

In general, it is more efficient to set or clear a bit with the bit band technique than by reading, modifying and writing the

variable, as Table 9 shows. When bit band is used, the read-modify-write cycle is done internally by the CPU, thereby

saving one instruction.

Table 9. Assembly Language for Bit Band vs Direct Set

C Code Assembler Code

/* direct set bit */

foo |= (1 << 5);

; R3 = address of foo

ldr r2, [r3]

orr r2, r2, #32

str r2, [r3]

/* use bit band */

SET_BIT(&foo, 5, 1);

; R3 = bit band alias address for foo bit 5 */

mov r2, #1

str r2, [r3]

Note that there is no efficient way use bit banding

to toggle a bit. It is possible to do:

SET_BIT(&foo, 5,

 GET_BIT(&foo, 5) ^ 1);

However it is simpler and just as efficient to do:

foo ^= (1 << 5);

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 29

11 DMA Addresses (PSoC 5LP only)

This section assumes that you know how to use the direct memory access (DMA) controller in PSoC 5LP. The DMA

controller can transfer data from a source to a destination with no CPU intervention. This allows the CPU to handle

other tasks while the DMA does data transfers, thereby achieving a “multiprocessing” environment.

The DMA controller is highly flexible and capable of doing complex transfers of data between PSoC memory and on-

chip peripherals including ADCs, DACs, the Digital Filter Block (DFB), USB, UART, and SPI. There are 24 independent

DMA channels. For more information, see AN52705, Getting Started with PSoC DMA.

In PSoC 5LP, the DMA shares the Cortex-M3 S Bus (Figure 4) with the CPU. However, because the S Bus does not

access the Code region, the DMA cannot directly access code SRAM (0x1FFF8000 to 0x1FFFFFFF). PSoC 5LP

handles this by implementing remapping so that the DMA can access the code SRAM by accessing corresponding

addresses 0x20008000 to 0x2000FFFF, as Figure 13 shows.

Figure 13. DMA Remapping of Code SRAM

0x1FFF FFFF

Upper SRAM

0x2000 0000

CPU Mapping

Code SRAM

Code SRAM

(Remapped)

DMA Mapping

Upper SRAM

0x1FFF 8000

0x2000 7FFF

0x2000 8000

0x2000 FFFF

Since the DMA is a 16-bit subsystem, when it increments an address only the lower 16 bits are incremented, with

rollover. Therefore, the next DMA address following 0x2000FFFF (which is mapped to 0x1FFFFFFF) is 0x20000000.

This means that the SRAM still functions as a contiguous 64-KB block of memory for DMA. This is also true for devices

with less than 64K SRAM because the SRAM is always centered around 0x20000000.

The remapping is taken into account by the PSoC Creator DMA Component API functions used to set up a DMA

channel. If you do not use the API, always set the upper 16 bits of a DMA address for SRAM to 0x2000 regardless of

the actual address.

12 Summary

This application note has presented a number of methods to increase the efficiency of your C code for the Cortex CPUs

in PSoC 4 and PSoC 5LP. The gcc and MDK compilers supported by PSoC Creator work well for most applications

without using these techniques; they are needed for special problems in meeting code size or execution speed

requirements.

The methods presented, in no particular order, are:

▪ Limit the number of function arguments to no more than 4. See Function Arguments and Result.

▪ Minimize the number of global and static variables. Not only is this a coding best practice but it may reduce code

size by reducing the number of address load operations. See Global and Static Variables.

▪ Use inline or embedded assembler to maximize efficiency in critical sections; see Mixing C and Assembler Code.

You can also use this technique, or intrinsic functions, to take advantage of special instructions, especially in the

Cortex-M3; see Special-Function Instructions.

Also see Appendix A for examples of how to write efficient assembler code.

▪ Be careful when using standard compiler libraries, as they may use a lot of memory; consider using inline code

instead. See Compiler Libraries.

http://www.cypress.com/
http://www.cypress.com/?rID=37793&source=an89610
http://www.cypress.com/?rID=46450

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 30

▪ When using structures, pay careful attention to whether they should be packed or unpacked – there are advantages

and disadvantages for each. See Packed and Unpacked Structures.

▪ Place speed critical code in SRAM; see Placing Code and Variables. Note that speed gains using this technique

may not be realized.

▪ Place variables to take advantage of the bit band feature in the PSoC 5LP Cortex-M3; see Cortex-M3 Bit Band and

Example.

12.1 Use All of the Resources in Your PSoC

There is one final method available for reducing code size. It is based on the fact that PSoC is designed to be a flexible

device that enables you to build custom functions in programmable analog and digital blocks. For example, in

PSoC 5LP you have the following peripherals that can act as “co-processors”:

▪ DMA Controller. Note that the most common CPU assembler instructions are MOV, LDR, and STR, which implies

that the CPU spends a lot of cycles just moving bytes around. Let the DMA controller do that instead.

▪ Digital Filter Block (DFB) – a sophisticated 24-bit sum of products calculator

▪ Universal Digital Blocks (UDBs). There are as many as 24 UDBs, and each UDB has an 8-bit datapath that can

add, subtract, and do bitwise operations, shifts, and cyclic redundancy check (CRC). The datapaths can be chained

for word-wide calculations. Consider offloading CPU calculations to the datapaths.

▪ The UDBs also have programmable logic devices (PLDs) which can be used to build state machines, c.f. the

Lookup Table (LUT) Component datasheet. LUTs can be an effective alternative to programming state machines

in the CPU using C switch / case statements.

▪ Analog components including ADCs, DACs, comparators, opamps, as well as programmable switched capacitor /

continuous time (SC/CT) blocks from which you can create programmable gain amplifiers (PGAs), transimpedance

amplifiers (TIAs), and mixers. Consider doing your processing in the analog domain instead of the digital domain.

PSoC Creator offers a large number of Components to implement various functions in these peripherals. This allows

you to develop an effective multiprocessing system in a single chip, offloading a lot of functionality from the CPU. This

in turn can not only reduce code size, but by reducing the number of tasks that the CPU must perform, you can reduce

CPU speed and thereby reduce power.

For example, with PSoC 5LP a digital system can be designed to control multiplexed ADC inputs, and interface with

DMA to save the data in SRAM, to create an advanced analog data collection system with zero usage of the CPU.

Cypress offers extensive application note support for PSoC peripherals, as well as detailed data in the device

datasheets and technical reference manuals (TRMs). For more information see Related Documents.

13 Related Documents

13.1 Application Notes

▪ AN77759 – Getting Started with PSoC 5LP

▪ AN79953 – Getting Started with PSoC 4

▪ AN52705 – Getting Started with PSoC DMA

▪ AN54460 – PSoC 3 and PSoC 5LP Interrupts

▪ AN90799 – PSoC 4 Interrupts

▪ AN60630 – PSoC 3 8051 Code and Memory Optimization

13.2 C Documentation

▪ gcc documentation can be found in your PSoC Creator installation folder.

Compiler documentation:

C:\Program Files\Cypress\PSoC Creator\3.0\PSoC Creator\import\gnu_cs\arm\4.7.3\share\doc\gcc-arm-none-

eabi\pdf\gcc\gcc.pdf

http://www.cypress.com/
http://www.cypress.com/?rid=46472
http://www.cypress.com/?rID=60890&source=an89610
http://www.cypress.com/?rID=78695&source=an89610
http://www.cypress.com/?rID=37793&source=an89610
http://www.cypress.com/?rID=38267
http://www.cypress.com/documentation/application-notes/an90799-psoc-4-interrupts
http://www.cypress.com/?rID=78695&source=an89610

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 31

Linker script file documentation:

C:\Program Files\Cypress\PSoC Creator\3.0\PSoC Creator\import\gnu_cs\arm\4.7.3\share\doc\gcc-arm-none-

eabi\pdf\ld.pdf

▪ For MDK, the documentation can be found in your MDK installation folder, typically: C:\Keil\ARM\Hlp. Start with

armtools.chm. For the compiler, see armcc.chm and armccref.chm.

The linker script file documentation can be found in armlink.chm and armlinkref.chm.

13.3 Arm Cortex Documentation

Arm provides on their web site a wealth of information about Cortex-M3 and Cortex-M0/M0+ CPUs:

▪ Cortex-M0 Instruction Set

▪ Cortex-M0+ Instruction Set

▪ Cortex-M3 Instruction Set

▪ Cortex Microcontroller Software Interface Standard (CMSIS) library

▪ Arm Related Books

About the Authors

Name: Mark Ainsworth

Title: Applications Engineer Principal

Background: Mark Ainsworth has a BS in Computer Engineering from Syracuse University and an MSEE from

University of Washington, as well as many years experience designing and building embedded

systems.

Name: Asha Ganesan

Title: Applications Engineer

Background: Asha Ganesan, a gold medalist from College of Engineering Guindy, India, earned her BE in

Electronics and Communication Engineering. She is currently working on PSoC 3/4/5LP based

projects and assisting PSoC users with their designs.

Name: Mahesh Balan

Title: Applications Engineer

Background: Mahesh Balan earned his BTech in Electronics and Communication Engineering from Model

Engineering College. He is currently working on PSoC 3/4/5LP based projects and assisting PSoC

users with their designs.

Name: Keith Mikoleit

Title: Systems Engineer

Background: Keith Mikoleit graduated from Western Washington University with a Bachelor's Degree in Electrical

Engineering Technology.

http://www.cypress.com/
http://www.arm.com/
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0497a/CHDCHEAG.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0497a/CHDCHEAG.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337i/index.html
http://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php
http://www.arm.com/support/resources/arm-books/index.php

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 32

Appendix A. Appendix A: Compiler Output Details

This section shows in detail the assembler output for both compilers supported by PSoC Creator (gcc and MDK) and both PSoC CPUs (Cortex-M0/M0+

and Cortex-M3), with and without optimizations. The details are shown in several tables, which are organized as follows:

▪ Table 10. Compiler Output Details for gcc Compiler for Cortex-M3 CPU

▪ Table 11. Compiler Output Details for gcc Compiler for Cortex-M0/M0+ CPU

▪ Table 12. Compiler Output Details for MDK Compiler for Cortex-M3 CPU

▪ Table 13. Compiler Output Details for MDK Compiler for Cortex-M0/M0+ CPU

Although it may not be exactly what you get when you compile your C code, the assembler code in the tables can serve as useful examples that you can

incorporate in your code. For details see Mixing C and Assembler Code.

The test program used to generate the tables can be found in Compiler Test Program.

A.1 Assembler Examples, gcc for Cortex-M3

Table 10 shows, for the gcc compiler for the Cortex-M3, examples of compiler output for different optimization options. The examples were extracted from

the .lst files generated by the compiler.

See Function Arguments for details on register usage and stack usage in compiler functions.

Table 10. Compiler Output Details for gcc Compiler for Cortex-M3 CPU

C Code
gcc, Cortex-M3
No Optimization

gcc, Cortex-M3,
Size Optimization

gcc, Cortex-M3,
Speed Optimization

// Calling a function

// with no arguments

LCD_Start();

; do the function call

bl LCD_Start

; same as for no optimization ; same as for no optimization

// Calling a function with

// one argument

LCD_PrintInt8(128);

; R0 = first argument

; conditional flags are NOT

; updated by mov

mov r0, #80

bl LCD_PrintInt8

; R0 = first argument

; conditional flags ARE updated

; by movs

movs r0, #80

bl LCD_PrintInt8

; same as for size optimization

// Calling a function with

// two arguments

LCD_Position(0, 2);

; R0 = first argument

; R1 = second argument

mov r0, #0

mov r1, #2

bl LCD_Position

; R0 = first argument

; R1 = second argument

movs r1, #2

movs r0, #0

bl LCD_Position

; same as for size optimization

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 33

C Code
gcc, Cortex-M3
No Optimization

gcc, Cortex-M3,
Size Optimization

gcc, Cortex-M3,
Speed Optimization

// For loop:

void ForLoop(uint8 i)

{

 for(i = 0; i < 10; i++)

 {

 LCD_PrintInt8(i);

 }

}

; function prolog

; i is saved on the stack

sub sp, sp, #16

add r7, sp, #0

mov r3, r0

strb r3, [r7, #15]

; i = 0

mov r3, #0

strb r3, [r7, #15]

b .L2

; do the function call with

; i as the argument in R0

.L3:

ldrb r3, [r7, #15]

uxth r3, r3 ; sign extend

mov r0, r3

bl LCD_PrintInt8

; i++

ldrb r3, [r7, #15]

add r3, r3, #1

strb r3, [r7, #15]

; check i 10, by comparing

; it with 9

.L2:

ldrb r3, [r7, #15]

cmp r3, #9

bls .L3

; function epilog

add r7, r7, #16

mov sp, r7

pop {r7, pc} ; return

; function prolog

push {r4, lr}

; R4 = i

movs r4, #0

.L2:

; do the function call with

; i as the argument in R0

mov r0, r4 ; sign extend

adds r4, r4, #1 ; i++

uxtb r4, r4

bl LCD_PrintInt8

; check i not equal to 10

cmp r4, #10

bne .L2

; function epilog

pop {r4, pc} ; return

; function prolog

push {r3, lr}

; unroll the loop

; do the function call

; 10 times

; i as the argument in R0

movs r0, #0

bl LCD_PrintInt8

movs r0, #1

bl LCD_PrintInt8

. . .

movs r0, #9

pop {r3, lr}

; function returns back to

; caller of this function

b LCD_PrintInt8

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 34

C Code
gcc, Cortex-M3
No Optimization

gcc, Cortex-M3,
Size Optimization

gcc, Cortex-M3,
Speed Optimization

// While loop

// i is type automatic, see

// Accessing Automatic Variables

// for details

uint8 i = 0;

while (i < 10)

{

 LCD_PrintInt8(i);

 i++;

}

; prolog not shown

; i = 0

mov r3, #0

strb r3, [r7, #7]

b .L5

.L6:

; LCD_PrintInt8(i)

ldrb r3, [r7, #7]

uxth r3, r3

mov r0, r3

bl LCD_PrintInt8

; i++

ldrb r3, [r7, #7]

add r3, r3, #1

strb r3, [r7, #7]

.L5:

; while(i 10)

ldrb r3, [r7, #7]

cmp r3, #9

bls .L6

; epilog not shown

; prolog not shown

; i = 0

movs r4, #0

.L6:

mov r0, r4

adds r4, r4, #1 ; i++

uxtb r4, r4

; LCD_PrintInt8(i)

bl LCD_PrintInt8

; check i not equal to 10

cmp r4, #10

bne .L6

; epilog not shown

; function prolog

push {r3, lr}

; unroll the loop

; do the function call

; 10 times

; i as the argument in R0

movs r0, #0

bl LCD_PrintInt8

movs r0, #1

bl LCD_PrintInt8

. . .

movs r0, #9

pop {r3, lr}

; function returns back to

; caller of this function

b LCD_PrintInt8

// Conditional statement

void Conditional(uint8 i, uint8 j)

{

 if(j == 1)

 {

 LCD_PrintInt8(i);

 }

 else

 {

 LCD_PrintInt8(i + 1);

 }

}

; prolog not shown

; if(j == 1)

ldrb r3, [r7, #6]

cmp r3, #1

bne .L5

; LCD_PrintInt8(i)

ldrb r3, [r7, #7]

uxth r3, r3

mov r0, r3

bl LCD_PrintInt8

b .L4

.L5:

; LCD_PrintInt8(i + 1)

ldrb r3, [r7, #7]

uxth r3, r3

add r3, r3, #1

uxth r3, r3

mov r0, r3

bl LCD_PrintInt8

.L4:

; epilog not shown

; no prolog

; if(j == 1)

cmp r1, #1

beq .L10

; LCD_PrintInt8(i)

adds r0, r0, #1

uxtb r0, r0

.L10:

; function returns back to

; caller of this function

b LCD_PrintInt8

; same as for size optimization

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 35

C Code
gcc, Cortex-M3
No Optimization

gcc, Cortex-M3,
Size Optimization

gcc, Cortex-M3,
Speed Optimization

// Switch case statements

void SwitchCase(uint8 j)

{

 switch(j)

 {

 case 0:

 LCD_PrintInt8(1);

 break;

 case 1:

 LCD_PrintInt8(2);

 break;

 default:

 LCD_PrintInt8(0);

 break;

 }

}

; prolog not shown

; switch(j)

ldrb r3, [r7, #7]

cmp r3, #0

beq .L9

cmp r3, #1

beq .L10

b .L12

.L9: ; case 0

mov r0, #1

bl LCD_PrintInt8

b .L7 ; break

.L10: ; case 1

mov r0, #2

bl LCD_PrintInt8

b .L9 ; break

.L12: ; default

mov.w r0, #0

bl LCD_PrintInt8

nop ; break

.L7:

; epilog not shown

; no prolog

; switch(j)

cbz r0, .L13

cmp r0, #1

bne .L15

movs r0, #2 ; case 1

b .L16

.L13:

movs r0, #1 ; case 0

b .L16

.L15:

movs r0, #0 ; default

.L16:

; no epilog

b LCD_PrintInt8

; no prolog

; switch(j)

cbnz r0, .L12

movs r0, #1 ; case 0

; no epilog

b LCD_PrintInt8

.L12:

cmp r0, #1

beq .L13

movs r0, #0 ; default

; no epilog

b LCD_PrintInt8

movs r0, #2 ; case 1

; no epilog

b LCD_PrintInt8

// Ternary operator

void Ternary(uint8 i)

{

 LCD_PrintInt8(

 (i == 1) ? 80 : 100);

}

; prolog not shown

; check value of i

ldrb r3, [r7, #7]

cmp r3, #1

bne .L17

mov r3, #80

b .L18

.L17:

mov r3, #100

.L18:

mov r0, r3

bl LCD_PrintInt8

; epilog not shown

; no prolog

; check value of i

cmp r0, #1

; “ite” stands for if-then-

; else instruction

; “ne” condition checks

; if the previous compare

; instruction has cleared the

; “equal to” flag

ite ne

; mov if the result of the

; previous “ite” instruction is

; “not equal”

movne r0, #100

; mov if the result of the

; previous “ite” instruction is

; “equal”

moveq r0, #80

; no epilog

b LCD_PrintInt8

; same as for size optimization

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 36

C Code
gcc, Cortex-M3
No Optimization

gcc, Cortex-M3,
Size Optimization

gcc, Cortex-M3,
Speed Optimization

// Addition operation

int DoAdd(int x, int y)

{

 return x + y;

}

; prolog not shown

ldr r2, [r7, #4]

ldr r3, [r7, #0]

adds r3, r2, r3

mov r0, r3 ; return value

; epilog not shown

; no prolog

adds r0, r0, r1

bx lr ; return with result

; same as for size optimization

// Subtraction operation

int DoSub(int x, int y)

{

 return x - y;

}

; prolog not shown

ldr r2, [r7, #4]

ldr r3, [r7, #0]

subs r3, r2, r3

mov r0, r3 ; return value

; epilog not shown

; no prolog

subs r0, r0, r1

bx lr ; return with result

; same as for size optimization

// Multiplication

int DoMul(int x, int y)

{

 return x * y;

}

; prolog not shown

ldr r3, [r7, #4]

ldr r2, [r7, #0]

mul r3, r2, r3

mov r0, r3 ; return value

; epilog not shown

; no prolog

muls r0, r1, r0

bx lr ; return with result

; same as for size optimization

// Division

int DoDiv(int x, int y)

{

 return x / y;

}

; prolog not shown

ldr r2, [r7, #4]

ldr r3, [r7, #0]

sdiv r3, r2, r3

mov r0, r3 ; return value

; epilog not shown

; no prolog

sdiv r0, r0, r1

bx lr ; return with result

; same as for size optimization

// Modulo operator

int DoMod(int x, int y)

{

 return x % y;

}

; prolog not shown

ldr r3, [r7, #4]

ldr r2, [r7, #0]

; truncated quotient

sdiv r2, r3, r2

; quotient * divisor

ldr r1, [r7,#0]

mul r2, r1, r2

; remainder = dividend -

; (quotient * divisor)

subs r3, r3, r2

mov r0, r3 ; return value

; epilog not shown

; no prolog

sdiv r3, r0, r1

; multiply and subtract instruction

; implements remainder =

; dividend - (quotient * divisor)

mls r0, r3, r1, r0

bx lr ; return with result

; same as for size optimization

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 37

C Code
gcc, Cortex-M3
No Optimization

gcc, Cortex-M3,
Size Optimization

gcc, Cortex-M3,
Speed Optimization

// Pointer

void Pointer(uint8 x, uint8 *ptr)

{

 *ptr = *ptr + x;

 ptr++;

 LCD_PrintInt8(*ptr);

}

; *ptr = *ptr + x

ldr r3, [r7, #0] ; ptr

ldrb r2, [r3, #0]

ldrb r3, [r7, #7] ; x

adds r3, r2, r3

uxtb r2, r3

ldr r3, [r7, #0] ; ptr

strb r2, [r3, #0]

; ptr++

ldr r3, [r7, #0] ; ptr

add r3, r3, #1

str r3, [r7, #0]

; LCD_PrintInt8(*ptr)

ldr r3, [r7, #0]

ldrb r3, [r3, #0]

mov r0, r3

bl LCD_PrintInt8

; *ptr = *ptr + x

ldrb r3, [r1, #0] ; R1 = ptr

adds r0, r0, r3 ; R0 = x

strb r0, [r1, #0]

; ptr++

; LCD_PrintInt8(*ptr)

ldrb r0, [r1, #1]

b LCD_PrintInt8

; same as for size optimization

// Function pointer

void FuncPtr(uint8 x,

 void *fptr(uint8))

{

 (*fptr)(x);

}

; (*fptr)(x)

ldrb r2, [r7, #7] ; x

ldr r3, [r7, #0] ; fptr

mov r0, r2

; in a blx instruction, the

; LS bit of the register

; must be 1 to keep the CPU

; in Thumb mode, or an

; exception occurs

blx r3

; (*fptr)(x)

; in a blx instruction, the LS

; bit of the register must be

; 1 to keep the CPU in Thumb

; mode, or an exception occurs

blx r1

; same as for size optimization

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 38

C Code
gcc, Cortex-M3
No Optimization

gcc, Cortex-M3,
Size Optimization

gcc, Cortex-M3,
Speed Optimization

// Packed structures

struct FOO_P

{

 uint8 membera;

 uint8 memberb;

 uint32 memberc;

 uint16 memberd;

} __attribute__ ((packed));

extern struct FOO_P myfoo_p;

void PackedStruct(void)

{

 myfoo_p.membera = 5;

 myfoo_p.memberb = 10;

 myfoo_p.memberc = 15;

 myfoo_p.memberd = 20;

}

; membera = 5

movw r3, #:lower16:myfoo_p

movt r3, #:upper16:myfoo_p

mov r2, #5

strb r2, [r3, #0]

; memberb = 10

movw r3, #:lower16:myfoo_p

movt r3, #:upper16:myfoo_p

mov r2, #10

strb r2, [r3, #1]

; memberc = 15

movw r3, #:lower16:myfoo_p

movt r3, #:upper16:myfoo_p

mov r2, #0

orr r2, r2, #15

strb r2, [r3, #2]

mov r2, #0

strb r2, [r3, #3]

mov r2, #0

strb r2, [r3, #4]

mov r2, #0

strb r2, [r3, #5]

; memberd = 20

movw r3, #:lower16:myfoo_p

movt r3, #:upper16:myfoo_p

mov r2, #0

orr r2, r2, #20

strb r2, [r3, #6]

mov r2, #0

strb r2, [r3, #7]

ldr r3, [pc, .L28]

movs r2, #5

movs r0, #10

strb r2, [r3, #0] ; membera = 5

strb r0, [r3, #1] ; memberb = 10

movs r2, #0

movs r1, #15

movs r0, #20

strb r1, [r3, #2] ; memberc = 15

strb r2, [r3, #3]

strb r2, [r3, #4]

strb r2, [r3, #5]

strb r0, [r3, #6] ; memberd = 20

strb r2, [r3, #7]

bx lr

.L28:

.word myfoo_p

movw r3, #:lower16:myfoo_p

movt r3, #:upper16:myfoo_p

movs r1, #5

movs r0, #10

movs r2, #0

strb r1, [r3, #0] ; membera = 5

strb r0, [r3, #1] ; memberb = 10

movs r1, #15

movs r0, #20

strb r1, [r3, #2] ; memberc = 15

strb r2, [r3, #3]

strb r2, [r3, #4]

strb r2, [r3, #5]

strb r0, [r3, #6] ; memberd = 20

strb r2, [r3, #7]

bx lr

// unpacked structures

struct FOO

{

 uint8 membera;

 uint8 memberb;

 uint32 memberc;

 uint16 memberd;

};

extern struct FOO myfoo;

void PackedStruct(void)

{

 myfoo.membera = 5;

 myfoo.memberb = 10;

 myfoo.memberc = 15;

 myfoo.memberd = 20;

}

; membera = 5

movw r3, #:lower16:myfoo

movt r3, #:upper16:myfoo

mov r2, #5

strb r2, [r3, #0]

; memberb = 10

movw r3, #:lower16:myfoo

movt r3, #:upper16:myfoo

mov r2, #10

strb r2, [r3, #1]

; memberc = 15

movw r3, #:lower16:myfoo

movt r3, #:upper16:myfoo

mov r2, #15

str r2, [r3, #4]

; memberd = 20

movw r3, #:lower16:myfoo

movt r3, #:upper16:myfoo

mov r2, #20

strh r2, [r3, #8]

ldr r3, [pc, .L31]

movs r2, #5

strb r2, [r3, #0] ; membera = 5

movs r0, #10

movs r1, #15

movs r2, #20

strb r0, [r3, #1] ; memberb = 10

str r1, [r3, #4] ; memberc = 15

strh r2, [r3, #8] ; memberd = 20

bx lr

.L31:

.word myfoo

movw r3, #:lower16:myfoo

movt r3, #:upper16:myfoo

movs r2, #5

strb r2, [r3, #0] ; membera = 5

movs r0, #10

movs r1, #15

movs r2, #20

strb r0, [r3, #1] ; memberb = 10

str r1, [r3, #4] ; memberc = 15

strh r2, [r3, #8] ; memberd = 20

bx lr

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 39

A.2 Assembler Examples, gcc for Cortex-M0/M0+

Table 11 shows, for the gcc compiler for the Cortex-M0/M0+, examples of compiler output for different optimization options. The examples were extracted

from the .lst files generated by the compiler.

See Function Arguments for details on register usage and stack usage in compiler functions.

Table 11. Compiler Output Details for gcc Compiler for Cortex-M0/M0+ CPU

C Code
gcc, Cortex-M0/M0+,

No Optimization
gcc, Cortex-M0/M0+,

Size Optimization
gcc, Cortex-M0/M0+,
Speed Optimization

// Calling a function

// with no arguments

LCD_Start();

; do the function call

bl LCD_Start

; same as for no optimization ; same as for no optimization

// Calling a function with

// one argument

LCD_PrintInt8(128);

; R0 = first argument

; conditional flags are NOT

; updated by mov

mov r0, #128

bl LCD_PrintInt8

; same as for no optimization ; same as for no optimization

// Calling a function with

// two arguments

LCD_Position(0, 2);

; R0 = first argument

; R1 = second argument

mov r1, #2

mov r0, #0

bl LCD_Position

; same as for no optimization ; same as for no optimization

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 40

C Code
gcc, Cortex-M0/M0+,

No Optimization
gcc, Cortex-M0/M0+,

Size Optimization
gcc, Cortex-M0/M0+,
Speed Optimization

// For loop:

void ForLoop(uint8 i)

{

 for(i = 0; i < 10; i++)

 {

 LCD_PrintInt8(i);

 }

}

; function prolog

; i is saved on the stack

push {r7, lr}

sub sp, sp, #16

add r7, sp, #0

mov r2, r0

add r3, r7, #7

strb r2, [r3]

; i = 0

mov r3, r7

add r3, r3, #15

mov r2, #0

strb r2, [r3]

b .L2

; do the function call with

; i as the argument in R0

.L3:

mov r3, r7

add r3, r3, #15

ldrb r3, [r3]

mov r0, r3

bl LCD_PrintInt8

; i++

mov r3, r7

add r3, r3, #15

mov r2, r7

add r2, r2, #15

ldrb r2, [r2]

add r2, r2, #1

strb r2, [r3]

; check i 10, by comparing

; it with 9

.L2:

mov r3, r7

add r3, r3, #15

ldrb r3, [r3]

cmp r3, #9

bls .L3

; function epilog

mov sp, r7

add sp, sp, #16

pop {r7, pc}

; function prolog

push {r4, lr}

; R4 = i

mov r4, #0

.L2:

; do the function call with

; i as the argument in R0

mov r0, r4 ; sign extend

add r4, r4, #1 ; i++

uxtb r4, r4

bl LCD_PrintInt8

; check i not equal to 10

cmp r4, #10

bne .L2

pop {r4, pc} ; return

; function prolog

push {r3, lr}

; unroll the loop

; do the function call

; 10 times

; i as the argument in R0

mov r0, #0

bl LCD_PrintInt8

mov r0, #1

bl LCD_PrintInt8

. . .

mov r0, #9

bl LCD_PrintInt8

pop {r3, pc} ; return

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 41

C Code
gcc, Cortex-M0/M0+,

No Optimization
gcc, Cortex-M0/M0+,

Size Optimization
gcc, Cortex-M0/M0+,
Speed Optimization

// While loop

// i is type automatic, see

// Accessing Automatic Variables

// for details

uint8 i = 0;

while (i < 10)

{

 LCD_PrintInt8(i);

 i++;

}

; prolog not shown

; i = 0

add r3, r7, #7

mov r2, #0

strb r2, [r3]

b .L5

.L6:

; LCD_PrintInt8(i)

add r3, r7, #7

ldrb r3, [r3]

mov r0, r3

bl LCD_PrintInt8

; i++

add r3, r7, #7

add r2, r7, #7

ldrb r2, [r2]

add r2, r2, #1

strb r2, [r3]

.L5:

; while(i 10)

add r3, r7, #7

ldrb r3, [r3]

cmp r3, #9

bls .L6

; epilog not shown

; prolog not shown

; i = 0

movs r4, #0

.L6:

mov r0, r4

add r4, r4, #1 ; i++

uxtb r4, r4

; LCD_PrintInt8(i)

bl LCD_PrintInt8

; check i not equal to 10

cmp r4, #10

bne .L6

; epilog not shown

; prolog not shown

; unroll the loop

; do the function call

; 10 times

; i as the argument in R0

mov r0, #0

bl LCD_PrintInt8

mov r0, #1

bl LCD_PrintInt8

. . .

mov r0, #9

bl LCD_PrintInt8

; epilog not shown

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 42

C Code
gcc, Cortex-M0/M0+,

No Optimization
gcc, Cortex-M0/M0+,

Size Optimization
gcc, Cortex-M0/M0+,
Speed Optimization

// Conditional statement

void Conditional(uint8 i, uint8 j)

{

 if(j == 1)

 {

 LCD_PrintInt8(i);

 }

 else

 {

 LCD_PrintInt8(i + 1);

 }

}

; prolog not shown

; if(j == 1)

add r3, r7, #6

ldrb r3, [r3]

cmp r3, #1

bne .L8

; LCD_PrintInt8(i)

add r3, r7, #7

ldrb r3, [r3]

mov r0, r3

bl LCD_PrintInt8

b .L7

.L8:

; LCD_PrintInt8(i + 1)

add r3, r7, #7

ldrb r3, [r3]

add r3, r3, #1

uxtb r3, r3

mov r0, r3

bl LCD_PrintInt8

.L7:

; epilog not shown

; prolog not shown

; if(j == 1)

cmp r1, #1

beq .L11

; LCD_PrintInt8(i)

add r0, r0, #1

uxtb r0, r0

.L11:

bl LCD_PrintInt8

; epilog not shown

; same as for size optimization

// Switch case statements

void SwitchCase(uint8 j)

{

 switch(j)

 {

 case 0:

 LCD_PrintInt8(1);

 break;

 case 1:

 LCD_PrintInt8(2);

 break;

 default:

 LCD_PrintInt8(0);

 break;

 }

}

; prolog not shown

; switch(j)

add r3, r7, #7

ldrb r3, [r3]

cmp r3, #0

beq .L12

cmp r3, #1

beq .L13

b .L15

.L12 ; case 0

mov r0, #1

bl LCD_PrintInt8

b .L10 ; break

.L13: ; case 1

mov r0, #2

bl LCD_PrintInt8

b .L10 ; break

.L15: ; default

mov r0, #0

bl LCD_PrintInt8

mov r8, r8 ; break - nop

.L10:

; epilog not shown

; prolog not shown

; switch(j)

cmp r0, #0

beq .L14

cmp r0, #1

bne .L17

mov r0, #2 ; case 1

b .L18

.L14:

mov r0, #1 ; case 0

b .L18

.L17:

mov r0, #0 ; default

.L18:

bl LCD_PrintInt8

; epilog not shown

; prolog not shown

; switch(j)

cmp r0, #0

bne .L14

mov r0, #1 ; case 0

bl LCD_PrintInt8

.L8:

pop {r3, pc} ; return

.L14:

cmp r0, #1

beq .L15

mov r0, #0 ; default

bl LCD_PrintInt8

b .L8

mov r0, #2 ; case 1

bl LCD_PrintInt8

b .L8

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 43

C Code
gcc, Cortex-M0/M0+,

No Optimization
gcc, Cortex-M0/M0+,

Size Optimization
gcc, Cortex-M0/M0+,
Speed Optimization

// Ternary operator

void Ternary(uint8 i)

{

 LCD_PrintInt8(

 (i == 1) ? 80 : 100);

}

; prolog not shown

; check value of i

add r3, r7, #7

ldrb r3, [r3]

cmp r3, #1

bne .L17

mov r3, #80

b .L18

.L17:

mov r3, #100

.L18:

mov r0, r3

bl LCD_PrintInt8

; epilog not shown

; prolog not shown

mov r3, #100

cmp r0, #1

bne .L20

mov r3, #80

.L20:

mov r0, r3

bl LCD_PrintInt8

; epilog not shown

; prolog not shown

mov r3, #100

cmp r0, #1

beq .L19

.L17:

mov r0, r3

bl LCD_PrintInt8

pop {r3, pc} ; return

.L19:

mov r3, #80

b .L17

// Addition operation

int DoAdd(int x, int y)

{

 return x + y;

}

; prolog not shown

ldr r2, [r7, #4]

ldr r3, [r7, #0]

add r3, r2, r3

mov r0, r3 ; return value

; epilog not shown

; no prolog

add r0, r0, r1

bx lr ; return with result

; same as for size optimization

// Subtraction operation

int DoSub(int x, int y)

{

 return x - y;

}

; prolog not shown

ldr r2, [r7, #4]

ldr r3, [r7, #0]

sub r3, r2, r3

mov r0, r3 ; return value

; epilog not shown

; no prolog

sub r0, r0, r1

bx lr ; return with result

; same as for size optimization

// Multiplication

int DoMul(int x, int y)

{

 return x * y;

}

; prolog not shown

ldr r3, [r7, #4]

ldr r2, [r7, #0]

mul r3, r2

mov r0, r3 ; return value

; epilog not shown

; no prolog

mul r0, r1

bx lr ; return with result

; same as for size optimization

// Division

int DoDiv(int x, int y)

{

 return x / y;

}

; prolog not shown

ldr r0, [r7, #4]

ldr r1, [r7, #0]

bl __aeabi_idiv

mov r3, r0

mov r0, r3 ; return value

; epilog not shown

push {r3, lr}

bl __aeabi_idiv

; return with result

pop {r3, pc}

; same as for size optimization

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 44

C Code
gcc, Cortex-M0/M0+,

No Optimization
gcc, Cortex-M0/M0+,

Size Optimization
gcc, Cortex-M0/M0+,
Speed Optimization

// Modulo operator

int DoMod(int x, int y)

{

 return x % y;

}

; prolog not shown

ldr r3, [r7, #4]

mov r0, r3

ldr r1, [r7]

bl __aeabi_idivmod

mov r3, r1

mov r0, r3 ; return value

; epilog not shown

push {r3, lr}

bl __aeabi_idivmod

; return with result

mov r0, r1

pop {r3, pc}

; same as for size optimization

// Pointer

void Pointer(uint8 x, uint8 *ptr)

{

 *ptr = *ptr + x;

 ptr++;

 LCD_PrintInt8(*ptr);

}

; *ptr = *ptr + x

ldr r3, [r7] ; ptr

ldrb r2, [r3]

add r3, r7, #7 ; x

ldrb r3, [r3]

add r3, r2, r3

uxtb r2, r3

ldr r3, [r7] ; ptr

strb r2, [r3]

; ptr++

ldr r3, [r7] ; ptr

add r3, r3, #1

str r3, [r7]

; LCD_PrintInt8(*ptr)

ldr r3, [r7]

ldrb r3, [r3]

mov r0, r3

bl LCD_PrintInt8

; *ptr = *ptr + x

ldrb r3, [r1] ; R1 = ptr

add r0, r0, r3 ; R0 = x

strb r0, [r1]

; ptr++

; LCD_PrintInt8(*ptr)

ldrb r0, [r1, #1]

bl LCD_PrintInt8

; same as for size optimization

// Function pointer

void FuncPtr(uint8 x,

 void *fptr(uint8))

{

 (*fptr)(x);

}

; (*fptr)(x)

add r3, r7, #7 ; x

ldrb r2, [r3]

ldr r3, [r7] ; fptr

mov r0, r2

; in a blx instruction, the

; LS bit of the register

; must be 1 to keep the CPU

; in Thumb mode, or an

; exception occurs

blx r3

; (*fptr)(x)

; in a blx instruction, the LS

; bit of the register must be

; 1 to keep the CPU in Thumb

; mode, or an exception occurs

blx r1

; same as for size optimization

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 45

C Code
gcc, Cortex-M0/M0+,

No Optimization
gcc, Cortex-M0/M0+,

Size Optimization
gcc, Cortex-M0/M0+,
Speed Optimization

// Packed structures

struct FOO_P

{

 uint8 membera;

 uint8 memberb;

 uint32 memberc;

 uint16 memberd;

} __attribute__ ((packed));

extern struct FOO_P myfoo_p;

void PackedStruct(void)

{

 myfoo_p.membera = 5;

 myfoo_p.memberb = 10;

 myfoo_p.memberc = 15;

 myfoo_p.memberd = 20;

}

; membera = 5

ldr r3, [pc, .L32]

mov r2, #5

strb r2, [r3]

; memberb = 10

ldr r3, [pc, .L32]

mov r2, #10

strb r2, [r3, #1]

; memberc = 15

ldr r3, [pc, .L32]

ldrb r1, [r3, #2]

mov r2, #0

and r2, r1

mov r1, #15

orr r2, r1

strb r2, [r3, #2]

ldrb r1, [r3, #3]

mov r2, #0

and r2, r1

strb r2, [r3, #3]

ldrb r1, [r3, #4]

mov r2, #0

and r2, r1

strb r2, [r3, #4]

ldrb r1, [r3, #5]

mov r2, #0

and r2, r1

strb r2, [r3, #5]

; memberd = 20

ldr r3, [pc, .L32]

ldrb r1, [r3, #6]

mov r2, #0

and r2, r1

mov r1, #20

orr r2, r1

strb r2, [r3, #6]

ldrb r1, [r3, #7]

mov r2, #0

and r2, r1

strb r2, [r3, #7]

.L32:

.word myfoo_p

ldr r3, [pc, .L30]

mov r2, #5

mov r0, #10

strb r2, [r3] ; membera = 5

strb r0, [r3, #1] ; memberb = 10

mov r2, #0

mov r1, #15

mov r0, #20

strb r1, [r3, #2] ; memberc = 15

strb r2, [r3, #3]

strb r2, [r3, #4]

strb r2, [r3, #5]

strb r0, [r3, #6] ; memberd = 20

strb r2, [r3, #7]

bx lr

.L30:

.word myfoo_p

; same as for size optimization

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 46

C Code
gcc, Cortex-M0/M0+,

No Optimization
gcc, Cortex-M0/M0+,

Size Optimization
gcc, Cortex-M0/M0+,
Speed Optimization

// unpacked structures

struct FOO

{

 uint8 membera;

 uint8 memberb;

 uint32 memberc;

 uint16 memberd;

};

extern struct FOO myfoo;

void PackedStruct(void)

{

 myfoo.membera = 5;

 myfoo.memberb = 10;

 myfoo.memberc = 15;

 myfoo.memberd = 20;

}

; membera = 5

ldr r3, [pc, .L35]

mov r2, #5

strb r2, [r3]

; memberb = 10

ldr r3, [pc, .L35]

mov r2, #10

strb r2, [r3, #1]

; memberc = 15

ldr r3, [pc, .L35]

mov r2, #15

str r2, [r3, #4]

; memberd = 20

ldr r3, [pc, .L35]

mov r2, #20

strh r2, [r3, #8]

.L35:

.word myfoo

ldr r3, [pc, .L33]

mov r2, #5

strb r2, [r3] ; membera = 5

mov r0, #10

mov r1, #15

mov r2, #20

strb r0, [r3, #1] ; memberb = 10

str r1, [r3, #4] ; memberc = 15

strh r2, [r3, #8] ; memberd = 20

bx lr

.L33:

.word myfoo

; same as for size optimization

A.3 Assembler Examples, MDK for Cortex-M3

Note: Table 12 shows, for the MDK compiler for the Cortex-M3, examples of compiler output for different optimization options. Since the free evaluation

version of MDK, MDK-Lite, does not include assembler in the .lst file, the examples were extracted from the assembler-level debug window in PSoC Creator.

See Function Arguments for details on register usage and stack usage in compiler functions.

Table 12. Compiler Output Details for MDK Compiler for Cortex-M3 CPU

C Code
MDK, Cortex-M3,
No Optimization

MDK, Cortex-M3,
Size Optimization

MDK, Cortex-M3,
Speed Optimization

// Calling a function

// with no arguments

LCD_Start();

; do the function call

bl LCD_Start

; same as for no optimization ; same as for no optimization

// Calling a function with

// one argument

LCD_PrintInt8(128);

; R0 = first argument

movs r0, #80

bl LCD_PrintInt8

; same as for no optimization ; same as for no optimization

// Calling a function with

// two arguments

LCD_Position(0, 2);

; R0 = first argument

; R1 = second argument

movs r1, #2

movs r0, #0

bl LCD_Position

; same as for no optimization ; same as for no optimization

// For loop:

void ForLoop(uint8 i)

{

 for(i = 0; i < 10; i++)

 {

; prolog

push {r4, lr}

mov r4, r0

movs r4, #0 ; i = 0

b.n <ForLoop+0x12>

; prolog

push {r4, lr}

movs r4, #0 ; i = 0

<ForLoop+0x4>:

; same as for size optimization

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 47

C Code
MDK, Cortex-M3,
No Optimization

MDK, Cortex-M3,
Size Optimization

MDK, Cortex-M3,
Speed Optimization

 LCD_PrintInt8(i);

 }

}

<ForLoop+0x8>:

; do the function call with

; i as the argument in R0

mov r0, r4

bl LCD_PrintInt8

adds r0, r4, #1 ; i++

uxtb r4, r0 ; sign extend

<ForLoop+0x12>:

cmp r4, #a ; i < 10

blt.n <ForLoop+0x8>

pop {r4, pc} ; return

; do the function call with

; i as the argument in R0

mov r0, r4

bl LCD_PrintInt8

adds r4, r4, #1 ; i++

uxtb r4, r4 ; sign extend

cmp r4, #a ; i < 10

bcc.n <ForLoop+0x4>

pop {r4, pc} ; return

// While loop

// i is type automatic, see

// Accessing Automatic Variables

// for details

uint8 i = 0;

while (i < 10)

{

 LCD_PrintInt8(i);

 i++;

}

; prolog

push {r4, lr}

movs r4, #0 ; i = 0

b.n <WhileLoop+0x10>

<WhileLoop+0x6>:

; do the function call with

; i as the argument in R0

mov r0, r4

bl LCD_PrintInt8

adds r0, r4, #1 ; i++

uxtb r4, r0 ; sign extend

<WhileLoop+0x10>:

cmp r4, #a ; i < 10

blt.n <WhileLoop+0x6>

pop {r4, pc}; return

; prolog

push {r4, lr}

movs r4, #0 ; i = 0

<WhileLoop+0x4>:

; do the function call with

; i as the argument in R0

mov r0, r4

bl LCD_PrintInt8

adds r4, r4, #1 ; i++

uxtb r4, r4 ; sign extend

cmp r4, #a ; i < 10

bcc.n <WhileLoop+0x4>

pop {r4, pc}; return

; same as for size optimization

// Conditional statement

void Conditional(uint8 i, uint8

j)

{

 if(j == 1)

 {

 LCD_PrintInt8(i);

 }

 else

 {

 LCD_PrintInt8(i + 1);

 }

}

; prolog

push {r4, r5, r6, lr}

mov r4, r0

mov r5, r1

cmp r5, #1 ; j == 1

bne.n <Conditional+0x12>

mov r0, r4

bl LCD_PrintInt8

b.n <Conditional+0x1a>

<Conditional+0x12>:

; LCD_PrintInt8(i + 1)

adds r1, r4, #1

uxtb r0, r1 ; sign extend

bl LCD_PrintInt8

; no prolog

; if(j == 1)

cmp r1, #1

beq.n <Conditional+0x8>

adds r0, r0, #1 ; i + 1

uxtb r0, r0

<Conditional+0x8>:

; function returns back to

; caller of this function

b.w LCD_PrintInt8

; same as for size optimization

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 48

C Code
MDK, Cortex-M3,
No Optimization

MDK, Cortex-M3,
Size Optimization

MDK, Cortex-M3,
Speed Optimization

<Conditional+0x1a>:

; return

pop {r4, r5, r6, pc}

// Switch case statements

void SwitchCase(uint8 j)

{

 switch(j)

 {

 case 0:

 LCD_PrintInt8(1);

 break;

 case 1:

 LCD_PrintInt8(2);

 break;

 default:

 LCD_PrintInt8(0);

 break;

 }

}

; prolog

push {r4, lr}

; switch(j)

mov r4, r0

cbz r4, <SwitchCase+0xc>

cmp r4, #1

bne.n <SwitchCase+0x1c>

b.n <SwitchCase+0x14>

<SwitchCase+0xc>:

movs r0, #1 ; case 0

bl LCD_PrintInt8

b.n <SwitchCase+0x24>

<SwitchCase+0x14>:

movs r0, #2 ; case 1

bl LCD_PrintInt8

b.n <SwitchCase+0x24>

<SwitchCase+0x1c>:

movs r0, #0 ; default

bl LCD_PrintInt8

nop

<SwitchCase+0x24>:

nop

pop {r4, pc} ; return

; prolog not shown

; switch(j)

cbz r0, <SwitchCase+0xa>

cmp r0, #1

beq.n <SwitchCase+0xe>

movs r0, #0 ; default

b.n <SwitchCase+0x10>

<SwitchCase+0xa>:

movs r0, #1 ; case 0

b.n <SwitchCase+0x10>

<SwitchCase+0xe>:

movs r0, #2 ; case 1

<SwitchCase+0x10>:

; function returns back to

; caller of this function

b.w LCD_PrintInt8

; same as for size optimization

// Ternary operator

void Ternary(uint8 i)

{

 LCD_PrintInt8(

 (i == 1) ? 80 : 100);

}

; prolog

push {r4, lr}

mov r4, r0 ; i == 1

cmp r4, #1

bne.n <Ternary+0xc>

movs r1, #50

b.n <Ternary+0xe>

<Ternary+0xc>:

movs r1, #64

<Ternary+0xe>:

mov r0, r1

bl LCD_PrintInt8

pop {r4, pc} ; return

; no prolog

cmp r0, #1

beq.n <Ternary+0xa>

<Ternary+0x6>:

movs r0, #64 ; 0x64

; function returns back to

; caller of this function

b.w LCD_PrintInt8

<Ternary+0xa>:

movs r0, #50 ; 0x50

b.n <Ternary+0x6>

; same as for size optimization

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 49

C Code
MDK, Cortex-M3,
No Optimization

MDK, Cortex-M3,
Size Optimization

MDK, Cortex-M3,
Speed Optimization

// Addition operation

int DoAdd(int x, int y)

{

 return x + y;

}

; no prolog

mov r2, r0

adds r0, r2, r1

bx lr ; return with result

; no prolog

add r0, r1

bx lr ; return with result

; same as for size optimization

// Subtraction operation

int DoSub(int x, int y)

{

 return x - y;

}

; no prolog

mov r2, r0

subs r0, r2, r1

bx lr ; return with result

; no prolog

subs r0, r0, r1

bx lr ; return with result

; same as for size optimization

// Multiplication

int DoMul(int x, int y)

{

 return x * y;

}

; no prolog

mov r2, r0

mul.w r0, r2, r1

bx lr ; return with result

; no prolog

muls r0, r1

bx lr ; return with result

; same as for size optimization

// Division

int DoDiv(int x, int y)

{

 return x / y;

}

; no prolog

mov r2, r0

sdiv r0, r2, r1

bx lr ; return with result

; no prolog

sdiv r0, r0, r1

bx lr ; return with result

; same as for size optimization

// Modulo operator

int DoMod(int x, int y)

{

 return x % y;

}

; no prolog

mov r2, r0

; truncated quotient

sdiv r0, r2, r1

; multiply and subtract instruction

; implements remainder =

; dividend - (quotient * divisor)

mls r0, r1, r0, r2

bx lr ; return with result

; no prolog

; truncated quotient

sdiv r2, r0, r1

; multiply and subtract instruction

; implements remainder =

; dividend - (quotient * divisor)

mls r0, r1, r2, r0

bx lr ; return with result

; same as for size optimization

// Pointer

void Pointer(uint8 x, uint8

*ptr)

{

 *ptr = *ptr + x;

 ptr++;

 LCD_PrintInt8(*ptr);

}

; prolog

push {r4, r5, r6, lr}

mov r5, r0

mov r4, r1

; *ptr = *ptr + x;

ldrb r0, [r4, #0]

add r0, r5

strb r0, [r4, #0]

adds r4, r4, #1 ; ptr++;

ldrb r0, [r4, #0]

bl LCD_PrintInt8

pop {r4, r5, r6, pc} ; return

; no prolog

; *ptr = *ptr + x

ldrb r2, [r1, #0] ; R1 = ptr

add r0, r2 ; R0 = x

strb r0, [r1, #0]

; ptr++

; LCD_PrintInt8(*ptr)

ldrb r0, [r1, #1]

; function returns back to

; caller of this function

b.w LCD_PrintInt8

; same as for size optimization

// Function pointer

void FuncPtr(uint8 x,

 void *fptr(uint8))

{

; prolog

push {r4, r5, r6, lr}

mov r5, r0

mov r4, r1

; (*fptr)(x)

; in a bx instruction, the LS

; bit of the register must be

; 1 to keep the CPU in Thumb

; same as for size optimization

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 50

C Code
MDK, Cortex-M3,
No Optimization

MDK, Cortex-M3,
Size Optimization

MDK, Cortex-M3,
Speed Optimization

 (*fptr)(x);

}

; (*fptr)(x)

mov r0, r5

; in a blx instruction, the

; LS bit of the register

; must be 1 to keep the CPU

; in Thumb mode, or an

; exception occurs

blx r4

pop {r4, r5, r6, pc} ; return

; mode, or an exception occurs

; function returns back to

; caller of this function

bx r1

// Packed structures

struct FOO_P

{

 uint8 membera;

 uint8 memberb;

 uint32 memberc;

 uint16 memberd;

} __attribute__ ((packed));

extern struct FOO_P myfoo_p;

void PackedStruct(void)

{

 myfoo_p.membera = 5;

 myfoo_p.memberb = 10;

 myfoo_p.memberc = 15;

 myfoo_p.memberd = 20;

}

; no prolog

; membera = 5

movs r0, #5

ldr r1, [pc, #14]

strb r0, [r1, #0]

; memberb = 10

movs r0, #a

strb r0, [r1, #1]

; memberc = 15

movs r0, #f

; word unaligned access

str.w r0, [r1, #2]

; memberd = 20

movs r0, #14

strh r0, [r1, #6]

bx lr ; return

.word &myfoo_p

; no prolog

ldr r0, [pc, #14]

; membera = 5

movs r1, #5

strb r1, [r0, #0]

; memberb = 10

movs r1, #a

strb r1, [r0, #1]

; memberc = 15

movs r1, #f

; word unaligned access

str.w r1, [r0, #2]

; memberd = 20

movs r1, #14

strh r1, [r0, #6]

bx lr ; return

.word &myfoo_p

; same as for size optimization

// unpacked structures

struct FOO

{

 uint8 membera;

 uint8 memberb;

 uint32 memberc;

 uint16 memberd;

};

extern struct FOO myfoo;

void PackedStruct(void)

{

 myfoo.membera = 5;

 myfoo.memberb = 10;

 myfoo.memberc = 15;

 myfoo.memberd = 20;

}

; no prolog

; membera = 5

movs r0, #5

ldr r1, [pc, #10]

strb r0, [r1, #0]

; memberb = 10

movs r0, #a

strb r0, [r1, #1]

; memberc = 15

movs r0, #f

str r0, [r1, #4]

; memberd = 20

movs r0, #14

strh r0, [r1, #8]

bx lr ; return

.word &myfoo

; no prolog

ldr r0, [pc, #10]

; membera = 5

movs r1, #5

strb r1, [r0, #0]

; memberb = 10

movs r1, #a

strb r1, [r0, #1]

; memberc = 15

movs r1, #f

str r1, [r0, #4]

; memberd = 20

movs r1, #14

strh r1, [r0, #8]

bx lr ; return

.word &myfoo

; same as for size optimization

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 51

A.4 Assembler Examples, MDK for Cortex-M0/M0+

Table 13 shows, for the MDK compiler for the Cortex-M0, examples of compiler output for different optimization options. Since the free evaluation version

of MDK does not produce a usable .lst file, the examples were extracted from the assembler-level debug window in PSoC Creator.

See Function Arguments for details on register usage and stack usage in compiler functions.

Table 13. Compiler Output Details for MDK Compiler for Cortex-M0/M0+ CPU

C Code
MDK, Cortex-M0/M0+,

No Optimization
MDK, Cortex-M0/M0+,

Size Optimization
MDK, Cortex-M0/M0+,
Speed Optimization

// Calling a function

// with no arguments

LCD_Start();

; do the function call

bl LCD_Start

; same as for no optimization ; same as for no optimization

// Calling a function with

// one argument

LCD_PrintInt8(128);

; R0 = first argument

movs r0, #80

bl LCD_PrintInt8

; same as for no optimization ; same as for no optimization

// Calling a function with

// two arguments

LCD_Position(0, 2);

; R0 = first argument

; R1 = second argument

movs r1, #2

movs r0, #0

bl LCD_Position

; same as for no optimization ; same as for no optimization

// For loop:

void ForLoop(uint8 i)

{

 for(i = 0; i < 10; i++)

 {

 LCD_PrintInt8(i);

 }

}

; prolog

push {r4, lr}

mov r4, r0

movs r4, #0 ; i = 0

b.n <ForLoop+0x12>

<ForLoop+0x8>:

; do the function call with

; i as the argument in R0

mov r0, r4

bl LCD_PrintInt8

adds r0, r4, #1 ; i++

uxtb r4, r0 ; sign extend

<ForLoop+0x12>:

cmp r4, #a ; i < 10

blt.n <ForLoop+0x8>

pop {r4, pc} ; return

; prolog

push {r4, lr}

movs r4, #0 ; i = 0

<ForLoop+0x4>:

; do the function call with

; i as the argument in R0

mov r0, r4

bl LCD_PrintInt8

adds r4, r4, #1 ; i++

uxtb r4, r4 ; sign extend

cmp r4, #a ; i < 10

bcc.n <ForLoop+0x4>

pop {r4, pc} ; return

; same as for size optimization

// While loop

// i is type automatic, see

// Accessing Automatic

Variables

// for details

uint8 i = 0;

while (i < 10)

{

; prolog

push {r4, lr}

movs r4, #0 ; i = 0

b.n <WhileLoop+0x10>

<WhileLoop+0x6>:

; do the function call with

; i as the argument in R0

; prolog

push {r4, lr}

movs r4, #0 ; i = 0

<WhileLoop+0x4>:

; do the function call with

; i as the argument in R0

mov r0, r4

; same as for size optimization

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 52

C Code
MDK, Cortex-M0/M0+,

No Optimization
MDK, Cortex-M0/M0+,

Size Optimization
MDK, Cortex-M0/M0+,
Speed Optimization

 LCD_PrintInt8(i);

 i++;

}

mov r0, r4

bl LCD_PrintInt8

adds r0, r4, #1 ; i++

uxtb r4, r0 ; sign extend

<WhileLoop+0x10>:

cmp r4, #a ; i < 10

blt.n <WhileLoop+0x6>

pop {r4, pc}; return

bl LCD_PrintInt8

adds r4, r4, #1 ; i++

uxtb r4, r4 ; sign extend

cmp r4, #a ; i < 10

bcc.n <WhileLoop+0x4>

pop {r4, pc}; return

// Conditional statement

void Conditional(uint8 i,

uint8 j)

{

 if(j == 1)

 {

 LCD_PrintInt8(i);

 }

 else

 {

 LCD_PrintInt8(i + 1);

 }

}

; prolog

push {r4, r5, r6, lr}

mov r4, r0

mov r5, r1

cmp r5, #1 ; j == 1

bne.n <Conditional+0x12>

mov r0, r4

bl LCD_PrintInt8

b.n <Conditional+0x1a>

<Conditional+0x12>:

; LCD_PrintInt8(i + 1)

adds r1, r4, #1

uxtb r0, r1 ; sign extend

bl LCD_PrintInt8

<Conditional+0x1a>:

; return

pop {r4, r5, r6, pc}

; prolog

push {r4, lr}

; if(j == 1)

cmp r1, #1

beq.n <Conditional+0xa>

adds r0, r0, #1 ; i + 1

uxtb r0, r0

<Conditional+0xa>:

bl LCD_PrintInt8

; return

pop {r4, pc}

; same as for size optimization

// Switch case statements

void SwitchCase(uint8 j)

{

 switch(j)

 {

 case 0:

 LCD_PrintInt8(1);

 break;

 case 1:

 LCD_PrintInt8(2);

 break;

 default:

 LCD_PrintInt8(0);

 break;

 }

}

; prolog

push {r4, lr}

; switch(j)

mov r4, r0

cmp r4, #0

beq.n <SwitchCase+0xe>

cmp r4, #1

bne.n <SwitchCase+0x1e>

b.n <SwitchCase+0x16>

<SwitchCase+0xe>:

movs r0, #1 ; case 0

bl LCD_PrintInt8

b.n <SwitchCase+0x26>

<SwitchCase+0x14>:

movs r0, #2 ; case 1

bl LCD_PrintInt8

b.n <SwitchCase+0x26>

; prolog

push {r4, lr}

; switch(j)

cmp r0, #0

beq.n <SwitchCase+0xe>

cmp r0, #1

beq.n <SwitchCase+0x12>

movs r0, #0 ; default

b.n <SwitchCase+0x14>

<SwitchCase+0xe>:

movs r0, #1 ; case 0

b.n <SwitchCase+0x14>

<SwitchCase+0x12>:

movs r0, #2 ; case 1

<SwitchCase+0x14>:

; same as for size optimization

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 53

C Code
MDK, Cortex-M0/M0+,

No Optimization
MDK, Cortex-M0/M0+,

Size Optimization
MDK, Cortex-M0/M0+,
Speed Optimization

<SwitchCase+0x1e>:

movs r0, #0 ; default

bl LCD_PrintInt8

nop

<SwitchCase+0x26>:

nop

pop {r4, pc} ; return

bl LCD_PrintInt8

pop {r4, pc} ; return

// Ternary operator

void Ternary(uint8 i)

{

 LCD_PrintInt8(

 (i == 1) ? 80 : 100);

}

; prolog

push {r4, lr}

mov r4, r0 ; i == 1

cmp r4, #1

bne.n <Ternary+0xc>

movs r1, #50

b.n <Ternary+0xe>

<Ternary+0xc>:

movs r1, #64

<Ternary+0xe>:

mov r0, r1

bl LCD_PrintInt8

pop {r4, pc} ; return

; prolog

push {r4, lr}

cmp r0, #1 ; i == 1

beq.n <Ternary+0xe>

movs r0, #64

<Ternary+0x8>:

bl LCD_PrintInt8

pop {r4, pc} ; return

<Ternary+0xe>:

movs r0, #50

b.n <Ternary+0x8>

; same as for size optimization

// Addition operation

int DoAdd(int x, int y)

{

 return x + y;

}

; no prolog

mov r2, r0

adds r0, r2, r1

bx lr ; return with result

; no prolog

adds r0, r1

bx lr ; return with result

; same as for size optimization

// Subtraction operation

int DoSub(int x, int y)

{

 return x - y;

}

; no prolog

mov r2, r0

subs r0, r2, r1

bx lr ; return with result

; no prolog

subs r0, r0, r1

bx lr ; return with result

; same as for size optimization

// Multiplication

int DoMul(int x, int y)

{

 return x * y;

}

; no prolog

mov r2, r0

muls r0, r2, r1

bx lr ; return with result

; no prolog

muls r0, r1

bx lr ; return with result

; same as for size optimization

// Division

int DoDiv(int x, in`t y)

{

 return x / y;

}

; prolog

push {r4, r5, r6, lr}

mov r4, r0

mov r5, r1

mov r1, r5

mov r0, r4

bl __aeabi_idiv

; return with result

pop {r4, r5, r6, pc}

; prolog

push {r4, lr}

bl __aeabi_idiv

; return with result

pop {r4, pc}

; same as for size optimization

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 54

C Code
MDK, Cortex-M0/M0+,

No Optimization
MDK, Cortex-M0/M0+,

Size Optimization
MDK, Cortex-M0/M0+,
Speed Optimization

// Modulo operator

int DoMod(int x, int y)

{

 return x % y;

}

; prolog

push {r4, r5, r6, lr}

mov r4, r0

mov r5, r1

mov r1, r5

mov r0, r4

bl __aeabi_idiv

; return with result

mov r0, r1

pop {r4, r5, r6, pc}

; prolog

push {r4, lr}

bl __aeabi_idiv

; return with result

mov r0, r1

pop {r4, pc}

; same as for size optimization

// Pointer

void Pointer(uint8 x, uint8

*ptr)

{

 *ptr = *ptr + x;

 ptr++;

 LCD_PrintInt8(*ptr);

}

; prolog

push {r4, r5, r6, lr}

mov r5, r0

mov r4, r1

; *ptr = *ptr + x;

ldrb r0, [r4, #0]

adds r0, r0, r5

strb r0, [r4, #0]

adds r4, r4, #1 ; ptr++;

ldrb r0, [r4, #0]

bl LCD_PrintInt8

pop {r4, r5, r6, pc} ; return

; prolog

push {r4, lr}

; *ptr = *ptr + x

ldrb r2, [r1, #0] ; R1 = ptr

adds r0, r2, r0 ; R0 = x

strb r0, [r1, #0]

; ptr++

; LCD_PrintInt8(*ptr)

ldrb r0, [r1, #1]

bl LCD_PrintInt8

pop {r4, pc} ; return

; same as for size optimization

// Function pointer

void FuncPtr(uint8 x,

 void

*fptr(uint8))

{

 (*fptr)(x);

}

; prolog

push {r4, r5, r6, lr}

mov r5, r0

mov r4, r1

; (*fptr)(x)

mov r0, r5

; in a blx instruction, the

; LS bit of the register

; must be 1 to keep the CPU

; in Thumb mode, or an

; exception occurs

blx r4

pop {r4, r5, r6, pc} ; return

; (*fptr)(x)

; in a bx instruction, the LS

; bit of the register must be

; 1 to keep the CPU in Thumb

; mode, or an exception occurs

; function returns back to

; caller of this function

bx r1

; same as for size optimization

// Packed structures

struct FOO_P

{

 uint8 membera;

 uint8 memberb;

 uint32 memberc;

 uint16 memberd;

} __attribute__ ((packed));

extern struct FOO_P myfoo_p;

; prolog

push {r4, lr}

; membera = 5

movs r0, #5

ldr r1, [pc, #18]

strb r0, [r1, #0]

; memberb = 10

movs r0, #a

strb r0, [r1, #1]

; memberc = 15

; prolog

push {r4, lr}

ldr r4, [pc, #18]

; membera = 5

movs r0, #5

strb r0, [r4, #0]

; memberb = 10

movs r0, #a

strb r0, [r4, #1]

; memberc = 15

; same as for size optimization

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 55

C Code
MDK, Cortex-M0/M0+,

No Optimization
MDK, Cortex-M0/M0+,

Size Optimization
MDK, Cortex-M0/M0+,
Speed Optimization

void PackedStruct(void)

{

 myfoo_p.membera = 5;

 myfoo_p.memberb = 10;

 myfoo_p.memberc = 15;

 myfoo_p.memberd = 20;

}

adds r1, r1, #2

movs r0, #f

bl __aeabi_uwrite4

; memberd = 20

movs r1, #14

ldr r0, [pc,#8]

strb r1, [r0, #6]

movs r1, #0

strb r1, [r0, #7]

pop {r4, pc} ; return

.word &myfoo_p

adds r1, r4, #2

movs r0, #f

bl __aeabi_uwrite4

; memberd = 20

movs r0, #14

strb r1, [r4, #6]

movs r0, #0

strb r1, [r4, #7]

pop {r4, pc} ; return

.word &myfoo_p

// unpacked structures

struct FOO

{

 uint8 membera;

 uint8 memberb;

 uint32 memberc;

 uint16 memberd;

};

extern struct FOO myfoo;

void PackedStruct(void)

{

 myfoo.membera = 5;

 myfoo.memberb = 10;

 myfoo.memberc = 15;

 myfoo.memberd = 20;

}

; no prolog

; membera = 5

movs r0, #5

ldr r1, [pc, #10]

strb r0, [r1, #0]

; memberb = 10

movs r0, #a

strb r0, [r1, #1]

; memberc = 15

movs r0, #f

str r0, [r1, #4]

; memberd = 20

movs r0, #14

strh r0, [r1, #8]

bx lr ; return

.word &myfoo

; same as for no optimization ; no prolog

ldr r0, [pc, #10]

; membera = 5

movs r1, #5

strb r1, [r0, #0]

; memberb = 10

movs r1, #a

strb r1, [r0, #1]

; memberc = 15

movs r1, #f

str r1, [r0, #4]

; memberd = 20

movs r1, #14

strh r1, [r0, #8]

bx lr ; return

.word &myfoo

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 56

A.5 Compiler Test Program

The following C code was used to generate the compiler output in the previous tables. It compiles for PSoC 4 and

PSoC 5LP, for gcc and MDK, with no optimization and with size and speed optimization. It can be added to a PSoC

Creator project; the following must also be done in the project:

▪ Add a Character LCD Component to the project schematic, and rename it to “LCD”.

▪ For PSoC 4, reduce the heap and stack size settings for these lower-memory parts. This is done in the Design-

Wide Resource (DWR) window, System tab. Values of 0x100 and 0x400, for heap size and stack size respectively,

are usually appropriate.

The code is in two files, main.c and test.c. This is main.c:

#include <project.h>

extern void ForLoop(uint8);

extern void WhileLoop(void);

extern void Conditional(uint8, uint8);

extern void SwitchCase(uint8);

extern void Ternary(uint8);

extern int DoAdd(int, int);

extern int DoSub(int, int);

extern int DoMul(int, int);

extern int DoDiv(int, int);

extern int DoMod(int, int);

extern void Pointer(uint8, uint8 *);

extern void FuncPtr(uint8, void (*)(uint8));

extern void PackedStruct(void);

extern void UnpackedStruct(void);

struct FOO /* structures are unpacked by default */

{

 uint8 membera;

 uint8 memberb;

 uint32 memberc;

 uint16 memberd;

};

struct FOO_P /* packed structure */

{

 uint8 membera;

 uint8 memberb;

 uint32 memberc;

 uint16 memberd;

} __attribute__ ((packed));

uint8 myData = 6;

struct FOO_P myfoo_p;

struct FOO myfoo;

int main()

{

 /* Place your initialization/startup code here (e.g. MyInst_Start()) */

 LCD_Start();

 /* CyGlobalIntEnable; */ /* Uncomment this line to enable global interrupts. */

 for(;;)

 {

 LCD_PrintInt8(128);

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 57

 LCD_Position(0, 2);

 ForLoop(9);

 WhileLoop();

 Conditional(3, 4);

 SwitchCase(4);

 Ternary(5);

 LCD_PrintNumber((uint16)DoAdd(5, 4));

 LCD_PrintNumber((uint16)DoSub(5, 4));

 LCD_PrintNumber((uint16)DoMul(5, 4));

 LCD_PrintNumber((uint16)DoDiv(5, 4));

 LCD_PrintNumber((uint16)DoMod(5, 4));

 Pointer(4, &myData);

 FuncPtr(3, &LCD_PrintInt8);

 PackedStruct();

 UnpackedStruct();

 } /* end of for(;;) */

} /* end of main() */

And this is test.c:

#include <project.h>

struct FOO /* structures are unpacked by default */

{

 uint8 membera;

 uint8 memberb;

 uint32 memberc;

 uint16 memberd;

};

struct FOO_P /* packed structure */

{

 uint8 membera;

 uint8 memberb;

 uint32 memberc;

 uint16 memberd;

} __attribute__ ((packed));

extern struct FOO_P myfoo_p;

extern struct FOO myfoo;

void ForLoop(uint8 i)

{

 for(i = 0; i < 10; i++)

 {

 LCD_PrintInt8(i);

 }

}

void WhileLoop(void)

{

 uint8 i = 0;

 while(i < 10)

 {

 LCD_PrintInt8(i);

 i++;

 }

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 58

}

void Conditional(uint8 i, uint8 j)

{

 if(j == 1)

 {

 LCD_PrintInt8(i);

 }

 else

 {

 LCD_PrintInt8(i + 1);

 }

}

void SwitchCase(uint8 j)

{

 switch(j)

 {

 case 0:

 LCD_PrintInt8(1);

 break;

 case 1:

 LCD_PrintInt8(2);

 break;

 default:

 LCD_PrintInt8(0);

 break;

 }

}

void Ternary(uint8 i)

{

 LCD_PrintInt8((i == 1) ? 80 : 100);

}

int DoAdd(int x, int y)

{

 return x + y;

}

int DoSub(int x, int y)

{

 return x - y;

}

int DoMul(int x, int y)

{

 return x * y;

}

int DoDiv(int x, int y)

{

 return x / y;

}

int DoMod(int x, int y)

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 59

{

 return x % y;

}

void Pointer(uint8 x, uint8 *ptr)

{

 *ptr = *ptr + x;

 ptr++;

 LCD_PrintInt8(*ptr);

}

void FuncPtr(uint8 x, void *fptr(uint8))

{

 (*fptr)(x);

}

void PackedStruct(void)

{

 myfoo_p.membera = 5;

 myfoo_p.memberb = 10;

 myfoo_p.memberc = 15;

 myfoo_p.memberd = 20;

}

void UnpackedStruct(void)

{

 myfoo.membera = 5;

 myfoo.memberb = 10;

 myfoo.memberc = 15;

 myfoo.memberd = 20;

}

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 60

Document History

Document Title: AN89610 - PSoC® Arm® Cortex® Code Optimization

Document Number: 001-89610

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 4275133 MKEA 02/07/2014 New application note

*A 4994599 MKEA 10/29/2015 Clarified that PSoC 5LP cannot execute code from an 8-bit EMIF memory.

Added a reference to AN90799, PSoC 4 Interrupts.

*B 5620342 MKEA 02/06/2017 Corrected a missing comma in a code snippet, that may cause a compile error.

Updated template

*C 5702158 BENV 04/18/2017 Updated logo and copyright

*D 5697884 DIMA 05/25/2017 Added PSoC Analog Coprocessor/PSoC 4000S/4100S

*E 6281347 DIMA 08/14/2018 Updated for PSoC 4100PS

Updated template

http://www.cypress.com/

 PSoC® Arm® Cortex® Code Optimization

 www.cypress.com Document No. 001-89610 Rev. *E 61

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the

office closest to you, visit us at Cypress Locations.

Products

Arm® Cortex® Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Projects | Videos | Blogs | Training |

Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
 198 Champion Court

 San Jose, CA 95134-1709

© Cypress Semiconductor Corporation, 2014-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including
Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress
under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and
treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual
property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing
the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its
copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware
products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly
through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are infringed
by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products.
Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security
measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, such as
unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known
as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to
make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit
described in this document. Any information provided in this document, including any sample design information or programming code, is provided only
for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any
application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components
in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical
devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses
where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any
component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety
or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising
from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages,
and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are
trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit
cypress.com. Other names and brands may be claimed as property of their respective owners.

http://www.cypress.com/
http://www.cypress.com/?id=1062
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wireless-connectivity
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/32-bit-arm-cortex-m3-psoc-5lp
http://cypress.com/psoc6
http://www.cypress.com/cdc
https://community.cypress.com/welcome
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

	1 Introduction
	2 PSoC 4 and PSoC 5LP Architectures
	2.1 Register Set
	2.2 Address Map
	2.2.1 PSoC 4 Address Map
	2.2.2 PSoC 5LP Address Map

	2.3 Interrupts

	3 Compiler General Topics
	3.1 Compiler Predefined Macros
	3.2 Viewing Compiler Output
	3.3 Compiler Optimizations
	3.4 Attributes

	4 Accessing Variables
	4.1 Global and Static Variables
	4.2 Automatic Variables
	4.3 Function Arguments and Result
	4.4 LDR and STR instructions

	5 Mixing C and Assembler Code
	5.1 Syntax
	5.2 Automatic Variables
	5.3 Global and Static Variables
	5.4 Function Arguments

	6 Special-Function Instructions
	6.1 Saturation Instructions
	6.1.1 SSAT Instruction
	6.1.2 USAT Instruction
	6.1.3 Syntax

	6.2 Intrinsic Functions
	6.3 Assembler

	7 Packed and Unpacked Structures
	7.1.1 Compiler Considerations

	8 Compiler Libraries
	9 Placing Code and Variables
	9.1 Linker Script Files
	9.1.1 Linker Script File for gcc
	9.1.2 Linker Script File for MDK
	9.1.3 Variable Initialization
	9.1.4 Map File

	9.2 Placement Procedure
	9.2.1 Define Custom Locations
	9.2.2 Declare Functions and Variables
	9.2.3 Modify the Linker Script File

	9.3 Example
	9.4 General Considerations
	9.5 EMIF Considerations (PSoC 5LP Only)

	10 Cortex-M3 Bit Band (PSoC 5LP Only)
	11 DMA Addresses (PSoC 5LP only)
	12 Summary
	12.1 Use All of the Resources in Your PSoC

	13 Related Documents
	13.1 Application Notes
	13.2 C Documentation
	13.3 Arm Cortex Documentation

	Appendix A. Appendix A: Compiler Output Details
	A.1 Assembler Examples, gcc for Cortex-M3
	A.2 Assembler Examples, gcc for Cortex-M0/M0+
	A.3 Assembler Examples, MDK for Cortex-M3
	A.4 Assembler Examples, MDK for Cortex-M0/M0+
	A.5 Compiler Test Program

	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions
	Cypress Developer Community
	Technical Support

