
SP
EC

IA
L

SP
EC

IA
L www.elektormagazine.com

Elektor ESP32
Energy Meter

IN THIS
EDITION

designs provides flexibility during the engineering phase. Second, its cost-effectiveness makes it an attractive choice for a prototype that aims to balance performance and budget. Third, the compatibility with a wide range of sensors and ICs offers significant advantages. Lastly, the extensive community support for ESP32 chip augments its suitability for this project. Figure 2 highlights the ESP32-D0WD-V3’s

In the field of engineering, combining the right technologies can lead to significant advancements. This project aims to develop an energy meter using the Espressif ESP32 microcontroller and Microchip’s ATM90E32AS energy metering IC. In this article, the beginning of this project’s journey is briefly shared, from component selection to prototyp-ing. The goal is straightforward: to create a reliable system for accurate energy measurement from your home or workshop’s main circuit box. This meter will enable users to track their power consumption in real time, offering insights that can lead to more efficient energy use.
Design and Requirements The project has clear goals and design requirements: real-time monitor single-phase power using three current transformers (CTs), keep it affordable, and make it user-friendly. The choice of ESP32 and ATM90E32AS IC components was guided by these aims, offering both cost-effectiveness and reliable performance. Another target was to keep the size smaller than 100×80×30 mm (L×W×H) to ensure that it can be accommodated in a circuit breaker box. To enhance the user experience, a mobile interface is also included for remote monitoring, as well as an OLED display with buttons for direct interaction. The design also allows for future software updates, ensuring long-term utility for the consumer. In Figure 1, the rendering of the current proto-type enclosure is shown.

Microcontroller Selection The choice of the ESP32 microcontroller was predicated on a detailed analysis of its capabilities. The chip excels in several areas crucial to the success of this project. First, its ease of integration into varied circuit

project

By Saad Imtiaz (Elektor)
This article presents the journey of developing an energy meter using an Espressif ESP32, emphasizing real-time power consumption monitoring and safety. It highlights the initial steps, requirements, and considerations that take place when embarking on an embedded project. As the project progresses, future achievements will be shared in upcoming editions of Elektor Mag.

Prototyping an ESP32-Based Energy Meter

Figure 1: Test rendering of how our Single-Phase Energy Meter might look.

Figure 2: Main features and advantages of the ESP32.

96 www.elektormagazine.com

We began our journey of devloping a reliable, user-friendly energy

meter leveraging the ESP32 microcontroller. In our previous install-

ment, “Prototyping an ESP32-Based Energy Meter” [1], we discussed

the initial design requirements, block diagram and the plan for starting

this project. Before we give an update on it, let’s have a recap. The

energy meter conceptual design is shown in the rendering in Figure 1.

Our focus was on real-time power monitoring, with an emphasis on

safety and affordability. To make the energy measurement precise, we

opted for the Atmel ATM90E32AS, a polyphase energy monitoring IC

[2]. This IC will get the single-phase voltage from the mains and will

use split coil transformers to measure the current safely. The main

application microcontroller selected was ESP32 as it has built-in Wi-Fi

and very cost-effective when compared to other MCUs. In Figure 2,

project

By Saad Imtiaz (Elektor)

In the first installment of

this series, we explored the

foundational design of the Elektor

Energy Meter. In this installment,

we’ll look at the next phase in the

ESP32-based energy meter project,

focusing on detailed schematics,

circuit isolation strategies, and key

enhancements.

Project Update:

ESP32-Based

Energy Meter
Next Steps in Prototyping

Figure 1: Rendering of the Elektor Energy Meter.

WI-FI TO
MOBILE DEVICE

AND INTERNET

USB COMM TO PC

OLED DISPLAY

APPLICATION

PROCESSOR

ISOLATED AC/DC

POWER SUPPLY

ISOLATED AC/DC

POWER SUPPLY

ELECTRICAL

ISOLATION

BOUNDARY

ESP32
I1N
I1P

V1N
V1P

VREFVCCGND

ATM90E32AS

SDO
SDI

CLK
CS ADuM3151

SDO
SDI
CLK
CS

VCCGND

N L

NL

Figure 2:

Block Diagram of the

Elektor Energy Meter.

El
ek
to
r la

b • Elektor lab

Elektor lab • Ele
kt

or
 la

bORIG
INAL

ORIG
INAL

6 January & February 2024 www.elektormagazine.com

In 2023, we started with the goal of creating a reliable, user-friendly energy meter using an Espressif ESP32 microcontroller. In our last article, “Project Update: ESP32-Based Energy Meter” [1], we went over the block diagram, the schematics, circuit isolation strategy, features, and project strategy. Let’s start with a small recap before we get into the next update.

The main idea revolved around developing a precise and efficient energy meter leveraging the capabilities of the Espressif ESP32 microcontroller and the ATM90E32AS IC for energy measurement. The project aimed to enhance user experience and reliability through meticulous schematic design and circuit isolation using the ADuM3151 to provide safe communication between ESP32 and the ATM90E32AS by Atmel (now Microchip). It emphasized safety and efficiency by incorporating noise reduction techniques, signal integrity enhance-ments, and protective mechanisms such as fuses and MOVs. With a focus on future-ready features, the plan included integrating remote monitoring and data analysis tools for improved energy management and efficiency insights.

In this article, our main goals remain the same, and plenty of changes have been made to make the project safer to use, reduce its produc-tion cost, and reduce its size. As mentioned in the previous article,

the size of the prototype PCB was 100×100 mm. After testing, some components were removed and the layout of the PCB was optimized, hence the size for this version is reduced to 79.5×79.5 mm — that’s about 20% less from last time. In Figure 1, the new enclosure for the new version of PCB is shown. Along with that, to make the ESP32 Energy Meter safer to use, instead of powering the PCB directly with the mains voltage, now a 220 V-to-12 V Step Down Transformer is required for voltage sampling and also powering the circuit. Adding a transformer does have some drawbacks in terms of phase delays, but safety first! Since we are not looking to measure voltage spikes, or fast sags or surges, but energy, this shouldn’t hurt our measurement.
The Updated Schematic Design We made some upgrades, and now, rather than the ESP32, the ESP32-S3 is on board. This also unlocks more potential for the Energy Meter. The ESP32-S3 offers significant enhancements over the ESP32, including improved processing power, AI and signal processing capabilities, more memory, and better security features. The updated schematic further improves the capability of the Energy Meter along with more functionality. The design references guides from Espressif [2] and other useful internet resources [3…6] were used to integrate the ESP32-S3 into the project. In Figure 2, the schematic of the project is shown.

The circuit board layout has been optimized to improve the safety, usability, and efficacy of the ESP32-S3. We’ve made substantial adjust-ments by lowering the PCB size for a more compact footprint, moving to transformer-based power for increased safety, and adding versatility with single and three-phase compatibility. The utilization of a more efficient AP63203WU-7 buck converter in place of Hi-Link modules, along with the addition of user-friendly features such as a USB-C connector and a Qwiic connector for expandability, all contributed to the advancement of the project. These improvements build on the ESP32-S3’s capabilities, focusing on providing a practical, adaptable, and safer energy monitoring solution.

project

By Saad Imtiaz (Elektor)
In the previous installment of this series, we discussed the schematics, and circuit isolation strategies of the ESP32 Energy Meter. Now let’s discuss further enhancements, a PCB design, and more.

Project Update #2: ESP32-Based Energy Meter
Some Enhancements

El
ek

tor
 lab • Elektor lab

Elektor lab • Elek
to

r l
ab

ORIGINALORIGINAL

Figure 1: New enclosure design rendering of the ESP32 Energy Meter.

102 May & June 2024 www.elektormagazine.com

In our previous article [1], we focused on enhancements to the

schematic design and PCB of the ESP32 Energy Meter, with improve-

ments in modularity and safety features. Before we get into the next

project update, let’s have a brief overview.

In the most recent advancements of the ESP32 Energy Meter project,

we upgraded to the ESP32-S3 microcontroller, introducing enhanced

processing power and broader functionality. The new design slimmed

down the PCB and incorporated a transformer-based power system,

using a 230-V-to-12-V Step Down Transformer for voltage sampling

and running of the system. This significantly improves safety while

maintaining flexibility for both single- and three-phase installations.

Other improvements included the integration of a more efficient

AP63203WU-7 buck converter, making the PCB more modular, calibra-

tion of the current transformer sampling circuit, and more. This not

only optimizes the energy meter’s performance and functionality, but

also reduces both cost and size.

In this article, we will discuss the steps taken to get this energy meter

up and running and the journey it took from the lab bench to the

circuit breaker box. Furthermore, we will also discuss how to set it up,

calibrate it, and finally, how to integrate it with Home Assistant with

ESP Home to show and monitor the collected data from the energy

meter. In Figure 1, a vivid snapshot of the ESP32 Energy Meter project

in action is captured, encased in a 3D-printed enclosure with an OLED

display. The image highlights live status indicators that seamlessly

track and display real-time power consumption.

Assembly
The new PCB was designed to be more compact and straightforward

to solder and the layout had adequate spacing for each component

which accommodated the soldering process of it. To facilitate project

replication and modifications by enthusiasts and professionals alike, the

complete Bill of Materials (BOM) in Mouser format, and the production

files are shared on the Elektor’s Lab GitHub repository [2].

For the voltage and current sampling connections, screw type terminal

blocks by CUI Devices were used, the quality of these terminal blocks

were much better than the cheap blue colored terminal blocks seen

on most sensor modules. As we are dealing with AC Voltages and

energy metering, it is vital to have secure and reliable connections.

project

By Saad Imtiaz (Elektor)

In the previous project update, you

learned about enhancements to the ESP32

Energy Meter’s schematic design and

PCB. This article focuses on the practical

implementation and integration of the new

version. It provides a step-by-step guide

on setting up the meter with ESPHome

and Home Assistant for effective energy

monitoring. Furthermore, we deal with the

device’s calibration.

Project Update #3:

ESP32-Based

Energy
Meter

Integration and Testing

with Home Assistant

Ele
kto

r lab • Elektor lab

Elektor lab • Elekt
or

 la
b

ORIGINALORIGINAL

Figure 1: The assembled ESP32 Energy Meter with its OLED display and live

status indicators.

12 July & August 2024 www.elektormagazine.com

We previously discussed the entire journey of the ESP32 Energy meter from the lab bench to the circuit breaker box, which started by assembling components, setting up the energy meter with ESPHome and Home Assis-tant, calibration and testing, and finally installing it into the circuit breaker box. In the last update [1], we laid the foundation by integrating the meter with Home Assistant, with the ambitious goal of adding AI and ML capabilities to predict energy usage patterns and identify devices based on their energy signatures.

While the AI/ML integration is still in progress — given the extensive data preparation involved — this minor update focuses on a crucial interim development: enabling real-time energy monitoring using MQTT. MQTT is a lightweight messaging protocol designed for efficient communication. Refer to the textbox “What Is MQTT?” for more information.

Custom Firmware and MQTTIn this article, we will discuss the next phase of the project — leveraging MQTT and the Arduino IDE to enable real-time energy monitoring. This update will cover the firmware development that allows the ESP32 to commu-nicate with an MQTT broker, sending energy data to a Home Assistant server or any other MQTT-compatible platform.

The advantage of using MQTT with an individual firmware over ESPHome is that the individual firmware offers much greater flexibility in terms of integration and customiza-tion. With a custom firmware, you have full control over how the data is collected, processed, and transmitted,

Project Update #4 ESP32-Based Energy Meter
Energy Monitoring with MQTT

project

By Saad Imtiaz (Elektor)

Previously, we focused on setting up the ESP32-Based Energy Meter and integrating it with Home Assistant. We also discussed the future potential of leveraging the ESP32-S3 chip for AI and ML functionality to predict energy usage patterns and identify devices. In this update, we take a step forward by introducing firmware that enables real-time energy monitoring using MQTT, paving the way for advanced features.

El
ek
tor

 lab • Elektor lab

Elektor lab • Elek
to

r l
ab

ORIGINALORIGINAL

What Is MQTT ?
MQTT is a lightweight messaging protocol designed for efficient communication between devices, especially in

IoT environments. Central to this system is the MQTT broker, a server that acts as a hub for message exchange.

The broker receives messages from devices, known as publishers, and routes them to the appropriate recipients,

known as subscribers, based on a system of topics.
A topic in MQTT is a string that categorizes messages, acting as a channel where information is published, while

a subscriber is a device or application that listens to specific topics to receive those messages. For example, in a

smart home setup, a topic like home/energy/voltage might carry voltage readings, and a dashboard subscrib-

ing to this topic would receive and display those readings in real-time.

The broker ensures that messages are delivered efficiently and securely, even over unreliable networks. In IoT

applications, the MQTT broker is crucial for managing data exchange between sensors, devices, and systems

(which are the MQTT clients), enabling real-time monitoring, control, and automation.
62 November & December 2024 www.elektormagazine.com

Ele

kto
r lab • Elektor lab

Elektor lab • Elektor la
b

ORIGINALORIGINAL

SPECIALSPECIALSPECIALSPECIAL
SP

EC
IA

L
SP

EC
IA

L

designs provides flexibility during the engineering phase. Second, its
cost-effectiveness makes it an attractive choice for a prototype that
aims to balance performance and budget. Third, the compatibility
with a wide range of sensors and ICs offers significant advantages.
Lastly, the extensive community support for ESP32 chip augments its
suitability for this project. Figure 2 highlights the ESP32-D0WD-V3’s

In the field of engineering, combining the right technologies can lead
to significant advancements. This project aims to develop an energy
meter using the Espressif ESP32 microcontroller and Microchip’s
ATM90E32AS energy metering IC. In this article, the beginning of this
project’s journey is briefly shared, from component selection to prototyp-
ing. The goal is straightforward: to create a reliable system for accurate
energy measurement from your home or workshop’s main circuit box.
This meter will enable users to track their power consumption in real
time, offering insights that can lead to more efficient energy use.

Design and Requirements
The project has clear goals and design requirements: real-time
monitor single-phase power using three current transformers (CTs),
keep it affordable, and make it user-friendly. The choice of ESP32 and
ATM90E32AS IC components was guided by these aims, offering both
cost-effectiveness and reliable performance. Another target was to
keep the size smaller than 100×80×30 mm (L×W×H) to ensure that
it can be accommodated in a circuit breaker box. To enhance the user
experience, a mobile interface is also included for remote monitoring,
as well as an OLED display with buttons for direct interaction. The
design also allows for future software updates, ensuring long-term
utility for the consumer. In Figure 1, the rendering of the current proto-
type enclosure is shown.

Microcontroller Selection
The choice of the ESP32 microcontroller was predicated on a detailed
analysis of its capabilities. The chip excels in several areas crucial to the
success of this project. First, its ease of integration into varied circuit

project

By Saad Imtiaz (Elektor)

This article presents the journey of developing
an energy meter using an Espressif ESP32,

emphasizing real-time power consumption
monitoring and safety. It highlights the initial
steps, requirements, and considerations that
take place when embarking on an embedded

project. As the project progresses, future
achievements will be shared in upcoming

editions of Elektor Mag.

Prototyping an
ESP32-Based Energy Meter

Figure 1: Test rendering of how our Single-Phase Energy Meter might look.

Figure 2: Main features and advantages of the ESP32.

2 www.elektormagazine.com

main features and advantages resulting in its being selected for this
project.

Metering IC Integration
The ATM90E32AS IC from Microchip was integrated according to the
manufacturer’s application note; the document served as a cornerstone
in ensuring that the energy metering IC communicated seamlessly
with the ESP32 microcontroller. However, this phase was not devoid of
challenges. The procurement of the correct components within budget
constraints required meticulous planning, given the constraints on
availability. In Figure 3, the application note provided by Atmel (now
Microchip) in shown.

Design Phase and Electrical Safety Standards
The design phase is indeed a pivotal part of the engineering process,
particularly when safety is an indispensable consideration. In a device
designed to interact with mains AC voltages, meticulous attention
must be paid to conformance with established safety standards. In
Figure 4, the project’s block diagram is shown.

To ensure safety, several specialized electrical components were
integrated into the design. Metal oxide varistors (MOVs) were used
for transient voltage suppression to protect the circuitry from voltage
spikes. Furthermore, fuse components were included as an essential
failsafe to prevent overcurrent conditions.

Figure 3: The energy meter is based on an application note by Atmel [2]. Here, you can see the circuitry around the metering IC.

Guest edited by 3

this magazine — we’re still in the process of getting the prototype
made, tested, and working, on the software that will run it. There’s
more to come, so stay tuned for updates on this project. We will near
completion and share updates in the January/February 2024 edition
of Elektor, which is dedicated to the topic of Power & Energy. 

230646-01

Questions or Comments?
If you have questions about this article, feel free to email the Elektor
editorial team at editor@elektor.com.

 Related Products

> ESP32-DevKitC-32E
www.elektor.com/20518

> ESP32-C3-DevKitM-1
www.elektor.com/20324

Beyond component selection, circuit design also focused on layout
considerations that would abide by safety norms. Adequate creepage
and clearance distances were maintained between the conductive
elements on the PCB to prevent electrical arcing. Trace widths for AC
voltage lines were calculated carefully to handle the current ratings,
adhering to IPC-2221 standards [1]. This was critical in ensuring the
thermal performance of the board under full-load conditions. To ensure
ground integrity, a solid ground plane was used. Special attention was
given to the design of differential pairs for signal integrity, making sure
that the routing followed precise geometry to minimize electromag-
netic interference.

Manufacturing Selection: Opting for JLC PCB
After scrutinizing various PCB assembly services, JLC PCB was
selected. The principal reason for this choice was the balance of
cost-effectiveness and reliability that they offer. This decision was
important in keeping the project within budget without compromis-
ing on the quality of the assembled board. Currently, the prototype
schematic and PCB designs are being finalized, and they will soon
be sent for production.

Reflecting on the Journey and Looking Forward
In retrospect, this project shows what can be achieved when careful
planning meets good engineering. The hurdles we faced helped us
improve our design. As we move from making a prototype to possibly
mass-producing it, we expect it to make a real difference in how people
manage energy. This project will be detailed in upcoming editions of

Figure 4: Block diagram of our Energy Meter project.

4 www.elektormagazine.com

https://www.elektor.com/21044

We began our journey of devloping a reliable, user-friendly energy
meter leveraging the ESP32 microcontroller. In our previous install-
ment, “Prototyping an ESP32-Based Energy Meter” [1], we discussed
the initial design requirements, block diagram and the plan for starting
this project. Before we give an update on it, let’s have a recap. The
energy meter conceptual design is shown in the rendering in Figure 1.

Our focus was on real-time power monitoring, with an emphasis on
safety and affordability. To make the energy measurement precise, we
opted for the Atmel ATM90E32AS, a polyphase energy monitoring IC
[2]. This IC will get the single-phase voltage from the mains and will
use split coil transformers to measure the current safely. The main
application microcontroller selected was ESP32 as it has built-in Wi-Fi
and very cost-effective when compared to other MCUs. In Figure 2,

project

By Saad Imtiaz (Elektor)

In the first installment of
this series, we explored the

foundational design of the Elektor
Energy Meter. In this installment,
we’ll look at the next phase in the

ESP32-based energy meter project,
focusing on detailed schematics,

circuit isolation strategies, and key
enhancements.

Project Update:
ESP32-Based
Energy Meter

Next Steps in Prototyping
Figure 1: Rendering of the Elektor Energy Meter.

WI-FI TO
MOBILE DEVICE
AND INTERNET

USB COMM TO PC

OLED DISPLAY

APPLICATION
PROCESSOR

ISOLATED AC/DC
POWER SUPPLY

ISOLATED AC/DC
POWER SUPPLY

ELECTRICAL
ISOLATION
BOUNDARY

ESP32

I1N
I1P

V1N
V1P

VREFVCCGND

ATM90E32AS

SDO
SDI

CLK
CS ADuM3151

SDO
SDI
CLK
CS

VCCGND

N L NL

Figure 2:
Block Diagram of the
Elektor Energy Meter.

El
ek

to
r lab • Elektor lab

Elektor lab • Elekto
r l

ab

ORIGINAL
ORIGINAL

6 January & February 2024 www.elektormagazine.com

A

230709-003

A
AA

A

A

A

A

A

AC

H
LK-5M

05
AC

D
C

2
H

LK-5M
05

AC
D

C
1

+3.3V A
+3V3

+3.3V

+3.3V

+3V3

+3V3

+3V3+3V3

+3.3V

+3.3V

+3.3V
+3V3

16.384M
H

z

-AU
-R

W
AR

N
O

U
T

/R
ESET

VD
D

18
VD

D
18

SC
LK

AVD
D

D
VD

D
VR

EF

IR
Q

0
IR

Q
1

O
SC

I
O

SC
O

TEST
D

G
N

D
D

G
N

D
D

G
N

D
AG

N
D

AG
N

D

I1P
I1N
I2P
I2N
I3P
I3N

V1P
V1N
V2P
V2N
V3P
V3N

PM
0

PM
1

/C
S

SD
O

SD
I

ZX0
ZX1
ZX2

C
F1

C
F2

C
F3

C
F4

41131415161718333437383940354546

N
C

N
C

N
C

ICICIC

4243481122232425262728293031202110363219444712

345678

192

ATM
90E32AS

IC
1

R
14

10kC
20

100n

S T R

C
P1-2503A-N

D

K3
R

16

22Ω

R
17100Ω

R
18100Ω

C
8

330n

C
9

330n

S T R

C
P1-2503A-N

D

K2
R

19

22Ω
R

21c
100Ω

R
21d
100Ω

C
13

330n

C
14

330n

S T R

C
P1-2503A-N

D

K1
R

20

22Ω

R
21a
100Ω

R
21b
100Ω

C
15

330n

C
16

330n

R
1

240k

R
7

240k

R
2

240k

R
3

240k

R
4

240k

R
5

240k

R
6

240k

R
8

1k

C
17

18n

R
9

1k

C
2

18n

R
10

1k

C
4

18n

R
11

1k

C
10

18n

C
1

10µ

C
3

100n

C
6

10µ

C
7

100n

C
11

10µ

C
12

100n

X1

VD
D

1
G

N
D

1
M

C
LK

/M
SS

G
N

D
1

VD
D

2
G

N
D

2
SC

LK

/SSS

G
N

D
2

VIA
VIB
VO

C

VO
A

VO
B

VIC
10

M
O

M
I

SI
SO

20191817161514131211

123456789 AD
uM

3151
IC

2

36

54

IC
5

PS2501

R
13

510Ω

SEN
SO

R
_VP

SEN
SO

R
_VN

IO
34

IO
35

IO
32

IO
33

IO
25

IO
26

IO
27

IO
14

IO
12

IO13

IO15

IO
23

IO
22

TXD
0

R
XD

0
IO

21

IO
19

IO
18

IO
17

IO
16

G
N

D
3V3G

N
D

SD2
SD3
GND
CLK
SD0
SD1

IO
2

G
N

D

IO
5

IO
4

IO
0

1011121314

EN

15
16
17
18
19
20
21
22
23
24

N
C

3837363534333231302928272625

123456789 ESP32-W
R

O
O

M
-32

M
O

D
1

R
22

10k

C
24

100n

C
25

100n

SW
2

C
23

100n

SW
1

K5
1234

K7
123456

D
1

BAT760-7

K6

1
2
3
4
5
6
7
8

F1

C
5

100n

RV1

240V

C
18

10µ

C
19

10µ

R
12

1kLED
1

IC
3

AM
S1117-3.3

LIN
E

N
EU

T

LIN
E

N
EU

T

+3.3V A

C
21

10µ

C
22

10µ

R
23

1kLED
2

IC
4

AM
S1117-3.3

LIN
E

N
EU

T

R
15a

10k

R
15b

10k

R
15c

10k

R
15d

10k

JP1
+Vout

–Vout

AC
/L

AC
/N

12

43

+Vout

–Vout

AC
/L

AC
/N

12

43

K4

Figure 3: Schematic diagram of the project.

 January & February 2024 7

where the SCT013 by YHDC will be connected, which is a split core
type CT, shown in Figure 4. The reason for selecting CT was that it is
cost-effective easy to use, and non-invasive.

The energy metered is powered by two Hi-Link HLK-5M05 modules
ACDC1/2, to ensure galvanic isolation between the MCU and energy
meter circuitry, protecting against high-voltage risks. AMS1117-3.3
regulators provide stable 3.3 V power, essential for the ESP32 and
other low-voltage parts. Safety is further bolstered by fuses (F1) for
overcurrent protection and a metal oxide varistor (MOV) (R23) against
voltage spikes. For diagnostics, LED1 and LED2 indicate power and
operational status. Connector K6 connects to all the outputs for the
MCU for debugging operations.

Circuit Isolation
In the schematic, you might have noticed two DC grounds, GND and
GNDA. The ground terminal (GND) is connected to IC1 and is also
connected to the AC mains neutral. GNDA is an isolated ground termi-
nal that is connected to the ESP32-WROOM-32D, which is MOD1. To
ensure safety, it is imperative to isolate the ESP32 from the AC mains
neutral. As the IC1 lacks galvanic isolation, it is imperative to isolate
these components from each other. Now, the question arises as to
how the SPI between these two chips will be communicated. Here is
when IC2, an Analog Devices ADuM3151, comes into play.

The ADuM3151 is pivotal in ensuring safe communication between
IC1 and the ESP32-WROOM-32D, providing galvanic isolation for SPI
lines. In Figure 5, you can see the functional block diagram of IC2
[3]. It uses inductive couplers to transfer digital signals across an
isolation barrier, effectively shielding the computer-connected ESP32

the project’s updated block is shown. The planned size of the final
energy meter is 100×80×30 mm (L×W×H), but, for the prototype,
our PCB is 100×100 mm. Our goal of this prototype is as proof-of-
concept and, subsequently, if we’re successful in it, we’ll scale the
size down to 100×80 mm or even less for the final version. The main
purpose of making this energy meter was to make an IoT-enabled,
budget-friendly device that can make accurate energy measurements
and provide real-time energy data to the user via a mobile device, so
the user can track their power consumption in real time and become
more energy efficient.

In this article, we dive deeper into the project’s evolution, highlighting
the schematic design, the implementation of circuit isolation, and the
key improvements we’ve integrated since our initial concept.

Schematic Design
The heart of our project lies in its schematic design. The ESP32 micro-
controller remains central to our architecture, interfacing seamlessly
with the ATM90E32AS for energy measurement. Our updated schematic
reflects a more streamlined approach, reducing noise and enhancing
signal integrity, circuit isolation, and more. In Figure 3, you can see
the complete schematic of the project.

IC1 is the ATM90E32AS which is the brain of this entire project, it
connects the mains voltage with series seven 240 k resistors (R1…R7)
to pins V1P, V2P, and V3P. For keeping things simple, all these pins will
be given a single-phase voltage from the mains. You might ask, why
not use a transformer instead of these series of resistors? Because as
we have size and cost constraints due to the approach we chose. Apart
the small size benefit of using resistors there is another benefit, that is
less Phase Delay. Transformers can introduce a phase delay between
the primary and secondary windings, which could affect the timing and
accuracy of voltage readings in energy measurements. When using
resistors, this phase delay is significantly reduced, potentially leading
to more accurate real-time voltage readings. But, using these series
resistors has a major disadvantage, i.e., no galvanic isolation. We will
talk about this later in the article.

Now moving to the current measurement: For that we will be using
coil transformers (CTs). Connectors K1-K3 are audio jack connectors

Figure 4: The YHDC SCT013 . (Source: YHDC)

Figure 5: ADuM3151 SPIsolator functional block diagram. (Source: Analog
Devices [3])

8 January & February 2024 www.elektormagazine.com

We are committed to continuous improvement and innovation, with a
focus on user feedback to guide future enhancements. The goal is to
not only provide a reliable energy monitoring tool, but also to empower
users with insights into their energy usage, fostering awareness and
efficiency.  

230709-01

Questions or Comments?
If you have questions about this article, feel free to email the
author at saad.imtiaz@elektor.com or the Elektor editorial team
at editor@elektor.com.

About the Author
Saad Imtiaz (Senior Engineer, Elektor) is a mechatronics engineer
with five years of experience in embedded systems, mechatronic
systems, and product development. He has collaborated with numer-
ous companies, ranging from startups to enterprises globally, on
product prototyping and development. Saad has also spent time
in the aviation industry and has led a technology startup company.
Recently, he joined Elektor and drives project development in both
software and hardware.

Related Products

	> LILYGO T-Display-S3 ESP32-S3 Development Board
www.elektor.com/20299

	> ESP-C3-12F-Kit Development Board (4 MB Flash)
www.elektor.com/19855

	> Joy-IT NodeMCU ESP32
www.elektor.com/19973

from the AC mains’ high-voltage transients. This choice is crucial for
preventing damage during coding and debugging, while its capability
of supporting multiple isolated channels ensures reliable and secure
SPI communication, maintaining data integrity and aligning with the
project’s safety and performance goals.

User Interface and Interaction
The user interface of the ESP32 Energy Meter project is designed
to be informative and user-friendly. An OLED Display, connected to
connector K5, which is interfacing with the I2C pins of the ESP32,
will serve as the primary display medium. This display will show all
relevant data to the user in real-time, including energy consumption
metrics and system status. The choice of OLED technology ensures
clear visibility and a responsive interface.

In addition to the hardware display, the project incorporates a web
server hosted on the ESP32. This web interface will mirror the data
displayed on the OLED screen, offering users an alternative way to
monitor their energy usage. The development team is dedicated to
creating a web UI and UX that is both user-friendly and detailed,
ensuring accessibility and comprehensiveness in data presentation.
This dual-interface approach allows users to interact with the energy
meter both physically and remotely, enhancing the overall usability
of the system.

Next Steps and Future Plans
As the project moves forward, the initial PCB design has been sent
off for manufacture. Upon its return, the focus will shift to the firmware
side of the project. The firmware development will involve program-
ming the ESP32 to accurately process and display energy consump-
tion data, manage the web server, and ensure smooth communication
between all components.

Looking ahead, there are plans to integrate additional features to
enhance the energy meter’s functionality. These may include:

	> Remote monitoring capabilities: Allowing users to check their
energy consumption data from anywhere via the web interface.

	> Alerts and notifications: Implementing a system to alert users
about unusual energy consumption patterns or potential system
issues.

	> Data analysis tools: Incorporating analytical tools in the web
interface to help users understand their energy usage trends and
identify areas for efficiency improvements.

[1] Saad Imtiaz, “Prototyping an ESP32-Based Energy Meter,” Elektor Guest Edition 2023: http://www.elektormagazine.com/230646-01
[2] ATM90E32AS Poly-Phase Energy Metering IC: https://www.microchip.com/en-us/product/atm90e32as
[3] Analog Devices Inc. ADuM3151 SPIsolator™ Digital Isolators: https://eu.mouser.com/new/analog-devices/adi-adum3151-isolators

WEB LINKS

 January & February 2024 9

In 2023, we started with the goal of creating a reliable, user-friendly
energy meter using an Espressif ESP32 microcontroller. In our last
article, “Project Update: ESP32-Based Energy Meter” [1], we went over
the block diagram, the schematics, circuit isolation strategy, features,
and project strategy. Let’s start with a small recap before we get into
the next update.

The main idea revolved around developing a precise and efficient
energy meter leveraging the capabilities of the Espressif ESP32
microcontroller and the ATM90E32AS IC for energy measurement.
The project aimed to enhance user experience and reliability through
meticulous schematic design and circuit isolation using the ADuM3151
to provide safe communication between ESP32 and the ATM90E32AS
by Atmel (now Microchip). It emphasized safety and efficiency by
incorporating noise reduction techniques, signal integrity enhance-
ments, and protective mechanisms such as fuses and MOVs. With a
focus on future-ready features, the plan included integrating remote
monitoring and data analysis tools for improved energy management
and efficiency insights.

In this article, our main goals remain the same, and plenty of changes
have been made to make the project safer to use, reduce its produc-
tion cost, and reduce its size. As mentioned in the previous article,

the size of the prototype PCB was 100×100 mm. After testing, some
components were removed and the layout of the PCB was optimized,
hence the size for this version is reduced to 79.5×79.5 mm — that’s
about 20% less from last time. In Figure 1, the new enclosure for the
new version of PCB is shown. Along with that, to make the ESP32
Energy Meter safer to use, instead of powering the PCB directly with
the mains voltage, now a 220 V-to-12 V Step Down Transformer is
required for voltage sampling and also powering the circuit. Adding
a transformer does have some drawbacks in terms of phase delays,
but safety first! Since we are not looking to measure voltage spikes, or
fast sags or surges, but energy, this shouldn’t hurt our measurement.

The Updated Schematic Design
We made some upgrades, and now, rather than the ESP32, the ESP32-S3
is on board. This also unlocks more potential for the Energy Meter. The
ESP32-S3 offers significant enhancements over the ESP32, including
improved processing power, AI and signal processing capabilities,
more memory, and better security features. The updated schematic
further improves the capability of the Energy Meter along with more
functionality. The design references guides from Espressif [2] and other
useful internet resources [3…6] were used to integrate the ESP32-S3
into the project. In Figure 2, the schematic of the project is shown.

The circuit board layout has been optimized to improve the safety,
usability, and efficacy of the ESP32-S3. We’ve made substantial adjust-
ments by lowering the PCB size for a more compact footprint, moving
to transformer-based power for increased safety, and adding versatility
with single and three-phase compatibility. The utilization of a more
efficient AP63203WU-7 buck converter in place of Hi-Link modules,
along with the addition of user-friendly features such as a USB-C
connector and a Qwiic connector for expandability, all contributed
to the advancement of the project. These improvements build on the
ESP32-S3’s capabilities, focusing on providing a practical, adaptable,
and safer energy monitoring solution.

project

By Saad Imtiaz (Elektor)

In the previous installment of this
series, we discussed the schematics,
and circuit isolation strategies of the

ESP32 Energy Meter. Now let’s discuss
further enhancements, a PCB design,

and more.

Project Update #2:
ESP32-Based
Energy Meter

Some Enhancements

El
ek

tor
 lab • Elektor lab

Elektor lab • Elekto

r l
ab

ORIGINALORIGINAL

Figure 1: New enclosure design rendering of the ESP32 Energy Meter.

10 May & June 2024 www.elektormagazine.com

24
00

93
-0

01

+3
V3

-U
+5

VA

+3
V3

-U
+3

V3

Q
w

iic

+1
2V

+3
V3

+5
VA

G
SB

1C
41

11
0S

SH
R

+3
V3

-U

+3
V3

-U

+3
V3

-U

+3
V3

-U

SC
A

SC
L

G
N

D
3V

3

SC
A

SC
L

3V
3

G
N

D

GND
EN
D0
TX
RX
3V3-U

+3
V3

B4
Y-

T
16

.3
84

M
H

z
AB

M
8G

+5
VA

+3
V3

+5V
GND
+3V3

+3
V3

CF2
CF3

PM1
CF4

PM0
ZX2
ZX1
ZX0

+1
2V

+3
V3

I1
N

I1
P

I2
P

I2
N

I3
P

I3
N

+3
V3

+3
V3

ATM90E32AS-AU-R

IO
15

IO
16

IO
17

IO
18

IO
19

IO
20

IO46

IO10
IO11
IO12
IO13
IO14
IO21
IO47
IO48

IO
45

TX
D

0
R

XD
0

IO
42

IO
41

IO
40

IO
39

IO
38

IO
37

IO
36

IO
35

G
N

D
3V

3

IO
4

IO
5

IO
6

IO
7

IO
8 IO

3

IO9

G
N

D
IO

2
IO

2

IO
0

10 11 12 13 14

EN

15
16
17
18
19
20
21
22
23
24
25
26

40 39 38 37 36 35 34 33 32 31 30 29 28 27

1 2 3 4 5 6 7 8 9

ES
P3

2-
S3

-W
R

O
O

M
-1

M
O

D
1

W
AR

N
O

U
T

/R
ES

ET

VD
D

18
VD

D
18

SC
LK

AV
D

D
D

VD
D

VR
EF

IR
Q

0
IR

Q
1

O
SC

I
O

SC
O

TE
ST

D
G

N
D

D
G

N
D

D
G

N
D

AG
N

D
AG

N
D

I1
P

I1
N

I2
P

I2
N

I3
P

I3
N

V1
P

V1
N

V2
P

V2
N

V3
P

V3
N

PM
0

PM
1

/C
S

SD
O

SD
I

ZX
0

ZX
1

ZX
2

C
F1

C
F2

C
F3

C
F4

41 13 14 15 16 17 18 33 34 37 38 39 40 35 45 46

N
C

N
C

N
C

IC IC IC

42 43 48 11 22 23 24 25 26 27 28 29 30 31 20 21 10 36 32 19 44 47 12

3 4 5 6 7 8

1 9 2

IC
1

C
5

10
0n

C
7

10
µ

C
8

10
0n

C
10

10
0n

C
12

10
0n

C
13

10
µ

C
20

10
0n

R
1

1k

R
2

2Ω4

R
3

2Ω4

C
32

10
0n

C
2

18
n

C
3

18
n

R
4

1k
R

5
1k

R
6

2Ω4

R
7

2Ω4

R
8

1k
R

9
1k

R
10

2Ω4

R
11

2Ω4 R
12

1k

C
4

18
n

C
6

18
n

C
9

18
n

C
11

18
n

K1

123456

C
24

10
0n

R
22

10k

U
B

U
C

U
A

G
N

D
G

N
D

D
C

 IN

K4

123456
R

30
10

0k
R

28
10

0k
R

29
10

0k
R

24

1k

R
23

1k

R
25

1k

C
22

18
n

C
21

18
n

C
23

18
n

D
6

2
x

B1
40

H
W

-7

D
7

R
15

1k

R
14

1k

R
13

1k

C
16

18
n

C
15

18
n

C
14

18
n

JP
5

1
2

3
4

5
6

7
8

WARNOUT
IRQ0

CS
IRQ1

CLK
SDO
SDI
CF1

JP
6

1
2

3
4

5
6

7
8

R20
10k

R21
10k

R19
10k

R18
10k

1
2

3

JP
7

XO
U

T

G
N

D

XI
N

G
N

D
2 1

4 3

X1

JP
8

PM
1

PM
2

JP
2

1
2

3
4

5
6

R
26

80Ω

R
27

80Ω

LE
D

2

GR
EE

N

LE
D

1

RE
D

S2
S1

JP
3

1 2 3 4

JP
4

1 2 3 4
D

1

BA
T7

60
-7

R
36

80Ω

LE
D

6

R
33

80Ω

LE
D

3

R
34

80Ω

LE
D

4

R
35

80Ω

LE
D

5

R
16

10k

C
17

10
0n

C
18

10
0n

C
19

10
0n

EN1 BOOT1

R
314k

7

R
324k

7

D
2

1N
58

19
H

W
-7

-F

VB
U

S_
B

VB
U

S_
A

G
N

D
_B

G
N

D
_A

SB
U

1

SB
U

2

C
C

2

D
P2

D
N

1
D

P1
D

N
2

C
C

1

K2

VI
N

BS
T

G
N

D

FB EN
SW

1 2 3

6 5 4

AP
63

20
3W

U
-7

IC
3

C
30

22
0µ

C
29

22
0µ

C
31

10
0n

C
28

10
0n

R
39 0Ω

R
40

80Ω

LE
D

8

L1

SR
N

60
28

C
-3

R
9M

SC
L

SD
A

3V
3

G
N

D
K3

1 2 3 4

JP
1

IC
2

N
JM

28
82

F3
3-

TE
1

CONTROL
NOISE

GND

O
U

T
IN

1

2
3

4

5

C
26

22
µ

C
25

22
µ

C
27

10
n

R
37 10

0k

R
38

80Ω

LE
D

7

C
1

10
0n

D
3

3
x

SZ
SM

F4
l5

.0
AT

3G

D
4

D
5

Figure 2: Project schematic.

 May & June 2024 11

provided on terminal JP5 and JP6. This enables the energy meter
to be used as a module as well with another MCU if the onboard
ESP32-S3 is not required.

The ESP32-S3 has the USB feature built in, so it’s really convenient to
program the MCU this way, which is why we added USB-C connector
K2. For troubleshooting, terminal JP2 has been added. Status LEDs
LED1 and LED2, which can be controlled by the ESP32-S3, and push
buttons S1 and S2 are added for interacting with the OLED screen,
which can be connected to JP3 and JP4. Why two connection points?
Some I2C OLED screens have ground as the first pin and some have
3V3 supply instead. This way, both types of OLED pinout variants can
be worked with.

Finally, the Qwiic connector at K3 has also been added to enhance
the functionality of the Energy Meter, in case one wishes to add some
additional sensors or modules to this project.

The PCB Layout
The PCB layout has been meticulously optimized for compactness,
and easy soldering, shown in Figure 4. At the top, voltage and current
sampling connections are strategically positioned in one place for DIN
rail format integration. On the right side, connections for any external
microcontroller (MCU) are facilitated through 2.54 mm pitch headers,
ensuring ease of access and modularity. Centrally located is the connec-
tion for the OLED screen, flanked by push buttons for intuitive inter-
action. Adjacent to the OLED display, power and status LEDs provide
immediate visual feedback, while energy pulse output LEDs are conve-
niently situated near the MCU output terminals for direct monitoring.

Refined Voltage and Current Sampling
IC1 remains the same ATM90E32AS, but the change is that it now
requires a 220 VAC-to-12 VAC step-down transformer, between it and
the mains. This change has been made to make the project more safe
to test and use, as the transformers provide galvanic isolation. In my
testing there was no notable difference in doing so.

Thus, for each of IC1’s voltage sampling inputs, there is now only one
100 kΩ resistor (R27 to R29). Last time we combined all the phase
voltages into one input, and a lot of feedback was given by the readers
to have the option to use it with either three-phase or single-phase
power if needed. We thought about it, and now we can use it with
both. By default, three-phase mode is configured, but if one wants
to make it single-phase, jumper JP8 needs to be shorted. Figure 3
shows the general wiring illustration for a three-phase system. Note
that the phase wires are connected after the step-down to 12 VAC
from a transformer — using a 12 VAC doorbell transformer can be
useful in this case.

For current sampling and measurement, instead of using the headphone
jack as the connector, a 5.08 mm pitch screw terminal block is used,
i.e., K1. This adds to the overall ruggedness of the energy meter. For
current coil sensors, the YHDC SCT013 100 A : 50 mA is selected
and the resistors R1 to R12 for all three current sensing inputs are
calibrated accordingly.

Power Supply Optimization
The energy meter is now powered with buck switching regulator IC3,
i.e., the AP63203WU-7 by Diodes Incorporated. Previously, Hi-Link
HLK5M05 modules were used, but they are much bulkier and more
expensive than this buck converter. This is done as buck converters
are more efficient than these Hi-Link modules, they cost less, and
their size is much smaller. Using IC3 also lets us power the circuit with
12 VDC at K4 for development purposes and also from the UA, i.e.,
voltage phase 1 of from the same connector, K4, for normal operation.

Interactive and Modular Features
For active, reactive, apparent, active fundamental, and harmonic
energy pulse outputs CF1 to CF4, LEDs have been added [7][8]. For
the power mode selection of IC1, jumpers PM1 and PM2 are added.
In this version, all the output pins of IC1 ATM90E32AS for MCU are

Figure 3: Overall wiring of a three-phase voltage system and coil
transformers with the ESP32 Energy meter.

Figure 4:
The front and
back of the
PCB layout.

12 May & June 2024 www.elektormagazine.com

Questions or Comments?
If you have questions about this article, feel free to email the
author at saad.imtiaz@elektor.com or the Elektor editorial team
at editor@elektor.com.

About the Author
Saad Imtiaz (Senior Engineer, Elektor) is a mechatronics engineer
with experience in embedded systems, mechatronic systems, and
product development. He has collaborated with numerous compa-
nies, ranging from startups to enterprises globally, on prototyping
and development. Saad has also spent time in the aviation industry
and has led a technology startup company. At Elektor, he drives
project development in both software and hardware.

Related Products

> Qoitech Otii Arc - Power Supply, Power Meter and Data
Acquisition
www.elektor.com/19270

> ESP Terminal
www.elektor.com/20526

> Arduino Nano ESP32
www.elektor.com/20562

At the foundation of the design, the USB-C port and the ESP32-S3
module are positioned away from the AC voltage areas to improve
safety. A ceramic capacitor, placed adjacent to the 3 V input of the
ESP32-S3, serves to decouple and significantly reduce any potential
noise. Additionally, electrolytic capacitors are incorporated into the
design, further stabilizing the power supply and ensuring the circuit’s
reliability and performance. This layout streamlines the assembly
process and enhances functionality and user experience by provid-
ing a clear and logical component arrangement. In Figure 5, you can
see the rendering of the assembled PCB.

This design requires the use of mains-powered
transformers. People inexperienced with mains

voltages should not attempt this project or should ask
someone with experience who can help them with this
project!

Next Steps and Prospects
Following the prototype phase with the original schematic, we’ve made
several enhancements to increase the reliability of the ESP32 Energy
Meter. Currently, we are also focusing on the further development of
its firmware.

The latest PCB design has been dispatched for production, and we
anticipate conducting extensive tests upon its receipt to ensure system
reliability. Concurrently, software development is progressing, aimed
at maximizing the capabilities of the ESP32-S3 module within our
energy meter.

Looking forward, we plan to integrate the ESP32 Energy Meter with
Home Assistant, aiming for simplified user engagement. Neverthe-
less, we are equally committed to developing bespoke firmware to
fully utilize the device’s potential.

In summary, the project is moving forward with both hardware improve-
ments and software advancements. Our goal remains to provide a
dependable and efficient energy metering solution. This project is
also on the Elektor Labs platform [9], so feel free to comment and
contribute there! 

240093-01

[1] Saad Imtiaz, “Project Update: ESP32-Based Energy Meter,” Elektor 1/2024: https://elektormagazine.com/magazine/elektor-324/62641
[2] ESP32 S3 DevKit-C Schematic: https://dl.espressif.com/dl/schematics/SCH_ESP32-S3-DevKitC-1_V1.1_20221130.pdf
[3] ESP32 S3 Pinout Help Guide: https://luisllamas.es/en/which-pins-can-i-use-on-esp32-s3
[4] SCH_ESP32-S3-USB-Bridge-MB_V2.1 Schematic: https://tinyurl.com/usbbridgeschematic
[5] ESP32-S3 Pin Reference: http://wiki.fluidnc.com/en/hardware/ESP32-S3_Pin_Reference
[6] ESP32-S3: Which Pins Should I Use?: https://atomic14.com/2023/11/21/esp32-s3-pins.html
[7] Application Note Poly-Phase Energy Metering IC M90E32AS: https://tinyurl.com/polyphasemetering
[8] Atmel M90E32AS | Datasheet: https://eu.mouser.com/datasheet/2/268/Atmel_46003_SE_M90E32AS_Datasheet-1368788.pdf
[9] �ESP32 Energy Meter | Elektor Labs:

https://elektormagazine.com/labs/esp32-energy-meter-an-open-source-solution-for-real-time-energy-monitoring

WEB LINKS

Figure 5: 3D model of the assembled PCB.

 May & June 2024 13

In our previous article [1], we focused on enhancements to the
schematic design and PCB of the ESP32 Energy Meter, with improve-
ments in modularity and safety features. Before we get into the next
project update, let’s have a brief overview.

In the most recent advancements of the ESP32 Energy Meter project,
we upgraded to the ESP32-S3 microcontroller, introducing enhanced
processing power and broader functionality. The new design slimmed
down the PCB and incorporated a transformer-based power system,

using a 230-V-to-12-V Step Down Transformer for voltage sampling
and running of the system. This significantly improves safety while
maintaining flexibility for both single- and three-phase installations.

Other improvements included the integration of a more efficient
AP63203WU-7 buck converter, making the PCB more modular, calibra-
tion of the current transformer sampling circuit, and more. This not
only optimizes the energy meter’s performance and functionality, but
also reduces both cost and size.

In this article, we will discuss the steps taken to get this energy meter
up and running and the journey it took from the lab bench to the
circuit breaker box. Furthermore, we will also discuss how to set it up,
calibrate it, and finally, how to integrate it with Home Assistant with
ESP Home to show and monitor the collected data from the energy
meter. In Figure 1, a vivid snapshot of the ESP32 Energy Meter project
in action is captured, encased in a 3D-printed enclosure with an OLED
display. The image highlights live status indicators that seamlessly
track and display real-time power consumption.

Assembly
The new PCB was designed to be more compact and straightforward
to solder and the layout had adequate spacing for each component
which accommodated the soldering process of it. To facilitate project
replication and modifications by enthusiasts and professionals alike, the
complete Bill of Materials (BOM) in Mouser format, and the production
files are shared on the Elektor’s Lab GitHub repository [2].

For the voltage and current sampling connections, screw type terminal
blocks by CUI Devices were used, the quality of these terminal blocks
were much better than the cheap blue colored terminal blocks seen
on most sensor modules. As we are dealing with AC Voltages and
energy metering, it is vital to have secure and reliable connections.

project

By Saad Imtiaz (Elektor)

In the previous project update, you
learned about enhancements to the ESP32

Energy Meter’s schematic design and
PCB. This article focuses on the practical

implementation and integration of the new
version. It provides a step-by-step guide
on setting up the meter with ESPHome

and Home Assistant for effective energy
monitoring. Furthermore, we deal with the

device’s calibration.

Project Update #3:
ESP32-Based

Energy
Meter

Integration and Testing
with Home Assistant

Ele

kto
r lab • Elektor lab

Elektor lab • Elektor la
b

ORIGINALORIGINAL

Figure 1: The assembled ESP32 Energy Meter with its OLED display and live
status indicators.

14 July & August 2024 www.elektormagazine.com

Noise reduction is a critical aspect of the PCB design, addressed
by integrating both electrolytic and ceramic capacitors around the
ATM90E32S energy metering chip. This arrangement helps to filter
out both low- and high-frequency noise, ensuring more accurate and
stable energy measurement. The board is depicted in Figure 2.

As mentioned earlier, we decided to use a step-down transformer for
voltage sampling and the main source of powering the entire system.
Finding such a transformer is easy and cheap, but most of these step
down transformers take up a lot of space when used in a custom
enclosure, as shown in Figure 3. So, it is best that DIN Rail Bell trans-
formers are used in this case to make the setup more clean and safe;
such transformers can easily be found online. Moreover, the accuracy
of voltage measurements depends on the characteristics of the trans-
formers, including their voltage ratio accuracy, phase shift, and linearity.

You might have noticed in the images that there is only one trans-
former attached to the energy meter. As the energy meter was config-
ured to be used in Single Phase mode, by sorting the jumper JP8 on
the back side of the PCB, as seen in Figure 4. To operate the energy
meter in three-phase mode or to sample voltage from each phase in
a three-phase system using three step-down transformers, you must
connect the primary sides of three transformers to the respective
phases (L1, L2, L3). On the secondary side, connect one end of each
transformer’s winding to a common neutral point, forming a star (Y)
configuration. The free ends of the secondary windings (V1, V2, V3)
will then provide the voltage outputs (UA, UB and UC) on the PCB
for each phase. Key considerations include ensuring the transformers
are properly rated for the system’s voltage and current, maintaining
strict isolation between primary and secondary circuits for safety, and
securing a stable and well-balanced neutral connection to prevent
measurement inaccuracies.

Setting up with ESPHome and Home Assistant
As part of the development plan, a specific firmware is being created
to leverage the capabilities of the energy metering chip and the
advanced AI features of the ESP32-S3. Although developing such
tailored firmware requires a significant amount of time and is still under-
way, this does not restrict the usability of the energy meter. The device
can be fully functional with existing platforms like Home Assistant,
providing an immediate solution for energy monitoring. Therefore, in
this article, the focus is on the integration of the ESP32 Energy Meter
with Home Assistant [3] and ESPHome [4]. This section will guide
you through setting up the energy meter within the Home Assistant
environment to utilize its complete functionality.

To set up the ESP32 Energy Meter with the ESPHome firmware and
integrate it into Home Assistant, you should start by installing Home
Assistant. (See a comprehensive guide in an article by my colleague
Clemens Valens [5].) After that, add the ESPHome integration from the
Add-on Store; then create a new project in ESPHome for your ESP32
device. This automatically generates a basic YAML configuration file
(such a YAML file specifies a distinct ESPHome project with all the
sensors used and many other options). You have to download this
default file, before taking the next steps.

Figure 2: PCB of the fully assembled ESP32 Energy Meter.

Figure 3: 220 V to 12 V Step-down transformer setup within a
custom enclosure.

Figure 4: Single-phase jumper configuration on the ESP32 Energy
Meter’s PCB.

 July & August 2024 15

Connect your ESP32 to your computer and select the correct COM
Port for the ESP32-S3. In the ESPHome dashboard, click Install and
choose the .bin file to flash the firmware. Once the firmware is success-
fully uploaded, and your ESP32 Energy Meter is recognized by Home
Assistant, proceed to edit the initial YAML configuration. To do this,
open the ESPHome dashboard in Home Assistant, find your device,
and click on the Edit option on the energy meter’s card. Replace the
existing configuration with the YAML content provided in the GitHub
repository [2]. Make sure to properly configure your API, OTA, and
WiFi credentials in this new YAML setup.

Install the new configuration wirelessly onto your ESP32 Energy Meter.
Once this is done, the device will be active and connected. To display
the energy meter data on your Home Assistant dashboard, simply
assign the ESPHome device to a specific area in Home Assistant. This
helps organize your dashboard by grouping devices according to their
physical or logical location in your home. For a visual representation of
what you can achieve, refer to the Figure 5, which displays the energy
meter data on the Home Assistant dashboard.

Integrating the ESP32 Energy Meter with Home Assistant not only
simplifies the process of monitoring energy usage but also unlocks
a suite of powerful features provided by the platform. Home Assis-
tant offers an intuitive interface for real-time data visualization, control
automation, and seamless integration with other smart devices in your
home. This integration allows for the creation of detailed history graphs
and analytics within Home Assistant, providing an in-depth look at
power consumption patterns over time, as shown in Figure 6. These
insights enable users to make informed decisions about their energy use,
identify potential savings, and optimize their home’s energy efficiency.

Figure 5: Home Assistant dashboard displaying real-time
energy data from the ESP32 Energy Meter.

Figure 6: Detailed history graphs of energy consumption in Home Assistant.

16 July & August 2024 www.elektormagazine.com

By following the setup process described above, users can take full
advantage of these capabilities, turning the ESP32 Energy Meter into
a central component of their smart home ecosystem. This integra-
tion not only enhances the functionality of the energy meter but also
enriches the overall smart home experience with comprehensive energy
monitoring and management tools.

YAML Configuration
The provided YAML configuration sets up the ESP32 Energy Meter with
ESPHome, enabling the monitoring of essential electrical parameters
like voltage, current, power across all three phases. It leverages the
capabilities of the ATM90E32 sensor, with detailed definitions for SPI
communication and individual sensors for each phase. This setup not
only measures but also calculates total consumption metrics, integrat-
ing a daily energy counter for kWh and an OLED display for real-time
data visualization. These configurations are made according to the
instructions on the ESPHome page for the ATM90E32 sensor [6].

For ensuring the accuracy of the data reported by the ESP32 Energy
Meter, calibration is a crucial step. The specifics of how to adjust the
gain settings for current transformers and voltage inputs will be detailed
in the upcoming section.

Test Setup and Calibration
The test setup employed a multi-step heat and speed hair dryer as
the load, covering a range from 0.7 A to 8 A. The power cord of an
extension power strip was stripped to allow placement of the split coil
transformers on the live or neutral wire, facilitating direct monitoring
under various conditions as shown in Figure 7.

I conducted the current and voltage calibration of the ESP32 Energy
Meter using my UT201+ multimeter. This offers a resolution of 0.001 A
and an accuracy specification of ±4% +10 digits for current and a
resolution of 0.001 V with accuracy of ±1% +5 digits for voltage.

Figure 7: Setup for testing and calibrating the ESP32 Energy Meter using a
variable load.

Figure 8: Clamp meter setup for calibration.

This level of precision is adequate for most projects, but is slightly less
precise than professional-grade meters.

During the calibration, a comparison of current readings was observed:
the clamp meter reading was 1.692 A shown in Figure 8, while the
readings calculated by the energy meter displayed 1.70 to 1.73 A after
calibration, as shown in Figure 9. Given the specifications of the UT201+
and the SCT-013-000, a Class 1 split core transformer which guarantees
an accuracy within 1% of the actual value, this small discrepancy falls
within the expected error margin. However, for even greater accuracy,
a more precise clamp meter could be used.

To fine-tune the ESP32 Energy Meter’s accuracy further, adjustments
were made to the gain settings for both voltage and current measure-
ments. For voltage, the sensor was calibrated using the formula:

New gain_voltage = (your voltage reading /
ESPHome voltage reading) * existing gain_voltage value

Similarly, for current adjustments:

New gain_ct = (your current reading /
ESPHome current reading) * existing gain_ct value

These new gain values were then updated in the ESPHome YAML
configuration file, followed by recompiling and uploading the firmware.
This process can be repeated as necessary to ensure optimal accuracy.
These calibrated values help refine the measurements and are crucial
for accurate reporting and analysis in any energy monitoring setup.

 July & August 2024 17

Breaker Box Installation for the ESP32 Meter
Installing the ESP32 Energy Meter into my circuit breaker box proved
to be a manageable task that required meticulous attention to detail to
ensure both safety and functionality. I started by selecting a circuit with
the lowest amp limit. This choice was strategic, as it provided a safety
buffer; the circuit breaker would trip in the event of any unexpected
surges or transformer failures, thus protecting the system.

Using split core current transformers was particularly beneficial due to
their ease of installation. These transformers can be quickly clamped
onto any load, but it was crucial to pay attention to the direction of
current flow to guarantee accurate readings. It’s important to note
that if the direction of the current and the orientation of the current
transformer are not aligned correctly, the power readings will appear
negative, which indicates incorrect installation.

For a visual demonstration of the ESP32 Energy Meter in action within
the circuit breaker panel, refer to Figure 10. This image shows the
energy meter displaying real-time current, voltage measurements,
and the corresponding load in kilowatts, illustrating its functionality
in a live setting.

Figure 10: ESP32 Energy
Meter installed in a
circuit breaker panel,
monitoring real-time
power consumption.

WARNING: Working inside a circuit breaker box
carries inherent risks, including the potential for

electrical shock or fire. It is vital to turn off all power before
starting the installation. In most countries, this work may
only be carried out by a qualified electrician!

Figure 9: Final calibration results showing improved measurement
accuracy.

18 July & August 2024 www.elektormagazine.com

About the Author
Saad Imtiaz (Senior Engineer, Elektor) is a mechatronics engineer
with experience in embedded systems, mechatronic systems, and
product development. He has collaborated with numerous compa-
nies, ranging from startups to enterprises globally, on prototyping
and development. Saad has also spent time in the aviation industry
and has led a technology startup company. At Elektor, he drives
project development in both software and hardware.

Related Products

> PeakTech 4350 Clamp Meter
www.elektor.com/18161

> Siglent SDM3045X Multimeter
www.elektor.com/17892

Development and Prospects
While the current software configuration runs on ESPHome, there is
ongoing development to expand the capabilities of the ESP32 Energy
Meter. The project is looking forward to being integrated with a new
firmware specifically designed to harness the full potential of the ESP32-
S3 chip. This future firmware is expected to include advanced features
such as detailed energy analytics and potentially groundbreaking AI/
ML functionalities that could predict energy usage patterns and identify
the device according to its load footprint.

Although the core design and operational aspects of the project have
been completed, the development of these sophisticated features is
a complex and time-consuming endeavor. I am excited about the
possibilities and committed to pushing the boundaries of what this
energy meter can achieve.

The ESP32 Energy Meter project is continuously evolving, incorporat-
ing more features with each update. Community members who are
interested in the upcoming AI and ML functionalities, or those who
would like to contribute to the development, are encouraged to get
involved. Collaboration will help accelerate progress and result in a
more robust and feature-rich energy monitoring solution. Keep an eye
out for further advancements as the project aims to refine and elevate
this versatile energy management tool to new heights. 

240244-01

Questions or Comments?
If you have questions about this article, feel free to email the
author at saad.imtiaz@elektor.com or the Elektor editorial team
at editor@elektor.com.

[1] �Saad Imtiaz, “Project Update #2: ESP32-Based Energy Meter”, Elektor 5-6/2024 :
https://www.elektormagazine.com/magazine/elektor-341/62892

[2] ESP32 Energy Meter Github Repository: https://github.com/ElektorLabs/esp32-energymeter
[3] Home Assistant: https://home-assistant.io/
[4] ESPHome: http://esphome.io
[5] Clemens Valens, “Home Automation Made Easy,” Elektor Magazine 9-10/2020 : https://www.elektormagazine.com/200019-01
[6] ATM90E32 Power Sensor: https://esphome.io/components/sensor/atm90e32.html

WEB LINKS

 July & August 2024 19

We previously discussed the entire journey of the ESP32
Energy meter from the lab bench to the circuit breaker
box, which started by assembling components, setting
up the energy meter with ESPHome and Home Assis-
tant, calibration and testing, and finally installing it into
the circuit breaker box. In the last update [1], we laid the
foundation by integrating the meter with Home Assistant,
with the ambitious goal of adding AI and ML capabilities
to predict energy usage patterns and identify devices
based on their energy signatures.

While the AI/ML integration is still in progress — given the
extensive data preparation involved — this minor update
focuses on a crucial interim development: enabling
real-time energy monitoring using MQTT. MQTT is a
lightweight messaging protocol designed for efficient
communication. Refer to the textbox “What Is MQTT?”
for more information.

Custom Firmware and MQTT
In this article, we will discuss the next phase of the project
— leveraging MQTT and the Arduino IDE to enable
real-time energy monitoring. This update will cover the
firmware development that allows the ESP32 to commu-
nicate with an MQTT broker, sending energy data to a
Home Assistant server or any other MQTT-compatible
platform.

The advantage of using MQTT with an individual firmware
over ESPHome is that the individual firmware offers much
greater flexibility in terms of integration and customiza-
tion. With a custom firmware, you have full control over
how the data is collected, processed, and transmitted,

Project Update #4
ESP32-Based
Energy Meter

Energy Monitoring with MQTT

project

By Saad Imtiaz (Elektor)

Previously, we focused on setting up the ESP32-
Based Energy Meter and integrating it with Home
Assistant. We also discussed the future potential
of leveraging the ESP32-S3 chip for AI and ML
functionality to predict energy usage patterns
and identify devices. In this update, we take a step
forward by introducing firmware that enables real-
time energy monitoring using MQTT, paving the way
for advanced features.

El
ek

to
r lab • Elektor lab

Elektor lab • Elekto
r l

ab

ORIGINAL
ORIGINAL

What Is MQTT ?
MQTT is a lightweight messaging protocol designed for efficient communication between devices, especially in
IoT environments. Central to this system is the MQTT broker, a server that acts as a hub for message exchange.
The broker receives messages from devices, known as publishers, and routes them to the appropriate recipients,
known as subscribers, based on a system of topics.

A topic in MQTT is a string that categorizes messages, acting as a channel where information is published, while
a subscriber is a device or application that listens to specific topics to receive those messages. For example, in a
smart home setup, a topic like home/energy/voltage might carry voltage readings, and a dashboard subscrib-
ing to this topic would receive and display those readings in real-time.

The broker ensures that messages are delivered efficiently and securely, even over unreliable networks. In IoT
applications, the MQTT broker is crucial for managing data exchange between sensors, devices, and systems
(which are the MQTT clients), enabling real-time monitoring, control, and automation.

20 November & December 2024 www.elektormagazine.com

Listing 1: The firmware (excerpt).
#include <WiFi.h>
#include <SPI.h>
#include <ATM90E32.h>
#include <MQTTPubSubClient.h>
#include <config.ino> // Include configuration file for WiFi and MQTT details

// WiFi Credentials
const char* ssid = WIFISSID; // Your WiFi SSID
const char* pass = WIFIPASSWORD; // Your WiFi Password

WiFiClient client;
MQTTPubSubClient mqtt;

ATM90E32 energymeter{};

void setup() {

...

 /* Initialize the ATM90E32 energy meter with the specified parameters */
 energymeter.begin(CS_PIN, LINEFREQ, PGA_GAIN, VOLTAGE_GAIN, GAIN_CT_A, GAIN_CT_B, GAIN_CT_C);

...

 /* Begin the WiFi connection using the provided SSID and password */
 WiFi.begin(ssid, pass);

 /* Initialize the MQTT client */
 mqtt.begin(client);

 /* Connect to WiFi, MQTT broker, and Home Assistant */
 connect();

...
 }

void loop() {
 /* Keep the MQTT client updated */
 mqtt.update();

 /* Reconnect to the MQTT broker if the connection is lost */
 if (!mqtt.isConnected()) {
 connect();

 }

 /* Check and send energy data to Home Assistant every 3 seconds */
 static uint32_t prev_ms = millis();
 if (millis() > prev_ms + 3000) {
 prev_ms = millis();
 getEnergyData(); // Retrieve energy data and send via MQTT

 }
}

void getEnergyData() {

 // Retrieve system status from the ATM90E32
 unsigned short sys0 = energymeter.GetSysStatus0(); //EMMState0
 unsigned short sys1 = energymeter.GetSysStatus1(); //EMMState1
 unsigned short en0 = energymeter.GetMeterStatus0(); //EMMIntState0
 unsigned short en1 = energymeter.GetMeterStatus1(); //EMMIntState1

 // Print system and meter status for debugging
 Serial.println("Sys Status: S0:0x" + String(sys0, HEX) + " S1:0x" + String(sys1, HEX));
 Serial.println("Meter Status: E0:0x" + String(en0, HEX) + " E1:0x" + String(en1, HEX));
 delay(10);

 // Check if the MCU is not receiving data from the energy meter
 if (sys0 == 65535 || sys0 == 0) Serial.println("Error: Not receiving data

 ​​​​​​​from energy meter - check your connections");

 // Retrieve all parameters from the ATM90E32
 ​​​​​​​ ​​​​​​​float lineVoltageA = energymeter.GetLineVoltageA();
 ​​​​​​​ ​​​​​​​float lineVoltageB = energymeter.GetLineVoltageB();
 ​​​​​​​ ​​​​​​​float lineVoltageC = energymeter.GetLineVoltageC();

...

 // Send all the collected energy data via MQTT to Home Assistant
 mqtt.publish("esp32energymeter/lineCurrentA", String(lineCurrentA).c_str());
 mqtt.publish("esp32energymeter/lineCurrentB", String(lineCurrentB).c_str());
 mqtt.publish("esp32energymeter/lineCurrentC", String(lineCurrentC).c_str());
 mqtt.publish("esp32energymeter/totalCurrent", String(totalCurrent).c_str());

...
}

 November & December 2024 21

allowing you to tailor the system to meet specific project
requirements. This level of control is particularly benefi-
cial for complex applications where you need to optimize
performance, integrate with non-standard hardware, or
implement advanced features like AI and machine learn-
ing algorithms.

Additionally, custom firmware allows for easier integration
with a wide range of platforms beyond just Home Assis-
tant, such as cloud-based services, custom dashboards,
and other IoT systems. You can also implement more
granular security measures, such as custom encryption
protocols or advanced authentication mechanisms, ensur-
ing that your data is secure across the network. Further-
more, individual firmware can be optimized for specific
use cases, reducing overhead and improving system
efficiency, which is especially important in resource-con-
strained environments.

The Software
The firmware is written to connect the ESP32 to a Wi-Fi
network and utilize MQTT for communication, allowing
the energy data to be sent to a Home Assistant server for
monitoring and automation purposes. In Listing 1, you
can see an excerpt version of the code, as the entire code
and all hardware files can be accessed on the GitHub
repository of this project [2].

The project relies on two key libraries: the ATM90E32
library, provided by CircuitSetup [3], which handles
the communication with the energy metering IC, and
the MQTTPubSubClient library [4], which manages the
communication as an MQTT client. The ATM90E32 library
is essential for collecting data from the energy meter
chip, including metrics like voltage, current, and power.
During the development process, a significant challenge
was encountered when integrating MQTT with username
and password authentication. While many MQTT libraries
can handle basic tasks, MQTTPubSubClient stood out
as one of the few that was compatible with the ESP32
and supported the necessary authentication features.

The software begins by including the necessary
libraries for network connectivity, SPI communication,
interfacing with the energy meter IC, and managing
MQTT communication. Configuration details for Wi-Fi
and MQTT are stored in a separate configuration file. The
setup() function initializes the serial port for debugging,
sets up the ATM90E32 energy meter with the specified
parameters, and establishes connections to the Wi-Fi
network and MQTT broker. This initial setup ensures that
the ESP32 is ready to communicate with Home Assistant
and other MQTT-compatible platforms.

In the main loop(), the MQTT client is continuously
updated to maintain the connection with the broker. If



Figure 1: Configuration
options for the MQTT
broker in Home
Assistant, including the
Start on boot option to
ensure automatic startup.

Figure 2: Setting up
MQTT integration in
Home Assistant with the
IP address, port, and
user credentials.



22 November & December 2024 www.elektormagazine.com

nection process if either the Wi-Fi or MQTT connection
is lost. Debugging messages provide real-time feedback
on the connection status, and an LED is used to indicate
successful connections visually.

Setting Up an MQTT Broker on Home
Assistant
To enable the ESP32 Energy Meter to use MQTT proto-
col to send the meter reading, you’ll need to first set up
an MQTT broker. An MQTT broker can be set up on
almost any computer connected to your home network. It
can be configured on your PC using a Docker container,
installed directly on a Raspberry Pi, or even hosted on a
cloud server for remote access. However, to keep things
simple and integrate seamlessly with your smart home
setup, we’re going to set it up on Home Assistant.

To install the MQTT Add-on in Home Assistant, start by
accessing your Home Assistant dashboard by navigat-
ing to the URL where your instance is running. From
the sidebar, go to Settings, then Add-ons, and open the
Add-on Store. Search for MQTT, where you should find
the official Mosquitto broker in the results. Click on it

Defining the MQTT Data as Sensors in Home Assistant
To monitor the data sent by your ESP32 Energy Meter via MQTT, you need to define these data points as
sensors in Home Assistant. Follow these steps:

Access the Configuration File:
Open your Home Assistant configuration file (configuration.yaml) using the File Editor or any text editor.

Define MQTT Sensors:
In the configuration.yaml file, add the following configuration to define your MQTT sensors:

mqtt:
 sensor:

- name: Line Voltage A
unique_id: esp32_voltage_a
state_topic: "esp32energymeter/lineVoltageA"
unit_of_measurement: "V"

- name: Line Current A
unique_id: esp32_current_a
state_topic: "esp32energymeter/lineCurrentA"
unit_of_measurement: "A"

Customize Your Sensors:
Replace Line Voltage A, Line Current A, etc., with names that suit your needs.
Ensure the state_topic matches the topic used in your ESP32 firmware for publishing the data. The
unique_id should be a unique identifier for each sensor, allowing Home Assistant to track and manage them
properly.

Save and Restart Home Assistant:
After adding the sensor definitions, save the configuration.yaml file and restart Home Assistant to apply the
changes.

View Your Sensors:
Once Home Assistant restarts, your MQTT sensors should appear in the dashboard, allowing you to monitor
the energy data in real-time.

the connection is lost at any point, the code automati-
cally attempts to reconnect. Additionally, the software is
programmed to retrieve energy data from the ATM90E32
chip and send this data to the MQTT broker. This setup
enables Home Assistant to monitor the energy consump-
tion in near real-time, providing valuable insights for home
automation.

The getEnergyData() function plays a crucial role in
the software by collecting various energy metrics from
the ATM90E32 chip. These metrics include line voltage,
current, power (active, reactive, and apparent), power
factor, phase angle, frequency, and temperature. The
collected data is then published to specific MQTT topics,
making it accessible for monitoring and analysis within
Home Assistant. For developers and users who enable
debugging, the energy data is also printed to the Serial
Monitor, allowing for easy troubleshooting and valida-
tion of the data.

To ensure that the ESP32 maintains a stable connection
to the network and the MQTT broker, the connect()
function is included. This function handles the recon-

 November & December 2024 23

and then select Install; the installation may take a few
moments. Once installed, you can configure the MQTT
broker by editing the configuration options — typically,
the default settings are sufficient, but you can and should
set up a specific username and password. After configu-
ration, click the Start button to activate the MQTT broker,
and enable the Start on boot option to ensure it starts
automatically whenever Home Assistant restarts, as
shown in Figure 1.

Next, you’ll need to configure MQTT integration within
Home Assistant. Go to Settings, then Devices & Services,
and select Integrations. Click on Add Integration, search
for MQTT, and select it. Home Assistant will automatically
detect the running MQTT broker. If prompted, configure
the MQTT settings, such as the IP address of the broker
— usually localhost if it’s running on the same device as
Home Assistant (you can also enter core-mosquito to
get the same result). For the port, keep it default 1833,
and for the username as password, make sure that user
credentials are of a current user in Home Assistant as
shown in Figure 2. You can also make a separate user
in Home Assistant just for MQTT in this case.

Now, we have to ensure Home Assistant is set up to
receive messages from your ESP32 Energy Meter. You
can test the connection by subscribing to a topic “#” to
receive all the messages sent to your MQTT broker, as
shown in Figure 3. This page is accessible by clicking
Configure in Integration entities in the MQTT integra-
tion menu item.

With the MQTT broker running on Home Assistant,
you can now connect your ESP32 Energy Meter.
In the config.ino file of your ESP32 firmware, set the
HOMEASSISTANT_IP to the IP address of your Home
Assistant instance. Then configure the DEVICE_NAME,
USER_ID, and PASSWORD if you have set up authentica-
tion on the MQTT broker. After configuring these settings,
flash the ESP32 with the firmware and ensure it connects
to the MQTT broker successfully. Once connected, the
ESP32 Energy Meter will begin publishing energy data
to the MQTT broker, which you can monitor in Home
Assistant by subscribing to the appropriate MQTT topics.

Finally, to visualize energy data in Home Assistant, the
MQTT entities will be automatically created for each topic
your ESP32 Energy Meter publishes. If not, what can
happen sometimes, you will have to define the MQTT
entities in the configurations.yaml file in Home Assis-
tant. You can follow the instructions mentioned in the
text box Defining the MQTT Data as Sensors in Home
Assistant.

Figure 4: Custom
dashboard in Home
Assistant, visualizing
real-time energy data
from the ESP32 Energy
Meter.



Figure 5: Example of graphs created in Home Assistant to monitor energy consumption in
the History dashboard.

Figure 3: Testing the
MQTT connection by
subscribing to all topics
to ensure messages are
being received by Home
Assistant.



24 November & December 2024 www.elektormagazine.com

After that, you can find the sensor entities under Settings
in Home Assistant, then Devices & Services, and Entities.
Use these entities to create custom dashboards in Home
Assistant, allowing you to visualize real-time energy data,
to create graphs, and to set up alerts based on consump-
tion thresholds as shown in Figure 4 and Figure 5. With
MQTT and Home Assistant, you can also automate
actions based on energy data as shown in Figure 6,
integrate with other smart devices, and gain valuable
insights into your home’s energy usage.

For beginners, I recommend checking out the Getting
Started Guide by Home Assistant [5], which provides
a comprehensive introduction to setting up and using
Home Assistant. Additionally, you can explore the Home
Assistant MQTT Integration Documentation [6][7] for
detailed instructions on configuring MQTT and integrating
your devices effectively. These resources will help you get
up and running with Home Assistant and MQTT, making
your smart home setup more efficient and user-friendly.

240349-01

About the Author
Saad Imtiaz, Senior Engineer at Elektor, is a mecha-
tronics engineer with extensive experience in embed-
ded systems and product development. His journey
has seen him collaborate with a diverse array of
companies, from innovative startups to established
global enterprises, driving forward-thinking prototyp-
ing and development projects. With a rich background
that includes a stint in the aviation industry and leader-
ship of a technology startup, Saad brings a unique
blend of technical expertise and entrepreneurial spirit
to his role at Elektor. Here, he contributes to project
development in both software and hardware.

Questions or Comments?
If you have questions about this article, feel free to
email the author at saad.imtiaz@elektor.com or the
Elektor editorial team at editor@elektor.com.



Figure 6: Automated
actions in Home
Assistant based on
energy data received
from the ESP32 Energy
Meter via MQTT.

[1] �Saad Imtiaz, “Project Update #3: ESP32-Based Energy Meter,” Elektor 7-8/2024:
https://elektormagazine.com/240244-01

[2] ESP32 Energy Meter Github Repository: https://github.com/ElektorLabs/esp32-energymeter
[3] ATM90E32 Arduino Library by CircuitSetup: https://github.com/CircuitSetup/ATM90E32
[4] MQTTPubSubClient Library by hideakitai: https://github.com/hideakitai/MQTTPubSubClient
[5] Getting started, Home Assistant: https://www.home-assistant.io/getting-started/
[6] MQTT Integration, Home Assistant: https://www.home-assistant.io/integrations/mqtt/
[7] MQTT Sensor, Home Assistant : https://www.home-assistant.io/integrations/sensor.mqtt/

WEB LINKS

Related Products

> Home Assistant Green
www.elektor.com/20725

> Raspberry Pi 5 (2 GB RAM)
www.elektor.com/20951

www.elektormagazine.com/
iot-sensors

Visit our IoT & Sensors page
for articles, projects, news, and
videos.

www.elektormagazine.com/
power-energy

Visit our Power Electronics
& Energy page for articles,
projects, news, and videos.

 November & December 2024 25

