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AN89610 shows how to optimize C and assembler code for the Arm Cortex CPUs in PSoC 4 and PSoC 5LP. Coding 

techniques exist for improved CPU performance and effective use of the PSoC memory architecture, which can lead to 

increased efficiency and reduced power consumption. This application note covers both the gcc and Keil Microcontroller 

Development Kit (MDK) C compilers supported by PSoC Creator. 
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1 Introduction 

The Arm Cortex CPUs in the PSoC 4 and PSoC 5LP devices are designed to implement C code in a highly efficient 

manner. Thus, most of the time, you will not need any special knowledge to do C programming for PSoC 4 or 

PSoC 5LP. This application note helps you to solve more advanced, unique problems, typically around: 

▪ Fitting an application into a small amount of flash or SRAM 

▪ Time-constrained applications, that is, maximizing code speed and efficiency 

A number of methods are provided to solve these types of problems. 

This application note assumes that you know how to program embedded applications in the C language. Some 

knowledge of the gcc (GNU Compiler Collection) or Keil MDK (Microcontroller Development Kit) C compiler is 

recommended. Knowledge of the Thumb-2 assembly language used by the CPUs will also help. 

You should also know how to use PSoC Creator, the integrated development environment for PSoC 3, PSoC 4 and 

PSoC 5LP. If you are new to PSoC 4 or PSoC 5LP, you can find introductions in AN79953 - Getting Started with PSoC 4 

and AN77759 - Getting Started with PSoC 5LP. If you are new to PSoC Creator, see the PSoC Creator home page. 

Note: Although many of the examples show code in Thumb-2, the Cortex assembly language, this application note is 

not intended to be a tutorial on this language. For details and tutorials on Thumb-2 assembler, see Arm Cortex 

Documentation. 

For information on optimizing C code for the 8051 CPU in PSoC 3, see AN60630, PSoC 3 8051 Code and Memory 

Optimization. 

2 PSoC 4 and PSoC 5LP Architectures 

To effectively use the methods described in this application note, it is important to understand the register and address 

architectures on which they are based. This section describes those architectures. 

2.1 Register Set 

The Cortex register set and instruction set are the basis for implementing highly efficient C code. The PSoC 4 Cortex-

M0 and the PSoC 5LP Cortex-M3 registers are very similar, as Figure 1 shows.  Note that the Cortex-M0+ registers in 

PSoC 4100PS/PSoC 4000S/4100S devices are similar to Cortex-M0 registers below.  Refer the section Processor core 

registers summary in Cortex-M0+ Technical Reference Manual for details. 

Figure 1. Cortex CPU Architectures 

Cortex-M0 in PSoC 4 

 

Cortex-M3 in PSoC 5LP 

 

 

All registers are 32-bit. There are 12 general-purpose registers (low registers R0 – R7 have more extensive support in 

the instruction set). Special registers include: 

http://www.cypress.com/
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▪ Dual stack pointers (R13) for more efficient implementation of a real-time operating system (RTOS) 

▪ Link register (R14) for fast return from function calls 

▪ Program counter (R15) 

▪ Program status register (PSR) contains instruction results such as zero and carry flags 

▪ Interrupt mask register (Cortex-M0) / exception mask registers (Cortex-M3) 

▪ Control register 

The PSoC 5LP Cortex-M3 has more features in stack management, and in the PSR, interrupt, and control registers. 

The Cortex-M3 also has a more extensive instruction set, including divide (UDIV, SDIV), multiply and accumulate (MLA, 

MLS), saturate (USAT, SSAT), and bitfield instructions. See Special-Function Instructions for information on how to 

take advantage of these instructions. 

2.2 Address Map 

The Cortex-M0/M0+ and Cortex-M3 have a very similar address map, as Figure 2 shows. 

Figure 2. Cortex Address Map 

 

The address space is 4 Gbyte (32-bit addressing), and is divided into the access regions shown in Figure 2. The CPUs 

can execute instructions in the Code, SRAM, and External RAM regions; you can put code or data in any of these 

regions. The CPUs have a 3-instruction pipeline, which enables parallel fetch and execution of instructions. 

Bit band feature on Cortex-M3 only. 

For more information see Cortex-M3 Bit Band. 

http://www.cypress.com/
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The PSoC 5LP Cortex-M3 has a bit band feature, where accessing an address in an alias region results in bit-level 

access in the corresponding bit band region. This lets you quickly set, clear or test a single bit in the bottom 1 Mbyte of 

the region. See Cortex-M3 Bit Band for more information. 

Although the Cortex CPUs can access a 4 Gbyte address space, within the PSoC devices only a small fraction of these 

addresses access PSoC memory or registers. Following is an overview of where in the Cortex address space the PSoC 

memory and registers are located; for details see the memory maps in the device datasheets or Technical Reference 

Manuals (TRMs). 

2.2.1 PSoC 4 Address Map 

Figure 3 shows that a single Cortex-M0/M0+ bus, the System Bus, is used to access most of the regions in the address 

map.   

Figure 3. PSoC 4 Address Map 

Cortex-M0/M0+ 

Core

Code Region

0x0000 0000

0x1FFF FFFF

SRAM Region

0x2000 0000

0x3FFF FFFF

Peripheral

Region

0x4000 0000

0x5FFF FFFF

External

RAM Region

0x6000 0000

0x9FFF FFFF

External

Device

Region

0xA000 0000

0xDFFF FFFF

System Region

0xE000 0000

0xFFFF FFFF

System Bus

Up to 32 KB flash

Up to 4 KB SRAM

0x0000 0000

0x0000 7FFF

0x2000 0000

0x2000 0FFF

PSoC 4 Registers

See TRM for specific register addresses

Cortex-M0/M0+ Addresses

PSoC 4 Memory and

Register Addresses

 

The PSoC 4 memory and registers are addressed as follows: 

▪ The flash starts at address 0, in the Cortex Code region. The flash block includes a read accelerator; see the device 

datasheet for details. 

▪ The SRAM starts at address 0x20000000, in the Cortex SRAM region. 

▪ The registers are addressed starting at 0x40000000, in the Cortex Peripheral region. See  Technical Reference 

Manual (TRM) for specific register addresses. 

All memory accesses are 32-bit. 

Code can be placed in SRAM; see Placing Code and Variables for details. 

Note: Because PSoC 4 has only one bus, the speed and efficiency of code execution and data access depend solely 

on the speed of the memory occupying those regions. SRAM is usually faster than flash; however, the combination of 

the Cortex instruction pipeline and the flash read accelerator makes Code region accesses almost as fast as SRAM 

region accesses. It is possible to execute code from SRAM but significant performance gains may not necessarily be 

realized. 

http://www.cypress.com/
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2.2.2 PSoC 5LP Address Map 

The PSoC 5LP / Cortex-M3 architecture is more complex and has more features than that of the PSoC 4, as Figure 4 

shows. The Cortex-M3 has three buses instead of one: 

▪ I (instruction) Bus and D (data) Bus: for reading instructions and accessing data, respectively, from the Code 

region. 

In PSoC 5LP, the I and D Buses are multiplexed to a single C (code) Bus for accessing the Code region. 

▪ S (system) Bus: for reading instructions and accessing data from the other regions 

Because the C Bus and the S Bus are separate, the Cortex-M3 can do simultaneous parallel accesses of the Code 

region and the other regions, for more efficient operation. 

Figure 4. PSoC 5LP Address Map 

Cortex-M3 

Core

Code Region

0x0000 0000

0x1FFF FFFF

SRAM Region

0x2000 0000

0x3FFF FFFF

Peripherals

Region

0x4000 0000

0x5FFF FFFF

External

Ram Region

0x6000 0000

0x9FFF FFFF

External

Device

Region

0xA000 0000

0xDFFF FFFF

System Region

0xE000 0000

0xFFFF FFFF

I Bus

D Bus

C Bus

S Bus

Up to 256 KB flash

Up to 64 KB SRAM

Bit band alias region

0x0000 0000

0x0003 FFFF

0x1FFF 8000

0x2000 7FFF

0x2200 0000

EMIF

0x6000 0000

0x60FF FFFF

Cortex-M3 Addresses

PSoC 5LP Registers

See TRM for specific register addresses

PSoC 5LP Memory and

Register Addresses

 

The PSoC 5LP memory and registers are addressed as follows: 

▪ The PSoC 5LP flash starts at address 0, in the Cortex Code region. A flash cache is included; see a PSoC 5LP 

device datasheet for details. 

▪ The PSoC 5LP SRAM is logically split in half, centered at address 0x20000000. For example, in a device with 

64 KB SRAM, half of the SRAM, 32 KB, is addressed below 0x20000000 and the other half above 0x20000000. 

So the SRAM addresses range from 0x1FFF8000 to 0x20007FFF. The addresses in a device with 32 KB SRAM 

range from 0x1FFFC000 to 0x20003FFF. 

The lower half of SRAM, called code SRAM, is located in the Cortex Code region. The upper half, called upper 

SRAM, is located in the Cortex SRAM region. The two halves are accessed by different buses, as Figure 4 shows. 

Locating half of the SRAM in the Code region enables placement of code and data for possible faster access – 

see Placing Code and Variables for details. 

Note: Within the PSoC 5LP, SRAM accesses are usually faster than flash accesses, however the combination of the 

Cortex instruction pipeline and the flash cache makes flash accesses almost as fast as SRAM accesses. It is possible 

to execute code from either code SRAM or upper SRAM but significant performance gains may not necessarily be 

realized. 

Note that only upper SRAM is in the Cortex-M3 bit band region. 

http://www.cypress.com/
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▪ The PSoC 5LP registers are addressed starting at 0x40000000, in the Cortex Peripheral region. See a PSoC 5LP 

Technical Reference Manual (TRM) for specific register addresses. 

▪ The PSoC 5LP External Memory Interface (EMIF) addresses start at 0x60000000, in the Cortex External RAM 

region. For more information on PSoC 5LP EMIF see the device datasheet, TRM, or the EMIF Component 

datasheet. 

All memory accesses are 32-bit except EMIF, which can be set to either 8-bit or 16-bit. 

The PSoC 5LP also includes a direct memory access (DMA) controller. It shares bandwidth with the CPU as dual bus 

masters, using bus arbitration techniques. For more information, see AN52705, Getting Started with PSoC DMA. See 

also DMA Addresses in this application note. 

2.3 Interrupts 

Both Cortex CPUs offer sophisticated support for rapid and deterministic interrupt handling. For more information see 

a device datasheet or TRM, the PSoC Creator Interrupt Component datasheet, or AN54460 - PSoC Interrupts/AN90799 

– PSoC 4 Interrupts 

3 Compiler General Topics 

Before we begin in-depth examination of the gcc and MDK compilers, let us examine a few general compiler topics. 

Note: All of the C code examples shown in this application note are designed for use with the C compilers supported 

by PSoC Creator 3.0: gcc 4.7.3 and the Keil Microcontroller Development Kit (MDK) version 5.03. The gcc 4.7.3 

compiler is included free with your PSoC Creator installation. MDK must be purchased however an object-size-limited 

evaluation version, MDK-Lite, is available free from Keil. Compiler optimizations are turned off (the PSoC Creator 

default) except where noted. 

All of the C code examples in this application note use ANSI standard C except for compiler-specific extensions. 

3.1 Compiler Predefined Macros 

It is a best practice to write C code that can be directly ported between as many different compilers as possible. However 

there are cases where this is not possible and you must write multiple versions of the same code, to be used with 

multiple compilers. If you need to do this you can use predefined macros, provided with most compilers, to identify 

the compiler being used. This allows you to compile only the code for the compiler being used, for example: 

#if defined(MY_COMPILER_MACRO) 

  /* put your compiler-unique code here */ 

#endif 

To apply this technique to PSoC Creator projects, use the following macros that are included with the gcc and MDK 

compilers, respectively. Note that for MDK you are checking just for whether __ARMCC_VERSION is defined, indicating 

that that compiler is being used. You do not necessarily need to care about its actual value, i.e., the compiler version. 

#if defined(__GNUC__) 

  /* put your gcc unique code here */ 

#elif defined(__ARMCC_VERSION) 

  /* put your MDK unique code here */ 

#endif 

  

http://www.cypress.com/
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http://www.cypress.com/documentation/application-notes/an90799-psoc-4-interrupts
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3.2 Viewing Compiler Output 

To understand how a compiler performs under 

different conditions, you must review the output 

assembler code. There are two ways to do that in 

PSoC Creator. 

1. Open the list file corresponding to the 

compiled C file (filename.lst), as  

2. Figure 5 shows. 

The default PSoC Creator project build setting 

is to create a list file; see menu item Project > 

Build Settings > Compiler > General. 

3. Use the disassembly window in the debugger 

(menu item Debug > Windows > 

Disassembly). Right-click in that window to 

bring up options to show mixed source and 

assembler. 

Of course, this method has the disadvantage 

that you must have working target hardware 

and a PSoC Creator project that builds 

correctly before you can use the debugger. 

Note: The free evaluation version of MDK, MDK-

Lite, does not include assembler in the .lst file, so 

method 2 must be used to see the output 

assembler code.  

Figure 5. Listing Files 

  

3.3 Compiler Optimizations 

Turning on optimization options makes the compiler attempt to improve the C code’s performance and/or size, at the 

expense of compilation time and possibly the ability to debug the program. 

PSoC Creator allows you to set compiler optimizations for an entire project, under Project > Build Settings > Compiler > 

Optimization. The optimizations offered by PSoC Creator for both gcc and MDK are just for “speed” or “size”. (This is 

different from the 11 levels of optimization offered for the Keil 8051 compiler.) 

The optimization option selected in the Build Settings dialog applies to all C files in the project. You can also apply 

optimizations to individual C files – in the Workspace Explorer window right-click on the file and select Build Settings. 

With gcc you can’t set optimization levels for individual functions except for using certain function attributes. With MDK 

you can use #pragma to set optimization for an individual function. For more information see C Documentation. 

It is strongly recommended that after compiling C code with optimizations you carefully review the assembler output 

and confirm that it is doing what you expect. Stepping through the assembler code in the debugger may also be helpful. 

One best practice is to get your C code working without optimizations, then rebuild with optimizations and repeat your 

tests. You can do this using the Debug and Release configurations in your PSoC Creator project build settings.  

For specific examples of how various optimization options work, see Appendix A. 

3.4 Attributes 

An extension to the C language that is supported by both gcc and MDK is to apply attributes to functions, variables, 

and structure types. Attributes can be used, for example, to control: 

▪ specific function optimizations 

▪ how structures occupy memory (see Packed and Unpacked Structures) 

▪ function and variable location in memory (see Placing Code and Variables) 

The syntax is (two underscore characters before and after the "attribute"): 

__attribute__ ((<attribute-list>)) 

Specific attributes are described in detail in subsequent sections in this application note. For more information, see 

C Documentation. 

http://www.cypress.com/
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4 Accessing Variables 

When reviewing compiler output, one of the first areas to examine is how variables (and arrays and structures) are read 

and written. In their assembly language output, the gcc and MDK compilers both implement certain techniques for 

accessing: 

▪ global and static variables 

▪ automatic (local) variables 

▪ function arguments and function result 

Let us examine how each of these is done. 

4.1 Global and Static Variables 

The Thumb-2 assembly language used by both Cortex CPUs does not generally support loading 32-bit immediate 

values into a register. (There are exceptions; for example small immediate values can be loaded and sign-extended.) 

This makes it difficult to load the address of a global or static variable, or in general to load any address. Table 1 shows 

two methods for handling this problem, for the following example C code: 

/* loading a global variable */ 

uint32 myVar; 

. . . 

myVar = 7; 

Table 1. Example Methods for Loading Addresses into CPU Registers 

Method 1: two 16-bit immediate loads Method 2: PC-relative load 

; rx = address of myVar 

; load the lower and upper halves of the 

; address 

movw  rx, #<LS word> ; 32-bit instruction 

movt  rx, #<MS word> ; 32-bit instruction 

. . . 

movs  ry, #7  

str   ry, [rx, #0] ; myVar = 7 

; rx = address of myVar 

; load the value stored in flash, below 

ldr   rx, [pc, #<offset>] ; 16-bit instruction 

. . . 

movs  ry, #7  

str   ry, [rx, #0] ; myVar = 7 

. . . 

; address value stored after the end of 

; the function 

.word  <address of myVar> ; 32-bit value 

 

In general method 2 is preferred for size-limited applications because it uses two fewer bytes (one 16-bit word). 

However, method 1 may execute faster due to the Cortex instruction pipeline. Note that with PSoC, instruction execution 

speed also depends on the flash cache (PSoC 5LP) or accelerator (PSoC 4) and thus is not necessarily deterministic. 

See Memory Map for details. 

Different compiler optimizations implement one or the other of these two methods; for detailed examples see Appendix 

A. 

It is a coding best practice to minimize use of global variables. Doing so with the PSoC Cortex CPUs may also act to 

reduce code size by reducing the loading of memory and PSoC register addresses. 

http://www.cypress.com/
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4.2 Automatic Variables 

In C, automatic variables are variables that are defined within (local to) a function. Depending on the size and complexity 

of the function, and the compiler optimization setting, an automatic variable may be assigned to a CPU register or it 

may be saved on the stack, as Table 2 shows: 

Table 2. Example Methods for Using Automatic Variables 

C Code Assembler Code 

void MyFunc(void) 

{ 

  uint8 i = 3; 

  uint8 j = 10; 

  . . . 

} 

; use rx as i, do NOT save it on the stack 

movs  rx, #3  ; initialize i 

 

; store j on the stack; use ry to temporarily 

; hold the initial value  

movs  ry, #10             ; initialize j 

strb  ry, [sp, #<offset>] ; on the stack 

 

Both size and speed optimizations tend to reduce stack usage for automatic variables; see Appendix A for examples. 

4.3 Function Arguments and Result 

The Procedure Call Standard for Arm Architecture allocates registers R0 – R3 for passing arguments to a function, and 

R0 for passing a function result. If the number of arguments is greater than four, the first four arguments are placed in 

the registers and the rest are pushed onto the stack. 

Within the function, the arguments may be maintained in their respective registers, transferred to other registers, or 

saved on the stack. Given that a function’s automatic variables may also be stored on the stack (Table 2), stack 

management may become complex. To handle this complexity two sequences of instructions, known as prolog and 

epilog, may be included in a compiled function, as the example in Table 3 shows: 

Table 3. Example Function With Prolog and Epilog Instructions 

C Code Assembler Code 

/* Function with 6 arguments and a return 

   value */ 

uint32 MyFunc(uint32 a, uint32 b, uint32 c, 

              uint32 d, uint32 e, uint32 f) 

{ 

    return a + b + c + d + e + f; 

} 

; function prolog 

push  {r7}          ; make room on the stack  

sub   sp, sp, #20   ; for the arguments 

add   r7, sp, #0    ; use r7 as a base pointer 

str   r0, [r7, #12] ; save the arguments 

str   r1, [r7, #8]  ; on the stack 

str   r2, [r7, #4] 

str   r3, [r7, #0] 

 

; function body 

ldr   r2, [r7, #12] ; build the sum 

ldr   r3, [r7, #8]  ; in r2 and r3 

adds  r2, r2, r3 

ldr   r3, [r7, #4] 

adds  r2, r2, r3 

ldr   r3, [r7, #0] 

adds  r2, r2, r3 

ldr   r3, [r7, #24] ; argument e 

adds  r2, r2, r3 

ldr   r3, [r7, #28] ; argument f 

adds  r3, r2, r3 

mov   r0, r3        ; return value in r0 

 

; function epilog 

add   r7, r7, #20   ; restore stack and r7 

mov   sp, r7 

pop   {r7} 

bx   lr             ; return 

 

To minimize code size and maximize speed, you should limit the number of function arguments to four. 

http://www.cypress.com/
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Depending on the size and complexity of the function, the size optimization tries to reduce the function prolog and 

epilog code; see Appendix A for examples. 

4.4 LDR and STR instructions 

These instructions are used to read to and write from memory and PSoC registers. They are quite powerful and offer 

many flexible options. Variants of the instructions support byte and halfword (16-bit) accesses, zero and sign 

extensions, and immediate and register offsets. The offset options are particularly useful for handling pointer offsets 

and for accessing members of arrays and structures, as Table 4 shows. 

Table 4. Example Usage of LDR and STR Instructions 

C Code Assembler Code 

/* loading an array member */ 

uint8 myArray[100]; 

. . . 

myArray[6] = 7; 

ldr   rx, [pc, #<offset>] ; rx = address of myArray 

 

movs  ry, #7  

strb  ry, [rx, #6] 

uint8 myArray[100]; 

. . . 

uint8 i; 

. . . 

myArray[i] = 7; 

ldr   rx, [pc, #<offset>] ; rx = address of myArray 

 

ldrb  ry, [sp, #<offset>] ; ry = i (automatic 

variable) 

movs  rz, #7  

strb  rz, [rx, ry] 

 

Note that the LDR and STR instructions are always register-relative, so before an LDR or STR instruction there is 

always another instruction to load a register with the target address; see Table 1. Variations and options for these 

instructions are different in the Cortex-M0 (PSoC 4) and the Cortex-M3 (PSoC 5LP). For more information, see Arm 

Cortex Documentation. 

5 Mixing C and Assembler Code 

One of the most effective ways to make your code shorter, faster, and more efficient is to write it in assembler. Using 

assembler may also enable you to take advantage of special-function instructions that are supported by the CPU but 

are not used by the C compiler; see Special-Function Instructions. However, coding in assembler is a daunting task for 

all but the smallest applications, and once written the code is not easy to maintain or port to other compilers or CPUs. 

That is why most code is written in C, and if assembler is used at all it is used only for a few critical functions. 

Another problem with assembler is that it must be written in its own file, separate from the C files with which it must 

coexist. This can cause difficulties integrating and maintaining the code. 

A solution to both of these problems is an extension to the C language called inline assembler, where assembler code 

can be placed directly in C files and is treated as just another C statement. This lets you use assembler only where it’s 

needed to increase efficiency, and makes it easier to mix C and assembler. The gcc and MDK compilers both support 

inline assembler. In addition, MDK supports a similar feature called embedded assembler, where a function is written 

entirely in assembler but is included in a C file. 

This section shows how to use combined C and assembler code, for both the gcc and MDK compilers. To effectively 

use the methods described in this section, it is important to understand the register architectures on which they are 

based – see CPU Register Architectures for details. 

Note: The following examples show assembler for the Cortex-M3; the Cortex-M0/M0+ uses a more limited subset of 

the Cortex-M3 instructions. For details see Arm Cortex Documentation. 

Note: Most assembler instructions act on the Cortex registers (see Register Set). The Procedure Call Standard for Arm 

Architecture requires that some of these registers be preserved by functions. If needed, use the PUSH and POP 

instructions to save and restore registers on the stack. 

http://www.cypress.com/
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5.1 Syntax 

The gcc syntax for inline assembler is: 

asm("assembler instruction"); 

which adds a single line of assembler code to the 

C code. For example, the following increments the 

R0 register: 

asm("ADD  r0, r0, #1") 

; /* R0 = R0 + 1 */ 

The syntax for multi-line inline assembler is: 

asm("line 1\n" 

    "line 2\n" 

    "line 3\n" 

    . . . 

    "line n"); 

For example: 

/* R0 = R0 + 1; R1 = R0 */ 

asm("ADD  r0, r0, #1\n" 

    "MOV  r1, r0"); 

Note: The keyword __asm__ can be used instead 

of asm; see C Documentation for details. 

Note: You can add the keyword volatile to 

prevent the statement from being optimized out by 

the compiler: 

asm volatile(" ... "); 

The MDK syntax for inline assembler is the same as that for 

gcc, except that the “asm” is preceded by two underscore 

characters: 

__asm("assembler instruction"); 

 

__asm("line 1\n" 

      "line 2\n" 

      "line 3\n" 

      . . . 

      "line n"); 

The syntax for the MDK embedded assembler is: 

__asm return-type 

function-name(argument-list) 

{ 

  /* This is a C comment */ 

  instruction  ; assembler comment 

  ...  

  instruction 

} 

For example: 

__asm int DoSum(int x, int y) 

{ 

  ADD r0, r0, r1 

  BX  lr 

} 

5.2 Automatic Variables 

With gcc, to access an automatic (or local) variable from inline assembler, you must first force the variable to occupy a 

register Rx. Declare the variable as follows:  

register int foo asm("r0"); /* foo occupies register R0 */ 

Note: gcc actually supports a complex language of C expression operands for the asm keyword. A tutorial on this 

language is beyond the scope of this application note. Details can be found in C Documentation, especially section 

6.41 of “Using the GNU Compiler Collection”. 

As an example, let us define two automatic variables, ‘foo’ and ‘bar’, and do a simple math operation between them: 

void main() 

{ 

    register int foo asm("r0") = 5L; /* register variables can be initialized */ 

    register int bar asm("r1"); 

 

    bar = foo + 1; /* C code version */ 

 

    asm("ADD r1, r0, #1"); /* bar = foo + 1 */ 

} 

In the above example, the C code and the inline assembler do the same operation. However, the compiled C code (no 

optimization) uses an intermediate register and consequently produces 3x the instructions using 2x the flash memory, 

as this excerpt from the .lst file shows: 
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20:.\main.c      ****  bar = foo + 1; 

42 0008 0346      mov  r3, r0 

43 000a 03F10103  add  r3, r3, #1 

44 000e 1946      mov  r1, r3 

 

22:.\main.c      ****  asm("ADD r1, r0, #1"); /* bar = foo + 1 */ 

47 0010 00F10101  ADD  r1, r0, #1 

Depending on the function size and complexity it may be possible to eliminate the intermediate register by using a 

compiler optimization option. 

With MDK, there is no need to force an automatic (local) variable to occupy a register.  Instead, you can access the 

variables directly: 

void main() 

{ 

    /* no need to declare variables in registers */ 

    int foo = 5; 

    int bar; 

 

    bar = foo + 1; /* C code version */ 

 

    __asm("ADDS bar, foo, #1"); /* bar = foo + 1 */ 

} 

In this example, the C code and the inline assembler do the same operation and produce the exact same code. 

http://www.cypress.com/
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5.3 Global and Static Variables 

The previous methods can also be used with global and static variables (“globals”). Note that before accessing a global 

you must load a register with the address of the variable – see Global and Static Variables. 

With gcc, use the following syntax to load an 

address: 

LDR  rx, =variable_name 

LDR  ry, =0x1FFF9000 ; an address 

Let us repeat the previous example using globals 

instead of automatic variables: 

int foo = 5L; 

int bar; 

 

void main() 

{ 

    bar = foo + 1; 

 

    /* bar = foo + 1 */ 

    asm("LDR r0, =foo\n" 

        "LDR r1, =bar\n" 

        "LDR r2, [r0]\n" 

        "ADD r2, r2, #1\n" 

        "STR r2, [r1]"); 

} 

Again, the C code and the inline assembler do the 

same operation but due to different address load 

methods (see Table 1) the compiled C code (no 

optimizations) produces two more instructions and 

uses four more bytes of memory than the inline 

assembler (for the Cortex-M3), as the following 

debugger snip shows: 

bar = foo + 1; 

    F248130C  movw   r3, #810c 

    F6C173FF  movt   r3, #1fff 

    681B      ldr    r3, [r3, #0] 

    F1030201  add.w  r2, r3, #1 

    F248132C  movw   r3, #812c 

    F6C173FF  movt   r3, #1fff 

    601A      str    r2, [r3, #0] 

 

/* bar = foo + 1 */ 

asm("LDR r0, =foo\n" 

    "LDR r1, =bar\n" 

    "LDR r2, [r0]\n" 

    "ADD r2, r2, #1\n" 

    "STR r2, [r1]"); 

    4804      ldr    r0, [pc, #10] 

    4905      ldr    r1, [pc, #14] 

    6802      ldr    r2, [r0, #0] 

    F1020201  add.w  r2, r2, #1 

    600A      str    r2, [r1, #0] 

The above results may be different if compiler 

optimizations are used. 

With MDK there are two methods to access global 

variables. The first method, inline assembler, is similar to 

that for accessing automatic variables: 

/* bar = foo + 1 */ 

__asm("ADDS bar, foo, #1"); 

However, the assembler output is quite different: 

4805     ldr   r0, [pc, #14] 

6800     ldr   r0, [r0, #0] 

1C40     adds  r0, r0, #1 

4905     ldr   r1, [pc, #14] 

6008     str   r0, [r1, #0] 

The additional instructions are required for loading the 

variable addresses; see Global and Static Variables for 

more information. In this case the inline assembler is 

effectively a pseudoinstruction, generating five actual 

assembler instructions. The output is the same as if it were 

written in C, so in this case there is no advantage to using 

inline assembler. 

The embedded assembler method looks like this: 

__asm void AddGlobals(void) 

{ 

    extern foo 

    extern bar 

 

    LDR  r0, =foo 

    LDR  r1, =bar 

    LDR  r0, [r0] 

    ADD  r0, r0, #1 

    STR  r0, [r1] 

    BX   lr 

} 

In this case the resultant code is the same as for the inline 

assembler method. 

http://www.cypress.com/


  PSoC® Arm® Cortex® Code Optimization 

 www.cypress.com Document No. 001-89610 Rev. *E 14 

5.4 Function Arguments 

As noted in Function Arguments and Result, the Procedure Call Standard for Arm Architecture allocates registers R0 – 

R3 for passing arguments to a function, and R0 for passing a function result. If the number of arguments is greater than 

four, the first four arguments are placed in the registers and the rest are pushed onto the stack. 

So if you limit the number of arguments to four, you can write assembler to directly access the registers that have those 

arguments. The following example shows multiple ways to implement a function to calculate the sum of four arguments: 

uint32 addFunc(uint32 a, uint32 b, uint32 c, uint32 d) 

{ 

    return a + b + c + d; 

} 

gcc: 

uint32 addFunc(uint32 a, uint32 b, uint32 c, uint32 d) 

{ 

    /* define return value in R0 */ 

    /* does not overwrite input argument 'a' in R0 */  

    register uint32 rtnval asm("r0"); 

 

    /* the arguments are in registers R0 – R3 */ 

    asm volatile ("add r0, r0, r1\n" 

                  "add r0, r0, r2\n" 

                  "add r0, r0, r3"); 

 

    return rtnval; /* return value in R0 */ 

} 

MDK embedded assembler: 

__asm uint32 addFunc(uint32 a, uint32 b, uint32 c, uint32 d) 

{ 

    ; the arguments are in registers R0 – R3 

    ADD r0, r0, r1 

    ADD r0, r0, r2 

    ADD r0, r0, r3 

 

    ; return value in R0 

    BX  lr 

} 
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6 Special-Function Instructions 

Some CPUs have special-function instructions which are not normally used by C compilers; this type of instruction can 

be accessed with C intrinsic functions or in some cases can only be accessed using assembler. This section explains 

how to use C intrinsic functions and mixed C and assembler to more easily gain access to these instructions. 

Let us look at the PSoC 5 Cortex-M3 saturation instructions as an example; for other special-function instructions see 

C Documentation. 

6.1 Saturation Instructions 

Saturation is commonly used in signal processing, for example when a signal is amplified, as Figure 6 shows. Suppose 

we are using a 16 bit ADC and are interested in just the 12 LS bits. After amplification, if the value is adjusted by simply 

removing the unused MS bits, overflow may seriously distort the resulting signal. Saturation avoids overflow and 

reduces distortion. 

Figure 6. Saturation Operation 

 

Saturation can be done in C using multiple comparison and if-else statements, but the Cortex-M3 has two assembler 

instructions that make the process far more efficient: SSAT and USAT for signed and unsigned, respectively. These 

instructions work as follows: 

6.1.1 SSAT Instruction  

The SSAT instruction saturates to the signed range −2n–1 ≤ x ≤ 2n–1−1: 

▪ if the value to be saturated is less than −2n−1, the result returned is −2n-1  

▪ if the value to be saturated is greater than 2n−1−1, the result returned is 2n-1−1 

▪ otherwise, the result returned is the same as the value to be saturated. 

6.1.2 USAT Instruction  

The USAT instruction saturates to the unsigned range 0 ≤ x ≤ 2n−1: 

▪ if the value to be saturated is less than 0, the result returned is 0 

▪ if the value to be saturated is greater than 2n−1, the result returned is 2n−1 

▪ otherwise, the result returned is the same as the value to be saturated 
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6.1.3 Syntax 

op Rd, #n, Rm 

where: 

▪ op is one of the following: 

 SSAT saturates a signed value to a signed range 

 USAT saturates a signed value to an unsigned range 

▪ Rd is the destination register. 

▪ n specifies the bit position to saturate to: 

 n ranges from 1 to 32 for SSAT 

 n ranges from 0 to 31 for USAT 

▪ Rm is the register containing the value to saturate. 

Note: The SSAT and USAT instructions operate on a 32-bit value in the input register. The corresponding C variable 

should be of type int, int32 or uint32. Sign extension may be required before executing the saturation instruction. 

6.2 Intrinsic Functions 

In C, an intrinsic function has the appearance of a function call but is replaced during compilation by a specific sequence 

of one or more assembler instructions. The Arm Cortex Microcontroller Software Interface Standard (CMSIS) library 

includes a set of intrinsic functions for most of the Cortex special-function assembler instructions. After a PSoC Creator 

project is built, you can find these functions in the Workspace Explorer window in the folder Generated Source > 

PSoCx > cyboot > core_cmInstr.h. 

The saturation intrinsics look like this: 

__SSAT(ARG1, ARG2) 

__USAT(ARG1, ARG2) 

where ARG1 is the input value to be saturated and ARG2 is the bit position to saturate to. Call the functions as follows: 

int data_unsat = -1L; 

int data_sat = __USAT(data_unsat, 8); 

In this example, we saturate data_unsat to 8 bits, unsigned. If the value of data_unsat exceeds 255 (0xFF), the result 

is saturated to 255 (0xFF) and is stored in data_sat. If the value of data_unsat is negative, 0 is stored in data_sat. 

6.3 Assembler 

You can also use the techniques described in Mixing C and Assembler Code to insert special-function instructions, as 

Table 5 shows. 

Table 5. Using Saturation Instructions in Mixed C and Assembler 

gcc Example MDK Example 

void main() 

{ 

    register int data_unsat asm("r0"); 

    register int data_sat asm("r3"); 

 

    asm("ssat r3, 8, r0"); 

    . . . 

} 

void main() 

{ 

   int data_unsat; 

   int data_sat; 

 

   __asm("ssat data_sat, 8, data_unsat"); 

   . . . 

} 

 

In this example, we saturate data_unsat to 8 bits, signed. With 8-bit signed saturation the value can range from -128 to 

+127. So if the value is less than -128, the result is -128 and if the value is greater than +127, the result is +127. So the 

result is saturated to 0x7F in the positive direction and 0x80 in the negative direction. 
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We can use the saturation instructions to saturate a value to the required number of saturation bits. USAT can be used 

with an ADC configured in single ended mode and SSAT can be used with an ADC configured in differential mode. 

7 Packed and Unpacked Structures 

In most embedded systems, data is transmitted in a byte-by-byte fashion, for example with a UART or I2C port. (The 

SPI protocol is an exception, for details see one of the PSoC Creator SPI Component datasheets.) With 8-bit CPUs 

complex data structures can be transmitted and received byte by byte and the result will exactly match the original. 

However with larger CPUs (16-bit, 32-bit, etc.) this is not necessarily true. Let us examine in detail why this is so, using 

the PSoC 4 Cortex-M0 and PSoC 5LP Cortex-M3 CPUs as examples. 

The 32-bit Cortex CPUs in PSoC access memory as 32-bit words, and therefore they work most efficiently when data 

is stored on 32-bit boundaries, that is, where the two LS address bits are zero. If for example a 16-bit or 32-bit variable 

is saved starting at an odd address, where the LS bit of the address is 1, then two 32-bit memory reads are required to 

read it, and two read-modify-write cycles are required to write it. This can significantly impact execution speed. 

Unfortunately, in C it is easy to create structures where words are on odd boundaries. Consider the following example: 

struct myStruct 

{ 

    uint8  m1; /* stored on a 32-bit boundary, address = ...xx00 */ 

    uint32 m2; /* stored on an 8-bit boundary, address = ...xx01 */ 

} 

The above is called a packed structure, because the structures are placed in memory byte-by-byte regardless of 

address boundary considerations. Compilers for 8-bit CPUs usually generate packed structures. The gcc and MDK 

compilers as a default for the Cortex CPUs save structures in unpacked format, where the address is determined by 

the size of the structure member. For example: 

struct myUnpackedStruct 

{ 

    uint8  m1; /* stored on a 32-bit boundary, address = ...xx00 */ 

    /* 3 unused filler bytes */ 

    uint32 m2; /* stored on a 32-bit boundary, address = ...yy00 */ 

} 

An unpacked structure can be accessed more efficiently but is larger, which may be a problem with devices with limited 

SRAM. But a more serious problem can occur when for example an unpacked structure is transmitted byte-by-byte and 

the receiver saves the bytes in a packed structure – the data becomes corrupted causing hard-to-find system-level 

defects. 

There are several ways to correct this problem in code; the easiest is to simply optimize the order of structure member 

declarations. For example, we could reorder the original structure as: 

struct myStruct 

{ 

    uint32 m2; /* stored on a 32-bit boundary, address = ...xx00 */ 

    uint8  m1; /* stored on a 32-bit boundary, address = ...yy00 */ 

} 

Now the structure is packed and each of its members’ addresses are on 32-bit boundaries. 

7.1.1 Compiler  Considerat ions  

For both gcc and MDK compilers, by default, structures are unpacked according to the following rules: 

▪ A char or uint8 (one byte) is 1-byte aligned 

▪ A short or uint16 (two bytes) is 2-byte aligned; LS address bit is 0 

▪ A long or uint32 (four bytes) is 4-byte aligned; two LS address bits are 00 

▪ A float (four bytes) is 4-byte aligned; two LS address bits are 00 

▪ Any pointer, e.g., char *, int * (four bytes) is 4-byte aligned; two LS address bits are 00. 
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It is possible to force a structure to be packed, using the following syntax: 

gcc: 

struct myStruct 

{ 

    . . . 

} __attribute__ ((packed)); 

MDK: 

__packed struct myStruct 

{ 

    . . . 

}; 

 

Note: It is recommended to use the packed statement in structure definitions only. It should not be used in declarations 

of actual structure variables nor should it be used in typedef declarations. 

8 Compiler Libraries 

For both gcc and MDK compilers, replacing C standard library function calls with equivalent C statements can 

significantly reduce memory usage. For example, consider the following C fragment: 

#include <math.h> 

uint32 a, b; 

a = 5; 

b = pow(a,3); 

Table 6 shows the Flash and SRAM memory consumption for both compilers for PSoC 5LP and PSoC 4: 

Table 6. Memory Consumption With a pow() Function Call 

PSoC 5LP gcc MDK  PSoC 4 gcc MDK 

Flash 8939 7696  Flash 14374 7700 

SRAM 405 196  SRAM 364 312 

If the call to the pow() library function is replaced with the following equivalent code, you use a lot less memory, as 

Table 7 shows: 

b = a * a * a; 

Table 7. Memory Consumption Without Using a pow() Function Call 

PSoC 5LP gcc MDK  PSoC 4 gcc MDK 

Flash 1582 (-82.3%) 1444 (-81.2%)  Flash 1198 (-91.7%) 1004 (-87.0%) 

SRAM 301 (-25.7%) 200 (-32.4%)  SRAM 252 (-30.8%) 216 (-30.8%) 

 

The reason for the size reduction is that by ANSI C definition the pow() function takes arguments of type double and 

returns a type double. When you call this function with integers they are automatically cast to the proper type before 

and after the function call, and this requires a lot of code to implement. 

With PSoC Creator 3.0, a choice of gcc libraries is available: newlib and newlib-nano. The newlib-nano library cuts 

some less-used features from the standard C library functions, to reduce memory usage. 

Note: One of features removed from newlib-nano is floating-point support in printf(), which may cause problems if you 

intend to display floating-point values. For example, consider the following code fragment: 

char My_String[30]; 

float My_Float = 3.14159; 

sprintf(My_String, "Value of pi is: %.2f to 2dp", My_Float); 
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With newlib-nano, the string "Value of pi is: to 2dp" is created in My_String; the expected value 3.14 is not 

included. There are two possible work-arounds: 

1. Enable floating-point formatting support in newlib-nano, as Figure 7 shows. This feature is disabled as a default. 

Enabling it increases flash usage by 10K to 15K bytes. 

Figure 7. Enable floating-point formatting support in newlib-nano 

 

2. Change the library to the full-featured newlib, as Figure 8 shows. Note that the Use Default Libraries option must 

also be set to False. The default is to use newlib-nano; changing to newlib increases flash usage by 25K to 30K 

bytes, and increases SRAM usage by approximately 2K bytes. 

Figure 8. Disabling newlib-nano 

 

MDK also offers a reduced-function library called Microlib. For more information see the MDK documentation. 
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9 Placing Code and Variables
This section shows how to place C code and 

variables into custom locations in memory. There 

are a number of reasons to do this, see Define 

Custom Locations for examples. 

To effectively use the methods described in this 

section, it is important to understand the CPU 

architectures on which they are based – see 

Address Map for details. 

9.1 Linker Script Files 

To place code and variables in custom locations, 

you must know how to modify linker script files. 

This section shows the basics of how linker script 

files control the use of memory in PSoC 4 and 

PSoC 5LP. Details can be found in your gcc or 

MDK documentation. 

After your PSoC Creator project is built, the default 

linker script files can be found in the Generated 

Source folder, as Figure 9 shows. For gcc the 

linker script file is of type .ld, and for MDK the 

linker script file is of type .scat (for “scatter”). 

Note: Linker script files are automatically 

generated by PSoC Creator at project build time, 

and changes that you make to those files may be 

overwritten on the next build. You can instruct 

PSoC Creator to use a custom script file, using the 

PSoC Creator menu Project > Build Settings > 

Linker > General > Custom Linker Script. 

If you use a custom linker script file, it is a best practice to 

add it to the project (menu Project > Existing Item…) and 

save it in the project folder. A custom .scat file must be 

saved in the PSoCx folder under Generated Source. 

Figure 9. PSoC Creator Linker Script Files 

 

 

9.1.1 Linker Script  Fi le  for gcc 

An .ld file has two major commands: MEMORY {} and SECTIONS {}. The MEMORY command describes the type, 

location and usage of all physical memory in the PSoC. For example, for a PSoC 4 with 32 KB flash and 4 KB SRAM: 

MEMORY 

{ 

  rom (rx) : ORIGIN = 0x0, LENGTH = 32768 

  ram (rwx) : ORIGIN = 0x20000000, LENGTH = 4096 

} 

The rom region describes PSoC flash and the region ram describes the PSoC SRAM. The letters "rwx" are memory 

attribute indicators: read, write, and execute, respectively. All origin and length units are in bytes, and the values can 

be in decimal or hexadecimal. PSoC 5LP is similar; the ram ORIGIN value describes the SRAM crossing the Cortex-

M3 Code / SRAM region boundary (Figure 4). For example, for PSoC 5LP with 256 KB flash and 64 KB SRAM: 

MEMORY 

{ 

  rom (rx) : ORIGIN = 0x0, LENGTH = 262144 

  ram (rwx) : ORIGIN = 0x20000000 - (65536 / 2), LENGTH = 65536 

} 
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The SECTIONS command lists all of the sections 

in address order, for example: 

SECTIONS 

{ 

  .text: { ... } 

  .rodata: { ... } 

  .ramvectors: { ... } 

  .noinit: { ... } 

  .data: { ... } 

  .bss: { ... } 

  .heap: { ... } 

  .stack: { ... } 

} 

(Not all of the sections are shown above, only the 

major ones.) Figure 10 shows where these 

sections are placed in PSoC 4 and PSoC 5LP 

flash and SRAM: 

▪ .text: executable code 

▪ .rodata: const variables; initialization data 

▪ .ramvectors: Cortex exception vectors table 

▪ .noinit: variables that are not initialized 

▪ .data: variables that are explicitly initialized 

▪ .bss: variables that are initialized to 0 

▪ heap 

▪ stack 

A closer examination of the linker script file shows 

that many of the sections end with a region 

statement. This statement tells the linker the 

memory region in which to place the section, for 

example: 

  .text: { ... } >rom 

  .data: { ... } >ram AT>rom 

  .heap: { ... } >ram 

The AT statement enables explicit initialization of 

variables; see Variable Initialization. 

Note: For PSoC 5LP, the placement of the 

sections in SRAM are indeterminate relative to 

position of the code SRAM / upper SRAM 

boundary (0x20000000; see Figure 4. 

Note: For most applications it can be assumed 

that the stack is in upper SRAM and the other 

sections are all in code SRAM. This can be 

changed; see Modify the Linker Script File. 

Complete documentation of .ld file usage can be 

found in your gcc documentation. 

Figure 10. SECTIONS Command and PSoC Memory 
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9.1.2 Linker Script  Fi le  for MDK 

A .scat (for “scatter”) file has no commands; 

instead it defines regions and sections. It has a 

single load region called APPLICATION {}. The 

load region contains several execution regions, 

which in turn contain one or more section 

attributes, for example: 

APPLICATION ...  // load region 

{ 

  CODE ...       // execution 

region 

  { 

    * (+RO)      // section 

attribute 

  } 

  ISRVECTORS ... 

  { 

    * (.ramvectors) 

  } 

  NOINIT_DATA ... 

  { 

    * (.noinit) 

  } 

  DATA ... 

  { 

    .ANY (+RW, +ZI) 

  } 

  ARM_LIB_HEAP ... { } 

  ARM_LIB_STACK ... { } 

} 

(Not all of the execution regions and section 

attributes are shown above, only the major ones.) 

Figure 11 shows where the regions and sections 

are placed in PSoC 4 and PSoC 5LP flash and 

SRAM. Special sections RO, RW, and ZI are 

defined as follows: 

▪ RO: all code, const variables, and 

initialization bytes for the RW section 

▪ RW: all variables that are explicitly initialized; 

see Variable Initialization 

▪ ZI: all variables that are initialized to zero; see 

Variable Initialization 

Other attributes such as .noinit cause 

placement of code or variables that match that 

attribute; see Define Custom Locations. 

Note: For PSoC 5LP, the placement of the 

regions and sections in SRAM is indeterminate 

relative to the position of the code SRAM / upper 

SRAM boundary (0x20000000; see Figure 4. 

Note: For most applications it can be assumed 

that the stack and heap are in upper SRAM and 

the other sections are all in code SRAM. This can 

be changed; see Modify the Linker Script File. 

Complete documentation of .scat file usage can be found in 

your MDK documentation. 

Figure 11. .scat File Sections and PSoC Memory 
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The following points are valid for both linker file types: 

1. Only global and C static variables are included. C automatic variables are handled differently; see Automatic 

Variables. 

2. The size of the heap and stack are defined in the PSoC Creator project DWR window, System tab. The stack 

pointer is initialized to the highest SRAM address plus 1, and the stack grows downward. The heap, which is used 

by C functions such as malloc() and free(), grows upward from its base. 

3. Although the heap has a defined size in the DWR window, in practice it can use all of SRAM between the sections 

in SRAM and the current value of the stack pointer. Similarly, the stack can grow downward beyond the defined 

stack section. If the stack starts to overlap the memory regions below it, hard-to-find defects can occur. One way 

to detect stack overflow is to add code to each function to check the current value of the stack pointer. 

9.1.3 Variable Ini t ial izat ion  

When placing global and static variables in custom locations, it is important to understand how they are initialized. For 

example, consider these global variable definitions: 

uint8 foo = 5; 

uint16 myArray[10] = {1234, 12, ... }; 

Because these variables are located in SRAM, their values are undefined when the PSoC is powered up. To properly 

initialize them the values are saved in flash and the C startup code, i.e., the code that is executed before main(), copies 

the values from flash to SRAM. The values in flash are in the .rodata section for gcc (Figure 10) or the CODE (RO) 

section for MDK (Figure 11). They are copied into the variables in the .data section for gcc or the DATA (RW) section 

for MDK – explicitly initialized variables must be located in these sections. 

Global and static variables that are not explicitly initialized are set to zero by the C startup code. They must be located 

in the .bss section (gcc) or the DATA (ZI) section (MDK).  

Global and static variables that are located outside the above sections are not initialized and their initial values are 

undefined – they must be initialized in your code. Explicit initializations are ignored. 

9.1.4 Map Fi le

The gcc and MDK linkers both have an option to 

produce a .map file when a project is built. You can 

find the file in the Results tab in the Workspace 

Explorer window, as Figure 12 shows. 

The .map file shows where in memory all code 

modules and variables have been placed by the 

linker. You should review it after a build operation 

and confirm that: 

▪ All code and variables have been placed in 

the expected locations, and 

▪ There are no section overlaps. 

For MDK, the linker’s default is to produce a .map 

file with no symbols, which makes it difficult to 

determine where your code and variables have 

been placed. To include the symbols, add 

--symbols to the linker command line, using 

the PSoC Creator menu Project > Build Settings > 

Linker > Command Line > Custom Flags. 

Figure 12. .map File in PSoC Creator 

 

Now that we have seen the basics of how linker script files work, we can examine how to use them to place code or 

variables in custom locations in PSoC memory. 
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9.2 Placement Procedure 

To place C functions or variables (including arrays and structures) in custom locations, do the following: 

1. Define the custom locations. 

2. In the C source code, declare the functions and variables that are to be located, along with their custom sections. 

3. Build the PSoC Creator project. Copy the generated linker script file to a custom file, then modify it to add and 

locate the sections from step 2. 

4. Rebuild the PSoC Creator project. Review the .map file and confirm that the custom locations have been filled 

correctly and that there are no section overlaps. 

Let us examine each of these steps in detail. 

9.2.1 Def ine Custom Locations 

Before using custom locations, you should understand clearly the reasons why you want to use them. For example, do 

you want to: 

▪ Place a function, or a variable of type const, in a custom location in flash? 

▪ Place a function in SRAM, for possible faster execution? If so, note that in PSoC 4 and PSoC 5LP flash accesses 

are almost as fast as SRAM accesses, so significant performance gains may not be realized. See Cortex-M0/M0+ 

in PSoC 4 and Cortex-M3 in PSoC 5LP for details. 

▪ Place a variable such that it is not initialized by C startup code? This is typically used to maintain a variable’s state 

through a device reset (except for a power-cycle reset). 

▪ Place variables in PSoC 5LP upper SRAM, for bit band access? 

▪ Place variables in other custom locations in SRAM? 

▪ Place variables in PSoC 5LP EMIF memory? 

Your answers to the above questions will help you to determine the addresses of your custom locations. 

9.2.2 Declare  Functions and Variables 

Once you have determined the custom location addresses, declare your functions and variables. In the declarations, 

add the sections in which they will reside, using the __attribute__ keyword (two underscore characters before and 

after the "attribute"): 

uint8 foo __attribute__ ((section(".MY_section"))); 

This keyword can be used with both gcc and MDK. PSoC Creator provides a convenient macro CY_SECTION to simplify 

the above statement. Following are some examples of its usage: 

uint8 foo CY_SECTION(".MY_section"); /* no explicit initialization, = 0 */ 

uint8 foo CY_SECTION(".MY_section") = 10; /* explicit initialization */ 

/* declare a function’s section in the prototype only, and not in the actual 

function */ 

uint16 MyFunction(char *x) CY_SECTION(".MY_section"); 

/* CYISR is a PSoC Creator macro to define an interrupt handler function. 

   See Related Documents for more information. */ 

CYISR(MyFunction) CY_SECTION(".MY_section"); 

PSoC Creator also provides a convenient macro CY_NOINIT, which places a variable in the .noinit section; see 

Figure 10 and Figure 11: 

/* no initialization by C startup code, initial value is undefined */ 

uint8 foo CY_NOINIT; 
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9.2.3 Modify the Linker Script  Fi le

The final task is to modify your project’s linker script file, to declare where you want the previously defined sections to 

be placed. 

For gcc, modify the linker script .ld file – change the SECTIONS {} command and possibly the MEMORY {} command. 

A common way to modify it would be to add statements for EMIF memory, or to split the SRAM, for example: 

MEMORY 

{ 

  rom (rx) : ORIGIN = 0x0, LENGTH = 262144 

  coderam (rwx) : ORIGIN = 0x20000000 - (65536 / 2), LENGTH = (65536 / 2) 

  upperram (rwx) : ORIGIN = 0x20000000, LENGTH = (65536 / 2) 

  EMIF (rwx) : ORIGIN = 0x60000000, LENGTH = 0x1000000 

} 

Note: Changing the SRAM region names will cause errors in some section definitions in the default file, so you must 

change each section definition as needed. For example, change .stack: { ... } >ram to 

.stack: { ... } >upperram . 

To locate a section, add a section definition to the SECTIONS {} command. The syntax for a section definition is: 

.MY_section <address> <(NOLOAD)> : <alignment> 

{ 

  *(.MY_section) 

} ><memory region> 

Note that the section definition name and the name of the section within that section can be the same. Having the first 

character of the name be a period “.” is not required but is a common convention. 

Use a memory region name from the MEMORY {} command, as described previously. 

You can also just place your section within an existing section, for example: 

.data: 

{ 

  ... 

  *(.MY_section) 

  ... 

} >ram AT>rom 

For MDK, modify the linker script .scat file. The procedure is similar to that for gcc but simpler – there is no MEMORY {} 

or SECTIONS {} command to change. Instead, just add your execution region, for example: 

MY_REGION <address> <UNINIT> <length> 

{ 

  * (.MY_section) 

} 

You can also just place your section within an existing section, for example: 

DATA 

{ 

  * (.MY_section) 

  .ANY (+RW, +ZI) 

} 
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9.3 Example 

As noted previously, there are several different applications for custom locations. Let us examine one of them as an 

example of Placement Procedure. In this example we will place an array in PSoC 5LP upper SRAM so that it can be 

accessed by the Cortex-M3 bit band feature – see Cortex-M3 Bit Band. 

First, we define the array to occupy a section that we will call “.bitband”: 

uint8 myArray[10] CY_SECTION(".bitband"); 

Then we must modify the linker script file to tell it that we want to place the .bitband section in upper SRAM, starting at 

address 0x20000000. Table 8 shows how to do this for gcc (.ld file) or MDK (.scat file): 

Table 8. Example Modifications of Linker Script Files 

gcc Example, .ld File MDK Example, .scat File 

/* put our .bitband section between the 

   .heap section in code SRAM and the 

   .stack section in upper SRAM */ 

.heap (NOLOAD) : 

{ 

  . = _end; 

  . += 256; 

  __cy_heap_limit = .; 

} >ram 

 

.bitband 0x20000000 (NOLOAD) : 

{ 

  *(.bitband) 

} >ram 

 

.stack (__cy_stack - 256) (NOLOAD) : 

{ 

  __cy_stack_limit = .; 

  . += 256; 

} >ram 

/* put our BITBAND execution region between the  

   DATA exection region in code SRAM and the 

   heap in upper SRAM */ 

DATA +0 

{ 

  .ANY (+RW, +ZI) 

} 

 

BITBAND 0x20000000 UNINIT 

{ 

  * (.bitband) 

} 

 

ARM_LIB_HEAP (0x20000000 + 

              (65536 / 2) - 256 - 256) EMPTY 256 

{ 

} 

 

ARM_LIB_STACK (0x20000000 + (65536 / 2)) EMPTY -256 

{ 

} 

 

Build the project, then check the .map file and confirm that the array has been located correctly and that there are no 

section overlaps. 

Note the initial values of myArray are undefined; they must be initialized in your code. See Variable Initialization for 

details. 

See Cortex-M3 Bit Band for details on how to do bit-level access of variables located in the bit band region. 

9.4 General Considerations 

When declaring code and variables in custom sections, keep the following in mind: 

▪ Explicitly initialized variables must be placed in the .data section (gcc, Figure 10) or the DATA execution region 

(MDK, Figure 11). See Variable Initialization for details. 

Similarly, variables for which there is no explicit initialization and which you expect to be auto-initialized to zero 

must be placed in the .bss section (gcc) or the DATA execution region (MDK). (The MDK compiler automatically 

gives variables an RW or ZI section attribute, depending on whether or not they’re explicitly initialized.) 

Variables that are not placed in the above sections are not initialized. Explicit initializations are ignored. 

▪ Functions that are to be located in SRAM must be placed in the .data section (gcc, Figure 10) or the DATA 

execution region (MDK, Figure 11). 
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▪ It is more efficient to have all constant data, for example fixed data tables in arrays, be located in flash, however 

the default is to place them in SRAM. To force placement of a variable in flash, set its type to const and explicitly 

initialize it, for example: 

uint32 const var_in_flash = 0x12345678; 

▪ If you are using custom locations in flash, note that the PSoC Creator bootloader uses the top one or two rows of 

flash to store information about bootloadable files. For more information see the Bootloader Component datasheet. 

▪ With MDK, the easiest way to put a variable at any specified address is to use the 

__attribute__((at(address))) variable attribute. For example: 

uint32 const var_in_flash[] __attribute__((at(0x300))) = { . . . }; 

The linker defines a special section and places the variable at the desired address, adjusting the placement of 

other code and variables as needed, as the following .map file snippet shows: 

Symbol Name               Value        Ov Type  Size  Object(Section) 

. . . 

.text                     0x000002f4   Section     0  indicate_semi.o(.text) 

.text                     0x000002f4   Section     0  exit.o(.text) 

.ARM.__AT_0x00000300      0x00000300   Section    12  

main.o(.ARM.__AT_0x00000300) 

.text                     0x0000030c   Section     0  init_alloc.o(.text) 

.text                     0x00000394   Section     0  h1_free.o(.text) 

. . . 

For more information, see C Documentation. 

▪ The .ramvectors section should always be at the bottom of SRAM and the stack section should always be at 

the top of SRAM. 

Complete documentation of .ld file usage can be found in your PSoC Creator installation folder, typically: 

C:\Program Files\Cypress\PSoC Creator\3.0\PSoC Creator\import\gnu_cs\arm\4.7.3\share\doc\gcc-arm-none-

eabi\pdf\ld.pdf 

Complete documentation of .scat file usage can be found in your MDK installation folder, typically: 

C:\Keil\ARM\Hlp\armlink.chm   and  C:\Keil\ARM\Hlp\armlinkref.chm 

9.5 EMIF Considerations (PSoC 5LP Only) 

It is possible to place variables in the external memory (EMIF) supported by PSoC 5LP, using the techniques described 

previously, but there are some restrictions: 

▪ You must have an EMIF Component placed on your PSoC Creator project schematic. Note that the external 

memory address, data and control lines can use a significant number of device pins – plan your design accordingly. 

See the EMIF Component datasheet for details. 

▪ You cannot access the external memory until the EMIF API function EMIF_Start() is called. So you can’t initialize 

EMIF variables in C startup; you must initialize them after the code reaches main() and EMIF_Start() is called. 

▪ The EMIF supports 8-bit and 16-bit memories; placement and access of different size variables may be a 

consideration. It is recommended to align 16-bit and 32-bit variables and structure members on 2-byte and 4-byte 

boundaries, respectively. 

▪ Code can be executed from EMIF, but only with 16-bit external memories. The code executes much more slowly 

than from device internal flash or SRAM. It is also difficult to initialize code in external memory. In general, having 

code in external memory is not recommended. 
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10 Cortex-M3 Bit Band (PSoC 5LP Only) 

As indicated in Address Map, Figure 2 and Figure 4, the PSoC 5LP Cortex-M3 has a bit band feature, where accessing 

an address in an alias region results in bit-level access in the corresponding bit band region. This lets you quickly set, 

clear or test a single bit in the first 1 Mbyte of the region. For a given bit in a given byte address, the formula for the 

corresponding alias address is: 

alias_address = 0x22000000 + 32 * (byte_address – 0x20000000) + 4 * bit_number 

So for example if you want to set bit 5 in address 0x20000001, write a 1 to address: 

0x22000000 + 32 * 1 + 4 * 5 = 0x22000034. 

Similarly, to clear the bit, write a 0 to the alias address. To test the bit, read the alias address and test bit 0. 

Note: In addition to the SRAM region, the Cortex-M3 supports bit band for the peripheral region, in which all of the 

PSoC 5LP registers are located. However, peripheral region bit band is not supported in the PSoC 5LP. Writing to the 

peripheral region’s bit band alias region (0x42000000 – 0x43FFFFFF) may give unpredictable results in the PSoC 5LP 

registers and is not recommended. 

To use the bit band feature with a variable, first place the variable in upper SRAM using the techniques described in 

Placing Code and Variables. Then, define macros to calculate and use the corresponding addresses in the bit band 

alias region: 

#define  BIT_BAND_ALIAS_BASE  0x22000000 

/* 'byte' should be a number 0x20000000 to 0x200FFFFF 

   'bit' should be a number 0 to 7 */ 

#define  BIT_BAND_ALIAS_ADDR(byte, bit)  ((BIT_BAND_ALIAS_BASE + \ 

                                          32 * ((uint32)(byte) – \ 

                                                CYREG_SRAM_DATA_MBASE) + \ 

                                           4 * (uint8)(bit)) 

/* 'a' should be an address (uint32 *) */ 

#define  GET_BIT(a, bit)         *(uint32 *)BIT_BAND_ALIAS_ADDR(a, bit) 

/* 'val' should be 0 or 1 */ 

#define  SET_BIT(a, bit, val)    GET_BIT(a, bit) = (uint32)(val) 

#define  TEST_BIT(a, bit, val)  (GET_BIT(a, bit) == (uint32)(val)) 

You can then use the macros to set or test a bit: 

SET_BIT(&foo, 5, 1); /* set bit 5 of foo */ 

if (TEST_BIT(&foo, 5, 1)) { ... } /* test bit 5 */ 

In general, it is more efficient to set or clear a bit with the bit band technique than by reading, modifying and writing the 

variable, as Table 9 shows. When bit band is used, the read-modify-write cycle is done internally by the CPU, thereby 

saving one instruction. 

Table 9. Assembly Language for Bit Band vs Direct Set 

C Code Assembler Code 

/* direct set bit */ 

foo |= (1 << 5); 

; R3 = address of foo 

ldr   r2, [r3] 

orr   r2, r2, #32 

str   r2, [r3] 

/* use bit band */ 

SET_BIT(&foo, 5, 1); 

; R3 = bit band alias address for foo bit 5 */ 

mov   r2, #1 

str   r2, [r3] 

Note that there is no efficient way use bit banding 

to toggle a bit. It is possible to do: 

SET_BIT(&foo, 5,  

        GET_BIT(&foo, 5) ^ 1); 

However it is simpler and just as efficient to do: 

foo ^= (1 << 5); 
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11 DMA Addresses (PSoC 5LP only) 

This section assumes that you know how to use the direct memory access (DMA) controller in PSoC 5LP. The DMA 

controller can transfer data from a source to a destination with no CPU intervention. This allows the CPU to handle 

other tasks while the DMA does data transfers, thereby achieving a “multiprocessing” environment. 

The DMA controller is highly flexible and capable of doing complex transfers of data between PSoC memory and on-

chip peripherals including ADCs, DACs, the Digital Filter Block (DFB), USB, UART, and SPI. There are 24 independent 

DMA channels. For more information, see AN52705, Getting Started with PSoC DMA. 

In PSoC 5LP, the DMA shares the Cortex-M3 S Bus (Figure 4) with the CPU. However, because the S Bus does not 

access the Code region, the DMA cannot directly access code SRAM (0x1FFF8000 to 0x1FFFFFFF). PSoC 5LP 

handles this by implementing remapping so that the DMA can access the code SRAM by accessing corresponding 

addresses 0x20008000 to 0x2000FFFF, as Figure 13 shows. 

Figure 13. DMA Remapping of Code SRAM 
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0x2000 0000

CPU Mapping

Code SRAM

Code SRAM
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0x2000 8000

0x2000 FFFF

 

Since the DMA is a 16-bit subsystem, when it increments an address only the lower 16 bits are incremented, with 

rollover. Therefore, the next DMA address following 0x2000FFFF (which is mapped to 0x1FFFFFFF) is 0x20000000. 

This means that the SRAM still functions as a contiguous 64-KB block of memory for DMA. This is also true for devices 

with less than 64K SRAM because the SRAM is always centered around 0x20000000. 

The remapping is taken into account by the PSoC Creator DMA Component API functions used to set up a DMA 

channel. If you do not use the API, always set the upper 16 bits of a DMA address for SRAM to 0x2000 regardless of 

the actual address. 

12 Summary 

This application note has presented a number of methods to increase the efficiency of your C code for the Cortex CPUs 

in PSoC 4 and PSoC 5LP. The gcc and MDK compilers supported by PSoC Creator work well for most applications 

without using these techniques; they are needed for special problems in meeting code size or execution speed 

requirements. 

The methods presented, in no particular order, are: 

▪ Limit the number of function arguments to no more than 4. See Function Arguments and Result. 

▪ Minimize the number of global and static variables. Not only is this a coding best practice but it may reduce code 

size by reducing the number of address load operations. See Global and Static Variables. 

▪ Use inline or embedded assembler to maximize efficiency in critical sections; see Mixing C and Assembler Code. 

You can also use this technique, or intrinsic functions, to take advantage of special instructions, especially in the 

Cortex-M3; see Special-Function Instructions. 

Also see Appendix A for examples of how to write efficient assembler code. 

▪ Be careful when using standard compiler libraries, as they may use a lot of memory; consider using inline code 

instead. See Compiler Libraries. 
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▪ When using structures, pay careful attention to whether they should be packed or unpacked – there are advantages 

and disadvantages for each. See Packed and Unpacked Structures. 

▪ Place speed critical code in SRAM; see Placing Code and Variables. Note that speed gains using this technique 

may not be realized. 

▪ Place variables to take advantage of the bit band feature in the PSoC 5LP Cortex-M3; see Cortex-M3 Bit Band and 

Example. 

12.1 Use All of the Resources in Your PSoC 

There is one final method available for reducing code size. It is based on the fact that PSoC is designed to be a flexible 

device that enables you to build custom functions in programmable analog and digital blocks. For example, in 

PSoC 5LP you have the following peripherals that can act as “co-processors”: 

▪ DMA Controller. Note that the most common CPU assembler instructions are MOV, LDR, and STR, which implies 

that the CPU spends a lot of cycles just moving bytes around. Let the DMA controller do that instead. 

▪ Digital Filter Block (DFB) – a sophisticated 24-bit sum of products calculator 

▪ Universal Digital Blocks (UDBs). There are as many as 24 UDBs, and each UDB has an 8-bit datapath that can 

add, subtract, and do bitwise operations, shifts, and cyclic redundancy check (CRC). The datapaths can be chained 

for word-wide calculations. Consider offloading CPU calculations to the datapaths. 

▪ The UDBs also have programmable logic devices (PLDs) which can be used to build state machines, c.f. the 

Lookup Table (LUT) Component datasheet. LUTs can be an effective alternative to programming state machines 

in the CPU using C switch / case statements. 

▪ Analog components including ADCs, DACs, comparators, opamps, as well as programmable switched capacitor / 

continuous time (SC/CT) blocks from which you can create programmable gain amplifiers (PGAs), transimpedance 

amplifiers (TIAs), and mixers. Consider doing your processing in the analog domain instead of the digital domain. 

PSoC Creator offers a large number of Components to implement various functions in these peripherals. This allows 

you to develop an effective multiprocessing system in a single chip, offloading a lot of functionality from the CPU. This 

in turn can not only reduce code size, but by reducing the number of tasks that the CPU must perform, you can reduce 

CPU speed and thereby reduce power. 

For example, with PSoC 5LP a digital system can be designed to control multiplexed ADC inputs, and interface with 

DMA to save the data in SRAM, to create an advanced analog data collection system with zero usage of the CPU. 

Cypress offers extensive application note support for PSoC peripherals, as well as detailed data in the device 

datasheets and technical reference manuals (TRMs). For more information see Related Documents. 

13 Related Documents 

13.1 Application Notes 

▪ AN77759 – Getting Started with PSoC 5LP 

▪ AN79953 – Getting Started with PSoC 4 

▪ AN52705 – Getting Started with PSoC DMA 

▪ AN54460 – PSoC 3 and PSoC 5LP Interrupts 

▪ AN90799 – PSoC 4 Interrupts 

▪ AN60630 – PSoC 3 8051 Code and Memory Optimization 

13.2 C Documentation 

▪ gcc documentation can be found in your PSoC Creator installation folder. 

Compiler documentation:  

C:\Program Files\Cypress\PSoC Creator\3.0\PSoC Creator\import\gnu_cs\arm\4.7.3\share\doc\gcc-arm-none-

eabi\pdf\gcc\gcc.pdf 
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Linker script file documentation:  

C:\Program Files\Cypress\PSoC Creator\3.0\PSoC Creator\import\gnu_cs\arm\4.7.3\share\doc\gcc-arm-none-

eabi\pdf\ld.pdf 

▪ For MDK, the documentation can be found in your MDK installation folder, typically: C:\Keil\ARM\Hlp. Start with 

armtools.chm. For the compiler, see armcc.chm and armccref.chm. 

The linker script file documentation can be found in armlink.chm and armlinkref.chm. 

13.3 Arm Cortex Documentation 

Arm provides on their web site a wealth of information about Cortex-M3 and Cortex-M0/M0+ CPUs: 

▪ Cortex-M0 Instruction Set 

▪ Cortex-M0+ Instruction Set 

▪ Cortex-M3 Instruction Set 

▪ Cortex Microcontroller Software Interface Standard (CMSIS) library 

▪ Arm Related Books 
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Appendix A. Appendix A: Compiler Output Details 

This section shows in detail the assembler output for both compilers supported by PSoC Creator (gcc and MDK) and both PSoC CPUs (Cortex-M0/M0+ 

and Cortex-M3), with and without optimizations. The details are shown in several tables, which are organized as follows: 

▪ Table 10. Compiler Output Details for gcc Compiler for Cortex-M3 CPU 

▪ Table 11. Compiler Output Details for gcc Compiler for Cortex-M0/M0+ CPU 

▪ Table 12. Compiler Output Details for MDK Compiler for Cortex-M3 CPU 

▪ Table 13. Compiler Output Details for MDK Compiler for Cortex-M0/M0+ CPU 

Although it may not be exactly what you get when you compile your C code, the assembler code in the tables can serve as useful examples that you can 

incorporate in your code. For details see Mixing C and Assembler Code. 

The test program used to generate the tables can be found in Compiler Test Program. 

A.1 Assembler Examples, gcc for Cortex-M3 

Table 10 shows, for the gcc compiler for the Cortex-M3, examples of compiler output for different optimization options. The examples were extracted from 

the .lst files generated by the compiler. 

See Function Arguments for details on register usage and stack usage in compiler functions. 

Table 10. Compiler Output Details for gcc Compiler for Cortex-M3 CPU 

C Code 
gcc, Cortex-M3 
No Optimization 

gcc, Cortex-M3, 
Size Optimization 

gcc, Cortex-M3, 
Speed Optimization 

// Calling a function 

// with no arguments 

LCD_Start(); 

; do the function call 

bl   LCD_Start 

; same as for no optimization ; same as for no optimization 

// Calling a function with 

// one argument 

LCD_PrintInt8(128); 

; R0 = first argument 

; conditional flags are NOT 

; updated by mov 

mov  r0, #80 

bl   LCD_PrintInt8 

; R0 = first argument 

; conditional flags ARE updated 

; by movs 

movs  r0, #80 

bl    LCD_PrintInt8 

; same as for size optimization 

// Calling a function with 

// two arguments 

LCD_Position(0, 2); 

; R0 = first argument 

; R1 = second argument 

mov  r0, #0 

mov  r1, #2 

bl   LCD_Position 

; R0 = first argument 

; R1 = second argument 

movs  r1, #2 

movs  r0, #0 

bl    LCD_Position 

; same as for size optimization 
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C Code 
gcc, Cortex-M3 
No Optimization 

gcc, Cortex-M3, 
Size Optimization 

gcc, Cortex-M3, 
Speed Optimization 

// For loop: 

void ForLoop(uint8 i) 

{ 

  for(i = 0; i < 10; i++) 

  { 

    LCD_PrintInt8(i); 

  } 

} 

; function prolog 

; i is saved on the stack 

sub   sp, sp, #16 

add   r7, sp, #0 

mov   r3, r0 

strb  r3, [r7, #15] 

 

; i = 0 

mov   r3, #0 

strb  r3, [r7, #15] 

b     .L2 

 

; do the function call with 

; i as the argument in R0 

.L3: 

ldrb  r3, [r7, #15] 

uxth  r3, r3 ; sign extend 

mov   r0, r3 

bl    LCD_PrintInt8 

 

; i++ 

ldrb  r3, [r7, #15] 

add   r3, r3, #1 

strb  r3, [r7, #15] 

 

; check i  10, by comparing 

; it with 9 

.L2: 

ldrb  r3, [r7, #15] 

cmp   r3, #9 

bls   .L3 

 

; function epilog 

add   r7, r7, #16 

mov   sp, r7 

pop   {r7, pc} ; return 

; function prolog 

push  {r4, lr} 

 

; R4 = i 

movs  r4, #0 

 

.L2: 

; do the function call with 

; i as the argument in R0 

mov   r0, r4 ; sign extend 

adds  r4, r4, #1 ; i++ 

uxtb  r4, r4 

bl    LCD_PrintInt8 

 

; check i not equal to 10 

cmp   r4, #10 

bne   .L2 

 

; function epilog 

pop   {r4, pc} ; return 

; function prolog 

push   {r3, lr} 

 

; unroll the loop 

; do the function call 

; 10 times 

; i as the argument in R0 

movs  r0, #0 

bl    LCD_PrintInt8 

 

movs  r0, #1 

bl    LCD_PrintInt8 

 

. . . 

 

movs  r0, #9 

pop   {r3, lr} 

; function returns back to 

; caller of this function 

b     LCD_PrintInt8 
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C Code 
gcc, Cortex-M3 
No Optimization 

gcc, Cortex-M3, 
Size Optimization 

gcc, Cortex-M3, 
Speed Optimization 

// While loop 

// i is type automatic, see 

// Accessing Automatic Variables 

// for details 

uint8 i = 0; 

 

while (i < 10) 

{ 

  LCD_PrintInt8(i); 

  i++; 

} 

; prolog not shown 

; i = 0 

mov   r3, #0 

strb  r3, [r7, #7] 

b     .L5 

 

.L6: 

; LCD_PrintInt8(i) 

ldrb  r3, [r7, #7] 

uxth  r3, r3 

mov   r0, r3 

bl    LCD_PrintInt8 

 

; i++ 

ldrb  r3, [r7, #7] 

add   r3, r3, #1 

strb  r3, [r7, #7] 

 

.L5: 

; while(i  10) 

ldrb  r3, [r7, #7] 

cmp   r3, #9 

bls   .L6 

 

; epilog not shown 

; prolog not shown 

; i = 0 

movs  r4, #0 

 

.L6: 

mov   r0, r4 

adds  r4, r4, #1 ; i++ 

uxtb  r4, r4 

; LCD_PrintInt8(i) 

bl     LCD_PrintInt8 

 

; check i not equal to 10 

cmp   r4, #10 

bne   .L6 

 

; epilog not shown 

; function prolog 

push   {r3, lr} 

 

; unroll the loop 

; do the function call 

; 10 times 

; i as the argument in R0 

movs  r0, #0 

bl    LCD_PrintInt8 

 

movs  r0, #1 

bl    LCD_PrintInt8 

 

. . . 

 

movs  r0, #9 

pop   {r3, lr} 

; function returns back to 

; caller of this function 

b     LCD_PrintInt8 

// Conditional statement 

void Conditional(uint8 i, uint8 j) 

{ 

  if(j == 1) 

  { 

    LCD_PrintInt8(i); 

  } 

  else 

  { 

    LCD_PrintInt8(i + 1); 

  } 

} 

; prolog not shown 

; if(j == 1) 

ldrb  r3, [r7, #6] 

cmp   r3, #1 

bne   .L5 

 

; LCD_PrintInt8(i) 

ldrb  r3, [r7, #7] 

uxth  r3, r3 

mov   r0, r3 

bl    LCD_PrintInt8 

b     .L4 

 

.L5: 

; LCD_PrintInt8(i + 1) 

ldrb  r3, [r7, #7] 

uxth  r3, r3 

add   r3, r3, #1 

uxth  r3, r3  

mov   r0, r3 

bl    LCD_PrintInt8 

 

.L4: 

; epilog not shown 

; no prolog 

; if(j == 1) 

cmp   r1, #1 

beq   .L10 

 

; LCD_PrintInt8(i) 

adds  r0, r0, #1 

uxtb  r0, r0 

 

.L10: 

; function returns back to 

; caller of this function 

b     LCD_PrintInt8 

 

; same as for size optimization 
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C Code 
gcc, Cortex-M3 
No Optimization 

gcc, Cortex-M3, 
Size Optimization 

gcc, Cortex-M3, 
Speed Optimization 

// Switch case statements 

void SwitchCase(uint8 j) 

{ 

  switch(j) 

  { 

    case 0: 

    LCD_PrintInt8(1); 

    break; 

 

    case 1: 

    LCD_PrintInt8(2); 

    break; 

 

    default: 

    LCD_PrintInt8(0); 

    break; 

  } 

} 

; prolog not shown 

; switch(j)  

ldrb   r3, [r7, #7] 

cmp    r3, #0 

beq    .L9 

cmp    r3, #1 

beq    .L10 

b      .L12 

 

.L9:          ; case 0 

mov    r0, #1 

bl     LCD_PrintInt8 

b      .L7    ; break 

 

.L10:         ; case 1 

mov    r0, #2 

bl     LCD_PrintInt8 

b      .L9    ; break 

 

.L12:         ; default 

mov.w  r0, #0 

bl     LCD_PrintInt8 

nop           ; break 

 

.L7: 

; epilog not shown 

; no prolog 

; switch(j)  

cbz   r0, .L13 

cmp   r0, #1 

bne   .L15 

 

movs  r0, #2 ; case 1 

b     .L16 

 

.L13: 

movs  r0, #1 ; case 0 

b     .L16 

 

.L15: 

movs  r0, #0 ; default 

 

.L16:          

; no epilog 

b     LCD_PrintInt8 

; no prolog 

; switch(j)  

cbnz  r0, .L12 

movs  r0, #1 ; case 0 

; no epilog 

b     LCD_PrintInt8 

 

.L12: 

cmp   r0, #1 

beq   .L13 

movs  r0, #0 ; default 

; no epilog 

b     LCD_PrintInt8 

 

movs  r0, #2 ; case 1 

; no epilog 

b     LCD_PrintInt8 

// Ternary operator 

void Ternary(uint8 i) 

{ 

  LCD_PrintInt8( 

    (i == 1) ? 80 : 100); 

} 

; prolog not shown 

; check value of i 

ldrb  r3, [r7, #7] 

cmp   r3, #1 

bne   .L17 

 

mov   r3, #80 

b     .L18 

 

.L17:  

mov   r3, #100 

 

.L18: 

mov   r0, r3 

bl    LCD_PrintInt8 

; epilog not shown 

; no prolog 

; check value of i 

cmp   r0, #1 

 

; “ite” stands for if-then- 

; else instruction 

; “ne” condition checks 

; if the previous compare 

; instruction has cleared the 

; “equal to” flag 

ite    ne 

 

; mov if the result of the 

; previous “ite” instruction is 

; “not equal” 

movne  r0, #100 

 

; mov if the result of the 

; previous “ite” instruction is 

; “equal” 

moveq  r0, #80 

 

; no epilog 

b      LCD_PrintInt8 

; same as for size optimization 
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C Code 
gcc, Cortex-M3 
No Optimization 

gcc, Cortex-M3, 
Size Optimization 

gcc, Cortex-M3, 
Speed Optimization 

// Addition operation 

int DoAdd(int x, int y) 

{ 

  return x + y; 

} 

; prolog not shown 

ldr   r2, [r7, #4] 

ldr   r3, [r7, #0] 

adds  r3, r2, r3 

mov   r0, r3 ; return value 

; epilog not shown 

; no prolog 

adds  r0, r0, r1 

bx    lr ; return with result 

; same as for size optimization 

// Subtraction operation 

int DoSub(int x, int y) 

{ 

  return x - y; 

} 

; prolog not shown 

ldr   r2, [r7, #4] 

ldr   r3, [r7, #0] 

subs  r3, r2, r3 

mov   r0, r3 ; return value 

; epilog not shown 

; no prolog 

subs  r0, r0, r1 

bx    lr ; return with result 

; same as for size optimization 

// Multiplication 

int DoMul(int x, int y) 

{ 

  return x * y; 

} 

; prolog not shown 

ldr   r3, [r7, #4] 

ldr   r2, [r7, #0] 

mul   r3, r2, r3 

mov   r0, r3 ; return value 

; epilog not shown 

; no prolog 

muls  r0, r1, r0 

bx    lr ; return with result 

; same as for size optimization 

// Division 

int DoDiv(int x, int y) 

{ 

  return x / y; 

} 

; prolog not shown 

ldr   r2, [r7, #4] 

ldr   r3, [r7, #0] 

sdiv  r3, r2, r3 

mov   r0, r3 ; return value 

; epilog not shown 

; no prolog 

sdiv  r0, r0, r1 

bx    lr ; return with result 

; same as for size optimization 

// Modulo operator 

int DoMod(int x, int y) 

{ 

  return x % y; 

} 

; prolog not shown 

ldr   r3, [r7, #4] 

ldr   r2, [r7, #0] 

; truncated quotient 

sdiv  r2, r3, r2 

; quotient * divisor 

ldr   r1, [r7,#0] 

mul   r2, r1, r2 

; remainder = dividend - 

; (quotient * divisor) 

subs  r3, r3, r2 

mov   r0, r3 ; return value 

; epilog not shown 

; no prolog 

sdiv  r3, r0, r1 

; multiply and subtract instruction 

; implements remainder = 

; dividend - (quotient * divisor) 

mls   r0, r3, r1, r0 

bx    lr ; return with result 

; same as for size optimization 
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C Code 
gcc, Cortex-M3 
No Optimization 

gcc, Cortex-M3, 
Size Optimization 

gcc, Cortex-M3, 
Speed Optimization 

// Pointer  

void Pointer(uint8 x, uint8 *ptr) 

{ 

  *ptr = *ptr + x; 

  ptr++; 

  LCD_PrintInt8(*ptr); 

} 

; *ptr = *ptr + x 

ldr   r3, [r7, #0] ; ptr 

ldrb  r2, [r3, #0] 

ldrb  r3, [r7, #7] ; x 

adds  r3, r2, r3 

uxtb  r2, r3 

ldr   r3, [r7, #0] ; ptr 

strb  r2, [r3, #0] 

 

; ptr++ 

ldr   r3, [r7, #0] ; ptr 

add   r3, r3, #1 

str   r3, [r7, #0] 

 

; LCD_PrintInt8(*ptr) 

ldr   r3, [r7, #0] 

ldrb  r3, [r3, #0] 

mov   r0, r3 

bl    LCD_PrintInt8 

; *ptr = *ptr + x 

ldrb  r3, [r1, #0] ; R1 = ptr 

adds  r0, r0, r3   ; R0 = x 

strb  r0, [r1, #0] 

 

; ptr++ 

; LCD_PrintInt8(*ptr) 

ldrb  r0, [r1, #1] 

b     LCD_PrintInt8 

; same as for size optimization 

// Function pointer 

void FuncPtr(uint8 x, 

             void *fptr(uint8)) 

{ 

  (*fptr)(x); 

} 

; (*fptr)(x) 

ldrb  r2, [r7, #7] ; x 

ldr   r3, [r7, #0] ; fptr 

mov   r0, r2 

; in a blx instruction, the 

; LS bit of the register 

; must be 1 to keep the CPU 

; in Thumb mode, or an 

; exception occurs 

blx   r3 

; (*fptr)(x) 

; in a blx instruction, the LS 

; bit of the register must be 

; 1 to keep the CPU in Thumb 

; mode, or an exception occurs 

blx   r1 

; same as for size optimization 
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C Code 
gcc, Cortex-M3 
No Optimization 

gcc, Cortex-M3, 
Size Optimization 

gcc, Cortex-M3, 
Speed Optimization 

// Packed structures 

struct FOO_P 

{ 

  uint8  membera; 

  uint8  memberb; 

  uint32 memberc; 

  uint16 memberd; 

} __attribute__ ((packed)); 

 

extern struct FOO_P myfoo_p; 

 

void PackedStruct(void) 

{ 

  myfoo_p.membera =  5; 

  myfoo_p.memberb = 10; 

  myfoo_p.memberc = 15; 

  myfoo_p.memberd = 20; 

} 

; membera = 5 

movw  r3, #:lower16:myfoo_p 

movt  r3, #:upper16:myfoo_p 

mov   r2, #5 

strb  r2, [r3, #0] 

; memberb = 10 

movw  r3, #:lower16:myfoo_p 

movt  r3, #:upper16:myfoo_p 

mov   r2, #10 

strb  r2, [r3, #1] 

; memberc = 15 

movw  r3, #:lower16:myfoo_p 

movt  r3, #:upper16:myfoo_p 

mov   r2, #0 

orr   r2, r2, #15 

strb  r2, [r3, #2] 

mov   r2, #0 

strb  r2, [r3, #3] 

mov   r2, #0 

strb  r2, [r3, #4] 

mov   r2, #0 

strb  r2, [r3, #5] 

; memberd = 20 

movw  r3, #:lower16:myfoo_p 

movt  r3, #:upper16:myfoo_p 

mov   r2, #0 

orr   r2, r2, #20 

strb  r2, [r3, #6] 

mov   r2, #0 

strb  r2, [r3, #7] 

ldr   r3, [pc, .L28] 

movs  r2, #5 

movs  r0, #10 

strb  r2, [r3, #0] ; membera = 5 

strb  r0, [r3, #1] ; memberb = 10 

movs  r2, #0 

movs  r1, #15 

movs  r0, #20 

strb  r1, [r3, #2] ; memberc = 15 

strb  r2, [r3, #3] 

strb  r2, [r3, #4] 

strb  r2, [r3, #5] 

strb  r0, [r3, #6] ; memberd = 20 

strb  r2, [r3, #7] 

bx    lr 

 

.L28: 

.word  myfoo_p 

movw  r3, #:lower16:myfoo_p 

movt  r3, #:upper16:myfoo_p 

movs  r1, #5 

movs  r0, #10 

movs  r2, #0 

strb  r1, [r3, #0] ; membera = 5 

strb  r0, [r3, #1] ; memberb = 10 

movs  r1, #15 

movs  r0, #20 

strb  r1, [r3, #2] ; memberc = 15 

strb  r2, [r3, #3] 

strb  r2, [r3, #4] 

strb  r2, [r3, #5] 

strb  r0, [r3, #6] ; memberd = 20 

strb  r2, [r3, #7] 

bx    lr 

// unpacked structures 

struct FOO 

{ 

  uint8  membera; 

  uint8  memberb; 

  uint32 memberc; 

  uint16 memberd; 

}; 

 

extern struct FOO myfoo; 

 

void PackedStruct(void) 

{ 

  myfoo.membera =  5; 

  myfoo.memberb = 10; 

  myfoo.memberc = 15; 

  myfoo.memberd = 20; 

} 

; membera = 5 

movw  r3, #:lower16:myfoo 

movt  r3, #:upper16:myfoo 

mov   r2, #5 

strb  r2, [r3, #0] 

; memberb = 10 

movw  r3, #:lower16:myfoo 

movt  r3, #:upper16:myfoo 

mov   r2, #10 

strb  r2, [r3, #1] 

; memberc = 15 

movw  r3, #:lower16:myfoo 

movt  r3, #:upper16:myfoo 

mov   r2, #15 

str   r2, [r3, #4] 

; memberd = 20 

movw  r3, #:lower16:myfoo 

movt  r3, #:upper16:myfoo 

mov   r2, #20 

strh  r2, [r3, #8] 

ldr   r3, [pc, .L31] 

movs  r2, #5 

strb  r2, [r3, #0] ; membera = 5 

movs  r0, #10 

movs  r1, #15 

movs  r2, #20 

strb  r0, [r3, #1] ; memberb = 10 

str   r1, [r3, #4] ; memberc = 15 

strh  r2, [r3, #8] ; memberd = 20 

bx    lr 

 

.L31: 

.word myfoo 

movw  r3, #:lower16:myfoo 

movt  r3, #:upper16:myfoo 

movs  r2, #5 

strb  r2, [r3, #0] ; membera = 5 

movs  r0, #10 

movs  r1, #15 

movs  r2, #20 

strb  r0, [r3, #1] ; memberb = 10 

str   r1, [r3, #4] ; memberc = 15 

strh  r2, [r3, #8] ; memberd = 20 

bx    lr 
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A.2 Assembler Examples, gcc for Cortex-M0/M0+ 

Table 11 shows, for the gcc compiler for the Cortex-M0/M0+, examples of compiler output for different optimization options. The examples were extracted 

from the .lst files generated by the compiler. 

See Function Arguments for details on register usage and stack usage in compiler functions. 

Table 11. Compiler Output Details for gcc Compiler for Cortex-M0/M0+ CPU 

C Code 
gcc, Cortex-M0/M0+, 

No Optimization 
gcc, Cortex-M0/M0+, 

Size Optimization 
gcc, Cortex-M0/M0+, 
Speed Optimization 

// Calling a function 

// with no arguments 

LCD_Start(); 

; do the function call 

bl   LCD_Start 

; same as for no optimization ; same as for no optimization 

// Calling a function with 

// one argument 

LCD_PrintInt8(128); 

; R0 = first argument 

; conditional flags are NOT 

; updated by mov 

mov  r0, #128 

bl   LCD_PrintInt8 

; same as for no optimization ; same as for no optimization 

// Calling a function with 

// two arguments 

LCD_Position(0, 2); 

; R0 = first argument 

; R1 = second argument 

mov  r1, #2 

mov  r0, #0 

bl   LCD_Position 

; same as for no optimization ; same as for no optimization 
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C Code 
gcc, Cortex-M0/M0+, 

No Optimization 
gcc, Cortex-M0/M0+, 

Size Optimization 
gcc, Cortex-M0/M0+, 
Speed Optimization 

// For loop: 

void ForLoop(uint8 i) 

{ 

  for(i = 0; i < 10; i++) 

  { 

    LCD_PrintInt8(i); 

  } 

} 

; function prolog 

; i is saved on the stack 

push  {r7, lr} 

sub   sp, sp, #16 

add   r7, sp, #0 

mov   r2, r0 

add   r3, r7, #7 

strb  r2, [r3] 

 

; i = 0 

mov   r3, r7 

add   r3, r3, #15 

mov   r2, #0 

strb  r2, [r3] 

b     .L2 

 

; do the function call with 

; i as the argument in R0 

.L3: 

mov   r3, r7 

add   r3, r3, #15 

ldrb  r3, [r3] 

mov   r0, r3 

bl    LCD_PrintInt8 

 

; i++ 

mov   r3, r7 

add   r3, r3, #15 

mov   r2, r7 

add   r2, r2, #15 

ldrb  r2, [r2] 

add   r2, r2, #1 

strb  r2, [r3] 

 

; check i  10, by comparing 

; it with 9 

.L2: 

mov   r3, r7 

add   r3, r3, #15 

ldrb  r3, [r3] 

cmp   r3, #9 

bls   .L3 

 

; function epilog 

mov   sp, r7 

add   sp, sp, #16 

pop   {r7, pc} 

; function prolog 

push  {r4, lr} 

 

; R4 = i 

mov   r4, #0 

 

.L2: 

; do the function call with 

; i as the argument in R0 

mov   r0, r4 ; sign extend 

add   r4, r4, #1 ; i++ 

uxtb  r4, r4 

bl    LCD_PrintInt8 

 

; check i not equal to 10 

cmp   r4, #10 

bne   .L2 

 

pop   {r4, pc} ; return 

; function prolog 

push  {r3, lr} 

 

; unroll the loop 

; do the function call 

; 10 times 

; i as the argument in R0 

mov   r0, #0 

bl    LCD_PrintInt8 

 

mov   r0, #1 

bl    LCD_PrintInt8 

 

. . . 

 

mov   r0, #9  

bl    LCD_PrintInt8 

 

pop   {r3, pc} ; return 
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// While loop 

// i is type automatic, see 

// Accessing Automatic Variables 

// for details 

uint8 i = 0; 

 

while (i < 10) 

{ 

  LCD_PrintInt8(i); 

  i++; 

} 

; prolog not shown 

; i = 0 

add   r3, r7, #7 

mov   r2, #0 

strb  r2, [r3] 

b     .L5 

 

.L6: 

; LCD_PrintInt8(i) 

add   r3, r7, #7 

ldrb  r3, [r3] 

mov   r0, r3 

bl    LCD_PrintInt8 

 

; i++ 

add   r3, r7, #7 

add   r2, r7, #7 

ldrb  r2, [r2] 

add   r2, r2, #1 

strb  r2, [r3] 

 

.L5: 

; while(i  10) 

add   r3, r7, #7 

ldrb  r3, [r3] 

cmp   r3, #9 

bls   .L6 

 

; epilog not shown 

; prolog not shown 

; i = 0 

movs  r4, #0 

 

.L6: 

mov   r0, r4 

add   r4, r4, #1 ; i++ 

uxtb  r4, r4 

; LCD_PrintInt8(i) 

bl     LCD_PrintInt8 

 

; check i not equal to 10 

cmp   r4, #10 

bne   .L6 

 

; epilog not shown 

; prolog not shown 

; unroll the loop 

; do the function call 

; 10 times 

; i as the argument in R0 

mov   r0, #0 

bl    LCD_PrintInt8 

 

mov   r0, #1 

bl    LCD_PrintInt8 

 

. . . 

 

mov   r0, #9  

bl    LCD_PrintInt8 

 

; epilog not shown 
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// Conditional statement 

void Conditional(uint8 i, uint8 j) 

{ 

  if(j == 1) 

  { 

    LCD_PrintInt8(i); 

  } 

  else 

  { 

    LCD_PrintInt8(i + 1); 

  } 

} 

; prolog not shown 

; if(j == 1) 

add   r3, r7, #6 

ldrb  r3, [r3] 

cmp   r3, #1 

bne   .L8 

 

; LCD_PrintInt8(i) 

add   r3, r7, #7 

ldrb  r3, [r3] 

mov   r0, r3 

bl    LCD_PrintInt8 

b     .L7 

 

.L8: 

; LCD_PrintInt8(i + 1) 

add   r3, r7, #7 

ldrb  r3, [r3] 

add   r3, r3, #1 

uxtb  r3, r3  

mov   r0, r3 

bl    LCD_PrintInt8 

 

.L7: 

; epilog not shown 

; prolog not shown 

; if(j == 1) 

cmp   r1, #1 

beq   .L11 

 

; LCD_PrintInt8(i) 

add   r0, r0, #1 

uxtb  r0, r0 

 

.L11: 

bl    LCD_PrintInt8 

 

; epilog not shown 

; same as for size optimization 

// Switch case statements 

void SwitchCase(uint8 j) 

{ 

  switch(j) 

  { 

    case 0: 

    LCD_PrintInt8(1); 

    break; 

 

    case 1: 

    LCD_PrintInt8(2); 

    break; 

 

    default: 

    LCD_PrintInt8(0); 

    break; 

  } 

} 

; prolog not shown 

; switch(j)  

add   r3, r7, #7 

ldrb  r3, [r3] 

cmp   r3, #0 

beq   .L12 

cmp   r3, #1 

beq   .L13 

b     .L15 

 

.L12          ; case 0 

mov   r0, #1 

bl    LCD_PrintInt8 

b     .L10   ; break 

 

.L13:         ; case 1 

mov   r0, #2 

bl    LCD_PrintInt8 

b     .L10   ; break 

 

.L15:         ; default 

mov   r0, #0 

bl    LCD_PrintInt8 

mov   r8, r8 ; break - nop 

 

.L10: 

; epilog not shown 

; prolog not shown 

; switch(j)  

cmp  r0, #0 

beq  .L14 

cmp  r0, #1 

bne  .L17 

 

mov  r0, #2 ; case 1 

b    .L18 

 

.L14: 

mov  r0, #1 ; case 0 

b    .L18 

 

.L17: 

mov  r0, #0 ; default 

 

.L18:          

bl    LCD_PrintInt8 

; epilog not shown 

; prolog not shown 

; switch(j)  

cmp  r0, #0 

bne  .L14 

mov  r0, #1 ; case 0 

bl   LCD_PrintInt8 

 

.L8: 

pop  {r3, pc} ; return 

 

.L14: 

cmp  r0, #1 

beq  .L15 

mov  r0, #0 ; default 

bl   LCD_PrintInt8 

b    .L8 

 

mov  r0, #2 ; case 1 

bl   LCD_PrintInt8 

b    .L8 
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// Ternary operator 

void Ternary(uint8 i) 

{ 

  LCD_PrintInt8( 

    (i == 1) ? 80 : 100); 

} 

; prolog not shown 

; check value of i 

add   r3, r7, #7 

ldrb  r3, [r3] 

cmp   r3, #1 

bne   .L17 

 

mov   r3, #80 

b     .L18 

 

.L17:  

mov   r3, #100 

 

.L18: 

mov   r0, r3 

bl    LCD_PrintInt8 

; epilog not shown 

; prolog not shown 

mov  r3, #100 

cmp  r0, #1 

bne  .L20 

mov  r3, #80 

 

.L20: 

mov  r0, r3 

bl   LCD_PrintInt8 

; epilog not shown 

; prolog not shown 

mov  r3, #100 

cmp  r0, #1 

beq  .L19 

 

.L17: 

mov  r0, r3 

bl   LCD_PrintInt8 

pop  {r3, pc} ; return 

 

.L19: 

mov  r3, #80 

b    .L17 

// Addition operation 

int DoAdd(int x, int y) 

{ 

  return x + y; 

} 

; prolog not shown 

ldr  r2, [r7, #4] 

ldr  r3, [r7, #0] 

add  r3, r2, r3 

mov  r0, r3 ; return value 

; epilog not shown 

; no prolog 

add  r0, r0, r1 

bx   lr ; return with result 

; same as for size optimization 

// Subtraction operation 

int DoSub(int x, int y) 

{ 

  return x - y; 

} 

; prolog not shown 

ldr  r2, [r7, #4] 

ldr  r3, [r7, #0] 

sub  r3, r2, r3 

mov  r0, r3 ; return value 

; epilog not shown 

; no prolog 

sub  r0, r0, r1 

bx   lr ; return with result 

; same as for size optimization 

// Multiplication 

int DoMul(int x, int y) 

{ 

  return x * y; 

} 

; prolog not shown 

ldr  r3, [r7, #4] 

ldr  r2, [r7, #0] 

mul  r3, r2  

mov  r0, r3 ; return value 

; epilog not shown 

; no prolog 

mul  r0, r1 

bx   lr ; return with result 

; same as for size optimization 

// Division 

int DoDiv(int x, int y) 

{ 

  return x / y; 

} 

; prolog not shown 

ldr  r0, [r7, #4] 

ldr  r1, [r7, #0] 

bl   __aeabi_idiv 

mov  r3, r0 

mov  r0, r3 ; return value 

; epilog not shown 

push  {r3, lr} 

bl    __aeabi_idiv 

; return with result 

pop   {r3, pc} 

; same as for size optimization 
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// Modulo operator 

int DoMod(int x, int y) 

{ 

  return x % y; 

} 

; prolog not shown 

ldr  r3, [r7, #4] 

mov  r0, r3 

ldr  r1, [r7] 

bl   __aeabi_idivmod 

mov  r3, r1 

mov  r0, r3 ; return value 

; epilog not shown 

push  {r3, lr} 

bl    __aeabi_idivmod 

; return with result 

mov   r0, r1 

pop   {r3, pc} 

; same as for size optimization 

// Pointer  

void Pointer(uint8 x, uint8 *ptr) 

{ 

  *ptr = *ptr + x; 

  ptr++; 

  LCD_PrintInt8(*ptr); 

} 

; *ptr = *ptr + x 

ldr   r3, [r7]   ; ptr 

ldrb  r2, [r3] 

add   r3, r7, #7 ; x 

ldrb  r3, [r3] 

add   r3, r2, r3 

uxtb  r2, r3 

ldr   r3, [r7]   ; ptr 

strb  r2, [r3] 

 

; ptr++ 

ldr   r3, [r7]   ; ptr 

add   r3, r3, #1 

str   r3, [r7] 

 

; LCD_PrintInt8(*ptr) 

ldr   r3, [r7] 

ldrb  r3, [r3] 

mov   r0, r3 

bl    LCD_PrintInt8 

; *ptr = *ptr + x 

ldrb  r3, [r1]   ; R1 = ptr 

add   r0, r0, r3 ; R0 = x 

strb  r0, [r1] 

 

; ptr++ 

; LCD_PrintInt8(*ptr) 

ldrb  r0, [r1, #1] 

bl    LCD_PrintInt8 

; same as for size optimization 

// Function pointer 

void FuncPtr(uint8 x, 

             void *fptr(uint8)) 

{ 

  (*fptr)(x); 

} 

; (*fptr)(x) 

add   r3, r7, #7 ; x 

ldrb  r2, [r3] 

ldr   r3, [r7]   ; fptr 

mov   r0, r2 

; in a blx instruction, the 

; LS bit of the register 

; must be 1 to keep the CPU 

; in Thumb mode, or an 

; exception occurs 

blx   r3 

; (*fptr)(x) 

; in a blx instruction, the LS 

; bit of the register must be 

; 1 to keep the CPU in Thumb 

; mode, or an exception occurs 

blx   r1 

; same as for size optimization 
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// Packed structures 

struct FOO_P 

{ 

  uint8  membera; 

  uint8  memberb; 

  uint32 memberc; 

  uint16 memberd; 

} __attribute__ ((packed)); 

 

extern struct FOO_P myfoo_p; 

 

void PackedStruct(void) 

{ 

  myfoo_p.membera =  5; 

  myfoo_p.memberb = 10; 

  myfoo_p.memberc = 15; 

  myfoo_p.memberd = 20; 

} 

; membera = 5 

ldr   r3, [pc, .L32] 

mov   r2, #5 

strb  r2, [r3] 

; memberb = 10 

ldr   r3, [pc, .L32] 

mov   r2, #10 

strb  r2, [r3, #1] 

; memberc = 15 

ldr   r3, [pc, .L32] 

ldrb  r1, [r3, #2] 

mov   r2, #0 

and   r2, r1 

mov   r1, #15 

orr   r2, r1 

strb  r2, [r3, #2] 

ldrb  r1, [r3, #3] 

mov   r2, #0 

and   r2, r1 

strb  r2, [r3, #3] 

ldrb  r1, [r3, #4] 

mov   r2, #0 

and   r2, r1 

strb  r2, [r3, #4] 

ldrb  r1, [r3, #5] 

mov   r2, #0 

and   r2, r1 

strb  r2, [r3, #5] 

; memberd = 20 

ldr   r3, [pc, .L32] 

ldrb  r1, [r3, #6] 

mov   r2, #0 

and   r2, r1 

mov   r1, #20 

orr   r2, r1 

strb  r2, [r3, #6] 

ldrb  r1, [r3, #7] 

mov   r2, #0 

and   r2, r1 

strb  r2, [r3, #7] 

 

.L32: 

.word  myfoo_p 

ldr   r3, [pc, .L30] 

mov   r2, #5 

mov   r0, #10 

strb  r2, [r3]     ; membera = 5 

strb  r0, [r3, #1] ; memberb = 10 

mov   r2, #0 

mov   r1, #15 

mov   r0, #20 

strb  r1, [r3, #2] ; memberc = 15 

strb  r2, [r3, #3] 

strb  r2, [r3, #4] 

strb  r2, [r3, #5] 

strb  r0, [r3, #6] ; memberd = 20 

strb  r2, [r3, #7] 

bx    lr 

 

.L30: 

.word  myfoo_p 

; same as for size optimization 
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// unpacked structures 

struct FOO 

{ 

  uint8  membera; 

  uint8  memberb; 

  uint32 memberc; 

  uint16 memberd; 

}; 

 

extern struct FOO myfoo; 

 

void PackedStruct(void) 

{ 

  myfoo.membera =  5; 

  myfoo.memberb = 10; 

  myfoo.memberc = 15; 

  myfoo.memberd = 20; 

} 

; membera = 5 

ldr   r3, [pc, .L35] 

mov   r2, #5 

strb  r2, [r3] 

; memberb = 10 

ldr   r3, [pc, .L35] 

mov   r2, #10 

strb  r2, [r3, #1] 

; memberc = 15 

ldr   r3, [pc, .L35] 

mov   r2, #15 

str   r2, [r3, #4] 

; memberd = 20 

ldr   r3, [pc, .L35] 

mov   r2, #20 

strh  r2, [r3, #8] 

 

.L35: 

.word  myfoo 

 

ldr   r3, [pc, .L33] 

mov   r2, #5 

strb  r2, [r3]     ; membera = 5 

mov   r0, #10 

mov   r1, #15 

mov   r2, #20 

strb  r0, [r3, #1] ; memberb = 10 

str   r1, [r3, #4] ; memberc = 15 

strh  r2, [r3, #8] ; memberd = 20 

bx    lr 

 

.L33: 

.word myfoo 

; same as for size optimization 

A.3 Assembler Examples, MDK for Cortex-M3 

Note: Table 12 shows, for the MDK compiler for the Cortex-M3, examples of compiler output for different optimization options. Since the free evaluation 

version of MDK, MDK-Lite, does not include assembler in the .lst file, the examples were extracted from the assembler-level debug window in PSoC Creator. 

See Function Arguments for details on register usage and stack usage in compiler functions. 

Table 12. Compiler Output Details for MDK Compiler for Cortex-M3 CPU 

C Code 
MDK, Cortex-M3, 
No Optimization 

MDK, Cortex-M3, 
Size Optimization 

MDK, Cortex-M3, 
Speed Optimization 

// Calling a function 

// with no arguments 

LCD_Start(); 

; do the function call 

bl   LCD_Start 

; same as for no optimization ; same as for no optimization 

// Calling a function with 

// one argument 

LCD_PrintInt8(128); 

; R0 = first argument 

movs  r0, #80 

bl    LCD_PrintInt8 

; same as for no optimization ; same as for no optimization 

// Calling a function with 

// two arguments 

LCD_Position(0, 2); 

; R0 = first argument 

; R1 = second argument 

movs  r1, #2 

movs  r0, #0 

bl    LCD_Position 

; same as for no optimization ; same as for no optimization 

// For loop: 

void ForLoop(uint8 i) 

{ 

  for(i = 0; i < 10; i++) 

  { 

; prolog 

push   {r4, lr} 

mov    r4, r0 

 

movs   r4, #0  ; i = 0 

b.n    <ForLoop+0x12> 

; prolog 

push   {r4, lr} 

 

movs   r4, #0  ; i = 0 

 

<ForLoop+0x4>: 

; same as for size optimization 
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    LCD_PrintInt8(i); 

  } 

} 

 

<ForLoop+0x8>: 

; do the function call with 

; i as the argument in R0 

mov    r0, r4 

bl     LCD_PrintInt8 

 

adds   r0, r4, #1 ; i++ 

uxtb   r4, r0 ; sign extend 

 

<ForLoop+0x12>: 

cmp    r4, #a  ; i < 10 

blt.n  <ForLoop+0x8> 

 

pop    {r4, pc} ; return 

; do the function call with 

; i as the argument in R0 

mov    r0, r4 

bl     LCD_PrintInt8 

 

adds   r4, r4, #1 ; i++ 

uxtb   r4, r4 ; sign extend 

cmp    r4, #a  ; i < 10 

bcc.n  <ForLoop+0x4> 

 

pop    {r4, pc} ; return 

// While loop 

// i is type automatic, see 

// Accessing Automatic Variables 

// for details 

uint8 i = 0; 

 

while (i < 10) 

{ 

  LCD_PrintInt8(i); 

  i++; 

} 

; prolog 

push   {r4, lr} 

 

movs   r4, #0  ; i = 0 

b.n    <WhileLoop+0x10> 

 

<WhileLoop+0x6>: 

; do the function call with 

; i as the argument in R0 

mov    r0, r4 

bl     LCD_PrintInt8 

 

adds   r0, r4, #1 ; i++ 

uxtb   r4, r0 ; sign extend 

 

<WhileLoop+0x10>: 

cmp    r4, #a  ; i < 10 

blt.n  <WhileLoop+0x6> 

 

pop    {r4, pc}; return 

; prolog 

push   {r4, lr} 

 

movs   r4, #0  ; i = 0 

 

<WhileLoop+0x4>: 

; do the function call with 

; i as the argument in R0 

mov    r0, r4 

bl     LCD_PrintInt8 

 

adds   r4, r4, #1 ; i++ 

uxtb   r4, r4 ; sign extend 

 

cmp    r4, #a  ; i < 10 

bcc.n  <WhileLoop+0x4> 

 

pop    {r4, pc}; return 

; same as for size optimization 

// Conditional statement 

void Conditional(uint8 i, uint8 

j) 

{ 

  if(j == 1) 

  { 

    LCD_PrintInt8(i); 

  } 

  else 

  { 

    LCD_PrintInt8(i + 1); 

  } 

} 

; prolog 

push {r4, r5, r6, lr} 

 

mov    r4, r0 

mov    r5, r1 

cmp    r5, #1 ; j == 1 

bne.n  <Conditional+0x12> 

 

mov    r0, r4 

bl     LCD_PrintInt8 

b.n    <Conditional+0x1a> 

  

<Conditional+0x12>: 

; LCD_PrintInt8(i + 1) 

adds   r1, r4, #1 

uxtb   r0, r1 ; sign extend 

bl     LCD_PrintInt8 

 

; no prolog 

; if(j == 1) 

cmp    r1, #1 

beq.n  <Conditional+0x8> 

 

adds   r0, r0, #1 ; i + 1 

uxtb   r0, r0 

 

<Conditional+0x8>: 

; function returns back to 

; caller of this function 

b.w    LCD_PrintInt8 

; same as for size optimization 
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<Conditional+0x1a>: 

; return 

pop    {r4, r5, r6, pc} 

// Switch case statements 

void SwitchCase(uint8 j) 

{ 

  switch(j) 

  { 

    case 0: 

    LCD_PrintInt8(1); 

    break; 

 

    case 1: 

    LCD_PrintInt8(2); 

    break; 

 

    default: 

    LCD_PrintInt8(0); 

    break; 

  } 

} 

; prolog 

push   {r4, lr} 

 

; switch(j) 

mov    r4, r0 

cbz    r4, <SwitchCase+0xc> 

cmp    r4, #1 

bne.n  <SwitchCase+0x1c> 

b.n    <SwitchCase+0x14> 

 

<SwitchCase+0xc>: 

movs   r0, #1 ; case 0 

bl     LCD_PrintInt8 

b.n    <SwitchCase+0x24> 

 

<SwitchCase+0x14>: 

movs   r0, #2 ; case 1 

bl     LCD_PrintInt8 

b.n    <SwitchCase+0x24> 

 

<SwitchCase+0x1c>: 

movs   r0, #0 ; default 

bl     LCD_PrintInt8 

nop 

 

<SwitchCase+0x24>: 

nop 

pop    {r4, pc} ; return 

; prolog not shown 

; switch(j)  

cbz    r0, <SwitchCase+0xa> 

cmp    r0, #1 

beq.n  <SwitchCase+0xe> 

 

movs   r0, #0 ; default 

b.n    <SwitchCase+0x10> 

 

<SwitchCase+0xa>: 

movs   r0, #1 ; case 0 

b.n    <SwitchCase+0x10> 

 

<SwitchCase+0xe>: 

movs   r0, #2 ; case 1 

 

<SwitchCase+0x10>: 

; function returns back to 

; caller of this function 

b.w    LCD_PrintInt8 

; same as for size optimization 

// Ternary operator 

void Ternary(uint8 i) 

{ 

  LCD_PrintInt8( 

    (i == 1) ? 80 : 100); 

} 

; prolog 

push  {r4, lr} 

 

mov    r4, r0 ; i == 1 

cmp    r4, #1 

bne.n  <Ternary+0xc> 

 

movs   r1, #50 

b.n    <Ternary+0xe> 

 

<Ternary+0xc>: 

movs   r1, #64 

 

<Ternary+0xe>: 

mov    r0, r1 

bl     LCD_PrintInt8 

 

pop    {r4, pc} ; return 

; no prolog 

cmp    r0, #1 

beq.n  <Ternary+0xa> 

 

<Ternary+0x6>: 

movs   r0, #64    ; 0x64 

; function returns back to 

; caller of this function 

b.w    LCD_PrintInt8 

 

<Ternary+0xa>: 

movs   r0, #50    ; 0x50 

b.n    <Ternary+0x6> 

; same as for size optimization 
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// Addition operation 

int DoAdd(int x, int y) 

{ 

  return x + y; 

} 

; no prolog 

mov   r2, r0 

adds  r0, r2, r1 

bx    lr ; return with result 

; no prolog 

add   r0, r1 

bx    lr ; return with result 

; same as for size optimization 

// Subtraction operation 

int DoSub(int x, int y) 

{ 

  return x - y; 

} 

; no prolog 

mov   r2, r0 

subs  r0, r2, r1 

bx    lr ; return with result 

; no prolog 

subs  r0, r0, r1 

bx    lr ; return with result 

; same as for size optimization 

// Multiplication 

int DoMul(int x, int y) 

{ 

  return x * y; 

} 

; no prolog 

mov    r2, r0 

mul.w  r0, r2, r1 

bx     lr ; return with result 

; no prolog 

muls  r0, r1 

bx    lr ; return with result 

; same as for size optimization 

// Division 

int DoDiv(int x, int y) 

{ 

  return x / y; 

} 

; no prolog 

mov   r2, r0 

sdiv  r0, r2, r1 

bx    lr ; return with result 

; no prolog 

sdiv  r0, r0, r1 

bx    lr ; return with result 

; same as for size optimization 

// Modulo operator 

int DoMod(int x, int y) 

{ 

  return x % y; 

} 

; no prolog 

mov   r2, r0 

; truncated quotient 

sdiv  r0, r2, r1 

; multiply and subtract instruction 

; implements remainder = 

; dividend - (quotient * divisor) 

mls   r0, r1, r0, r2 

bx    lr ; return with result 

; no prolog 

; truncated quotient 

sdiv  r2, r0, r1 

; multiply and subtract instruction 

; implements remainder = 

; dividend - (quotient * divisor) 

mls   r0, r1, r2, r0 

bx    lr ; return with result 

; same as for size optimization 

// Pointer  

void Pointer(uint8 x, uint8 

*ptr) 

{ 

  *ptr = *ptr + x; 

  ptr++; 

  LCD_PrintInt8(*ptr); 

} 

; prolog 

push  {r4, r5, r6, lr} 

mov   r5, r0 

mov   r4, r1 

 

; *ptr = *ptr + x; 

ldrb  r0, [r4, #0] 

add   r0, r5 

strb  r0, [r4, #0] 

 

adds  r4, r4, #1 ; ptr++; 

 

ldrb  r0, [r4, #0] 

bl    LCD_PrintInt8 

 

pop   {r4, r5, r6, pc} ; return 

; no prolog 

; *ptr = *ptr + x 

ldrb  r2, [r1, #0] ; R1 = ptr 

add   r0, r2   ; R0 = x 

strb  r0, [r1, #0] 

 

; ptr++ 

; LCD_PrintInt8(*ptr) 

ldrb  r0, [r1, #1] 

 

; function returns back to 

; caller of this function 

b.w   LCD_PrintInt8 

; same as for size optimization 

// Function pointer 

void FuncPtr(uint8 x, 

             void *fptr(uint8)) 

{ 

; prolog 

push  {r4, r5, r6, lr} 

mov   r5, r0 

mov   r4, r1 

; (*fptr)(x) 

; in a bx instruction, the LS 

; bit of the register must be 

; 1 to keep the CPU in Thumb 

; same as for size optimization 
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MDK, Cortex-M3, 
Size Optimization 
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  (*fptr)(x); 

} 

 

; (*fptr)(x) 

mov   r0, r5 

; in a blx instruction, the 

; LS bit of the register 

; must be 1 to keep the CPU 

; in Thumb mode, or an 

; exception occurs 

blx   r4 

 

pop   {r4, r5, r6, pc} ; return 

; mode, or an exception occurs 

 

; function returns back to 

; caller of this function 

bx   r1 

// Packed structures 

struct FOO_P 

{ 

  uint8  membera; 

  uint8  memberb; 

  uint32 memberc; 

  uint16 memberd; 

} __attribute__ ((packed)); 

 

extern struct FOO_P myfoo_p; 

 

void PackedStruct(void) 

{ 

  myfoo_p.membera =  5; 

  myfoo_p.memberb = 10; 

  myfoo_p.memberc = 15; 

  myfoo_p.memberd = 20; 

} 

; no prolog 

; membera = 5 

movs   r0, #5 

ldr    r1, [pc, #14] 

strb   r0, [r1, #0] 

; memberb = 10 

movs   r0, #a 

strb   r0, [r1, #1] 

; memberc = 15 

movs   r0, #f 

; word unaligned access 

str.w  r0, [r1, #2] 

; memberd = 20 

movs   r0, #14 

strh   r0, [r1, #6] 

bx     lr  ; return 

 

.word  &myfoo_p 

; no prolog 

ldr    r0, [pc, #14] 

; membera = 5 

movs   r1, #5 

strb   r1, [r0, #0] 

; memberb = 10 

movs   r1, #a 

strb   r1, [r0, #1] 

; memberc = 15 

movs   r1, #f 

; word unaligned access 

str.w  r1, [r0, #2] 

; memberd = 20 

movs   r1, #14 

strh   r1, [r0, #6] 

bx     lr  ; return 

 

.word  &myfoo_p 

; same as for size optimization 

// unpacked structures 

struct FOO 

{ 

  uint8  membera; 

  uint8  memberb; 

  uint32 memberc; 

  uint16 memberd; 

}; 

 

extern struct FOO myfoo; 

 

void PackedStruct(void) 

{ 

  myfoo.membera =  5; 

  myfoo.memberb = 10; 

  myfoo.memberc = 15; 

  myfoo.memberd = 20; 

} 

; no prolog 

; membera = 5 

movs   r0, #5 

ldr    r1, [pc, #10] 

strb   r0, [r1, #0] 

; memberb = 10 

movs   r0, #a 

strb   r0, [r1, #1] 

; memberc = 15 

movs   r0, #f 

str    r0, [r1, #4] 

; memberd = 20 

movs   r0, #14 

strh   r0, [r1, #8] 

bx     lr  ; return 

 

.word  &myfoo 

; no prolog 

ldr    r0, [pc, #10] 

; membera = 5 

movs   r1, #5 

strb   r1, [r0, #0] 

; memberb = 10 

movs   r1, #a 

strb   r1, [r0, #1] 

; memberc = 15 

movs   r1, #f 

str    r1, [r0, #4] 

; memberd = 20 

movs   r1, #14 

strh   r1, [r0, #8] 

bx     lr  ; return 

 

.word  &myfoo 

; same as for size optimization 
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A.4 Assembler Examples, MDK for Cortex-M0/M0+ 

Table 13 shows, for the MDK compiler for the Cortex-M0, examples of compiler output for different optimization options. Since the free evaluation version 

of MDK does not produce a usable .lst file, the examples were extracted from the assembler-level debug window in PSoC Creator. 

See Function Arguments for details on register usage and stack usage in compiler functions. 

Table 13. Compiler Output Details for MDK Compiler for Cortex-M0/M0+ CPU 

C Code 
MDK, Cortex-M0/M0+, 

No Optimization 
MDK, Cortex-M0/M0+, 

Size Optimization 
MDK, Cortex-M0/M0+, 
Speed Optimization 

// Calling a function 

// with no arguments 

LCD_Start(); 

; do the function call 

bl   LCD_Start 

; same as for no optimization ; same as for no optimization 

// Calling a function with 

// one argument 

LCD_PrintInt8(128); 

; R0 = first argument 

movs  r0, #80 

bl    LCD_PrintInt8 

; same as for no optimization ; same as for no optimization 

// Calling a function with 

// two arguments 

LCD_Position(0, 2); 

; R0 = first argument 

; R1 = second argument 

movs  r1, #2 

movs  r0, #0 

bl    LCD_Position 

; same as for no optimization ; same as for no optimization 

// For loop: 

void ForLoop(uint8 i) 

{ 

  for(i = 0; i < 10; i++) 

  { 

    LCD_PrintInt8(i); 

  } 

} 

; prolog 

push   {r4, lr} 

mov    r4, r0 

 

movs   r4, #0  ; i = 0 

b.n    <ForLoop+0x12> 

 

<ForLoop+0x8>: 

; do the function call with 

; i as the argument in R0 

mov    r0, r4 

bl     LCD_PrintInt8 

 

adds   r0, r4, #1 ; i++ 

uxtb   r4, r0 ; sign extend 

 

<ForLoop+0x12>: 

cmp    r4, #a  ; i < 10 

blt.n  <ForLoop+0x8> 

 

pop    {r4, pc} ; return 

; prolog 

push   {r4, lr} 

 

movs   r4, #0  ; i = 0 

 

<ForLoop+0x4>: 

; do the function call with 

; i as the argument in R0 

mov    r0, r4 

bl     LCD_PrintInt8 

 

adds   r4, r4, #1 ; i++ 

uxtb   r4, r4 ; sign extend 

cmp    r4, #a  ; i < 10 

bcc.n  <ForLoop+0x4> 

 

pop    {r4, pc} ; return 

; same as for size optimization 

// While loop 

// i is type automatic, see 

// Accessing Automatic 

Variables 

// for details 

uint8 i = 0; 

 

while (i < 10) 

{ 

; prolog 

push   {r4, lr} 

 

movs   r4, #0  ; i = 0 

b.n    <WhileLoop+0x10> 

 

<WhileLoop+0x6>: 

; do the function call with 

; i as the argument in R0 

; prolog 

push   {r4, lr} 

 

movs   r4, #0  ; i = 0 

 

<WhileLoop+0x4>: 

; do the function call with 

; i as the argument in R0 

mov    r0, r4 

; same as for size optimization 
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C Code 
MDK, Cortex-M0/M0+, 

No Optimization 
MDK, Cortex-M0/M0+, 

Size Optimization 
MDK, Cortex-M0/M0+, 
Speed Optimization 

  LCD_PrintInt8(i); 

  i++; 

} 

mov    r0, r4 

bl     LCD_PrintInt8 

 

adds   r0, r4, #1 ; i++ 

uxtb   r4, r0 ; sign extend 

 

<WhileLoop+0x10>: 

cmp    r4, #a  ; i < 10 

blt.n  <WhileLoop+0x6> 

 

pop    {r4, pc}; return 

bl     LCD_PrintInt8 

 

adds   r4, r4, #1 ; i++ 

uxtb   r4, r4 ; sign extend 

 

cmp    r4, #a  ; i < 10 

bcc.n  <WhileLoop+0x4> 

 

pop    {r4, pc}; return 

// Conditional statement 

void Conditional(uint8 i, 

uint8 j) 

{ 

  if(j == 1) 

  { 

    LCD_PrintInt8(i); 

  } 

  else 

  { 

    LCD_PrintInt8(i + 1); 

  } 

} 

; prolog 

push {r4, r5, r6, lr} 

 

mov    r4, r0 

mov    r5, r1 

cmp    r5, #1 ; j == 1 

bne.n  <Conditional+0x12> 

 

mov    r0, r4 

bl     LCD_PrintInt8 

b.n    <Conditional+0x1a> 

  

<Conditional+0x12>: 

; LCD_PrintInt8(i + 1) 

adds   r1, r4, #1 

uxtb   r0, r1 ; sign extend 

bl     LCD_PrintInt8 

 

<Conditional+0x1a>: 

; return 

pop    {r4, r5, r6, pc} 

; prolog 

push {r4, lr} 

 

; if(j == 1) 

cmp    r1, #1 

beq.n  <Conditional+0xa> 

 

adds   r0, r0, #1 ; i + 1 

uxtb   r0, r0 

 

<Conditional+0xa>: 

bl     LCD_PrintInt8 

 

; return 

pop    {r4, pc} 

; same as for size optimization 

// Switch case statements 

void SwitchCase(uint8 j) 

{ 

  switch(j) 

  { 

    case 0: 

    LCD_PrintInt8(1); 

    break; 

 

    case 1: 

    LCD_PrintInt8(2); 

    break; 

 

    default: 

    LCD_PrintInt8(0); 

    break; 

  } 

} 

; prolog 

push   {r4, lr} 

 

; switch(j) 

mov    r4, r0 

cmp    r4, #0 

beq.n  <SwitchCase+0xe> 

cmp    r4, #1 

bne.n  <SwitchCase+0x1e> 

b.n    <SwitchCase+0x16> 

 

<SwitchCase+0xe>: 

movs   r0, #1 ; case 0 

bl     LCD_PrintInt8 

b.n    <SwitchCase+0x26> 

 

<SwitchCase+0x14>: 

movs   r0, #2 ; case 1 

bl     LCD_PrintInt8 

b.n    <SwitchCase+0x26> 

 

; prolog 

push   {r4, lr} 

 

; switch(j)  

cmp    r0, #0 

beq.n  <SwitchCase+0xe> 

cmp    r0, #1 

beq.n  <SwitchCase+0x12> 

 

movs   r0, #0 ; default 

b.n    <SwitchCase+0x14> 

 

<SwitchCase+0xe>: 

movs   r0, #1 ; case 0 

b.n    <SwitchCase+0x14> 

 

<SwitchCase+0x12>: 

movs   r0, #2 ; case 1 

 

<SwitchCase+0x14>: 

; same as for size optimization 
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MDK, Cortex-M0/M0+, 
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<SwitchCase+0x1e>: 

movs   r0, #0 ; default 

bl     LCD_PrintInt8 

nop 

 

<SwitchCase+0x26>: 

nop 

pop    {r4, pc} ; return 

bl     LCD_PrintInt8 

pop    {r4, pc} ; return 

// Ternary operator 

void Ternary(uint8 i) 

{ 

  LCD_PrintInt8( 

    (i == 1) ? 80 : 100); 

} 

; prolog 

push  {r4, lr} 

 

mov    r4, r0 ; i == 1 

cmp    r4, #1 

bne.n  <Ternary+0xc> 

 

movs   r1, #50 

b.n    <Ternary+0xe> 

 

<Ternary+0xc>: 

movs   r1, #64 

 

<Ternary+0xe>: 

mov    r0, r1 

bl     LCD_PrintInt8 

 

pop    {r4, pc} ; return 

; prolog 

push  {r4, lr} 

 

cmp    r0, #1 ; i == 1 

beq.n  <Ternary+0xe> 

 

movs   r0, #64 

 

<Ternary+0x8>: 

bl     LCD_PrintInt8 

pop    {r4, pc} ; return 

 

<Ternary+0xe>: 

movs   r0, #50 

b.n    <Ternary+0x8> 

; same as for size optimization 

// Addition operation 

int DoAdd(int x, int y) 

{ 

  return x + y; 

} 

; no prolog 

mov   r2, r0 

adds  r0, r2, r1 

bx    lr ; return with result 

; no prolog 

adds  r0, r1 

bx    lr ; return with result 

; same as for size optimization 

// Subtraction operation 

int DoSub(int x, int y) 

{ 

  return x - y; 

} 

; no prolog 

mov   r2, r0 

subs  r0, r2, r1 

bx    lr ; return with result 

; no prolog 

subs  r0, r0, r1 

bx    lr ; return with result 

; same as for size optimization 

// Multiplication 

int DoMul(int x, int y) 

{ 

  return x * y; 

} 

; no prolog 

mov   r2, r0 

muls  r0, r2, r1 

bx    lr ; return with result 

; no prolog 

muls  r0, r1 

bx    lr ; return with result 

; same as for size optimization 

// Division 

int DoDiv(int x, in`t y) 

{ 

  return x / y; 

} 

; prolog 

push  {r4, r5, r6, lr} 

mov   r4, r0 

mov   r5, r1 

mov   r1, r5 

mov   r0, r4 

bl    __aeabi_idiv 

; return with result 

pop   {r4, r5, r6, pc} 

; prolog 

push  {r4, lr} 

bl    __aeabi_idiv 

; return with result 

pop   {r4, pc} 

; same as for size optimization 
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// Modulo operator 

int DoMod(int x, int y) 

{ 

  return x % y; 

} 

; prolog 

push  {r4, r5, r6, lr} 

mov   r4, r0 

mov   r5, r1 

mov   r1, r5 

mov   r0, r4 

bl    __aeabi_idiv 

; return with result 

mov   r0, r1 

pop   {r4, r5, r6, pc} 

; prolog 

push  {r4, lr} 

bl    __aeabi_idiv 

; return with result 

mov   r0, r1 

pop   {r4, pc} 

; same as for size optimization 

// Pointer  

void Pointer(uint8 x, uint8 

*ptr) 

{ 

  *ptr = *ptr + x; 

  ptr++; 

  LCD_PrintInt8(*ptr); 

} 

; prolog 

push  {r4, r5, r6, lr} 

mov   r5, r0 

mov   r4, r1 

 

; *ptr = *ptr + x; 

ldrb  r0, [r4, #0] 

adds  r0, r0, r5 

strb  r0, [r4, #0] 

 

adds  r4, r4, #1 ; ptr++; 

 

ldrb  r0, [r4, #0] 

bl    LCD_PrintInt8 

 

pop   {r4, r5, r6, pc} ; return 

; prolog 

push  {r4, lr} 

 

; *ptr = *ptr + x 

ldrb  r2, [r1, #0] ; R1 = ptr 

adds   r0, r2, r0   ; R0 = x 

strb  r0, [r1, #0] 

 

; ptr++ 

; LCD_PrintInt8(*ptr) 

ldrb  r0, [r1, #1] 

bl    LCD_PrintInt8 

 

pop   {r4, pc} ; return 

; same as for size optimization 

// Function pointer 

void FuncPtr(uint8 x, 

             void 

*fptr(uint8)) 

{ 

  (*fptr)(x); 

} 

; prolog 

push  {r4, r5, r6, lr} 

mov   r5, r0 

mov   r4, r1 

 

; (*fptr)(x) 

mov   r0, r5 

; in a blx instruction, the 

; LS bit of the register 

; must be 1 to keep the CPU 

; in Thumb mode, or an 

; exception occurs 

blx   r4 

 

pop   {r4, r5, r6, pc} ; return 

; (*fptr)(x) 

; in a bx instruction, the LS 

; bit of the register must be 

; 1 to keep the CPU in Thumb 

; mode, or an exception occurs 

 

; function returns back to 

; caller of this function 

bx   r1 

; same as for size optimization 

// Packed structures 

struct FOO_P 

{ 

  uint8  membera; 

  uint8  memberb; 

  uint32 memberc; 

  uint16 memberd; 

} __attribute__ ((packed)); 

 

extern struct FOO_P myfoo_p; 

; prolog 

push  {r4, lr} 

; membera = 5 

movs  r0, #5 

ldr   r1, [pc, #18] 

strb  r0, [r1, #0] 

; memberb = 10 

movs  r0, #a 

strb  r0, [r1, #1] 

; memberc = 15 

; prolog 

push  {r4, lr} 

ldr   r4, [pc, #18] 

; membera = 5 

movs  r0, #5 

strb  r0, [r4, #0] 

; memberb = 10 

movs  r0, #a 

strb  r0, [r4, #1] 

; memberc = 15 

; same as for size optimization 
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void PackedStruct(void) 

{ 

  myfoo_p.membera =  5; 

  myfoo_p.memberb = 10; 

  myfoo_p.memberc = 15; 

  myfoo_p.memberd = 20; 

} 

adds  r1, r1, #2 

movs  r0, #f 

bl    __aeabi_uwrite4 

; memberd = 20 

movs  r1, #14 

ldr   r0, [pc,#8] 

strb  r1, [r0, #6] 

movs  r1, #0  

strb  r1, [r0, #7] 

pop   {r4, pc}  ; return 

 

.word  &myfoo_p 

adds  r1, r4, #2 

movs  r0, #f 

bl    __aeabi_uwrite4 

; memberd = 20 

movs  r0, #14 

strb  r1, [r4, #6] 

movs  r0, #0  

strb  r1, [r4, #7] 

pop   {r4, pc}  ; return 

 

.word  &myfoo_p 

// unpacked structures 

struct FOO 

{ 

  uint8  membera; 

  uint8  memberb; 

  uint32 memberc; 

  uint16 memberd; 

}; 

 

extern struct FOO myfoo; 

 

void PackedStruct(void) 

{ 

  myfoo.membera =  5; 

  myfoo.memberb = 10; 

  myfoo.memberc = 15; 

  myfoo.memberd = 20; 

} 

; no prolog 

; membera = 5 

movs   r0, #5 

ldr    r1, [pc, #10] 

strb   r0, [r1, #0] 

; memberb = 10 

movs   r0, #a 

strb   r0, [r1, #1] 

; memberc = 15 

movs   r0, #f 

str    r0, [r1, #4] 

; memberd = 20 

movs   r0, #14 

strh   r0, [r1, #8] 

bx     lr  ; return 

 

.word  &myfoo 

; same as for no optimization ; no prolog 

ldr    r0, [pc, #10] 

; membera = 5 

movs   r1, #5 

strb   r1, [r0, #0] 

; memberb = 10 

movs   r1, #a 

strb   r1, [r0, #1] 

; memberc = 15 

movs   r1, #f 

str    r1, [r0, #4] 

; memberd = 20 

movs   r1, #14 

strh   r1, [r0, #8] 

bx     lr  ; return 

 

.word  &myfoo 
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A.5 Compiler Test Program 

The following C code was used to generate the compiler output in the previous tables. It compiles for PSoC 4 and 

PSoC 5LP, for gcc and MDK, with no optimization and with size and speed optimization. It can be added to a PSoC 

Creator project; the following must also be done in the project: 

▪ Add a Character LCD Component to the project schematic, and rename it to “LCD”. 

▪ For PSoC 4, reduce the heap and stack size settings for these lower-memory parts. This is done in the Design-

Wide Resource (DWR) window, System tab. Values of 0x100 and 0x400, for heap size and stack size respectively, 

are usually appropriate. 

The code is in two files, main.c and test.c. This is main.c: 

#include <project.h> 

extern void ForLoop(uint8); 

extern void WhileLoop(void); 

extern void Conditional(uint8, uint8); 

extern void SwitchCase(uint8); 

extern void Ternary(uint8); 

extern int  DoAdd(int, int); 

extern int  DoSub(int, int); 

extern int  DoMul(int, int); 

extern int  DoDiv(int, int); 

extern int  DoMod(int, int); 

extern void Pointer(uint8, uint8 *); 

extern void FuncPtr(uint8, void (*)(uint8)); 

extern void PackedStruct(void); 

extern void UnpackedStruct(void); 

 

struct FOO /* structures are unpacked by default */ 

{ 

    uint8  membera; 

    uint8  memberb; 

    uint32 memberc; 

    uint16 memberd; 

}; 

 

struct FOO_P /* packed structure */ 

{ 

    uint8  membera; 

    uint8  memberb; 

    uint32 memberc; 

    uint16 memberd; 

} __attribute__ ((packed)); 

 

uint8 myData = 6; 

struct FOO_P myfoo_p; 

struct FOO   myfoo; 

 

int main() 

{ 

    /* Place your initialization/startup code here (e.g. MyInst_Start()) */ 

    LCD_Start(); 

 

    /* CyGlobalIntEnable; */ /* Uncomment this line to enable global interrupts. */ 

    for(;;) 

    { 

        LCD_PrintInt8(128); 
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        LCD_Position(0, 2); 

        ForLoop(9); 

        WhileLoop(); 

        Conditional(3, 4); 

        SwitchCase(4); 

        Ternary(5); 

        LCD_PrintNumber((uint16)DoAdd(5, 4)); 

        LCD_PrintNumber((uint16)DoSub(5, 4)); 

        LCD_PrintNumber((uint16)DoMul(5, 4)); 

        LCD_PrintNumber((uint16)DoDiv(5, 4)); 

        LCD_PrintNumber((uint16)DoMod(5, 4)); 

        Pointer(4, &myData); 

        FuncPtr(3, &LCD_PrintInt8); 

        PackedStruct(); 

        UnpackedStruct(); 

    } /* end of for(;;) */ 

} /* end of main() */ 

And this is test.c: 

#include <project.h> 

 

struct FOO /* structures are unpacked by default */ 

{ 

   uint8  membera; 

   uint8  memberb; 

   uint32 memberc; 

   uint16 memberd; 

}; 

 

struct FOO_P /* packed structure */ 

{ 

    uint8  membera; 

    uint8  memberb; 

    uint32 memberc; 

    uint16 memberd; 

} __attribute__ ((packed)); 

 

extern struct FOO_P myfoo_p; 

extern struct FOO   myfoo; 

 

void ForLoop(uint8 i) 

{ 

    for(i = 0; i < 10; i++) 

    { 

        LCD_PrintInt8(i); 

    } 

} 

 

void WhileLoop(void) 

{ 

    uint8 i = 0; 

    while(i < 10) 

    { 

        LCD_PrintInt8(i); 

        i++; 

    } 
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} 

 

void Conditional(uint8 i, uint8 j) 

{ 

    if(j == 1) 

    { 

        LCD_PrintInt8(i); 

    } 

    else 

    { 

        LCD_PrintInt8(i + 1); 

    } 

} 

 

void SwitchCase(uint8 j) 

{ 

    switch(j) 

    { 

        case 0: 

        LCD_PrintInt8(1); 

        break; 

         

        case 1: 

        LCD_PrintInt8(2); 

        break; 

 

        default: 

        LCD_PrintInt8(0); 

        break; 

    } 

} 

 

void Ternary(uint8 i) 

{ 

    LCD_PrintInt8((i == 1) ? 80 : 100); 

} 

 

int DoAdd(int x, int y) 

{ 

    return x + y; 

} 

 

int DoSub(int x, int y) 

{ 

    return x - y; 

} 

 

int DoMul(int x, int y) 

{ 

    return x * y; 

} 

 

int DoDiv(int x, int y) 

{ 

    return x / y; 

} 

 

int DoMod(int x, int y) 
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{ 

    return x % y; 

} 

 

void Pointer(uint8 x, uint8 *ptr) 

{ 

    *ptr = *ptr + x; 

    ptr++; 

    LCD_PrintInt8(*ptr); 

} 

 

void FuncPtr(uint8 x, void *fptr(uint8)) 

{ 

    (*fptr)(x); 

} 

 

void PackedStruct(void) 

{ 

    myfoo_p.membera =  5; 

    myfoo_p.memberb = 10; 

    myfoo_p.memberc = 15; 

    myfoo_p.memberd = 20; 

} 

 

void UnpackedStruct(void) 

{ 

    myfoo.membera =  5; 

    myfoo.memberb = 10; 

    myfoo.memberc = 15; 

    myfoo.memberd = 20; 

} 
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