SIEMENS

SIMATIC

S7-200

Programmable Controller

System Manual

This manual has the order number:
6ES7298-8FA24-8BHO

Edition 08/2008

A5E00307987-04

Preface, Contents

Product Overview

Getting Started

Installing the S7-200

PLC Concepts

Programming Concepts,
Conventions and Features

S7-200 Instruction Set

Communicating over a Network

Hardware Troubleshooting Guide
and Software Debugging Tools

Open Loop Motion Control with
the S7-200

Creating a Program for the
Modem Module

Using the USS Protocol Library to
Control a MicroMaster Drive

Using the Modbus Protocol
Library

Using Recipes

Using Data Logs

PID Auto-Tune and the PID
Tuning Control Panel

Appendices

Index

0N O O bW N

[NI
N P O ©

e R
o b~ W

Safety Guidelines

This manual contains notices which you should observe to ensure your own personal safety, as
well as to protect the product and connected equipment. These notices are highlighted in the
manual by a warning triangle and are marked as follows according to the level of danger:

Danger

' Danger indicates an imminently hazardous situation which, if not avoided, will result in death or

serious injury.

Warning

' Warning indicates a potentially hazardous situation which, if not avoided, could result in death or

serious injury.

Caution

' Caution used with the safety alert symbol indicates a potentially hazardous situation which, if not

Caution

avoided, may result in minor or moderate injury.

Caution used without the safety alert symbol indicates a potentially hazardous situation which, if

not avoided, may result in property damage.

Notice

Notice indicates a potential situation which, if not avoided, may result in an undesirable result or

State.

Qualified Personnel

Only qualified personnel should be allowed to install and work on this equipment. Qualified
persons are defined as persons who are authorized to commission, to ground, and to tag circuits,
equipment, and systems in accordance with established safety practices and standards.

Correct Usage
Note the following:
Warning

This device and its components may only be used for the applications described in the catalog
or the technical descriptions, and only in connection with devices or components from other

manufacturers which have been approved or recommended by Siemens.

This product can only function correctly and safely if it is transported, stored, set up, and
installed correctly, and operated and maintained as recommended.

Trademarks

SIMATIC®, SIMATIC HMI® and SIMATIC NET® are registered trademarks of SIEMENS AG.

Some of other designations used in these documents are also registered trademarks; the owner’s rights may be
violated if they are used by third parties for their own purposes.

Copyright Siemens AG 2008 All rights reserved

The reproduction, transmission or use of this document or its contents is not
permitted without express written authority. Offenders will be liable for damages.
All rights, including rights created by patent grant or registration of autility model
or design, are reserved.

Siemens AG

Bereich Automation and Drives
Geschaeftsgebiet Industrial Automation Systems
Postfach 4848, D- 90327 Nuernberg

Disclaimer of Liability

We have checked the contents of thismanual for agreement with the hardware and
software described. Since deviations cannot be precluded entirely, we cannot
guarantee full agreement. However, the datain this manual are reviewed regularly
and any necessary corrections included in subsequent editions. Suggestions for
improvement are welcomed.

© Siemens AG 2008
Technical data subject to change.

Siemens Aktiengesellschaft

6ES7298-8FA24-8BHO

Preface

Purpose of the manual

The S7-200 series is a line of micro-programmable logic controllers (Micro PLCs) that can control
a variety of automation applications. Compact design, low cost, and a powerful instruction set
make the S7-200 a perfect solution for controlling small applications. The wide variety of S7-200
models and the Windows-based programming tool give you the flexibility you need to solve your
automation problems.

This manual provides information about installing and programming the S7-200 Micro PLCs and
is designed for engineers, programmers, installers, and electricians who have a general
knowledge of programmable logic controllers.

Required Basic Knowledge

To understand this manual, it is necessary to have a general knowledge of automation and
programmable logic controllers.

Scope of the Manual

This manual is valid for STEP 7-Micro/WIN, version 4.0 and the S7-200 CPU product family. For
a complete list of the S7-200 products and order numbers described in this manual, see
Appendix A.

Changes compared to the previous version

This manual has been revised to include two new analog expansion modules and one additional
appendix.

1 EM 231 Analog Input RTD, 4 Inputs
1 EM 231 Analog Input Thermocouple 8 Inputs
1 Appendix H, S7-200CN Products

Certification
The SIMATIC S7-200 products have the following certification:

1 Underwriters Laboratories, Inc. UL 508 Listed (Industrial Control Equipment),
Registration number E75310

1 Canadian Standards Association: CSA C22.2 Number 142 (Process Control Equipment)

1 Factory Mutual Research: Class Number 3600, Class Number 3611, FM Class I, Division 2,
Groups A, B, C, & D Hazardous Locations, T4A and Class |, Zone 2, IIC, T4

Tip
@ The SIMATIC S7-200 series meets the CSA standard.

The cULus logo indicates that the S7-200 has been examined and certified by Underwriters
Laboratories (UL) to standards UL 508 and CSA 22.2 No. 142.

S7-200 Programmable Controller System Manual

CE Labeling

Refer to the General Technical Specifications in Appendix A for more information.

C-Tick

The SIMATIC S7-200 products are compliant with requirements of the AS/NZS 2064 (Australian)
standard.

Standards:

The SIMATIC S7-200 products fulfill the requirement and criteria of IEC 61131-2, Programmable
controllers - Equipment requirements.

Refer to Appendix A for additional compliance information.

Place of this Documentation in the Information Environment

Product

Family Documentation Order Number

S7-200 | S7-200 Point-to-Point Interface Communication Manual (English/German) | 6ES7 298-8GA00-8XH0

SIMATIC Text Display User Manual (included on the STEP 7-Micro/WIN none
documentation CD)

HMI device OP 73micro, TP 177micro (WinCC Flexible) Operating 6AV6 691-1DF01-0ABO
Instructions (English)

SIMATIC HMI WinCC flexible 2005 Micro User’s Manual (English) 6AV6 691-1AA01-0ABO
SIMATIC NET CP 243-2 AS-Interface Master Manual (English) 6GK7 243-2AX00-8BA0

SIMATIC NET CP 243-1 Communications processor of Industrial Ethernet = J31069-D0428-U001-A2-7618
Technical Manual (English)

SIMATIC NET CP 243-1 IT Communications Processor of Industrial J31069-D0429-U001-A2-7618
Ethernet and Information Technology Technical Manual (English)

SIMATIC NET S7Beans / Applets for IT-CPs Programming Tips (English) | C79000-G8976-C180-02
SIMATIC NET GPRS/GSM-Modem SINAUT MD720-3 System manual C79000-G8976-C211

(English)

SIMATIC NET SINAUT MICRO SC System manual (English) C79000-G8900-C210
SIWAREX MS Device Manual (English) (included with device) none

S7-200 Programmable Controller System Manual (English) 6ES7 298-8FA24-8BHO0

Preface

Finding Your Way

If you are a first-time user of S7-200 Micro PLCs, you should read the entire S7-200
Programmable Controller System Manual. If you are an experienced user, refer to the table of
contents or index to find specific information.

The S7-200 Programmable Controller System Manual is organized according to the following
topics:

1 Chapter 1 (Product Overview) provides an overview of some of the features of the S7-200
family of Micro PLC products.

Chapter 2 (Getting Started) provides a tutorial for creating and downloading a sample
control program to an S7-200.

Chapter 3 (Installing the S7-200) provides the dimensions and basic guidelines for installing
the S7-200 CPU modules and expansion 1/0O modules.

Chapter 4 (PLC Concepts) provides information about the operation of the S7-200.

oo o oo

Chapter 5 (Programming Concepts, Conventions, and Features) provides information about
the features of STEP 7-Micro/WIN, the program editors and types of instructions
(IEC 1131-3 or SIMATIC), S7-200 data types, and guidelines for creating programs.

Chapter 6 (S7-200 Instruction Set) provides descriptions and examples of programming
instructions supported by the S7-200.

U

1 Chapter 7 (Communicating over a Network) provides information for setting up the different
network configurations supported by the S7-200.

1 Chapter 8 (Hardware Troubleshooting Guide and Software Debugging Tools) provides
information for troubleshooting problems with the S7-200 hardware and about the
STEP 7-Micro/WIN features that help you debug your program.

1 Chapter 9 (Open Loop Motion Control with the S7-200) provides information about three
methods of open loop motion control: Pulse Width Modulation, Pulse Train Output, and the
EM 253 Position Control Module.

1 Chapter 10 (Creating a Program for the Modem Module) provides information about the
instructions and wizard used to create a program for the EM 241 Modem module.

U

Chapter 11 (Using the USS Protocol Library to Control a MicroMaster Drive) provides
information about the instructions used to create a control program for a MicroMaster drive.
It also provides information about how to configure the MicroMaster 3 and MicroMaster 4
drives.

Chapter 12 (Using the Modbus Protocol Library) provides information about the instructions
used to create a program that uses the Modbus protocol for communications.

Chapter 13 (Using Recipes) provides information about organizing and loading automation
program recipes in the memory cartridge.

Chapter 14 (Using Data Logs) provides information about storing process measurement
data in the memory cartridge.

O o o o

Chapter 15 (PID Auto-Tune and the PID Tuning Control Panel) provides information about
using these features to greatly enhance the utility and ease of use of the PID function
provided by the S7-200.

1 Appendix A (Technical Specifications) provides the technical information and data sheets
about the S7-200 hardware.

The other appendices provide additional reference information, such as descriptions of the error
codes, descriptions of the Special Memory (SM) area, part numbers for ordering S7-200
equipment, STL instruction execution times, and S7-200CN product information.

In addition to this manual, STEP 7-Micro/WIN provides extensive online help for getting started
with programming the S7-200. Included with the purchase of the STEP 7-Micro/WIN software is a
free documentation CD. On this CD you can find application tips, an electronic version of this
manual and other information.

S7-200 Programmable Controller System Manual

Vi

Online Help

Help is only a keystroke away! Pressing F1 accesses the extensive online help for

STEP 7-Micro/WIN. The online help includes useful information about getting started with
programming the S7-200, as well as many other topics.

Electronic Manual

An electronic version of this S7-200 System Manual is available on the documentation CD. You
can install the electronic manual onto your computer so that you can easily access the information
in the manual while you are working with the STEP 7-Micro/WIN software.

Programming Tips

The documentation CD includes Programming Tips, a set of application examples with sample
programs. Reviewing or modifying these examples can help you find efficient or innovative
solutions for your own application. You can also find the most current version of Programming Tips
on the S7-200 Internet site.

Recycling and Disposal

Please contact a company certified in the disposal of electronic scrap for environmentally safe
recycling and disposal of your device.

Additional Support

Local Siemens Sales Office or Distributor

For assistance in answering any technical questions, for training on the S7-200 products, or for
ordering S7-200 products, contact your Siemens distributor or sales office. Because your sales
representatives are technically trained and have the most specific knowledge about your
operations, process and industry, as well as about the individual Siemens products that you are
using, they can provide the fastest and most efficient answers to any problems that you might
encounter.

Service & Support on the Internet

In addition to our documentation, we offer our Know-how online on the Internet at:

http://www.siemens.com/automation/service&support

where you will find the following:

O www.siemens.com/S7-200 for S7-200 product information

The S7-200 Internet site includes frequently asked questions (FAQs), Programming Tips
(application examples and sample programs), information about newly released products,
and product updates or downloads.

The newsletter, which constantly provides you with up-to-date information on your products.
The right documents via our Search function in Service & Support.

A forum, where users and experts from all over the world exchange their experiences.

I I W

Your local representative for Automation & Drives.

1 Information on field service, repairs, spare parts and more under “Services”.

Technical Services

The highly trained staff of the S7-200 Technical Services center is also available to help you solve
any problems that you might encounter. You can call on them 24 hours a day, 7 days a week.

Preface

A&D Technical Support

Worldwide, available 24 hours a day:

Technical Support

Worldwide (Nuernberg)
Technical Support

24 hours a day, 365 days a year
+49 (180) 5050-222
+49 (180) 5050-223
mailto:adsupport@siemens.com
GMT: +1:00

Phone:
Fax:

Europe / Africa (Nuernberg)
Authorization

Local time: Mon.-Fri.

8:00 AM to 5:00 PM

+49 (180) 5050-222
+49 (180) 5050-223
mailto:adsupport@siemens.com
GMT: +1:00

Phone:
Fax:

United States (Johnson City)

Technical Support and
Authorization

Local time: Mon.-Fri.
8:00 AM to 5:00 PM

Phone: +1 (423) 262 2522
+1 (800) 333-7421 (USA only)
Fax: +1 (423) 262 2289

mailto:simatic.hotline@sea.siemens.com
GMT: -5:00

Asia / Australia (Beijing)

Technical Support and
Authorization

Local time: Mon.-Fri.
8:00 AM to 5:00 PM

+86 1064 7575 75
+86 1064 7474 74

mailto:adsupport.asia@siemens.com
GMT: +8:00

Phone:
Fax:

The languages of the SIMATIC Hotlines and the authorization hotline are generally German and English.

Vii

S7-200 Programmable Controller System Manual

Contents

1 ProducCt OVEIVIEW e e e e e

WAt S N 2 oo e e
ST7-200 CPU . oottt
S7-200 Expansion Modules
STEP 7-Micro/WIN Programming Packaget
Communications OPLIONS oottt e e
Display Panels

2 Getting Started

Connecting the S7-200 CPU e e
Creating a Sample Program
Downloading the Sample Program
Placing the S7-200 in RUN Modeo e

3 Installing the S7-200

Guidelines for Installing S7-200 DEVICESottt e
Installing and Removing the S7-200 Modules i
Guidelines for Grounding and Wiringottt

4 PLC CONCEPES . .ot e

Understanding How the S7-200 Executes Your Control Logic
Accessing the Data of the S7-200
Understanding How the S7-200 Saves and RestoresData
Selecting the Operating Mode forthe S7-200 CPU it
Using the S7-200 EXPIOrer e e e
Features of the S7-200 i

5 Programming Concepts, Conventions, and Features

Guidelines for Designing a Micro PLC System it
Basic Elements of a Program
Using STEP 7-Micro/WIN to Create Your Programscuueiuiiinannaenann..
Choosing Between the SIMATIC and IEC 1131-3 Instruction Sets
Understanding the Conventions Used by the Program Editors
Using Wizards To Help You Create Your Control Program
Handling Errors inthe S7-200 i e
Assigning Addresses and Initial Values in the Data Block Editor
Using the Symbol Table for Symbolic Addressing of Variables
Using Local Variables
Using the Status Chart to Monitor Your Program it
Creating an Instruction Library
Features for Debugging Your Program i

oo ~N o o o B~ NN P

NS
A~ M O

[N
a1

N R e
o N o

N
w

AA D W NN
R P O o ~N N

a1
(SN

D OO OO OO OO OO OO 01 oo 01
A DA W WDNDNOOOWSNOOG WN

S7-200 Programmable Controller System Manual

6

S7-200 INStruction Set i e 65
Conventions Used to Describe the Instructions i it 67
S7-200 Memory Ranges and Features it 68
Bit LOGIC INStrUCHiONSo 70

[0] ¢= 1o £ 70
C0IlS o 73
Logic Stack INStrUCLIONS oo 75
Set and Reset Dominant Bistable Instructions 77
CloCK INStrUCHIONS . . . oot e e e et e e 78
Communications INStrUCHIONS i e e e e e et e e 81
Network Read and Network Write Instructions 81
Transmit and Receive Instructions (Freeport) 86
Get Port Address and Set Port Address Instructions, 95
Compare INSIIUCHIONS oottt e et e e e e e e e 96
Comparing Numerical Values e 96
COMPAre SHNG ..ottt e e e e e 98
CoNVersion INStIUCHONS e e e 99
Standard Conversion INStruCtions i e 99
ASCII Conversion INStruCtions i e e e 103
String Conversion INStIUCLIONS o 107
Encode and Decode INStruCtions it 112
CoUNEEr INSIIUCTIONS . . . ottt e ettt e e et et et e 113
SIMATIC Counter INStrUCtiONSt et e et 113
IEC Counter INStrUCtiONS i e e e 116
High-Speed Counter INStrUCLIONSot e e e e 118
Pulse Output INSEIUCLION o e e e e 133
Math INStIUCHONS . ..o e e 140
Add, Subtract, Multiply, and Divide Instructions 140
Multiply Integer to Double Integer and Divide Integer with Remainder 142
Numeric FUNCtions INStruCtionNS i et e e et 143
Increment and Decrement INStruCtions i e 144
Proportional/Integral/Derivative (PID) Loop Instruction 145
INterrupt INStrUCIONS 153
Logical Operations INStrUCHIONS i e e 161
INVErt INSIIUCHIONS e e e e 161
AND, OR, and Exclusive OR INStructions i i 162
MOVE INSHIUCHIONS . . .ottt et e e et e 164
Move Byte, Word, Double Word, or Real i 164
Move Byte Immediate (Read and Write) i 165
BIock MOVE INStrUCHIONS o et e 166
Program Control INStrUCLIONSo 167
Conditional ENd e 167
5 (o o 167
Watchdog ReSeto 167
For-Next Loop INStrUCHIONS oo e e e 169
JUMP INSTIUCHIONS . . . ottt e e e e e e 171
Sequence Control Relay (SCR) Instructionsi it 172
Diagnostic LED INStrUCHON e e e 178

Contents

Shift and Rotate INStrUCtioNSt 179
Shift Right and Shift Left Instructions 179
Rotate Right and Rotate Left Instructions i 179
Shift Register Bit INStrUCLION 181
Swap Bytes INStruCtion 183

StriNG INSITUCHONS . . . e e e 184

Table INSrUCHIONS e e 189
Add To Table . ..o 189
First-In-First-Out and Last-In-First-Out e 190
Memory Fill ... 192
Table FiNd 193

TIMEr INSIUCHONS . . . o .ot e e e e e e e e 196
SIMATIC TIMer INStrUCtIONSottt e e e e e e 196
IEC TIMer INStrUCIONSot e e e 201
INterval TIMErS o 203

Subroutine INSIIUCHIONS e e 204

7 Communicating over a Network i 209

Understanding the Basics of S7-200 Network Communications 210

Selecting the Communications Protocol for Your Network 214

Installing and Removing Communications Interfaces 220

Building Your Networko 221

Creating User-Defined Protocols with Freeport Mode 226

Using Modems and STEP 7-Micro/WIN with Your Network 228

AdvanCed TOPICS . .. ittt 233

Configuring the RS-232/PPI Multi-Master Cable for Remote Operation 239

8 Hardware Troubleshooting Guide and Software Debugging Tools 243

Features for Debugging Your Program i 244

Displaying the Program Statusot 246

Using a Status Chart to Monitor and Modify the Data inthe S7-200...................... 247

Forcing Specific Values 248

Running Your Program for a Specified Numberof Scans 248

Hardware Troubleshooting Guide e 249

9 Open Loop Motion Control withthe S7-200 it 251

OV BIVIBW . ottt ettt e e e e e e e 252

Using the PWM (Pulse Width Modulation) Qutputt 253

Basic Information for Open Loop Position Control Using Steppers or Servos 255

Instructions Created by the Position Control Wizard 260

Error Codes for the PTO INSIrUCHIONSot e 264

Features of the Position Module i 265

Configuring the Position Module 267

Instructions Created by the Position Control Wizard for the Position Module 273

Sample Programs for the Position Module 285

Monitoring the Position Module with the EM 253 Control Panel 290

Error Codes for the Position Module and the Position Instructions 292

AdVanCed TOPICS . ..ottt 294

Understanding the RP Seek Modes Supported by the Position Module 303

xi

S7-200 Programmable Controller System Manual

10

11

12

13

14

15

Xii

Creating a Program for the Modem Module 307
Features of the Modem Module 308
Using the Modem Expansion Wizard to Configure the Modem Module 314
Overview of Modem Instructions and Restrictions 318
Instructions for the Modem Module 319
Sample Program for the Modem Module i 323
S7-200 CPUs that Support Intelligent Modules 323
Special Memory Location for the Modem Module 323
AdvanCed TOPICS . .. ittt 325
Messaging Telephone Number Format e 327
Text Message FOrmatt e e 328
CPU Data Transfer Message FOrmatt 329

Using the USS Protocol Library to Control a MicroMaster Drive 331
Requirements for Using the USS Protocol e 332
Calculating the Time Required for Communicating with the Drive 332
Using the USS INSIIUCLIONSottt e e e e 333
Instructions for the USS Protocol 334
Sample Programs for the USS Protocol 341
USS EXeCUtioN Error COUESottt e e e e e 342
Connecting and Setting Up the MicroMaster Series 3Drivecciiiiu... 342
Connecting and Setting Up the MicroMaster Series 4 Drive, 345

Using the Modbus Protocol Library 347
OV BIVIBW . ottt ettt e e e e e 348
Requirements for Using Modbus Protocol i 348
Initialization and Execution Time for Modbus Protocol oot 349
MOdbUS AdAreSSING oottt 350
Using the Modbus Master Instructions e 351
Using the Modbus Slave INStructions i 352
Instructions for the Modbus Protocol 353
AdVanCed TOPICS . ..ottt 362

USING RECIPES . . .o e e 365
OV BIVIBW . o sttt et e e e e e e e 366
Recipe Definition and Terminology i 367
Using the Recipe Wizard e 367
Instructions Created by the Recipe Wizard 371

USiNg Data LOgSot e 373
OV BIVIBW . ottt ettt e e e e e e e 374
Using the Data Log Wizard e e 375
Instruction Created by the Data Log Wizard 379

PID Auto-Tune and the PID Tuning Control Panel 381
Understanding the PID AULO-TUNEot e e e 382
Expanded Loop Table 382
PrerEqUISIEES . . . o 385
Auto-Hysteresis and Auto-Deviation i 385
AULO-TUNE SEOUENCEottt et e e e e e e e e e e e e 386

Contents

Exception CONditioNS ot 387
Notes Concerning PV Out-of-Range (ResultCode 3) 387
PID Tuning Control Panel 388
A Technical Specifications i 391
General Technical Specifications 392
CPU SpecCifications i 396
Digital Expansion Modules Specifications i 405
Analog Expansion Modules Specifications 412
Thermocouple and RTD Expansion Modules Specifications 424
EM 277 PROFIBUS-DP Module Specifications 438
EM 241 Modem Module Specifications 450
EM 253 Position Module Specifications i 452
(CP 243-1) Ethernet Module Specifications 458
(CP 243-11T) Internet Module Specifications 460
(CP 243-2) AS-Interface Module Specifications i 463
Optional Cartridgest 465
/O Expansion Cable 466
RS-232/PPI Multi-Master Cable and USB/PPI Multi-Master Cable 467
INPUL SIMUIALOIS . .. 471
B Calculating a Power Budget e 473
C Error Codes 477
Fatal Error Codes and MEeSSAgESottt e et e 478
Run-Time Programming Problems 479
Compile Rule VIolations 480
D Special Memory (SM) BitS o e 481
SMBO: StatUS BilS . ..ttt 482
SMBIL: Status BilS . ..ottt 482
SMB2: Freeport Receive Character i e 483
SMB3: Freeport Parity Error 483
SMB4: QUeUE OVEMIOWo e 483
SMBS5: /O StatUS . . oottt e e 484
SMBB6: CPU ID REQISIEr . .ot e e e e 484
SMB7: RESEIVEU .. ot 484
SMB8 to SMB21: 1/0O Module ID and Error Registers, 485
SMW22 t0 SMW26: SCan TIMES\ttt e e e 486
SMB28 and SMB29: Analog Adjustment 486
SMB30 and SMB130: Freeport Control Registerst 486
SMB31 and SMW32: Permanent Memory (EEPROM) Write Control 487
SMB34 and SMB35: Time Interval Registers for Timed Interrupts 487
SMB36 to SMB65: HSCO, HSC1, and HSC2 Register ..o, 487
SMB66 to SMB85: PTO/PWM REQIStEerSt e e e 489
SMB86 to SMB94, and SMB186 to SMB194: Receive Message Control 490
SMW98: Errors on the Expansion /O BUS 491
SMB130: Freeport Control Register (see SMB30) i, 491
SMB131 to SMB165: HSC3, HSC4, and HSC5 Register, 491
SMB166 to SMB185: PTOO, PTO1 Profile Definiton Table 492

xiii

S7-200 Programmable Controller System Manual

Xiv

SMB186 to SMB194: Receive Message Control (see SMB86t0o SMB94) 492
SMB200 to SMB549: Intelligent Module Status i 493
S7-200 Order NUMDEIS . .. oo 495
Execution Times for STL INStructionso i, 499
S7-200 Quick Reference Information i 505
ST7-200CN ProdUCES . ..ottt e e 511
Certifications and Approvals for S7-200CN Products, 512
S7-200CN Products i 513

Product Overview

The S7-200 series of micro-programmable logic controllers (Micro PLCs) can control a wide
variety of devices to support your automation needs.

The S7-200 monitors inputs and changes outputs as controlled by the user program, which can
include Boolean logic, counting, timing, complex math operations, and communications with other
intelligent devices. The compact design, flexible configuration, and powerful instruction set
combine to make the S7-200 a perfect solution for controlling a wide variety of applications.

In This Chapter

WAt S N 2 oo e e e
ST7-200 CPU ..ottt
S7-200 Expansion Modules
STEP 7-Micro/WIN Programming Package
Communications OPLIONS oottt e e
Display Panels

O 01O BNN

S7-200 Programmable Controller System Manual

What’s New?

The new features of the SIMATIC S7-200 include two new analog expansion modules:

O EM 231 Analog Input RTD, 4 Inputs
1 EM 231 Analog Input Thermocouple 8 Inputs
1 Appendix H, S7-200CN Products

S7-200 CPU

The S7-200 CPU combines a microprocessor, an integrated power supply, input circuits, and
output circuits in a compact housing to create a powerful Micro PLC. See Figure 1-1. After you
have downloaded your program, the S7-200 contains the logic required to monitor and control the
input and output devices in your application.

1/0 LEDs Access door:

Status LEDs: > / Mode selector switch (RUN/STOP)

System Fault/Diagnostic Analog adjustment potentiometer(s)

EQSUFr(lDIAG) \ ’ : \ Expansion port (for most CPUs)

STOP

Terminal connector
(removable on CPU 224, CPU 224XP
and CPU 226)

Optional cartridge:
Memory Cartridge
Real-time Clock
Battery

Communications port Clip for installation on a standard (DIN) rail

Figure 1-1 S7-200 Micro PLC

Product Overview Chapter 1

Siemens provides different S7-200 CPU models with a diversity of features and capabilities that
help you create effective solutions for your varied applications. Table 1-1 briefly compares some of
the features of the CPU. For detailed information about a specific CPU, see Appendix A.

Table 1-1 Comparison of the S7-200 CPU Models
CPU 224XP

Feature CPU 221 CPU 222 CPU 224 CPU 224XPsi CPU 226
Physical size (mm) 90 x80x 62 | 90 x 80 x 62 120.5x 80 x 62 | 140 x 80 x 62 190 x 80 x 62
Program memory:
with run mode edit 4096 bytes 4096 bytes 8192 bhytes 12288 bytes 16384 bytes
without run mode edit | 4096 bytes 4096 bytes 12288 bytes 16384 bytes 24576 bytes
Data memory 2048 bytes 2048 bytes 8192 bhytes 10240 bytes 10240 bytes
Memory backup 50 hours 50 hours 100 hours 100 hours 100 hours
typical typical typical typical typical
Local on-board I/0
Digital 6 In/4 Out 8 In/6 Out 14 In/10 Out 14 In/10 Out 24 1n/16 Out
Analog - - - 2 In/1 Out -
Expansion modules 0 modules 2 modules? 7 modules? 7 modules? 7 modules?
High-speed counters
Single phase 4at30kHz | 4at30kHz 6 at 30 kHz 4 at 30 kHz 6 at 30 kHz
2 at 200 kHz
Two phase 2 at 20 kHz 2 at 20 kHz 4 at 20 kHz 3at20 kHz 4 at 20 kHz
1 at 100 kHz
Pulse outputs (DC) 2 at 20 kHz 2 at 20 kHz 2 at 20 kHz 2 at 100 kHz 2 at 20 kHz
Analog adjustments 1 1 2 2 2
Real-time clock Cartridge Cartridge Built-in Built-in Built-in
Communications ports |1 RS-485 |1 RS-485 1 RS-485 2 RS-485 2 RS-485
Floating-point math Yes
Digital I/0 image size 256 (128 in, 128 out)
Boolean execution 0.22 microseconds/instruction
speed

1 You must calculate your power budget to determine how much power (or current) the S7-200 CPU can provide for your configuration. If the CPU
power budget is exceeded, you may not be able to connect the maximum number of modules. See Appendix A for CPU and expansion module
power requirements, and Appendix B to calculate your power budget.

S7-200 Programmable Controller System Manual

S7-200 Expansion Modules

To better solve your application requirements, the S7-200 family includes a wide variety of

expansion modules. You can use these expansion modules to add additional functionality to the
S7-200 CPU. Table 1-2 provides a list of the expansion modules that are currently available. For
detailed information about a specific module, see Appendix A.

Table 1-2 S7-200 Expansion Modules
Expansion Type
Modules
Discrete modules
Input 8xDCIn 8 x AC In 16 x DC In
Output 4 x DC Out 4 x Relays 8 x Relay
8 x DC Out 8 x AC Out
Combination 4 xDC In/ 8xDC In/ 16 x DC In/ 32x DC In/
4 x DC Out 8 x DC Out 16 x DC Out 32 x DC Out
4xDClIn/ 8xDCiIn/ 16 x DC In/ 32x DC In/
4 x Relay 8 x Relay 16 x Relay 32 x Relay
Analog modules
Input 4 x Analog In 8 x Analog In 4 x Thermocouple In | 8 x Thermocouple In
2xRTD In 4x RTD In
Output 2 x Analog Out 4 x Analog Out
Combination 4 x Analog In

Intelligent modules

Other modules

4 x Analog Out

Position

Ethernet

AS-Interface

Modem
Ethernet IT

SIWAREX MS1

PROFIBUS-DP

1 Detailed information not included in Appendix A. Please refer to your module documentation.

Product Overview Chapter 1

STEP 7-Micro/WIN Programming Package

The STEP 7-Micro/WIN programming package provides a user-friendly environment to develop,
edit, and monitor the logic needed to control your application. STEP 7-Micro/WIN provides three
program editors for convenience and efficiency in developing the control program for your
application. To help you find the information you need, STEP 7-Micro/WIN provides an extensive
online help system and a documentation CD that contains an electronic version of this manual,
application tips, and other useful information.

Computer Requirements

STEP 7-Micro/WIN runs on either a personal computer or a Siemens programming device, such
as a PG 760. Your computer or programming device should meet the following minimum
requirements:

1 Operating system:
Windows 2000, Windows XP, Vista

1 Atleast 350M bytes of free hard
disk space

1 Mouse (recommended)

Figure 1-2 STEP 7-Micro/WIN

Installing STEP 7-Micro/WIN

Insert the STEP 7-Micro/WIN CD into the CD-ROM drive of your computer. The installation wizard
starts automatically and prompts you through the installation process. Refer to the Readme file for
more information about installing STEP 7-Micro/WIN.

Tip
@ To install STEP 7-Micro/WIN on a Windows 2000, Windows XP, or Windows Vista operating
system, you must log in with Administrator privileges.

Communications Options

Siemens provides two programming options for connecting your computer to your S7-200: a direct
connection with a PPI Multi-Master cable, or a Communications Processor (CP) card with an MPI
cable.

The PPl Multi-Master programming cable is the most common and economical method of
connecting your computer to the S7-200. This cable connects the communications port of the
S7-200 to the serial communications of your computer. The PPl Multi-Master programming cable
can also be used to connect other communications devices to the S7-200.

S7-200 Programmable Controller System Manual

Display Panels

Text Display Units

The Text Display (TD) is a display device that can be connected to the S7-200. Using the Text
Display wizard, you can easily program your S7-200 to display text messages and other data
pertaining to your application.

The TD device provides a low cost interface to your application by allowing you to view, monitor,
and change the process variables pertaining to your application.

The S7-200 product family provides four TD devices:

0 The TD100C has a 4-line text TD 100C
display with 2 font choices.

(1 The TD 200C has a 2-line text T
display with 20 characters per line B
for a total of 40 characters.

TD200C /
[The TD 200 has a faceplate which /)
provides four keys with predefined, 'ﬁ'l’t‘ﬁ_‘u’_i]'ﬁLjn-_g'[,-ﬂ[1-“1-1-,-5-“““. /

1ay1"a.1‘nxa_\.Ku1\.’51'\'.15«.-.5\%1\\1‘@1}

set-bit functions and allows up to
Text Display eight set-bit functions.

[J The TD400C can have a 2- or
4-line text display depending on Figure 1-3 Text Display Units
your font and character choice.

For more information about the Text Display Units, refer to the SIMATIC Text Display (TD) User
Manual on the STEP 7-Micro/WIN docuCD.

The Text Display wizard in STEP 7-Micro/WIN helps you configure Text Display messages
quickly and easily. To start the Text Display wizard, select the Tools > Text Display Wizard menu
command.

Operator and Touch Panel Displays

The OP 73micro and TP 177micro
panels are tailored to applications with
SIMATIC S7-200 Micro PLC and provide
operating and monitoring functions for
small-scale machines and plants. Short
configuration and commissioning times,
and their configuration in WinCC flexible
form the highlights of these panels. In
addition, these panels support up to 32
configuration languages and five online
languages, including the Asian and
Cyrillic character sets.

The mounting dimensions of the
Operator Panel OP 73micro with its
graphical 3” display unit are compatible
with OP3 and TD 200.

Touch Panel TP 177micro replaces the
Touch Panel TP 070/TP 170micro. It can

be mounted vertically to accommodate
additional applications. This feature
enables its use even when space is Figure 1-4 Operator and Touch Panel Displays
restricted.

Getting Started

STEP 7-Micro/WIN makes it easy for you to program your S7-200. In just a few short steps using
a simple example, you can learn how to connect, program, and run your S7-200.

All you need for this example is a PPI Multi-Master cable, an S7-200 CPU, and a programming
device running the STEP 7-Micro/WIN programming software.

In This Chapter

Connecting the S7-200 CPU e 8
Creating a Sample Program 10
Downloading the Sample Program 14
Placing the S7-200 in RUN Mode i e 14

S7-200 Programmable Controller System Manual

Connecting the S7-200 CPU

Connecting your S7-200 is easy. For this example, you only need to connect power to your
S7-200 CPU and then connect the communications cable between your programming device and
the S7-200 CPU.

Connecting Power to the S7-200 CPU

The first step is to connect the S7-200 to a power source. Figure 2-1 shows the wiring
connections for either a DC or an AC model of the S7-200 CPU.

Before you install or remove any electrical device, ensure that the power to that equipment has
been turned off. Always follow appropriate safety precautions and ensure that power to the
S7-200 is disabled before attempting to install or remove the S7-200.

Warning

' E Attempts to install or wire the S7-200 or related equipment with power applied could cause

* electric shock or faulty operation of equipment. Failure to disable all power to the S7-200 and
related equipment during installation or removal procedures could result in death or serious
injury to personnel, and/or damage to equipment.

Always follow appropriate safety precautions and ensure that power to the S7-200 is disabled
before attempting to install or remove the S7-200 or related equipment.

4 VDC 85 to 265 VAC

Jf—‘
ﬁ@@@@

DC Installation AC Installation

Figure 2-1 Connecting Power to the S7-200 CPU

Getting Started Chapter 2
Connecting the RS-232/PPI Multi-Master Cable
Figure 2-2 shows an RS-232/PPI [P .
Multi-Master cable connecting the Drecz/giézmmmg
S7-200 to the programming device. To
connect the cable:
S7-200
1. Connect the RS-232 connector

(marked “PC”) of the RS-232/PPI
Multi-Master cable to the
communications port of the
programming device. (For this
example, connectto COM 1.)

2. Connect the RS-485 connector
(marked “PPI") of the RS-232/PPI
Multi-Master cable to Port 0 or
Port 1 of the S7-200.

3. Ensure that the DIP switches of
the RS-232/PPI Multi-Master cable
are set as shown in Figure 2-2.

Tip

"

RS-232/PPI
Multi-Master Cable

$1-0n
10 - Off

o] Jafa] ufafs

123456 7 8]

Figure 2-2 Connecting the RS-232/PPI Multi-Master Cable

Examples in this manual use the RS-232/PPI Multi-Master cable. The RS-232/PPI Multi-Master

cable replaces the previous PC/PPI cable. A USB/PPI Multi-Master cable is also available.

Refer to Appendix E for order numbers.

Starting STEP 7-Micro/WIN

Click on the STEP 7-Micro/WIN icon to
open a new project. Figure 2-3 shows a
new project.

Notice the navigation bar. You can use
the icons on the navigation bar to open
elements of the STEP 7-Micro/WIN
project.

Click on the Communications icon in the
navigation bar to display the
Communications dialog box. You use
this dialog box to set up the
communications for STEP 7-Micro/WIN.

Navigation bar

Communications icon

—

Figure 2-3 New STEP 7-Micro/WIN Project

S7-200 Programmable Controller System Manual

Verifying the Communications Parameters for STEP 7-Micro/WIN

The example project uses the default settings for STEP 7-Micro/WIN and the RS-232/PPI
Multi-Master cable. To verify these settings:

1. Verify that the address of the
PC/PPI cable in the Lot " EE%PP\ sabelPF]
Communications dialog box is set Femete -) Dot Cick
t0 0 T 5 toFiefresh

2. Verify that the interface for the 7 Save sttings wil prciect
network parameter is set for ~Netuak
PC/PPI cable(COMl). Inteiface: PCAPPI cable(COM 1)

Protocal PRI
3. Verify that the transmission rate is e 1o
Set to 96 kbps Highest Station (HSA): 31
7 Supparts muliple masters
If you need to change your Tiensrission Fa s
. . . Baud Rate: ps
gohmn:un?atlons parameter settings, see T
apter 7.

Figure 2-4 Verifying the Communications Parameters

Establishing Communications with the S7-200

Use the Communications dialog box to connect with your S7-200 CPU:

1. Double-click the refresh icon in the
Communications dialog box. e . T 7 e
STEP 7-Micro/WIN searches for e o d 3 Dol
the S7-200 station and displays a
CPU icon for the connected [T
S7-200 station. Netwark
2. Select the S7-200 and click OK. e S

Mode: -kt
Highesst Station (HEA) 3

If STEP 7-Micro/WIN does not find your
S7-200 CPU, check the settings for the _—
communications parameters and repeat Bowat Rte 36 kbps
these Steps_ ™ Search all baud rates

Set PGIPC Interface o8 GCancel

7 Supports mutiple masters

After you have established
communications with the S7-200, you
are ready to create and download the Figure 2-5 Establishing Communications to the S7-200
example program.

Creating a Sample Program

10

Entering this example of a control program will help you understand how easy it is to use
STEP 7-Micro/WIN. This program uses six instructions in three networks to create a very simple,
self-starting timer that resets itself.

For this example, you use the Ladder (LAD) editor to enter the instructions for the program. The
following example shows the complete program in both LAD and Statement List (STL). The
network comments in the STL program explain the logic for each network. The timing diagram
shows the operation of the program.

Getting Started Chapter 2

Example: Sample Program for getting started with STEP 7-Micro/WIN

Network 1 Network 1 /110 ms timer T33 times out after
MO0 133 //(100 x 10 ms = 1 s) M0.0 pulse is
— /v ™ /I too fast to monitor with Status view.
A00dPT__ 10me LDN MO0.0
TON T33, +100
Network 2 /IComparison becomes true at a
[Irate that is visible with
Network 2 /IStatus view. Turn on Q0.0 after
133 Lo /(40 x 10 ms = 0.4 s), for a
A 1 40% OFF/60% ON waveform,
LDW>= T33, +40
Network 3 = QOO
33 MO0 Network 3 /IT33 (bit) pulse too fast to monitor with
— —C) /[Status view. Reset the timer through
/IMO0.0 after the (100 x 10 ms =1 s) period.
LD T33
= MO0.0

Timing Diagram
current = 100

current = 40 ===

T33 (current)
]
]
[]

T33 (bit)

0.4s; 0.6s !

MO0.0

Q0.0—

Opening the Program Editor

Click on the Program Block icon to open
the program editor. See Figure 2-6.

Notice the instruction tree and the
program editor. You use the instruction
tree to insert the LAD instructions into
the networks of the program editor by
dragging and dropping the instructions
from the instruction tree to the networks.

The toolbar icons provide shortcuts to
the menu commands.

After you enter and save the program,
you can download the program to the
S7-200.

Figure 2-6

Program editor

Instruction tree

STEP 7-Micro/WIN Window

11

S7-200 Programmable Controller System Manual

12

Entering Network 1: Starting the Timer

When MO0.0 is off (0), this contact turns on and provides power flow to start the timer. To enter the
contact for M0.0:

1.

Either double-click the Bit Logic
icon or click on the plus sign (+) to
display the bit logic instructions.

Select the Normally Closed
contact.

Hold down the left mouse button
and drag the contact onto the first
network.

Click on the “???” above the

contact and enter the following
address: M0.0

Press the Return key to enter the

Figure 2-7 Network 1
address for the contact. 9

To enter the timer instruction for T33:

o > 0w np e

7.

Double-click the Timers icon to display the timer instructions.

Select the TON (On-Delay Timer).

Hold down the left mouse button and drag the timer onto the first network.

Click on the “???” above the timer box and enter the following timer number: T33

Press the Return key to enter the timer number and to move the focus to the preset time
(PT) parameter.

Enter the following value for the preset time: 100

Press the Return key to enter the value.

Entering Network 2: Turning the Output On

When the timer value for T33 is greater than or equal to 40 (40 times 10 milliseconds, or 0.4
seconds), the contact provides power flow to turn on output Q0.0 of the S7-200. To enter the
Compare instruction:

1.

Double-click the Compare icon to display the compare instructions. Select the >=I
instruction (Greater-Than-Or-Equal-To-Integer).

Hold down the left mouse button
and drag the compare instruction
onto the second network.

Click on the “???" above the
contact and enter the address for
the timer value: T33

Press the Return key to enter the
timer number and to move the
focus to the other value to be
compared with the timer value.

Enter the following value to be
compared with the timer value: 40

Press the Return key to enter the Figure 2-8 Network 2
value.

To enter the instruction for turning on output QO0.0:

1
2
3.
4

Double-click the Bit Logic icon to display the bit logic instructions and select the output coil.
Hold down the left mouse button and drag the coil onto the second network.
Click on the “??7?” above the coil and enter the following address: Q0.0

Press the Return key to enter the address for the coil.

Getting Started

Chapter 2

Entering Network 3: Resetting the Timer

When the timer reaches the preset value (100) and turns the timer bit on, the contact for T33 turns
on. Power flow from this contact turns on the M0.0 memory location. Because the timer is enabled
by a Normally Closed contact for M0.0, changing the state of M0.0 from off (0) to on (1) resets the

timer.

To enter the contact for the timer bit of

T33:

1.

Select the Normally Open contact
from the bit logic instructions.

Hold down the left mouse button
and drag the contact onto the third
network.

Click on the “???"” above the
contact and enter the address of
the timer bit: T33

Press the Return key to enter the
address for the contact.

To enter the coll for turning on M0.0:

1
2
3.
4

Figure 2-9 Network 3

Select the output coil from the bit logic instructions.

Hold down the left mouse button and drag the output coil onto the third network.

Double-click the “???” above the coil and enter the following address: M0.0

Press the Return key to enter the address for the coil.

Saving the Sample Project

After entering the three networks of instructions, you have finished entering the program. When
you save the program, you create a project that includes the S7-200 CPU type and other
parameters. To save the project:

1.

3.

Select the File > Save As menu
command from the menu bar.

Enter a name for the project in the
Save As dialog box.

Click OK to save the project.

After saving the project, you can
download the program to the S7-200.

Save As

Save in |@ Projects j &= cF E-

File name: |EettmgSIarted

Save as ype: |Froect Fiie i) =l

Save I
Cancel
v

Figure 2-10 Saving the Example Program

13

S7-200 Programmable Controller System Manual

Downloading the Sample Program

¥

Tip

Each STEP 7-Micro/WIN project is associated with a CPU type (CPU 221, CPU 222, CPU 224,
CPU 224XP, or CPU 226). If the project type does not match the CPU to which you are
connected, STEP 7-Micro/WIN indicates a mismatch and prompts you to take an action. If this
occurs, choose “Continue Download” for this example.

1. Click the Download icon on the
toolbar or select the
File > Download menu command
to download the program. See
Figure 2-11.

2. Click OK to download the elements
of the program to the S7-200.

il

If your S7-200 is in RUN mode, a dialog
box prompts you to place the S7-200 in
STOP mode. Click Yes to place the

S7-200 into STOP mode. Figure 2-11 Downloading the Program

Placing the S7-200 in RUN Mode

14

For STEP 7-Micro/WIN to place the S7-200 CPU in RUN mode, the mode switch of the S7-200
must be set to TERM or RUN. When you place the S7-200 in RUN mode, the S7-200 executes
the program:

1. Click the RUN icon on the toolbar RUN E
or select the PLC > RUN menu P
command. @ Place the PLC in RUN made?

2. Click OK to change the operating
mode of the S7-200. Yor Mo |

When the S7-200 goes to RUN mode,

the output LED for Q0.0 turns on and off 5,06 2,12 Placing the S7-200 in RUN Mode
as the S7-200 executes the program.

Congratulations! You have just completed your first S7-200 program.

You can monitor the program by selecting the Debug > Program Status menu command.
STEP 7-Micro/WIN displays the values for the instructions. To stop the program, place the S7-200
in STOP mode by clicking the STOP icon or by selecting the PLC > STOP menu command.

Installing the S7-200

The S7-200 equipment is designed to be easy to install. You can use the mounting holes to attach
the modules to a panel, or you can use the built-in clips to mount the modules onto a standard
(DIN) rail. The small size of the S7-200 allows you to make efficient use of space.

This chapter provides guidelines for installing and wiring your S7-200 system.

In This Chapter

Guidelines for Installing S7-200 DEVICESottt e 16
Installing and Removing the S7-200 Modules 17
Guidelines for Grounding and Wiringot 20

15

S7-200 Programmable Controller System Manual

Guidelines for Installing S7-200 Devices

You can install an S7-200 either on a panel or on a standard rail, and you can orient the S7-200
either horizontally or vertically.

Warning
' The SIMATIC S7-200 PLCs are Open Type Controllers. It is required that you install the S7-200
. in a housing, cabinet, or electric control room. Entry to the housing, cabinet, or electric control
room should be limited to authorized personnel.

Failure to follow these installation requirements could result in death or serious injury to
personnel, and/or damage to equipment.

Always follow these requirements when installing S7-200 PLCs.

Separate the S7-200 Devices from Heat, High Voltage, and Electrical
Noise
As a general rule for laying out the devices of your system, always separate the devices that

generate high voltage and high electrical noise from the low-voltage, logic-type devices such as
the S7-200.

When configuring the layout of the S7-200 inside your panel, consider the heat-generating
devices and locate the electronic-type devices in the cooler areas of your cabinet. Operating any
electronic device in a high-temperature environment will reduce the time to failure.

Consider also the routing of the wiring for the devices in the panel. Avoid placing low voltage
signal wires and communications cables in the same tray with AC power wiring and high-energy,
rapidly-switched DC wiring.

Provide Adequate Clearance for Cooling and Wiring

S7-200 devices are designed for natural convection cooling. For proper cooling, you must provide
a clearance of at least 25 mm above and below the devices. Also, allow at least 75 mm of depth.

Caution

For vertical mounting, the maximum allowable ambient temperature is reduced by
10 degrees C. Mount the S7-200 CPU below any expansion modules.

When planning your layout for the S7-200 system, allow enough clearance for the wiring and

communications cable connections. For additional flexibility in configuring the layout of the S7-200
system, use the 1/0O expansion cable.

Clearance 35mm
. . P .

sl l j_ 1 mm
 S— : I e | K
- | N [V%I]
i E@ R Ht — ﬂ[| 5 | ! DIN Rail
25 mm Lo Eﬁ - 7% 1 ‘ E E ‘
\ “=I il
‘ ‘ 75 mm
iR
RN
o SO oo Muntng
e ||E nnnnnn - HE nnnnnn IEE Vertlcal Panel \
e P e ; Mounting
W B BT
... = Side View

Horizontal DIN Rail Mounting with Optional
Expansion Cable (limit one per system)

Figure 3-1 Mounting Methods, Orientation, and Clearance

16

Installing the S7-200 Chapter 3

Power Budget

All S7-200 CPUs have an internal power supply that provides power for the CPU, the expansion
modules, and other 24 VDC user power requirements.

The S7-200 CPU provides the 5 VDC logic power needed for any expansion in your system. Pay
careful attention to your system configuration to ensure that your CPU can supply the 5V power
required by your selected expansion modules. If your configuration requires more power than the
CPU can supply, you must remove a module or select a CPU with more power capability. Refer to
Appendix A for information about the 5 VDC logic budget supplied by your S7-200 CPU and the

5 VDC power requirements of the expansion modules. Use Appendix B as a guide for determining
how much power (or current) the CPU can provide for your configuration.

All S7-200 CPUs also provide a 24 VDC sensor supply that can supply 24 VDC for input points,
for relay coil power on the expansion modules, or for other requirements. If your power
requirements exceed the budget of the sensor supply, then you must add an external 24 VDC
power supply to your system. Refer to Appendix A for the 24 VDC sensor supply power budget for
your particular S7-200 CPU.

If you require an external 24 VDC power supply, ensure that the power supply is not connected in
parallel with the sensor supply of the S7-200 CPU. For improved electrical noise protection, it is
recommended that the commons (M) of the different power supplies be connected.

Warning
' Connecting an external 24 VDC power supply in parallel with the S7-200 24 VDC sensor supply
* can result in a conflict between the two supplies as each seeks to establish its own preferred
output voltage level.

The result of this conflict can be shortened lifetime or immediate failure of one or both power
supplies, with consequent unpredictable operation of the PLC system. Unpredictable operation
could result in death or serious injury to personnel, and/or damage to equipment.

The S7-200 DC sensor supply and any external power supply should provide power to different
points.

Installing and Removing the S7-200 Modules

The S7-200 can be easily installed on a standard DIN rail or on a panel.

Prerequisites

Before you install or remove any electrical device, ensure that the power to that equipment has
been turned off. Also, ensure that the power to any related equipment has been turned off.

Warning
' Attempts to install or remove S7-200 or related equipment with the power applied could cause
* electric shock or faulty operation of equipment.

Failure to disable all power to the S7-200 and related equipment during installation or removal
procedures could result in death or serious injury to personnel, and/or damage to equipment.

Always follow appropriate safety precautions and ensure that power to the S7-200 is disabled
before attempting to install or remove S7-200 CPUs or related equipment.

Always ensure that whenever you replace or install an S7-200 device you use the correct module
or equivalent device.

Warning
' E If you install an incorrect module, the program in the S7-200 could function unpredictably.
L]

Failure to replace an S7-200 device with the same model, orientation, or order could result in
death or serious injury to personnel, and/or damage to equipment.

Replace an S7-200 device with the same model, and be sure to orient and position it correctly.

17

S7-200 Programmable Controller System Manual

Mounting Dimensions

The S7-200 CPUs and expansion modules include mounting holes to facilitate installation on
panels. Refer to Table 3-1 for the mounting dimensions.

Table 3-1 Mounting Dimensions

_.‘ -— 9.5 mm* * Minimum spacing

between modules

4mm T‘ A ;T when hard-mounted
_¢ B B ,‘
f & & Mounting
\] 0)| holes (M4
E | oooooooo ocooooooo ! I ooooopon Y or No. 8)
96 mm 88 mm 80 mm > .
(®)
@ 1 [={=[=]=f={=]={=]=]={=]={=]={=]=} i 1 oooaoang f
U | 1}
% o
BN s YR
_T 4 mm —>| |<— B
4 mm —— A ——™
S7-200 Module Width A Width B
CPU 221 and CPU 222 90 mm 82 mm
CPU 224 120.5 mm | 112.5 mm
CPU 224XP, CPU 224XPsi 140 mm 132 mm
CPU 226 196 mm 188 mm
Expansion modules: 4- and 8-point DC and Relay 1/0 (8, 4Q, 8Q, 41/4Q) 46 mm 38 mm
and Analog Out (2 AQ)
Expansion modules: 16-point digital I/O (161, 81/8Q), Analog I/O (4Al, 8Al, 4AQ, 71.2mm 63.2mm

4A1/1AQ), RTD, Thermocouple, PROFIBUS, Ethernet,
Internet, AS-Interface, 8-point AC (8l and 8Q), Position, and

Modem
Expansion modules: 32-point digital 1/0 (161/16Q) 137.3 mm | 129.3 mm
Expansion modules: 64-point digital I/O (321/32Q) 196 mm 188 mm

Installing a CPU or Expansion Module
Installing the S7-200 is easy! Just follow these steps.

Panel Mounting

1.

Locate, drill, and tap the mounting holes (M4 or American Standard number 8), using the
dimensions in Table 3-1.

Secure the module(s) to the panel, using the appropriate screws.

If you are using an expansion module, connect the expansion module ribbon cable into the
expansion port connector under the access door.

DIN Rail Mounting

1.
2.

18

Secure the rail to the mounting panel every 75 mm.

Snap open the DIN clip (located on the bottom of the module) and hook the back of the
module onto the DIN rail.

If you are using an expansion module, connect the expansion module ribbon cable into the
expansion port connector under the access door.

Rotate the module down to the DIN rail and snap the clip closed. Carefully check that the
clip has fastened the module securely onto the rail. To avoid damage to the module, press
on the tab of the mounting hole instead of pressing directly on the front of the module.

Installing the S7-200 Chapter 3

Tip
@ Using DIN rail stops could be helpful if your S7-200 is in an environment with high vibration
potential or if the S7-200 has been installed vertically.

If your system is in a high-vibration environment, then panel-mounting the S7-200 will provide a
greater level of vibration protection.

Removing a CPU or Expansion Module
To remove an S7-200 CPU or expansion module, follow these steps:

1.
2.

Remove power from the S7-200.

Disconnect all the wiring and cabling that is attached to the module. Most S7-200 CPU and
expansion modules have removable connectors to make this job easier.

If you have expansion modules connected to the unit that you are removing, open the
access cover door and disconnect the expansion module ribbon cable from the adjacent
modules.

Unscrew the mounting screws or snap open the DIN clip.

Remove the module.

Removing and Reinstalling the Terminal Block Connector

Most S7-200 modules have removable connectors to make installing and replacing the module
easy. Refer to Appendix A to determine whether your S7-200 module has removable connectors.
You can order an optional fan-out connector for modules that do not have removable connectors.
See Appendix E for order numbers.

To Remove the Connector

1.
2.
3.

Open the connector door to gain access to the connector.
Insert a small screwdriver in the notch in the middle of the connector.

Remove the terminal connector by prying the screwdriver away from the S7-200 housing.
See Figure 3-2.

Figure 3-2 Removing the Connector

To Reinstall the Connector

1.
2.

Open the connector door.

Align the connector with the pins on the unit and align the wiring edge of the connector
inside the rim of the connector base.

Press down firmly to rotate the connector until it snaps into place. Check carefully to ensure
that the connector is properly aligned and fully engaged.

19

S7-200 Programmable Controller System Manual

Guidelines for Grounding and Wiring

Proper grounding and wiring of all electrical equipment is important to help ensure the optimum
operation of your system and to provide additional electrical noise protection for your application
and the S7-200.

Prerequisites

N

N

Gu

20

Before you ground or install wiring to any electrical device, ensure that the power to that
equipment has been turned off. Also, ensure that the power to any related equipment has been
turned off.

Ensure that you follow all applicable electrical codes when wiring the S7-200 and related
equipment. Install and operate all equipment according to all applicable national and local
standards. Contact your local authorities to determine which codes and standards apply to your
specific case.

Warning

Attempts to install or wire the S7-200 or related equipment with power applied could cause
electric shock or faulty operation of equipment. Failure to disable all power to the S7-200 and
related equipment during installation or removal procedures could result in death or serious
injury to personnel, and/or damage to equipment.

Always follow appropriate safety precautions and ensure that power to the S7-200 is disabled
before attempting to install or remove the S7-200 or related equipment.

Always take safety into consideration as you design the grounding and wiring of your S7-200
system. Electronic control devices, such as the S7-200, can fail and can cause unexpected
operation of the equipment that is being controlled or monitored. For this reason, you should
implement safeguards that are independent of the S7-200 to protect against possible personal
injury or equipment damage.

Warning

Control devices can fail in an unsafe condition, resulting in unexpected operation of controlled
equipment. Such unexpected operations could result in death or serious injury to personnel,
and/or damage to equipment.

Use an emergency stop function, electromechanical overrides, or other redundant safeguards
that are independent of the S7-200.

idelines for Isolation

S7-200 AC power supply boundaries and I/O boundaries to AC circuits have been designed and
approved to provide safe separation between AC line voltages and low voltage circuits. These
boundaries include double or reinforced insulation, or basic plus supplementary insulation,
according to various standards. Components which cross these boundaries such as optical
couplers, capacitors, transformers, and relays have been approved as providing safe separation.
Isolation boundaries which meet these requirements have been identified in S7-200 product data
sheets as having 1500VAC or greater isolation. This designation is based on a routine factory test
of (2Ue + 1000VAC) or equivalent according to approved methods. S7-200 safe separation
boundaries have been type tested to 4242 VDC.

The sensor supply output, communications circuits, and internal logic circuits of an S7-200 with
included AC power supply are sourced as SELV (safety extra-low voltage) according to EN
61131-2. These circuits become PELV (protective extra-low voltage) if the sensor supply M, or
any other non-isolated M connection to the S7-200 is connected to ground. Other S7-200 M
connections which may ground reference the low voltage are designated as not isolated to logic
on specific product data sheets. Examples are RS485 communications port M, analog 1/0O M, and
relay coil power M.

To maintain the SELV / PELV character of the S7-200 low voltage circuits, external connections to
communications ports, analog circuits, and all 24V nominal power supply and I/O circuits must be
powered from approved sources that meet the requirements of SELV, PELYV, Class 2, Limited
Voltage, or Limited Power according to various standards.

Installing the S7-200 Chapter 3

N

Gu

Gu

Warning

Use of non-isolated or single insulation supplies to supply low voltage circuits from an AC line
can result in hazardous voltages appearing on circuits that are expected to be touch safe, such
as communications circuits and low voltage sensor wiring.

Such unexpected high voltages could result in death or serious injury to personnel, and/or
damage to equipment.

Only use high voltage to low voltage power converters that are approved as sources of touch
safe, limited voltage circuits.

idelines for Grounding the S7-200

The best way to ground your application is to ensure that all the common and ground connections
of your S7-200 and related equipment are grounded to a single point. This single point should be
connected directly to the earth ground for your system.

For improved electrical noise protection, it is recommended that all DC common returns be
connected to the same single-point earth ground. Connect the 24 VDC sensor supply common
(M) to earth ground.

All ground wires should be as short as possible and should use a large wire size, such as 2 mm?2
(14 AWG).

When locating grounds, remember to consider safety grounding requirements and the proper
operation of protective interrupting devices.

idelines for Wiring the S7-200

When designing the wiring for your S7-200, provide a single disconnect switch that simultaneously
removes power from the S7-200 CPU power supply, from all input circuits, and from all output
circuits. Provide overcurrent protection, such as a fuse or circuit breaker, to limit fault currents on
supply wiring. You might want to provide additional protection by placing a fuse or other current
limit in each output circuit.

Install appropriate surge suppression devices for any wiring that could be subject to lightning
surges.

Avoid placing low-voltage signal wires and communications cables in the same wire tray with AC
wires and high-energy, rapidly switched DC wires. Always route wires in pairs, with the neutral or
common wire paired with the hot or signal-carrying wire.

Use the shortest wire possible and ensure that the wire is sized properly to carry the required
current. The connector accepts wire sizes from 2 mm2 to 0.3 mm2 (14 AWG to 22 AWG). Use
shielded wires for optimum protection against electrical noise. Typically, grounding the shield at
the S7-200 gives the best results.

When wiring input circuits that are powered by an external power supply, include an overcurrent
protection device in that circuit. External protection is not necessary for circuits that are powered
by the 24 VDC sensor supply from the S7-200 because the sensor supply is already
current-limited.

Most S7-200 modules have removable connectors for user wiring. (Refer to Appendix A to
determine if your module has removable connectors.) To prevent loose connections, ensure that
the connector is seated securely and that the wire is installed securely into the connector. To avoid
damaging the connector, be careful that you do not over-tighten the screws. The maximum torque
for the connector screw is 0.56 N-m (5 inch-pounds).

To help prevent unwanted current flows in your installation, the S7-200 provides isolation
boundaries at certain points. When you plan the wiring for your system, you should consider these
isolation boundaries. Refer to Appendix A for the amount of isolation provided and the location of
the isolation boundaries. Isolation boundaries rated less than 1500 VAC must not be depended on
as safety boundaries.

Tip
For a communications network, the maximum length of the communications cable is 50 m

without using a repeater. The communications port on the S7-200 is non-isolated. Refer to
Chapter 7 for more information.

21

S7-200 Programmable Controller System Manual

N

Guidelines for Lamp Loads

22

Guidelines for Inductive Loads

You should equip inductive loads with suppression circuits to limit voltage rise when the control
output turns off. Suppression circuits protect your outputs from premature failure due to high
inductive switching currents. In addition, suppression circuits limit the electrical noise generated
when switching inductive loads.

Tip
The effectiveness of a given suppression circuit depends on the application, and you must verify

it for your particular use. Always ensure that all components used in your suppression circuit are
rated for use in the application.

DC Outputs and Relays That Control DC Loads

The DC outputs have internal protection that is adequate for most applications. Since the relays
can be used for either a DC or an AC load, internal protection is not provided.

Figure 3-3 shows a sample suppression A B (optional)
circuit for a DC load. In most
applications, the addition of a diode (A)
across the inductive load is suitable, but ., B ra o o
if your application requires faster turn-off ~ Point

times, then the addition of a Zener diode DC Inductive Load

(B) is recommended. Be sure to size

A - 11N4001 diode or equivalent

your Zener diode properly for the amount

of current in your output circuit. Figure 3-3 Suppression Circuit for a DC Load

AC Outputs and Relays That Control AC Loads

The AC outputs have internal protection that is adequate for most applications. Since the relays
can be used for either a DC or an AC load, internal protection is not provided.

Figure 3-4 shows a sample suppression duF 10010120 Q
circuit for an AC load. When you use a — ——W\——

relay or AC output to switch 115 V/230 MOV

VAC loads, place resistor/capacitor

networks across the AC load as shown @

in this figure. You can also use a metal

oxide varistor (MOV) to limit peak Output _m__@_
voltage. Ensure that the working voltage Point AC Inductive Load

of the MOV is at least 20% greater than

the nominal line voltage. Figure 3-4 Suppression Circuit for an AC Load

Warning

When relay expansion modules are used to switch AC inductive loads, the external
resistor/capacitor noise suppression circuit must be placed across the AC load to prevent
unexpected machine or process operation. See Figure 3-4.

Lamp loads are damaging to relay contacts because of the high turn-on surge current. This surge
current will nominally be 10 to 15 times the steady state current for a Tungsten lamp. A
replaceable interposing relay or surge limiter is recommended for lamp loads that will be switched
a large number of times during the lifetime of the application.

PLC Concepts

The basic function of the S7-200 is to monitor field inputs and, based on your control logic, turn on
or off field output devices. This chapter explains the concepts used to execute your program, the
various types of memory used, and how that memory is retained.

In This Chapter

Understanding How the S7-200 Executes Your Control Logic 24
Accessing the Data of the S7-200 27
Understanding How the S7-200 Saves and RestoresDatao ... 36

Selecting the Operating Mode forthe S7-200 CPU it 40
Using the S7-200 EXPIOrer e e e 41
Features of the S7-200 it 41

23

S7-200 Programmable Controller System Manual

Understanding How the S7-200 Executes Your Control Logic

The S7-200 continuously cycles through the control logic in your program, reading and writing
data.

The S7-200 Relates Your Program to the Physical Inputs and Outputs

The basic operation of the S7-200 is very simple: Start PB E_stop M Starter
[The S7-200 reads the status of the inputs. /!,} 1 F ®)
~
1 The program that is stored in the S7-200 uses Im_starter P Motor
these inputs to evaluate the control logic. As [-
the program runs, the S7-200 updates the [P P
data. | ~ |
- Output |°oe
1 The S7-200 writes the data to the outputs. Motor Starter

Figure 4-1 shows a simple diagram of how an NS
electrical relay diagram relates to the S7-200. In this ‘,
example, the state of the switch for starting the
motor is combined with the states of other inputs.
The calculations of these states then determine the
state for the output that goes to the actuator which Figure 4-1 Controlling Inputs and Outputs
starts the motor.

s EEE— ~,1
Input =
.ml Start / Stop Switch

The S7-200 Executes Its Tasks in a Scan Cycle

The S7-200 executes a series of tasks repetitively. This cyclical execution of tasks is called the
scan cycle. As shown in Figure 4-2, the S7-200 performs most or all of the following tasks during a
scan cycle:

1 Reading the inputs: The S7-200 copies the
state of the physical inputs to the Writes to the outputs

process-image input register.
1 Executing the control logic in the program: OIS

The S7-200 executes the instructions of the / \
V

program and stores the values in the various
Process any
1 Processing any communications requests:

>
The S7-200 performs any tasks required for '::l B e FemEy
communications.

y N)
1 Executing the CPU self-test diagnostics: The SEETOVNNN ~i ~|1

S7-200 ensures that the firmware, the | Reads the inputs | Q)
program memory, and any expansion
modules are working properly.

1 Writing to theT outputs: The val_ues stored_in Figure 42 S7-200 Scan Cycle
the process-image output register are written
to the physical outputs.

The execution of the user program is dependent upon whether the S7-200 is in STOP mode or in
RUN mode. In RUN mode, your program is executed; in STOP mode, your program is not
executed.

24

PLC Concepts Chapter 4

Reading the Inputs

Digital inputs: Each scan cycle begins by reading the current value of the digital inputs and then
writing these values to the process-image input register.

Analog inputs: The S7-200 does not update analog inputs from expansion modules as part of the
normal scan cycle unless filtering of analog inputs is enabled. An analog filter is provided to allow
you to have a more stable signal. You can enable the analog filter for each analog input point.

When analog input filtering is enabled for an analog input, the S7-200 updates that analog input
once per scan cycle, performs the filtering function, and stores the filtered value internally. The
filtered value is then supplied each time your program accesses the analog input.

When analog filtering is not enabled, the S7-200 reads the value of the analog input from
expansion modules each time your program accesses the analog input.

Analog inputs AIW0 and AIW2 included on the CPU 224XP are updated every scan with the most
recent result from the analog-to-digital converter. This converter is an averaging type (sigma-delta)
and those values will usually not need software filtering.

Tip
Analog input filtering is provided to allow you to have a more stable analog value. Use the

analog input filter for applications where the input signal varies slowly with time. If the signal is a
high-speed signal, then you should not enable the analog filter.

Do not use the analog filter with modules that pass digital information or alarm indications in the
analog words. Always disable analog filtering for RTD, Thermocouple, and AS-Interface Master
modules.

Executing the Program

During the execution phase of the scan cycle, the S7-200 executes your program, starting with the
first instruction and proceeding to the end instruction. The immediate 1/O instructions give you
immediate access to inputs and outputs during the execution of either the program or an interrupt
routine.

If you use subroutines in your program, the subroutines are stored as part of the program. The
subroutines are executed when they are called by the main program, by another subroutine, or by
an interrupt routine. Subroutine nesting depth is 8 from the main and 1 from an interrupt routine.

If you use interrupts in your program, the interrupt routines that are associated with the interrupt
events are stored as part of the program. The interrupt routines are not executed as part of the
normal scan cycle, but are executed when the interrupt event occurs (which could be at any point
in the scan cycle).

Local memory is reserved for each of eleven entities: one main, eight subroutine nesting levels
when initiated from the main, one interrupt, and one subroutine nesting level when initiated from
an interrupt routine. Local memory has a local scope in that it is available only within its
associated program entity, and cannot be accessed by the other program entities. For more
information about Local memory, refer to Local Memory Area: L in this chapter.

Figure 4-3 depicts the flow of a typical scan including the Local memory usage and two interrupt
events, one during the program-execution phase and another during the communications phase
of the scan cycle. Subroutines are called by the next higher level, and are executed when called.
Interrupt routines are not called; they are a result of an occurrence of the associated interrupt
event.

25

S7-200 Programmable Controller System Manual

awll 8]9AD
© e
£ o =
3 oge
. 5 B g
L ©
L S SN S o -
T [9A8] Bunsau ¥gs 'S = °
1dnusl - g ﬁ
IIIIIIIIIIIIIIIIIIII BN R il SR - - e e e el e e [N RN S PR U
= 3
_ ol . @ g
Q0 £ s © ©
o o 8 3 o o
2 =4 = @ &
= £ O = -
c a 7] >
5] = 5 = g 2
< 7] o m c IS
Q
S 4 5 2 g £
> e 80 5
8 = c 9 £
- o == B 8
= * o g 3 L 2
S - g I 2=
8 [9A9] Bunsau ygs 2 m S __N T o N_.n.,v
£ 19A9] Bunsau ¥gs | S, a (SN » <3
o c = =y
9 [ans] Bupsau ¥as | < = ° w g
© [} -
ana| Bunsau c £ = 2 c
G |9A3] DU dds % = @ ° 5 W e
v [ons| Bunsau ¥gs | = S E £ g £ 5 £ & E 8
g 3 s 3 g 5
€ 199 Bunsau Ygs x| 8 5 g g o 5 ¢ £
.......... -3 -5 =3 - P
c @ c 2 n c T »
I S N N SN -& S0
s ._| ._ S _ s 03
-- ©38
3 E
T T c c
° 5
Alows ©o0 02 oD
© o c
B % % : p [SB R
£ Q £ £ £ Qe £ T 2 ~oX
— i} — — -t [IT R E5 n o
L E
=g
x

'

Writing from process image to the outputs

Typical Scan Flow

Figure 4-3
26

PLC Concepts Chapter 4

Processing Any Communications Requests

During the message-processing phase of the scan cycle, the S7-200 processes any messages
that were received from the communications port or intelligent I/O modules.

Executing the CPU Self-test Diagnostics

During this phase of the scan cycle, the S7-200 checks for proper operation of the CPU and for
the status of any expansion modules.

Writing to the Digital Outputs

At the end of every scan cycle, the S7-200 writes the values stored in the process-image output
register to the digital outputs. (Analog outputs are updated immediately, independently from the
scan cycle.)

Accessing the Data of the S7-200

The S7-200 stores information in different memory locations that have unique addresses. You can
explicitly identify the memory address that you want to access. This allows your program to have
direct access to the information. Table 4-1 shows the range of integer values that can be
represented by the different sizes of data.

Table 4-1 Decimal and Hexadecimal Ranges for the Different Sizes of Data

Representation Byte (B) Word (W) Double Word (D)
Unsigned Integer 0to 255 0to 65,535 0 to 4,294,967,295
Oto FF 0 to FFFF 0 to FFFF FFFF
Signed Integer -128to +127 | -32,768 to +32,767 | -2,147,483,648 to +2,147,483,647
80to 7F 8000 to 7FFF 8000 0000 to 7FFF FFFF
Real Not applicable ' Not applicable +1.175495E-38 to +3.402823E+38 (positive)
IEEE 32-bit -1.175495E-38 to -3.402823E+38 (negative)

Floating Point

To access a bit in a memory area, you specify the address, which includes the memory area
identifier, the byte address, and the bit number. Figure 4-4 shows an example of accessing a bit
(which is also called “byte.bit” addressing). In this example, the memory area and byte address
(I'=input, and 3 = byte 3) are followed by a period (*.”) to separate the bit address (bit 4).

I 3 . 4 .

Process-image Input (I) Memory Area

L Bitof byte, or bit number: ge Input () y

bit 4 of 8 (0 to 7) 76 543210
Period separates the Byte 0
byte address from the bit Byte 1
number Byte 2

Byte address: byte 3 (the Byte 3 .

fourth byte) Byte 4
Byte 5

Memory area identifier

Figure 4-4 Byte.Bit Addressing

You can access data in most memory areas (V, I, Q, M, S, L, and SM) as bytes, words, or double
words by using the byte-address format. To access a byte, word, or double word of data in the
memory, you must specify the address in a way similar to specifying the address for a bit. This
includes an area identifier, data size designation, and the starting byte address of the byte, word,
or double-word value, as shown in Figure 4-5.

27

S7-200 Programmable Controller System Manual

Data in other memory areas (such as T, C, HC, and the accumulators) are accessed by using an
address format that includes an area identifier and a device number.

V B 100 V W 100 V D 100
[Byte address [Byte address [Byte address
Access to a byte size Access to a word size Access to a double word size
Area identifier Area identifier Area identifier
MSB LSB

vB100 |7 vB100 °]

MSB = most significant bit
LSB = least significant bit
Most significant byte Least significant byte
MSB LSB
VW100 |15 VB100 87 vBo1 9
Most significant byte Least significant byte
MSB LSB

VD100 |3 vB100 24|28 vB101 6[15 vB102 8[7 vB103 O

Figure 4-5 Comparing Byte, Word, and Double-Word Access to the Same Address

Accessing Data in the Memory Areas

Process-Image Input Register: |

The S7-200 samples the physical input points at the beginning of each scan cycle and writes
these values to the process-image input register. You can access the process-image input register
in bits, bytes, words, or double words:

Bit: I[byte address].[bit address] 10.1
Byte, Word, or Double Word: I[size][starting byte address] 1B4

Process-Image Output Register: Q

At the end of the scan cycle, the S7-200 copies the values stored in the process-image output
register to the physical output points. You can access the process-image output register in bits,
bytes, words, or double words:

Bit: Q[byte address].[bit address] Q1.1
Byte, Word, or Double Word: Ql[size][starting byte address] QB5

Variable Memory Area: V

You can use V memory to store intermediate results of operations being performed by the control
logic in your program. You can also use V memory to store other data pertaining to your process
or task. You can access the V memory area in bits, bytes, words, or double words:

Bit: V[byte address].[bit address] V10.2
Byte, Word, or Double Word: V[size][starting byte address] VW100

Bit Memory Area: M

You can use the bit memory area (M memory) as control relays to store the intermediate status of
an operation or other control information. You can access the bit memory area in bits, bytes,
words, or double words:

Bit: M[byte address].[bit address] M26.7
Byte, Word, or Double Word: M[size][starting byte address] MD20

28

PLC Concepts Chapter 4

Timer Memory Area: T

The S7-200 provides timers that count increments of time in resolutions (time-base increments) of
1 ms, 10 ms, or 100 ms. Two variables are associated with a timer:

1 Current value: this 16-bit signed integer stores the amount of time counted by the timer.

[Timer bit: this bit is set or cleared as a result of comparing the current and the preset value.
The preset value is entered as part of the timer instruction.

You access both of these variables by using the timer address (T + timer number). Access to
either the timer bit or the current value is dependent on the instruction used: instructions with bit
operands access the timer bit, while instructions with word operands access the current value. As
shown in Figure 4-6, the Normally Open Contact instruction accesses the timer bit, while the Move
Word instruction accesses the current value of the timer.

Format: T[timer number] T24
> ENM\C,)VV- Current Value Timer Bits | |T3|
TO T0 ‘ b
T3—IN OUT |— Vw200 1 1
T2 T2
" |15 (MsB) T3 0 (LSB) T3

Accesses the current value Accesses the timer bit

Figure 4-6

Accessing the Timer Bit or the Current Value of a Timer

Counter Memory Area: C

The S7-200 provides three types of counters that count each low-to-high transition event on the
counter input(s): one type counts up only, one type counts down only, and one type counts both
up and down. Two variables are associated with a counter:

[Current value: this 16-bit signed integer stores the accumulated count.

1 Counter bit: this bit is set or cleared as a result of comparing the current and the preset
value. The preset value is entered as part of the counter instruction.

You access both of these variables by using the counter address (C + counter number). Access to
either the counter bit or the current value is dependent on the instruction used: instructions with bit
operands access the counter bit, while instructions with word operands access the current value.
As shown in Figure 4-7, the Normally Open Contact instruction accesses the counter bit, while the
Move Word instruction accesses the current value of the counter.

Format: C[counter number] C24
2.1

E,znov_w Current Value Counter Bits | |C3|
co co ‘ b

c3—{IN OUT [— VW200 c1 c1

| Cc2 Cc2

15 (MSB) C3 0 (LSB) C3

Accesses the current value Accesses the counter bit
Figure 4-7 Accessing the Counter Bit or the Current Value of a Counter

29

S7-200 Programmable Controller System Manual

High-Speed Counters: HC

The high-speed counters count high-speed events independent of the CPU scan. High-speed
counters have a signed, 32-bit integer counting value (or current value). To access the count
value for the high-speed counter, you specify the address of the high-speed counter, using the
memory type (HC) and the counter number (such as HCO). The current value of the high-speed
counter is a read-only value and can be addressed only as a double word (32 bits).

Format: HC[high-speed counter number] HC1

Accumulators: AC

The accumulators are read/write devices that can be used like memory. For example, you can use
accumulators to pass parameters to and from subroutines and to store intermediate values used
in a calculation. The S7-200 provides four 32-bit accumulators (ACO, AC1, AC2, and AC3). You
can access the data in the accumulators as bytes, words, or double words.

The size of the data being accessed is determined by the instruction that is used to access the
accumulator. As shown in Figure 4-8, you use the least significant 8 or 16 bits of the value that is
stored in the accumulator to access the accumulator as bytes or words. To access the
accumulator as a double word, you use all 32 bits.

For information about how to use the accumulators within interrupt subroutines, refer to the
Interrupt Instructions in Chapter 6.

Format: AC[accumulator number] ACO

Network 1
MO0 MoV B AC2 (accessed as a byte) msB LsB

— p——fn Eeno— | ! g

ACZ24IN OUTFwE200

Metwork 2
AC1 (accessed as aword) msB LSB
KA1 DEC_W 15 8 7 o
_| | BN ENO >| | | Most significant Least significant
actdn outhwwion Byte 1 Byte 0
Network 3 AC3 (accessed as a double word)
MSB LSB
MO.2 IN_DW 31 24 23 16 15 8 7 0
_| | BN ENO >| | Most significant | Least significant
acadn outhvooso Byte 3 Byte 2 Byte 1 Byte O

Figure 4-8 Accessing the Accumulators

30

PLC Concepts Chapter 4

Special Memory: SM

The SM bits provide a means for communicating information between the CPU and your program.
You can use these bits to select and control some of the special functions of the S7-200 CPU,
such as: a bit that turns on for the first scan cycle, a bit that toggles at a fixed rate, or a bit that
shows the status of math or operational instructions. (For more information about the SM bits, see
Appendix D.) You can access the SM bits as bits, bytes, words, or double words:

Bit: SM[byte address].[bit address] SMO0.1
Byte, Word, or Double Word: SM[size][starting byte address] SMB86

Local Memory Area: L

The S7-200 provides 64 bytes of local memory of which 60 can be used as scratchpad memory or
for passing formal parameters to subroutines.

Tip
If you are programming in either LAD or FBD, STEP 7-Micro/WIN reserves the last four bytes of
local memory for its own use.

Local memory is similar to V memory with one major exception. V memory has a global scope
while L memory has a local scope. The term global scope means that the same memory location
can be accessed from any program entity (main program, subroutines, or interrupt routines). The
term local scope means that the memory allocation is associated with a particular program entity.
The S7-200 allocates 64 bytes of L memory for the main program, 64 bytes for each subroutine
nesting level, and 64 bytes for interrupt routines.

The allocation of L memory for the main program cannot be accessed from subroutines or from
interrupt routines. A subroutine cannot access the L memory allocation of the main program, an
interrupt routine, or another subroutine. Likewise, an interrupt routine cannot access the L memory
allocation of the main program or of a subroutine.

The allocation of L memory is made by the S7-200 on an as-needed basis. This means that while
the main portion of the program is being executed, the L memory allocations for subroutines and
interrupt routines do not exist. At the time that an interrupt occurs or a subroutine is called, local
memory is allocated as required. The new allocation of L memory might reuse the same L
memory locations of a different subroutine or interrupt routine.

The L memory is not initialized by the S7-200 at the time of allocation and might contain any
value. When you pass formal parameters in a subroutine call, the values of the parameters being
passed are placed by the S7-200 in the appropriate L memory locations of the called subroutine. L
memory locations, which do not receive a value as a result of the formal parameter passing step,
will not be initialized and might contain any value at the time of allocation.

Bit: L[byte address].[bit address] LO.0
Byte, Word, or Double Word: L[size] [starting byte address] LB33

Analog Inputs: Al

The S7-200 converts an analog value (such as temperature or voltage) into a word-length (16-bit)
digital value. You access these values by the area identifier (Al), size of the data (W), and the
starting byte address. Since analog inputs are words and always start on even-number bytes
(such as 0, 2, or 4), you access them with even-number byte addresses (such as AIWO0, AIW2, or
AIW4). Analog input values are read-only values.

Format: AlW(starting byte address] Alw4

31

S7-200 Programmable Controller System Manual

32

Analog Outputs: AQ

The S7-200 converts a word-length (16-bit) digital value into a current or voltage, proportional to
the digital value (such as for a current or voltage). You write these values by the area identifier
(AQ), size of the data (W), and the starting byte address. Since analog outputs are words and
always start on even-number bytes (such as 0, 2, or 4), you write them with even-number byte
addresses (such as AQWO0, AQW2, or AQW4). Analog output values are write-only values.

Format: AQW(starting byte address] AQWA4

Sequence Control Relay (SCR) Memory Area: S

SCRs or S bits are used to organize machine operations or steps into equivalent program
segments. SCRs allow logical segmentation of the control program. You can access the S bits as
bits, bytes, words, or double words.

Bit: S[byte address].[bit address] S3.1
Byte, Word, or Double Word: S[size][starting byte address] SB4

Format for Real Numbers

Real (or floating-point) numbers are represented as 32-bit, single-precision numbers, whose
format is described in the ANSV/IEEE 754-1985 standard. See Figure 4-9. Real numbers are
accessed in double-word lengths.

For the S7-200, floating point numbers are MSB LSB
accurate up to 6 decimal places. Therefore, 81 30 23 22 _ 0
you can specify a maximum of 6 decimal | S | Exponent Mantissa

places when entering a floating-point Sign

constant. Figure 4-9 Format of a Real Number
Accuracy when Calculating Real Numbers

Calculations that involve a long series of values including very large and very small numbers can
produce inaccurate results. This can occur if the numbers differ by 10 to the power of x,
where x > 6.

For example: 100 000 000 + 1 =100 000 000

Format for Strings

A string is a sequence of characters, with each character being stored as a byte. The first byte of
the string defines the length of the string, which is the number of characters. Figure 4-10 shows
the format for a string. A string can have a length of 0 to 254 characters, plus the length byte, so
the maximum length for a string is 255 bytes. A string constant is limited to 126 bytes.

| Length | Character 1 | Character 2 | Character 3 | Character 4 | . | Character 254

Byte O Byte 1 Byte 2 Byte 3 Byte 4 Byte 254

Figure 4-10 Format for Strings

PLC Concepts Chapter 4

Specifying a Constant Value for S7-200 Instructions

You can use a constant value in many of the S7-200 instructions. Constants can be bytes, words,
or double words. The S7-200 stores all constants as binary numbers, which can then be
represented in decimal, hexadecimal, ASCII, or real number (floating point) formats. See

Table 4-2.

Table 4-2 Representation of Constant Values

Representation Format Sample

Decimal [decimal value] 20047

Hexadecimal 16#[hexadecimal value] 16#4E4F

Binary 2#[binary number] 2#1010_0101_1010_0101

ASCII 'TASCII text]’ "ABCD’

Real ANSI/IEEE 754-1985 +1.175495E-38 (positive) -1.175495E-38 (negative)
String “[stringtext]” “ABCDE”"

Tip

@ The S7-200 CPU does not support “data typing” or data checking (such as specifying that the
constant is stored as an integer, a signed integer, or a double integer). For example, an Add
instruction can use the value in VW100 as a signed integer value, while an Exclusive Or
instruction can use the same value in VW100 as an unsigned binary value.

Addressing the Local and Expansion I/O

The local I/O provided by the CPU provides a fixed set of /O addresses. You can add I/O points to
the S7-200 CPU by connecting expansion /O modules to the right side of the CPU, forming an 1/0O
chain. The addresses of the points of the module are determined by the type of I/O and the
position of the module in the chain, with respect to the preceding input or output module of the
same type. For example, an output module does not affect the addresses of the points on an input
module, and vice versa. Likewise, analog modules do not affect the addressing of digital modules,
and vice versa.

Tip

@ Process-image register space for digital I/O is always reserved in increments of eight bits (one
byte). If a module does not provide a physical point for each bit of each reserved byte, these
unused bits cannot be assigned to subsequent modules in the I/O chain. For input modules, the
unused bits are set to zero with each input update cycle.

Analog I/O points are always allocated in increments of two points. If a module does not provide
physical I/O for each of these points, these I/O points are lost and are not available for
assignment to subsequent modules in the 1/O chain.

33

S7-200 Programmable Controller System Manual

Figure 4-11 provides an example of the /O numbering for a particular hardware configuration. The
gaps in the addressing (shown as gray italic text) cannot be used by your program.

4 Analog In 4 Analog In
CPU 224XP ‘ 41In/4 Out ‘ 81In 1 Analog Out 1 Analog Out
10.0 Q0.0 Module 0 Module 1 Module 2 Module 3 Module 4
10.1 Q0.1 120 Q20 13.0 AlW4 AQW4 Q3.0 AIW12 AQWS
10.2 Q0.2 21 Q21 13.1 AIW6 AQW6 Q3.1 AW14 AQWIO0
10.3 Q0.3 22 Q2.2 13.2 AlWS Q3.2 AIW16
10.4 Q0.4 123 Q23 13.3 AIW10 Q3.3 AIW18
10.5 Q0.5 24 Q24 13.4 Q3.4
10.6 Q0.6 125 Q25 13.5 Q35
10.7 Q0.7 26 Q26 13.6 Q3.6
1.0 QL0 27 Q27 13.7 Q3.7
1.1 QL1
1.2 QL2 Expansion 1/O
1.3 Q1.3
114 QL4
L5 QL5
1.6 QL6
1.7 QL7
AIWO AQWO
AlW2 AQW2
Local I/O

Figure 4-11 Sample I/O Addresses for Local and Expansion I/O (CPU 224XP)

34

Using Pointers for Indirect Addressing of the S7-200 Memory Areas

Indirect addressing uses a pointer to access the data in memory. Pointers are double word
memory locations that contain the address of another memory location. You can only use

V memory locations, L memory locations, or accumulator registers (AC1, AC2, AC3) as pointers.
To create a pointer, you must use the Move Double Word instruction to move the address of the
indirectly addressed memory location to the pointer location. Pointers can also be passed to a
subroutine as a parameter.

The S7-200 allows pointers to access the following memory areas: I, Q, V, M, S, Al, AQ, SM,
T (current value only), and C (current value only). You cannot use indirect addressing to access
an individual bit or to access HC or L memory areas.

To indirectly access the data in a memory address, you create a pointer to that location by
entering an ampersand (&) and the memory location to be addressed. The input operand of the
instruction must be preceded with an ampersand (&) to signify that the address of a memory
location, instead of its contents, is to be moved into the location identified in the output operand of
the instruction (the pointer).

Entering an asterisk (*) in front of an operand for an instruction specifies that the operand is a
pointer. As shown in Figure 4-12, entering *AC1 specifies that AC1 is a pointer to the word-length
value being referenced by the Move Word (MOVW) instruction. In this example, the values stored
in both VB200 and VB201 are moved to accumulator ACO.

AC1
V199 | address of VW200 | <—— MOVD &VW200, AC1

V200 12 1 Creates the pointer by moving the address of VB200
V201 34 (address of the initial byte for VW200) to AC1.

V202 56 ACO

vaos | 78 | | 1234 |<— movw *AC1, ACO

Moves the word value pointed to by AC1 to ACO.

Figure 4-12 Creating and Using a Pointer

PLC Concepts Chapter 4

As shown in Figure 4-13, you can change the value of a pointer. Since pointers are 32-bit values,
use double-word instructions to modify pointer values. Simple mathematical operations, such as
adding or incrementing, can be used to modify pointer values.

V199 ACL
| address of VW200 |<— MOVD &VW200, AC1
V200 12 N Creates the pointer by moving the address of
V201 34 S| ACO l VB200 (address of VW200's initial byte) to AC1.
V202 56 | | 1234 | MOVW *AC1, ACO
V203 78 Moves the word value pointed to by
AC1 (VW200) to ACO.
ACL
V199
| address of VW202 |<— +D +2, AC1
V200 12 ACO Adds 2 to the accumulator to point to the
V201 34 next word location.
V02 | 56 | | 5675 | MOVW *AC1, ACO
] T Moves the word value pointed to by
V203 78 AC1 (VW202) to ACO.
Figure 4-13 Modifying a Pointer
Tip

¥

Remember to adjust for the size of the data that you are accessing: to access a byte, increment

the pointer value by 1; to access a word or a current value for a timer or counter, add or
increment the pointer value by 2; and to access a double word, add or increment the pointer

value by 4.

Sample Program for Using an Offset to Access Data in V Memory

This example uses LD10 as a pointer to the address VBO. You then increment the pointer by an offset stored in VD1004.
LD10 then points to another address in V memory (VBO + offset). The value stored in the V memory address pointed to
by LD10 is then copied to VB1900. By changing the value in VD1004, you can access any V memory location.

Network 1 //How to use an offset to read the value

%l

FLD10

LD

FLD10 +D

HNetwork 1

SMO.0 WOV_O
— | EN ENO
gvBodin_ ouT

A0D_DI
EN ENO
vD1004diM1 ouT

LD104im2

MO _B
EM ENO
=o104M__ out

%l

F/E1900

/lof any VB location:

1

/[1. Load the starting address of the
/IV memory to a pointer.

/[2. Add the offset value to the pointer.
/3. Copy the value from the V memory
/Nlocation (offset) to VB1900.

1

SMO0.0

MOVD &VBO, LD10
VD1004, LD10
MOVB *LD10, VB1900

35

S7-200 Programmable Controller System Manual

Sample Program for Using a Pointer to Access Data in a Table

This example uses LD14 as a pointer to a recipe stored in a table of recipes that begins at VB100. In this example,
VW1008 stores the index to a specific recipe in the table. If each recipe in the table is 50 bytes long, you multiply the
index by 50 to obtain the offset for the starting address of a specific recipe. By adding the offset to the pointer, you can
access the individual recipe from the table. In this example, the recipe is copied to the 50 bytes that start at VB1500.

Network 1
SMD.D WOW_DW
[
— | EN ENO—)
avB1oodN__ oUTkLD14
(5]
EN ENOH
wwioosdin___ ouThLD18
WUL_DI
EN ENO—)
w501 outhLD1s
LD18 Iz
ADD_D
EN ENO—)
Loisdmt ouThLD14
LD1 44z
BLKMOY_B
EN ENO—)
1D14dIN ouThvBTS00
s04n

Network 1 //How to transfer a recipe from a table of recipes:

LD
MOVD
ITD

*D

+D
BMB

I -
Il -
1
1
/1.
1
112.
1
113.
1
114,
115.
1

SMO0.0

Each recipe is 50 bytes long.
The index parameter (VW1008) identifies
the recipe to be loaded.

Create a pointer to the starting address
of the recipe table.

Convert the index of the recipe to a
double-word value.

Multiply the offset to accommodate

the size of each recipe.

Add the adjusted offset to the pointer.
Transfer the selected recipe to
VB1500 through VB1549.

&VB100, LD14
VW1008, LD18
+50, LD18

LD18, LD14
*LD14, VB1500, 50

Understanding How the S7-200 Saves and Restores Data

The S7-200 provides a variety of features to ensure that your user program and data are properly

retained in the S7-200.

1 Retentive Data Memory - Areas of data memory the user selects to remain unchanged
over a power cycle, as long as the super capacitor and the optional battery cartridge have
not been discharged. V, M, Timer Currents, and Counter Currents are the only data memory
areas that are configurable to be retentive.

Permanent Memory - Non-volatile memory used to store the program block, data block,

system block, forced values, M memory configured to be saved on loss of power, and
selected values written under user program control

a

Memory Cartridge - Removable non-volatile memory used to store the program block, data

block, system block, recipes, data logs, and forced values

You can use the S7-200 Explorer to store documentation files (doc, text, pdf, etc.) into the
cartridge. You can also use the S7-200 Explorer to perform general file maintenance on the
memory cartridge (copy, delete, directory and launch).

To install a memory cartridge, remove the plastic slot cover from the S7-200 CPU and insert the
memory cartridge in the slot. The memory cartridge is keyed for proper installation.

Caution

Electrostatic discharge can damage the memory cartridge or the receptacle on the S7-200 CPU.

Make contact with a grounded conductive pad and/or wear a grounded wrist strap when you
handle the cartridge. Store the cartridge in a conductive container.

36

PLC Concepts Chapter 4

Downloading and Uploading the Elements of Your Project
Your project consists of different elements:

1 Program block

1 Data block (optional)

1 System block (optional)

1 Recipes (optional)

1 Data log configurations (optional)
When you download a project, the program block, data block and system block are stored in
permanent memory for safekeeping. Recipes and data log configurations are stored in the
memory cartridge, and replace any existing recipes and data logs. Any program elements not

included in the download operation are left unchanged in permanent memory and the memory
cartridge.

If a project download includes recipes or
data log configurations, the memory
cartridge must remain installed for proper
program operation.

To download your project to an S7-200
CPU:

1. Selectthe File > Download menu
command.

2. Click each project element you
wish to download.

3. Click the Download Button.

Figure 4-14 Download a Project to S7-200 CPU

When you upload a project to your computer using STEP 7-Micro/WIN, the S7-200 uploads the
program block, data block and system block from permanent memory. The recipes and data log
configurations are uploaded from the memory cartridge. The data from the data logs is not
uploaded to your computer using STEP7-Micro/WIN. The S7-200 Explorer is used to upload the
data from the data logs (see Chapter 14).

To upload your project from an S7-200
CPU:

1. Selectthe File > Upload menu
command.

2. Click each project element that you
wish to upload.

3. Click the Upload Button.

Figure 4-15 Upload a Project to the S7-200

37

S7-200 Programmable Controller System Manual

38

Storing your Program on a Memory Cartridge

The S7-200 allows you to copy your user program from one CPU to another using a memory
cartridge. You can also distribute updates for any of the following blocks in your S7-200: the
program block, system block or data block.

Before copying any program elements to the memory cartridge, STEP 7-Micro/WIN deletes all
program elements (including recipes and data logs) except for user files on the memory cartridge.
If your program will not fit because of the size of your files, you can do one of two things to create
enough storage space for your program. You can either erase the memory cartridge using the
PLC > Erase Memory Cartridge menu command. Or, you can open the S7-200 Explorer and
remove user files that are no longer needed.

The PLC must be in STOP mode to program the memory cartridge.

To store your program in the memory
cartridge:

1. Selectthe PLC > Program
Memory Cartridge menu
command.

2. Click each project element you
wish to copy to the memory
cartridge (all program elements
that exist in your project are
selected by default). If the system
block is selected the force values
will be copied as well.

3. Click the Program Button
Figure 4-16 Store a Program on a Memory Cartridge

The program block, system block, data block, and any forced values are copied from permanent
memory in the S7-200 to the memory cartridge. The recipes and data log configurations are
copied from STEP 7-Micro/WIN to the memory cartridge.

Restoring a Program from a Memory Cartridge

To transfer the program from a memory cartridge to the S7-200, you must apply power to the
S7-200 with the memory cartridge installed. If any of the blocks or force values present in the
memory cartridge are different from the blocks or force values in the S7-200, then all blocks
present in the memory cartridge are copied to the S7-200.

1 Ifa program block was transferred from the memory cartridge, the program block in
permanent memory is replaced.

1 If adata block was transferred from the memory cartridge, the data block in permanent
memory is replaced, all of V memory is cleared, and V memory is initialized with the
contents of the data block.

1 If a system block was transferred from the memory cartridge, the system block and force
values in the permanent memory are replaced and all retentive memory is cleared.

Once the transferred program has been stored to permanent memory you can remove the
memory cartridge. However, if recipes or data logs are present in the cartridge, you must leave
the memory cartridge installed. Leaving the memory cartridge installed will delay entry to RUN
mode on subsequent power cycles.

Notice

Powering on an S7-200 CPU with an installed memory cartridge that was programmed by a
different model of S7-200 CPU can cause an error. Memory cartridges that are programmed by
a lower model number CPU can be read by a higher model number CPU. However, the
opposite is not true. For example, memory cartridges that are programmed by a CPU 221 or
CPU 222 can be read by a CPU 224, but memory cartridges that are programmed by a

CPU 224 are rejected by a CPU 221 or CPU 222.

For a complete list of memory cartridge usage restrictions, see Optional Cartridges (Memory
Cartridge) in Appendix A.

PLC Concepts Chapter 4

Saving the Retentive M Memory Area on Power Loss

If you configured any of the first 14 bytes of bit memory (MBO to MB13) to be retentive, these
bytes are saved to permanent memory when the S7-200 loses power. By default, the first 14
bytes of M memory are selected to be non-retentive.

Restoring Data after Power On

When power is applied, the S7-200 restores the program block and the system block from
permanent memory. The S7-200 then verifies that the super capacitor and optional battery
cartridge, if installed, has successfully maintained the data stored in RAM memory. If the data was
successfully maintained, the retentive areas of user data memory are left unchanged. The
non-retentive portions of V. memory are restored from the contents of the data block in permanent
memory. The non-retentive portions of other memory areas are cleared.

If the contents of RAM were not maintained (such as after an extended power failure), the S7-200
clears all user data areas, sets the Retentive Data Lost memory bit (SMO0.2), restores V memory
from the contents of the data block in permanent memory, and restores the first 14 bytes of

M memory from permanent memory if these bytes were previously configured as retentive.

Using Your Program to Save V Memory to Permanent Memory

You can save a value (byte, word, or double word) stored in any location of the V memory area to
permanent memory. A save to permanent memory operation typically increases the scan time by
10 to 15 ms. The value written by the Save operation overwrites any previous value stored in the
V memory area of permanent memory.

The save to permanent memory operation does not update the data in the memory cartridge.

Tip

Since the number of save operations to the permanent memory (EEPROM) is limited (100,000
minimum, and 1,000,000 typical), you should ensure that only necessary values are saved.
Otherwise, the EEPROM can wear out and the CPU can fail. Typically, you should perform save
operations at the occurrence of specific events that occur rather infrequently.

For example, if the scan time of the S7-200 is 50 ms and a value was saved once per scan, the
EEPROM would last a minimum of 5,000 seconds, which is less than an hour and a half. On the
other hand, if a value were saved once an hour, the EEPROM would last a minimum of 11
years.

Copying V Memory to Permanent Memory

Special Memory Byte 31 (SMB31) commands the S7-200 to copy a value in V memory to the
V memory area of permanent memory. Special Memory Word 32 (SMW32) stores the address
location of the value that is to be copied. Figure 4-17 shows the format of SMB31 and SMW32.

Use the following steps to program the S7-200 to SMB31
7

o Size of value to be

save or write a specific value in V. memory: saved:
|sv | o|o| o| o| 0 |sl| so| 00 - byte
01 - byte
1. Loadthe V memory address of the value to | 10 - word
be saved in SMW32. Save to permanent memory: 11 - double word
. . 0=No
2. Load the size of the data in SM31.0 and 1=Yes \ The CPU resets
SM31.1, as shown in Figure 4-17. SM3L7 after each

save operation.

3. SetSM31.7 to 1.
SMW32
At the end of every scan cycle, the S7-200 checks 15 V memory address o|
SM31.7; if SM31.7 equals 1, the specified value is
saved to permanent memory. The operation is
complete when the S7-200 resets SM31.7 to O.

Specify the V memory address as an offset from VO.

Do not change the value in V memory until the Figure 4-17 SMB31 and SMW32
save operation is complete.

39

S7-200 Programmable Controller System Manual

%

Copying V Memory to permanent memory can be used to save values that are created from an
HMI and stored from the program to the internal EEPROM.

To include the values saved to the internal EEPROM in your STEP 7-Micro/WIN project, you
must upload the DB. However, this upload is only possible if the DB (which included a variable
that was at an equal or higher address than the V Memory address saved in SMW32) was
previously downloaded from STEP 7-Micro/WIN.

Sample Program: Copying V Memory to the Permanent Memory

This example transfers VB100 to permanent memory. On a rising edge of 10.0, if another transfer is not in progress, it
loads the address of the V memory location to be transferred to SMW32. It selects the amount of V memory to transfer
(1=Byte; 2=Word; 3=Double Word or Real). It then sets SM31.7 to have the S7-200 transfer the data at the end of the

scan.

The S7-200 automatically resets SM31.7 when the transfer is complete.

Hetwork 1
0.0

Network 1 /[Transfer a V memory
. Lo fr-Sll? MOV_w¢ /llocation (VB100) to
I 1P 11 EN eno—) /I[permanent memory
+1004IM ouTh Mz LD 10.0
EU
AN SM31.7
Mov_B MOVW +100, SMW32
@ o MovB 1, SMB3L
14n ouT| 5MB31 S SM31.7,1
SMaT

—()

Selecting the Operating Mode for the S7-200 CPU

40

The S7-200 has two modes of operation: STOP mode and RUN mode. The status LEDs on the
front of the CPU indicates the current mode of operation. In STOP mode, the S7-200 is not
executing the program, and you can download a program or the CPU configuration. In RUN
mode, the S7-200 is running the program.

1 The S7-200 provides a mode switch for changing the mode of operation. You can use the

mode switch (located under the front access door of the S7-200) to manually select the
operating mode: setting the mode switch to STOP mode stops the execution of the
program; setting the mode switch to RUN mode starts the execution of the program; and
setting the mode switch to TERM (terminal) mode does not change the operating mode.

If a power cycle occurs when the mode switch is set to either STOP or TERM, the S7-200
goes automatically to STOP mode when power is restored. If a power cycle occurs when
the mode switch is set to RUN, the S7-200 goes to RUN mode when power is restored.

STEP 7-Micro/WIN allows you to change the operating mode of the online S7-200. To
enable the software to change the operating mode, you must manually set the mode switch
on the S7-200 to either TERM or RUN. You can use the PLC > STOP or PLC > RUN menu
commands or the associated buttons on the toolbar to change the operating mode.

You can insert the STOP instruction in your program to change the S7-200 to STOP mode.
This allows you to halt the execution of your program based on the program logic. For more
information about the STOP instruction, see Chapter 6.

PLC Concepts Chapter 4

Using the S7-200 Explorer

The S7-200 Explorer is an extension to
the Windows Explorer application that
provides access to S7-200 PLCs and
allows the contents of each connected
PLC to be explored. The different blocks
that may reside in either the PLC or the
memory cartridge can be determined.
Properties are available for each block.

Since the S7-200 Explorer is an

extension to the Windows Explorer

application, standard Windows Figure 4-18 S7-200 Explorer
navigation and behaviors are supported.

The S7-200 Explorer is the mechanism used to read data log data stored within the memory
cartridge. Refer to Chapter 14 for more information about data logs.

The S7-200 Explorer can also be used to read or write user files to the memory cartridge. These
can be any type of files, Word documents, bitmap files, jpeg files, or STEP 7-Micro/WIN projects.

Features of the S7-200

The S7-200 provides several special features that allow you to customize how the S7-200
functions to better fit your application.

The S7-200 Allows Your Program to Immediately Read or Write the 1/O

The S7-200 instruction set provides instructions that immediately read from or write to the physical
1/0. These immediate 1/O instructions allow direct access to the actual input or output point, even
though the image registers are normally used as either the source or the destination for /O
accesses.

The corresponding process-image input register location is not modified when you use an
immediate instruction to access an input point. The corresponding process-image output register
location is updated simultaneously when you use an immediate instruction to access an output
point.

Tip
@ The S7-200 handles reads of analog inputs as immediate data, unless you enable analog input
filtering. When you write a value to an analog output, the output is updated immediately.

It is usually advantageous to use the process-image register rather than to directly access inputs
or outputs during the execution of your program. There are three reasons for using the image
registers:

1 The sampling of all inputs at the start of the scan synchronizes and freezes the values of
the inputs for the program execution phase of the scan cycle. The outputs are updated from
the image register after the execution of the program is complete. This provides a stabilizing
effect on the system.

1 Your program can access the image register much more quickly than it can access /0
points, allowing faster execution of the program.

1 /O points are bit entities and must be accessed as bits or bytes, but you can access the
image register as bits, bytes, words, or double words. Thus, the image registers provide
additional flexibility.

41

S7-200 Programmable Controller System Manual

42

The S7-200 Allows Your Program to Interrupt the Scan Cycle

If you use interrupts, the routines associated with each interrupt event are stored as part of the
program. The interrupt routines are not executed as part of the normal scan cycle, but are
executed when the interrupt event occurs (which could be at any point in the scan cycle).

Interrupts are serviced by the S7-200 on a first-come-first-served basis within their respective
priority assignments. See the Interrupt instructions in Chapter 6 for more information.

The S7-200 Allows You to Allocate Processing Time for Run Mode Edit
and Execution Status

You can configure a percentage of the scan cycle to be dedicated for processing a run mode edit
compilation or execution status. (Run mode edit and execution status are options provided by
STEP 7-Micro/WIN to make debugging your program easier.) As you increase the percentage of
time that is dedicated to these two tasks, you increase the scan time, which makes your control
process run more slowly.

The default percentage of the scan dedicated to processing run mode edits and execution status
is set to 10%. This setting was chosen to provide a reasonable compromise for processing the
compilation and status operations while minimizing the impact to your control process. You can
adjust this value by 5% increments up to a maximum of 50%. To set the scan cycle time-slice for
background communications:

1. Selectthe View > Component >
System Block menu command
and select Background Time.

2. Inthe Background tab, use the
drop down box to select the
communications background time.

3. Click OK to save your selection.

4. Download the modified system
block to the S7-200.

Figure 4-19 Communications Background Time

PLC Concepts Chapter 4

The S7-200 Allows You to Set the States of Digital Outputs for Stop
Mode

The output table of the S7-200 allows you to determine whether to set the state of the digital
output points to known values upon a transition to the STOP mode, or to leave the outputs in the
state they were in before the transition to the STOP mode. The output table is part of the system
block that is downloaded and stored in the S7-200.

1. Selectthe View > Component >
System Block menu command
and select Output Table. Click on
the Digital tab.

2. To freeze the outputs in their last
state, select the Freeze Outputs
checkbox.

3. To copy the table values to the
outputs, enter the output table
values by clicking the checkbox for
each output bit you want to set to
On (1) after a run-to-stop transition.
The default values of the table are
all zeroes.

4. Click OK to save your selections.

5. Download the modified system Figure 4-20 Digital Output Table
block to the S7-200.

The S7-200 Allows You to Configure the Value of Analog Outputs

The Analog Output Table allows you to set analog output points to known values after a
RUN-to-STOP transition, or to preserve the output values that existed before the transition to
STOP mode. The Analog Output table is part of the system block that is downloaded and stored in
the S7-200 CPU.

1. Select the View > Component >
System Block menu command
and select Output Table. Click on
the Analog tab.

2. To freeze the outputs in their last
state, select the Freeze Outputs
check box.

3. The Freeze Values table allows
you to set the analog outputs to a
known value (-32768 to 37262),
on a RUN-to-STOP transition.

4. Click OK to save your selections.

5. Download the modified system
block to the S7-200.

Figure 4-21 Analog Output Table

The S7-200 Allows You to Define Memory to Be Retained on Loss of
Power
You can define up to six retentive ranges to select the areas of memory you want to retain through
power cycles. You can define ranges of addresses in the following memory areas to be retentive:

V, M, C, and T. For timers, only the retentive timers (TONR) can be retained. The default setting for
the first 14 bytes of M Memory is to be non-retentive.

Only the current values for timers and counters can be retained: the timer and counter bits are not
retentive.

43

S7-200 Programmable Controller System Manual

Tip
@ Changing the range MBO to MB13 to be retentive enables a special feature that automatically
saves these locations to the permanent memory on power down.

To define the retentive memory:

1. Selectthe View > Component >
System Block menu command
and select Retentive Ranges.

2. Select the ranges of memory to be
retained following loss of power
and click OK.

3. Download the modified system
block to the S7-200.

Figure 4-22 Retentive Memory

The S7-200 Allows You to Filter the Digital Inputs

The S7-200 allows you to select an input filter that defines a delay time (selectable from 0.2 ms to
12.8 ms) for some or all of the local digital input points. This delay helps to filter noise on the input
wiring that could cause inadvertent changes to the states of the inputs.

The input filter is part of the system block
that is downloaded and stored in the
S7-200. The default filter time is 6.4 ms.
As shown in Figure 4-23, each delay
specification applies to groups of input
points.

To configure the delay times for the input
filter:

1. Selectthe View > Component >
System Block menu command
and select Input Filters. Click on
the Digital tab.

2. Enter the amount of delay for each
group of inputs and click OK.

3. Download the modified system

Figure 4-23 Digital Input Filter
block to the S7-200.

Tip

@ The digital input filter affects the input value as seen by instruction reads, input interrupts, and
pulse catches. Depending on your filter selection, your program could miss an interrupt event or
pulse catch. The high speed counters count the events on the unfiltered inputs.

44

PLC Concepts Chapter 4

The S7-200 Allows You to Filter the Analog Inputs

¥

The S7-200 allows you to select software filtering on individual analog inputs. The filtered value is
the average value of a preselected number of samples of the analog input. The filter specification
(number of samples and deadband) is the same for all analog inputs for which filtering is enabled.

The filter has a fast response feature to allow large changes to be quickly reflected in the filter
value. The filter makes a step function change to the latest analog input value when the input
exceeds a specified change from the current value. This change, called the deadband, is
specified in counts of the digital value of the analog input.

The default configuration is to enable
filtering for all analog inputs except AIWO
and AIW2 on CPU 224XP.

1. Selectthe View > Component >
System Block menu command
and select Input Filters. Click on
the Analog tab.

2. Select the analog inputs that you
want to filter, the number of
samples, and the deadband.

3. Click OK.

4. Download the modified system
block to the S7-200.

Figure 4-24 Analog Input Filter
Tip
Do not use the analog filter with modules that pass digital information or alarm indications in the

analog words. Always disable analog filtering for RTD, Thermocouple, and AS-Interface Master
modules.

Tip
AIWO0 and AIW2 on the CPU 224XP are filtered by the analog to digital converter, and usually
will not need the additional software filter.

The S7-200 Allows You to Catch Pulses of Short Duration

The S7-200 provides a pulse catch feature which can be used for some or all of the local digital
input points. The pulse catch feature allows you to capture high-going pulses or low-going pulses
that are of such a short duration that they would not always be seen when the S7-200 reads the
digital inputs at the beginning of the scan cycle. When pulse catch is enabled for an input, a
change in state of the input is latched and held until the next input cycle update. This ensures that
a pulse which lasts for a short period of time is caught and held until the S7-200 reads the inputs.

You can individually enable the pulse
catch operation for each of the local
digital inputs.

To access the pulse catch configuration
screen:

1. Selectthe View > Component >
System Block menu command
and select Pulse Catch Bits.

2. Click the corresponding check box
and click OK.

3. Download the modified system
block to the S7-200.

Figure 4-25 Pulse Catch

45

S7-200 Programmable Controller System Manual

Figure 4-26 shows the basic operation of the S7-200 with and without pulse catch enabled.

Scan cycle ‘ Next scan cycle

[

Physical Input

The S7-200 misses this pulse because the input
turned on and off before the S7-200 updated the
process-image input register

Output from
pulse catch ‘

Disabled |

\

\
Enabled

T Input update T Input update
\ \
| \
\ \
\
\
\

The S7-200 catches the pulse on the physical input

Figure 4-26 Operation of the S7-200 with the Pulse Catch Feature Enabled and Disabled

Because the pulse catch function operates on the input after it passes through the input filter, you
must adjust the input filter time so that the pulse is not removed by the filter. Figure 4-27 shows a
block diagram of the digital input circuit.

- - r—— B
Optical Digital Input Pulse
® Isolation Filter Catch Llnput to S7_200J|
External f
Digital Input Pulse Catch Enable

Figure 4-27 Digital Input Circuit

Figure 4-28 shows the response of an enabled pulse catch function to various input conditions. If
you have more than one pulse in a given scan, only the first pulse is read. If you have multiple
pulses in a given scan, you should use the rising/falling edge interrupt events. (For a listing of
interrupt events, see Table 6-46.)

Scan cycle Next scan cycle
Input update Input update
Input to pulse catch L
\
Output from pulse catch
|
Input to pulse catch LT ‘

|

1

\ \

Output from pulse catch T o
|

Input to pulse catch ‘ I_;_l
i

Output from pulse catch

Figure 4-28 Responses of the Pulse Catch Function to Various Input Conditions

46

PLC Concepts Chapter 4

The S7-200 Provides a User-Controlled LED

The S7-200 provides an LED (SF/DIAG) that can indicate red (system fault LED) or yellow
(diagnostic LED). The diagnostic LED can be illuminated under user program control, or can
automatically illuminate under certain conditions: when an 1/O point or data value is forced, or
when a module has an I/O error.

To configure the automatic selections for
the diagnostic LED:

1. Selectthe View > Component >
System Block menu command
and select Configure LED.

2. Click each item to either enable or
disable turning on the LED when
an I/O point or data value is forced,
or when a module has an I/O error.

3. Download the modified system
block to the S7-200.

To control the state of the diagnostic LED
with your user program, use the
Diagnostic LED instruction in Chapter 6. Figure 4-29 Diagnostic LED

The S7-200 Maintains a History Log of Major CPU Events

The S7-200 maintains a log that contains
a time-stamped history of major CPL_J — s T T I
events, such as when power is applied, 04/05/04 022643 Trarstionto RON

04405404 02:26:43 Paower up
When the CPU enters RUN que’ and 04/05/04 02:26:25 Transition to BUMN
when fatal errors occur. Your time-of-day 04/05/04 022624 Powerwp

clock must be configured in order to get
valid time and date stamps on the log
entries.

To view the Event History log, select the

PLC > Information menu command and
select Event History. Figure 4-30 Viewing the Event History Log

The S7-200 Allows You to Increase Your Available User Program
Memory

The S7-200 allows you to disable the run
mode edit feature in the CPU 224,

CPU 224XP, and CPU 226 in order to
increase the amount of program memory
available for your use. Refer to Table 1-1
to see the amount of program memory
for each CPU model.

To disable the run mode edit feature,
follow these steps

1. Selectthe View > System Block
menu command and select
Increase Program Memory.

2. Click the Increase Memory item to
disable the run mode edit feature.

3. Download the modified system

Figure 4-31 Disable Run Mode Edit
block to the S7-200.

47

S7-200 Programmable Controller System Manual

48

The S7-200 Provides Password Protection

¥

All models of the S7-200 provide password protection for restricting access to specific functions.

A password authorizes access to the functions and memory: without a password, the S7-200
provides unrestricted access. When it is password protected, the S7-200 limits all restricted
operations according to the configuration provided when the password was installed

The password is not case-sensitive.

As shown in Table 4-3, the S7-200 provides four levels of access restriction. Each level allows
certain functions to be accessible without a password. For the four levels of access, entering the
correct password provides access to the functions as noted below. The default condition for the
S7-200 is level 1 (no restriction).

Entering the password over a network does not compromise the password protection for the
S7-200.

You can in effect, disable the password by changing the password level 4, 3, or 2 to Level 1, since
Level 1 allows all unrestricted CPU access.

Table 4-3 Restricting Access to the S7-200
CPU Function Level 1 Level 2 Level 3 Level 4

Read and write user data

Start, Stop, and Power-Up Reset

of the CPU Access allowed | Access allowed
Read and write the time-of-day Access allowed
Clock
Upload the user program, data, Never allowed
and the CPU configuration
Download of Program Block, Data Password
Block or System Block required (Never
allowed for
System Block)
Runtime Edits Never allowed
Delete of Program Block, Data Password
Block, or System Data Block Access allowed required (Never
allowed for
System Block
Password y)
Copy of Program Block, Data Password required
Block, or Sys_tem Data Block to the required
memory cartridge
Force data in status chart
Password
Execute the single or multiple scan required

Writing of output in STOP mode

Reset of scan rates in PLC
information

Execution status

- Never allowed
Project compare

Having one user authorized to access restricted functions Reset of Scan Rates in PLC information
does not authorize other users to access those functions. Only one user is allowed unrestricted
access to the S7-200 at a time.

Tip

After you enter the password, the authorization level for that password remains effective for up
to one minute after the programming device has been disconnected from the S7-200. Always
exit STEP 7-Micro/WIN before disconnecting the cable to prevent another user from accessing
the privileges of the programming device.

PLC Concepts Chapter 4

Configuring a Password for the S7-200

The System Block dialog box (Figure 4-32) allows you to configure a password for the S7-200.
The default condition for the S7-200 is set at Full (Level 1), no restriction.

1. Selectthe View > Component >
System Block menu command to
display the System Block dialog
box and select Password.

2. Select the appropriate level of
access for the S7-200.

3. Enter and verify the password for
Partial (Level 2) or Minimum
(Level 3).

4. Click OK.

5. Download the modified system
block to the S7-200.

Figure 4-32 Creating a Password

Recovering from a Lost Password

If you forget the password, you must clear the memory of the S7-200 and reload your program.
Clearing the memory puts the S7-200 in STOP mode and resets the S7-200 to the factory-set
defaults, except for the network address, baud rate, and the time-of-day clock. To clear your
program in the S7-200:

1. Selectthe PLC > Clear menu command to display the Clear dialog box.
2. Select all three blocks and confirm your action by clicking OK.

3. If a password had been configured, STEP 7-Micro/WIN displays a password-authorization
dialog box. To clear the password, enter CLEARPLC in the password-authorization dialog
box to continue the Clear All operation. (The CLEARPLC password is not case sensitive.)

The Clear All operation does not remove the program from a memory cartridge. Since the memory
cartridge stores the password along with the program, you must also reprogram the memory
cartridge to remove the lost password.

Warning

Clearing the S7-200 memory causes the outputs to turn off (or in the case of an analog output,
to be frozen at a specific value).

If the S7-200 is connected to equipment when you clear the memory, changes in the state of the
outputs can be transmitted to the equipment. If you had configured the “safe state” for the
outputs to be different from the factory settings, changes in the outputs could cause
unpredictable operation of your equipment, which in turn could cause death or serious injury to
personnel, and/or damage to equipment.

Always follow appropriate safety precautions and ensure that your process is in a safe state
before clearing the S7-200 memory.

49

S7-200 Programmable Controller System Manual

The S7-200 Provides Analog Adjustment Potentiometers

The analog adjustment potentiometers are located under the front access cover of the module.
You can adjust these potentiometers to increase or decrease values that are stored in bytes of
Special Memory (SMB). These read-only values can be used by the program for a variety of
functions, such as updating the current value for a timer or a counter, entering or changing the
preset values, or setting limits. Use a small screwdriver to make the adjustments: turn the
potentiometer clockwise (to the right) to increase the value, and counterclockwise (to the left) to
decrease the value.

SMB28 holds the digital value that represents the position of analog adjustment 0. SMB29 holds
the digital value that represents the position of analog adjustment 1. The analog adjustment has a
nominal range of 0 to 255 and a repeatability of +2 counts.

Sample Program for Referencing the Value Entered with the Analog Adjustment Potentiometers

Network 1 Network 1 //Read analog adjustment 0 (SMB28).
] Bl //Save the value as an integer in VW100.

—en Eenol—3y LD 10.0

BTI SMB28, VW100

SMB284IM QUT w100

Network 2 //Use the integer value (VW100) as
/la preset for a timer.

LDN Q0.0

Network 2 TON T33, VW100
Q0.0 733 ’
— + |—~ 7w
Network 3 /[Turn on Q0.0 when T33 reaches
W 004PT__ 10ms /lthe preset value.
LD T33
= Q0.0
Metwork 3
733 0o

The S7-200 Provides High-speed 1/0

High-Speed Counters

The S7-200 provides integrated high-speed counter functions that count high speed external
events without degrading the performance of the S7-200. See Appendix A for the rates supported
by your CPU model. Each counter has dedicated inputs for clocks, direction control, reset, and
start, where these functions are supported. You can select different quadrature modes for varying
the counting rate. For more information on high-speed counters, see Chapter 6.

High-Speed Pulse Output

The S7-200 supports high-speed pulse outputs, with outputs Q0.0 and Q0.1 generating either a
high-speed pulse train output (PTO) or pulse width modulation (PWM).

The PTO function provides a square wave (50% duty cycle) output for a specified number of
pulses (from 1 to 4,294,967,295 pulses) and a specified cycle time (in either microsecond or
millisecond increments. You can program the PTO function to produce either one train of pulses or
a pulse profile consisting of multiple trains of pulses. For example, you can use a pulse profile to
control a stepper motor through a simple ramp up, run, and ramp down sequence or more
complicated sequences.

The PWM function provides a fixed cycle time with a variable duty cycle output, with the cycle time
and the pulse width specified in either microsecond or millisecond increments. When the pulse
width is equal to the cycle time, the duty cycle is 100 percent and the output is turned on
continuously. When the pulse width is zero, the duty cycle is 0 percent and the output is turned off.

For more information on the high-speed pulse output instruction, see Chapter 6. For more
information about using PTO in open loop motion control, see Chapter 9.

50

Programming Concepts, Conventions,

and Features

The S7-200 continuously executes your program to control a task or process. You use

STEP 7-Micro/WIN to create this program and download it to the S7-200. STEP 7-Micro/WIN

provides a variety of tools and features for designing, implementing, and debugging your program.

In This Chapter

Guidelines for Designing a Micro PLC System it

Basic Elements of a Program

Using STEP 7-Micro/WIN to Create Your Programscouuiiniiinannaenaen..
Choosing Between the SIMATIC and IEC 1131-3 Instruction Sets
Understanding the Conventions Used by the Program Editors
Using Wizards To Help You Create Your Control Program

Handling Errors in the S7-200

Assigning Addresses and Initial Values in the Data Block Editor
Using the Symbol Table for Symbolic Addressing of Variables

Using Local Variables

Using the Status Chart to Monitor Your Program i

Creating an Instruction Library

Features for Debugging Your Program

52
53
55
57
58
60
60
62
62
63
63
64
64

51

S7-200 Programmable Controller System Manual

Guidelines for Designing a Micro PLC System

There are many methods for designing a Micro PLC system. The following general guidelines can
apply to many design projects. Of course, you must follow the directives of your own company’s
procedures and the accepted practices of your own training and location.

Partition Your Process or Machine

Divide your process or machine into sections that have a level of independence from each other.
These partitions determine the boundaries between controllers and influence the functional
description specifications and the assignment of resources.

Create the Functional Specifications

Write the descriptions of operation for each section of the process or machine. Include the
following topics: 1/O points, functional description of the operation, states that must be achieved
before allowing action for each actuator (such as solenoids, motors, and drives), description of the
operator interface, and any interfaces with other sections of the process or machine.

Design the Safety Circuits

Identify equipment requiring hard-wired logic for safety. Control devices can fail in an unsafe
manner, producing unexpected startup or change in the operation of machinery. Where
unexpected or incorrect operation of the machinery could result in physical injury to people or
significant property damage, consideration should be given to the use of electro-mechanical
overrides which operate independently of the S7-200 to prevent unsafe operations. The following
tasks should be included in the design of safety circuits:

1 Identify improper or unexpected operation of actuators that could be hazardous.

1 Identify the conditions that would assure the operation is not hazardous, and determine how
to detect these conditions independently of the S7-200.

1 Identify how the S7-200 CPU and I/O affect the process when power is applied and
removed, and when errors are detected. This information should only be used for designing
for the normal and expected abnormal operation, and should not be relied on for safety
purposes.

1 Design manual or electro-mechanical safety overrides that block the hazardous operation
independent of the S7-200.

1 Provide appropriate status information from the independent circuits to the S7-200 so that
the program and any operator interfaces have necessary information.

1 Identify any other safety-related requirements for safe operation of the process.

Specify the Operator Stations

Based on the requirements of the functional specifications, create drawings of the operator
stations. Include the following items:

1 Overview showing the location of each operator station in relation to the process or
machine

1 Mechanical layout of the devices, such as display, switches, and lights, for the operator
station

1 Electrical drawings with the associated 1/O of the S7-200 CPU or expansion module

52

Programming Concepts, Conventions, and Features Chapter 5

Create the Configuration Drawings

Based on the requirements of the functional specification, create configuration drawings of the

control equipment. Include the following items:

1 Overview showing the location of each S7-200 in relation to the process or machine

1 Mechanical layout of the S7-200 and expansion 1/0O modules (including cabinets and other

equipment)

1 Electrical drawings for each S7-200 and expansion 1/O module (including the device model
numbers, communications addresses, and I/O addresses)

Create a List of Symbolic Names (optional)

If you choose to use symbolic names for addressing, create a list of symbolic names for the
absolute addresses. Include not only the physical I/O signals, but also the other elements to be

used in your program.

Basic Elements of a Program

A program block is composed of executable code and comments. The executable code consists
of a main program and any subroutines or interrupt routines. The code is compiled and
downloaded to the S7-200; the program comments are not. You can use the organizational
elements (main program, subroutines, and interrupt routines) to structure your control program.

The following example shows a program that includes a subroutine and an interrupt routine. This
sample program uses a timed interrupt for reading the value of an analog input every 100 ms.

Example:Basic Elements of a Program

Main Program

M | Network 1
A SMO.1 CE]
| —| |— EM
N
S Network 1
B SO0 MOV_B
R H | EN END %
0
10041K QUTFSMBS4
ATCH
EN END %
NT_0qinT
104EVhT
—(eni)
| Hetwork 1
N SMO.0 WOV
T H b enop—)
0
Al 1IN QUTEY 100

Network 1 /IOn first scan, call subroutine 0.

LD SMO0.1
CALL SBR_O

Network 1 /ISet the interval to 100 ms
[[for the timed interrupt.
//[Enable interrupt 0.

LD SMO0.0

MOVB 100, SMB34

ATCH INT_O, 10

ENI

Network 1 //Sample the Analog Input 4.

LD SMO0.0
MOVW AlwW4,VW100

The main body of the program contains the instructions that control your application. The S7-200
executes these instructions sequentially, once per scan cycle. The main program is also referred

to as OB1.

53

S7-200 Programmable Controller System Manual

Subroutines

These optional elements of your program are executed only when called: by the main program, by
an interrupt routine, or by another subroutine. Subroutines are useful in cases where you want to
execute a function repeatedly. Rather than rewriting the logic for each place in the main program
where you want the function to occur, you can write the logic once in a subroutine and call the
subroutine as many times as needed during the main program. Subroutines provide several
benefits:

1 Using subroutines reduces the overall size of your program.

1 Using subroutines decreases your scan time because you have moved the code out of the
main program. The S7-200 evaluates the code in the main program every scan cycle,
whether the code is executed or not, but the S7-200 evaluates the code in the subroutine
only when you call the subroutine, and does not evaluate the code during the scans in
which the subroutine is not called.

1 Using subroutines creates code that is portable. You can isolate the code for a function in a
subroutine, and then copy that subroutine into other programs with little or no rework.

Tip

@ Using V memory addresses can limit the portability of your subroutine, because it is possible for
V memory address assignment from one program to conflict with an assignment in another
program. Subroutines that use the local variable table (L memory) for all address assignments,
by contrast, are highly portable because there is no concern about address conflicts between
the subroutine and another part of the program when using local variables.

Interrupt Routines

These optional elements of your program react to specific interrupt events. You design an interrupt
routine to handle a pre-defined interrupt event. Whenever the specified event occurs, the S7-200
executes the interrupt routine.

The interrupt routines are not called by your main program. You associate an interrupt routine with
an interrupt event, and the S7-200 executes the instructions in the interrupt routine only on each
occurrence of the interrupt event.

Tip

@ Because it is not possible to predict when the S7-200 might generate an interrupt, it is desirable
to limit the number of variables that are used both by the interrupt routine and elsewhere in the
program.

Use the local variable table of the interrupt routine to ensure that your interrupt routine uses only
the temporary memory and does not overwrite data used somewhere else in your program.

There are a number of programming techniques you can use to ensure that data is correctly
shared between your main program and the interrupt routines. These techniques are described
in Chapter 6 with the Interrupt instructions.

Other Elements of the Program

Other blocks contain information for the S7-200. You can choose to download these blocks when
you download your program.

System Block
The system block allows you to configure different hardware options for the S7-200.

Data Block

The data block stores the values for different variables (V memory) used by your program. You
can use the data block to enter initial values for the data.

54

Programming Concepts, Conventions, and Features Chapter 5

Using STEP 7-Micro/WIN to Create Your Programs

Program
Editor

To open STEP 7-Micro/WIN, double-click on the STEP 7-Micro/WIN icon, or select the Start >
SIMATIC > STEP 7 MicroWIN V4.0 menu command. As shown in Figure 5-1, the

STEP 7-Micro/WIN project window provides a convenient working space for creating your control
program.

The toolbars provide buttons for shortcuts to frequently used menu commands. You can view or
hide any of the toolbars.

The navigation bar presents groups of
icons for accessing different
programming features of

STEP 7-Micro/WIN.

The instruction tree displays all of the
project objects and the instructions for

creating your control program. You can
drag and drop individual instructions \

from the tree into your program, or you

can double-click an instruction to insert it FE——————
at the current location of the cursor in the | 9 I
program editor.
| Instruction tree I
The program editor contains the program

logic and a local variable table where Navigation bar I
you can assign symbolic names for

temporary local variables. Subroutines

and interrupt routines appear as tabs at

the bottom of the program editor window.

Click on the tabs to move between the Figure 5-1 STEP 7-Micro/WIN
subroutines, interrupts, and the main

program.

STEP 7-Micro/WIN provides three editors for creating your program: Ladder Logic (LAD),
Statement List (STL), and Function Block Diagram (FBD). With some restrictions, programs
written in any of these program editors can be viewed and edited with the other program editors.

Features of the STL Editor

The STL editor displays the program as a text-based language. The STL editor allows you to
create control programs by entering the instruction mnemonics. The STL editor also allows you to
create programs that you could not otherwise create with the LAD or FBD editors. This is because
you are programming in the native language of the S7-200, rather than in a graphical editor where
some restrictions must be applied in order to draw the diagrams correctly. As shown in Figure 5-2,
this text-based concept is very similar to assembly language programming.

The S7-200 executes each instruction in
the order dictated by the program, from

LD 10.0 /IRead one input
top to bottom, and then restarts at the
top ’ A 10.1 /IAND with another input
p- = Q1.0 //Write value to output 1
STL uses a logic stack to resolve the
control logic. You insert the STL
instructions for handling the stack Figure 5-2 Sample STL Program

operations.
Consider these main points when you select the STL editor:

[STL is most appropriate for experienced programmers.

STL sometimes allows you to solve problems that you cannot solve very easily with the
LAD or FBD editor.

I:I
d You can only use the STL editor with the SIMATIC instruction set.
I:I

While you can always use the STL editor to view or edit a program that was created with the
LAD or FBD editors, the reverse is not always true. You cannot always use the LAD or FBD
editors to display a program that was written with the STL editor.

55

S7-200 Programmable Controller System Manual

56

Features of the LAD Editor

The LAD editor displays the program as a graphical representation similar to electrical wiring
diagrams. Ladder programs allow the program to emulate the flow of electric current from a power
source through a series of logical input conditions that in turn enable logical output conditions. A
LAD program includes a left power rail that is energized. Contacts that are closed allow energy to
flow through them to the next element, and contacts that are open block that energy flow.

The logic is separated into networks. Hetwork 1

The program is executed one network at 0.0 0.1 Qs0
a time, from left to right and then top to — | |} ()
bottom as dictated by the program.
Figure 5-3 shows an example of a LAD 120 12.1
program. The various instructions are —
represented by graphic symbols and
include three basic forms.

. . Hetwork 2
Contacts represent logic input conditions 21 T =i
such as switches, buttons, or internal) -
conditions. _| |_ BN e BN ENO ﬁl
Coils usually represent logic output VBSOAIN__ OUTFACD ACTIN
results such as lamps, motor starters,
interposing relays, or internal output]
conditions. Figure 5-3 Sample LAD Program

Boxes represent additional instructions, such as timers, counters, or math instructions.
Consider these main points when you select the LAD editor:

Ladder logic is easy for beginning programmers to use.
Graphical representation is easy to understand and is popular around the world.
The LAD editor can be used with both the SIMATIC and IEC 1131-3 instruction sets.

You can always use the STL editor to display a program created with the SIMATIC LAD
editor.

Uooo

Features of the FBD Editor

The FBD editor displays the program as a graphical representation that resembles common logic
gate diagrams. There are no contacts and coils as found in the LAD editor, but there are
equivalent instructions that appear as box instructions.

Figure 5-4 shows an example of an FBD
program.

121+ AND — M TOMN
WE0.0—

FBD does not use the concept of left and
right power rails; therefore, the term ACD—PT
“power flow” is used to express the
analogous concept of control flow
through the FBD logic blocks.

Figure 5-4 Sample FBD Program

The logic “1” path through FBD elements is called power flow. The origin of a power flow input and
the destination of a power flow output can be assigned directly to an operand.

The program logic is derived from the connections between these box instructions. That is, the
output from one instruction (such as an AND box) can be used to enable another instruction (such
as a timer) to create the necessary control logic. This connection concept allows you to solve a
wide variety of logic problems.

Consider these main points when you select the FBD editor:
1 The graphical logic gate style of representation is good for following program flow.
O The FBD editor can be used with both the SIMATIC and IEC 1131-3 instruction sets.

1 You can always use the STL editor to display a program created with the SIMATIC FBD
editor.

Programming Concepts, Conventions, and Features Chapter 5

Choosing Between the SIMATIC and IEC 1131-3 Instruction Sets

Most PLCs offer similar basic instructions, but there are usually small differences from vendor to
vendor in appearance, operation, and so forth. Over the last several years, the International
Electrotechnical Commission (IEC) has developed an emerging global standard that specifically
relates to many aspects of PLC programming. This standard encourages different PLC
manufacturers to offer instructions that are the same in both appearance and operation.

Your S7-200 offers two instruction sets that allow you to solve a wide variety of automation tasks.
The IEC instruction set complies with the IEC 1131-3 standard for PLC programming, and the
SIMATIC instruction set is designed specifically for the S7-200.

Tip
@ When STEP 7-Micro/WIN is set to the IEC mode, it displays a red diamond (#) in the Instruction
Tree beside the instructions that are not defined by the IEC 1131-3 standard.

There are a few key differences between the SIMATIC instruction set and the IEC instruction set:

1 The IEC instruction set is restricted to those instructions that are standard among PLC
vendors. Some instructions that are normally included in the SIMATIC set are not standard
instructions in the IEC 1131-3 specification. These are still available for use as
non-standard instructions, but if you use them, the program is no longer strictly IEC 1131-3
compatible.

1 Some IEC box instructions accept multiple data formats. This practice is often referred to as
overloading. For example, rather than have separate ADD_I (Add Integer) and ADD_R (Add
Real), math boxes, the IEC ADD instruction examines the format of the data being added
and automatically chooses the correct instruction in the S7-200. This can save valuable
program design time.

1 When you use the IEC instructions, the instruction parameters are automatically checked
for the proper data format, such as a signed integer versus an unsigned integer. For
example, an error results if you try to enter an integer value for an instruction that expected
a bit value (on/off). This feature helps to minimize programming syntax errors.

Consider these points when you select either the SIMATIC or the IEC instruction set:

1 SIMATIC instructions usually have the shortest execution times. Some IEC instructions
might have longer execution times.

1 Some IEC instructions, such as timers, counters, multiply, and divide, operate differently
than their SIMATIC counterparts.

d You can use all three program editors (LAD, STL, FBD) with the SIMATIC instruction set.
You can use only the LAD and FBD program editors for IEC instructions.

1 The operation of the IEC instructions is standard for different brands of PLCs, and the
knowledge about creating an IEC-compliant program can be leveraged across PLC
platforms.

J While the IEC standard defines fewer instructions than are available in the SIMATIC
instruction set, you can always include SIMATIC instructions in your IEC program.

1 |EC 1131-3 specifies that variables must be declared with a type, and supports system
checking of data type.

57

S7-200 Programmable Controller System Manual

Understanding the Conventions Used by the Program Editors

STEP 7-Micro/WIN uses the following conventions in all of the program editors:

O A#infront of a symbol name (#varl) indicates that the symbol is of local scope.
1 ForIEC instructions, the % symbol indicates a direct address.
1 The operand symbol “?.?” or “????” indicates that an operand configuration is required.

LAD programs are divided into segments called networks. A network is an ordered arrangement
of contacts, coils, and boxes that are all connected to form a complete circuit: no short circuits, no
open circuits, and no reverse power flow conditions exist. STEP 7-Micro/WIN allows you to create
comments for your LAD program on a network-by-network basis. FBD programming uses the
network concept for segmenting and commenting your program.

STL programs do not use networks; however, you can use the NETWORK keyword to segment
your program.

Conventions Specific to the LAD Editor

In the LAD editor, you can use the F4, F6, and F9 keys on your keyboard to access contact, box,
and coil instructions. The LAD editor uses the following conventions:

1 The symbol “--->>"is an open circuit or a required power flow connection.

O The symbol “” indicates that the output is an optional power flow for an instruction that
can be cascaded or connected in series.

1 The symbol “>>" indicates that you can use power flow.

Conventions Specific to the FBD Editor

In the FBD editor, you can use the F4, F6, and F9 keys on your keyboard to access AND, OR,
and box instructions. The FBD editor uses the following conventions:

1 The symbol “--->>" on an EN operand is a power flow or operand indicator. It can also
depict an open circuit or a required power flow connection.

O The symbol “” indicates that the output is an optional power flow for an instruction that
can be cascaded or connected in series.

1 The symbols “<<” and “>>" indicate that you

can use either a value or power flow. Eog'cf"‘.l NOT g AND =000
ondition 0.0 —
1 Negation bubbles: The logical NOT condition
or inverted condition of the operand or power Immediate woH &HD aoo
flow is shown by the small circle on the input. Condition 01—

In Figure 5-5, Q0.0 is equal to the NOT of 10.0
AND 10.1. Negation bubbles are only valid for
Boolean signals, which can be specified as Figure 5-5 FBD Conventions
parameters or power flow.

1 Immediate indicators: As shown in Figure 5-5, the FBD editor displays an immediate
condition of a Boolean operand with a vertical line on the input to an FBD instruction. The
immediate indicator causes an immediate read from the specified physical input. Immediate
operators are only valid for physical inputs.

1 Box with no input or output: A box with no input indicates an instruction that is independent
of power flow.

Tip
@ The number of operands can be expanded up to 32 inputs for AND and OR instructions. To add
or subtract operand tics, use the “+” and “-" keys on your keyboard.

58

Programming Concepts, Conventions, and Features Chapter 5

General Conventions of Programming for an S7-200

EN/ENO Definition

EN (Enable IN) is a Boolean input for boxes in LAD and FBD. Power flow must be present at this
input for the box instruction to be executed. In STL, the instructions do not have an EN input, but
the top of stack value must be a logic “1” for the corresponding STL instruction to be executed.

ENO (Enable Out) is a Boolean output for boxes in LAD and FBD. If the box has power flow at the
EN input and the box executes its function without error, then the ENO output passes power flow
to the next element. If an error is detected in the execution of the box, then power flow is
terminated at the box that generated the error.

In STL, there is no ENO output, but the STL instructions that correspond to the LAD and FBD
instructions with ENO outputs do set a special ENO bit. This bit is accessible with the AND ENO
(AENO) instruction and can be used to generate the same effect as the ENO bit of a box.

Tip
@ The EN/ENO operands and data types are not shown in the valid operands table for each
instruction because the operands are the same for all LAD and FBD instructions. Table 5-1 lists
these operands and data types for LAD and FBD. These operands apply to all LAD and FBD
instructions shown in this manual.

Table 5-1 EN/ENO Operands and Data Types for LAD and FBD

Program Editor Inputs/Outputs Operands Data Types
LAD EN, ENO Power Flow BOOL
FBD EN, ENO LQ,V,M,SM,S, T,C, L BOOL

Conditional/Unconditional Inputs

In LAD and FBD, a box or a coil that is dependent upon power flow is shown with a connection to
any element on the left side. A coil or box that is independent of power flow is shown with a
connection directly to the left power rail. Table 5-2 shows an example of both a conditional and an
unconditional input.

Table 5-2 Representation of Conditional and Unconditional Inputs

Power Flow LAD FBD
Instruction that is dependent on power flow (conditional) 1
—{ Jwr)

Instruction that is independent of power flow (unconditional) | :NE mj

JiP

MEXT

Instructions without Outputs

Boxes that cannot cascade are drawn with no Boolean outputs. These include the Subroutine
Call, Jump, and Conditional Return instructions. There are also ladder coils that can only be
placed on the left power rail. These include the Label, Next, Load SCR, Conditional SCR End, and
SCR End instructions. These are shown in FBD as boxes and are distinguished with unlabeled
power inputs and no outputs.

Compare Instructions

The compare instruction is executed regardless of the state of power flow. If power flow is false,
the output is false. If power flow is true, the output is set depending upon the result of the
compare. SIMATIC FBD, IEC Ladder, and IEC FBD compare instructions are shown as boxes,
although the operation is performed as a contact.

59

S7-200 Programmable Controller System Manual

Using Wizards To Help You Create Your Control Program

STEP 7-Micro/WIN provides wizards to make aspects of your programming easier and more
automatic. In Chapter 6, instructions that have an associated wizard are identified by the following
Instruction Wizard icon:

Instruction
Wizard

Handling Errors in the S7-200

60

The S7-200 classifies errors as either fatal errors or non-fatal errors. You can view the error codes
that were generated by an error by selecting the PLC > Information menu command.

Figure 5-6 shows the PLC Information
dialog box tha_t d_isplays the error code Dperating Mode [siop
and the description of the error. ~Version Soan Riales (ms)
PLC: CPU 222 EXP 0103 REL 01.11 Last: o
The Last Fatal field shows the previous Firmware: T mn || M o
fatal error code generated by the ASIC: 01.00 Masimm: o
S7-200. This value is retained over e
power cycles if the RAM is retained. This | faa [0 Mofetal siors present
location is cleared either whenever all MonFatal [0 Mo rondatal emors present
memory of the S7-200 is cleared or if the
RAM is not retained after a prolonged Last Fatal [0 [ofatal snors presert
pOWer Outage. Total Fatal: 1}
The Total Fatal field is the count of fatal ‘:U Ebf'”' " —
errors generated by the S7-200 since the =~ _* =" “*
N rors Reported: INo 1/0 emars present. j

last time the S7-200 had all memory
areas cleared. This value is retained ——— 0 R T e T
over power cycles if the RAM is retained. e 5100 5000 o oo

. . . 1] Mot present
This location is cleared whenever all 1 Mot present
memory of the S7-200 is cleared, or : o e
when the RAM is not retained after a : o preeen)
prolonged power outage. § Not preseri

Appendix C lists the S7-200 error codes, EMirfomsion. | AsssSoanRass |
and Appendix D describes the special

memory (SM) bits, which can be used for
monitoring errors.

Figure 5-6 PLC Information Dialog Box

Non-Fatal Errors

Non-fatal errors are those indicating problems with the construction of the user program, with the
execution of an instruction in the user program, and with expansion /0O modules. You can use
STEP 7-Micro/WIN to view the error codes that were generated by the non-fatal error. There are
three basic categories of non-fatal errors.

Program-compile errors

The S7-200 compiles the program as it downloads. If the S7-200 detects that the program violates
a compilation rule, the download is aborted and an error code is generated. (A program that was
already downloaded to the S7-200 would still exist in the permanent memory and would not be
lost.) After you correct your program, you can download it again. Refer to Appendix C for a list of
compile rule violations.

I/0O errors

At startup, the S7-200 reads the 1/O configuration from each module. During normal operation, the
S7-200 periodically checks the status of each module and compares it against the configuration
obtained during startup. If the S7-200 detects a difference, the S7-200 sets the configuration error
bit in the module error register. The S7-200 does not read input data from or write output data to
that module until the module configuration again matches the one obtained at startup.

Programming Concepts, Conventions, and Features Chapter 5

The module status information is stored in special memory (SM) bits. Your program can monitor
and evaluate these bits. Refer to Appendix D for more information about the SM bits used for
reporting 1/0O errors. SM5.0 is the global I/O error bit and remains set while an error condition
exists on an expansion module.

Program execution errors

Your program can create error conditions while being executed. These errors can result from
improper use of an instruction or from the processing of invalid data by an instruction. For
example, an indirect-address pointer that was valid when the program compiled could be modified
during the execution of the program to point to an out-of-range address. This is an example of a
run-time programming problem. SM4.3 is set upon the occurrence of a run-time programming
problem and remains set while the S7-200 is in RUN mode. (Refer to Appendix C for the list of
run-time programming problems). Program execution error information is stored in special memory
(SM) bits. Your program can monitor and evaluate these bits. Refer to Appendix D for more
information about the SM bits used for reporting program execution errors.

The S7-200 does not change to STOP mode when it detects a non-fatal error. It only logs the
event in SM memory and continues with the execution of your program. However, you can design
your program to force the S7-200 to STOP mode when a non-fatal error is detected. The following
sample program shows a network of a program that is monitoring two of the global non-fatal error
bits and changes the S7-200 to STOP whenever either of these bits turns on.

Sample Program: Logic for Detecting a Non-Fatal Error Condition

Network 1 Network 1 //When an 1/O error or a run-time error occurs,
SME.0 /lgo to STOP mode
STOR) LD SM5.0
(0] SM4.3
Shid 3 STOP

Fatal Errors

Fatal errors cause the S7-200 to stop the execution of your program. Depending upon the severity
of the fatal error, it can render the S7-200 incapable of performing any or all functions. The
objective for handling fatal errors is to bring the S7-200 to a safe state from which the S7-200 can
respond to interrogations about the existing error conditions. When a fatal error is detected, the
S7-200 changes to STOP mode, turns on the SF/DIAG (Red) and the STOP LED, overrides the
output table, and turns off the outputs. The S7-200 remains in this condition until the fatal error
condition is corrected.

Once you have made the changes to correct the fatal error condition, use one of the following
methods to restart the S7-200:

1 Turn the power off and then on.
1 Change the mode switch from RUN or TERM to STOP.

1 Selectthe PLC > Power-Up Reset menu command from STEP 7-Micro/WIN to restart the
S7-200. This forces the S7-200 to restart and clear any fatal errors.

Restarting the S7-200 clears the fatal error condition and performs power-up diagnostic testing to
verify that the fatal error has been corrected. If another fatal error condition is found, the S7-200
again sets the fault LED, indicating that an error still exists. Otherwise, the S7-200 begins normal
operation.

Some error conditions can render the S7-200 incapable of communication. In these cases, you
cannot view the error code from the S7-200. These types of errors indicate hardware failures that
require the S7-200 to be repaired; they cannot be fixed by changes to the program or clearing the
memory of the S7-200.

61

S7-200 Programmable Controller System Manual

Assigning Addresses and Initial Values in the Data Block Editor

The data block editor allows you to make initial data assignments to V memory (variable memory)
only. You can make assignments to bytes, words, or double words of V. memory. Comments are
optional.

The data block editor is a free-form text
editor; that is, no specific fields are
defined for particular types of
information. After you finish typing a line
and press the Enter key, the data block
editor formats the line (aligns columns of
addresses, data, comments; capitalizes
V memory addresses) and redisplays it.
Pressing CTRL-ENTER, after
completing an assignment line,

auto-increments the address to the next]]
available address. Figure 5-7 Data Block Editor

The data block editor assigns an appropriate amount of V. memory based on your previous
address allocations and the size (byte, word, or double word) of the data value(s).

The first line of the data block must have an explicit address assignment. Subsequent lines can
have explicit or implicit address assignments. An implicit address assignment is made by the
editor when you type multiple data values after a single address assignment, or type a line that
contains only data values.

The data block editor accepts uppercase or lowercase letters and allows commas, tabs, or spaces
to serve as separators between addresses and data values.

Using the Symbol Table for Symbolic Addressing of Variables

=
'\-‘-”

Symbol
Table

62

The symbol table allows you to define and edit the symbols that can be accessed by the symbolic
name anywhere in your program. You can create multiple symbol tables. There is also a tab in the
symbol table for system-defined symbols that you can use in your program. The symbol table is
also referred to as the global variable table.

You can identify the operands of the instructions in your program absolutely or symbolically. An
absolute reference uses the memory area and bit or byte location to identify the address. A
symbolic reference uses a combination of alphanumeric characters to identify the address.

For SIMATIC programs, you makeglobal /777 70 7oz o o 0 7 ¢ &5 7 ¢
symbol assignments by using the a
symbol table. For IEC programs, you
make global symbol assignments by
using the global variable table.

Spmbol Address Comment
AlwapsOn SMo.0 Always on contact
Pumpl 023 Pumnp 1 on/off
Purnp1Limit 11.1 Purnp 1 pressure limit switch
PumplPFiessure VD100 Pump 1 curnent pressure [real]
Purmp1Rpm V200 Purnp1 PRMs (integer)

OIORCEOR0D

o= o] =

To assign a symbol to an address:)
Figure 5-8 Symbol Table

1. Click on the Symbol Table icon in the navigation bar to open the symbol table.

2. Enter the symbol name (for example, Inputl) in the Symbol Name column. The maximum
symbol length is 23 characters.

Enter the address (for example, 10.0) in the Address column.

4. For an IEC global variable table, enter a value in the Data Type column or select one from
the list box.

You can create multiple symbol tables; however, you cannot use the same string more than once
as a global symbol assignment, neither within a single table nor among several tables.

Programming Concepts, Conventions, and Features Chapter 5

Using Local Variables

You can use th(_e local var_lable ta_lble of W SIMATIC LAD o]
the program editor to assign variables) R SO AR SO R SO
that are unique to an individual TG VarTope | Diota Tope ooy o
subroutine or interrupt routine. See Ell Y DL :
. L0.0 FirstPass IN BOOL First pass flag
Figure 5-9. LB1 Bdr N BYTE Address of shave devics
L2 Data IN INT [Data bo wirite o slave L
1 LE4 Status IN_OUT BYTE Statuz of write
Local variables can be used_as == St o oo Don g
parameters that are passed Into a L\WE Error out WwWiORD Errar number [if arw) ﬂ
subroutine and they increase the [T ram A ser_o AINT 0/ | 3]

portability or reuse of a subroutine. Figure 5-0 Local Variable Table

Using the Status Chart to Monitor Your Program

Status
Chart

¥

A status chart allows you to monitor or modify the values of the process variables as your S7-200
runs the control program. You can track the status of program inputs, outputs, or variables by
displaying the current values. The status chart also allows you to force or change the values of the
process variables.

You can create multiple status charts in order to view elements from different portions of your
program.

To access the status chart, select the View > Component > Status Chart menu command or
click the Status Chart icon in the navigation bar.

When you create a status chart, you & Status Chart A= B
enter addresses of process variables for || — o ERE ER i s E
monitoring. You cannot view the status of s —fond e oo -

Pump! Limit |git 240
Pump1 Pressure Signed +0
Fumgi Rpm |§gneu +0
W37 Bit 2#0

1

constants, accumulators, or local 2

variables. You can display a timer or E

counter value either as a bit or as a B

word. Displaying the value as a bit =" —— -
shows the status of the timer or counter |Ehenri/ KT IOy
bit; displaying the value as a word shows
the timer or counter value.

B100 Hexadecimal 1600

Figure 5-10 Status Chart

To build a status chart and monitor the variables:

1. Enter the address for each desired value in the Address field.
2. Select the data type in the Format column.

3. To view the status of the process variables in your S7-200, select the Debug > Chart
Status menu command.

4. To continuously sample the values, or to perform a single read of the status, click the button
on the toolbar. The Status Chart also allows you to modify or force values for the different
process variables.

You can insert additional rows in your Status Chart by selecting the Edit > Insert > Row menu
command.

Tip

You can create multiple status charts to divide the variables into logical groups so that each
group can be viewed in a shorter and separate status chart.

63

S7-200 Programmable Controller System Manual

Creating an Instruction Library

STEP 7-Micro/WIN allows you either to create a custom library of instructions, or to use a library
created by someone else. See Figure 5-11.

To create a library of instructions, you create standard STEP 7-Micro/WIN subroutine and
interrupt routines and group them together. You can hide the code in these routines to prevent
accidental changes or to protect the technology (know-how) of the author.

To create an instruction library, perform the following
tasks:

1. Write the program as a standard
STEP 7-Micro/WIN project and put the
function to be included in the library into
subroutines or interrupt routines.

2. Ensure that all V memory locations in the
subroutines or interrupt routines have been
assigned a symbolic name. To minimize the
amount of V. memory that the library requires,
use sequential V memory locations.

3. Rename the subroutines or interrupt routines
to the names that you want to appear in the
I %

instruction library.

-E;IE'.HM .11

4. Select the File > Create Library menu

.) . I Ecwla |_In A
command to compile the new instruction | O Stk AR
library. I [T Scxla A |

For more information about creating libraries, refer il £ Col Jubmire=

to the online help for STEP 7-Micro/WIN.

Use the following procedure to access an instruction Figure 5-11 Instruction Tree with Libraries
in an instruction library:

1. Add the Libraries directory to the instruction tree by selecting the File > Add Libraries
menu command.

2. Select the specific instruction and insert it into your program (as you would any standard
instruction).

If the library routine requires any V memory, STEP 7-Micro/WIN prompts you when the
project is compiled to assign a block of memory. Use the Library Memory Allocation dialog
box to assign blocks of memory.

Features for Debugging Your Program

STEP 7-Micro/WIN provides the following features to help you debug your program:

1 Bookmarks in your program to make it easy to move back and forth between lines of a long
program.

1 Cross Reference table allow you to check the references used in your program.

1 RUN-mode editing allows you to make small changes to your program with minimal
disturbance to the process controlled by the program. You can also download the program
block when you are editing in RUN mode.

For more information about debugging your program, refer to Chapter 8.

64

S7-200 Instruction Set

This chapter describes the SIMATIC and IEC 1131 instruction set for the S7-200 Micro PLCs.

In This Chapter

Conventions Used to Describe the Instructions i i 67
S7-200 Memory Ranges and Featurest 68
Bit LOGIC INStrUCHiONSo 70
CONMtAC S ..t e 70
C0IlS o 73
Logic Stack INStrUCLIONS o 75
Set and Reset Dominant Bistable Instructions 77
CloCK INStIUCHIONS . . . oot e e e et e e e 78
Communications INStrUCHIONS i e et e e e 81
Network Read and Network Write Instructions 81
Transmit and Receive Instructions (Freeport) 86
Get Port Address and Set Port Address Instructions, 95
Compare INSIIUCHIONSottt e e e e e e e e e 96
Comparing Numerical Values o e 96
COMPAre SHNG ..ottt e e e e e 98
CoNVersion INStIUCHONS e e e 99
Standard Conversion INStruCtions i e 99
ASCII Conversion INStruCtions i e e 103
String Conversion INSIrUCLIONS e 107
Encode and Decode INStruCtionsot 112
CoUNEEr INSIIUCTIONS . . . ottt e ettt ettt et et e e 113
SIMATIC Counter INStrUCtiONSt e et et e 113
IEC Counter INStrUCtiONS o et et e e 116
High-Speed Counter INStrUCLIONSot e e e 118
Pulse Output INSIIUCLION o e e e 133
Math INStTUCHONS . ..o e e e 140
Add, Subtract, Multiply, and Divide Instructions 140
Multiply Integer to Double Integer and Divide Integer with Remainder 142
Numeric FUNCtions INStruCtioNSt et e e e 143
Increment and Decrement INStrUCtionS i e 144
Proportional/Integral/Derivative (PID) Loop Instruction i, 145
INterrupt INStrUCIONS 153
Logical Operations INStrUCHIONS oot e e 161
INVErt INSIIUCHIONS e e 161
AND, OR, and Exclusive OR INStructions ot 162
MOVE INSIIUCHIONS . . .ottt e et et e e 164
Move Byte, Word, Double Word, or Real i 164
Move Byte Immediate (Read and Write) i 165
BIock MOVE INStrUCHIONSo e e e 166

65

S7-200 Programmable Controller System Manual

Program Control INStrUCtIONSo 167
Conditional ENd 167
5 (o o 167
Watchdog ReSeto 167
For-Next Loop INStrUCHIONS oo e e e 169
JUMP INSTIUCHIONS . . . oo e e e e e e e 171
Sequence Control Relay (SCR) INStructionso vt 172
Diagnostic LED INStruCtioN e e 178
Shift and Rotate INStruCtions 179
Shift Right and Shift Left Instructions i 179
Rotate Right and Rotate Left Instructions i, 179
Shift Register Bit INStrUCLION 181
Swap Bytes INStruCtion 183
StriNG INSITUCHONSo e e 184
Table INStrUCiONS 189
Add To Table . .. 189
First-In-First-Out and Last-In-First-Out i 190
Memory Fill ... 192
Table FiNd e 193
TIMer INStrUCHIONSo e 196
SIMATIC Timer INStructions et 196
IEC TiMer INStrUCLIONSot e e e e e e et 201
Interval TIMerS ... 203
Subroutine INStrUCtiONS o 204

66

S7-200 Instruction Set Chapter 6

Conventions Used to Describe the Instructions

Figure 6-1 shows a typical description for an instruction and points to the different areas used to

describe the instruction and its operation. The illustration of the instruction shows the format in

LAD, FBD, and STL. The operand table lists the operands for the instruction and shows the valid
data types, memory areas and sizes for each operand.

EN/ENO operands and data types are not shown in the instruction operand table because the

operands are the same for all LAD and FBD instructions.

1 For LAD: EN and ENO are power flow and are BOOL data types.

1 ForFBD:ENand ENOarel, Q,V, M, SM, S, T, C, L, or power flow and are BOOL data

types.

Description of the instruction I
and operands |

STL instruction LAD and FBD instructions

List of the error conditions
that affect ENO and any SM
bits affected

Transmit and Receive Instructions

\The Transtnit instucton XMT) is used in Frespon mode \ fransmit

InpaksDutp uks Data Type opeRnds
TEL EYTE By 1B, WE, ME, 56 $MEx ~vD, "G, LD
/PDFET EHTE Congfnt for DRIFANY LRGN DR AN]
Operands for the / DRG0 308 PG 205 KN ok
instruction Using Bzéeport Mode o Control/he Serial Communication Pert
Yo Zan select the Fresport ode toZortrol the serisl cormunication port of the S7-200 by rmeans of the

data by means of the corntmuni cation pos) . AMRIL 7 BT]
The Recaive instuction (RCV) infistes or taninates the Rac\ive Lz e
Message cerice. You rust specify o start and an end conditic\ for T
the Receive boy to operste. Messages rocaivad tirough the EL R
specified port (PORT) are stored in the dats. buffer (TEL). The fin\ 1 &
&ritry in the dats bufier specifies the nurber of bybes received. FRT
i seLEND = 0
m SMEES OF SMTGR.6 error kil et (ROW parameter etror) LY
D00 (indirect addracs)
Q003 (simultaneous BMTIRCW on pott 01
i STL
= O00B (simultaneos HMTIRCH o port 1) e —
® S7-E00 CPU not in Frasport mode B3 TELFIR™

Tabla =11 valid Operands for Che Transmit and Feceive nstructions

Valid data types ruction. The corrmi/ication protocol §s entirely controlled by the ladder program while in

. When you select Fre/aport rmode, wour prograrm cortrols the opersion of the com munication
the wse of the receive Anterpts, the transmit irte mapts, the Transmit instruction, and te

wfe. SMESD ifor por/ 00 and SME1E0 (for port 1| if your S7-Z00 has twe ports) are vsed to
puad rade and parity,

The Freeport rode is disabl/Ad and monmsl ication taklisk

{ (for enarmple, prograsmming

Valid memory areas and sizes for g onlly the Transsnt GOWITS

the operands 2r, & weighing scale, and 2 walder. In
is Wsed by the device with which the

Freepert commmunicaton is possible only when the S7-200 is in the RWN moede, Enakle the Fregport mods
by setiing a walue of 01 in the protocol select field of SKWIB30 (Port 0) or SMEB130 (Port 1. While in Freeport
rode, comrmunicstion with the prograrmming device is not possible.

Tip

Ertsting Freeport mode can be controlled using spacial memorg bit SWI0.F, which reflects the cumrent
position of the opersting mode switch, When SM0.T is equal to O, the switch is in TERM position; when
SMO.7 = 1, the operating rode switch is in RUM position. Kyou enakle Freeport mode only when the
switch is in AWM pesition, you can wse the programming device o monier of contrel the $7-200
operation by changing the switch to any other position,

Figure 6-1 Instruction Descriptions

67

S7-200 Programmable Controller System Manual

S7-200 Memory Ranges and Features

Table 6-1 Memory Ranges and Features for the S7-200 CPUs
— CPU 224XP
Description CPU 221 CPU 222 CPU 224 CPU 224XPsi CPU 226
User program size
with run mode edit 4096 bytes 4096 bytes 8192 bytes 12288 bytes 16384 bytes
without run mode edit 4096 bytes 4096 bytes 12288 bytes 16384 bytes 24576 bytes
User data size 2048 bytes 2048 bytes 8192 bytes 10240 bytes 10240 bytes
Process-image input register 10.0to 115.7 10.0to 115.7 10.0to 115.7 10.0to 115.7 10.0to 115.7
Process-image output register | Q0.0 to Q15.7 Q0.0to Q15.7 Q0.0to Q15.7 Q0.0to Q15.7 Q0.0to Q15.7
Analog inputs (read only) AIWO to AIW30 AIWO to AIW30 AIWO to AIW62 AIWO to AIW62 AIWO to AIW62
Analog outputs (write only) AQWO to AQW30 | AQWO to AQW30 | AQWO to AQW62 | AQWO to AQW62 | AQWO to AQW62
Variable memory (V) VBO to VB2047 VBO to VB2047 VBO to VB8191 VBO to VB10239 VBO to VB10239
Local memory (L)1 LBO to LB63 LBO to LB63 LBO to LB63 LBO to LB63 LBO to LB63
Bit memory (M) MO0.0 to M31.7 MO0.0 to M31.7 MO0.0 to M31.7 MO0.0 to M31.7 MO0.0 to M31.7

Special Memory (SM)

Read only

Timers

Retentive on-delay 1 ms
10 ms
100 ms

On/Off delay 1ms
10 ms
100 ms

Counters

High-speed counters
Sequential control relays (S)
Accumulator registers
Jumps/Labels
Call/Subroutine

Interrupt routines
Positive/negative transitions
PID loops

Ports

SMO0.0 to SM179.7
SMO0.0 to SM29.7
256 (TO to T255)
TO, T64

T1to T4, and
T65to T68

T5to T31, and
T69 to T95

T32, T96

T33to T36, and
T97 to T100

T37 to T63, and
T101 to T255

COto C255
HCO to HC5
S0.0 to S31.7
ACOto AC3
0to 255

Oto 63

Oto 127

256

Oto7

Port 0

SMO0.0 to SM299.7
SMO0.0 to SM29.7
256 (TO to T255)
TO, T64

T1to T4, and
T65 to T68

T5to T31, and
T69 to T95

T32, T96

T33to T36, and
T97 to T100

T37 to T63, and
T101 to T255

COto C255
HCO to HC5
S0.0 to S31.7
ACOto AC3
0to 255

Oto 63

Oto 127

256

Oto7

Port 0

1 LB60 to LB63 are reserved by STEP 7-Micro/WIN, version 3.0 or later.

68

SMO0.0 to SM549.7
SMO0.0 to SM29.7
256 (TO to T255)
TO, T64

T1to T4, and
T65 to T68

T5to T31, and
T69 to T95

T32, T96

T33to T36, and
T97 to T100

T37 to T63, and
T101 to T255

COto C255
HCO to HC5
S0.0 to S31.7
ACOto AC3
0to 255

Oto 63

Oto 127

256

Oto7

Port 0

SMO0.0 to SM549.7
SMO0.0 to SM29.7
256 (TO to T255)
TO, T64

T1to T4, and
T65 to T68

T5to T31, and
T69 to T95

T32, T96

T33to T36, and
T97 to T100

T37 to T63, and
T101 to T255

COto C255
HCO to HC5
S0.0 to S31.7
ACOto AC3
0to 255

Oto 63

Oto 127

256

Oto7

Port 0, Port 1

SMO0.0 to SM549.7
SMO0.0 to SM29.7
256 (TO to T255)
TO, T64

T1to T4, and
T65 to T68

T5to T31, and
T69 to T95

T32, T96

T33to T36, and
T97 to T100

T37 to T63, and
T101 to T255

COto C255
HCO to HC5
S0.0 to S31.7
ACOto AC3
0to 255

0to 127

Oto 127

256

Oto7

Port 0, Port 1

S7-200 Instruction Set Chapter 6

Table 6-2 Operand Ranges for the S7-200 CPUs
CPU 224XP

Access Method CPU 221 CPU 222 CPU 224 CPU 224XPsi CPU 226
Bit access (byte.bit) | 1 0.0to15.7 0.0to 15.7 0.0to 15.7 0.0to 15.7 0.0to 15.7
Q 0.0to15.7 0.0to 15.7 0.0to 15.7 0.0to 15.7 0.0to 15.7
V | 0.0to 2047.7 0.0 to 2047.7 0.0to 8191.7 0.0 to 10239.7 0.0 to 10239.7
M 0.0to31.7 0.0to0 31.7 0.0to0 31.7 0.0to0 31.7 0.0to0 31.7
SM 0.0to 165.7 0.0 to0 299.7 0.0 to 549.7 0.0 to 549.7 0.0 to 549.7
S | 0.0to31.7 0.0to 31.7 0.0to 31.7 0.0to0 31.7 0.0to0 31.7
T | Oto 255 0to 255 0to 255 0to 255 0to 255
C | 0to 255 0to 255 0to 255 0to 255 0to 255
L | 0.0to63.7 0.0t0 63.7 0.0t0 63.7 0.0t0 63.7 0.0t0 63.7
Byte access IB 0to 15 0to 15 0to 15 0to 15 0to 15
QB | 0to15 0to 15 0to 15 0to 15 0to 15
VB | 0to 2047 0 to 2047 0to 8191 0to 10239 0to 10239
MB | Oto31 0to 31 0to 31 0to 31 0to 31
SMB | 0to 165 0to 299 0to 549 0 to 549 0 to 549
SB 0to31 0to 31 0to 31 0to 31 0to 31
LB 0to63 0to 63 0to 63 0to 63 0to 63
AC 0to3 0to3 0to3 0to 255 0to 255
KB (Constant) = KB (Constant) KB (Constant) KB (Constant) KB (Constant) KB (Constant)
Word access IW | Oto14 Oto 14 Oto 14 Oto 14 Oto 14
QW Oto 14 Oto 14 Oto 14 Oto 14 Oto 14
VW | 0to 2046 0 to 2046 0 to 8190 0to 10238 0to 10238
MW | 0to 30 0to 30 0to 30 0to 30 0to 30
SMW | 0to 164 0to 298 0to 548 0to 548 0to 548
SW | 0to 30 0to 30 0to 30 0to 30 0to 30
T | Oto 255 0to 255 0to 255 0to 255 0to 255
0to 255 0to 255 0to 255 0to 255 0to 255
LW 0to 62 0to 62 0to 62 0to 62 0to 62
AC 0to3 0to3 0to3 0to3 0to3
AW | 0to 30 0to 30 0to 62 0to 62 0to 62
AQW 0to 30 0to 30 0to 62 0to 62 0to 62
KW (Constant) | KW (Constant) | KW (Constant) | KW (Constant) | KW (Constant) KW (Constant)
Double word access ID O0to12 Oto 12 Oto 12 Oto 12 Oto 12
QD O0to12 Oto 12 Oto 12 Oto 12 Oto 12
VD | 0to 2044 0 to 2044 0 to 8188 0to 10236 0to 10236
MD Oto 28 0to 28 0to 28 0to 28 0to 28
SMD 0to 162 0to 296 0 to 546 0 to 546 0 to 546
SD | 0to28 0to 28 0to 28 0to 28 0to 28
LD | Oto 60 0to 60 0to 60 0to 60 0to 60
AC 0to3 0to3 0to3 0to3 0to3
HC O0to5 0to5 0to5 0to5 0to5

KD (Constant) | KD (Constant) KD (Constant) KD (Constant) KD (Constant) KD (Constant)

69

S7-200 Programmable Controller System Manual

Bit Logic Instructions

70

Contacts

Standard Contacts

The Normally Open contact instructions (LD, A, and O) and
Normally Closed contact instructions (LDN, AN, ON) obtain
the referenced value from the memory or from the
process-image register. The standard contact instructions
obtain the referenced value from the memory (or
process-image register if the data type is | or Q).

The Normally Open contact is closed (on) when the bit is
equal to 1, and the Normally Closed contact is closed (on)
when the bit is equal to 0. In FBD, inputs to both the And
and Or boxes can be expanded to a maximum of 32 inputs.
In STL, the Normally Open instructions Load, AND, or OR
the bit value of the address bit to the top of the stack, and
the Normally Closed instructions Load, AND, or OR the
logical NOT of the bit value to the top of the stack.

Immediate Contacts

An immediate contact does not rely on the S7-200 scan
cycle to update; it updates immediately. The Normally Open
Immediate contact instructions (LDI, Al, and Ol) and
Normally Closed Immediate contact instructions (LDNI, ANI,
and ONI) obtain the physical input value when the
instruction is executed, but the process-image register is
not updated.

The Normally Open Immediate contact is closed (on) when
the physical input point (bit) is 1, and the Normally Closed
Immediate contact is closed (on) when the physical input
point (bit) is 0. The Normally Open instructions immediately
Load, AND, or OR the physical input value to the top of the
stack, and the Normally Closed instructions immediately
Load, AND, or OR the logical NOT of the value of the
physical input point to the top of the stack.

NOT Instruction

The Not instruction (NOT) changes the state of power flow
input (that is, it changes the value on the top of the stack
from 0 to 1 or from 1 to 0).

SIMATIC ¢ IEC1131]

LAD

=
=

1000000,

=
=

=
=

[i]

SIMATIC l
STL

L Eit LDl Eit
il Eit Al Eit
Q Eit ol Eit
LDM Eit LDMI Eit
AM Eit AMl Eit
oM EBit OMl Bt
MOT

EU

ED

S7-200 Instruction Set Chapter 6

Positive and Negative Transition Instructions

The Positive Transition contact instruction (EU) allows power to flow for one scan for each
off-to-on transition. The Negative Transition contact instruction (ED) allows power to flow for one
scan for each on-to-off transition. For the Positive Transition instruction, detection of a 0-to-1
transition in the value on the top of the stack sets the top of the stack value to 1; otherwise, it is set
to 0. For a Negative Transition instruction, detection of a 1-to-0 transition in the value on the top of
the stack sets the top of the stack value to 1; otherwise, it is set to 0.

For run mode editing (when you edit your program in RUN mode), you must enter a parameter for
the Positive Transition and Negative Transition instructions. Refer to Chapter 5 for more
information about editing in RUN mode.

Table 6-3 Valid Operands for the Bit Logic Input Instructions

Inputs/Outputs Data Type Operands
Bit BOOL ,Q,V,M, SM, S, T, C, L, Power Flow
Bit (immediate) BOOL |

As shown in Figure 6-2, the S7-200 uses a logic stack to resolve the control logic. In these
examples, “iv0” to “iv7” identify the initial values of the logic stack, “nv” identifies a new value
provided by the instruction, and “S0” identifies the calculated value that is stored in the logic stack.

Load (LD, LDI, Before After And (A, Al, AN, Before After Or (O, Ol, ON, Before After
LDN, LDNI) vo | [AND vo sot | |OND vo sot
Loads a new : \ : ANDs a new : : ORs a new : :
value (nv) onto ivl \ vo value (nv) with vl vl value (nv) with vl vl
the stack. iv2 vl the initial value iv2 iv2 the initial value iv2 iv2
3 \ — (iv) at the top of 3 3 (iv) at the top of 3 3
v \ i the stack. i i the stack. i i
iv4 \ iv3 S0=iv0O AND nv iv4 iv4 S0=iv0O OR nv iv4 iv4
ivS \ iv4 ivS ivS ivS ivS
ivé \ ivS ivé ive ivé ive
iv7 \ ive iv7 iv7 iv7 iv7
iv82 iv7 iv8 iv8 iv8 iv8

1 soidentifies the calculated value that is stored in the logic stack.
2 After the execution of a Load, the value iv8 is lost.

Figure 6-2

¥

Operations of the Contact Instructions.

Tip

Because the Positive Transition and Negative Transition instructions require an on-to-off or an
off-to-on transition, you cannot detect an edge-up or edge-down transition on the first scan.
During the first scan, the S7-200 sets the state of the bit specified by these instructions. On
subsequent scans, these instructions can then detect transitions for the specified bit.

71

S7-200 Programmable Controller System Manual

Example: Contact Instructions

Network 1 Network 1~ //N.O. contacts 10.0 AND 10.1 must be on
0.0 //(closed) to activate Q0.0. The NOT

0.1 Qoo
_| | |) /linstruction acts as an inverter. In RUN
/I mode, Q0.0 and Q0.1 have opposite logic states.
Qo1
noT—()

LD 10.0
A 10.1
= Q0.0
NOT
= Q0.1
Netuork 2 Network 2 //N.O. contact 10.2 must be on or N.C.
0.2 Q0.2 /lcontact 10.3 must be off to activate QO.2.
—|) /I One or more parallel LAD branches
/I(OR logic inputs) must be true to make
0.3 /lthe output active.
— LD 102
ON 10.3
= Q0.2
Network 3 Network 3 //A positive Edge Up input on a P contact
0.4 an.a /lor a negative Edge Down input on a N contact

I/l pulse in Q0.3 and make the state

_| P 5) /loutputs a pulse with a 1 scan cycle
1 /[duration. In RUN mode, the pulsed state
/lchanges of Q0.4 and Q0.5 are too fast to
Qo4 A -
I be visible in program status view.
) /[The Set and Reset outputs latch the
N

Q0.3 /Ichange visible in program status view.
R) LD 104
1 LPS
Q0.5 EU
) S Q0.3, 1
= Q0.4
LPP
ED
R Q0.3,1
= Q0.5
Timing Diagram Network 1
oo — 1
10.1 | | .
Q.0 y
1
Qo.1 ‘
Network 2
10.2 ‘
10.3 ‘
H :
Q0.2 L |
Network 3
10.4 —!—!
Q0.3 1
004 < On for one sc;,an
i'l‘ On for one scan
Q0.5

72

S7-200 Instruction Set Chapter 6

Coils
Output SIMATIC / EC1131 |
The Output instruction (=) writes the new value for the
output bit to the process-image register. When the Output LAD : ~ FED
instruction is executed, the S7-200 turns the output bit in the Bit Eit
process-image register on or off. For LAD and FBD, the _(:I —|I|
specified bit is set equal to power flow. For STL, the value it it
on the top of the stack is copied to the specified bit. _(; :l _lil
Output Immediate - Bit
The Output Immediate instruction (=I) writes the new value _(g :|] g
to both the physical output and the corresponding M gli
process-image register location when the instruction is Eit Eit
executed. _(ar :l T y 51
When the Output Immediate instruction is executed, the N Bit
physical output point (Bit) is immediately set equal to power el _ R
flow. For STL, the instruction immediately copies the value _(R :| 4N
on the top of the stack to the specified physical output bit M it
(STL). The “I" indicates an immediate reference; the new Eit] Rl
value is written to both the physical output and the —(RI :l dn
corresponding process-image register location when the N
instruction is executed. This differs from the non-immediate
references, which write the new value to the process-image
register only. SIMATIC]
Set and Reset ST, -1 i
The Set (S) and Reset (R) instructions set (turn on) or reset S Bit. M sl Bit. M
(turn off) the specified number of points (N), starting at the = B ol

specified address (Bit). You can set or reset from 1 to 255

points.

If the Reset instruction specifies either a timer bit (T) or counter bit (C), the instruction resets the
timer or counter bit and clears the current value of the timer or counter.

Error conditions that set ENO =0

m 0006 (indirect address)

= 0091 (operand out of range)

Set Immediate and Reset Immediate

The Set Immediate and Reset Immediate instructions immediately set (turn on) or immediately
reset (turn off) the number of points (N), starting at specified address (Bit). You can set or reset
from 1 to 128 points immediately.

The “I” indicates an immediate reference; when the instruction is executed, the new value is
written to both the physical output point and the corresponding process-image register location.
This differs from the non-immediate references, which write the new value to the process-image
register only.

Error conditions that set ENO =0

m 0006 (indirect address)

= 0091 (operand out of range)

Table 6-4 Valid Operands for the Bit Logic Output Instructions

Inputs/Outputs Data Type Operands

Bit BOOL ,Q,V,M, SM, S, T,C, L

Bit (immediate) BOOL Q

N BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant

73

S7-200 Programmable Controller System Manual

Example: Coil Instructions

Network 1
0.0 Q0.0
—)
Qo
)
0.0
)
Network 2
10.1 Qo2

— =)

Network 3
0.2 Qo2

— (")

Network 4
0.3 |

Network 5
0.6 oo

— -)

Timing Diagram

74

Network 1 //Output instructions assign bit values to external 1/O (I, Q)
/land internal memory (M, SM, T, C, V, S, L).

D 100
Q0.0
Q0.1
V0.0

Network 2 //Set a sequential group of 6 bits to a value of 1. Specify a
/[starting bit address and how many bits to set. The program
/Istatus indicator for Set is ON when the value of the first bit
//(Q0.2) is 1.

—

LD 101
s Q0.2, 6

Network 3 //Reset a sequential group of 6 bits to a value of 0.
//Specify a starting bit address and how many bits to reset.
/[The program status indicator for Reset is ON when the value
[lof the first bit (Q0.2) is 0.

LD 10.2

R Q0.2,6

Network 4 //Sets and resets 8 output bits (Q1.0 to Q1.7) as a group.
LD 10.3

LPS

A 10.4

S Q1.0,8

Qilo LPP

R Q1.0,8
Q1.0 Network 5 //The Set and Reset instructions perform the function of a latched

04
| |(5) A 10.5
8
0.5
|_(R /Irelay. To isolate the Set/Reset bits, make sure they are not
g

[/loverwritten by another assignment instruction. In this example,
/INetwork 4 sets and resets eight output bits (Q1.0 to Q1.7)

/las a group. In RUN mode, Network 5 can overwrite

/lthe Q1.0 bit value and control the Set/Reset program

/Istatus indicators in Network 4.

LD 10.6
= Q1.0
Network 1
10.0
Q0.0, Q0.1, V0.0 1
Networks 2 and 3
10.1 (Set)]
10.2 (Reset) 1
)
'
)
Reset to 0 overwrites Set to 1 because the program scan
executes the Network 3 Reset after the Network 2 Set .
Networks 4 and 5
10.3
10.4 (Set) 1 —
10.5 (Reset) —
10.6
Q1.0 1]
1
i
T T
v Vv v Vv v Vv

Network 5 Output bit (=) instruction overwrites the first bit (Q1.0) Set/Reset in
Network 4 because the program scan executes the Network 5 assignment last

S7-200 Instruction Set Chapter 6

Logic Stack Instructions

AND Load SIMATIC
The AND Load instruction (ALD) combines the values in the
first and second levels of the stack using a logical AND STL
operation. The result is loaded in the top of stack. After the HO']_%
ALD is executed, the stack depth is decreased by one. LPS

LRD
OR Load LFP
The OR Load instruction (OLD) combines the values in the EEEO M
first and second levels of the stack, using a logical OR

operation. The result is loaded in the top of the stack. After
the OLD is executed, the stack depth is decreased by one.

Logic Push

The Logic Push instruction (LPS) duplicates the top value on the stack and pushes this value onto
the stack. The bottom of the stack is pushed off and lost.

Logic Read

The Logic Read instruction (LRD) copies the second stack value to the top of stack. The stack is
not pushed or popped, but the old top-of-stack value is destroyed by the copy.

Logic Pop
The Logic Pop instruction (LPP) pops one value off of the stack. The second stack value becomes
the new top of stack value.

AND ENO

The AND ENO instruction (AENO) performs a logical AND of the ENO bit with the top of the stack
to generate the same effect as the ENO bit of a box in LAD or FBD. The result of the AND
operation is the new top of stack.

ENO is a Boolean output for boxes in LAD and FBD. If a box has power flow at the EN input and
is executed without error, the ENO output passes power flow to the next element. You can use the
ENO as an enable bit that indicates the successful completion of an instruction. The ENO bit is
used with the top of stack to affect power flow for execution of subsequent instructions. STL
instructions do not have an EN input. The top of the stack must be a logic 1 for conditional
instructions to be executed. In STL there is also no ENO output. However, the STL instructions
that correspond to LAD and FBD instructions with ENO outputs set a special ENO bit. This bit is
accessible with the AENO instruction.

Load Stack

The Load Stack instruction (LDS) duplicates the stack bit (N) on the stack and places this value
on top of the stack. The bottom of the stack is pushed off and lost.

Table 6-5 Valid Operands for the Load Stack Instruction

Inputs/Outputs Data Type Operands

N BYTE Constant (0 to 8)

75

S7-200 Programmable Controller System Manual

As shown in Figure 6-3, the S7-200 uses a logic stack to resolve the control logic. In these
examples, “iv0” to “iv7” identify the initial values of the logic stack, “nv” identifies a new value
provided by the instruction, and “S0” identifies the calculated value that is stored in the logic stack.

ALD Before After OLD Before After LDS Before After
AND the top ivo S0 ORthetoptwo | ivo S0 Load Stack | ivo iv3
two stack vl iv2 stack values Vi v2 vl \ Vo
values iv2 / iv3 iv2 / iv3 iv2 \ vl
3 / va 3 / va 3 \ v2
va / V5 va / V5 va \ 3
iv5 / iv6 iv5 / iv6 iv5 \ iva
V6 / V7 V6 / V7 V6 \ V5
V7 / v8 V7 / v8 7 \ V6
SO=iVOANDIVL | iv8 / x1 S0=iv0 OR ivl iv8 / x1 iv82 \ iv7
LPS Before After LRD Before After LPP Before After
Logic Push VO ivo | | Logic Read VO iv1 Logic Pop | o iv1
ivl \ iv0 ivl / ivl ivl / iv2
v2 \ ivi v2 v2 v2 / v3
v3 \ v2 v3 v3 v3 / va
iva \ iv3 iva iva iva / iv5
iv5 \ iva iv5 iv5 iv5 / iv6
iv6 \ iv5 iv6 iv6 iv6 / V7
iv7 \ iv6 iv7 iv7 iv7 / iv8
iv82 \ iv7 iv8 iv8 iv8 / x1

1 The value is unknown (it could be either a 0 or a 1).
2 After the execution of a Logic Push or a Load Stack instruction, value iv8 is lost.

Figure 6-3 Operations of the Logic Stack Instructions

Example: Logic Stack Instructions

Hetwork 1 Network 1
0.0 0.1 Qs0 LD 10.0
1 || ¢) LD 10.1
| | | | \ LD 12.0

A 12.1
2.0 2.1 oLD
[| []
- - ALD
= Q5.0
Network 2
Metwork 2 LD 10.0
0.0 0.5 Q7.0 LPS
l | | ¢
— | |) Lo 105
0.6 ALD
[| = Q7.0
o LRD
LD 2.1
2.1 Q6.0 o 113
I I () ALD
= Q6.0
1.3 LPP
} } A 11.0
= Q3.0
1.0 Q3.0

76

S7-200 Instruction Set Chapter 6

Set and Reset Dominant Bistable Instructions

The Set Dominant Bistable is a latch where the set
dominates. If the set (S1) and reset (R) signals are both
true, the output (OUT) is true.

The Reset Dominant Bistable is a latch where the reset
dominates. If the set (S) and reset (R1) signals are both

true, the output (OUT) is false.

The Bit parameter specifies the Boolean parameter that is
set or reset. The optional output reflects the signal state of

the Bit parameter.

Table 6-7 shows the truth tables for the sample program.

SIMATIC £ EC1131

LAD FED
Eit Eit

=51 OUTE | 51 CUT -
iR o L SR

o L
Eit Eit

=5 OUTE | A% CUT -
RS k1 RS

k1

Table 6-6 Valid Operands for the Set Dominant Bistable and Reset Dominant Bistable
Instructions

Inputs/Outputs Data Types Operands

S1,R BOOL 1,Q,V, M, SM, S, T, C, Power Flow

S, R1, OUT BOOL ,Q,V,M, SM, S, T, C, L, Power Flow

Bit BOOL ,Q,V, M, S

Example: Set and Reset Dominant Bistable Instructions

Network 1
0.0

Qoo

H
_|ID.1

a

ouT—)|

SR

Network 2
0.0

Qo

H

0.1

— |

[l

ouT—

R3

Timing Diagram

Set 10.0 [] [

Reset 101 | L
sR Qoo | | | |

RS Qo1 | |

Table 6-7 Truth Table for the Set and Reset Dominant Bistable Instructions

Instruction S1 R Out (Bit)
Set Dominant Bistable instruction 0 0 Previous state
(SR) 0 1 0

1 0 1

1 1 1
Instruction S R1 Out (Bit)
Reset Dominant Bistable instruction 0 0 Previous state
(RS) 0 1 0

1 0 1

1 1 0

77

S7-200 Programmable Controller System Manual

Clock Instructions

78

Read Real-Time Clock and Set Real-Time
Clock

SIMATIC J IEC 1121
LAD FED:

The Read Real-Time Clock (TODR) instruction reads the READ_RTE READ_RTE
current time and date from the hardware clock and loads it —{En EMO - | {EM EMO -
in an 8-byte Time buffer starting at address T. The Set At all
Real-Time Clock (TODW) instruction writes the current time
and date to the hardware clock, beginning at the 8-byte READ_RTC SET_RTC
Time buffer address specified by T. READ_RTCH SET_RTCH
You must code all date and time values in BCD format (for
example, 16#97 for the year 1997). Figure 6-4 shows the S0
format of the 8-Byte Time buffer (T). =

TODR T
The time-of-day (TOD) clock initializes the following date TODRH T
and time after extended power outages or when memory Lo
has been lost:
Date: 01-Jan-90
Time: 00:00:00
Day of Week: Sunday
Error conditions that set ENO =0
m 0006 (indirect address)
m 0007 (TOD data error) Set Real-Time Clock only
= 000C (clock not present)
Table 6-8 Valid Operands for the Clock Instructions
Inputs/Outputs Data Types Operands
T BYTE 1B, QB, VB, MB, SMB, SB, LB, *VD, *LD, *AC

T T+1 T+2 T+3 T+4 T+5 T+6 T+7
Year: Month: Day: Hours: Minutes: Seconds: 0 Day of Week:
00t099 | 0lto12 | 01to31 | 00t023 | 00to59 | 00to59 0to 7*

T+7

1=Sunday, 7=Saturday
0 disables the day of week.

Figure 6-4 Format of the 8-Byte Time Buffer (T)

S7-200 Instruction Set Chapter 6

Tip
@ The S7-200 CPU does not perform a check to verify that the day of week is correct based upon
the date. Invalid dates, such as February 30, could be accepted. You should ensure that the
date you enter is correct.

Do not use the TODR/TODW instruction in both the main program and in an interrupt routine. A
TODR/TODW instruction in an interrupt routine that attempts to execute while another
TODR/TODW instruction is in process cannot be executed. SM4.3 is set indicating that two
simultaneous accesses to the clock were attempted (non-fatal error 0007).

The time-of-day clock in the S7-200 uses only the least significant two digits for the year, so for
the year 2000, the year is represented as 00. The S7-200 PLC does not use the year
information in any way. However, user programs that use arithmetic or compares with the year’s
value must take into account the two-digit representation and the change in century.

Leap year is correctly handled through year 2096.

Read Rea| Time C|0Ck Extended Error conditions that set ENO =0

The Read Real Time Clock Extended (TODRX) instruction ™ 0006 (indirect address)

reads the current time, date, and daylight savings ® 000C (clock cartridge not present)
configuration from the PLC and loads it in a 19-byte buffer = 0091 (range error)

beginning at the address specified by T.

Set Rea| Time C|0Ck Extended Error conditions that set ENO =0

. . . . 0006 (indirect add
The Set Real Time Clock (TODWX) instruction writes the - (indirect address)
current time, date, and daylight savings configuration to the 0007 (TOD data error)
PLC beginning at the 19-byte buffer address specified by T. 000C (clock cartridge not present)

You must code all date and time values in BCD format (for 0091 (range error)
example, 16#02 for the year 2002). Table 6-9 shows the

format of the 19-Byte Time Buffer (T).

Date: 01-Jan-90
Time 00:00:00

Day of Week: Sunday

The time-of-day clock initializes the following date and time
after extended power outages or memory has been lost:

Tip
@ The only time the S7-200 CPU uses bytes 9 to18 is when the “User Specified” mode is selected
in byte 8. Otherwise, the last value written to these bytes by STEP 7-Micro/WIN or the
SET_RTCX instruction is returned.

79

S7-200 Programmable Controller System Manual

80

Table 6-9

Format of the 19-Byte Time Buffer (TI)

T Byte Description

Byte Data

[N

N

w

EN

(4

0

N O O B W NP

9

10
11
12
13
14
15
16
17
18

EU convention: Adjusttime ahead one hour on last Sunday in March at 1:00 a.m. UTC. Adjust time back one hour on last Sunday
in October at 2:00 a.m UTC. (The local time when the correction is made depends upon the time zone offset from UTC).

US convention: Adjust time ahead one hour on first Sunday in April at 2:00 a.m local time. Adjust time back one hour on last
Sunday in October at 2:00 a.m local time.

Australia convention: Adjust time ahead one hour on last Sunday in October at 2:00 a.m. local time. Adjust time back one hour

year (0-99)
month (1-12)

day (1-31)

hour (0-23)
minute (0-59)
second (0-59)

00

day of week (1-7)

mode (00H-03H, 08H,
10H-13H, FFH)

correction hours (0-23)
correction minutes (0-59)
beginning month (1-12)
beginning day (1-31)
beginning hour (0-23)
beginning minute (0-59)
ending month (1-12)
ending day (1-31)

ending hour (0-23)
ending minute (0-59)

current year (BCD value)

current month (BCD value)

current day (BCD value

current hour (BCD value)

current minute (BCD value)

current second (BCD value)

reserved - always set to 00

current day of the week, 1=Sunday (BCD value)

correction mode:
00H = correction disabled

01H = EU (time zone offset from UTC = 0 hrs) 1
02H = EU (time zone offset from UTC = +1 hrs) 1
03H = EU (time zone offset from UTC = +2 hrs) 1
04H-07H = reserved

08H = EU (time zone offset from UTC = -1 hrs) 1

09H-0FH = reserved
10H=US 2

11H = Australia 3

12H = Australia (Tasmania) 4
13H = New Zealand °
14H-FEH = reserved

FFH = user specified (using values in bytes 9-18)

correction amount, hours (BCD value)
correction amount, minutes (BCD value)
beginning month of daylight saving time (BCD value)
beginning day of daylight saving time (BCD value)
beginning hour of daylight saving time (BCD value)
beginning minute of daylight saving time (BCD value)
ending month of daylight saving time (BCD value)
ending day of daylight saving time (BCD value)
ending hour of daylight saving time (BCD value
ending minute of daylight saving time (BCD value)

on last Sunday in March at 3:00 a.m. local time.

Australia (Tasmania) convention: Adjusttime ahead one hour on first Sunday in October at 2:00 a.m. local time. Adjust time back

one hour on last Sunday in March at 3:00 a.m. local time

New Zealand convention: Adjust time ahead one hour on first Sunday in October at 2:00 a.m. local time. Adjust time back one

hour on first Sunday on or after March 15 at 3:00 a.m. local time

S7-200 Instruction Set Chapter 6

Communications Instructions

Network Read and Network Write Instructions
The Network Read instruction (NETR) initiates a

S . SIMATIC ¢ [EC 1131
communications operation to gather data from a remote
device through the specified port (PORT), as defined by the LAD FED
table (TBL). The Network Write instruction (NETW) initiates ETR ETR
a communications operation to write data to a remote den S I L e |
device through the specified port (PORT), as defined by the d7mL
table (TBL). < TEL dpoRT
— PORT
Error conditions that set ENO = 0:
® 0006 (indirect address) METR PMETIA
m |f the function returns an error and sets the E bit of table status
byte (see Figure 6-5)
SIMATIE
The Network Read instruction can read up to 16 bytes of STL
information from a remote station, and the Network Write METR TEL.FORT
instruction can write up to 16 bytes of information to a BB VBLPRlsY
remote station.

You can have any number of Network Read and Network
Write instructions in the program, but only a maximum of
eight Network Read and Network Write instructions can be
activated at any one time. For example, you can have 4
Network Read and 4 Network Write instructions, or 2
Network Read and 6 Network Write instructions, active at
the same time in a given S7-200.

You can use the Network Read/Network Write Instruction Wizard to configure the counter. To start
the Network Read/Network Write Instruction Wizard, select the Tools > Instruction Wizard menu

Instruction command and then select Network Read/Network Write from the Instruction Wizard window.
Wizard

Table 6-10 Valid Operands for the Network Read and Network Write Instructions

Inputs/Outputs Data Type Operands
TBL BYTE VB, MB, *VD, *LD, *AC
PORT BYTE Constant for CPU 221, CPU 222, CPU 224: 0

for CPU 224XP, CPU 226: Oorl

81

S7-200 Programmable Controller System Manual

Figure 6-5 describes the table that is referenced by the TBL parameter, and Table 6-11 lists the
error codes.

Byte D Done (function has been completed): 0 = not done 1 =done
Offset 7 0 A Active (function has been queued): 0=notactive 1= active
0 D | A | E | 0 | Error code| E Error (function returned an error): 0 = no error 1 =error
1 Remote station address Remote station address: the address of the PLC whose data is to be

2 Pointer to the data accessed.
3 area in the Pointer to the data area in the remote station: an indirect pointer to
4 remote station the data that is to be accessed.
5 (1, Q, M, or V) Data length: the number of bytes of data that are to be accessed
6 Data length in the remote station (1 to 16 bytes).
7 Data byte 0 Receive or transmit data area. 1 to 16 bytes reserved for the data.
8 Data byte 1 For a Network Read instruction, stores the values that were read
l . . .
, from the remote station when the instruction was executed.
22 Data byte 15 For a Network Write instruction, stores the values to be sent to the

remote station when the instruction is executed.

Figure 6-5 TBL Parameter for the Network Read and Network Write Instructions

Table 6-11 Error Codes for the TBL Parameter

Code Definition

0 No error.

Time-out error: Remote station not responding.

Receive error: Parity, framing, or checksum error in the response.

Offline error: Collisions caused by duplicate station addresses or failed hardware.

Queue overflow error: More than 8 Network Read or Network Write instructions have been activated.

a »~» W NP

Protocol violation: Attempt to execute a Network Read or Network Write instruction without enabling
the PPI Master Mode in SMB30 or SMB130.

6 lllegal parameter: TBL parameter contains an illegal or invalid value.

7 No resource: Remote station is busy. (An upload or a download sequence is in process.)
8 Layer 7 error: Application protocol violation

9 Message error: Wrong data address or incorrect data length

AtoF Notused. (Reserved)

Figure 6-6 shows an example to illustrate the utility of the Network Read and Network Write
instructions. For this example, consider a production line where tubs of butter are being filled and
sent to one of four boxing machines (case packers). The case packer packs eight tubs of butter
into a single cardboard box. A diverter machine controls the flow of butter tubs to each of the case
packers. Four S7-200s control the case packers, and an S7-200 with a TD 200 operator interface
controls the diverter.

82

S7-200 Instruction Set

Chapter 6

Case Packer #1 Case Packer #2 Case Packer #3 Case Packer #4 Diverter
Station 2 Station 3 Station 4 Station 5 Station 6 TD 200 Station 1
=] Iee= =] =
Cc—ogo
= 1l = ® f‘mm B
VB100 Control VB100 Control VB100 Control VB100 | Control VB200 Rev VB300 | Xmt
VW101 | Status VW101 | Status VW101 | Status VW101 | Status Buffers Buffers
vB100 | f | e | e | e | 0 | g | b | t | Control VB200 Receive buffer VB300 Transmit buffer
. . Station 2 Station 2
tatus MSB
VB101 Number of VB210 Receive buffer VB310 Transmit buffer
------------ Station 3 Station
VB102 cases packed VB220 Receive buffer VB320 Transmit buffer
— Station 4 Station 4
VB230 Receive buffer VB330 Transmit buffer
t Out of butter tubs to pack; t=1, out of butter tubs Station 5 Station

b Box supply is low; b=1, must add boxes in the
next 30 minutes

g Glue supply is low; g=1, must add glue in the next 30 minutes

eee error code identifying the type of fault experienced
f Fault indicator; f=1, the case packer has detected an error

Figure 6-6

Example of the Network Read and Network Write Instructions

Figure 6-7 shows the receive buffer (VB200) and transmit buffer (VB300) for accessing the data in
station 2. The S7-200 uses a Network Read instruction to read the control and status information

on a continuous basis from each of the case packers. Each time a case packer has packed 100

cases, the diverter notes this and sends a message to clear the status word using a Network Write
instruction.

Receive Buffer for reading from
Case Packer #1

Transmit Buffer for clearing the count of
Case Packer #1

7 0
7 0
ve2oo [D |[A [E [0 | ErrorCode
| vesoo | D [A [E [0 |ErrorCode
VB201 Remote station address = 2 -
- VB301 Remote station address = 2
VB202 Pointer to the -
VB302 Pointer to the
VB203 data area
- VB303 data area
VB204 in the -
- VB304 in the
VB205 Remote station = (&VB100) -
VB305 Remote station = (&VB101)
VB206 Data length = 3 bytes
VB306 Data length = 2 bytes
VB207 Control
VB307 0
VB208 Status (MSB)
VB308 0
VB209 Status (LSB)
Figure 6-7 Sample TBL Data for the Network Read/Write Example

83

S7-200 Programmable Controller System Manual

Example: Network Read and Network Write Instructions

84

p———en

WEZOTAIM

EMNOD H

QUTEYB400

Metwork 1
Mot WOv_B
l
— | e Enof—
2 outhsme3n
FILL_N
BN ENof—)
wfn outhwwizoo
Ba4h
Network 2
v200.7 Vw208 WMOv_B
I [1
— | 1= e ENo—)
+100
2 outhvean
MOW_DW
N ENo—
svE101{N___ ouThvpaoz
MOV_B
BN Eno—Y
2 outhveaos
MOV
EN ENOH
o4 outhvwaor
NETH
EN ENO%
vB3oo{TeL
o04PoRT
Network 3
v200.7 WOv_B

Network 1

LD
MOVB
FILL

Network 2

LD
AW=
MOVB
MOVD
MOVB
MOVW
NETW

Network 3

LD
MOVB

/IOn the first scan, enable the
/IPPI master mode
/land clear all receive and transmit buffers.

SMO0.1
2, SMB30
+0, VW200, 68

//\When the NETR Done bit (V200.7)
/lis set and 100 cases have been
/Ipacked:

/I1. Load the station address of

/i case packer #1.

/[2. Load a pointer to the data in

1 the remote station.

/13. Load the length of data to be
1 transmitted.

/l4. Load the data to transmit.

/I5. Reset the number of cases packed
1 by case packer #1

V200.7

VW208, +100
2,VB301
&VB101, VD302
2, VB306

+0, VW307
VB300, 0

//When the NETR Done bit is set,
/Isave the control data from
/lcase packer #1.

V200.7
VB207, VB400

S7-200 Instruction Set Chapter 6

Example: Network Read and Network Write Instructions , continued

Network 4 [/If not the first scan and there are
Network 4 /Ino errors:

SM0A WI00.6 WI00.5 MOV _B //1. Load the station address of
_| i I I J I I i : EN END H 1 case pack_er #1. _
/[2. Load a pointer to the data in
24N OUTkvBZO01 1 the remote station.

//3. Load the length of data to
1 be received.

MOY_Di /l4. Read the control and status data
N eno—i /I in case packer #1.
avptoodin_ ourpvozez | LDN SMO.1
AN V200.6
AN V200.5
MOV_B MOVB 2,VB201
EMN EMNO % MOVD &VB100, VD202
MOVB 3, VB206
34 OUTFYEZ06 NETR VB200, 0

MNETR

BN ENof—)

YB2004TBL
04FORT

S7-200 Programmable Controller System Manual

Transmit and Receive Instructions (Freeport)

The Transmit instruction (XMT) is used in Freeport mode to

- S SIMATIC £ [EC 1131
transmit data by means of the communications port(s).
The Receive instruction (RCV) initiates or terminates the LAD FED
receive message function. You must specify a start and an HMT HMT
end condition for the Receive box to operate. Messages —EM EMG = | —{EM EMG =
received through the specified port (PORT) are stored in the | |, 7 TEL
data buffer (TBL). The first entry in the data buffer specifies dpoRT TLPORT
the number of bytes received.
Error conditions that set ENO = 0 HMT R
m 0006 (indirect address)
m 0009 (simultaneous Transmit/Receive on port 0) SINATIC
m 000B (simultaneous Transmit/Receive on port 1) STL
. ®MT TEL.PORT
®m Receive parameter error sets SM86.6 or SM186.6 REY TEL, PORT
m S7-200 CPU is not in Freeport mode

Table 6-12 Valid Operands for the Transmit and Receive Instructions

Inputs/Outputs Data Type Operands
TBL BYTE IB, QB, VB, MB, SMB, SB, *VD, *LD, *AC
PORT BYTE Constant for CPU 221, CPU 222, CPU 224: 0

for CPU 224XP, CPU 226: Oorl

For more information about using Freeport mode, see the section Creating User-Defined
Protocols with Freeport Mode on page 226 in Chapter 7.

Using Freeport Mode to Control the Serial Communications Port

You can select the Freeport mode to control the serial communications port of the S7-200 by
means of the user program. When you select Freeport mode, your program controls the operation
of the communications port through the use of the receive interrupts, the transmit interrupts, the
Transmit instruction, and the Receive instruction. The communications protocol is entirely
controlled by the ladder program while in Freeport mode. SMB30 (for port 0) and SMB130 (for port
1 if your S7-200 has two ports) are used to select the baud rate and parity.

The Freeport mode is disabled and normal communications are re-established (for example,
programming device access) when the S7-200 is in STOP mode.

In the simplest case, you can send a message to a printer or a display using only the Transmit
(XMT) instruction. Other examples include a connection to a bar code reader, a weighing scale,
and a welder. In each case, you must write your program to support the protocol that is used by
the device with which the S7-200 communicates while in Freeport mode.

Freeport communications are possible only when the S7-200 is in RUN mode. Enable the
Freeport mode by setting a value of 01 in the protocol select field of SMB30 (Port 0) or SMB130
(Port 1). While in Freeport mode, communications with the programming device are not possible.

Tip

@ Freeport mode can be controlled using special memory bit SMO0.7, which reflects the current
position of the operating mode switch. When SMO0.7 is equal to 0, the switch is in TERM
position; when SMO0.7 = 1, the operating mode switch is in RUN position. If you enable Freeport
mode only when the switch is in RUN position, you can use the programming device to monitor
or control the S7-200 operation by changing the switch to any other position.

86

S7-200 Instruction Set Chapter 6

Changing PPl Communications to Freeport Mode

SMB30 and SMB130 configure the communications ports, 0 and 1 respectively, for Freeport
operation and provide selection of baud rate, parity, and number of data bits. Figure 6-8 describes
the Freeport control byte. One stop bit is generated for all configurations.

MSB LSB
! 9 bbb: Freeport baud rate
|P|P|d|b|b|b|m|m| 000= 38,400 baud
SMB30 = Port 0 001 = 19,200 baud
SMB130 = Portl 010= 9,600 baud
011 = 4,800 baud
100 = 2,400 baud
pp: Parity select 101 = 1,200 baud 1)
00 = no parity 110= 115.2 kbaud?® Requires S7-200
01= even parity 111 = 57.6 kbaud? CPUs version 1.2
10= no parity mm: Protocol selection or later
1= odd parity 00 = PPI/slave mode
d: Data bits per character 01= Freeport protocol
0= 8 bits per character 10= PPI/master mode
1= 7 bits per character 11 = Reserved (defaults to PPI/slave mode)

Figure 6-8 SM Control Byte for Freeport Mode (SMB30 or SMB130)

Transmitting Data

The Transmit instruction lets you send a buffer of one or more characters, up to a maximum of
255,

Figure 6-9 shows the format of the
Transmit buffer.

CountM|E|S|S|A|G|E

. L | Characters of the message |
If an interrupt routine is attached to the e __ J

transmit complete event, the S7-200
generates an interrupt (interrupt event 9
for port 0 and interrupt event 26 for port
1) after the last character of the buffer is
sent.

Number of bytes to transmit (byte field)

Figure 6-9 Format for the Transmit Buffer

You can make transmissions without using interrupts (for example, sending a message to a
printer) by monitoring SM4.5 or SM4.6 to signal when transmission is complete.

You can use the Transmit instruction to generate a BREAK condition by setting the number of
characters to zero and then executing the Transmit instruction. This generates a BREAK condition
on the line for 16-bit times at the current baud rate. Transmitting a BREAK is handled in the same
manner as transmitting any other message, in that a Transmit interrupt is generated when the
BREAK is complete and SM4.5 or SM4.6 signals the current status of the Transmit operation.

Receiving Data
The Receive instruction lets you receive a buffer of one or more characters, up to a maximum of
255,

End
Char

Figure 6-10 shows the format of the count] Start
Receive buffer. Char

wefefefalefe]

. L \ Characters of the message |
If an interrupt routine is attached to the e - - S

receive message complete event, the
S7-200 generates an interrupt (interrupt
event 23 for port 0 and interrupt event 24
for port 1) after the last character of the
buffer is received.

Number of bytes received (byte field)

Figure 6-10 Format for the Receive Buffer
You can receive messages without using interrupts by monitoring SMB86 (port 0) or SMB186

(port 1). This byte is non-zero when the Receive instruction is inactive or has been terminated. It is
zero when a receive is in progress.

87

S7-200 Programmable Controller System Manual

As shown in Table 6-13, the Receive instruction allows you to select the message start and
message end conditions, using SMB86 through SMB94 for port 0 and SMB186 through SMB194
for port 1.

Tip

@ The receive message function is automatically terminated in case of an overrun or a parity error.
You must define a start condition and an end condition (maximum character count) for the
receive message function to operate.

Table 6-13 Bytes of the Receive Buffer (SMB86 to SMB94, and SM1B86 to SMB194)
Port 0 Port 1 Description

SMB86 SMB186 Receive message M7SB Lgs

status byte
[n|rlefofoltfecler]

n 1= Receive message function terminated: user issued
disable command.

r 1= Receive message function terminated: error in input
parameters or missing start or end condition.

e 1= End character received.

t 1= Receive message function terminated: timer expired.

c. 1= Receive message function terminated: maximum
character count achieved.

p 1= Receive message function terminated: a parity error.

SMB87 SMB187 Receive message M7SB LgB

control byte -
|en |sc |ec | il |c/m|tmr| bk| 0

en: 0 =Receive message function is disabled.
1 =Receive message function is enabled.
The enable/disable receive message bit is checked each time
the RCV instruction is executed.

sc: 0 =Ignore SMB88 or SMB188.
1 =Use the value of SMB88 or SMB188 to detect start of message.

ec: 0=Ignore SMB89 or SMB189.
1 =Use the value of SMB89 or SMB189 to detect end of message.
il. ~ 0=lgnore SMW90 or SMW190.
1 =Use the value of SMW90 or SMW190 to detect an idle line condition.
c¢/m: 0 =Timer is an inter-character timer.
1 =Timer is a message timer.
tmr: 0 =Ilgnore SMW92 or SMW192.

1 =Terminate receive if the time period in SMW92 or
SMW192 is exceeded.

bk: 0 =Ignore break conditions.
1 =Use break condition as start of message detection.

SMB88 SMB188 Start of message character.
SMB89 SMB189 End of message character.
SMW90 SMW190 Idle line time period given in milliseconds. The first character received after idle

line time has expired is the start of a new message.

SMW92 SMW192 Inter-character/message timer time-out value given in milliseconds. If the time
period is exceeded, the receive message function is terminated.

SMB94 SMB194 Maximum number of characters to be received (1 to 255 bytes). This range must
be set to the expected maximum buffer size, even if the character count
message termination is not used.

88

S7-200 Instruction Set Chapter 6

%

Start and End Conditions for the Receive Instruction

The Receive instruction uses the bits of the receive message control byte (SMB87 or SMB187) to
define the message start and end conditions.

Tip

If there is traffic present on the communications port from other devices when the Receive
instruction is executed, the receive message function could begin receiving a character in the
middle of that character, resulting in a possible parity error and termination of the receive
message function. If parity is not enabled the received message could contain incorrect
characters. This situation can occur when the start condition is specified to be a specific start
character or any character, as described in item 2. and item 6. below.

The Receive instruction supports several message start conditions. Specifying a start condition
involving a break or an idle line detection avoids this problem by forcing the receive message
function to synchronize the start of the message with the start of a character before placing
characters into the message buffer.

The Receive instruction supports several start conditions:

1. Idle line detection: The idle line condition is defined as a quiet or idle time on the
transmission line. A receive is started when the communications line has been quiet or idle
for the number of milliseconds specified in SMW90 or SMW190. When the Receive
instruction in your program is executed, the receive message function initiates a search for
an idle line condition. If any characters are received before the idle line time expires, the
receive message function ignores those characters and restarts the idle line timer with the
time from SMW90 or SMW190. See Figure 6-11. After the idle line time expires, the receive
message function stores all subsequent characters received in the message buffer.

The idle line time should always be greater than the time to transmit one character (start bit,
data bits, parity and stop bits) at the specified baud rate. A typical value for the idle line time
is three character times at the specified baud rate.

You use idle line detection as a start condition for binary protocols, protocols where there is
not a particular start character, or when the protocol specifies a minimum time between

messages.
Setup: il=1, sc =0, bk =0, SMW90/SMW190 = idle line timeout in milliseconds
Characters Characters
A A
Restarts the idle time First character placed in the
message buffer
Receive instruction is executed: Idle time is detected:
starts the idle time starts the Receive Message function

Figure 6-11 Using Idle Time Detection to Start the Receive Instruction

2. Start character detection: The start character is any character which is used as the first
character of a message. A message is started when the start character specified in SMB88
or SMB188 is received. The receive message function stores the start character in the
receive buffer as the first character of the message. The receive message function ignores
any characters that are received before the start character. The start character and all
characters received after the start character are stored in the message buffer.

Typically, you use start character detection for ASCII protocols in which all messages start
with the same character.

Setup: il=0, sc =1, bk =0, SMW90/SMW190 = don’t care, SMB88/SMB188 = start
character

89

S7-200 Programmable Controller System Manual

90

Idle line and start character: The Receive instruction can start a message with the
combination of an idle line and a start character. When the Receive instruction is executed,
the receive message function searches for an idle line condition. After finding the idle line
condition, the receive message function looks for the specified start character. If any
character but the start character is received, the receive message function restarts the
search for an idle line condition. All characters received before the idle line condition has
been satisfied and before the start character has been received are ignored. The start
character is placed in the message buffer along with all subsequent characters.

The idle line time should always be greater than the time to transmit one character (start bit,
data bits, parity and stop bits) at the specified baud rate. A typical value for the idle line time
is three character times at the specified baud rate.

Typically, you use this type of start condition when there is a protocol that specifies a
minimum time between messages, and the first character of the message is an address or
something which specifies a particular device. This is most useful when implementing a
protocol where there are multiple devices on the communications link. In this case the
Receive instruction triggers an interrupt only when a message is received for the specific
address or devices specified by the start character.

Setup: il=1,sc=1, bk=0, SMW90/SMW190 > 0, SMB88/SMB188 = start
character

Break detection: A break is indicated when the received data is held to a zero value for a
time greater than a full character transmission time. A full character transmission time is
defined as the total time of the start, data, parity and stop bits. If the Receive instruction is
configured to start a message on receiving a break condition, any characters received after
the break condition are placed in the message buffer. Any characters received before the
break condition are ignored.

Typically, you use break detection as a start condition only when a protocol requires it.

Setup: il=0,sc=0, bk=1, SMW90/SMW190 = don’t care, SMB88/SMB188 =
don’t care

Break and a start character: The Receive instruction can be configured to start receiving
characters after receiving a break condition, and then a specific start character, in that
sequence. After the break condition, the receive message function looks for the specified
start character. If any character but the start character is received, the receive message
function restarts the search for an break condition. All characters received before the break
condition has been satisfied and before the start character has been received are ignored.
The start character is placed in the message buffer along with all subsequent characters.

Setup: i1=0,sc=1,bk=1, SMW90/SMW190 = don't care,
SMB88/SMB188 = start character

Any character: The Receive instruction can be configured to immediately start receiving any
and all characters and placing them in the message buffer. This is a special case of the idle
line detection. In this case the idle line time (SMW90 or SMW190) is set to zero. This forces
the Receive instruction to begin receiving characters immediately upon execution.

Setup: il=1, sc=0, bk=0, SMW90/SMW190 = 0, SMB88/SMB188 = don't care

Starting a message on any character allows the message timer to be used to time out the
receiving of a message. This is useful in cases where Freeport is used to implement the
master or host portion of a protocol and there is a need to time out if no response is
received from a slave device within a specified amount of time. The message timer starts
when the Receive instruction executes because the idle line time was set to zero. The
message timer times out and terminates the receive message function if no other end
condition is satisfied.

Setup: il=1, sc=0, bk=0, SMW90/SMW190 = 0, SMB88/SMB188 = don't care
c¢/m =1, tmr =1, SMW92 = message timeout in milliseconds

S7-200 Instruction Set Chapter 6

The Receive instruction supports several ways to terminate a message. The message can be
terminated on one or a combination of the following:

1.

End character detection: The end character is any character which is used to denote the
end of the message. After finding the start condition, the Receive instruction checks each
character received to see if it matches the end character. When the end character is
received, it is placed in the message buffer and the receive is terminated.

Typically, you use end character detection with ASCII protocols where every message ends
with a specific character. You can use end character detection in combination with the
intercharacter timer, the message timer or the maximum character count to terminate a
message.

Setup: ec =1, SMB89/SMB189 = end character

Intercharacter timer: The intercharacter time is the time measured from the end of one
character (the stop bit) to the end of the next character (the stop bit). If the time between
characters (including the second character) exceeds the number of milliseconds specified
in SMW92 or SMW192, the receive message function is terminated. The intercharacter
timer is restarted on each character received. See Figure 6-12.

You can use the intercharacter timer to terminate a message for protocols which do not
have a specific end-of-message character. This timer must be set to a value greater than
one character time at the selected baud rate since this timer always includes the time to
receive one entire character (start bit, data bits, parity and stop bits).

You can use the intercharacter timer in combination with the end character detection and
the maximum character count to terminate a message.

Setup: c¢/m =0, tmr =1, SMW92/SMW192 = timeout in milliseconds

]

Characters Characters
4 l *
Restarts the intercharacter The intercharacter timer expires:
timer Terminates the message and generates the

Receive Message interrupt

Figure

6-12 Using the Intercharacter Timer to Terminate the Receive Instruction

Message timer: The message timer terminates a message at a specified time after the start
of the message. The message timer starts as soon as the start condition(s) for the receive
message function have been met. The message timer expires when the number of
milliseconds specified in SMW92 or SMW192 have passed. See Figure 6-13.

Typically, you use a message timer when the communications devices cannot guarantee
that there will not be time gaps between characters or when operating over modems. For
modems, you can use a message timer to specify a maximum time allowed to receive the
message after the message has started. A typical value for a message timer would be
about 1.5 times the time required to receive the longest possible message at the selected
baud rate.

You can use the message timer in combination with the end character detection and the
maximum character count to terminate a message.

Setup: c¢/m=1,tmr=1, SMW92/SMW192 = timeout in milliseconds

91

S7-200 Programmable Controller System Manual

92

Characters Characters

S B B ¢ R I
Start of the message: The message timer expires:

Starts the message timer Terminates the message and generates the
Receive Message interrupt

Figure 6-13 Using the Message Timer to Terminate the Receive Instruction

4. Maximum character count: The Receive instruction must be told the maximum number of
characters to receive (SMB94 or SMB194). When this value is met or exceeded, the receive
message function is terminated. The Receive instruction requires that the user specify a
maximum character count even if this is not specifically used as a terminating condition.
This is because the Receive instruction needs to know the maximum size of the receive
message so that user data placed after the message buffer is not overwritten.

The maximum character count can be used to terminate messages for protocols where the
message length is known and always the same. The maximum character count is always
used in combination with the end character detection, intercharacter timer, or message
timer.

5. Parity errors: The Receive instruction is automatically terminated when the hardware
signals a parity error on a received character. Parity errors are only possible if parity is
enabled in SMB30 or SMB130. There is no way to disable this function.

6. User termination: The user program can terminate a receive message function by executing
another Receive instruction with the enable bit (EN) in SMB87 or SMB187 set to zero. This
immediately terminates the receive message function.

Using Character Interrupt Control to Receive Data

To allow complete flexibility in protocol support, you can also receive data using character interrupt
control. Each character received generates an interrupt. The received character is placed in
SMB2, and the parity status (if enabled) is placed in SM3.0 just prior to execution of the interrupt
routine attached to the receive character event. SMB2 is the Freeport receive character buffer.
Each character received while in Freeport mode is placed in this location for easy access from the
user program. SMB3 is used for Freeport mode and contains a parity error bit that is turned on
when a parity error is detected on a received character. All other bits of the byte are reserved. Use
the parity bit either to discard the message or to generate a negative acknowledgement to the
message.

When the character interrupt is used at high baud rates (38.4 kbaud to 115.2 kbaud), the time
between interrupts is very short. For example, the character interrupt for 38.4 kbaud is

260 microseconds, for 57.6 kbaud is 173 microseconds, and for 115.2 kbaud is 86 microseconds.
Ensure that you keep the interrupt routines very short to avoid missing characters, or else use the
Receive instruction.

Tip

SMB2 and SMB3 are shared between Port 0 and Port 1. When the reception of a character on
Port 0 results in the execution of the interrupt routine attached to that event (interrupt event 8),
SMB2 contains the character received on Port 0, and SMB3 contains the parity status of that
character. When the reception of a character on Port 1 results in the execution of the interrupt
routine attached to that event (interrupt event 25), SMB2 contains the character received on
Port 1 and SMB3 contains the parity status of that character.

S7-200 Instruction Set Chapter 6

Example: Transmit and Receive Instructions

M
A
|
N

_|

Network 1
SM0.1

—

[SmMBa0

-

FSMBaT

____H

FSMBag

—

F SnyEn

____H

MOV_B

EN ENO

16#084IN___ OUT
MOV_B

EN ENO

1648041 QUT
MOY_B

EN ENO

16#0A4IN___ OUT
MOV_W

EN ENO

+54IN_ oUT
MOV_B

EN ENO

1004IN___ QUTFSMBa4

INT_0-
234

ATCH
EM ENO

=
5

EVNT

INT_2 4

=]

ATCH
EM ENO

EVINT

—{(emi)

WE100

RCY
EM ENO

TBL
PORT

-

Network 1

LD
MOVB

MOVB

MOVB

MOVW

MOVB

ATCH

ATCH

ENI

RCV

/[This program receives a string of characters
/luntil a line feed character is received.

/[The message is then transmitted back

[Ito the sender.

SMO0.1 //On the first scan:

16#09, SMB30 //1. Initialize Freeport:
/I - Select 9600 baud.
/I - Select 8 data bits.
/I - Select no parity.

16#B0, SMB87 //2. Initialize RCV message control byte:

1 - RCV enabled.

/I - Detect end of message character.
/I - Detect idle line condition
1 as the message start condition.

16#0A, SMB89 //3. Set end of message character
/I to hex OA (line feed).

+5, SMW90 //4. Setidle line timeout
/I to5ms.

100, SMB94 /I5. Set maximum number of characters
/I to 100.

INT_O, 23 //6. Attach interrupt O
/I tothe Receive Complete event.

INT_2,9 /[7. Attach interrupt 2
/I tothe Transmit Complete event.

//8. Enable user interrupts.

VB100, 0 //9. Enable receive box with
1 buffer at VB100.

93

S7-200 Programmable Controller System Manual

Example: Transmit and Receive Instructions, continued

94

| Network 1 Network 1 /IReceive complete interrupt routine:
N SMBBE MoV B /1. If receive status shows receive of
T ——g} EN ENO H /I end character, then attach a
0 16#2'0 /I 10 ms timer to trigger a transmit and return.
10dm ouTksmEza 112. If the receive completed for any other reason,
/I then start a new receive.
LDB= SMB86, 16#20
ATCH MOVB 10, SMB34
EN ENOF—| | ATCH INT_1,10
CRETI
INT_14IMT NOT
T0-ENNT RCV VB100, 0
—(RETI)
RCY
—not—en enol—)
WB1004TBL
D4PORT
| Metwork 1 Network 1 //10-ms Timer interrupt:
N sMO0 OTon /1. Detach timer interrupt.
| . i .
1’ _| | EM EMO % /2. Transmit message back to user on port
LD SMO0.0
104EVNT DTCH 10
XMT VB100, 0
HWT
EN ENO—)
wB1004TBL
04PCRT
| Network 1 Network 1 /[Transmit Complete interrupt:
N SMO.0 BT //[Enable another receive.
T — b————fen Eno ﬁ LD SMO0.0
2 RCV VBI00,0
WB1004TBL
D4PORT

S7-200 Instruction Set Chapter 6

Get Port Address and Set Port Address Instructions

The Get Port Address instruction (GPA) reads the station

address of the S7-200 CPU port specified in PORT and SIMATIC £ (ECTTST

places the value in the address specified in ADDR. LAD FED
The Set Port Address instruction (SPA) sets the port station GET_ADDR SET_ADDR
address (PORT) to the value specified in ADDR. The new —EM EMG = | —EM EMG =
address is not saved permanently. After a power cycle, the dioor] ngﬂ’i
affected port returns to the last address (the one that was JdpoRT
downloaded with the system block).
Error conditions that set ENO = 0: AULRIBE: S hlel:
m 0006 (indirect address)
= 0004 (attempted to perform a Set Port Address instruction in an S
interrupt routine)
STL
GPA ADDR, PORT
SPA ADDR, PORT

Table 6-14 Valid Operands for the Get Port Address and Set Port Address Instructions

Inputs/Outputs Data Type Operands
ADDR BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant

(A constant value is valid only for the Set Port Address instruction.)
PORT BYTE Constant for CPU 221, CPU 222, CPU 224: 0

for CPU 224XP, CPU 226: Oorl

95

S7-200 Programmable Controller System Manual

Compare Instructions

96

Comparing Numerical Values mATIc | ic 1121 |

The compare instructions are used to compare two values:

IN1 =IN2 IN1 >=IN2

IN1 > IN2 IN1 < IN2

Compare Byte operations are unsigned.
Compare Integer operations are signed.

LAD FED

e ey

<= <= == =R

Compare Double Word operations are signed. »=B == == =R
Compare Real operations are signed. <= ==l <=h ==
=B =l =0 =R

For LAD and FBD: When the comparison is true, the €« < =R

Compare instruction turns on the contact (LAD) or output

(FBD)- SimATIC TEC 1131

For STL: When the comparison is true, the Compare LA FED

instruction Loads, ANDs, or ORs a 1 with the value on the

top of the stack (STL). = 1 =
—{EM ouT

When you use the IEC compare instructions, you can use "

various data types for the inputs. However, both input i

values must be of the same data type.

E@ ME GE LE aoT LT

Notice SIMATIC
The following conditions are fatal errors and cause your
S7-200 to immediately stop the execution of your STL

AR LDE= M1, IMZ
program: AB= M1, IM2
m |llegal indirect address is encountered (any Compare GB= N1 N2

instruction) LDE= LOW= LOD= LDR=

m |llegal real number (for example, NAN) is encountered tgg: tgﬁ: tgg: tgg:

(Compare Real instruction)

LDE== LDW-== LDD== LDR=<=
LDB== LDW-== LDD== LDR==

To prevent these conditions from occurring, ensure that LDE>= LDWs= LDD== LDR>=
you properly initialize pointers and values that contain real Ap= A= AD= ARz
numbers before executing compare instructions that use AE-=< A= AL AR

these values.

AE> AW> AD> AR-
fE<> A< AD<+ AR<=

Compare instructions are executed regardless of the state AB<= AW== AD== HAR<=

of power flow.

AE== A== A== AR==

B= o= b= =
B el etk el
OB= el O R
OB OW-== QD<= OR<=
OB== OWe= OD== OR==
OB== OWe= ODe= ORE=

Table 6-15 Valid Operands for the Compare Instructions

Inputs/Outputs Type

Operands

IN1, IN2 BYTE
INT

DINT
REAL

Output (or OUT) | BOOL

1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant

IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC,
Constant

ID, QD, VD, MD, SMD, SD, LD, AC, HC, *VD, *LD, *AC, Constant
ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC, Constant
1,Q,V, M, SM, S, T, C, L, Power Flow

S7-200 Instruction Set

Example: Compare Instructions

Hetwork 1
0.0 SMB28 Q0.0
_| a=)
50
SMB28 Q0.1
==H)
150
Hetwork 2
01 WMOV_W
[
| EN ENO—
300004 ouT v
WMOV_DW
EN ENO—
-2000000004M___auThvD2
MOv_R
EN ENO—
1012600648 ouThvDs
Hetwork 3
0.2 MOV_
l
| EN ENO—)
+30000di__ ouThwin
WMOv_Dv
EN ENO—)
-1oooo0000diy_ ouThvp2
Mov_R
EN ENO—)
3i41593dn_ ouThvDE
Hetwork 4
03 VD @o.2
=)
+10000
150000000 QO3
=0)
D2
VDB Q0.4
=R)
5.001E-006

Network 1

LD
LPS
AB<=

LPP
AB>=

Network 2

LD
MOVW
MOVD
MOVR

Network 3

LD
MOVW
MOVD
MOVR

Network 4

LD
LPS
AW>

LRD
AD<

LPP
AR>

/[Turn analog adjustment potentiometer 0
/Ito vary the SMB28 byte value.

//Q0.0 is active when the SMB28 value
/lis less than or equal to 50.

//Q0.1 is active when the SMB28 value
Ilis greater than or equal to 150.

/[The status indicator is on when

[lthe comparison is true.

10.0

SMB28, 50
Q0.0

SMB28, 150
Q0.1

/lLoad V memory addresses with

/Nlow values that make the comparisons
/[false and that turn

/lthe status indicators off.

10.1

-30000, VWO
-200000000, VD2
1.012E-006, VD6

/lLoad V memory addresses with
//high values that make the
/lcomparisons true and that turn
/lthe status indicators on.

10.2

+30000, VWO
-100000000, VD2
3.141593, VD6

/[The Integer Word comparison tests
/Ito find if VWO > +10000 is true.
//Uses program constants to show the
/I different data types. You can also
/lcompare two values

/Istored in programmable memory
INike: VWO > VW100

10.3

VWO, +10000
Q0.2

-150000000, VD2
Q0.3

VD6, 5.001E-006
Q0.4

Chapter 6

S7-200 Programmable Controller System Manual

98

Compare String

The Compare String instruction compares two strings of
ASCII characters:

IN1 =IN2 IN1 <> IN2

When the comparison is true, the Compare instruction turns
the contact (LAD) or output (FBD) on, or the compare
instruction Loads, ANDs or ORs a 1 with the value on the
top of the stack (STL).

Notice

The following conditions are fatal errors and cause your
S7-200 to immediately stop the execution of your
program:

m |llegal indirect address is encountered (any compare
instruction)

m A string with a length greater than 254 characters is
encountered (Compare String instruction)

m A string whose starting address and length are such
that it will not fit in the specified memory area
(Compare String instruction)

To prevent these conditions from occurring, ensure that
you properly initialize pointers and memory locations that
are intended to hold ASCII strings prior to executing
compare instructions that use these values. Ensure that
the buffer reserved for an ASCII string can reside
completely within the specified memory area.

Compare instructions are executed regardless of the state
of power flow.

SIMATIC l IEC 1121]
LAL: M1 FEL
| = | 1 = B
M2
== ==5
sIMATHC [EC 1131]
LAL: FEL
EQ S 1 EQ S »
— EM CUT a
= 1M1
M2
EC_5 ME_S
SIMATIC
5TL
LLE5= M1, IM2
AS=IM1,IM2
0= M1, IM2
LDS== M1, M2
AS=> M1, IM2
Q5= M1, M2

Table 6-16 Valid Operands for the Compare String Instructions
Inputs/Outputs Type Operands

IN1 STRING VB, LB, *VD, *LD, *AC, constant

IN2 STRING VB, LB, *VD, *LD, *AC

Output (OUT) BOOL ,Q,V, M, SM, S, T, C, L, Power Flow

S7-200 Instruction Set Chapter 6

Conversion Instructions

Standard Conversion Instructions mATIC | i 1121 |
Numerical Conversions e =
The Byte to Integer (BTI), Integer to Byte (ITB), Integer to E_I E_I
Double Integer (ITD), Double Integer to Integer (DTI), e o b | e e
Double Integer to Real (DTR), BCD to Integer (BCDI) and i olUT
Integer to BCD (IBCD) instructions convert an input value IN M ouT =
to the specified format and stores the output value in the
memory location specified by OUT. For example, you can E_I BCD_
convert a double integer value to a real number. You can I_E SR
also convert between integer and BCD formats. Iﬁlb: ﬁ'iﬂf'mg
Round and Truncate LR SEG
The Round instruction (ROUND) converts a real value IN to
a double integer value and places the rounded result into SaATIC IEC 1121
the variable specified by OUT.
) . LAD FEL:
The Truncate instruction (TRUNC) converts a real number ETo] ETo]
IN into a double integer and places the whole-number den ok | dm mweb
portion of the result into the variable specified by OUT. Ji AUT
M ouT
Segment
The Segment instruction (SEG) allows you to generate a bit E_Toul B<DTO
pattern that illuminates the segments of a seven-segment |.T5_B -T0_BD
display. I_Te_Dl TRUMC
LI_To_| SEG
LI_TO_R
R_To_DI
SIMATIC
STL
BTl IM, QUT BDI ouUT
ITE [N, QUT Bcp QUT
T IM, QUT TRUMC M, CUT
DTl M, QUT ROUML: M, CUT
DTR IM, QUT SEG M, CUT

Table 6-17 Valid Operands for the Standard Conversion Instructions

Inputs/Outputs = Data Type Operands

IN BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant
WORD, INT | IW, QW, VW, MW, SMW, SW, T, C, LW, AIW, AC, *VD, *LD, *AC, Constant
DINT ID, QD, VD, MD, SMD, SD, LD, HC, AC, *VD, *LD, *AC, Constant
REAL ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC, Constant

ouT BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC

WORD, INT | IW, QW, VW, MW, SMW, SW, T, C, LW, AC, *VD, *LD, *AC
DINT, REAL | ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC

99

S7-200 Programmable Controller System Manual

Operation of the BCD to Integer and Integer to BCD Instructions

The BCD to Integer instruction (BCDI) converts the Error conditions that set ENO =0
binary-coded decimal value IN to an integer value and loads m SM1.6 (invalid BCD)
the result into the variable specified by OUT. The valid range

for IN is O to 9999 BCD. m 0006 (indirect address)

The Integer to BCD instruction (IBCD) converts the input
integer value IN to a binary-coded decimal and loads the o
result into the variable specified by OUT. The valid range for ™ SMZ1.6 (invalid BCD)
IN is 0 to 9999 integer.

SM bits affected:

Operation of the Double Integer to Real Instruction

The Double Integer to Real instruction (DTR) converts a Error conditions that set ENO =0
32-bit, signed integer IN into a 32-bit real number and places = 0006 (indirect address)
the result into the variable specified by OUT.

Operation of the Double Integer to Integer Instruction

The Double Integer to Integer instruction (DTI) converts the Error conditions that set ENO =0
double integer value IN to an integer value and places the m SML1.1 (overflow)

result into the variable specified by OUT. = 0006 (indirect address)

If the value that you are converting is too large to be
represented in the output, then the overflow bit is set and the
output is not affected.

SM bits affected:
= SM1.1 (overflow)

Operation of the Integer to Double Integer Instruction

The Integer to Double Integer instruction (ITD) converts the Error conditions that set ENO =0
integer value IN to a double integer value and places the m 0006 (indirect address)

result into the variable specified by OUT. The sign is

extended.

Operation of the Byte to Integer Instruction

The Byte to Integer instruction (BTI) converts the byte value Error conditions that set ENO =0
IN to an integer value and places the result into the variable m 0006 (indirect address)
specified by OUT. The byte is unsigned, therefore there is

no sign extension.

Operation of the Integer to Byte Instruction

The Integer to Byte instruction (ITB) converts the word value Error conditions that set ENO =0
IN to a byte value and places the result into the variable m SM1.1 (overflow)
specified by OUT. Values 0 to 255 are converted. All other

values result in overflow and the output is not affected. = 0006 (indirect address)

SM bits affected:
= SM1.1 (overflow)

Tip
@ To change an integer to a real number, use the Integer to Double Integer instruction and then
use the Double Integer to Real instruction.

100

S7-200 Instruction Set Chapter 6

Operation of the Round and Truncate Instructions

The Round instruction (ROUND) converts the real-number Error conditions that set ENO =0
value IN to a double integer value and places the resultinto m SM1.1 (overflow)
the variable specified by OUT. If the fraction portion is 0.5 or

greater, the number is rounded up. = 0006 (indirect address)

The Truncate instruction (TRUNC) converts a real-number ~ SM bits affected:
value IN into a double integer and places the resultinto the = SM1.1 (overflow)
variable specified by OUT. Only the whole number portion of

the real number is converted, and the fraction is discarded.

If the value that you are converting is not a valid real number or is too large to be represented in
the output, then the overflow bit is set and the output is not affected.

Example: Standard Conversion Instructions

Network 1 Network 1 /IConvert inches to centimeters:
/[1. Load a counter value (inches) into AC1.
0.0 I_Dl
| EN . ENO /[2. Convert the value to a real number.
_| |)l /3. Multiply by 2.54 (convert to centimeters).
/l4. Convert the value back to an integer.
1041 OUTFAC LD 10.0
ITD C10, AC1
DTR AC1, VDO
DI_R MOVR VDO, VD8
ENM EMND ﬁ *R VD4, VD8
ROUND VD8, VD12
ACTqIN OUTEvD0
Network 2 /IConvert a BCD value to an integer
LD 10.3
WMUL R BCDI ACO
EN ENo|—)
YOO4IN1 oUTEYDE
WA IM2
ROUMD
EN ENOF—)
WOEAIM OUTED2
Network 2
0.3 BCD_|
—| |7 EN ENO %
ACOAIM OUTFACD
Double Word Integer to Real and Round BCD to Integer
C10 Count = 101 inches ACO [1234
VDO 101.0 | Count (as a real number) BCDI
VD4 2.54 constant (inches to centimeters) ACO |04D2
VD8 256.54 | 256.54 centimeters as real number
VD12 257 | 257 centimeters as double integer

101

S7-200 Programmable Controller System Manual

Operation of the Segment Instruction

To illuminate the segments of a seven-segment display, the Segment instruction (SEG) converts
the character (byte) specified by IN to generate a bit pattern (byte) at the location specified by
OUT.

The illuminated segments represent the character in the Error conditions that set ENO =0
least significant digit of the input byte. Figure 6-14 shows the = 0006 (indirect address)
seven-segment display coding used by the Segment

instruction.

(IN) Segment (OUT) (IN) Segment (OUT)
LSD Display -gfe dcha LSD Display | -gfe dcbha
0 o 0011 1111 8 - 0111 1111
1 ! 0000 0110 g 9 o 0110 0111
2 2 0101 1011 f| g |b A r 0111 0111
3 - 0100 1111 el—lc B :E' 0111 1100
4 - 0110 0110 S c L 0011 1001
5 'E. 0110 1101 @ D P 0101 1110
6 - 0111 1101 E - 0111 1001
7 o 0000 0111 F p 0111 0001

Figure 6-14 Coding for a Seven-Segment Display

102

Example: Segment Instruction

Network 1
Network 1 SEG
1.0 SEG LD 11.0 VB48 AC1

l_ EM ENO }l SEG VB48, AC1

Ij (display character)

YB484IM OUTFACH

S7-200 Instruction Set Chapter 6

ASCII Conversion Instructions
Valid ASCII characters are the hexadecimal values 30 to 39, and 41 to 46.

Converting between ASCII and Hexadecimal

SIMATIC ¢ [EC 1131
Values
The ASCII to Hexadecimal instruction (ATH) converts a LAD FED
number LEN of ASCII characters, starting at IN, to ITA ITA
hexadecimal digits starting at OUT. The Hexadecimal to — EM EMO - | {EM MO
ASCII instruction (HTA) converts the hexadecimal digits, Ay outk |] IM ouT =
starting with the input byte IN, to ASCII characters starting at | |yt A FMT
OUT. The number of hexadecimal digits to be converted is
specified by length LEN. ATH ATH
The maximum number of ASCII characters or hexadecimal e ENO T :IE: éﬁ:
digits that can be converted is 255. Valid ASCII input —IH SUTE | ey
— LEM
Valid ASCII input characters are alphanumeric characters 0
to 9 with a hex code value of 30 to 39, and uppercase ITh OTH RTH
characters A to F with a hex code value of 41 to 46. ATH HTH
Error conditions that set ENO =0
m SM1.7 (illegal ASCII) ASCII to Hexadecimal only SIMATIC
m 0006 (indirect address)
STL

m 0091 (operand out of range) ITR M. QUT, FMT

DTA M, GUT, FMT

RTA [N, GUT, FMT
SM bits affected:

) ATH IN, QUT, LEM

m SML1.7 (illegal ASCII) HTA IM, SUT, LEM

Converting Numerical Values to ASCII

The Integer to ASCII (ITA), Double Integer to ASCII (DTA),
and Real to ASCII (RTA) instructions convert integer, double
integer, or real number values to ASCII characters.

Table 6-18 Valid Operands for the ASCII Conversion Instructions

Inputs/Outputs Data Type Operands

IN BYTE IB, QB, VB, MB, SMB, SB, LB, *VD, *LD, *AC
INT IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AlW, *VD, *LD, *AC,
Constant
DINT ID, QD, VD, MD, SMD, SD, LD, AC, HC, *VD, *LD, *AC, Constant
REAL ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC, Constant
LEN, FMT BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant
ouT BYTE IB, QB, VB, MB, SMB, SB, LB, *VD, *LD, *AC

Operation of the Integer to ASCII Instruction

The Integer to ASCII instruction (ITA) converts an integer Error conditions that set ENO =0
word IN to an array of ASCII characters. The format FMT m 0006 (indirect address)
specifies the conversion precision to the right of the decimal,
and whether the decimal point is to be shown as a comma
or a period. The resulting conversion is placed in 8 = nnn>5
consecutive bytes beginning with OUT.

= |llegal format

The array of ASCII characters is always 8 characters.

103

S7-200 Programmable Controller System Manual

104

Figure 6-15 describes the format operand for the Integer to ASCII instruction. The size of the
output buffer is always 8 bytes. The number of digits to the right of the decimal point in the output
buffer is specified by the nnn field. The valid range of the nnn field is 0 to 5. Specifying 0 digits to
the right of the decimal point causes the value to be displayed without a decimal point. For values
of nnn bigger than 5, the output buffer is filled with ASCII spaces. The c bit specifies the use of
either a comma (c=1) or a decimal point (c=0) as the separator between the whole number and

the fraction. The upper 4 bits must be zero.

Figure 6-15 shows examples of values that are formatted using a decimal point (c=0) with three
digits to the right of the decimal point (nnn=011). The output buffer is formatted according to the

following rules:
1 Positive values are written to the output buffer without a sign.
1 Negative values are written to the output buffer with a leading minus sign (-).

1 Leading zeros to the left of the decimal point (except the digit adjacent to the decimal point)
are suppressed.

1 Values are right-justified in the output buffer.

FMT
Out |Out |Out |Out |Out| Out | Out |Out
MSB LSB +1 |42 |[+3 |+4 | 45| +6 | +7
in=12 0 . 0O[1]2
‘ololololclnln]n] in=-123 “ 1o 1] 23
¢ = comma (1) or decimal point (0) in=1234 1 2 3 4
nnn = digits to right of decimal point in=-12345 - 1 2 3 4 5

Figure 6-15 FMT Operand for the Integer to ASCII (ITA) Instruction

Operation of the Double Integer to ASCII Instruction
The Double Integer to ASCII (DTA) instruction converts a Error conditions that set ENO =0
double word IN to an array of ASCII characters. The format = 0006 (indirect address)

operand FMT specifies the conversion precision to the right a Illegal format
of the decimal. The resulting conversion is placed in 12 9

consecutive bytes beginning with OUT. = nnn>5

The size of the output buffer is always 12 bytes.

Figure 6-16 describes the format operand for the Double Integer to ASCII instruction. The number
of digits to the right of the decimal point in the output buffer is specified by the nnn field. The valid
range of the nnn field is 0 to 5. Specifying 0 digits to the right of the decimal point causes the value
to be displayed without a decimal point. For values of nnn bigger than 5, the output buffer is filled
with ASCII spaces. The c bit specifies the use of either a comma (c=1) or a decimal point (c=0) as
the separator between the whole number and the fraction. The upper 4 bits must be zero.

Figure 6-16 shows examples of values that are formatted using a decimal point (c=0) with four
digits to the right of the decimal point (nnn=100). The output buffer is formatted according to the

following rules:
1 Positive values are written to the output buffer without a sign.
1 Negative values are written to the output buffer with a leading minus sign (-).

1 Leading zeros to the left of the decimal point (except the digit adjacent to the decimal point)
are suppressed.

1 Values are right-justified in the output buffer.

S7-200 Instruction Set Chapter 6

FMT
s s Out| Out| Out| Out| Out| Out| Out| Out| Out] Out| Out | Out
“"565432155 | +1| +2 | +3| +4 | +5| +6| +7| +8| +9| +10| +11
[ofofofolclnlnln| =tz I R R -
in=1234567 11213 .lals]l6]7

¢ = comma (1) or decimal point (0)
nnn = digits to right of decimal point

Figure 6-16 FMT Operand for the Double Integer to ASCII (DTA) Instruction

Operation of the Real to ASCII Instruction

The Real to ASCII instruction (RTA) converts a real-number Error conditions that set ENO =0
value IN to ASCII characters. The format FMT specifies the w0006 (indirect address)
conversion precision to the right of the decimal, whether the

decimal point is shown as a comma or a period, and the = nnn>5
output buffer size. m ssss<3
The resulting conversion is placed in an output buffer W ssss< number of characters in OUT

beginning with OUT.

The number (or length) of the resulting ASCII characters is the size of the output buffer and can be
specified to a size ranging from 3 to 15 bytes or characters.

The real-number format used by the S7-200 supports a maximum of 7 significant digits.
Attempting to display more than 7 significant digits produces a rounding error.

Figure 6-17 describes the format operand (FMT) for the RTA instruction. The size of the output
buffer is specified by the ssss field. A size of 0, 1, or 2 bytes is not valid. The number of digits to
the right of the decimal point in the output buffer is specified by the nnn field. The valid range of
the nnn field is 0 to 5. Specifying 0 digits to the right of the decimal point causes the value to be
displayed without a decimal point. The output buffer is filled with ASCII spaces for values of nnn
bigger than 5 or when the specified output buffer is too small to store the converted value. The c
bit specifies the use of either a comma (c=1) or a decimal point (c=0) as the separator between
the whole number and the fraction.

Figure 6-17 also shows examples of values that are formatted using a decimal point (c=0) with
one digit to the right of the decimal point (nnn=001) and a buffer size of six bytes (ssss=0110). The
output buffer is formatted according to the following rules:

1 Positive values are written to the output buffer without a sign.
1 Negative values are written to the output buffer with a leading minus sign (-).

1 Leading zeros to the left of the decimal point (except the digit adjacent to the decimal point)
are suppressed.

1 Values to the right of the decimal point are rounded to fit in the specified number of digits to
the right of the decimal point.

1 The size of the output buffer must be a minimum of three bytes more than the number of
digits to the right of the decimal point.

1 Values are right-justified in the output buffer.

FMT
MSB LSB

Out| Out| Out Out| Out| Out
+1| +2| +3| +4| +5

in=1234.5 1 21 3] 4 . 5
[sls[s|slc[n[n][n] in = -0.0004 o .|o0
ssss = size of output buffer in=-3.67526 -1 3 . 7
¢ = comma (1) or decimal point (0) .
nnn = digits to right of decimal point in=1.95 2 - 0

Figure 6-17 FMT Operand for the Real to ASCII (RTA) Instruction

105

S7-200 Programmable Controller System Manual

Example: ASCII to Hexadecimal Instruction

Network 1 Network 1
13.2 ATH LD 13.2
——fen Eno—— |ATH VB30,VB40,3
VE304IN OUTFVE40
34LEN
3 B A
ATH Note: The X indicates that the
VB30 VB40 “nibble” (half of a byte) is unchanged.
Example: Integer to ASCII Instruction
Network 1 Network 1 /[Convert the integer value at VW2
123 Ta /Ito 8 ASCII characters starting at VB10,
| EN ENO ; /lusing a format of 16#0B
I /l(a comma for the decimal point,
[[followed by 3 digits).
VA2 1N OUTFVE1D
1640B{FMT LD 123
ITA VW2, VB10, 16#0B
. . L Y 3 L 5
12345 ma [20] [20][31][32 |[2c][33][34][35]
VW2 VB10 VB11
Example: Real to ASCII Instruction
Network 1 Network 1 /IConvert the real value at VD2
|23 RTA /lto 10 ASCII characters starting at VB10,
] EN ENO >| /lusing a format of 16#A3
! //(a period for the decimal point,
vozdin ouTkven [[followed by 3 digits).
16#A3{EMT LD 12.3
RTA VD2, VB10, 16#A3
= = s o 3 7T 5 o
123.45 RTa |20 | [20 |[20 |[31 |[32|[3 |[2E]|34][35]]30]
VD2 VB10 VB11

106

S7-200 Instruction Set

Chapter 6

String Conversion Instructions

Converting Numerical Values to String

The Integer to String (ITS), Double Integer to String (DTS),
and Real to String (RTS) instructions convert integers,
double integers, or real number values (IN) to an ASCII
string (OUT).

Operation of the Integer to String

The Integer to String instruction (ITS) converts an integer
word IN to an ASCII string with a length of 8 characters. The
format (FMT) specifies the conversion precision to the right
of the decimal, and whether the decimal point is to be
shown as a comma or a period. The resulting string is
written to 9 consecutive bytes starting at OUT. See the
section, format for strings in Chapter 4 for more information.

Error conditions that set ENO =0
m 0006 (indirect address)

= 0091 (operand out of range)

= |llegal format (nnn > 5)

Figure 6-18 describes the format operand for the Integer to
String instruction. The length of the output string is always 8
characters. The number of digits to the right of the decimal
point in the output buffer is specified by the nnn field. The
valid range of the nnn field is O to 5. Specifying 0 digits to
the right of the decimal point causes the value to be
displayed without a decimal point. For values of nnn greater
than 5, the output is a string of 8 ASCII space characters.
The c bit specifies the use of either a comma (c=1) or a
decimal point (c=0) as the separator between the whole
number and the fraction. The upper 4 bits of the format must
be zero.

SIMATIE l IEC 1131]

LAC: FED
[[

—EM EMC = | —EM EMC =

~IM CUT =

=M OuT - AraT

—FMT
1I_5 Di_s R_%

SIMATIC [1131
LAD FED
I_TOS TS
— EM EMO - | {EM EMO -
=M QUT -
=M OuT - AraT
— FMT
TS DILTGS RTOS
SIMATIC
sTL
ITS M, QUT. FRT
DTS M, 2UT. FRT
RTS IM, ©UT. FRAT

Figure 6-18 also shows examples of values that are formatted using a decimal point (c= 0) with
three digits to the right of the decimal point (hnn = 011).The value at OUT is the length of the

string.

The output string is formatted according to the following rules:

1 Positive values are written to the output buffer without a sign.

1 Negative values are written to the output buffer with a leading minus sign (-).

1 Leading zeros to the left of the decimal point (except the digit adjacent to the decimal point)

are suppressed.

1 Values are right-justified in the output string.

Table 6-19 Valid Operands for the Instructions That Convert Numerical Values to Strings
Inputs/Outputs Data Type Operands
IN INT IW, QW, VW, MW, SMW, SW, T, C, LW, AIW, *VD, *LD, *AC, Constant
DINT ID, QD, VD, MD, SMD, SD, LD, AC, HC, *VD, *LD, *AC, Constant
REAL ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC, Constant
FMT BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant
ouT STRING VB, LB, *VD, *LD, *AC

107

S7-200 Programmable Controller System Manual

FMT
Out |Out |Out [Out |Out| Out| Out | Out [Out
MSB LSB +1| +2 | +3| +4| +5| +6| +7| +8
7 6 5 4 3 2 10 in=12 | 8 0 o] 1] 2
[ofofofo[c[n[n[n] in=-123 | 8 0 1] 2| 3
¢ = comma (1) or decimal point (0) in=1234 8 1 2 3 4
nnn = digits to right of decimal point in=-12345 8 - 1 2 3 4 5
Figure 6-18 FMT Operand for the Integer to String Instruction
Operation of the Double Integer to String
The Double Integer to String instruction (DTS) converts a Error conditions that set ENO =0
double integer IN to an ASCII string with a length of 12 m 0006 (indirect address)

characters. The format (FMT) specifies the conversion
precision to the right of the decimal, and whether the
decimal point is to be shown as a comma or a period. The = lllegal format (nnn > 5)
resulting string is written to 13 consecutive bytes starting at

OUT. For more information, see the section that describes

the format for strings in Chapter 4.

m 0091 (operand out of range)

Figure 6-19 describes the format operand for the Integer to String instruction. The length of the
output string is always 8 characters. The number of digits to the right of the decimal point in the
output buffer is specified by the nnn field. The valid range of the nnn field is 0 to 5. Specifying 0
digits to the right of the decimal point causes the value to be displayed without a decimal point.
For values of nnn greater than 5, the output is a string of 12 ASCII space characters. The c bit
specifies the use of either a comma (c=1) or a decimal point (c=0) as the separator between the
whole number and the fraction. The upper 4 bits of the format must be zero.

Figure 6-19 also shows examples of values that are formatted using a decimal point (c= 0) with
four digits to the right of the decimal point (nnn = 100). The value at OUT is the length of the string.
The output string is formatted according to the following rules:

1 Positive values are written to the output buffer without a sign.
1 Negative values are written to the output buffer with a leading minus sign (-).

1 Leading zeros to the left of the decimal point (except the digit adjacent to the decimal point)
are suppressed.

1 Values are right-justified in the output string.

FMT

Out |Out |Out |Out |Out | Out | Out |Out [Out | Out| Out| Out|Out
MSB LSB +1| +2 | +3| +4| +5| +6| +7| +8 | +9[+10|+11 |+12
7 6 5 43 2 10 in=12 | 12 .l - 0 .| O] 0O 1| 2
(ojofofofc[n|n|n| in=1234567 | 12 1] 2] 3]] 4] s 6] 7

¢ = comma (1) or decimal point (0)
nnn = digits to right of decimal point

Figure 6-19 FMT Operand for the Double Integer to String Instruction

108

S7-200 Instruction Set Chapter 6

Operation of the Real to String

The Real to String instruction (RTS) converts a real value IN Error conditions that set ENO =0
to an ASCII string. The format (FMT) specifies the ® 0006 (indirect address)
conversion precision to the right of the decimal, whether the

decimal point is to be shown as a comma or a period and = 0091 (operand out of range)

the length of the output string. = lllegal format:
nnn>>5
The resulting conversion is placed in a string beginning with ssss <3
OUT. The length of the resulting string is specified in the ssss < number of characters
format and can be 3 to 15 characters. For more information, required

see the section that describes the format for strings in
Chapter 4.

The real-number format used by the S7-200 supports a maximum of 7 significant digits.
Attempting to display more than the 7 significant digits produces a rounding error.

Figure 6-20 describes the format operand for the Real to String instruction. The length of the
output string is specified by the ssss field. A size of 0, 1, or 2 bytes is not valid. The number of
digits to the right of the decimal point in the output buffer is specified by the nnn field. The valid
range of the nnn field is 0 to 5. Specifying 0 digits to the right of the decimal point causes the value
to be displayed without a decimal point. The output string is filled with ASCII space characters
when nnn is greater than 5 or when the specified length of the output string is too small to store
the converted value. The c bit specifies the use of either a comma (c=1) or a decimal point (c=0)
as the separator between the whole number and the fraction.

Figure 6-20 also shows examples of values that are formatted using a decimal point (c= 0) with
one digit to the right of the decimal point (nnn = 001) and a output string length of 6 characters
(ssss = 0110). The value at OUT is the length of the string. The output string is formatted
according to the following rules:

1 Positive values are written to the output buffer without a sign.
1 Negative values are written to the output buffer with a leading minus sign (-).
1 Leading zeros to the left of the decimal point (except the digit adjacent to the decimal point)
are suppressed.
1 Values to the right of the decimal point are rounded to fit in the specified number of digits to
the right of the decimal point.
1 The size of the output string must be a minimum of three bytes more than the number of
digits to the right of the decimal point.
1 Values are right-justified in the output string.
FMT
Out |Out |Out |Out |Out | Out | Out
MSB LsB +1| +2 | +3| +4| +5| +6
7 6 5 4 3 2 10 in=1234.5 6] 1 2 3 4 5
's[s[s[s|c[n[n]n] in=-0.0004 | 6 0 0
ssss = length of output string in=-3.67526 6 - 3 7
¢ = comma (1) or decimal point (0) in=1.95 6 2 0

nnn = digits to right of decimal point

Figure 6-20

FMT Operand for the Real to String Instruction

109

S7-200 Programmable Controller System Manual

110

Converting Substrings to Numerical Values

SIMATIC l IEC 1121]

The Substring to Integer (STI), Substring to Double Integer
(STD), and Substring to Real (STR) instructions convert a LAD FED
string value IN, starting at the offset INDX, to an integer, sl sl
double integer or real number value OUT . JEn o | den EMe

=M oUT -
Error conditions that set ENO =0 = IM QUT = | o
® 0006 (indirect address) Mo
m 0091 (operand out of range) 5 S ol SR

m 009B (index = 0)
= SM1.1 (overflow)

siAT. [EC 113

The Substring to Integer and Substring to Double Integer

) . : : LAD FEL:
convert strings with the following form:
[spaces] [+ or -] [digits 0 - 9] ER ER

—{EM EMO - | —{ENM EMO =

The Substring to Real instruction converts strings with the —IM Ut |-
following form: [spaces] [+ or -] [digits O - 9] [. or ,] [digits :::DX CUTE | D
0-9]
The INDX value is normally set to 1, which starts the STol STl STOR

conversion with the first character of the string. The INDX
value can be set to other values to start the conversion at
different points within the string. This can be used when the | =IMATIZ
input string contains text that is not part of the number to be

converted. For example, if the input string is “Temperature: 5TL = e
77.8", you set INDX to a value of 13 to skip over the word STD M. MO, ST
“Temperature: ” at the start of the string. STR IM. MO, QUT

The Substring to Real instruction does not convert strings
using scientific notation or exponential forms of real
numbers. The instruction does not produce an overflow
error (SM1.1) but converts the string to a real number up to
the exponential and then terminates the conversion. For
example, the string ‘1.234E6’ converts without errors to a
real value of 1.234.

The conversion is terminated when the end of the string is reached or when the first invalid
character is found. An invalid character is any character which is not a digit (O - 9).

The overflow error (SM1.1) is set whenever the conversion produces an integer value that is too
large for the output value. For example, the Substring to Integer instruction sets the overflow error
if the input string produces a value greater than 32767 or less than -32768.

The overflow error (SM1.1) is also set if no conversion is possible when the input string does not
contain a valid value. For example, if the input string contains ‘A123’, the conversion instruction
sets SM1.1 (overflow) and the output value remains unchanged.

Table 6-20 Valid Operands for the Instructions That Convert Substrings to Numerical Values

Inputs/Outputs Data Type Operands

IN STRING 1B, QB, VB, MB, SMB, SB, LB, *VD, *LD, *AC, Constant
INDX BYTE VB, 1B, QB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant
ouT INT VW, IW, QW, MW, SMW, SW, T, C, LW, AC, AQW, *VD, *LD, *AC

DINT, REAL VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC

S7-200 Instruction Set

Chapter 6

Valid Input Strings

for Integer and Double Integer

Valid Input Strings
for Real Numbers

Invalid Input Strings

Input String Output Integer Input String Output Real Input String
‘123 123 ‘123 123.0 ‘A123’
-00456’ -456 -00456’ -456.0 c
'123.45' 123 '123.45' 123.45 4++123'
'+2345’ 2345 ‘+2345’ 2345.0 ‘+-123
‘000000123ABCD’ 123 ‘00.000000123' 0.000000123 ‘+ 123
Figure 6-21 Examples of Valid and Invalid Input Strings

Example: String Conversion: Substring to Integer, Double Integer and Real

Metwork 1 Network 1 /IConverts the numeric string to an integer.
0.0 El [/IConverts the numeric string to a double integer.
| ; ;
I EN ENOD H /IConverts the numeric string to a real.
LD 10.0
VB0 IN QUTEYWI0D | gy VB0,7,VW100
falies STD VBO0,7,VD200
=5 STR VB0,7,vD300
BN Eno—)
VBOHIN QUT FvD200
7INDX
5_R
EN ENO——)
VB0 IN QUT FvD300
741D
VBO VB11
|11|’T’|’e’|’m’|’p’ | | | 9 | g | | 6 | ’F’|

After executing the network:
VW100 (integer) = 98
VD200 (double integer) = 98
VD300 (real) = 98.6

111

S7-200 Programmable Controller System Manual

112

Encode and Decode Instructions

Encode

SIMATIC ¢ [EC 1131
The Encode instruction (ENCO) writes the bit number of the
least significant bit set of the input word IN into the least LAD FED
significant “nibble” (4 bits) of the output byte OUT. MO MO
—EM EMC | | {EM MG |-
Decode EL ouT
.) n —IH SUT |-
The Decode instruction (DECO) sets the bit in the output
word OUT that corresponds to the bit number represented ENCO DECO
by the least significant “nibble” (4 bits) of the input byte IN.
All other bits of the output word are set to 0.
) SIMATIE
SM Bits and ENO
For both the Encode and Decode instructions, the following =Tk EMCO M, oUT
conditions affect ENO. DECO M, QUT
Error conditions that set ENO =0
m 0006 (indirect address)
Table 6-21 Valid Operands for the Encode and Decode Instructions
Inputs/Outputs Data Types Operands
IN BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant
WORD IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, Constant
ouT BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC
WORD W, QW, VW, MW, SMW, SW, T, C, LW, AC, AQW, *VD, *LD, *AC
Example: Decode and Encode Instructions
Network 1 Network 1 /IAC2 contains error bits.
151 TECD /1. ;I'hk;ebliDtIiEnC\C/)V\l/rLsotructlon sets
l >|
I EN ENO /I that corresponds to this error
/I code.
ACZAIN QUT Y40 /12. The ENCO instruction converts

/I the least significant bit set to an
/I error code
ENCO /I thatis stored in VB50.

En ENO ﬁ LD 13.1

DECO AC2, VW40

AC3AIN CUTFwBS0 ENCO AC3, VB50
15 9 0
AC2 AC3 (1000 0010 0000 0000]
s DECO 5 ENCO
VW40 0000 0000 0000 1000] VB50 (Y

S7-200 Instruction Set Chapter 6

Counter Instructions

SIMATIC Counter Instructions SIATIC | ec 1131 |
Count Up Counter T e
The Count Up instruction (CTU) counts up from the current S it
value each time the count up (CU) input makes the 1 T i ;U T
transition from off to on. When the current value Cxx is IR Apw
greater than or equal to the preset value PV, the counter bit
Cxx turns on. The counter is reset when the Reset (R) input gL
turns on, or when the Reset instruction is executed. The Cxx iz
counter stops counting when it reaches the maximum value ok T -0 T
(32,767). o i
STL operation : Jdpy
m Reset input: Top of stack rene o
= Count Up input: Value loaded in the second stack location - CTUD ol CTUL
D - ED
Count Down Counter . Apy
The Count Down instruction (CTD) counts down from the
current value of that counter each time the count down (CD) 1
input makes the transition from off to on. When the current
value Cxx is equal to O, the counter bit Cxx turns on. The
counter resets the counter bit Cxx and loads the current e — l
value with the preset value PV when the load input LD turns
on. The counter stops upon reaching zero, and the counter STL
bit Cxx turns on. CTU G, PY
CTD o, PV
STL operation: CIL s, P
m Load input: Top of stack

= Count Down input: Value loaded in the second stack location.

113

S7-200 Programmable Controller System Manual

114

Count Up/Down Counter

The Count Up/Down instruction (CTUD) counts up each time the count up (CU) input makes the
transition from off to on, and counts down each time the count down (CD) input makes the
transition from off to on. The current value Cxx of the counter maintains the current count. The
preset value PV is compared to the current value each time the counter instruction is executed.

Upon reaching maximum value (32,767), the next rising edge at the count up input causes the
current count to wrap around to the minimum value (-32,768). On reaching the minimum value
(-32,768), the next rising edge at the count down input causes the current count to wrap around
to the maximum value (32,767).

When the current value Cxx is greater than or equal to the preset value PV, the counter bit Cxx
turns on. Otherwise, the counter bit turns off. The counter is reset when the Reset (R) input turns
on, or when the Reset instruction is executed.

STL operation:
m Reset input: Top of stack
= Count Down input: Value loaded in the second stack location

= Count Up input: Value loaded in the third stack location

Table 6-22 Valid Operands for the SIMATIC Counter Instructions

Inputs/Outputs Data Types Operands

Cxx WORD Constant (CO to C255)

CU, CD, LD,R BOOL ,Q,V,M, SM, S, T, C, L, Power Flow

PV INT IW, QW, VW, MW, SMW, SW, LW, T, C, AC, AIW, *VD, *LD, *AC,
Constant

Tip

Since there is one current value for each counter, do not assign the same number to more than
one counter. (Up Counters, Up/Down Counters, and Down counters with the same number
access the same current value.)

When you reset a counter using the Reset instruction, the counter bit is reset and the counter
current value is set to zero. Use the counter number to reference both the current value and the
counter bit of that counter.

Table 6-23 Operations of the Counter Instructions

Type Operation Counter Bit Power Cycle/First Scan
CTU CU increments the current The counter bit turns on when: | Counter bit is off.
value. Current value >= Preset Current value can be retained.t

Current value continues to
increment until it reaches
32,767.

CTUD | CU increments the current The counter bit turns on when: | Counter bit is off.
value.
CD decrements the current
value.

Current value >= Preset Current value can be retained.!

Current value continues to
increment or decrement until
the counter is reset.

CTD CD decrements the current The counter bit turns on when: | Counter bit is off.
value until the current value

Current value =0 Current value can be retained.!
reaches 0.

1 You can select that the current value for the counter be retentive. See Chapter 4 for information about memory

retention for the S7-200 CPU.

S7-200 Instruction Set

Chapter 6

Example: SIMATIC Count Down Counter Instruction

Network 1
0.0]

_| |—CD CTD

0.1
— b D

Network 1

/ICount down counter C1 current value
/lcounts from 3to 0

/Iwith 10.1 off,

1/10.0 Off-on decrements C1 current value
/110.1 On loads countdown preset value 3

10.0
o LD 10.1
CTD C1,+3
Network 2 /IC1 bit is on when counter C1 current value = 0
Metwork 2
c1 Q0.0 LD Cl
— = Qo
Timing Diagram
0000w — LI T T
10.1 Load —,_l 1
i3 3 |

C1 (current)

C1 (bit) Q0.0 —\—,—\—

Example: SIMATIC Count Up/Down Counter Instruction

Network 1 Network 1 /110.0 counts up
0.0 (e F] //10.1 counts down
— p———cu cio 1N0.2 resets current value to 0
LD 10.0
0.1
_| ch LD 10.1
LD 10.2
0.2 CTUD C48, +4
—
Network 2 //ICount Up/Down counter C48
R /lturns on C48 bit when
/lcurrent value >= 4
LD Cc48
Network 2 = Q0.0
c48 0.0
—)
T|m|ng Dlagram 10.0 (up) _!__!__!__!__!_‘ !—_!—l
10.1 (down)
10.2 (reset) 1
P s i s
414 a]
L3]
1
c48 (current)_0 Lo
€48 (bit) Q0.0 :

115

S7-200 Programmable Controller System Manual

I[EC Counter Instructions

Up Counter aaRTic TEC 1131
The Count Up instruction (CTU) counts up from the current
value to the preset value (PV) on the rising edges of the L e D

Count Up (CU) input. When the current value (CV) is greater

than or equal to the preset value, the counter output bit (Q) 1V =T 1 ‘T

|
-

turns on. The counter resets when the reset input (R) is -k —py ak
enabled. The Up Counter stops counting when it reaches vy ak o
the preset value. el

Down Counter ozt ozt

. . A CTD A CTD
The Count Down instruction (CTD) counts down from the

preset value (PV) on the rising edges of the Count Down LD —py ak
(CD) input. When the current value (CV) is equal to zero, the o
counter output bit (Q) turns on. The counter resets and
loads the current value with the preset value when the load
input (LD) is enabled. The Down Counter stops counting o o
when it reaches zero. Al LT L

]
A

1
—
=

“
=
T

| Y N
-

Up/Down Counter 10

The Count Up/Down instruction (CTUD) counts up or down Py ou
from the current value (CV) on the rising edges of the Count - LD ab
Up (CU) or Count Down (CD) input. When the current value o
is equal to preset, the up output (QU) turns on. When the an
current value is equal to zero, the down output (QD) turns o
on. The counter loads the current value with the preset

value (PV) when the load (LD) input is enabled. Similarly,

the counter resets and loads the current value with 0 when
the reset (R) is enabled. The counter stops counting when it
reaches preset or 0.

Table 6-24 Valid Operands for the IEC Counter Instructions

Inputs/Outputs Data Types Operands

Cxx CTU, CTD, CTUD | Constant (CO to C255)
CU,CD, LD, R BOOL ,Q,V,M, SM, S, T, C, L, Power Flow

PV INT IW, QW, VW, MW, SMW, SW, LW, AC, AIW, *VD, *LD, *AC,
Constant

Q, QU, QD BOOL ,Q,V,M,SM,S, L
cv INT IW, QW, VW, MW, SW, LW, AC, *VD, *LD, *AC

Tip

@ Since there is one current value for each counter, do not assign the same number to more than
one counter. (Up Counters, Down Counters, and Up/Down Counters access the same current
value.)

116

S7-200 Instruction Set

Chapter 6

Example: IEC Counter Instructions

Network 1
%l4.0 %C48
=CU CTUD
%I13.0
|— =C0
%I2.0
—r
%I1.0
—wo
+ 4P QUF%Q0.0
QDF%Q0.1
CW %W

Timing Diagram

14.0
CU- Up

13.0
CD -
Down

12.0
R -
Reset

11.0
LD - Load

VWO

CV -
Current
Value

Q0.1

QD - Down _‘

117

S7-200 Programmable Controller System Manual

High-Speed Counter Instructions

High-Speed Counter Definition

The High-Speed Counter Definition instruction (HDEF)
selects the operating mode of a specific high-speed counter
(HSCx). The mode selection defines the clock, direction,
start, and reset functions of the high-speed counter.

You use one High-Speed Counter Definition instruction for
each high-speed counter.

Error conditions that set ENO =0

m 0003 (input point conflict)

m 0004 (illegal instruction in interrupt)
m 000A (HSC redefinition)

High-Speed Counter

Programming
Tips

¥

118

The High-Speed Counter (HSC) instruction configures and
controls the high-speed counter, based on the state of the
HSC special memory bits. The parameter N specifies the
high-speed counter number.

SIMATIC ¢ [EC 1131
LA FEL:
HE'EF HE'EF
e EMC e EMG -
{ Hse
— H=C — MCDE
{ moDE
Hse Hse
e EMo - | e EMG -
M
{n
SIMATIC
STL
HOEF HSC, MODE
Hse M

The high-speed counters can be configured for up to twelve different modes of operation. See

Table 6-26.

Each counter has dedicated inputs for clocks, direction control, reset, and start, where these
functions are supported. For the two-phase counters, both clocks can run at their maximum

rates. In quadrature modes, you can select one times (1x) or four times (4x) the maximum

counting rates. All counters run at maximum rates without interfering with one another.

Error conditions that set ENO =0
m 0001 (HSC before HDEF)

m 0005 (simultaneous HSC/PLS)

Table 6-25 Valid Operands for the High-Speed Counter Instructions

Inputs/Outputs Data Types Operands
HSC, MODE BYTE Constant
N WORD Constant

Refer to the Programming Tips on the documentation CD for programs that use high-speed

counters. See Tip 4 and Tip 29.

High-speed counters count high-speed events that cannot be controlled at S7-200 scan rates.
The maximum counting frequency of a high-speed counter depends upon your S7-200 CPU

model. Refer to Appendix A for more information.

Tip

CPU 221 and CPU 222 support four high-speed counters: HSCO, HSC3, HSC4, and HSC5.

These CPUs do not support HSC1 and HSC2.

CPU 224, CPU 224XP, and CPU 226 support six high-speed counters: HSCO to HSC5.

S7-200 Instruction Set Chapter 6

Instruction
Wizard

Typically, a high-speed counter is used as the drive for a drum timer, where a shaft rotating at a
constant speed is fitted with an incremental shaft encoder. The shaft encoder provides a specified
number of counts per revolution and a reset pulse that occurs once per revolution. The clock(s)
and the reset pulse from the shaft encoder provide the inputs to the high-speed counter.

The high-speed counter is loaded with the first of several presets, and the desired outputs are
activated for the time period where the current count is less than the current preset. The counter is
set up to provide an interrupt when the current count is equal to preset and also when reset
occurs.

As each current-count-value-equals-preset-value interrupt event occurs, a new preset is loaded
and the next state for the outputs is set. When the reset interrupt event occurs, the first preset and
the first output states are set, and the cycle is repeated.

Since the interrupts occur at a much lower rate than the counting rates of the high-speed
counters, precise control of high-speed operations can be implemented with relatively minor
impact to the overall PLC scan cycle. The method of interrupt attachment allows each load of a
new preset to be performed in a separate interrupt routine for easy state control. (Alternatively, all
interrupt events can be processed in a single interrupt routine.)

Understanding the Different High-Speed Counters

All counters function the same way for the same counter mode of operation. There are four basic
types of counters: single-phase counter with internal direction control, single-phase counter with
external direction control, two-phase counter with 2 clock inputs, and A/B phase quadrature
counter. Note that every mode is not supported by every counter. You can use each type: without
reset or start inputs, with reset and without start, or with both start and reset inputs.

1 When you activate the reset input, it clears the current value and holds it clear until you
deactivate reset.

1 When you activate the start input, it allows the counter to count. While start is deactivated,
the current value of the counter is held constant and clocking events are ignored.

1 Ifresetis activated while start is inactive, the reset is ignored and the current value is not
changed. If the start input becomes active while the reset input is active, the current value is
cleared.

Before you use a high-speed counter, you use the HDEF instruction (High-Speed Counter
Definition) to select a counter mode. Use the first scan memory bit, SMO0.1 (this bit is turned on for
the first scan and is then turned off), to call a subroutine that contains the HDEF instruction.

Programming a High-Speed Counter

You can use the HSC Instruction Wizard to configure the counter. The wizard uses the following
information: type and mode of counter, counter preset value, counter current value, and initial
counting direction. To start the HSC Instruction Wizard, select the Tools > Instruction Wizard
menu command and then select HSC from the Instruction Wizard window.

To program a high-speed counter, you must perform the following basic tasks:
g Define the counter and mode.

Set the control byte.

Set the current value (starting value).

Set the preset value (target value).

Assign and enable the interrupt routine.

I I W

Activate the high-speed counter.

119

S7-200 Programmable Controller System Manual

Defining Counter Modes and Inputs
Use the High-Speed Counter Definition instruction to define the counter modes and inputs.

Table 6-26 shows the inputs used for the clock, direction control, reset, and start functions
associated with the high-speed counters. The same input cannot be used for two different
functions, but any input not being used by the present mode of its high-speed counter can be
used for another purpose. For example, if HSCO is being used in mode 1, which uses 10.0 and
10.2,10.1 can be used for edge interrupts or for HSC3.

Tip
@ Note that all modes of HSCO (except mode 12) always use 10.0 and all modes of HSC4 always
use 10.3, so these points are never available for other uses when these counters are in use.

Table 6-26 Inputs for the High-Speed Counters

Mode Description Inputs

HSCO 10.0 10.1 10.2
HSC1 10.6 10.7 11.0 11.1
HSC2 11.2 11.3 11.4 11.5
HSC3 10.1
HSC4 10.3 10.4 10.5
HSC5 10.4

0 Single-phase counter with internal Clock

1 direction control Clock Reset

2 Clock Reset Start

3 Single-phase counter with external Clock Direction

4 direction control Clock Direction Reset

5 Clock Direction Reset Start

6 Two-phase counter with 2 clock inputs | Clock Up Clock Down

7 Clock Up Clock Down | Reset

8 Clock Up Clock Down | Reset Start

9 A/B phase quadrature counter Clock A Clock B

10 Clock A Clock B Reset

11 Clock A Clock B Reset Start

12 Only HSCO and HSC3 support

model2.

HSCO counts the number of pulses
going out of QO.0.

HSC3 counts the number of pulses
going out of QO.1.

120

S7-200 Instruction Set Chapter 6

Examples of HSC Modes
The timing diagrams in Figure 6-22 through Figure 6-26 show how each counter functions

according to mode.

Clock

Internal
Direction
Control

(1=Up)

Counter
Current
Value

Current value loaded to 0, preset loaded to 4, counting direction set to up.
Counter enable bit set to enabled.

PV=CV interrupt generated
Direction changed within interrupt routine

Figure 6-22 Operation Example of Modes 0, 1, or 2

Clock

External
Direction
Control

(1=Up)

Counter
Current
Value

Current value loaded to 0, preset loaded to 4, counting direction set to up.
Counter enable bit set to enabled.
PV=CV interrupt generated

PV=CV interrupt generated and
Direction Changed interrupt generated

Figure 6-23 Operation Example of Modes 3, 4, or 5

121

S7-200 Programmable Controller System Manual

When you use counting modes 6, 7, or 8, and rising edges on both the up clock and down clock
inputs occur within 0.3 microseconds of each other, the high-speed counter could see these
events as happening simultaneously. If this happens, the current value is unchanged and no
change in counting direction is indicated. As long as the separation between rising edges of the
up and down clock inputs is greater than this time period, the high-speed counter captures each
event separately. In either case, no error is generated and the counter maintains the correct count

value.
Current value loaded to 0, preset loaded to 4, initial counting direction set to up.
Counter enable bit set to enabled.
PV=CV interrupt generated
Count 1 PV=CV interrupt generated and
Ugun - m Direction Changed interrupt generated
Clock 0— .
1 ! ' 1
1
Count 1) ! ! !
Down ' : . .
Clock 0— — .
il ! '
! l
' ' !
' I ! I
1 I 3
1
. 2
Counter 1
Current
Value 0o__

Figure 6-24 Operation Example of Modes 6, 7, or 8

Current value loaded to 0, preset loaded to 3, initial counting direction set to up.
Counter enable bit set to enabled.

PV=CV interrupt PV=CV interrupt generated and

generated Direction Changed interrupt generated
Phase A 1__
Clock 0__
1 1 1 1 1 1
PhaseB 1 _—
Clock
O - 1 1 Il | Il]
4 , .
3
2
Counter
Current
Value

Figure 6-25 Operation Example of Modes 9, 10, or 11 (Quadrature 1x Mode)

122

S7-200 Instruction Set Chapter 6

Current value loaded to 0, preset loaded to 9, initial counting direction set to up.

Counter enable bit set to enabled.
Direction Changed

PVv=CV interrupt generated interrupt generated

PV=CV
interrupt generated

Phase A 1—
Clock 00— J I_, |_,

Phase B l_lllllllllllll
Clock)

12

Counter Current
Value 0

Figure 6-26 Operation Example of Modes 9, 10, or 11 (Quadrature 4x Mode)

Reset and Start Operation

The operation of the reset and start inputs shown in Figure 6-27 applies to all modes that use
reset and start inputs. In the diagrams for the reset and start inputs, both reset and start are

shown with the active state programmed to a high level.

| Reset interrupt

Example with Reset Example with Reset generated generated
and without Start and Start Counter | Counter Counter Counter
disabled | enabled disabled enabled
Start 1 —

(Active High)

Reset interrupt Reset 1-
generated (Active High) 0 — _,_I

=

=

|

Reset interrupt

Reset 1 —
(Active High)

0 —

+2,147,483,647 —
+2,147,483,647 —

Current Current
Counter 0— value — value
Counter 0— Current Value
Current Value frozen frozen
-2,147,483,648 —
-2,147,483,648 —
\ 7 \ 7

Counter value is somewhere in this range.

Counter value is somewhere in this range.

Figure 6-27 Operation Examples Using Reset with and without Start

123

S7-200 Programmable Controller System Manual

Four counters have three control bits that are used to configure the active state of the reset and
start inputs and to select 1x or 4x counting modes (quadrature counters only). These bits are
located in the control byte for the respective counter and are only used when the HDEF instruction
is executed. These bits are defined in Table 6-27.

Tip

@ You must set these three control bits to the desired state before the HDEF instruction is
executed. Otherwise, the counter takes on the default configuration for the counter mode
selected.

Once the HDEF instruction has been executed, you cannot change the counter setup unless
you first place the S7-200 in STOP mode.

Table 6-27 Active Level for Reset, Start, and 1x/4x Control Bits

HSCO HSC1 HSC2 HSC4 Description (used only when HDEF is executed)

Active level control bit for Reset!:
SM37.0 | SM47.0 | SM57.0 | SM147.0 0 = Reset is active high 1 = Reset is active low
Active level control bit for Start!:

--- | SM47.1 | SMs7.1 T 0 = Start is active high 1 = Start is active low

Counting rate selection for quadrature counters:

SM37.2 | SM47.2 | SM57.2 | SM147.2 0 = 4X counting rate 1 = 1X counting rate

1 The default setting of the reset input and the start input are active high, and the quadrature counting rate is 4x
(or four times the input clock frequency).

Example: High-Speed Counter Definition Instruction

M Network 1 Network 1 //On the first scan:
? SMO.1 MOW_B Zl S_eleit tthebstartt{;md hr_esélet
| inputs to be active hig
—| EN ENO H
N ! /I and select 4x mode.
1earadin ouTkemzar /[2. Configure HSC1 for_
/I quadrature mode with reset
1 and start inputs
HDEF LD SMO0.1
MOVB 16#F8, SMB47
EN ENO H)
HDEF 1,11
1qHSC
11{MODE

Setting the Control Byte

After you define the counter and the counter mode, you can program the dynamic parameters of
the counter. Each high-speed counter has a control byte that allows the following actions:

1 Enabling or disabling the counter

1 Controlling the direction (modes 0, 1, and 2 only), or the initial counting direction for all other
modes

1 Loading the current value
1 Loading the preset value

Examination of the control byte and associated current and preset values is invoked by the
execution of the HSC instruction. Table 6-28 describes each of these control bits.

124

S7-200 Instruction Set Chapter 6

Table 6-28 Control Bits for HSCO0, HSC1, HSC2, HSC3, HSC4, and HSC5

HSCO HSC1 HSC2 HSC3 HSC4 HSC5 Description

Counting direction control bit:
0 = Count down 1 =Count up

SM37.3 | SM47.3 | SM57.3 | SM137.3 A SM147.3 | SM157.3

Write the counting direction to the HSC:
SM37.4 | SM47.4 SM57.4 SM137.4 A SM147.4 | SM157.4 | 0 = No update 1 =Update
direction

SM37.5 SMA47.5 SM57.5 SM137.5 SM147.5 SMis7.5 \rite the new presetvalue to the HSC:

0 = No update 1 = Update preset
Write the new current value to the HSC:
SM37.6 | SM47.6 | SM57.6 | SM137.6 SM147.6 A SM157.6 0 = No update 1 = Update current
value

Enable the HSC:

SM37.7 | SM47.7 | SM57.7 | SM137.7 A SM147.7 | SM157.7 0 = Disable the HSC 1 = Enable the HSC

Reading the Current Value

The current value of each high-speed counter can only be read using the data type HC
(High-Speed-Counter Current) followed by the counter number (0, 1, 2, 3, 4, or 5) as shown in
Table 6-29. Use the HC data type whenever you wish to read the current count, either in a status
chart or in the user program. The HC data type is read-only; you cannot write a new current count
to the high speed counter using the HC data type.

Table 6-29 Current Values of HSCO, HSC1, HSC2, HSC3, HSC4, and HSC5
Value to be Read HSCO HSC1 HSC2 HSC3 HSC4 HSC5
Current value (CV) HCO HC1 HC2 HC3 HC4 HC5

Example: Reading and Saving the Current Count

M || Network 1 Network 1 //Save the value of
A 120 WO D /IHigh Speed Counter 0
I — » —e eno—— /linto VD200 when 13.0
N [Itransitions from OFF to ON.
HCo4IN ouT D200
LD 13.0
EU

MOVD HCO, VD200

Setting Current Values and Preset Values

Each high-speed counter has a 32-bit current value (CV) and a 32-bit preset value (PV) stored
internally. The current value is the actual count value of the counter, while the preset value is a
comparison value optionally used to trigger an interrupt when the current value reaches the preset
value. You can read the current value using the HC data type as described in the previous
section. You cannot read the preset value directly. To load a new current or preset value into the
high-speed counter, you must set up the control byte and the special memory double-word(s) that
hold the desired new current and/or new preset values, and also execute the HSC instruction to
cause the new values to the transferred to the high-speed counter. Table 6-30 lists the special
memory double words used to hold the desired new current and preset values.

125

S7-200 Programmable Controller System Manual

Use the following steps to write a new current value and/or new preset value to the high-speed
counter (steps 1 and 2 can be done in either order):

1. Load the value to be written into the appropriate SM new-current value and/or new preset
value (Table 6-30). Loading these new values does not affect the high-speed counter yet.

2. Set or clear the appropriate bits in the appropriate control byte (Table 6-28) to indicate
whether to update the current and/or preset values (bit x.5 for preset and x.6 for current).
Manipulating these bits does not affect the high-speed counter yet.

3. Execute the HSC instruction referencing the appropriate high-speed counter number.
Executing this instruction causes the control byte to be examined. If the control byte
specifies an update for the current, the preset, or both, then the appropriate values are
copied from the SM new current value and/or new preset value locations into the
high-speed counter internal registers.

Table 6-30 New Current and New Preset Values of HSCO, HSC1, HSC2, HSC3, HSC4, and
HSC5

Value to be Loaded HSCO HSC1 HSC2 HSC3 HSC4 HSC5

New current value (new CV) SMD38 SMD48 SMD58 SMD138 SMD148 SMD158
New preset value (new PV) | SMD42 SMD52 SMD62 SMD142 SMD152 SMD162

Tip
@ Changes to the control byte and the SM locations for new current value and new preset value
will not affect the high-speed counter until the corresponding HSC instruction is executed.

Example: Updating the Current and Preset Values

M Ne[%wmm Network 1 //Update the current count to 1000
A e T L \ /land the preset value to 2000
I — o " e [ffor High-Speed counter 0 when 12.0
N L T CUIESHLE /ltransitions from OFF to ON
MOV_Dw
] mo—3 | LD 12.0
200041 OUTFSMD42 EU
MOVD 1000, SMD38
TR MOVD 2000, SMD42
= SM37.5
SM37 6 = SM37.6
HSC 0
HsC
EN enob——)
Ik 1]

Assigning Interrupts

All counter modes support an interrupt event when the current value of the HSC is equal to the
loaded preset value. Counter modes that use an external reset input support an interrupt on
activation of the external reset. All counter modes except modes 0, 1, and 2 support an interrupt
on a change in counting direction. Each of these interrupt conditions can be enabled or disabled
separately. For a complete discussion on the use of interrupts, see the section on
Communications and Interrupt instructions.

Notice

A fatal error can occur if you attempt either to load a new current value or to disable and then
re-enable the high-speed counter from within the external reset interrupt routine.

Status Byte

A status byte for each high-speed counter provides status memory bits that indicate the current
counting direction and whether the current value is greater or equal to the preset value. Table 6-31
defines these status bits for each high-speed counter.

126

S7-200 Instruction Set Chapter 6

Tip
@ Status bits are valid only while the high-speed counter interrupt routine is being executed. The
purpose of monitoring the state of the high-speed counter is to enable interrupts for the events
that are of consequence to the operation being performed.

Table 6-31 Status Bits for HSCO, HSC1, HSC2, HSC3, HSC4, and HSC5
HSCO HSC1 HSC2 HSC3 HSC4 HSC5 Description
SM36.0 SM46.0 SM56.0 SM136.0 SM146.0 SM156.0 Not used
SM36.1 SM46.1 SM56.1 SM136.1 SM146.1 SM156.1 Not used
SM36.2 SM46.2 SM56.2 SM136.2 SM146.2 SM156.2 Not used
SM36.3 SM46.3 SM56.3 SM136.3 SM146.3 SM156.3 ' Not used
SM36.4 SM46.4 SM56.4 SM136.4 SM146.4 SM156.4 Not used

SM36.5 SM46.5 | SM56.5 SM136.5 | SM146.5 SM156.5 @ Current counting direction status bit:
0 = Counting down
1 = Counting up
SM36.6 A SM46.6 | SM56.6 | SM136.6 | SM146.6 SM156.6 @ Current value equals preset value status bit:
0 = Not equal
1=Equal

SM36.7 | SM46.7 | SM56.7 | SM136.7 | SM146.7 A SM156.7 @ Current value greater than preset value
status bit:

0 = Less than or equal
1 = Greater than

Sample Initialization Sequences for the High-Speed Counters

HSC1 is used as the model counter in the following descriptions of the initialization and operation
sequences. The initialization descriptions assume that the S7-200 has just been placed in RUN
mode, and for that reason, the first scan memory bit is true. If this is not the case, remember that
the HDEF instruction can be executed only one time for each high-speed counter after entering
RUN mode. Executing HDEF for a high-speed counter a second time generates a run-time error
and does not change the counter setup from the way it was set up on the first execution of HDEF
for that counter.

Tip
@ Although the following sequences show how to change direction, current value, and preset
value individually, you can change all or any combination of them in the same sequence by
setting the value of SMB47 appropriately and then executing the HSC instruction.

Initialization Modes O, 1, or 2

The following steps describe how to initialize HSC1 for Single Phase Up/Down Counter with
Internal Direction (Modes 0, 1, or 2).

1. Use the first scan memory bit to call a subroutine in which the initialization operation is
performed. Since you use a subroutine call, subsequent scans do not make the call to the
subroutine, which reduces scan time execution and provides a more structured program.

2. Inthe initialization subroutine, load SMB47 according to the desired control operation. For
example:

SMBA47 = 16#F8 Produces the following results:
Enables the counter
Writes a new current value
Writes a new preset value
Sets the direction to count up
Sets the start and reset inputs to be active high

127

S7-200 Programmable Controller System Manual

128

8.
9.

10.

Execute the HDEF instruction with the HSC input set to 1 and the MODE input set to one of
the following: O for no external reset or start, 1 for external reset and no start, or 2 for both
external reset and start.

Load SMD48 (double-word-sized value) with the desired current value (load with 0O to clear
it).
Load SMD52 (double-word-sized value) with the desired preset value.

In order to capture the current value equal to preset event, program an interrupt by
attaching the CV = PV interrupt event (event 13) to an interrupt routine. See the section that
discusses the Interrupt Instructions for complete details on interrupt processing.

In order to capture an external reset event, program an interrupt by attaching the external
reset interrupt event (event 15) to an interrupt routine.

Execute the global interrupt enable instruction (ENI) to enable interrupts.
Execute the HSC instruction to cause the S7-200 to program HSC1.

Exit the subroutine.

Initialization Modes 3, 4, or 5

The following steps describe how to initialize HSC1 for Single Phase Up/Down Counter with
External Direction (Modes 3, 4, or 5):

1.

10.
11.

Use the first scan memory bit to call a subroutine in which the initialization operation is
performed. Since you use a subroutine call, subsequent scans do not make the call to the
subroutine, which reduces scan time execution and provides a more structured program.

In the initialization subroutine, load SMB47 according to the desired control operation. For
example:

SMBA47 = 16#F8 Produces the following results:
Enables the counter
Writes a new current value
Writes a new preset value
Sets the initial direction of the HSC to count up
Sets the start and reset inputs to be active high

Execute the HDEF instruction with the HSC input set to 1 and the MODE input set to one of
the following: 3 for no external reset or start, 4 for external reset and no start, or 5 for both
external reset and start.

Load SMD48 (double-word-sized value) with the desired current value (load with 0O to clear
it).
Load SMD52 (double-word-sized value) with the desired preset value.

In order to capture the current-value-equal-to-preset event, program an interrupt by
attaching the CV = PV interrupt event (event 13) to an interrupt routine. See the section that
discusses the Interrupt Instructions for complete details on interrupt processing.

In order to capture direction changes, program an interrupt by attaching the direction
changed interrupt event (event 14) to an interrupt routine.

In order to capture an external reset event, program an interrupt by attaching the external
reset interrupt event (event 15) to an interrupt routine.

Execute the global interrupt enable instruction (ENI) to enable interrupts.
Execute the HSC instruction to cause the S7-200 to program HSC1.

Exit the subroutine.

S7-200 Instruction Set Chapter 6

Initialization Modes 6, 7, or 8

The following steps describe how to initialize HSC1 for Two Phase Up/Down Counter with
Up/Down Clocks (Modes 6, 7, or 8):

1.

10.
11.

Use the first scan memory bit to call a subroutine in which the initialization operations are
performed. Since you use a subroutine call, subsequent scans do not make the call to the
subroutine, which reduces scan time execution and provides a more structured program.

In the initialization subroutine, load SMB47 according to the desired control operation. For
example:

SMBA47 = 16#F8 Produces the following results:
Enables the counter
Writes a new current value
Writes a new preset value
Sets the initial direction of the HSC to count up
Sets the start and reset inputs to be active high

Execute the HDEF instruction with the HSC input set to 1 and the MODE set to one of the
following: 6 for no external reset or start, 7 for external reset and no start, or 8 for both
external reset and start.

Load SMD48 (double-word-sized value) with the desired current value (load with 0O to clear
it).
Load SMD52 (double-word-sized value) with the desired preset value.

In order to capture the current-value-equal-to-preset event, program an interrupt by
attaching the CV = PV interrupt event (event 13) to an interrupt routine. See the section on
interrupts.

In order to capture direction changes, program an interrupt by attaching the direction
changed interrupt event (event 14) to an interrupt routine.

In order to capture an external reset event, program an interrupt by attaching the external
reset interrupt event (event 15) to an interrupt routine.

Execute the global interrupt enable instruction (ENI) to enable interrupts.
Execute the HSC instruction to cause the S7-200 to program HSC1.

Exit the subroutine.

Initialization Modes 9, 10, or 11

The following steps describe how to initialize HSC1 for A/B Phase Quadrature Counter (for modes
9, 10, or 11):

1.

Use the first scan memory bit to call a subroutine in which the initialization operations are
performed. Since you use a subroutine call, subsequent scans do not make the call to the
subroutine, which reduces scan time execution and provides a more structured program.

In the initialization subroutine, load SMB47 according to the desired control operation.

Example (1x counting mode):
SMBA47 = 16#FC Produces the following results:
Enables the counter
Writes a new current value
Writes a new preset value
Sets the initial direction of the HSC to count up
Sets the start and reset inputs to be active high

Example (4x counting mode):
SMBA47 = 16#F8 Produces the following results:
Enables the counter
Writes a new current value
Writes a new preset value
Sets the initial direction of the HSC to count up
Sets the start and reset inputs to be active high

129

S7-200 Programmable Controller System Manual

10.
11.

Execute the HDEF instruction with the HSC input set to 1 and the MODE input set to one of
the following: 9 for no external reset or start, 10 for external reset and no start, or 11 for both
external reset and start.

Load SMD48 (double-word-sized value) with the desired current value (load with 0O to clear
it).
Load SMD52 (double-word-sized value) with the desired preset value.

In order to capture the current-value-equal-to-preset event, program an interrupt by
attaching the CV = PV interrupt event (event 13) to an interrupt routine. See the section on
enabling interrupts (ENI) for complete details on interrupt processing.

In order to capture direction changes, program an interrupt by attaching the direction
changed interrupt event (event 14) to an interrupt routine.

In order to capture an external reset event, program an interrupt by attaching the external
reset interrupt event (event 15) to an interrupt routine.

Execute the global interrupt enable instruction (ENI) to enable interrupts.
Execute the HSC instruction to cause the S7-200 to program HSC1.

Exit the subroutine.

Initialization Mode 12

The following steps describe how to initialize HSCO for counting pulses generated by PTOO0
(Mode 12).

1.

8.
9.

Use the first scan memory bit to call a subroutine in which the initialization operation is
performed. Since you use a subroutine call, subsequent scans do not make the call to the
subroutine, which reduces scan time execution and provides a more structured program.

In the initialization subroutine, load SMB37 according to the desired control operation. For
example:

SMB37 = 16#F8 Produces the following results:
Enables the counter
Writes a new current value
Writes a new preset value
Sets the direction to count up
Sets the start and reset inputs to be active high

Execute the HDEF instruction with the HSC input set to 0 and the MODE input set to 12.

Load SMD38 (double-word-sized value) with the desired current value (load with 0 to clear
it).
Load SMD42 (double-word-sized value) with the desired preset value.

In order to capture the current value equal to preset event, program an interrupt by
attaching the CV = PV interrupt event (event 12) to an interrupt routine. See the section that
discusses the Interrupt Instructions for complete details on interrupt processing.

Execute the global interrupt enable instruction (ENI) to enable interrupts.
Execute the HSC instruction to cause the S7-200 to program HSCO.

Exit the subroutine.

Change Direction in Modes 0, 1, 2, or 12

The following steps describe how to configure HSC1 for Change Direction for Single Phase
Counter with Internal Direction (Modes 0, 1, 2, or 12):

1.

2.

130

Load SMB47 to write the desired direction:

SMB47 = 16#90 Enables the counter
Sets the direction of the HSC to count down
SMB47 = 16#98 Enables the counter

Sets the direction of the HSC to count up
Execute the HSC instruction to cause the S7-200 to program HSC1.

S7-200 Instruction Set Chapter 6

Loading a New Current Value (Any Mode)

Changing the current value forces the counter to be disabled while the change is made. While the

counter is disabled, it does not count or generate interrupts.

The following steps describe how to change the counter current value of HSC1 (any mode):

1. Load SMB47 to write the desired current value:

SMB47 = 16#C0 Enables the counter
Writes the new current value

2. Load SMD48 (double-word-sized value) with the desired current value (load with O to clear

it).
3. Execute the HSC instruction to cause the S7-200 to program HSC1.

Loading a New Preset Value (Any Mode)
The following steps describe how to change the preset value of HSC1 (any mode):

1. Load SMBA47 to write the desired preset value:

SMB47 = 16#A0 Enables the counter
Writes the new preset value

2. Load SMD52 (double-word-sized value) with the desired preset value.

3. Execute the HSC instruction to cause the S7-200 to program HSC1.

Disabling a High-Speed Counter (Any Mode)

The following steps describe how to disable the HSC1 high-speed counter (any mode):

1. Load SMB47 to disable the counter:
SMB47 = 16#00 Disables the counter

2. Execute the HSC instruction to disable the counter.

131

S7-200 Programmable Controller System Manual

Example: High-Speed Counter Instruction

M
A
|
N

o VDWW

o H4z-—

132

Network 1
S0

Network 1
Sh0.1

—

SBR_O

— |

Network 1
SMO.0

16#F 5

MOV_B

BN ENO——

I OUTFSMB47

HDEF

14
114

HZC
MODE

EN ENO——

IO _DW

+Hi4

EN ENO—

I OUTFSMD48

IO _DW

+201

I OUTFSMDE2

ATCH

INT_0

INT

134

—(Eni)

EVNT

EN ENO—

HSC

EN ENO—

|

+01

MOV _DWY
EN ENO

i ouT

[SMD48

16#C0

MOV _B
EN ENO

1§ ouT

FSMBA7

HSC

Network 1

LD
CALL

Network 1

LD
MOVB
HDEF
MOVD
MOVD
ATCH
ENI
HSC

Network 1

LD
MOVD
MOVB
HSC

//On the first scan, call SBR_O.
SMO0.1
SBR_0
//On the first scan, configure HSC1:
/[1. Enable the counter.
/I - Write a new current value.
/I - Write a new preset value.
/I - Set the initial direction to count up.
/I - Select the start and reset inputs
1 to be active high.
/I - Select 4x mode.
/[2. Configure HSC1 for quadrature mode
/I with reset and start inputs.
/3. Clear the current value of HSC1.
/l4. Set the HSC1 preset value to 50.
//5. When HSC1 current value = preset value,
/I attach event 13 to interrupt routine INT_O.
//6. Global interrupt enable.
/[7. Program HSC1.
SMO0.1
16#F8, SMB47
1,11
+0, SMD48
+50, SMD52
INT_O, 13
1

/IProgram HSC1:

/1.
112.

1
SMO0.0

Clear the current value of HSC1.
Select to write only a hew current
and leave HSC1 enabled.

+0, SMD48
16#C0, SMB47

1

S7-200 Instruction Set Chapter 6

Pulse Output Instruction

The Pulse Output instruction (PLS) is used to control the

Pulse Train Output (PTO) and Pulse Width Modulation SIMATIC £ EC T3
(PWM) functions available on the high-speed outputs (Q0.0 LAD FED
and QO0.1). PLS PLS

Position The improved Position Control Wizard creates instructions —EM EMC = | | EM EMO =
Control — oo

customized to your application that simplify your o

programming tasks and take advantage of the extra

features of the S7-200 CPUs. Refer to Chapter 9 for more

information about the Position Control Wizard.

SIMATIC

You can continue to use the old PLS instruction to create

your own motion application, but the linear ramp on the PTO | |51

is only supported by instructions created by the improved PLs QoM

Position Control Wizard.

PTO provides a square wave (50% duty cycle) output with

user control of the cycle time and the number of pulses.

PWM provides a continuous, variable duty cycle output with user control of the cycle time and the
pulse width.

The S7-200 has two PTO/PWM generators that create either a high-speed pulse train or a pulse
width modulated waveform. One generator is assigned to digital output point Q0.0, and the other
generator is assigned to digital output point Q0.1. A designated special memory (SM) location
stores the following data for each generator: a control byte (8-bit value), a pulse count value (an
unsigned 32-bit value), and a cycle time and pulse width value (an unsigned 16-bit value).

The PTO/PWM generators and the process-image register share the use of Q0.0 and Q0.1. When
a PTO or PWM function is active on Q0.0 or Q0.1, the PTO/PWM generator has control of the
output, and normal use of the output point is inhibited. The output waveform is not affected by the
state of the process-image register, the forced value of the point, or the execution of immediate
output instructions. When the PTO/PWM generator is inactive, control of the output reverts to the
process-image register. The process-image register determines the initial and final state of the
output waveform, causing the waveform to start and end at a high or low level.

Table 6-32 Valid Operands for Pulse Output Instruction

Inputs/Outputs Data Types Operands

QO0.X WORD Constant: 0 (= Q0.0) or 1(=Q0.1)

Tip
@ Before enabling PTO or PWM operation, set the value of the process-image register for Q0.0
and Q0.1 to 0.

Default values for all control bits, cycle time, pulse width, and pulse count values are 0.

The PTO/PWM outputs must have a minimum load of at least 10% of rated load to provide
crisp transitions from off to on, and from on to off.

Refer to the Programming Tips on the documentation CD for programs that use the PLS
instruction for PTO/PWM operation. See Tip 7, Tip 22, Tip 23, Tip 30, and Tip 50.

Programming
Tips

133

S7-200 Programmable Controller System Manual

134

Pulse Train Operation (PTO)

PTO provides a square wave (50% duty cycle) output for a specified number of pulses and a
specified cycle time. (See Figure 6-28.) PTO can produce either a single train of pulses or multiple
trains of pulses (using a pulse profile). You specify the number of pulses and the cycle time (in
either microsecond or millisecond increments):

d Number of pulses: 1to 4,294,967,295 Cycle Time
B I —]
1 Cycle time: 10 pus to 65,535 us or
2 ms to 65,535 ms. 50% 50% 50% 50%
e . . Off On Off On
Specifying an odd number of microseconds or _

milliseconds for the cycle time (such as 75 ms),
causes some distortion in the duty cycle.

Figure 6-28 Pulse Train Output (PTO)
See Table 6-33 for pulse count and cycle time limitations.

Table 6-33 Pulse Count and Cycle Time in the PTO function

Pulse Count/Cycle TIme Reaction
Cycle time < 2 time units Cycle time defaults to 2 time units.
Pulse count=0 Pulse count defaults to 1 pulse.

The PTO function allows the “chaining” or “pipelining” of pulse trains. When the active pulse train
is complete, the output of a new pulse train begins immediately. This allows continuity between
subsequent output pulse trains.

Using the Position Control Wizard

The Position Control Wizard automatically handles single and multiple segment pipelining of PTO
pulses, pulse width modulation, SM Location configuration, and creating a profile table. The
information is here for your reference. Itis recommended that you use the Position Control
Wizard. For more information about the Position Control Wizard, see Chapter 9.

Single-Segment Pipelining of PTO Pulses

In single-segment pipelining, you are responsible for updating the SM locations for the next pulse
train. After the initial PTO segment has been started, you must modify immediately the SM
locations as required for the second waveform and execute the PLS instruction again. The
attributes of the second pulse train are held in a pipeline until the first pulse train is completed.
Only one entry at a time can be stored in the pipeline. When the first pulse train completes, the
output of the second waveform begins, and the pipeline is made available for a new pulse train
specification. You can then repeat this process to set up the characteristics of the next pulse train.

Smooth transitions between pulse trains occur unless there is a change in the time base or the
active pulse train completes before a new pulse train setup is captured by the execution of the
PLS instruction.

S7-200 Instruction Set Chapter 6

Multiple-Segment Pipelining of PTO Pulses

In multiple-segment pipelining, the S7-200 automatically reads the characteristics of each pulse
train segment from a profile table located in V memory. The SM locations used in this mode are
the control byte, the status byte, and the starting V memory offset of the profile table (SMW168 or
SMW178). The time base can be either microseconds or milliseconds, but the selection applies to
all cycle time values in the profile table, and cannot be changed while the profile is running.
Execution on the PLS instruction starts multiple segment operation.

Each segment entry is 8 bytes in length, and is composed of a 16-bit cycle time value, a 16-bit
cycle time delta value, and a 32-bit pulse count value. Table 6-34 shows the format of the profile
table. You can increase or decrease the cycle time automatically by programming a specified
amount for each pulse. A positive value in the cycle time delta field increases cycle time, a
negative value in the cycle time delta field decreases cycle time, and 0 results in an unchanging
cycle time.

While the PTO profile is operating, the number of the currently active segment is available in
SMB166 (or SMB176).

Table 6-34 Profile Table Format for Multiple-Segment PTO Operation
Byte Offset Segment Description of Table Entries

0 Number of segments: 1 to 2551

1 #1 Initial cycle time (2 to 65,535 units of the time base)

3 Cycle time delta per pulse (signed value) (-32,768 to 32,767 units of the time
base)

5 Pulse count (1 to 4,294,967,295)

9 #2 Initial cycle time (2 to 65,535 units of the time base)

11 Cycle time delta per pulse (signed value) (-32,768 to 32,767 units of the time
base)

13 Pulse count (1 to 4,294,967,295)

(Continues) #3 (Continues)

1 Entering a value of 0 for the number of segments generates a non-fatal error. No PTO output is generated.

Pulse Width Modulation (PWM)

PWM provides a fixed cycle time output with a Cycle Time
variable duty cycle. (See Figure 6-29.) You can

etond oo maonas ol || | puse |
: Time Time
1 Cycle time: 10 pus to 65,535 us or _ B
2 ms to 65,535 ms Figure 6-29 Pulse Width Modulation (PWM)
1 Pulse width time: 0 us to 65,535 us or

0 ms to 65,535 ms

As shown in Table 6-35, setting the pulse width equal to the cycle time (which makes the duty
cycle 100 percent) turns the output on continuously. Setting the pulse width to O (which makes the
duty cycle 0 percent) turns the output off.

Table 6-35 Pulse Width Time and Cycle Time and Reactions in the PWM Function

Pulse Width Time/ Cycle Time Reaction

Pulse width time >= Cycle time value The duty cycle is 100%: the output is turned on continuously.
Pulse width time =0 The duty cycle is 0%: the output is turned off.

Cycle time < 2 time units The cycle time defaults to two time units.

135

S7-200 Programmable Controller System Manual

There are two different ways to change the characteristics of a PWM waveform:

1 Synchronous Update: If no time base changes are required, you can use a synchronous
update. With a synchronous update, the change in the waveform characteristics occurs on
a cycle boundary, providing a smooth transition.

1 Asynchronous Update: Typically with PWM operation, the pulse width is varied while the
cycle time remains constant so time base changes are not required. However, if a change
in the time base of the PTO/PWM generator is required, an asynchronous update is used.
An asynchronous update causes the PTO/PWM generator to be disabled momentarily,
asynchronous to the PWM waveform. This can cause undesirable jitter in the controlled
device. For that reason, synchronous PWM updates are recommended. Choose a time
base that you expect to work for all of your anticipated cycle time values.

Tip
@ The PWM Update Method bit (SM67.4 or SM77.4) in the control byte specifies the update type

used when the PLS instruction is executed to invoke changes.

If the time base is changed, an asynchronous update occurs regardless of the state of the PWM
Update Method bit.

Using SM Locations to Configure and Control the PTO/PWM Operation

The PLS instruction reads the data stored in the specified SM memory locations and programs the
PTO/PWM generator accordingly. SMB67 controls PTO 0 or PWM 0, and SMB77 controls PTO 1
or PWM 1. Table 6-36 describes the registers used to control the PTO/PWM operation. You can
use Table 6-37 as a quick reference to determine the value to place in the PTO/PWM control
register to invoke the desired operation.

You can change the characteristics of a PTO or PWM waveform by modifying the locations in the
SM area (including the control byte) and then executing the PLS instruction. You can disable the
generation of a PTO or PWM waveform at any time by writing 0 to the PTO/PWM enable bit of the
control byte (SM67.7 or SM77.7) and then executing the PLS instruction.

The PTO Idle bit in the status byte (SM66.7 or SM76.7) is provided to indicate the completion of
the programmed pulse train. In addition, an interrupt routine can be invoked upon the completion
of a pulse train. (Refer to the descriptions of the Interrupt instructions and the Communications
instructions.) If you are using the multiple segment operation, the interrupt routine is invoked upon
completion of the profile table.

The following conditions set SM66.4 (or SM76.4) and SM66.5 (or SM76.5):

1 Specifying a cycle time delta value that results in an illegal cycle time after a number of
pulses generates a mathematical overflow condition that terminates the PTO function and
sets the Delta Calculation Error bit (SM66.4 or SM76.4) to 1. The output reverts to image
register control.

1 Manually aborting (disabling) a PTO profile in progress sets the User Abort bit (SM66.5 or
SM76.5) to 1.

1 Attempting to load the pipeline while it is full sets the PTO/PWM overflow bit (SM66.6 or
SM76.6) to 1. You must clear this bit manually after an overflow is detected if you want to
detect subsequent overflows. The transition to RUN mode initializes this bit to 0.

Tip
@ When you load a new pulse count (SMD72 or SMD82), pulse width (SMW70 or SMW80), or

136

cycle time (SMW68 or SMW?78), also set the appropriate update bits in the control register
before you execute the PLS instruction. For a multiple segment pulse train operation, you must
also load the starting offset (SMW168 or SMW178) of the profile table and the profile table
values before you execute the PLS instruction.

S7-200 Instruction Set Chapter 6
Table 6-36 SM Locations of the PTO / PWM Control Registers
Q0.0 Q0.1 Status Bits
SM66.4 SM76.4 PTO profile aborted (delta calculation error): 0 = no error 1 = aborted
SM66.5 SM76.5 PTO profile aborted due to user command: O = no abort 1 = aborted
SM66.6 SM76.6 PTO/PWM pipeline overflow/underflow: 0 =no overflow 1 = overflow/underflow
SM66.7 SM76.7 PTO idle: O=inprogress 1=PTO idle
Q0.0 Q0.1 Control Bits
SM67.0 SM77.0 PTO/PWM update the cycle time: 0 = no update 1 = update cycle time
SM67.1 SM77.1 PWM update the pulse width time: 0 = no update 1 = update pulse width
SM67.2 SM77.2 PTO update the pulse count value: 0 = no update 1 = update pulse
count
SM67.3 SM77.3 PTO/PWM time base: 0 =1 usftick 1 =1 ms/tick
SM67.4 SM77.4 PWM update method: 0 =asynchronous 1 = synchronous
SM67.5 SM77.5 PTO single/multiple segment operation: 0 = single 1 = multiple
SM67.6 SM77.6 PTO/PWM mode select: 0=PTO 1=PWM
SM67.7 SM77.7 PTO/PWM enable: 0 = disable 1 =enable
Q0.0 Q0.1 Other PTO/PWM Registers
SMW68 SMW78 PTO/PWM cycle time value range: 2 to 65,535
SMW?70 SMW80 PWM pulse width value range: 0 to 65,535
SMD72 SMD82 PTO pulse count value range: 1 to 4,294,967,295
SMB166 | SMB176 | Number of the segment in progress Multiple-segment PTO operation only
SMW168 H SMW178 | Starting location of the profile table Multiple-segment PTO operation only
(byte offset from VO)
SMB170 | SMB180 | Linear profile status byte
SMB171 | SMB181 | Linear profile result register
SMD172 | SMD182 | Manual mode frequency register
Table 6-37 PTO/PWM Control Byte Reference
Control Result of Executing the PLS Instruction
?Heg;s'[er Enable S0 gzgment E\;vd’\gte Time Base LSS quse C.y e
Value) Mode Operation | Method Count Width Time
16#81 Yes PTO | Single 1 us/cycle Load
16#84 Yes PTO | Single 1 us/cycle Load
16#85 Yes PTO | Single 1 us/cycle Load Load
16#89 Yes PTO | Single 1 ms/cycle Load
16#8C Yes PTO Single 1 ms/cycle | Load
16#8D Yes PTO Single 1 ms/cycle | Load Load
16#A0 Yes PTO Multiple 1 us/cycle
16#A8 Yes PTO Multiple 1 ms/cycle
16#D1 Yes PWM Synchronous 1 us/cycle Load
16#D2 Yes PWM Synchronous 1 us/cycle Load
16#D3 Yes PWM Synchronous 1 us/cycle Load Load
16#D9 Yes PWM Synchronous 1 ms/cycle Load
16#DA Yes PWM Synchronous 1 ms/cycle Load
16#DB Yes PWM Synchronous 1 ms/cycle Load Load

137

S7-200 Programmable Controller System Manual

Calculating Profile Table Values

The multiple-segment pipelining capability of the Frequency
PTO/PWM generators can be useful in many 10 kHz
applications, particularly in stepper motor control.

2 kHz

For example, you can use PTO with a pulse profile

\
\
\
. [!
to control a stepper motor through a simple ramp = Time
\

up, run, and ramp down sequence or more 1
complicated sequences by defining a pulse profile
that consists of up to 255 segments, with each 4,000 pulses
segment corresponding to a ramp up, run, or ramp
down operation.

1 Segment#1 2 Segment #2 3 Segment #3

200 pulses 3400 pulses 400 pulses
Figure 6-30 illustrates sample profile table values
required to generate an output waveform that
accelerates a stepper motor (segment 1), operates
the motor at a constant speed (segment 2), and
then decelerates the motor (segment 3).

Figure 6-30 Frequency/Time Diagram

For this example: The starting and final pulse frequency is 2 kHz, the maximum pulse frequency is
10 kHz, and 4000 pulses are required to achieve the desired number of motor revolutions. Since
the values for the profile table are expressed in terms of period (cycle time) instead of frequency,
you must convert the given frequency values into cycle time values. Therefore, the starting (initial)
and final (ending) cycle time is 500 us, and the cycle time corresponding to the maximum
frequency is 100 us. During the acceleration portion of the output profile, the maximum pulse
frequency should be reached in approximately 200 pulses. The deceleration portion of the profile
should be completed in approximately 400 pulses.

You can use the following formula to determine the delta cycle time value for a given segment that
the PTO/PWM generator uses to adjust the cycle time of each pulse:

Delta cycle time for a segment = | End_CTgeg - INit_CTgeq | / Quantityseq

where: End_CTseq = Ending cycle time for this segment
Init_CTseq = Initial cycle time for this segment
Quantityseq = Quantity of pulses in this segment

Using this formula to calculate the delta Table 6-38 Profile Table Values
cycle time values for the sample A
application: Address Value Description
VB500 3 | Total number of segments
Segment 1 (acceleration): VW501 500 | Initial cycle time
Delta cycle time = -2
VW503 -2 | Initial delta cycle time | Segment 1
Segment 2 (constant speed):
Delta cycle time = 0 VD505 200 | Number of pulses
) VW509 100 | Initial cycle time
Segment 3 (deceleration): VWELL o (Dl ot
Delta cycle time = 1 elta cycle time Segment 2
. . VD513 3400 ' Number of pulses
Table 6-38 lists the values for generating — -
VW517 100 | Initial cycle time

the example waveform (assumes that the
profile table is located in V. memory, starting vw519 1 | Delta cycle time Segment 3
at V500). You can include instructions in VD521 400 | Number of pulses

your program to load these values into

V memory, or you can define the values of
the profile in the data block.

138

S7-200 Instruction Set Chapter 6

In order to determine if the transitions between waveform segments are acceptable, you need to
determine the cycle time of the last pulse in a segment. Unless the delta cycle time is 0, you must
calculate the cycle time of the last pulse of a segment, because this value is not specified in the
profile. Use the following formula to calculate the cycle time of the last pulse:

Cycle time of the last pulse for a segment = Init_CTgeg + (Deltageg * (Quantityseq - 1))
where: Init_CTgeq = Initial cycle time for this segment
Deltaseg = Delta cycle time for this segment
Quantityseq = Quantity of pulses in this segment

While the simplified example above is useful as an introduction, real applications can require more
complicated waveform profiles. Remember that the delta cycle time can be specified only as an
integer number of microseconds or milliseconds, and the cycle time modification is performed on
each pulse.

The effect of these two items is that calculation of the delta cycle time value for a given segment
could require an iterative approach. Some flexibility in the value of the ending cycle time or the
number of pulses for a given segment might be required.

The duration of a given profile segment can be useful in the process of determining correct profile
table values. Use the following formula to calculate the length of time for completing a given profile
segment:

Duration of segment = Quantityseq * (Init_CT + ((Deltageg/2) * (Quantityseg - 1)))
where: Quantityseq = Quantity of pulses in this segment
Init_CTseq = Initial cycle time for this segment

Deltaseg = Delta cycle time for this segment

139

S7-200 Programmable Controller System Manual

Math Instructions

Add, Subtract, Multiply, and Divide mATIc | ic 1121 |
Instructions

LAD FEL:
Add Subtract ADD 1 ADD1
IN1 + IN2 = OUT IN1 - IN2 =OUT LAD and —EM EMO [| —EM EMO [
FBD 1M1 ouT
IN1 + OUT = OUT OUT-IN1=0UT STL A L
The Add Integer (+I) or Subtract Integer (-1) instructions add
or subtract two 16-bit integers to produce a 16-bit result. The ACD_I ACC_DI ADD_R
Add Double Integer (+D) or Subtract Double Integer (-D) SUE_| SUB_DI - SUB_R
instructions add or subtract two 32-bit integers to produce a ’[';}HLI-' E}HLB?' E}ﬂ'—ER
32-bit result. The Add Real (+R) and Subtract Real (-R) - - -
instructions add or subtract two 32-bit real numbers to
produce a 32-bit real number result. SpaATIc IEC 1131
Multiply Divide LA FED
IN1 *IN2 = OUT IN1/IN2 =0UT LAD and ep e

—{EM ENO - | {EN EMO =
FBD 4Nt ouTk
IN1 * OUT = OUT OUT /IN1 = OUT STL T ::; SUTE | iz
The Multiply Integer (*I) or Divide Integer (/l) instructions
multiply or divide two 16-bit integers to produce a 16-bit ACD SUB MUL DY

result. (For division, no remainder is kept.) The Multiply

Double Integer (*D) or Divide Double Integer (/D) instructions
multiply or divide two 32-bit integers to produce a 32-bit
result. (For division, no remainder is kept.) The Multiply Real =

(*R) or Divide Real (/R) instructions multiply or divide two 4+ M1, 0UT
32-bit real numbers to produce a 32-bit real number result.

SIMATIC

4D 4R

SM Bits and ENO 4 I -R
#| #0 *R

SM1.1 indicates overflow errors and illegal values. If SM1.1 i AR

is set, then the status of SM1.0 and SM1.2 is not valid and
the original input operands are not altered. If SM1.1 and
SM1.3 are not set, then the math operation has completed
with a valid result and SM1.0 and SM1.2 contain valid
status. If SM1.3 is set during a divide operation, then the
other math status bits are left unchanged.

Error conditions that set Special Memory bits affected

ENO=0 ® SM1.0 (zero)
" SML.1 (overflow) = SML1.1 (overflow, illegal value generated during the operation, or illegal
= SM1.3 (divide by zero) input parameter found)

m 0006 (indirect address) m SM1.2 (negative)

= SM1.3 (divide by zero)

Table 6-39 Valid Operands for Add, Subtract, Multiply, and Divide Instructions
Inputs/Outputs = Data Types Operands

IN1, IN2 INT W, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *AC, *LD, Constant
DINT ID, QD, VD, MD, SMD, SD, LD, AC, HC, *VD, *LD, *AC, Constant
REAL ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC, Constant

ouT INT W, QW, VW, MW, SMW, SW, LW, T, C, AC, *VD, *AC, *LD

DINT, REAL ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC

Real (or floating-point) numbers are represented in the format described in the ANSI/IEEE 754-1985 standard
(single-precision). Refer to that standard for more information.

140

S7-200 Instruction Set

Chapter 6

Example: Integer Math Instructions

Network 1 Network 1
0.0 ADD_| LD 10.0
} En ENO— +l AC1, ACO
%) AC1, VW100
ACTHINT OUTFACO /l VW10, VW200
ACO4INZ
MUL_T
EN ENOH
ACTAIMT QUT Y100
SN 00INZ
Div_|
EN EnO—)
WWW2004IM1 QUT Y200
W 0IMN2
Add Multiply Divide
40]+ | 60 J=| 200 | | 40 |+ 20]=1] 800 | [4000 | /| 40 |=| 100
AC1 ACO ACO AC1 VW100 VW100 VW200 VW10 VW200
Example: Real Math Instructions
Network 1 Network 1
0.0 200 R LD 10.0
| Y +R ACL, ACO
EM EMNO s
! *R AC1, VD100
actdnt outhaco IR VD10, VD200
Aco{imz
ML R
EN ENOf—)
act{mt outhvpion
WD 100{IN2
O R
EN ENOf—)
voroodint ouThvozon
YD 104Nz
Add Multiply Divide
4000.0 |+ | 6000.0 | = | 100000 | | 400.0 | *| 2000 |=[80000.0 | | 4000.0 | /| 410 |=| 97.5609
AC1 ACO ACO AC1 VD100 VD100 VD200 VD10 VD200

141

S7-200 Programmable Controller System Manual

Multiply Integer to Double Integer and Divide Integer with Remainder

Multiply Integer to Double Integer

SIMATIC l IEC 117]
IN1 *IN2 = OUT LAD and FBD T e
INL*OUT=0UT STL
[[

The Multiply Integer to Double Integer instruction (MUL) —EM EMC = | —{EM MO
multiplies two 16-bit integers and produces a 32-bit product. don ourk |] M1 OUTE
In the STL MUL instruction, the least-significant word (16 iz n2
bits) of the 32-bit OUT is used as one of the factors.

. . . rALIL D
Divide Integer with Remainder
IN1/IN2 =0UT LAD and FBD
OUT/INL=OUT STL IMATIC
The Divide Integer with Remainder instruction (DIV) divides =TL MUL 1M1, QUT
two 16-bit integers and produces a 32-bit result consisting of LY IR, oUT
a 16-bit remainder (the most-significant word) and a 16-bit

quotient (the least-significant word).
In STL, the least-significant word (16 bits) of the 32-bit OUT is used as the dividend.

SM Bits and ENO

For both of the instructions on this page, Special Memory (SM) bits indicate errors and illegal
values. If SM1.3 (divide by zero) is set during a divide operation, then the other math status bits
are left unchanged. Otherwise, all supported math status bits contain valid status upon
completion of the math operation.

Error conditions that set ENO =0 Special Memory bits affected
= SM1.1 (overflow) m SM1.0 (zero)

= SM1.3 (divide by zero) = SM1.1 (overflow)

m 0006 (indirect address) m SM1.2 (negative)

m SM1.3 (divide by zero)

Table 6-40 Valid Operands for Multiply Integer to Double Integer and Divide Integer with
Remainder

Inputs/Outputs Data Types Operands

IN1, IN2 INT IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC,
Constant
ouT DINT ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC

Example: Multiply Integer to Double Integer Instruction and Divide Integer with Remainder Instruction

Netweork 1 Network 1
10.0 Bl LD 10.0
I e ENol—) MUL ACL, VD100
DIV VW10, VD200
ACT4INT OUTFvD100 .
V1024 IN2 Multiply Integer to 400 |*| 200 |:| 80000
Double Integer
Ol AC1 VW102 VD100
EN Ewoﬁ
rem. quot.
ww202diN1 oUTkvD200 Divide Integer | 4000 |/| 41 |: | 23 | 97 |
104 N2 with Remainder

VW202 VW10 VW200 VW202
VD200

Note: VD100 contains: VW100 and VW102, and VD200 contains: VW200 and VW202.

142

S7-200 Instruction Set Chapter 6

Numeric Functions Instructions

Sine, Cosine, and Tangent

SIMATIC £ [EC 1131

The Sine (SIN), Cosine (COS), and Tangent (TAN) instructions
evaluate the trigonometric function of the angle value IN and place the LAD FED
result in OUT. The input angle value is in radians. =M SIM

—{EM EMO = | {EN EMO [
SIN (IN) = OUT COS (IN) = OUT TAN (IN) = OUT 4 auT =

M ouT
To convert an angle from degrees to radians: Use the MUL_R (*R)
instruction to multiply the angle in degrees by 1.745329E-2 SN cos TAM LM EMP SORT
(approximately by 7/180).
Natural Logarithm and Natural Exponential SIMATIC
The Natural Logarithm instruction (LN) performs the natural logarithm
of the value in IN and places the result in OUT. ST = el

Cos N, oUT

The Natural Exponential instruction (EXP) performs the exponential TAM M, 2UT
operation of e raised to the power of the value in IN and places the 'E-Q'P :m gﬂ
resultin OUT. SORT I, oUT
LN (IN) = OUT EXP (IN)= OUT

To obtain the base 10 logarithm from the natural logarithm: Divide the natural logarithm by 2.302585
(approximately the natural logarithm of 10).

To raise any real number to the power of another real number, including fractional exponents: Combine the
Natural Exponential instruction with the Natural Logarithm instruction. For example, to raise X to the Y
power, enter the following instruction: EXP (Y * LN (X)).

Square Root

The Square Root instruction (SQRT) takes the square root of a real number (IN) and produces a real
number result OUT.

SQRT (IN)= OUT

To obtain other roots: 5 cubed =573 = EXP(3*LN(5)) = 125
The cube root of 125 = 125™(1/3) = EXP((1/3)*LN(125))= 5
The square root of 5 cubed = 57(3/2) = EXP(3/2*LN(5)) = 11.18034

SM Bits and ENO for the Numeric Functions Instructions

For all of the instructions that are described on this page, SM1.1 is used to indicate overflow errors and
illegal values. If SM1.1 is set, then the status of SM1.0 and SM1.2 is not valid and the original input
operands are not altered. If SM1.1 is not set, then the math operation has completed with a valid result and
SM1.0 and SM1.2 contain valid status.

Error conditions that set ENO =0 Special Memory bits affected
= SM1.1 (overflow) m SM1.0 (zero)
m 0006 (indirect address) = SM1.1 (overflow)

m SM1.2 (negative)

Table 6-41 Valid Operands for Numeric Functions

Inputs/Outputs Data Types Operands
IN REAL ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC, Constant
ouT REAL ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC

Real (or floating-point) numbers are represented in the format described in the ANSI/IEEE 754-1985 standard
(single-precision). Refer to that standard for more information.

143

S7-200 Programmable Controller System Manual

144

Increment and Decrement Instructions

Increment

SIMATIC l IEC 1121]
IN+1=0UT LAD and FBD
OUT+1=0UT STL LAD FED
IMC_E IMC_E
Decrement ~{En Mo | | HEM EM |
IN-1=0UT LAD and FBD dn ourh | UM__SUTFE
OUT -1=0UT STL
The Increment and Decrement instructions add or subtract INC_E DEC_E
: . Mt DEC_ W
1 to or from the input IN and place the result into the IME Dy LEC_ D
variable OUT.
Increm_ent Byte (IN_CB) and Decrement Byte (DECB) SIMATIE TEC 1121
operations are unsigned.
LAD: FED
Increment Word (INCW) and Decrement Word (DECW) e R
operations are signed.
— EM EMC [~ | —EM MO
Increment Double Word (INCD) and Decrement Double dn oyl | LM QUT =
Word (DECD) operations are signed.
Error conditions that set ENO = 0:
[N DEC
= SM1.1 (overflow)
m 0006 (indirect address)
SIMATIC
Special Memory bits affected: =
m SM1.0 (zero) IMCE QT
IMNCW oUT
= SM1.1 (overflow) Ml QUT
. . ouT
m SML1.2 (negative) for Word and Double Word operations EEEE\, alT
LECD QuUT
Table 6-42 Valid Operands for the Increment and Decrement Instructions
Inputs/Outputs Data Types Operands
IN BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant
INT IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, Constant
DINT ID, QD, VD, MD, SMD, SD, LD, AC, HC, *VD, *LD, *AC, Constant
ouT BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD
INT W, QW, VW, MW, SMW, SW, T, C, LW, AC,*VD, *LD, *AC
DINT ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC

Example: Increment and Decrement Instructions

Network 1 Network 1
4.0 INC_Wy LD 14.0
I EN ENO—) INCW ACO

DECD VD100

Increment Word +1= 126

ACO04IM QUTFACD

DEC_Dw/ ACO ACO
EN ENO—)
Decrement Double Word 128000 |- 1= 127999

WO1004IM QUTFwD100

VD100 VD100

S7-200 Instruction Set Chapter 6

Proportional/integral/Derivative (PID) Loop Instruction

Instruction
Wizard

¥

The PID Loop instruction (PID) executes a PID loop

. ! SIMATIC ¢ [EC 1131
calculation on the referenced LOOP based on the input and l
configuration information in Table (TBL). LAD FED
Error conditions that set ENO = 0: FID: FID:
m SM1.1 (overflow) | NG | FI_';L ENG =
m 0006 (indirect address) - TEL {Loor
— LoGP

Special Memory bits affected:
= SM1.1 (overflow)

SIMATIE
The PID loop instruction (Proportional, Integral, Derivative
Loop) is provided to perform the PID calculation. The top of STL
the logic stack (TOS) must be ON (power flow) to enable the FID TEL,LOGP
PID calculation. The instruction has two operands: a TABLE
address which is the starting address of the loop table and a

LOOP number which is a constant from 0 to 7.

Eight PID instructions can be used in a program. If two or more PID instructions are used with the
same loop number (even if they have different table addresses), the PID calculations will interfere
with one another and the output will be unpredictable.

The loop table stores nine parameters used for controlling and monitoring the loop operation and
includes the current and previous value of the process variable, the setpoint, output, gain, sample
time, integral time (reset), derivative time (rate), and the integral sum (bias).

To perform the PID calculation at the desired sample rate, the PID instruction must be executed
either from within a timed interrupt routine or from within the main program at a rate controlled by a
timer. The sample time must be supplied as an input to the PID instruction via the loop table.

Auto-Tune capability has been incorporated into the PID instruction. Refer to Chapter 15 for a
detailed description of auto-tuning. The PID Tuning Control Panel only works with PID loops
created by the PID wizard..

Table 6-43 Valid Operands for the PID Loop Instruction

Inputs/Outputs Data Types Operands
TBL BYTE VB
LOOP BYTE Constant (Oto 7)

STEP 7-Micro/WIN offers the PID Wizard to guide you in defining a PID algorithm for a
closed-loop control process. Select the Tools > Instruction Wizard menu command and then
select PID from the Instruction Wizard window.

Tip

The setpoint of the low range and the setpoint of the high range should correspond to the
process variable low range and high range.

145

S7-200 Programmable Controller System Manual

Understanding the PID Algorithm

146

In steady state operation, a PID controller regulates the value of the output so as to drive the error
(e) to zero. A measure of the error is given by the difference between the setpoint (SP) (the
desired operating point) and the process variable (PV) (the actual operating point). The principle
of PID control is based upon the following equation that expresses the output, M(t), as a function
of a proportional term, an integral term, and a differential term:

Output = Proportional term i Integral term i Differential term
t
M(t) = Kc*e * Ke j e dt + Mipia + Kc * de/dt
0
where: M is the loop output as a function of time
Kc is the loop gain
e is the loop error (the difference between setpoint and process variable)

Minitial is the initial value of the loop output

In order to implement this control function in a digital computer, the continuous function must be
quantized into periodic samples of the error value with subsequent calculation of the output. The
corresponding equation that is the basis for the digital computer solution is:

n

My = Kc*ey & Ki * Yex +Minitar + Ko * (en-€n.1)
1

output = proportional term i integral term i differential term
where: M, is the calculated value of the loop output at sample time n

Kc is the loop gain

en is the value of the loop error at sample time n

en-1 is the previous value of the loop error (at sample time n - 1)

ey is the value of the loop error at sample time x

Ky is the proportional constant of the integral term

Minitial is the initial value of the loop output

Kp is the proportional constant of the differential term

From this equation, the integral term is shown to be a function of all the error terms from the first
sample to the current sample. The differential term is a function of the current sample and the
previous sample, while the proportional term is only a function of the current sample. In a digital
computer, it is not practical to store all samples of the error term, nor is it necessary.

Since the digital computer must calculate the output value each time the error is sampled
beginning with the first sample, it is only necessary to store the previous value of the error and the
previous value of the integral term. As a result of the repetitive nature of the digital computer
solution, a simplification in the equation that must be solved at any sample time can be made. The

simplified equation is:

Mn = Ke * en + K, * e, + MX + Kp * (en-en-1)
output = proportional term + integral term + differential term
where: M, is the calculated value of the loop output at sample time n

Kc is the loop gain

en is the value of the loop error at sample time n

en-1 is the previous value of the loop error (at sample time n - 1)

Ky is the proportional constant of the integral term

MX is the previous value of the integral term (at sample time n - 1)

Kp is the proportional constant of the differential term

S7-200 Instruction Set Chapter 6

The S7-200 uses a modified form of the above simplified equation when calculating the loop
output value. This modified equation is:

Mp = MPp, + Mip + MDp,
output = proportional term + integral term + differential term
where: Mn is the calculated value of the loop output at sample time n

MP, is the value of the proportional term of the loop output at sample time n

Mlp is the value of the integral term of the loop output at sample time n

MDn is the value of the differential term of the loop output at sample time n

Understanding the Proportional Term of the PID Equation

The proportional term MP is the product of the gain (K¢), which controls the sensitivity of the
output calculation, and the error (e), which is the difference between the setpoint (SP) and the
process variable (PV) at a given sample time. The equation for the proportional term as solved by
the S7-200 is:

MPp, = Kc * (SPn - PVy)

where: MPn is the value of the proportional term of the loop output at sample time n
Kc is the loop gain
SP, is the value of the setpoint at sample time n
PV, is the value of the process variable at sample time n

Understanding the Integral Term of the PID Equation

The integral term Ml is proportional to the sum of the error over time. The equation for the integral
term as solved by the S7-200 is:

Mip = K¢ * Tg /[T * (SPh - PVy) + MX
where: Ml, is the value of the integral term of the loop output at sample time n

Kc is the loop gain

Ts is the loop sample time

T is the integration period of the loop (also called the integral time or reset)

SP, is the value of the setpoint at sample time n

PV, is the value of the process variable at sample time n

MX is the value of the integral term at sample time n - 1

(also called the integral sum or the bias)

The integral sum or bias (MX) is the running sum of all previous values of the integral term. After
each calculation of Ml,, the bias is updated with the value of Ml,, which might be adjusted or
clamped (see the section “Variables and Ranges” for details). The initial value of the bias is
typically set to the output value (Minitial) just prior to the first loop output calculation. Several
constants are also part of the integral term, the gain (K¢), the sample time (Tg), which is the cycle
time at which the PID loop recalculates the output value, and the integral time or reset (T}), which
is a time used to control the influence of the integral term in the output calculation.

147

S7-200 Programmable Controller System Manual

148

Understanding the Differential Term of the PID Equation

The differential term MD is proportional to the change in the error. The S7-200 uses the following
equation for the differential term:

MDp = Kc * Tp I Ts * ((SPn-PVp) - (SPn-1-PVn_1))

To avoid step changes or bumps in the output due to derivative action on setpoint changes, this
equation is modified to assume that the setpoint is a constant (SP,, = SPy, _ 1). This results in the
calculation of the change in the process variable instead of the change in the error as shown:

MDp, = Kc * Tp /| Tg * (SPp-PVp-SPh+PV,_o1)
or just:
MDn = KC * TD / TS * (PVn == PVn)
where: MDp, is the value of the differential term of the loop output at sample time n
Kc is the loop gain
Ts is the loop sample time
Tp is the differentiation period of the loop (also called the derivative time or rate)
SP, is the value of the setpoint at sample time n
SPh_1 is the value of the setpoint at sample time n-1
PV, is the value of the process variable at sample time n

PVn_1 is the value of the process variable at sample time n-1

The process variable rather than the error must be saved for use in the next calculation of the
differential term. At the time of the first sample, the value of PV, _ 1 is initialized to be equal to
PV.

Selecting the Type of Loop Control

In many control systems, it might be necessary to employ only one or two methods of loop control.
For example, only proportional control or proportional and integral control might be required. The
selection of the type of loop control desired is made by setting the value of the constant
parameters.

If you do not want integral action (no “I” in the PID calculation), then a value of infinity “INF”, should
be specified for the integral time (reset). Even with no integral action, the value of the integral term
might not be zero, due to the initial value of the integral sum MX.

If you do not want derivative action (no “D” in the PID calculation), then a value of 0.0 should be
specified for the derivative time (rate).

If you do not want proportional action (no “P” in the PID calculation) and you want | or ID control,
then a value of 0.0 should be specified for the gain. Since the loop gain is a factor in the equations
for calculating the integral and differential terms, setting a value of 0.0 for the loop gain will result
in a value of 1.0 being used for the loop gain in the calculation of the integral and differential
terms.

Converting and Normalizing the Loop Inputs

A loop has two input variables, the setpoint and the process variable. The setpoint is generally a
fixed value such as the speed setting on the cruise control in your automobile. The process
variable is a value that is related to loop output and therefore measures the effect that the loop
output has on the controlled system. In the example of the cruise control, the process variable
would be a tachometer input that measures the rotational speed of the tires.

S7-200 Instruction Set Chapter 6

Both the setpoint and the process variable are real world values whose magnitude, range, and
engineering units could be different. Before these real world values can be operated upon by the
PID instruction, the values must be converted to normalized, floating-point representations.

The first step is to convert the real world value from a 16-bit integer value to a floating-point or real
number value. The following instruction sequence is provided to show how to convert from an
integer value to a real number.

ITD AIWO0, ACO /IConvert an input value to a double word
DTR ACO, ACO /IConvert the 32-bit integer to a real number

The next step is to convert the real number value representation of the real world value to a
normalized value between 0.0 and 1.0. The following equation is used to normalize either the
setpoint or process variable value:

Rnorm = ((Rraw / Span) + Offset)

where: Rnorm is the normalized, real number value representation of the real world value
RRaw is the un-normalized or raw, real number value representation of the real world value
Offset is 0.0 for unipolar values
is 0.5 for bipolar values
Span is the maximum possible value minus the minimum possible value:
= 32,000 for unipolar values (typical)
= 64,000 for bipolar values (typical)

The following instruction sequence shows how to normalize the bipolar value in ACO (whose span
is 64,000) as a continuation of the previous instruction sequence:

/R 64000.0, ACO /INormalize the value in the accumulator
+R 0.5, ACO //Offset the value to the range from 0.0 to 1.0
MOVR ACO, VD100 //Store the normalized value in the loop TABLE

Converting the Loop Output to a Scaled Integer Value

The loop output is the control variable, such as the throttle setting of the cruise control on an
automobile. The loop output is a normalized, real number value between 0.0 and 1.0. Before the
loop output can be used to drive an analog output, the loop output must be converted to a 16-bit,
scaled integer value. This process is the reverse of converting the PV and SP to a normalized
value. The first step is to convert the loop output to a scaled, real number value using the formula

given below:
Rscal = (M, - Offset) * Span
where: Rgeg is the scaled, real number value of the loop output
Mn is the normalized, real number value of the loop output

Offset is 0.0 for unipolar values
is 0.5 for bipolar values

Span is the maximum possible value minus the minimum possible value
= 32,000 for unipolar values (typical)
= 64,000 for bipolar values (typical)

149

S7-200 Programmable Controller System Manual

150

The following instruction sequence shows how to scale the loop output:

MOVR VD108, ACO //Moves the loop output to the accumulator
-R 0.5, ACO /lInclude this statement only if the value is bipolar
*R 64000.0, ACO /IScales the value in the accumulator

Next, the scaled, real number value representing the loop output must be converted to a 16-bit
integer. The following instruction sequence shows how to do this conversion:

ROUND ACO0, ACO /IConverts the real number to a 32-bit integer
DTI ACO, LWO /IConverts the value to a 16-bit integer
MOVW LWO0, AQWO /\Writes the value to the analog output

Forward- or Reverse-Acting Loops

The loop is forward-acting if the gain is positive and reverse-acting if the gain is negative. (For | or
ID control, where the gain value is 0.0, specifying positive values for integral and derivative time
will result in a forward-acting loop, and specifying negative values will result in a reverse-acting
loop.)

Variables and Ranges

The process variable and setpoint are inputs to the PID calculation. Therefore the loop table fields
for these variables are read but not altered by the PID instruction.

The output value is generated by the PID calculation, so the output value field in the loop table is
updated at the completion of each PID calculation. The output value is clamped between 0.0 and
1.0. The output value field can be used as an input by the user to specify an initial output value
when making the transition from manual control to PID instruction (auto) control of the output. (See
the discussion in the “Modes” section below).

If integral control is being used, then the bias value is updated by the PID calculation and the
updated value is used as an input in the next PID calculation. When the calculated output value
goes out of range (output would be less than 0.0 or greater than 1.0), the bias is adjusted
according to the following formulas:

MX = 10 - (MPj + MDy) when the calculated output M,, > 1.0
or
MX = - (MP,+ MDy) when the calculated output M, < 0.0
where: MX is the value of the adjusted bias
MP, is the value of the proportional term of the loop output at sample time n
MDp, is the value of the differential term of the loop output at sample time n
Mn is the value of the loop output at sample time n

By adjusting the bias as described, an improvement in system responsiveness is achieved once
the calculated output comes back into the proper range. The calculated bias is also clamped
between 0.0 and 1.0 and then is written to the bias field of the loop table at the completion of each
PID calculation. The value stored in the loop table is used in the next PID calculation.

The bias value in the loop table can be modified by the user prior to execution of the PID
instruction in order to address bias value problems in certain application situations. Care must be
taken when manually adjusting the bias, and any bias value written into the loop table must be a
real number between 0.0 and 1.0.

A comparison value of the process variable is maintained in the loop table for use in the derivative
action part of the PID calculation. You should not modify this value.

S7-200 Instruction Set Chapter 6

Modes

There is no built-in mode control for S7-200 PID loops. The PID calculation is performed only
when power flows to the PID box. Therefore, “automatic” or “auto” mode exists when the PID
calculation is performed cyclically. “Manual” mode exists when the PID calculation is not
performed.

The PID instruction has a power-flow history bit, similar to a counter instruction. The instruction
uses this history bit to detect a 0-to-1 power-flow transition. When the power-flow transition is
detected, it will cause the instruction to perform a series of actions to provide a bumpless change
from manual control to auto control. In order for change to auto mode control to be bumpless, the
value of the output as set by the manual control must be supplied as an input to the PID
instruction (written to the loop table entry for M) before switching to auto control. The PID
instruction performs the following actions to values in the loop table to ensure a bumpless change
from manual to auto control when a 0-to-1 power-flow transition is detected:

1 Sets setpoint (SPy,) = process variable (PVy)
1 Sets old process variable (PV,_1) = process variable (PV,)
1 Sets bias (MX) = output value (Mp)

The default state of the PID history bits is “set” and that state is established at startup and on
every STOP-to-RUN mode transition of the controller. If power flows to the PID box the first time
that it is executed after entering RUN mode, then no power-flow transition is detected and the
bumpless mode change actions are not performed.

Alarm Checking and Special Operations

The PID instruction is a simple but powerful instruction that performs the PID calculation. If other
processing is required such as alarm checking or special calculations on loop variables, these
must be implemented using the basic instructions supported by the S7-200.

Error Conditions

When it is time to compile, the CPU will generate a compile error (range error) and the compilation
will fail if the loop table start address or PID loop nhumber operands specified in the instruction are
out of range.

Certain loop table input values are not range checked by the PID instruction. You must take care
to ensure that the process variable and setpoint (as well as the bias and previous process
variable if used as inputs) are real numbers between 0.0 and 1.0.

If any error is encountered while performing the mathematical operations of the PID calculation,
then SM1.1 (overflow or illegal value) is set and execution of the PID instruction is terminated.
(Update of the output values in the loop table could be incomplete, so you should disregard these
values and correct the input value causing the mathematical error before the next execution of the
loop’s PID instruction.)

151

S7-200 Programmable Controller System Manual

152

Loop Table
The loop table is 80 bytes long and has the format shown in Table 6-44.
Table 6-44 Loop Table
Offset Field Format Type Description
0 Process variable REAL In Contains the process variable, which must
(PVh) be scaled between 0.0 and 1.0.
4 Setpoint REAL In Contains the setpoint, which must be scaled
(SPn) between 0.0 and 1.0.
8 Output REAL In/Out Contains the calculated output, scaled
(Mp) between 0.0 and 1.0.
12 Gain REAL In Contains the gain, which is a proportional
(Ke) constant. Can be a positive or negative
number.
16 Sample time REAL In Contains the sample time, in seconds. Must
(Tg) be a positive number.
20 Integral time or reset REAL In Contains the integral time or reset, in
(Tp) minutes. Must be a positive number.
24 Derivative time or rate REAL In Contains the derivative time or rate, in
(Tp) minutes. Must be a positive number.
28 Bias REAL In/Out Contains the bias or integral sum value
(MX) between 0.0 and 1.0.
32 Previous process REAL In/Out Contains the value of the process variable
variable (PVp_1) stored from the last execution of the PID
instruction.
36to | Reserved for auto-tuning variables. Refer to Table 15-1 for details.
79

S7-200 Instruction Set Chapter 6

Interrupt Instructions

Enable Interrupt and Disable Interrupt SIMATIC ¢ |Ec1131]

The Enable Interrupt instruction (ENI) globally enables

processing of all attached interrupt events. The Disable
Interrupt instruction (DISI) globally disables processing of all _(£l :l - EMI
interrupt events.

LAL: FED:

When you make the transition to RUN mode, interrupts are _(DSl :| 1 Dl
initially disabled. In RUN mode, you can enable interrupt
processing by executing the Enable Interrupt instruction.

Executing the Disable Interrupt instruction inhibits the —|:RETI:| 1 FET
processing of interrupts; however, active interrupt events will
continue to be queued. ATCH ATCH
Error conditions that set ENO = 0: e EHor ﬁ:‘_r EHO
m 0004 (attempted execution of ENI, DISI, or HDEF instructions in —INT ~EVHT
an interrupt routine) - EVNT
Conditional Return from Interrupt DTCH DTCH
The Conditional Return from Interrupt instruction (CRETI) e B :EENT BN
can be used to return from an interrupt, based upon the — EYNT
condition of the preceding logic.
CLR_EWNT CLR_EWNT
Attach Interrupt qEN EMORE o Eﬁm EMG =
The Attach Interrupt instruction (ATCH) associates an | E¥NT
interrupt event EVNT with an interrupt routine number INT
and enables the interrupt event.
Error conditions that set ENO = 0: SIMATIC
m 0002 (conflicting assignment of inputs to an HSC) STL
EMI
Detach Interrupt DI
CRETI
The Detach Interrupt instruction (DTCH) disassociates an ATCH IMT. EYMT
interrupt event EVNT from all interrupt routines and disables DTEH EYMT
the interrupt event. CEYMT EVMT

Clear Interrupt Event

The Clear Interrupt Event instruction removes all interrupt events of type EVNT from the interrupt
gueue. Use this instruction to clear the interrupt queue of unwanted interrupt events. If this
instruction is being used to clear out spurious interrupt events, you should detach the event
before clearing the events from the queue. Otherwise new events will be added to the queue
after the clear event instruction has been executed.

The example shows a high-speed counter in quadrature mode using the CLR_EVNT instruction
to remove interrupts. If a light chopper stepper sensor was stopped in a position that is on the
edge of a light to dark transition, then small machine vibrations could generate unwanted
interrupts before the new PV can be loaded.

Table 6-45 Valid Operands for the Interrupt Instructions

Inputs/Outputs Data Types Operands

INT BYTE Constant (0 to 127)
EVNT BYTE Constant CPU 221 and CPU 222: 0to 12, 19to 23, and 27 to 33
CPU 224: 0to 23 and 27 to 33

CPU 224XP and CPU 226: 0to 33

153

S7-200 Programmable Controller System Manual

Operation of the Attach Interrupt and Detach Interrupt Instructions

Before an interrupt routine can be invoked, an association must be established between the
interrupt event and the program segment that you want to execute when the event occurs. Use
the Attach Interrupt instruction to associate an interrupt event (specified by the interrupt event
number) and the program segment (specified by an interrupt routine number). You can attach
multiple interrupt events to one interrupt routine, but one event cannot be concurrently attached to
multiple interrupt routines.

When you attach an interrupt event to an interrupt routine, that interrupt is automatically enabled. If
you disable all interrupts using the global disable interrupt instruction, each occurrence of the
interrupt event is queued until interrupts are re-enabled, using the global enable interrupt
instruction, or the interrupt queue overflows.

You can disable individual interrupt events by breaking the association between the interrupt
event and the interrupt routine with the Detach Interrupt instruction. The Detach Interrupt
instruction returns the interrupt to an inactive or ignored state. Table 6-46 lists the different types of
interrupt events.

Table 6-46 Interrupt Events

Event Description SEB ;5; CPU 224 SEB éégXP
0 10.0 Rising edge Y Y Y
1 10.0 Falling edge Y Y Y
2 10.1 Rising edge Y Y Y
3 10.1 Falling edge Y Y Y
4 10.2 Rising edge Y Y Y
5 10.2 Falling edge Y Y Y
6 10.3 Rising edge Y Y Y
7 10.3 Falling edge Y Y Y
8 Port 0 Receive character Y Y Y
9 Port 0 Transmit complete Y Y Y
10 Timed interrupt0 SMB34 Y Y Y
11 Timed interrupt1 ~ SMB35 Y Y Y
12 HSCO Cv=PV Y Y Y

(current value = preset value)
13 HSC1 Cv=PV Y Y
(current value = preset value)
14 HSC1 Direction changed Y Y
15 HSC1 External reset Y Y
16 HSC2 Cv=PV Y Y
(current value = preset value)
17 HSC2 Direction changed Y Y
18 HSC2 External reset Y Y
19 PLSO PTO pulse count complete interrupt Y Y Y
20 PLS1 PTO pulse count complete interrupt Y Y Y
21 Timer T32 CT=PT interrupt Y Y Y

154

S7-200 Instruction Set Chapter 6

Table 6-46 Interrupt Events, continued

Event Description SEB ;5; CPU 224 SEB gégXP
22 Timer T96 CT=PT interrupt Y Y Y
23 Port 0 Receive message complete Y Y Y
24 Port 1 Receive message complete Y
25 Port 1 Receive character Y
26 Port 1 Transmit complete Y
27 HSCO Direction changed Y Y Y
28 HSCO External reset Y Y Y
29 HSC4 CV=pPV Y Y Y

(current value = preset value)
30 HSC4 Direction changed Y Y Y
31 HSC4 External reset Y Y Y
32 HSC3 CV=pPV Y Y Y
(current value = preset value)
33 HSC5 CV=pPV Y Y Y

(current value = preset value)

Understanding How the S7-200 Processes Interrupt Routines

The interrupt routine is executed in response to an associated internal or external event. Once the
last instruction of the interrupt routine has been executed, control is returned to the main program.
You can exit the routine by executing a Conditional Return from Interrupt instruction (CRET]).
Table 6-47 emphasizes some guidelines and restrictions for using interrupt routines in your
program.

Table 6-47 Guidelines and Restrictions for Using Interrupt Routines

Guidelines

Interrupt processing provides quick reaction to special internal or external events. You should optimize
interrupt routines to perform a specific task, and then return control to the main routine.

By keeping the interrupt routines short and to the point, execution is quick and other processes are not
deferred for long periods of time. If this is not done, unexpected conditions can cause abnormal operation of
equipment controlled by the main program. For interrupts, the axiom, “the shorter, the better,” is definitely true.

Restrictions

You cannot use the Disable Interrupt (DISI), Enable Interrupt (ENI), High-Speed Counter Definition (HDEF),
and End (END) instructions in an interrupt routine.

System Support for Interrupts

Because contact, coil, and accumulator logic can be affected by interrupts, the system saves and
reloads the logic stack, accumulator registers, and the special memory bits (SM) that indicate the
status of accumulator and instruction operations. This avoids disruption to the main user program
caused by branching to and from an interrupt routine.

Sharing Data Between the Main Program and Interrupt Routines

You can share data between the main program and one or more interrupt routines. Because it is
not possible to predict when the S7-200 might generate an interrupt, it is desirable to limit the
number of variables that are used by both the interrupt routine and elsewhere in the program.
Problems with the consistency of shared data can result due to the actions of interrupt routines
when the execution of instructions in your main program is interrupted by interrupt events. Use the
local variable table of the interrupt routine to ensure that your interrupt routine uses only the
temporary memory and does not overwrite data used somewhere else in your program.

155

S7-200 Programmable Controller System Manual

156

There are a number of programming techniques you can use to ensure that data is correctly
shared between your main program and interrupt routines. These techniques either restrict the
way access is made to shared memory locations or prevent interruption of instruction sequences
using shared memory locations.

1 Foran STL program that is sharing a single variable: If the shared data is a single byte,
word, or double word variable and your program is written in STL, then correct shared
access can be ensured by storing the intermediate values from operations on shared data
only in non-shared memory locations or accumulators.

1 ForaLAD program that is sharing a single variable: If the shared data is a single byte,
word, or double word variable and your program is written in LAD, then correct shared
access can be ensured by establishing the convention that access to shared memory
locations be made using only Move instructions (MOVB, MOVW, MOVD, MOVR). While
many LAD instructions are composed of interruptible sequences of STL instructions, these
Move instructions are composed of a single STL instruction whose execution cannot be
affected by interrupt events.

1 Foran STL or LAD program that is sharing multiple variables: If the shared data is
composed of a number of related bytes, words, or double words, then the interrupt
disable/enable instructions (DISI and ENI) can be used to control interrupt routine
execution. At the point in your main program where operations on shared memory locations
are to begin, disable the interrupts. Once all actions affecting the shared locations are
complete, re-enable the interrupts. During the time that interrupts are disabled, interrupt
routines cannot be executed and therefore cannot access shared memory locations;
however, this approach can result in delayed response to interrupt events.

Calling Subroutines from Interrupt Routines

You can call one nesting level of subroutines from an interrupt routine. The accumulators and the
logic stack are shared between an interrupt routine and a subroutine that is called.

Types of Interrupts Supported by the S7-200

The S7-200 supports the following types of interrupt routines:

1 Communications port interrupts: The S7-200 generates events that allow your program to
control the communications port.

1 /O interrupts: The S7-200 generates events for different changes of state for various I/O.
These events allow your program to respond to the high-speed counters, the pulse outputs,
or to rising or falling states of the inputs.

1 Time-based interrupts: The S7-200 generates events that allow your program to react at
specific intervals.

Communications Port Interrupts

The serial communications port of the S7-200 can be controlled by your program. This mode of
operating the communications port is called Freeport mode. In Freeport mode, your program
defines the baud rate, bits per character, parity, and protocol. The Receive and Transmit interrupts
are available to facilitate your program-controlled communications. Refer to the Transmit and
Receive instructions for more information.

I/O Interrupts

1/O interrupts include rising/falling edge interrupts, high-speed counter interrupts, and pulse train
output interrupts. The S7-200 can generate an interrupt on rising and/or falling edges of an input
(either 10.0, 10.1, 10.2, or 10.3). The rising edge and the falling edge events can be captured for
each of these input points. These rising/falling edge events can be used to signify a condition that
must receive immediate attention when the event happens.

The high-speed counter interrupts allow you to respond to conditions such as the current value
reaching the preset value, a change in counting direction that might correspond to a reversal in
the direction in which a shaft is turning, or an external reset of the counter. Each of these
high-speed counter events allows action to be taken in real time in response to high-speed events
that cannot be controlled at programmable logic controller scan speeds.

S7-200 Instruction Set Chapter 6

The pulse train output interrupts provide immediate notification of completion of outputting the
prescribed number of pulses. A typical use of pulse train outputs is stepper motor control.

You can enable each of the above interrupts by attaching an interrupt routine to the related I/O
event.

Time-Based Interrupts

Time-based interrupts include timed interrupts and the timer T32/T96 interrupts. You can specify
actions to be taken on a cyclic basis using a timed interrupt. The cycle time is set in 1-ms
increments from 1 ms to 255 ms. You must write the cycle time in SMB34 for timed interrupt 0, and
in SMB35 for timed interrupt 1.

The timed interrupt event transfers control to the appropriate interrupt routine each time the timer
expires. Typically, you use timed interrupts to control the sampling of analog inputs or to execute a
PID loop at regular intervals.

A timed interrupt is enabled and timing begins when you attach an interrupt routine to a timed
interrupt event. During the attachment, the system captures the cycle time value, so subsequent
changes to SMB34 and SMB35 do not affect the cycle time. To change the cycle time, you must
modify the cycle time value, and then re-attach the interrupt routine to the timed interrupt event.
When the re-attachment occurs, the timed interrupt function clears any accumulated time from the
previous attachment and begins timing with the new value.

After being enabled, the timed interrupt runs continuously, executing the attached interrupt routine
on each expiration of the specified time interval. If you exit RUN mode or detach the timed
interrupt, the timed interrupt is disabled. If the global disable interrupt instruction is executed, timed
interrupts continue to occur. Each occurrence of the timed interrupt is queued (until either
interrupts are enabled or the queue is full).

The timer T32/T96 interrupts allow timely response to the completion of a specified time interval.
These interrupts are only supported for the 1-ms resolution on-delay (TON) and off-delay (TOF)
timers T32 and T96. The T32 and T96 timers otherwise behave normally. Once the interrupt is
enabled, the attached interrupt routine is executed when the active timer’s current value becomes
equal to the preset time value during the normal 1-ms timer update performed in the S7-200. You
enable these interrupts by attaching an interrupt routine to the T32/T96 interrupt events.

Interrupt Priority and Queuing

Interrupts are serviced by the S7-200 on a first-come-first-served basis within their respective
priority group. Only one user-interrupt routine is ever being executed at any point in time. Once the
execution of an interrupt routine begins, the routine is executed to completion. It cannot be
pre-empted by another interrupt routine, even by a higher priority routine. Interrupts that occur
while another interrupt is being processed are queued for later processing.

Table 6-48 shows the three interrupt queues and the maximum number of interrupts they can
store.

Table 6-48 Maximum Number of Entries per Interrupt Queue

Queue CPU 221, CPU 222, CPU 224 CPU 224XP and CPU 226
Communications queue 4 8
1/O Interrupt queue 16 16
Timed Interrupt queue 8 8

Potentially, more interrupts can occur than the queue can hold. Therefore, queue overflow
memory bits (identifying the type of interrupt events that have been lost) are maintained by the
system. Table 6-49 shows the interrupt queue overflow bits. You should use these bits only in an
interrupt routine because they are reset when the queue is emptied, and control is returned to the
main program.

157

S7-200 Programmable Controller System Manual

Table 6-50 shows all interrupt events, with their priority and assigned event number.

Table 6-49 Interrupt Queue Overflow Bits

Description (0 = No Overflow, 1 = Overflow) SM Bit
Communications queue SM4.0
1/O Interrupt queue SM4.1
Timed Interrupt queue SM4.2

Table 6-50 Priority Order for Interrupt Events

Event Description Priority Group Priority in Group
8 Port 0 Receive character Communications 0
9 Port 0 Transmit complete Highest Priority 0
23 Port 0 Receive message complete 0
24 Port 1 Receive message complete 1
25 Port 1 Receive character 1
26 Port 1 Transmit complete 1
19 PLSO PTO pulse count complete interrupt Discrete 0
20 PLS1 PTO pulse count complete interrupt Medium Priority 1
0 10.0 Rising edge 2
2 10.1 Rising edge 3
4 10.2 Rising edge 4
6 10.3 Rising edge 5
1 10.0 Falling edge 6
3 10.1 Falling edge 7
5 10.2 Falling edge 8
7 10.3 Falling edge 9
12 HSCO CV=PV (current value = preset value) 10
27 HSCO Direction changed 11
28 HSCO External reset 12
13 HSC1 CV=PV (current value = preset value) 13
14 HSC1 Direction changed 14
15 HSC1 External reset 15
16 HSC2 CV=PV (current value = preset value) 16
17 HSC2 Direction changed 17
18 HSC2 External reset 18

32 HSC3 CV=PV (current value = preset value) 19
29 HSC4 CV=PV (current value = preset value) 20
30 HSC4 Direction changed 21
31 HSC4 External reset 22
33 HSC5 CV=PV (current value = preset value) 23
10 Timed interrupt 0 SMB34 Timed 0
11 Timedinterrupt 1 SMB35 Lowest Priority 1
21 Timer T32 CT=PT interrupt 2
22 Timer T96 CT=PT interrupt 3

158

S7-200 Instruction Set Chapter 6

Example: Interrupt Instructions

M Network 1 Network 1 /IOn the first scan:
A SM0 1 ATCH /1. Define interrupt routine INT_O to
| EN ENO %| /I be a falling-edge interrupt for 10.0
N /[2. Globally enable interrupts.
INT_0INT
e LD SMO0.1
ATCH INT_O, 1
ENI
ENLY Network 2 /Nf an 1/O error is detected,

/ldisable the falling-edge interrupt for 10.0.

/[This network is optional.
Network 2

SME.0 DTCH LD SM5.0
_| |— e Eno %l DTCH 1
Network 3 //\When M5.0 is on,
1{EVNT /[disable all interrupts.
LD M5.0
DISI
Metwork 3
M5.0
—| |—(D|S|)
| Metwork 1 Network 1 /110.0 falling-edge interrupt routine:
N SM5.0 /IConditional return based on an I/O error.
T H F—rm) LD SM5.0
0 CRETI

Example: Timed Interrupt for Reading the Value of an Analog Input

M Network 1 Network 1 //On the first scan, call subroutine 0.
A Sh0 1 SER_O LD SMO.1
111 I — CALL SBR.O
S Network 1 Network 1 /1. Set the interval for the timed interrupt O to 100 ms.
B SM0 0 MOV_B /2. Attach timed interrupt O (Event 10) to INT_O.
R H | N Enof— /13. Global interrupt enable.
0 1004IM__ OUTFSMB34 LD SM0.0
MOVB 100, SMB34
ATCH INT_O, 10
ETCH ENI
EM EMNO %
INT_04inT
TO4EYNT
—(Emi)
| Network 1 Network 1 //IRead the value of AIW4 every 100 ms
N SM0.0 MO _ti
- LD SMO0.0
g — " == voww Aws, vwioo
Anvadin_ ouTkvw100

159

S7-200 Programmable Controller System Manual

Example: Clear Interrupt Event Instruction

Hetwork 1 Network 1 /I Instruction Wizard HSC
SO0 MOV _EB
} EN e ——
LD SMO0.0
TeRA QUL SMEHT MOVB 16#A0, SMB47
//Set control bits:
o 3 Ilwrite preset;
+EIH OuTk5M0D52

MOVD +6, SMD52
/IPV = 6;

ATCH

EN Enof——

HSC1 STEP14INT

ATCH HSC1_STEP1, 13

134 EwNT /lnterrupt HSC1_STEP1: CV = PV for HC1
- HsE Eun 5 Network 2 /[Clear un_/vant_ed in_terrupts caused
/Iby machine vibration

ik I
LD SMO0.0
CEVNT 13

Metwork 2
SMO.0 CLR_EWNT
—en ENDf——)
134EVNT

160

S7-200 Instruction Set

Chapter 6

Logical Operations Instructions

Invert Instructions

SIMATIC l IEC 1121]
Invert Byte, Word, and Double Word e =
The Invert Byte (INVB), Invert Word (INVW), and Invert MY _E MY _E
Double Word (INVD) instructions form the one’s complement | g ol | e EMe
of the input IN and load the result into the memory location i olUT
OUT. =M QUT -
Error conditions that set ENO =0
L IV _E Iy W IR Do
m 0006 (indirect address)
SM bits affected: sitATIc EC 113
m SM1.0 (zero)
LA FEL:
MOT MOT
— EM EMC - — EM EMC -
= 1IM CUT -
= 1IM CUT -
SIMATIC
STL
IMVE OUT
IV OUT
IMVE QUT
Table 6-51 Valid Operands for the Invert Instructions
Inputs/Outputs Data Types Operands
IN BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant
WORD W, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, Constant
DWORD ID, QD, VD, MD, SMD, SD, LD, AC, HC, *VD, *LD, *AC, Constant
ouT BYTE 1B, QB, VB, MB, SMB, SB, LB, AC,*VD, *LD, *AC
WORD IW, QW, VW, MW, SMW, SW, T, C, LW, AC, *VD, *LD, *AC

DWORD ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC

Example: Invert Instruction

Network 1 Network 1
140 I_ LD 14.0
| en enol— INVW ACO
Invert Word
A OUTEFACD

ACO | 11010111 10010101 |
complement
ACO | 0010 1000 0110 1010 |

161

S7-200 Programmable Controller System Manual

162

AND, OR, and Exclusive OR Instructions

AND Byte, AND Word, and AND Double Word

The AND Byte (ANDB), AND Word (ANDW), and AND
Double Word (ANDD) instructions AND the corresponding
bits of two input values IN1 and IN2 and load the result in a
memory location OUT.

OR Byte, OR Word and OR Double Word

The OR Byte (ORB), OR Word instruction (ORW), and OR
Double Word (ORD) instructions OR the corresponding bits
of two input values IN1 and IN2 and load the result in a
memory location OUT.

Exclusive OR Byte, Exclusive OR Word, and
Exclusive OR Double Word

The Exclusive OR Byte (XROB), Exclusive OR Word
(XORW), and Exclusive OR Double Word (XORD)

instruction XOR the corresponding bits of two input values
IN1 and IN2 and load the result in a memory location OUT.

SM Bits and ENO

For all of the instructions described on this page, the
following conditions affect SM bits and ENO.

Error conditions that set ENO =0
m 0006 (indirect address)

SM bits affected:
= SM1.0 (zero)

SIMATIC l IEC 1121]
LAC FEL:
YWAMD_B YWAMD_B
— EM EMCO | | HEM EMC -
= IM1 CUT -
= IM1 QUT - Inz
= IMz
YWAMD_B WAMD Y WAND_DW
WOR_E WOR_W WOR_DW
YWHOR_B WAGRE_W WEOR_DW
sIMATHC [EC 1131
LAC FEL:
AMD AMD
— EM EMCO | | HEM EMC -
= IM1 CUT -
= IM1 QUT - Inz
= IMz
AMD el HOR
SIMATIC
STL

AMDE 1M1, QUT
CORE IM1, QUT
WORE IM1, QUT

AMDW 1M1, QUT
ORYWIMAL OUT
WORW M1, QUT

AMDD 1M1, QUT
ORC IMAL OUT
WORD IM1, ©UT

Table 6-52 Valid Operands for the AND, OR, and Exclusive OR Instructions
Inputs/Outputs Data Types Operands
IN1, IN2 BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant
WORD IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AW, *VD, *LD, *AC, Constant
DWORD ID, QD, VD, MD, SMD, SD, LD, AC, HC, *VD, *LD, *AC, Constant
ouT BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD
WORD IW, QW, VW, MW, SMW, SW, T, C, LW, AC, *VD, *AC, *LD
DWORD ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD

S7-200 Instruction Set Chapter 6

Example: AND, OR, and Exclusive OR Instructions

Network 1

14.0
|

—

FACD

100

VAND_W
EN ENO
Actdmt ouT
Acnqinz
WOR_WY
EN ENO
Actdint - ouT
V100 IN2
WAOR_ W
EN ENO
Actdmt out
ACOHINZ

FACD

Network 1

LD 14.0

ANDW AC1, ACO
ORW AC1, VW100
XORW AC1, ACO

AND Word OR Word

AC1|0001 1111 0110 1101 | AC1 | 0001 1111 0110 1101 |
AND OR

ACO[1101 0011 1110 0110] VW100 [1101 0011 1010 0000 |
equals equals

ACO0[0001 0011 0110 0100] VW100 | 1101 1111 1110 1101 |

Exclusive OR Word

AC1 [0001 1111 0110 1101 |
XOR

ACO [0001 0011 0110 0100 |
equals

ACO [0000 1100 0000 1001 |

163

S7-200 Programmable Controller System Manual

Move Instructions

164

Move Byte, Word, Double Word, or Real

SIMATIC l IEC 117]
The Move Byte (MOVB), Move Word (MOVW), Move
Double Word (MOVD), and Move Real (MOVR) instructions LAD FED
move a value from a memory location IN to a new memory Mo _E Mo _E
location OUT without changing the original value. - EM EMO = | —{EM EMO =
—IH SUT |-
Use the Move Double Word instruction to create a pointer. p AR o
For more information, refer to the section on pointers and
indi ing i MCH _B PACH D
indirect addressing in Chapter 4. MO MO R
For the IEC Move instruction, the input and output data
types can vary, but must be of the same size. apaATic TEC 131
Error conditions that set ENO =0
. LA FED
m 0006 (indirect address)
MCHE MCHE
—EM EMG | | {EN EMGC |
—IH SUT |-
—IH SUT |-
SIMATIE
STL
mMove I OUT
MOV IR, QUT
MOVD I, QUT
MOVE I, QUT
Table 6-53 Valid Operands for the Move Instructions
Inputs/Outputs = Data Types Operands
IN BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant
WORD, INT IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *AC, *LD,
Constant
DWORD, DINT ID, QD, VD, MD, SMD, SD, LD, HC, &VB, &IB, &QB, &MB, &SB,
&T, &C, &SMB, &AIW, &8AQW, AC, *VD, *LD, *AC, Constant,
REAL ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC, Constant
ouT BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC
WORD, INT IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AQW, *VD, *LD, *AC

DWORD, DINT, REAL | ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC

S7-200 Instruction Set Chapter 6

Move Byte Immediate (Read and Write) SIATIC | e 1131

The Move Byte Immediate instructions allow you to LD

FED

immediately move a byte between the physical I/O and a

memory location. P _EIR PN _EIR

—{EM EMO =

EM

The Move Byte Immediate Read (BIR) instruction reads I

EMic
ouT

physical input (IN) and writes the result to the memory gL U
address (OUT), but the process-image register is not

updated. MY _EIR P Bl

The Move Byte Immediate Write instruction (BIW) reads the
data from the memory address (IN) and writes to physical SIMATIC
output (OUT), and the corresponding process image

location. 5TL

EIR IM, QUT
Error conditions that set ENO =0 EIY IM, SUT

m 0006 (indirect address)

= Unable to access expansion module

Table 6-54 Valid Operands for the Move Byte Immediate Read Instruction

Inputs/Outputs = Data Types Operands

IN BYTE IB, *VD, *LD, *AC
ouT BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC

Table 6-55 Valid Operands for the Move Byte Immediate Write Instruction

Inputs/Outputs = Data Types Operands

IN BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant

ouT BYTE QB, *VD, *LD, *AC

165

S7-200 Programmable Controller System Manual

Block Move Instructions

Block Move Byte, Word, or Double Word

SIMATIC l IEC 1121]
The Block Move Byte (BMB), Block Move Word (BMW), and
Block Move Double Word (BMD) instructions move a LAD FED
specified amount of data to a new memory location by BLEMOY_E BLEMOY_E
moving the number of bytes, words, or double words N —EN Mok | Em BN
starting at the input address IN to a new block starting at the —IM oUT -
output address OUT.] :? GUTE | n

N has a range of 1 to 255.

Error conditions that set ENO =0
m 0006 (indirect address)

= 0091 (operand out of range)

Table 6-56
Inputs/Outputs = Data Types

ELEMONY_ B BLEMOV_ W BLEMOY_D

siAT. [EC 113
LAL FED
BLKMOYE BLKMOYE
— EM EMO - | {EM EMO
=M QUT
=M ouTk | dy
-
SIMATIC
5TL

EME M, QUT. M
BRI IM, QUT. M
EMD 1M, QUT. M

Valid Operands for the Block Move Instructions

Operands

IN BYTE
WORD, INT
DWORD, DINT
ouT BYTE
WORD, INT
DWORD, DINT
N BYTE

Example: Block Move Instruction

1B, QB, VB, MB, SMB, SB, LB, *VD, *LD, *AC

W, QW, VW, MW, SMW, SW, T, C, LW, AIW, *VD, *LD, *AC

ID, QD, VD, MD, SMD, SD, LD, *VD, *LD, *AC

1B, QB, VB, MB, SMB, SB, LB, *VD, *LD, *AC

W, QW, VW, MW, SMW, SW, T, C, LW, AQW, *VD, *LD, *AC
ID, QD, VD, MD, SMD, SD, LD, *VD, *LD, *AC

1B, QB, VB, MB, SMB, SB, LB, AC, Constant, *VD, *LD, *AC

Network 1
12.1 BLKMOV_B

Network 1 //Move array 1 (VB20 to VB23)

[Ito array 2 (VB100 to VB103)

|7 EN ENO % LD 12.1

WB204IM OUTFwEB100

440

166

BMB VB20, VB100, 4
VB20 VB2l VB22 VB23
Array 1 | 30 | | 31 | | 32 | | 33 |
VB100 VB101 VB102 VB103
Aray2 [30] |[31] [32] |[33]

S7-200 Instruction Set Chapter 6

Program Control Instructions

Conditional End SIMATIC ¢ |Ec1131]

The Conditional End instruction (END) terminates the
current scan based upon the condition of the preceding
logic. You can use the Conditional End instruction in the _(END]
main program, but you cannot use it in either subroutines or
interrupt routines.

Stop

If the Stop instruction is executed in an interrupt routine, the | SIMATI]
interrupt routine is terminated immediately, and all pending
interrupts are ignored. Remaining actions in the current EMD
scan cycle are completed, including execution of the main STOP
user program, and the transition from RUN to STOP mode is
made at the end of the current scan.

i - i - —(WDR] q WOR
The Stop instruction (STOP) terminates the execution of
your program by causing a transition of the S7-200 CPU
from RUN to STOP mode.

LAD FED

STEP

+
o
-

|

STL

WER

Watchdog Reset

The Watchdog Reset instruction (WDR) retriggers the system watchdog timer of the S7-200 CPU
to extend the time that the scan is allowed to take without getting a watchdog error.

You should use the Watchdog Reset instruction carefully. If you use looping instructions either to
prevent scan completion or to delay excessively the completion of the scan, the following
processes are inhibited until the scan cycle is completed:

a

O dod

U

Communications (except Freeport Mode)

1/0O updating (except Immediate 1/O)

Force updating

SM bit updating (SMO, SM5 to SM29 are not updated)
Run-time diagnostics

10-ms and 100-ms timers will not properly accumulate time for scans exceeding
25 seconds

STOP instruction, when used in an interrupt routine

Expansion modules with discrete outputs also include a watchdog timer that turns off
outputs if the module is not written by the S7-200. Use an immediate write to each
expansion module with discrete outputs to keep the correct outputs on during extended
scan times. Refer to the example that follows this description.

167

S7-200 Programmable Controller System Manual

Tip

@ If you expect your scan time to exceed 500 ms, or if you expect a burst of interrupt activity that
could prevent returning to the main scan for more than 500 ms, you should use the Watchdog
Reset instruction to retrigger the watchdog timer.

Each time you use the Watchdog Reset instruction, you should also use an immediate write to
one output byte (QB) in each discrete expansion module to reset each expansion module
watchdog.

If you use the Watchdog Reset instruction to allow the execution of a program that requires a
long scan time, changing the mode switch to the STOP position causes the S7-200 to transition
to STOP mode within 1.4 seconds.

Example: Stop, End, and Watchdog Reset Instructions

Network 1 Network 1 //When an 1/O error is detected:
SMS 0 /[Force the transition to STOP mode.
— —GToP LD SM5.0
STOP

Hetwark 2 Network 2 //IWhen M5.6 is on, allow the scan to

M3.6 /Ibe extended:
—| I——(WDR') /I1. Retrigger the Watchdog Reset for the S7-200.
/12. Retrigger the watchdog for the
MO _BIW first output module.
EN ENO ﬁ LD V5.6

WDR
BIW QB2, QB2

aB24IN QUTFQB2

Network 3 Network 3 //When 10.0 is on, terminate the current scan.
0.0 LD 10.0

— |—{(eno) END

168

S7-200 Instruction Set Chapter 6

For-Next Loop Instructions

Use the For (FOR) and Next (NEXT) instructions to

; h o SIMATIC £ [EC 1131
delineate a loop that is repeated for the specified count.

Each For instruction requires a Next instruction. You can LAD FED
nest For-Next loops (place a For-Next loop within a
; FOR FOR
For-Next loop) to a depth of eight.
—{EM EMO - | {EN EMO =
The For instruction executes the instructions between the s] ::FTH
For and the Next instructions. You specify the index value or T e
current loop count INDX, the starting value INIT, and the — FIMAL
ending value FINAL.
. . MEXT
The Next instruction marks the end of the FOR loop. MEXT

Error conditions that set ENO =0
m 0006 (indirect address)

SIMATIC l

If you enable the For-Next loop, it continues the looping
process until it finishes the iterations, unless you change the

final value from within the loop itself. You can change the L?QT IND, INIT. FINAL
values while the For-Next loop is in the looping process.
When the loop is enabled again, it copies the initial value
into the index value (current loop number).

STL

The For-Next instruction resets itself the next time it is
enabled.

For example, given an INIT value of 1 and a FINAL value of 10, the instructions between the For
instruction and the Next instruction are executed 10 times with the INDX value being incremented:

1,2,3,..10.

If the starting value is greater than the final value, the loop is not executed. After each execution of
the instructions between the For instruction and the Next instruction, the INDX value is
incremented and the result is compared to the final value. If the INDX is greater than the final
value, the loop is terminated.

If the top of stack is 1 when your program enters the For-Next loop, then the top of stack will be 1
when your program exits the For-Next loop.

Table 6-57 Valid Operands for the For and Next Instructions

Inputs/Outputs Data Types Operands

INDX INT IW, QW, VW, MW, SMW, SW, T, C, LW, AC, *VD, *LD, *AC

INIT, FINAL INT VW, IW, QW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC,
Constant

169

S7-200 Programmable Controller System Manual

Example: For-Next Loop Instructions

170

Network 1
12.0 FOR
—| |7 EN EMO H
W 004 INDK
+1qIMIT
+1004FINAL
Network 2
121 FOR
—| |7 EN EMO H
W25 4INDK
+14IMIT
+24FINAL
Network 3
—(HEXT) -
Network 4
—(MEXT) -

Network 1 //When 12.0 comes on, the outside loop
/l(arrow 1) is executed 100 times

LD 12.0
FOR VW100, +1, +100

Network 2 /[The inside loop (arrow 2)
/lis executed twice for each
/lexecution of the outside loop
/lwhen 12.1 is on.

LD 12.1
FOR VW225, +1, +2

Network 3 //[End of Loop 2.
NEXT

Network 4 /IEnd of Loop 1.
NEXT

S7-200 Instruction Set

Chapter 6

Jump Instructions

The Jump to Label instruction (JMP) performs a branch to

e . SIMATIC ¢ [EC 1131
the specified label N within the program. l

The Label instruction (LBL) marks the location of the jump LAD M M FED
destination N. _(JMP] Jnap
You can use the Jump instruction in the main program, in M i
subroutines, or in interrupt routines. The Jump and its o LEL
corresponding Label instruction must always be located
within the same segment of code (either the main program,

a subroutine, or an interrupt routine).
You cannot jump from the main program to a label in either SIMATIC

a subroutine or an interrupt routine. Likewise, you cannot =
jump from a subroutine or interrupt routine to a label outside v
that subroutine or interrupt routine. LEL M
You can use a Jump instruction within an SCR segment, but
the corresponding Label instruction must be located within
the same SCR segment.

Table 6-58 Valid Operands for the Jump Instructions

Inputs/Outputs Data Types Operands

N WORD Constant (0 to 255)

Example: Jump to Label Instruction

Network 1 Network 1 //If the retentive data has not been lost,
SMO 2 4 /[Jump to LBL4
LDN SMO0.2
! |—(JuP
—) MP 4
Network 2
Network 2 LBL 4
4
H LBL

171

S7-200 Programmable Controller System Manual

172

Sequence Control Relay (SCR) Instructions

SCR instructions provide you with a simple yet powerful
state control programming technique that fits naturally into a
LAD, FBD, or STL program.

Whenever your application consists of a sequence of
operations that must be performed repetitively, SCRs can be
used to structure your program so that it corresponds
directly to your application. As a result, you can program
and debug your application more quickly and easily.

The Load SCR instruction (LSCR) loads the SCR and logic
stacks with the value of the S bit referenced by the
instruction N.

The SCR segment is energized or de-energized by the
resulting value of the SCR stack. The value of the SCR
stack is copied to the top of the logic stack so that boxes or
output coils can be tied directly to the left power rail without
an intervening contact.

Restrictions
When using SCRs, be aware of the following restrictions:

[You cannot use the same S bit in more than one
routine. For example, if you use S0.1 in the main
program, do not use it in a subroutine.

1 You cannot jump into or out of an SCR segment;
however, you can use Jump and Label instructions to
jump around SCR segments or to jump within an SCR
segment.

1 You cannot use the END instruction in an SCR segment.

SIMATIC ¢ [EC 1131]
LAD: FED
5_bit 5_bit
H =R SR
5 bit 5_bit
_(SCRT] SCRT
_(SCRE] I scre
|—(5cne] SCRE
SIMATIC]
STL
LSCR 5_bit
SCRT 5_bit
CSCRE
SCRE

Table 6-59 Valid Operands for the Sequence Control Relay Instructions

Inputs/Outputs Data Types Operands

S_bit BOOL S

S7-200 Instruction Set Chapter 6

Figure 6-31 shows the S stack and the logic stack and the effect of executing the Load SCR
instruction. The following is true of Sequence Control Relay instructions:

1 The Load SCR instruction (LSCR) marks the beginning of an SCR segment, and the SCR
End instruction (SCRE) marks the end of an SCR segment. All logic between the Load SCR
and the SCR End instructions are dependent upon the value of the S stack for its execution.
Logic between the SCR End and the next Load SCR instruction is not dependent on the

value of the S stack.

[The SCR Transition instruction
(SCRT) provides the means to
transfer control from an active SCR
segment to another SCR segment.

Execution of the SCR Transition
instruction when it has power flow
will reset the S bit of the currently
active segment and will set the S
bit of the referenced segment.
Resetting the S bit of the active
segment does not affect the S
stack at the time the SCR
Transition instruction executes.
Consequently, the SCR segment
remains energized until it is exited.

Load the value of Sx.y onto the SCR and logic stacks.

S stack ivS
S bit
iv0 Sx.y

ivl ivl

Logic stack iv2 iv2
iv3 iv3

iv4 iv4

ivb ivb

ive ive

iv7 iv7

Before Ve After Ve

Figure 6-31 Effect of LSCR on the Logic Stack

1 The Conditional SCR End instruction (CSCRE) provides a means to exit an active SCR
segment without executing the instructions between the Conditional SCR End and the
SCR End instructions. The Conditional SCR End instruction does not affect any S bit nor

does it affect the S stack.

In the following example, the first scan bit SM0.1 sets S0.1, which will be the active State 1 on the
first scan. After a 2-second delay, T37 causes a transition to State 2. This transition deactivates
the State 1 SCR (S0.1) segment and activates the State 2 SCR (S0.2) segment.

173

S7-200 Programmable Controller System Manual

Example: Sequence Control Relay Instruction

174

Metwork 1 Network 1
SMO1 501 LD
5) s
;
MHetwork 2 Network 2
501 LSCR
Network 3
Metwork 3
5MO.0 a04
;) LD
l (;
ans S
—C ") R
2 TON
137
N TON
J Network 4
+204PT 100 ms LD
Hetwork 4 SCRT
137 502
— (s Network 5
SCRE
Metwork 5
Network 6
—(scRE) LSCR
Network 7
Metwork &
502
LD
S
MHetwork 7 TON
SMO.0 Qo2
—) Network 8
1
T3 LD
TN Tuj SCRT
+2504FT 100
Hetwork 8 = Network 9
T8 503 SCRE
— o)
Metwork 3
—(scRE)

/IOn the first scan enable State 1.

SMO0.1
S0.1,1

//Beginning of State 1 control region.
S0.1

/[Control the signals for Street 1:
/[1. Set: Turn on the red light.
/12. Reset: Turn off the yellow and green lights.
/I3. Start a 2-second timer.
SMO0.0
Q04,1
Q05,2
T37, +20

[/IAfter a 2 second delay, transition to State 2.

T37
S0.2

/IEnd of SCR region for State 1.

//Beginning of State 2 control region.
S0.2

/[Control the signals for Street 2:
/[1. Set: Turn on the green light.
/2. Start a 25-second timer.

SMO0.0

Q0.2,1

T38, +250

[/IAfter a 25 second delay, transition to State 3.
T38
S0.3

/IEnd of SCR region for State 2.

S7-200 Instruction Set Chapter 6

Divergence Control

In many applications, a single stream of sequential states must be split into two or more different
streams. When a control stream diverges into multiple streams, all outgoing streams must be
activated simultaneously. This is shown in Figure 6-32.

State L

—— Transition Condition

Y
State M State N

Figure 6-32 Divergence of a Control Stream

The divergence of control streams can be implemented in an SCR program by using multiple
SCRT instructions enabled by the same transition condition, as shown in the following example.

Example: Divergence of Control Streams

Hetwork 1 Network 1 //Beginning of State L control region.
s34 LSCR S3.4
SCR
Network 2
Network 2 LD M2.3
M2.3 12.1 53.5 A 12.1 N
— — 5CRT) SCRT S35 /[Transition to State M
SCRT S6.5 /[Transition to State N
56.5
SCRD Network 3 //End of the State region for State L.
SCRE
Network 3
—{(sCRE)

Convergence Control

A situation similar to divergence control arises when two or more streams of sequential states
must be merged into a single stream. When multiple streams merge into a single stream, they are
said to converge. When streams converge, all incoming streams must be complete before the
next state is executed. Figure 6-33 depicts the convergence of two control streams.

The convergence of control streams can be implemented in an SCR program by making the
transition from state L to state L' and by making the transition from state M to state M’. When both
SCR bits representing L’ and M’ are true, state N can the enabled as shown in the following
example.

175

S7-200 Programmable Controller System Manual

State L State M

—— Transition Condition
Y

State N
Figure 6-33 Convergence of a Control Stream
Example: Convergence of Control Streams
Network 1 Network 1 //Beginning of State L control region
534 LSCR S3.4
H SCR
Network 2 /[Transition to State L’
Network 2 LD V100.5
SCRT S35
Y1005 53.5
| —GoR) |
Network 3 //IEnd of SCR region for State L
SCRE
Network 3
Network 4 //Beginning of State M control region
—(5CRE) LSCR S6.4
Network 5 /[Transition to State M’
Network 4
SCRT S6s
H SCR ’
Network 6 //IEnd of SCR region for State M
Network 5 SCRE
c50 56.5
—| SCRT) Network 7 //When both State L' and State M’
/lare activated:
/[1. Enable State N (S5.0)
Network 6 /I2. Reset State L' (S3.5)
/13. Reset State M’ (S6.5)
—(sCRE) LD S35
A S6.5
S S5.0,1
Network 7 R S35,1
535 56.5 55.0 R S6.5,1
— =)
1
53.5
R)
1
56.5
R)
1

176

S7-200 Instruction Set Chapter 6

In other situations, a control stream might be directed into one of several possible control streams,
depending upon which transition condition comes true first. Such a situation is depicted in Figure
6-34, which shows an equivalent SCR program.

State L

—+ Transition Condition —— Transition Condition

State M

State N

Figure 6-34 Divergence of a Control Stream, Depending on the Transition Condition

Example: Conditional Transitions

Network 1
534
H SCR

Network 2
M2.3 53.5

L —cord

Network 3
13.3 S56.5

B E—

Network 4

—(sCRE)

Network 1 //Beginning of State L control region
LSCR S3.4

Network 2 /[Transition to State M

LD M2.3

SCRT S35

Network 3 /[Transition to State N

LD 13.3

SCRT S6.5

Network 4 //IEnd of SCR region for State L
SCRE

177

S7-200 Programmable Controller System Manual

Diagnostic LED Instruction

If the input parameter IN has a value of zero, then set the SIMATIC £ 1EC 1131
diagnostic LED OFF. If the input parameter IN has a value

greater than zero, then set the diagnostic LED ON (yellow). LD FED

The CPU light emitting diode (LED) labeled SF/ DIAG can DIAG_LED DIAG_LED
be configured to indicate yellow when either the conditions —|EM EMC = EM EMC =
specified in the System Block are true or when the i N
DIAG_LED instruction is executed with a non-zero IN
parameter.

DIAG_LED

System Block (Configure LED) check box options:
(1 SF/DIAG LED is ON (yellow) when an item is forced SIMATIC

in the CPU
sTL

(1 SF/DIAG LED is ON (yellow) when a module has an DLED M
I/O error

Uncheck both Configure LED options to give the DIAG_LED
instruction sole control over SF/ DIAG yellow illumination. A
CPU System Fault (SF) is indicated with red illumination.

Table 6-60 Valid Operands for the Diagnostic LED Instruction

Inputs/Outputs = Data Types Operands

IN BYTE VB, IB, QB, MB, SB, SMB, LB, AC, Constant, *VD, *LD, *AC

Example 1 Diagnostic LED Instruction

Blink the diagnostic LED when an error is detected.
Blink the diagnostic LED any time one of the 5 error conditions is detected.

Network 1 Network 1
sm.el. |SMD'5| rvmn.n LD SM1.3
: vl » 0 SM2.0
SM2.0 0 SM4.1
— o SM4.2
Sh4.1 (o) SM5.0
A SMO0.5
Sh4.2 = V100.0
Shi5.0 Network 2
LD SMO0.0
DLED VB100
Hetwork 2
SMO.0 DI&G LED
p———n eno——)
VB100-1M

Example 2 Diagnostic LED Instruction

Turn the diagnostic LED ON when an error is returned.
When an error code is reported in VB100, turn on the diagnostic LED

Network 1 Network 1
SMO.0 DIAG_LED LD SMO0.0
EN v —
DLED VB100
WB1004IN

178

S7-200 Instruction Set Chapter 6

Shift and Rotate Instructions

Shift Right and Shift Left Instructions SMATIC | ec 1131
The Shift instructions shift the input value IN right or left by LAD FED
the shift count N and load the result in the output OUT.
SHR_E SHR_E
—{EM EMO - | {EN EMO =
The Shift instructions fill with zeros as each bit is shifted —IM oUT -
out. If the shift count (N) is greater than or equal to the] :? OUTE | n
maximum allowed (8 for byte operations, 16 for word
operations, and 32 for double word operations), the value is
shifted_ the ma>_<imum number of times for the operation._ If gﬂf:g gﬂf:m gﬂf:gm
the shift count is greater than 0, the ove_rflov_v memory bit ROR_E ROR_IH ROR_DW
(SM1.1) takes on the value of the last bit shifted out. The ROL_E ROl RoL_Di
zero memory bit (SM1.0) is set if the result of the shift
operation is zero.
siAT. [EC 113
Byte operations are unsigned. For word and double word
operations, the sign bit is shifted when you use signed data LA FED:
types. SHF: SHR
Error conditions that set ENO=0 SM bits affected: T EMO i ﬁ{r g;ﬁ B
m 0006 (indirect address) m SM1.0 (zero) —{IM OUTE |
= SM1.1 (overflow) i
Rotate Right and Rotate Left Instructions MR SHLReR T ReL
The Rotate instructions rotate the input value (IN) right or
left by the shift count (N) and load the result in the memory SIMATIC
location (OUT). The rotate is circular. —
ifhthe shiftt_coug ;s grel;e\tter than ot_r equlaél ;[o the ma(ljximum for EEE gﬂ%m EEE gﬂ%m
e operation (8 for a byte operation, or a wor e S
operation, or 32 for a double-word operation), the S7-200 SLA OUT. M FLW oUT. M
performs a modulo operation on the shift count to obtain a SRD OUT. M RRD OUT. M
valid shift count before the rotation is executed. This result SLL QUT.M RLD ©UT.M
is a shift count of 0 to 7 for byte operations, 0 to 15 for word

operations, and 0 to 31 for double-word operations.
If the shift count is 0, a rotate operation is not performed. If the rotate operation is performed, the
value of the last bit rotated is copied to the overflow bit (SM1.1).

If the shift count is not an integer multiple of 8 (for byte operations), 16 (for word operations), or
32 (for double-word operations), the last bit rotated out is copied to the overflow memory bit
(SM1.1). The zero memory bit (SM1.0) is set when the value to be rotated is zero.

Byte operations are unsigned. For word and double word operations, the sign bit is shifted when
you use signed data types.

Error conditions that set ENO =0 SM bits affected:
m 0006 (indirect address) = SML.0 (zero)

= SM1.1 (overflow)
Table 6-61 Valid Operands for the Shift and Rotate Instructions
Inputs/Outputs = Data Types Operands

IN BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant
WORD W, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, Constant
DWORD ID, QD, VD, MD, SMD, SD, LD, AC, HC, *VD, *LD, *AC, Constant
ouT BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC
WORD W, QW, VW, MW, SMW, SW, T, C, LW, AC, *VD, *LD, *AC
DWORD ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *LD, *AC
N BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant

179

S7-200 Programmable Controller System Manual

180

Example: Shift and Rotate Instructions

Network 1
14.0

ROR_W
EM ENO

all

Rotate

ACO

ACOAIN ouT
24n

%'

FACO

SHL_ W

EM ENO

WWWZ04IM auT
34n

FyW200

Before rotate

0100 0000 0000 0001 |

ACO

After first rotate

1010 0000 0000 0000 |—

ACQO >

After second rotate

0101 0000 0000 0000 I—

Zero Memory Bit (SM1.0)
Overflow Memory Bit (SM1.1)

0
0

Overflow

Overflow

Overflow

—{0]

Network 1
LD 14.0
RRW ACO,2
SLW Vw200, 3
Shift Before shift Overflow
Vw200 [11100010 1010 1101]
After first shift Overflow
vw200L— 1100 0101 0101 1010]
After second shift Overflow
vw200—] 1000 1010 1011 0100 |
After third shift Overflow
vw200L—] 0001 0101 0110 1000]

Zero Memory Bit (SM1.0)
Overflow Memory Bit (SM1.1)

S7-200 Instruction Set Chapter 6

Shift Register Bit Instruction

The Shift Register Bit instruction shifts a value into the Shift

Register. This instruction provides an easy method for SIMATIC £ EC T3
sequencing and controlling product flow or data. Use this LAD FED
instruction to shift the entire register one bit, once per scan. HFE HFE
—{EM EMO - | {EN EMO =
The Shift Register Bit instruction shifts the value of DATA - i EHEE
into the Shift Register. S_BIT specifies the least significant A mr iy
bit of the Shift Register. N specifies the length of the Shift N
Register and the direction of the shift (Shift Plus = N, Shift
Minus = -N).

Each bit shifted out by the SHRB instruction is placed in the | SIMATIC
overflow memory bit (SM1.1).

STL

This instruction is defined by both the least significant bit SHRE DATA.S BIT.H
(S_BIT) and the number of bits specified by the length (N). T
Error conditions that set ENO =0

m 0006 (indirect address)

m 0091 (operand out of range)

m 0092 (error in count field)

SM bits affected:

= SM1.1 (overflow)
Table 6-62 Valid Operands for the Shift Register Bit Instruction

Inputs/Outputs Data Types Operands

DATA, S_Bit BOOL LQ,V,M,SM,S, T,C, L

N BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant

181

S7-200 Programmable Controller System Manual

182

Use the following equation to compute the address of the most significant bit of the Shift Register

(MSB.b):

MSB.b = [(Byte of S_BIT) + ([N] - 1 + (bit of S_BIT)) / 8].[remainder of the division by 8]

For example: if S_BIT is V33.4 and N is 14, the
following calculation shows that the MSB.b is V35.1.

MSB.b =V33 + ([14] - 1 +4)/8
=V33+17/8
=V33 + 2 with a remainder of 1
=V35.1

On a Shift Minus, indicated by a negative value of
length (N), the input data shifts into the most
significant bit of the Shift Register, and shifts out of
the least significant bit (S_BIT). The data shifted out
is then placed in the overflow memory bit (SM1.1).

On a Shift Plus, indicated by a positive value of
length (N), the input data (DATA) shifts into the least
significant bit of the Shift Register, specified by the
S_BIT, and out of the most significant bit of the Shift
Register. The data shifted out is then placed in the
overflow memory bit (SM1.1).

The maximum length of the shift register is 64 bits,
positive or negative. Figure 6-35 shows bit shifting
for negative and positive values of N.

Example: Shift Register Bit Instruction

Shift Minus, S_BIT
Length = -14 MsB * LsB
v (=[]]9

V34 |7|—>| o}_l

[}
V35 | 7| | 1| o}_l
f

MSB of Shift Register

Shift Plus, LT
Length = 14 R ‘ L
v (][]
I

SB
o]

V34 | 7|<—| oqu

[
V35 | 7| | 1| o}.J
'

MSB of Shift Register

Figure 6-35 Shift Register Entry and Exit

transition (P) ‘

Positive |_| ﬂ_ After
\

o2 L[

first shift
10.3 ‘ ‘
First shift Second shift After
second
shift

Network 1 Network 1
0.2 SHRE LD 10.2
l | ol
| | P | EN ENO——) | EU
SHRB 10.3, V100.0, +4
I0.3{DATA
v100.045_EIT
44N
Timing Diagram 7 (MSB) 0(LSB) s_BIT
Before V100 | |o | 1 |o | 1 |<— 10.3
first shift

Overflow (SM1.1)

S_BIT
v1oo| |1|o|1|1|<—|o.3
Overflow (SM1.1)

S_BIT
v1oo| |o|1|1|o|<—|o.3

Overflow (SM1.1)

S7-200 Instruction Set Chapter 6
Swap Bytes Instruction
The Swap Bytes instruction exchanges the most significant
. A SIMATIC ¢ [EC 1131
byte with the least significant byte of the word IN.
Error conditions that set ENO =0 LD e
m 0006 (indirect address) =WAP =WAP
—EM EMC | | {EM MG |-
—IH
—IH
SIMATIE
STL
SWAP 1M

Table 6-63 Valid Operands for the Swap Bytes Instruction

Inputs/Outputs = Data Types Operands

IN WORD W, QW, VW, MW, SMW, SW, T, C, LW,AC, *VD, *LD, *AC

Example: Swap Instructions

Network 1 Network 1
12.1 SR LD 12.1
]
| EN ENOH SWAP VW50
WS 041N
Swap

VW50 VW50

183

S7-200 Programmable Controller System Manual

String Instructions

String Length

The String Length instruction (SLEN) returns the length of
the string specified by IN.

Copy String

The Copy String instruction (SCPY) copies the string
specified by IN to the string specified by OUT.

Concatenate String

The Concatenate String instruction (SCAT) appends the
string specified by IN to the end of the string specified by
OUT.

SM Bits and ENO

For the String Length, Copy String, and Concatenate String

instructions, the following conditions affect ENO.

Error conditions that set ENO =0
m 0006 (indirect address)

= 0091 (range error)

Table 6-64 Valid Operands for the String Length Instruction
Inputs/Outputs = Data Types Operands

SIMATIC £ EC1131
LAD FED
STR_LEM STR_LEM
—{EM EMO = | EM EMO =
=M CUT -
=M CUT -
STR_LEM STR_CPY STR_CAT

SIMATIC

STL

SLEM IM, QUT
SCPY M, QUT
SCAT M, QUT

IN STRING VB, LB, *VD, *LD, *AC, Constant String
ouT BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC

Table 6-65 Valid Operands for the Copy String and Concatenate String Instructions

Inputs/Outputs = Data Types Operands
IN STRING VB, LB, *VD, *LD, *AC , Constant String
ouT STRING VB, LB, *VD, *AC, *LD

184

S7-200 Instruction Set Chapter 6

Example: Concatenate String, Copy String, and String Length Instructions

/[2. Copy the string at VBO
/I to a new string at VB100
/13. Get the length of the string

Metwork 1 Network 1 /1. Append the string at “WORLD”"
1o STR_CAT /I to the string at VBO
| N Eno—Y
"WORLD"4{IN ouTHvBO
/I that starts at VB100
LD 10.0
STR_CPY
- ;l SCAT “WORLD”, VBO
ENED STRCPY VBO, VB100
vendin autkvetao STRLEN VB100, ACO
STR_LEN
EN ENO—)
WB100-IM OUTACO
Before executing the program
VBO VB6
(e [wlelrlvlol]
After executing the program
VB0 VB11
[wlwlelvlvlol JTwlolr]v]o]
VB100 VB111
[ulwlelvlvlol JTwlolr]v]o]
ACO

185

S7-200 Programmable Controller System Manual

186

Copy Substring from String SIMATIC ¢ IEC 1131
The Copy Substring from String instruction (SSCPY) copies
the specified number of characters N from the LAD FED
string specified by IN, starting at the index INDX, to a new SETR_CPY SETRCPY
string specified by OUT. —|EM EMO = | —EM EMC =
1M ouT
Error conditions that set ENO =0 i ::Dx QUT = D
m 0006 (indirect address) dn ™
= 0091 (range error)
= 009B (index=0)
SIMATIC
STL
SSCPY M, UMD, M, OUT

Table 6-66 Valid Operands for the Copy Substring from String Instructions

Inputs/Outputs Data Types Operands

IN STRING VB, LB, *VD, *LD, *AC, Constant String

ouT STRING VB, LB, *VD, *LD, *AC

INDX, N BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant

Example: Copy Substring Instruction

Hetwork 1 Network 1 /[Starting at the seventh character in
10.0 S5TR_CPY /lthe string at VBO, copy 5 characters
} EM EMO } /Ito a new string at VB20
LD 10.0
VBN OUTEVEZD | sSCPY VB0, 7, 5, VB20
74 INDX
54N

Before executing the program
VBO VB11
[wlwlelvlvlol JTwlolr]v]o]

After executing the program
VB20 VB25

(s [wlolwlclo]

S7-200 Instruction Set Chapter 6

Find String Within String

SIMATIC £ [EC 1131
The Find String Within String instruction (SFND) searches
for the first occurrence of the string IN2 within the string IN1. LAD FED
The search begins at the starting position specified by OUT STR_FINC: STR_FINC:
(which must be in range 1 through the string length). If a - EM EMO = | —EM EMO =
sequence of characters is found that matches exactly the dmi outhk | ::; QUT
string IN2, the position of the first character in the sequence iz
for the string is written to OUT. If the string IN2 was not found
in the string IN1, the instruction OUT is set to 0.
STR_FIND: HR._FIMD:

Error conditions that set ENO =0
m 0006 (indirect address)

SIMATIC
= 0091 (range error)
® 009B (index=0) 5TL

SFMD 1M1, M2, CUT
Find First Character Within String AR T

The Find First Character Within String instruction (CFND)

searches the string IN1 for the first occurrence of any
character from the character set described in the string IN2.
The search begins at starting position OUT (which must be
in range 1 through the string length). If a matching character
is found, the position of the character is written to OUT. If no
matching character is found, OUT is set to 0.

Error conditions that set ENO =0
m 0006 (indirect address)

= 0091 (range error)

= 009B (index=0)

Table 6-67 Valid Operands for Find String Within String and Find First Character Within String

Instructions
Inputs/Outputs Data Types Operands
IN1, IN2 STRING VB, LB, *VD, *LD, *AC, Constant String
ouT BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC

187

S7-200 Programmable Controller System Manual

Example: Find String Within String Instruction

The following example uses a string stored at VB0 as a command for turning a pump on or off. A string 'On’ is
stored at VB20, and a string 'Off’ is stored at VB30. The result of the Find String Within String instruction is
stored in ACO (the OUT parameter). If the result is not 0, then the string 'On’ was found in the command string

(VB12).
Network 1 Network 1 //1. Set ACO to 1.
0.0 MoV B /I (ACQis used as the OUT parameter.)
EN ENO Y /12. Search the string at VBO for the stri
i I EN ENO earc ’e s’rmga or the string
/I at VB20 ('On’), starting at the first
A auThaca /I position (AC0=1).
LD 10.0
MOVB 1, ACO
STR_FIND SFND VBO, VB20, ACO
EN ENO—)
VEO{INT - OUTRACD
VBI04INZ
VBO VB12
|12|T|u|r|n||P|u|m|p||O|n|
VB20 VB22 VB30 VB33
|2|’O’|’n’| |3|’O’|’f’|’f’|
If the string in VB20 ACO If the string in VB20 ACO

is found: | 1 | is not found: [o]

Example: Find Character Within String Instruction

In the following example, a string stored at VBO contains the temperature. The string at VB20 stores all the
numeric characters (and the + and -) that can identify a temperature in a string. The sample program finds the
starting position for a number in that string and then converts the numeric characters into a real number.
VD200 stores the real-number value of the temperature.

Network 1 Network 1 //1. Set ACO to 1.
0o MOV _B /I (ACO is used as the OUT parameter
| EN ENO H /I and points to the first position of the string.)
/2. Find the numeric character
T QUTFACD /I in the string at VBO.

//3. Convert the string to a real number.

CHR_FIND LD 10.0
BN ENO— MOVB 1, ACO
CFND VBO, VB20, ACO

VBN OUTFACD STR VB0, ACO, VD200
WB20{IN2
SR
En ENo—)
WEOIN ouTpvozo0
ACO{INDX
VBO VB11
[(wl v elm ol [Tolelv]e]r]
VB20 VB32
(e[v 2 zlwls]elr]e]lo]lolw]~]
Starting position of the temperature Real-number value of the
stored in VBO: temperature:
ACO VD200
98.6
7

188

S7-200 Instruction Set Chapter 6

Table Instructions

Add To Table

The Add To Table instruction adds word values (DATA) to a

table (TBL). The first value of the table is the maximum table SIMATIC £ EC T3

length (TL). The second value is the entry count (EC), which | [/ qp, FED
specifies the number of entries in the table. New data are DT TEL DT TEL
added to the table after the last entry. Each time new data - -
are added to the table, the entry count is incremented. e EHom] E:ITH EHO
) —{ DATA 4 TEL
A table can have up to 100 data entries. 4 TEL
Error conditions that set ENO =0
= SM1.4 (table overflow)
SIMATIE

m 0006 (indirect address)

= 0091 (operand out of range) STL

ATT [ATA, TEL
SM bits affected:

m SM1.4is setto 1 if you try to overfill the table

Table 6-68 Valid Operands for the Table Instructions
Inputs/Outputs = Data Types Operands

DATA INT W, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, Constant
TBL WORD W, QW, VW, MW, SMW, SW, T, C, LW, *VD, *LD, *AC

Example: Add to Table Instruction

Network 1 Network 1 //ILoad maximum table length
5MO.1 MO W LD SMO.1
— | EN ENOF—) MOVW +6, VW200
+6qIN OuT Fvyw200
Network 2
LD 10.0
ATT VW100, VW200
Network 2
0.0 AD_T_TBL
—| |7 EN ENO H
W T004DATA
WW2004TEL
Before execution of ATT After execution of ATT
VW100
VW200 0006 TL (max. no. of entries) VW200 0006 TL (max. no. of entries)
VW202 0002 EC (entry count) VW202 0003 EC (entry count)
VW204 5431 do (data 0) VW204 5431 do (data 0)
VW206 8942 d1 (data 1) VW206 8942 d1 (data 1)
VW208 XXXX VW208 1234 d2 (data 2)
VW210 XXXX Vw210 XXXX
Vw212 XXXX Vw212 XXXX
Vw214 XXXX Vw214 XXXX

189

S7-200 Programmable Controller System Manual

First-In-First-Out and Last-In-First-Out

A table can have up to 100 data entries.

SIMATIC £ [EC 1131
First-In-First-Out LD FBD
The First-In-First-Out instruction (FIFO) moves the oldest (or FIFC FIFC
first) entry in a table to the output memory address by e ol | e EMe
removing the first entry in the table (TBL) and moving the 4TEL DARTR|
value to the location specified by DATA. All other entries of qTEL DATAE
the table are shifted up one location. The entry count in the
table is decremented for each instruction execution. FIFC LIFC
Last-In-First-Out

SIMATIC

The Last-In-First-Out instruction (LIFO) moves the newest
(or last) entry in the table to the output memory address by 5TL
removing the last entry in the table (TBL) and moving the FIFC TEL,DATH
value to the location specified by DATA. The entry count in L L B

the table is decremented for each instruction execution.

Error conditions that set ENO =0 SM bits affected:
m SML1.5 (empty table) m SM1.5is setto 1 if you try to remove an entry from an empty table

m 0006 (indirect address)
m 0091 (operand out of range)

Table 6-69 Valid Operands for the First-In-First-Out and Last-In-First-Out Instructions

Inputs/Outputs = Data Types Operands

TBL WORD W, QW, VW, MW, SMW, SW, T, C, LW, *VD, *LD, *AC
DATA INT W, QW, VW, MW, SMW, SW, T, C, LW, AC, AQW, *VD, *LD, *AC

Example: First-In-First-Out Instruction

Network 1 Network 1
14.1 FIFD LD 14.1

—fn eno—y FIFO VW200, VW400

WW2004TEL DATARYWAOD

Before execution of FIFO — - VWA400 After execution of FIFO
VW200 0006 TL (max. no. of entries) VW200 0006 TL (max. no. of entries)
VW202 0003 EC (entry count) VW202 0002 EC (entry count)
VW204 5431 do (data 0) VW204 8942 do (data 0)
VW206 8942 d1 (data 1) VW206 1234 d1 (data 1)
Vw208 1234 d2 (data 2) Vw208 XXXX
Vw210 XXXX Vw210 XXXX
Vw212 XXXX Vw212 XXXX
Vw214 XXXX Vw214 XXXX

190

S7-200 Instruction Set Chapter 6

Example: Last-In-First-Out Instruction

Hetwork 1
0.1

f——en

LIFD

enop—)

WW2004TEBL DATARWWIO0

Before execution of LIFO

VW200
VW202
VW204
VW206
Vw208
Vw210
Vw212
Vw214

0006

0003

5431

8942

1234

XXXX

XXXX

XXXX

TL (max. no. of entries)

EC (entry count)
do (data 0)
d1 (data 1)
d2 (data 2)

Network 1
LD 10.1

LIFO VW200, VW300

VW300

VW200
VW202
Vw204
VW206
Vw208
Vw210
Vw212
Vw214

1234

0006

0002

5431

8942

XXXX

XXXX

XXXX

XXXX

After execution of LIFO

TL (max. no. of entries)
EC (entry count)

do (data 0)

d1 (data 1)

191

S7-200 Programmable Controller System Manual

Memory Fill

The Memory Fill instruction (FILL) writes N consecutive

o . SIMATIC ¢ 1EC 1131
words, beginning at address OUT, with the word value

contained in address IN. LAD FED
N has a range of 1 to 255. FILL_M FILL_M

— EM EMC - — EM EMC -
Error conditions that set ENO =0 =M Ut -

. 1M ouTk | dy
m 0006 (indirect address) dn
= 0091 (operand out of range)
SIMATIC
STL
FILL 1M, ©UT, M

Table 6-70 Valid Operands for the Memory Fill Instruction
Inputs/Outputs Data Types Operands
IN INT IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AlW, *VD, *LD, *AC, Constant
N BYTE IB, QB, VB, MB, SMB, SB, LB, AC, *VD, *LD, *AC, Constant
ouT INT IW, QW, VW, MW, SMW, SW, T, C, LW, AQW, *VD, *LD, *AC

Example: Memory Fill Instruction

Network 1 Network 1
2.1 FILL_N LD 12.1

—en eno— FILL +0, VW200, 10

+04IM QUTpRWAZ00
104N

IN VW200 VW202 VW218

[o] FLL o | o J--[o

192

S7-200 Instruction Set Chapter 6
Table Find
The Table Find instruction (FND) searches a table for data SRR O
that matches certain criteria. The Table Find instruction
searches the table TBL, starting with the table entry INDX, LAD FED
for the data value or pattern PTN that matches the search TEL TG TEL TG
criteria defined by CMD. The command parameter CMD is 1y - O I - o |
given a numeric value of 1 to 4 that corresponds to =, <>, <, iy
and >, respectively. - TEL H{PTH
) .) . PN ~ IND
If a match is found, the INDX points to the matching entry in 1ML A cpip
the table. To find the next matching entry, the INDX must be - “mMC
incremented before invoking the Table Find instruction
again. If a match is not found, the INDX has a value equal to
the entry count. p—
A table can have up to 100 data entries. The data entries
(area to be searched) are numbered from 0 to a maximum =Tk FMD= TBL, PTH, INDH
value of 99. FMD=> TEL, PTH, IMO
FMD= TEL. PTH, IND
Error conditions that set ENO = 0 FRD= TEL, PTH, IND
m 0006 (indirect address)
m 0091 (operand out of range)
Table 6-71 Valid Operands for the Table Find Instruction
Inputs/Outputs Data Types Operands
TBL WORD W, QW, VW, MW, SMW, T, C, LW, *VD, *LD, *AC
PTN INT IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, Constant
INDX WORD IW, QW, VW, MW, SMW, SW, T, C, LW, AC, *VD, *LD, *AC
CMD BYTE (Constant) 1: Equal (=), 2: Not Equal (<>), 3: Less Than (<),

4: Greater Than (>)

@ Tip

When you use the Table Find instruction with tables generated with the Add to Table,
Last-In-First-Out, and First-In-First-Out instructions, the entry count and the data entries
correspond directly. The maximum-number-of-entries word required for the Add to Table,
Last-In-First-Out, or First-In-First-Out instructions is not required by the Table Find instruction.

See Figure 6-36.

Consequently, you should set the TBL operand of a Find instruction to one-word address (two
bytes) higher than the TBL operand of a corresponding the Add to Table, Last-In-First-Out, or

First-In-First-Out instruction.

Table format for ATT, LIFO, and FIFO

VW200 0006 TL (max. no. of entries) VW202
VW202 0006 EC (entry count) VW204
VW204 XXXX do (data 0) VW206
VW206 XXXX dl (data 1) VW208
VW208 XXXX d2 (data 2) Vw210
VW210 XXXX d3 (data 3) VW212
VW212 XXXX d4 (data 4) Vw214
Vw214 XXXX d5 (data 5)

0006

XXXX

XXXX

XXXX

XXXX

XXXX

XXXX

Table format for TBL_FIND

EC (entry count)
do (data 0)
dl (data 1)
d2 (data 2)
d3 (data 3)
d4 (data 4)
d5 (data 5)

Figure 6-36 Different Table Formats between the Table Find Instruction and the ATT, LIFO, and FIFO

Instructions

193

S7-200 Programmable Controller System Manual

194

Example: Table Find Instruction

Hetwork 1
12.1

TBL_FIND

— |——en Eno

WWW2024TBL

164#31304PTN

ACTINDH

14CMD

Network 1
LD 12.1
ﬁ FND= VW202, 16#3130, AC1

When 12.1is on, search the tablefor ac1 [0 | AClmustbesettoOto
a value equal to 3130 HEX.

VW202 0006 EC (entry count)
VW204 3133 do (data 0)
VW206 4142 d1 (data 1)
VW208 3130 d2 (data 2)
VW210 3030 d3 (data 3)
VW212 3130 d4 (data 4)
VW214 4541 d5 (data 5)

If the table was created using ATT,

search from the top of table.

Execute table search Ac1 contains the data entry

AC1 number corresponding to the

first match found in the table (d2).

Increment the INDX by one,
AC1 before searching the
remaining entries of the table.

Execute table search Ac1 contains the data entry number

AC1 corresponding to the second

match found in the table (d4).

LIFO, and FIFO instructions, VW200

contains the maximum number of

allowed entries and is not required by €1 searching the remaining entries
the Find instructions.

Increment the INDX by one, before

of the table.

Execute table search AC1 contains a value equal to the entry

ACl [6 | count The entire table has been searched
without finding another match.

Before the table can be searched
aAct [o] again, the INDX value must be reset to 0.

S7-200 Instruction Set Chapter 6

Example: Creating a Table

The following program creates a table with 20 entries. The first memory location of the table contains the
length of the table (in this case 20 entries). The second memory location shows the current number of table
entries. The other locations contain the entries. A table can have up to 100 entries. It does not include the
parameters defining the maximum length of the table or the actual number of entries (here VWO and VW2).
The actual number of entries in the table (here VW?2) is automatically incremented or decremented by the
CPU with every command.

Before you work with a table, assign the maximum number of table entries. Otherwise, you cannot make
entries in the table. Also, be sure that all read and write commands are activated with edges.

To search the table, the index (VW106) must set to 0 before doing the find. If a match is found, the index will
have the table entry number, but if no match is found, the index will match the current entry count for the table
(VW2).

Network 1 Network 1 /[Create table with 20 entries starting
SMUWI MO W N /lwith memory location 4.
— BN ENO 2 /1. On the first scan, define the
w0l ouhwn /Imaximum length of the table.
LD SMO0.1
MOVW +20, VWO
Netwaork 2 Network 2 //IReset table with input 10.0
0.0 FILLN /IOn the rising edge of 10.0, fill
— | 1P EN ENo—— /Imemory locations from VW2 with "+0” .
+04IN QUTFww2 LD 10.0
214N EU
FILL +0, VW2, 21
Network 3
0 DT TEL Network 3 /\Write value to table with input 10.1
S ey BN ENo— //0n the rising edge of 10.1, copy
/Ivalue of memory location
VAWID0DATA /IVW100 to table.
VYWHO{TBL
LD 10.1
EU
Network 4 ATT VW100, VWO
0.2 LIFO
— | 7} EN eno—— | Network 4 /IRead first table value with

/linput 10.2. Move the last table
/Ivalue to location VW102.

/[This reduces the number of entries.
Network § //On the rising edge of 10.2,
- ‘U'3| [Pl e F'FOENO N /IMove last table value to VW102

f 1
LD 10.2
VWITBL _ DATARWIDY |)

LIFO VWO, VW102

Wyl4{TBL DATARWWI0Z

Network Network 5 /IRead last table value with
04 MOV _VV /linput 10.3. Move the first table
—1 | | P | EN Eno— /Iivalue to location VW102.
ol Y - /[This red_uges the number of entries.
//On the rising edge of 10.0,
/IMove first table value to VW104
TEL_FIND LD 10.3
EN Eno— EU
w2 TBL FIFO VWO, VW104
W\,:;g TNTSX Network 6 /ISearch table for the first location
1{cmp /lthat has a value of 10.
/[1. On the rising edge of 10.4,
/I reset index pointer.
/[2. Find a table entry that equals 10.
LD 10.4
EU

MOVW +0, VW106
FND= VW2, +10, VW106

195

S7-200 Programmable Controller System Manual

Timer Instructions

SIMATIC Timer Instructions SIATIC | e 1131

On-DeI_ay Timer _ LAD —
Retentive On-Delay Timer T T

The On-Delay Timer (TON) and Retentive On-Delay Timer & TeH IF'.qT Ton
(TONR) instructions count time when the enabling input is —FT

on. The timer number (Txx) determines the resolution of the
timer, and the resolution is now shown in the instruction box. TOM TOMR TOF

Off-Delay Timer

The Off-Delay Timer (TOF) is used to delay turning an
output off for a fixed period of time after the input turns off. STL
The timer number (Txx) determines the resolution of the TON - Twx PT

; PN ; : . TOMR Tax, PT
timer, and the resolution is now shown in the instruction box. ToOF Tiﬁ PT

SIMATIC

Table 6-72 Valid Operands for the SIMATIC Timer Instructions

Inputs/Outputs = Data Types Operands

Txx WORD Constant (TO to T255)

IN BOOL ,Q,V,M, SM, S, T, C, L, Power Flow

PT INT IW, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *LD, *AC, Constant

Tip
@ You cannot share the same timer number (Txx) for an off-delay timer (TOF) and an on-delay
timer (TON). For example, you cannot have both a TON T32 and a TOF T32.

As shown in Table 6-73, the three types of timers perform different types of timing tasks:
1 You can use a TON for timing a single interval.
d You can use a TONR for accumulating a number of timed intervals.

d You can use a TOF for extending time past an off (or false) condition, such as for cooling a
motor after it is turned off.

Table 6-73 Operations of the Timer Instructions

Type Current >= Preset State of the Enabling Input (IN) Power Cycle/First Scan
TON Timer bit on ON: Current value counts time Timer bit off
Current continues counting | oFF: Timer bit off, current value = 0 Current value = 0
to 32,767
TONR Timer bit on ON: Current value counts time Timer bit off
Current continues counting | oFF: Timer bit and current value Current value can be
to 32,767 maintain last state maintained?
TOF Timer bit off ON: Timer bit on, current value =0 Timer bit off
Current = Preset, stops OFF: Timer counts after on-to-off Current value = 0
counting transition

1 The retentive timer current value can be selected for retention through a power cycle. See Chapter 4 for
information about memory retention for the S7-200 CPU.

196

S7-200 Instruction Set Chapter 6

Programming
Tips

Refer to the Programming Tips on the documentation CD for a sample program that uses the
on-delay timer (TON). See Tip 31

The TON and TONR instructions count time when the enabling input is on. When the current
value is equal to or greater than the preset time, the timer bit is on.

1 The current value of a TON timer is cleared when the enabling input is off, whereas the
current value of the TONR timer is maintained when the input is off.

1 You can use the TONR timer to accumulate time when the input turns on and off. Use the
Reset instruction (R) to clear the current value of the TONR.

1 Both the TON and the TONR timers continue counting after the preset is reached, and they
stop counting at the maximum value of 32,767.

The TOF instruction is used to delay turning an output off for a fixed period of time after the input
turns off. When the enabling input turns on, the timer bit turns on immediately, and the current
value is set to 0. When the input turns off, the timer counts until the elapsed time reaches the
preset time.

1 When the preset is reached, the timer bit turns off and the current value stops incrementing;
however, if the input turns on again before the TOF reaches the preset value, the timer bit
remains on.

1 The enabling input must make an on-to-off transition for the TOF to begin counting time
intervals.

[Ifthe TOF timer is inside an SCR region and the SCR region is inactive, then the current
value is set to 0, the timer bit is turned off, and the current value does not increment.

Tip

You can reset a TONR only by using the Reset (R) instruction. You can also use the Reset
instruction to reset any TON or TOF. The Reset instruction performs the following operations:
m Timer Bit = off

®m Timer Current=0

After a reset, TOF timers require the enabling input to make the transition from on to off in order
for the timer to restart.

Determining the Resolution of the Timer

Timers count time intervals. The resolution (or time base) of the timer determines the amount of
time in each interval. For example, a TON with a resolution of 10 ms counts the number of 10-ms
intervals that elapse after the TON is enabled: a count of 50 on a 10-ms timer represents 500 ms.
The SIMATIC timers are available in three resolutions: 1 ms, 10 ms, and 100 ms. As shown in
Table 6-74, the timer number determines the resolution of the timer.

197

S7-200 Programmable Controller System Manual

%

198

Tip
To guarantee a minimum time interval, increase the preset value (PV) by 1. For example: To
ensure a minimum timed interval of at least 2100 ms for a 100-ms timer, set the PV to 22.

Table 6-74 Timer Numbers and Resolutions

Timer Type Resolution Maximum Value Timer Number
TONR 1ms 32.767s (0.546 min.) TO, T64
(retentive) 10 ms 327.67s (5.46min) T1to T4, T65 to T68
100 ms 3276.7s (54.6 min.) T5 to T31, T69 to T95
TON, TOF 1ms 32.767s (0.546 min.) T32, T96
(non-retentive) 10 ms 327.67s (5.46min) T33to T36, T97 to T100
100 ms 3276.7s (54.6 min.) T37 to T63, T101 to T255

Understanding How Resolution Affects the Timer Action

For a timer with a resolution of 1 ms, the timer bit and the current value are updated asynchronous
to the scan cycle. For scans greater than 1 ms, the timer bit and the current value are updated
multiple times throughout the scan.

For a timer with a resolution of 10 ms, the timer bit and the current value are updated at the
beginning of each scan cycle. The timer bit and current value remain constant throughout the
scan, and the time intervals that accumulate during the scan are added to the current value at the
start of each scan.

For a timer with a resolution of 100 ms, the timer bit and current value are updated when the
instruction is executed; therefore, ensure that your program executes the instruction for a 100-ms
timer only once per scan cycle in order for the timer to maintain the correct timing.

Example: SIMATIC On-Delay Timer

Network 1 Network 1 //100 ms timer T37 times out after
10.0 737 //(10 x 100 ms = 1s)
— pb——% TN 1110.0 ON=T37 enabled,

//10.0 OFF=disable and reset T37

+104PT 100 ms LD 10.0
TON T37, +10

Network 2 /[T37 bit is controlled by timer T37

Network 2 LD T37
_| T37 QD.D) - Q0.0
Timing Diagram
10.0
1s T
current = 10 | Maximum

‘ ' value = 32767

T37 (current)

T37 (bit) ——— ‘

Q0.0

{

S7-200 Instruction Set

Tip

To guarantee that the output of a self-resetting timer is turned on for one scan each time the
timer reaches the preset value, use a normally closed contact instead of the timer bit as the

enabling input to the timer.

Example: SIMATIC Self-Resetting On-Delay Timer

Network 1
M0.0 T33

_| / |7IN TOM

+1004PT 10 ms

Network 2

T33 Qoo
—)
+

Network 1 /110 ms timer T33 times out after
//(100 x 10 ms = 1s)
/IM0.0 pulse is too fast to monitor
[lwith Status view

LDN MO0.0

TON T33, +100

Network 2 /IComparison becomes true at a

[Irate that is visible with Status view.

/[Turn on QO.0 after (40 x 10 ms)
I[for a 40% OFF/60% ON waveform
LDW>= T33, +40
= Q0.0

Network 3 /IT33 (bit) pulse too fast to monitor
Network 3 [lwith Status view
//IReset the timer through MO.0 after
_| T33| : MD'D) /lthe (100 x 10 ms) period
LD T33
= MO0.0
Timing Diagram current = 100-------—----—-
current =40 -----;, /
T33 (current) 0.4si 0.6s
T33 (bit) ' | | |
M0.0 !
0o —] L L L
Example: SIMATIC Off-Delay Timer
Network 1 Network 1 //10-ms timer T33 times out after (100 x 10 ms = 1s)
100 133 //10.0 ON-to-OFF=T33 enabled
|7 N TOF /110.0 OFF-to-ON=disable and reset T33
LD 10.0

+1004ET 10ms

TOF T33, +100

Network 2 /[Timer T33 controls Q0.0 through timer contact T33
LD T33
Network 2 = Q0.0
T33 00.0
Timing Diagram 0.0
1s 0.8s
« o>
current = 100 i
T33 (current) —— M
T33 (bit) 0.0 I L | |

199

S7-200 Programmable Controller System Manual

Example: SIMATIC Retentive On-Delay Timer

Network 1 Network 1 //10 ms TONR timer T1 times out at
10.0 T /IPT=(100 x 10 ms=1s)

— P———Jn Tomm LD 10.0

TONR T1, +100

+1004PT 10 ms

Network 2 /[T1 bit is controlled by timer T1.
/[Turns Q0.0 on after the timer accumulates a total

/lof 1 second

Network 2 LD T1

L il uu.n) _ Q0.0

Network 3 /ITONR timers must be reset by a Reset instruction
/lwith a T address.

Network 3 /IResets timer T1 (current and bit) when 10.1 is on.
01

T
| (LD 101
— ;) R 1,1

Timing Diagram

0.6s 04s P 1s
>,

A
Y.

100 (Current)

60 (CUIrent) =----mmeedrmmmemmmmm e e

T1 (Current) ¢ I

T1 (bit), Q0.0

10.1(Reset)

200

S7-200 Instruction Set Chapter 6

I[EC Timer Instructions

On-Delay Timer

siAT. [EC 113
The On-Delay Timer (TON) instruction counts time when the
ing i i LAD FEL:
enabling input is on. . .
; 1M TN 1M TN
Off-Delay Timer et ok

The Off-Delay Timer (TOF) delays turning an output off fora | | 7T 2 £T

fixed period of time after the input turns off. T

Pulse Timer TeH ToF TF
The Pulse Timer (TP) generates pulses for a specific

duration.

Table 6-75 Valid Operands for the IEC Timer Instructions

Inputs/Outputs = Data Types Operands

TXXx TON, TOF, TP | Constant (T32 to T63, T96 to T255)

IN BOOL ,Q,V, M, SM, S, T, C, L, Power Flow

PT INT IW, QW, VW, MW, SMW, SW, LW, AC, AIW, *VD, *LD, *AC, Constant
Q BOOL ,Q,V, M, SM, S, L

ET INT IW, QW, VW, MW, SMW, SW, LW, AC, AQW, *VD, *LD, *AC

@ Tip

You cannot share the same timer numbers for TOF, TON, and TP. For example, you cannot
have both a TON T32 and a TOF T32.

a

The TON instruction counts time intervals up to the preset value when the enabling input
(IN) becomes true. When the elapsed time (ET) is equal to the Preset Time (PT), the timer
output bit (Q) turns on. The output bit resets when the enabling input turns off. When the
preset is reached, timing stops and the timer is disabled.

The TOF instruction delays setting an output to off for a fixed period of time after the input
turns off. It times up to the preset value when the enabling input (IN) turns off. When the
elapsed time (ET) is equal to the preset time (PT), the timer output bit (Q) turns off. When
the preset is reached, the timer output bit turns off and the elapsed time is maintained until
the enabling input makes the transition to on. If the enabling input sets the transition to off
for a period of time shorter than the preset time, the output bit remains on.

The TP instruction generates pulses for a specific duration. As the enabling input (IN) turns
on, the output bit (Q) turns on. The output bit remains on for the pulse specified within the
preset time (PT). When the elapsed time (ET) reaches preset (PT), the output bit turns off.
The elapsed time is maintained until the enabling input turns off. When the output bit turns
on, it remains on until the pulse time has elapsed.

Each count of the current value is a multiple of the time base. For example, a count of 50 on a
10-ms timer represents 500 ms. The IEC timers (TON, TOF, and TP) are available in three
resolutions. The resolution is determined by the timer number, as shown in Table 6-76.

Table 6-76 Resolution of the IEC Timers

Resolution Maximum Value Timer Number

1ms 32.767s (0.546 minutes) T32, T96

10 ms 327.67s (5.46 minutes) T33 to T36, T97 to T100
100 ms 3276.7s (54.6 minutes) T37 to T63, T101 to T255

201

S7-200 Programmable Controller System Manual

202

Example: IEC On-Delay Timer Instruction

HNetwork 1 Timing Diagram

Input %133 Input

IM TOM

+34PT B} Output vwio |—/ \—/ ‘ |— '

(current) ! !

10 ris ETF =100 ' '

Output (Q) |

Example: IEC Off-Delay Timer Instruction

Network 1 Timing Diagram

Input %733 Input
VW100 S ! / /

+34qFT Q| Dutput (current) :
10 ms ETF&2vWwA00 PT=3 PT=3 ,

Output (Q) Q I_, I_

Example: |IEC Pulse Timer Instruction

Input ET33 Input |
| |

Metwork 1 Timing Diagram

VW100 _/"_l

+34FT O F Qutput (current) !
10 ms ETF w0 PT=3

Output

JAE

S7-200 Instruction Set Chapter 6
Interval Timers
Beginning Interval Time SIMATIC ¢ EC 1131
The Beginning Interval Time (BITIM) instruction reads the
current value of the built-in 1 millisecond counter and stores LAD FED
the value in OUT. The maximum timed interval for a EGM_TIME EGRLITIME
DWORD millisecond value is 2 raised to the 32 power or den e b | A En EMO -
49.7 days. ouT -
ouT -
Calculate Interval Time
The Calculate Interval Time (CITIM) instruction calculates EERLII=
the time difference between the current time and the time
provided in IN. The difference is stored in OUT. The SIMATIC
maximum timed interval for a DWORD millisecond value is 2
raised to the 32 power or 49.7 days. CITIM automatically STL
handles the one millisecond timer rollover that occurs within BITIM 0UT
the maximum interval, depending on when the BITIM
instruction was executed.
SIMATIC 4 IEC1131
LAD FED
CAL_ITIME CAL_ITIME
—EM EMC | EM EMC -
M ouT -
— 1M ouT -
CAL_ITIME
SIMATIC
2TL
CITIM M, SUT

Table 6-77 Valid Operands for the Interval Timer Instructions

Inputs/Outputs Data Types Operands

IN DWORD
ouT DWORD

VD, ID, QD, MD, SMD, SD, LD, HC, AC, *VD, *LD, *AC
VD, ID, QD, MD, SMD, SD, LD, AC, *VD, *LD, *AC

Example: SIMATIC Beginning Interval Time and Calculate Interval Time

Network 1 Network 1

Qoo BGMN_ITIME

— ¢ Eno——y

QUTYDO

LD Q0.0
EU
BITIM VDO

Network 2
Qoo

SCTE Network 2

EN Eno——

VDOAIN

LD Q0.0
CITIM VDO, VD4

QUTHYD4

/[Capture the time that Q0.0 turned on.

/I Calculate time Q0.0 has been on.

203

S7-200 Programmable Controller System Manual

Subroutine Instructions

¥

204

The Call Subroutine instruction (CALL) transfers control to
the subroutine SBR_N. You can use a Call Subroutine
instruction with or without parameters. After the subroutine LAD FED
completes its execution, control returns to the instruction that
follows the Call Subroutine.

SIMATIC £ EC1131

SER_M
- EM - EM

—(RET :l RET

SER_M

The Conditional Return from Subroutine instruction (CRET)
terminates the subroutine based upon the preceding logic.

To add a subroutine, select the Edit > Insert > Subroutine
menu command.

Error conditions that set ENO =0
= 0008 (maximum subroutine nesting exceeded) STL

m 0006 (indirect address)

SIMATIC l

CALL SER_M
CRET

From the main program, you can nest subroutines (place a
subroutine call within a subroutine) to a depth of eight. From
an interrupt routine, you cannot nest subroutines.

A subroutine call cannot be placed in any subroutine called from an interrupt routine. Recursion (a
subroutine that calls itself) is not prohibited, but you should use caution when using recursion with
subroutines.

Table 6-78 Valid Operands for the Subroutine Instruction
Inputs/Output = Data Types Operands
s
SBR_N WORD Constant for CPU 221, CPU 222, CPU 224: 0to 63
for CPU 224XP and CPU 226 0to 127
IN BOOL V,1,Q, M, SM, S, T, C, L, Power Flow
BYTE VB, IB, QB, MB, SMB, SB, LB, AC, *VD, *LD, *AC1, constant
WORD, INT VW, T, C, IW, QW, MW, SMW, SW, LW, AC, AIW, *VD, *LD, *AC1,
constant
DWORD, DINT | VD, ID, QD, MD, SMD, SD, LD, AC, HC, *VD, *LD, *AC1,
&VB, &IB, &QB, &MB, &T, &C, &SB, &Al, &AQ, &SMB, constant
STRING *VD, *LD, *AC, constant
IN/OUT BOOL V,1,Q, M, SM2, S, T,C, L
BYTE VB, IB, QB, MB, SMBZ, SB, LB, AC, *VD, *LD, *AC1
WORD, INT VW, T, C, IW, QW, MW, SMW2, SW, LW, AC, *VD, *LD, *AC!
DWORD, DINT | VD, ID, QD, MD, SMD?, SD, LD, AC, *VD, *LD, *AC1
ouT BOOL V,1,Q, M, SM2, S, T,C, L
BYTE VB, IB, QB, MB, SMBZ, SB, LB, AC, *VD, *LD, *AC1
WORD, INT VW, T, C, IW, QW, MW, SMW2, SW, LW, AC, AQW, *VD, *LD, *AC!
DWORD, DINT | VD, ID, QD, MD, SMD?, SD, LD, AC, *VD, *LD, *AC1

1 Must be offset 1 or above
2 Must be offset 30 or above

Tip

STEP 7-Micro/WIN automatically adds an unconditional return from each subroutine.

When a subroutine is called, the entire logic stack is saved, the top of stack is set to one, all other
stack locations are set to zero, and control is transferred to the called subroutine. When this
subroutine is completed, the stack is restored with the values saved at the point of call, and
control is returned to the calling routine.

Accumulators are common to subroutines and the calling routine. No save or restore operation is
performed on accumulators due to subroutine use.

When a subroutine is called more than once in the same cycle, the edge/up, edge/down, timer
and counter instructions should not be used.

S7-200 Instruction Set Chapter 6

Calling a Subroutine With Parameters

Subroutines can contain passed parameters. The parameters are defined in the local variable
table of the subroutine. The parameters must have a symbol name (maximum of 23 characters), a
variable type, and a data type. Sixteen parameters can be passed to or from a subroutine.

The variable type field in the local variable table defines whether the variable is passed into the
subroutine (IN), passed into and out of the subroutine (IN_OUT), or passed out of the subroutine
(OUT). Table 6-79 describes the parameter types for a subroutine. To add a parameter entry,
place the cursor on the variable type field of the type (IN, IN_OUT, or OUT) that you want to add.
Click the right mouse button to get a menu of options. Select the Insert option and then the Row
Below option. Another parameter entry of the selected type appears below the current entry.

Table 6-79 Parameter Types for a Subroutine

Parameter Description

IN Parameters are passed into the subroutine. If the parameter is a direct address (such as
VB10), the value at the specified location is passed into the subroutine. If the parameter is an
indirect address (such as *AC1), the value at the location pointed to is passed into the
subroutine. If the parameter is a data constant (16#1234) or an address (&VB100), the
constant or address value is passed into the subroutine.

IN_OUT The value at the specified parameter location is passed into the subroutine, and the result
value from the subroutine is returned to the same location. Constants (such as 16#1234) and
addresses (such as &VB100) are not allowed for input/output parameters.

ouT The result value from the subroutine is returned to the specified parameter location.
Constants (such as 16#1234) and addresses (such as &VB100) are not allowed as output
parameters. Since output parameters do not retain the value assigned by the last execution
of the subroutine, you must assign values to outputs each time the subroutine is called. Note
that the SET and RESET instructions only affect the value of the Boolean operand(s) when
power flow is ON.

TEMP Any local memory that is not used for passed parameters can be used for temporary storage
within the subroutine.

As shown in Figure 6-37, the data type field in the local variable table defines the size and format
of the parameter. The parameter types are listed below:

[0 BOOL: This data type is used for
single bit inputs and outputs. IN3 in

the following example is a Boolean |[ErErears
input. -

1 BYTE, WORD, DWORD: These e | VoTes [DdaTpe Douet :
data types identify an unsigned L0D FirsfF oz L’H BODL First s flag .
input or output parameter of 1, 2, o el it T Sl o e doee |
or 4 bytes, respectively. LA+ Shetua IM_OUT BYTE Statua of wirke

L5.0 Oone ouT BOOL DOone flag

O INT, DINT: These data types TwE Evor ouT [WIIAD Evmor rubos [F arw] =]
identify signed input or output LT[\ MAIN A 5ER 0 A NT 0 f [« T De
parameters of 2 or 4 bytes, Figure 6-37 Local Variable Table

respectively.
1 REAL: This data type identifies a single precision (4 byte) IEEE floating-point value.
1 STRING: This data type is used as a four-byte pointer to a string.

1 Power Flow: Boolean power flow is allowed only for bit (Boolean) inputs. This declaration
tells STEP 7-Micro/WIN that this input parameter is the result of power flow based on a
combination of bit logic instructions. Boolean power flow inputs must appear first in the local
variable table before any other type input. Only input parameters are allowed to be used
this way. The enable input (EN) and the IN1 inputs in the following example use Boolean
logic.

205

S7-200 Programmable Controller System Manual

206

Example: Subroutine Call

There are two STL examples provided. The first set of STL instructions can be displayed only in the STL
editor since the BOOL parameters used as power flow inputs are not saved to L memory.

The second set of STL instructions can be displayed also in the LAD and FBD editors because L memory is
used to save the state of the BOOL inputs parameters that are shown as power flow inputs in LAD and FBD.

Network 1 STL only:
0.0 SBR_D0 Network 1

— = LD 10.0

CALL SBR_O, 10.1, VB10, I11.0, &VB100, *AC1, VD200

0.1
—| |— M1 . .
To display correctly in LAD and FBD:

YB104INZ ouThYD200 Network 1

11.041M3 LD 10.0
EVB1004IN4 = L60.0
*AC1{INOUT LD 10.1
= L63.7
LD L60.0
CALL SBR_0, L63.7, VB10, 11.0, &VvB100, *AC1,
VD200

Address parameters such as IN4 (&VB100) are passed into a subroutine as a DWORD (unsigned
double word) value. The type of a constant parameter must be specified for the parameter in the
calling routine with a constant descriptor in front of the constant value. For example, to pass an
unsigned double word constant with a value of 12,345 as a parameter, the constant parameter
must be specified as DW#12345. If the constant describer is omitted from the parameter, the
constant can be assumed to be a different type.

There are no automatic data type conversions performed on the input or output parameters. For
example, if the local variable table specifies that a parameter has the data type REAL, and in the
calling routine a double word (DWORD) is specified for that parameter, the value in the subroutine
will be a double word.

When values are passed to a subroutine, they are placed into the local memory of the subroutine.
The left-most column of the local variable table shows the local memory address for each passed
parameter. Input parameter values are copied to the subroutine’s local memory when the
subroutine is called. Output parameter values are copied from the subroutine’s local memory to
the specified output parameter addresses when the subroutine execution is complete.

The data element size and type are represented in the coding of the parameters. Assignment of
parameter values to local memory in the subroutine is as follows:

1 Parameter values are assigned to local memory in the order specified by the call subroutine
instruction with parameters starting at L.0.

1 One to eight consecutive bit parameter values are assigned to a single byte starting with
Lx.0 and continuing to Lx.7.

1 Byte, word, and double word values are assigned to local memory on byte boundaries (LBXx,
LWYx, or LDx).

In the Call Subroutine instruction with parameters, parameters must be arranged in order with
input parameters first, followed by input/output parameters, and then followed by output
parameters.

If you are programming in STL, the format of the CALL instruction is:

CALL subroutine number, parameter 1, parameter 2, ..., parameter

S7-200 Instruction Set Chapter 6

Example: Subroutine and Return from Subroutine Instructions

M Network 1 Network 1 /IOn the first scan, call subroutine 0
A SMO.1 SBR_0 [[for initialization.
i = LD SM0.1
N CALL SBRO
S Network 1 Network 1 /[You can use a conditional return to leave
B Mi4 3 /lthe subroutine before the last network.
Rt —ren) LD M14.3
0 CRET
Network 2 Network 2 //This network will be skipped if M14.3 is on.
SMO.0 WMOY_B D SM0.0
| EN ENO % :
— | MOVB 10, VBO
104IN___ OUTFwED

Example: Subroutine Call with strings

This example copies a different string literal to a unique address depending upon the given input. The unique
address of this string is saved. The string address is then passed to the subroutine by using an indirect
address. The data type of the subroutine input parameter is string. The subroutine then moves the string to a
different location.

A string literal can also be passed to the subroutine. The string reference inside the subroutine is always the
same.

M Network 1 Network 1 1

A 0o STR.CFY Wi O

| } BN EWD e Enn—y LD 10.0

N “stingt™{n___ouThvelao wvetoodm___ourhvoo SSCPY “stringl”, VB100
AENO

MOVD &VB100, VDO

Network 2

101 STA_CPY WO Dw
} EN END BN END— Network2 //
LD 10.1
Usting2'{IN___ OUTFVEZ200 #vB2004I4___ OUThvDO SSCPY “string2”, VB200
AENO
MOVD &VB200, VDO
Network 3
02 SER_0
P Network3 //
“WD0 stingl LD |02
Network 4 CALL SBR_0, *VDO
103 SEF_0
e
"stiing3' 4 stingl
S Network 1 Network 1 1
SMO.0 STR_CPY
B o eal—3) LD SMO0.0
E D04 outhvenn SSCPY *LDO0, VB300

207

S7-200 Programmable Controller System Manual

Communicating over a Network

The S7-200 is designed to solve your communications and networking needs by supporting not
only the simplest of networks but also supporting more complex networks. The S7-200 also
provides tools that allow you to communicate with other devices, such as printers and weigh
scales which use their own communications protocols.

STEP 7-Micro/WIN makes setting up and configuring your network simple and straightforward.

In This Chapter

Understanding the Basics of S7-200 Network Communications 210
Selecting the Communications Protocol for Your Network 214
Installing and Removing Communications Interfaces 220
Building Your Networko . 221
Creating User-Defined Protocols with Freeport Mode 226
Using Modems and STEP 7-Micro/WIN with Your Network 228
AdvanCed TOPICS . .. ittt 233
Configuring the RS-232/PPI Multi-Master Cable for Remote Operation 239

209

S7-200 Programmable Controller System Manual

Understanding the Basics of S7-200 Network Communications

Selecting the Communication Interface for Your Network

The S7-200 supports many different types of communication networks. The selection of a network
is performed within the Set PG/PC Interface property dialog. A selected network is referred to as
an Interface. The different types of interfaces available to access these communication networks
are:

1 PPI Multi-Master cables
g CP communication cards
[Ethernet communication cards

To select the communication interface for
STEP 7-Micro/WIN, you perform the following
steps. See Figure 7-1.

1. Double-click the icon in the Communications
Setup window.

2. Selectthe interface parameter for
STEP 7-Micro/WIN.

Figure 7-1 STEP 7-Micro/WIN
Communications Interface

PPI Multi-Master Cables

The S7-200 supports communication through two
different types of PPI Multi-Master cables. These
cable types permit communication through either an
RS-232 or a USB interface.

As shown in Figure 7-2, selecting the PPI - 1.
Multi-Master cable type is simple. You perform the
following steps:

1. Click the Properties button on the Set PG/PC
Interface property page.

2. Click the Local Connection tab on the 3.
Properties page.
3. Select the USB or the desired COM port .

Figure 7-2 PPl Multi-Master Cable Selection

Tip
@ Please note that only one USB cable can be used at a time.

Tip

@ Examples in this manual use the RS-232/PPI Multi-Master cable. The RS-232/PPI Multi-Master
cable replaces the previous PC/PPI cable. A USB/PPI Multi-Master cable is also available.
Refer to Appendix E for order numbers.

210

Communicating over a Network Chapter 7

Using Master and Slave Devices on a PROFIBUS Network

The S7-200 supports a master-slave network and can function as either a master or a slave in a
PROFIBUS network, while STEP 7-Micro/WIN is always a master.

Masters

A device that is a master on a network can initiate a request to another device on the network. A
master can also respond to requests from other masters on the network. Typical master devices
include STEP 7-Micro/WIN, human-machine interface devices such as a TD 200, and S7-300 or
S7-400 PLCs. The S7-200 functions as a master when it is requesting information from another
S7-200 (peer-to-peer communications).

Slaves

A device that is configured as a slave can only respond to requests from a master device; a slave
never initiates a request. For most networks, the S7-200 functions as a slave. As a slave device,
the S7-200 responds to requests from a network master device, such as an operator panel or
STEP 7-Micro/WIN.

Setting the Baud Rate and Network Address

The speed that data is transmitted across the network is the baud rate, which is typically
measured in units of kilobaud (kbaud) or megabaud (Mbaud). The baud rate measures how much
data can be transmitted within a given amount of time. For example, a baud rate of 19.2 kbaud
describes a transmission rate of 19,200 bits per second.

Every device that communicates over a Table 7-1 Baud Rates Supported by the

given network must be configured to S7-200

transmit data at the same baud rate. Network Baud Rate

Therefore, the fastest baud rate for the

network is determined by the slowest Standard Network 9.6 kbaud to 187.5 kbaud
device connected to the network. Using an EM 277 9.6 kbaud to 12 Mbaud
Table 7-1 lists the baud rates supported by | Freeport Mode 1200 baud to 115.2 kbaud

the S7-200.

The network address is a unique number Table 7-2 Default Addresses for S7-200
that you assign to each device on the Devices
network. The unique network address

. S7-200 Device Default Address
ensures that the data is transferred to or :
retrieved from the correct device. The STEP 7-Micro/WIN 0
S7-200 supports network addresses from O | ymi (TD 200, TP, or OP) 1
to 126. For an S7-200 with two ports, each
S7-200 CPU 2

port has a network address. Table 7-2 lists
the default (factory) settings for the S7-200
devices.

211

S7-200 Programmable Controller System Manual

212

Setting the Baud Rate and Network Address for STEP 7-Micro/WIN

You must configure the baud rate and network address for STEP 7-Micro/WIN. The baud rate
must be the same as the other devices on the network, and the network address must be unique.

Typically, you do not change the network address (0) for STEP 7-Micro/WIN. If your network

includes another programming package, you might need to change the network address for
STEP 7-Micro/WIN.

As shown in Figure 7-3, configuring the baud rate

and network address for STEP 7-Micro/WIN is - 1.
simple. After you click the Communications icon in

the Navigation bar, you perform the following steps:

|
ncm:ﬂal.]
1. Double-click the icon in the Communications Acors Pt b ot
Setup window. e el =
2. Click the Properties button on the Set PG/PC Forr o [hwew] e 2,
Interface dialog box. R e —
3. Select the network address for " |anl:«mmm g -
STEP 7-Micro/WIN. s P
) o S— 3
4. Select the baud rate for STEP 7-Micro/WIN. Tt m | — .
e =
Transwitsion Rlate: [a6ktcs =]
Highst Mok fclbace [= ~ 4,
[o] e | Coerl | M |

Figure 7-3 Configuring STEP 7-Micro/WIN

Setting the Baud Rate and Network Address for the S7-200
You must also configure the baud rate and network address for the S7-200. The system block of

the S7-200 stores the baud rate and network address. After you select the parameters for the
S7-200, you must download the system block to the S7-200.

The default baud rate for each S7-200 port is
9.6 kbaud, and the default network address is 2.

As shown in Figure 7-4, use STEP 7-Micro/WIN to
set the baud rate and network address for the
S7-200. After you select the System Block icon in
the Navigation bar or select the View > Component
> System Block menu command, you perform the
following steps:

1. Selectthe network address for the S7-200.
2. Select the baud rate for the S7-200.

3. Download the system block to the S7-200.
Figure 7-4 Configuring the S7-200 CPU
Tip
Selection of all baud rate options is permitted. STEP 7-Micro/WIN validates this selection

during the download of the System Block. Baud rate selections that would prevent
STEP 7-Micro/WIN from communicating with the S7-200 are prevented from being downloaded.

Communicating over a Network Chapter 7

Setting the Remote Address

Before you can download the updated settings to
the S7-200, you must set both the communications
(COM) port of STEP 7-Micro/WIN (local) and the
address of the S7-200 (remote) to match the current
setting of the remote S7-200. See Figure 7-5.

After you download the updated settings, you may
need to reconfigure the PG/PC Interface baud rate
setting (if different from the setting used when
downloading to the remote S7-200). Refer to Figure
7-3 to configure the baud rate.

Figure 7-5 Configuring STEP 7-Micro/WIN

Searching for the S7-200 CPUs on a Network

You can search for and identify the S7-200 CPUs that are attached to your network. You can also
search the network at a specific baud rate or at all baud rates when looking for S7-200s.

Only PPI Multi-Master cables permit searching of all

baud rates. This feature is not available if

communicating through a CP card. The search -1
starts at the baud rate that is currently selected.

1. Open the Communications dialog box and
double-click the Refresh icon to start the
search.

2. To search all baud rates, select the Search All - 2.
Baud Rates check box.

Figure 7-6 Searching for CPUs on a Network

213

S7-200 Programmable Controller System Manual

Selecting the Communications Protocol for Your Network

214

The following information is an overview of the protocols supported by the S7-200 CPUs.

1 Point-to-Point Interface (PPI)
1 Multi-Point Interface (MPI)
1 PROFIBUS

Based on the Open System Interconnection (OSI) seven-layer model of communications
architecture, these protocols are implemented on a token ring network which conforms to the
PROFIBUS standard as defined in the European Standard EN 50170. These protocols are
asynchronous, character-based protocols with one start bit, eight data bits, even parity, and one
stop bit. Communications frames depend upon special start and stop characters, source and
destination station addresses, frame length, and a checksum for data integrity. The protocols can
run on a network simultaneously without interfering with each other, as long as the baud rate is the
same for each protocol.

Ethernet is also available for the S7-200 CPU with expansion modules CP243-1 and CP243-1 IT.

PPI Protocol
PPl is a master-slave protocol: the master devices STEP 7-Micro/WIN:
send requests to the slave devices, and the slave @ Master
devices respond. See Figure 7-7. Slave devices do W
not initiate messages, but wait until a master sends : wmm@
them a request or polls them for a response. S7-200
Masters communicate to slaves by means of a
shared connection which is managed by the PPI [

Lo HMI: Mast

protocol. PPI does not limit the number of masters E25850 aster

that can communicate with any one slave; however,
you cannot install more than 32 masters on the
network.

Figure 7-7 PPI Network

S7-200 CPUs can act as master devices while they are in RUN mode, if you enable PPl master
mode in the user program. (See the description of SMB30 in Appendix D.) After enabling PPI
master mode, you can use the Network Read or the Network Write instructions to read from or
write to other S7-200s. While the S7-200 is acting as a PPI master, it still responds as a slave to
requests from other masters.

PPI Advanced allows network devices to establish a logical connection between the devices. With
PPI Advanced, there are a limited number of connections supplied by each device. See Table 7-3
for the number of connections supported by the S7-200.

All S7-200 CPUs support both PPl and PPI Advanced protocols, while PPI Advanced is the only
PPI protocol supported by the EM 277 module.

Table 7-3 Number of Connections for the S7-200 CPU and EM 277 Modules

Module Baud Rate Connections
S7-200 CPU Port 0 | 9.6 kbaud, 19.2 kbaud, or 187.5 kbaud 4

Port 1 | 9.6 kbaud, 19.2 kbaud, or 187.5 kbaud 4
EM 277 Module 9.6 kbaud to 12 Mbaud 6 per module

Communicating over a Network Chapter 7

MPI Protocol

MPI allows both master-master and master-slave STEP 7-Micro/WIN: S7-200: Slave
communications. See Figure 7-8. To communicate Master i
with an S7-200 CPU, STEP 7-Micro/WIN
establishes a master-slave connection. MPI
protocol does not communicate with an S7-200
CPU operating as a master.

=

<]

= =P

S7-300: Master

Network devices communicate by means of
separate connections (managed by the MPI
protocol) between any two devices. Communication
between devices is limited to the number of
connections supported by the S7-200 CPU or

EM 277 modules. See Table 7-3 for the number of ~ Figure 7-8 MPI Network
connections supported by the S7-200.

For MPI protocol, the S7-300 and S7-400 PLCs use the XGET and XPUT instructions to read and
write data to the S7-200 CPU. For information about these instructions, refer to your S7-300 or
S7-400 programming manual.

PROFIBUS Protocol
The PROFIBUS protocol is designed for high-speed S7-200 (EM 277): Slave

communications with distributed I/O devices (remote s [
I/0). There are many PROFIBUS devices available _ = [i Ll
from a variety of manufacturers. These devices S7-300: Master [o J5 =
range from simple input or output modules to motor g HH

controllers and PLCs. o ®

ET 200: Slave

PROFIBUS networks typically have one master and e e 0

several slave I/O devices. See Figure 7-9. The [‘
master device is configured to know what types of E—E

1/0 slaves are connected and at what addresses.
The master initializes the network and verifies that
the slave devices on the network match the
configuration. The master continuously writes output Figure 7-9 PROFIBUS Network
data to the slaves and reads input data from them.

When a DP master configures a slave device successfully, it then owns that slave device. If there
is a second master device on the network, it has very limited access to the slaves owned by the
first master.

TCP/IP Protocol

The S7-200 can support TCP/IP Ethernet communication through the use of an Ethernet (CP
243-1) or Internet (CP 243-1 IT) expansion module. Table 7-4 shows the baud rate and number
of connections supported by these modules.

Table 7-4 Number of Connections for the Ethernet (CP 243-1) and the Internet (CP 243-1 IT) Modules

Module Baud Rate Connections

Ethernet (CP 243-1) Module 8 general purpose connections
10 to 100 Mbaud - -

Internet (CP 243-1 IT) Module 1 STEP 7-Micro/WIN connection

Refer to the SIMATIC NET CP 243-1 Communications Processor for Industrial Ethernet Manual
or the SIMATIC NET CP 243-1 IT Communications Processor for Industrial Ethernet and
Information Technology Manual for additional information.

215

S7-200 Programmable Controller System Manual

Sample Network Configurations Using Only S7-200 Devices

Single-Master PPI Networks

For a simple single-master network, the
programming station and the S7-200 CPU are

connected by either a PPI Multi-Master cable or by g

a communications processor (CP) card installed in = [

the programming station. o=
S7-200

In the sample network at the top of Figure 7-10, the STEP 7-Micro/WIN

programming station (STEP 7-Micro/WIN) is the a

network master. In the sample network at the % 4 E:““““““““E

bottom of Figure 7-10, a human-machine interface 000 fl—— :

(HMI) device (such as a TD 200, TP, or OP) is the HMI (such as a TD 200) S7-200

network master.

In both sample networks, the S7-200 CPU is a slave Figure 7-10 Single-Master PPI Network
that responds to requests from the master.

For a single-master PPI network, configure STEP 7-Micro/WIN to use PPI protocol. Uncheck the
Multiple Master Network and the PPI Advanced check boxes, if available.

Multi-Master PPl Networks

Figure 7-11 shows a sample network of multiple
masters with one slave. The programming station
(STEP 7-Micro/WIN) uses either a CP card or a PPI

Multi-Master cable. STEP 7-Micro/WIN and the HMI i —
device share the network. 1
Both STEP 7-Micro/WIN and the HMI device are ~

masters and must have separate network BEOSH

addresses. When the PPI Multi-Master cable is

being used, the cable is a master and uses the

network address supplied by STEP 7-Micro/WIN. Figure 7-11 Multiple Masters with One Slave
The S7-200 CPU is a slave.

Figure 7-12 shows a PPI network with multiple .
masters communicating with multiple slaves. In this E:“““”E
example, both STEP 7-Micro/WIN and the HMI can B]
request data from any S7-200 CPU slave. §7-200
STEP 7-Micro/WIN and the HMI device share the .
network. — o e
STEP 7-Micro/WIN ﬁmmE
All devices (masters and slaves) have different — - o
network addresses. When the PPI Multi-Master gooo v S7-200
uvi (=000

cable is being used, the cable is a master and uses

the network address supplied by _ _
STEP 7-Micro/WIN. The S7-200 CPUs are slaves. Figure 7-12 Multiple Masters and Slaves

For a network with multiple masters and one or more slaves, configure STEP 7-Micro/WIN to use
PPI protocol and check the Multiple Master Network and the PPl Advanced check boxes if they
are available. If you are using a PP| Multi-Master cable, the Multiple Master Network and PPI
Advanced check boxes are ignored.

216

Communicating over a Network Chapter 7
Complex PPl Networks i
Figure 7-13 shows a sample network that uses @ @MME
multiple masters with peer-to-peer communications. 57.200)
STEP 7-Micro/WIN and the HMI device read and
write over the network to the S7-200 CPUs, and the STEP 7-Micro/WIN ==
S7-200 CPUs use the Network Read and Network ﬁmmD
Write instructions to read and write to each other 5508 6 = ®
—1o0d S7-200

(peer-to-peer communications). HMI

Figure 7-14 shows another, example of a complex

PPI network that uses multiple masters with
peer-to-peer communications. In this example, each

HMI monitors one S7-200 CPU.

HMI HMI
L 12 L 12
0ogd v DDDDDVD

The S7-200 CPUs use the NETR and NETW
instructions to read and write to each other

N) STEP 7-Micro/WIN
(peer-to-peer communications).

For complex PPI networks configure STEP
7-Micro/WIN to use PPI protocol and check the

Multiple Master Network and the PPI Advanced
check boxes if available. If you are using a PPI
Multi-Master cable, the Multiple Master Network and
PPI Advanced check boxes are ignored.

Sample Network Configurations Using S7-200, S7-300, and S7-400

Devices

Networks with Baud Rates Up to 187.5 kbaud

In the sample network shown in Figure 7-15, the
S7-300 uses the XPUT and XGET instructions to

communicate with an S7-200 CPU. The S7-300 $7-300

cannot communicate with an S7-200 CPU in master
mode.

To communicate with the S7 CPUs, configure

el

Figure 7-14 HMI Devices and Peer-to-Peer

a

[I
ol £
<>

)
[m]
]

STEP 7-Micro/WIN to use PPI protocol and check

I

the Multiple Master Network and the PPl Advanced _
check boxes if available. If you are using a PPI STEP 7-MicroWIN
Multi-Master cable, the Multiple Master Network and

PPI Advanced check boxes are ignored.

(== P

=

=P

_C

2
S7-200

o
S7-200

Figure 7-15 Baud Rates Up to 187.5 Kbaud

217

S7-200 Programmable Controller System Manual

218

Networks with Baud Rates Above 187.5 kbaud

For baud rates above 187.5 kbaud, the S7-200 CPU must use an EM 277 module for connecting
to the network. See Figure 7-16. STEP 7-Micro/WIN must be connected by a communications
processor (CP) card.

In this configuration, the S7-300 can communicate S7-300 HMI

with the S7-200s, using the XPUT and XGET g HH I]
instructions, and the HMI can monitor either the ’ E4 80800 0ooo
S7-200s or the S7-300. | Bobo Boon

The EM 277 is always a slave device. I I

STEP 7-Micro/WIN can program or monitor either STEP 7-MicroWIN _ i

S7-200 CPU through the attached EM 277. To [7? g -
communicate with an EM 277 above 187.5 kbaud, @WWE@ @mmgg
configure STEP 7-Micro/WIN to use MPI protocol P
with a CP card. The maximum baud rate for the PPI ST200 EMaTr St200 ez
Multi-Master cables is 187.5 kbaud. Figure 7-16 Baud Rates Above 187.5 Kbaud

Sample PROFIBUS-DP Network Configurations

Networks with S7-315-2 DP as PROFIBUS Master and EM 277 as PROFIBUS
Slave

Figure 7-17 shows a sample PROFIBUS network S7-315-2 bP

that uses an S7-315-2 DP as the PROFIBUS g HH

master. An EM 277 module is a PROFIBUS slave. ° ¥

The S7-315-2 DP can read data from or write data — I — PROFIBUS-DP

to the EM 277, from 1 byte up to 128 bytes. The [

S7-315-2 DP reads or writes V memory locations in E ‘ | E ‘ | i mmE: g

- =l I E
the S7-200. ﬂ 5 ﬂ = - Eﬁﬂ
This network supports baud rates from 9600 baud ET 200 ET 200 S7-200 EM 277
to 12 Mbaud.

Figure 7-17 Network with S7-315-2 DP
Networks with STEP 7-Micro/WIN and HMI
Figure 7-18 shows a sample network with an S7-315-2DP
S7-315-2 DP as the PROFIBUS master and HH I HMI
EM 277 as a PROFIBUS slave. In this configuration, 2 — A
the HMI monitors the S7-200 through the EM 277. 0008 v
tShLEEP'\Zég/l;cro/wlN programs the S7-200 through I - PROFIBUS.DP |
' [
This network supports baud rates from 9600 baud E \—‘ m |
to 12 Mbaud. STEP 7-Micro/WIN requires a CP = A
card for baud rates above 187.5 kbaud. [— === lim=
ET 200 o] S7-200 EM 277

STEP 7-Micro/WIN

Figure 7-18 PROFIBUS Network

Communicating over a Network Chapter 7

Configure STEP 7-Micro/WIN to use PROFIBUS protocol for a CP card. Select the DP or
Standard profile if there are only DP devices present on the network. Select the Universal
(DP/FMS) profile for all master devices if there are any non-DP devices on the network, such as
TD 200s. All masters on the network must be set up to use the same PROFIBUS profile (DP,
Standard or Universal) for the network to operate.

The PPI Multi-master cables will function on networks up to 187.5 kbaud only if all master devices
are using the Universal (DP/FMS) profile.

Sample Network Configurations Using Ethernet and/or Internet
Devices

In the configuration shown in Figure 7-19, an
Ethernet connection is used to allow @
STEP 7-Micro/WIN to communicate with either of

the S7-200 CPUs which are using an Ethernet

(CP 243-1) module or an Internet (CP 243-1IT) a

module. The S7-200 CPUs can exchange data STEP 7-Micro/WIN

through the Ethernet connection. A standard == 1 ==
browser program running on the PC with @mmgﬁa 5 @WWDQE
STEP 7-Micro/WIN can be used to access the @ s e
home page of the Internet (CP 243-1 IT) module. S7°200 CP2431 57200 CP243-11T
For Ethernet networks’ you Conflgure Figure 7-19 10/100 Mbaud Ethernet Network

STEP 7-Micro/WIN to use TCP/IP protocol.

Tip
@ In the Set PG/PC Interface dialog, there are at least two TCP/IP choices. The selection
TCP/IP -> NdisWanlp is not supported by the S7-200.

1 Inthe Set PG/PC Interface dialog box, the option(s) depend upon the type of Ethernet
interface provided in your PC. Choose the one that connects your computer to the Ethernet
network where the CP 243-1 or CP 243-1 IT module is connected.

d Onthe Communications dialog, you must enter the Remote IP address(es) of each of the
Ethernet/Internet modules with which you wish to communicate.

219

S7-200 Programmable Controller System Manual

Installing and Removing Communications Interfaces

From the Set PG/PC Interface dialog box, you use the Installing/Uninstalling Interfaces dialog box
to install or remove communications interfaces for your computer

1. Inthe Set PG/PC Interface dialog box, click Select to access the Installing/Uninstalling
Interfaces dialog box.

The Selection box lists the interfaces that are available, and the Installed box displays the
interfaces that have already been installed on your computer.

2. To add a communications interface: Select the communications hardware installed on your
computer and click Install. When you close the Installing/Uninstallling Interfaces dialog box,
the Set PG/PC Interface dialog box displays the interface in the Interface Parameter
Assignment Used box.

3. Toremove a communications interface: Select the interface to be removed and click
Uninstall. When you close the Installing/Uninstallling Interfaces dialog box, the Set PG/PC
Interface dialog box removes the interface from the Interface Parameter Assignment Used
box.

£ 1. 3.
Access Paih |
Accesz Porl of the Apphcator:
[MicmAib - PL/PP catielFFl) =l
[Starwdard lor MicioWIN]
Intesface Paramete Assigrment Usedt 1t alling Ungfstallg tterieces A\ 3|
EZalal [
BB o Mochde | \Medule number]
BEIPC/PR cablefPEl] — BB PPl cable Noard 1
oee: |
[
[Assigring Parameters to an PC/PPI cable
Tok ar PPN edwark)
Iesfaces
Add/Ramaove: Select.. |ﬁ Access via Senal Interface
0K | Cancel Help w

Figure 7-20 Set PG/PC Interface and Installing/Uninstalling Interfaces Dialog Boxes

220

Adjusting the Port Settings of Your Computer for PPI Multi-Master

If you are using the USB/PPI Multi-Master cable or the RS-232/PP| Multi-Master cable in PPI
mode, adjustment of your computer’s port settings is not necessary and operation in multi-master
networks is possible with the Windows NT operating system.

If you are using the RS-232/PPI Multi-Master cable in PPI/Freeport mode for communication
between an S7-200 CPU and STEP 7-Micro/WIN on an operating system that supports the PPI
Multi-Master configuration (Windows NT does not support the PPl Multi-Master), you might need
to adjust the port settings on your computer:

1.

N o g Mo

Right-click the My Computer icon on the desktop and select the Properties menu command.

Select the Device Manager tab. For Windows 2000, select first the Hardware tab and then
Device Manager button.

Double-click the Ports (COM & LPT).

Select the communications port that you are currently using (for example, COM1).
On the Port Settings tab, click the Advanced button.

Set the Receive Buffer and the Transmit Buffer controls to the lowest value (1).

Click OK to apply the change, close all the windows, and reboot the computer to make the
new settings active.

Communicating over a Network Chapter 7

Building Your Network

General Guidelines

Always install appropriate surge suppression devices for any wiring that could be subject to
lightning surges.

Avoid placing low-voltage signal wires and communications cables in the same wire tray with AC
wires and high-energy, rapidly switched DC wires. Always route wires in pairs, with the neutral or
common wire paired with the hot or signal-carrying wire.

The communications port of the S7-200 CPU is not isolated. Consider using an RS-485 repeater
or an EM 277 module to provide isolation for your network.

Caution

Interconnecting equipment with different reference potentials can cause unwanted currents to
flow through the interconnecting cable.

These unwanted currents can cause communications errors or can damage equipment.

Be sure all equipment that you are about to connect with a communications cable either shares
a common circuit reference or is isolated to prevent unwanted current flows. See the information
about grounding and circuit reference points for using isolated circuits in Chapter 3.

Determining the Distances, Transmission Rate, and Cable for Your
Network

As shown in Table 7-5, the maximum length of a network segment is determined by two factors:
isolation (using an RS-485 repeater) and baud rate.

Isolation is required when you connect devices at different ground potentials. Different ground
potentials can exist when grounds are physically separated by a long distance. Even over short
distances, load currents of heavy machinery can cause a difference in ground potential.

Table 7-5 Maximum Length for a Network Cable

Baud Rate Non-Isolated CPU Port?! CPU Port with Repeater or EM 277
9.6 kbaud to 187.5 kbaud 50 m 1,000 m
500 kbaud Not supported 400 m
1 Mbaud to 1.5 Mbaud Not supported 200 m
3 Mbaud to 12 Mbaud Not supported 100 m

1 The maximum distance allowed without using an isolator or repeater is 50 m. You measure this distance from

the first node to the last node in the segment.

221

S7-200 Programmable Controller System Manual

Using Repeaters on the Network

An RS-485 repeater provides bias and termination for the network segment. You can use a
repeater for the following purposes:

1 Toincrease the length of a network: Adding a repeater to your network allows you to extend
the network another 50 m. If you connect two repeaters with no other nodes in between (as
shown in Figure 7-21), you can extend the network to the maximum cable length for the
baud rate. You can use up to 9 repeaters in series on a network, but the total length of the
network must not exceed 9600 m.

1 To add devices to a network: Each segment can have a maximum of 32 devices connected
up to 50 m at 9600 baud. Using a repeater allows you to add another segment (32 devices)

to the network.

1 To electrically isolate different network segments: Isolating the network improves the quality
of the transmission by separating the network segments which might be at different ground

potentials.

A repeater on your network counts as one of the nodes on a segment, even though it is not

assigned a network address.

Segment

Segment Segment

RS-485
Repeater

RS-485
Repeater

50 m

Up to 1000 m 50 m

Figure 7-21 Sample Network with Repeaters

Selecting the Network Cable

S7-200 networks use the RS-485 standard on twisted pair cables. Table 7-6 lists the specifications
for the network cable. You can connect up to 32 devices on a network segment.

Table 7-6 General Specifications for Network Cable

Specifications

Cable type

Loop resistance

Effective capacitance
Nominal impedance
Attenuation
Cross-sectional core area

Cable diameter

222

Description

Shielded, twisted pair

<115 Q/km

30 pF/m

Approximately 135 Q to 160 Q (frequency =3 MHz to 20 MHz)
0.9 dB/100 m (frequency=200 kHz)

0.3 mm2 to 0.5 mm?

8 mm 0.5 mm

Communicating over a Network

Chapter 7

Connector Pin Assignments

The communications ports on the S7-200 CPU are RS-485 compatible on a nine-pin subminiature
D connector in accordance with the PROFIBUS standard as defined in the European Standard
EN 50170. Table 7-7 shows the connector that provides the physical connection for the
communications port and describes the communications port pin assignments.

Table 7-7 Pin Assignments for the S7-200 Communications Port
Connector Pin Number PROFIBUS Signal Port 0/Port 1
1 Shield Chassis ground
2 24V Return Logic common
Pin 1 3 RS-485 Signal B RS-485 Signal B
4 Request-to-Send RTS (TTL)
5 5V Return Logic common
6 5V +5V, 100 Q series resistor
Pin 5 7 +24 V +24 V
8 RS-485 Signal A RS-485 Signal A
9 Not applicable 10-bit protocol select (input)

Biasing and Terminating the Network Cable

Connector shell

Shield

Chassis ground

Siemens provides two types of network connectors that you can use to easily connect multiple
devices to a network: a standard network connector (see Table 7-7 for the pin assignments), and
a connector that includes a programming port, which allows you to connect a programming station
or an HMI device to the network without disturbing any existing network connections. The
programming port connector passes all signals (including the power pins) from the S7-200
through to the programming port, which is especially useful for connecting devices that draw
power from the S7-200 (such as a TD 200).

Both connectors have two sets of terminal screws to allow you to attach the incoming and
outgoing network cables. Both connectors also have switches to bias and terminate the network
selectively. Figure 7-22 shows typical biasing and termination for the cable connectors.

Cable must be terminated Switch position = On
Terminated and biased

and biased at both ends.

Switch position = On:
Terminated and biased

TXD/RxD +

TxD/RxD -

Cable shield

Switch position = Off
No termination or bias

Switch position = On
Terminated and biased

Bare shielding: approximately 12 mm (1/2 in.) must contact the metal guides of all locations.

Switch position = Off:

Network
connector

No termination or bias

Cable shield —]

B .
Pin #
_A]
6
3
A
8
5
Cable shield 1]

Figure 7-22 Bias and Termination of the Network Cable

223

S7-200 Programmable Controller System Manual

224

Choosing a PPI Multi-Master Cable or a CP Card for Your Network

As shown in Table 7-8, STEP 7-Micro/WIN supports the RS-232/PPI Multi-Master cable and the
USB/PPI Multi-Master cable as well as several CP cards that allow the programming station (your
computer or SIMATIC programming device) to act as a network master.

For baud rates up to 187.5 kbaud the PPI Multi-Master cables provide the simplest and most
cost-effective connection between STEP 7-Micro/WIN and one S7-200 CPU or an S7-200
network. Two types of PPI Multi-Master cables are available and both can be used for local
connection between STEP 7-Micro/WIN and an S7-200 network.

The USB/PPI Multi-Master cable is a plug and play device that can be used with PCs that support
the USB Version 1.1. It provides isolation between your PC and the S7-200 network while
supporting PPl communication at baud rates up to 187.5 kbaud. There are no switches to set; just
connect the cable, choose the PC/PPI cable as the interface, select PPI protocol, and set the port
to USB in the PC Connection tab. Only one USB/PPI Multi-Master cable can be connected to the
PC at a time for use by STEP 7-Micro/WIN.

The RS-232/PPI Multi-Master cable has eight DIP switches: two of these switches are used to
configure the cable for operation with STEP 7-Micro/WIN.

1 Ifyou are connecting the cable to the PC, select PPl mode (switch 5 = 1) and Local
operation (switch 6 = 0).

[Ifyou are connecting the cable to a modem, select PPl mode (switch 5 = 1) and Remote
operation (switch 6 = 1).

The cable provides isolation between your PC and the S7-200 network. Choose the PC/PPI cable
as the interface and select the RS-232 port that you want to use under the PC Connection tab.
Under the PPI tab, select the station address and the network baud rate. You do not need to make
any other selections because protocol selection is automatic with the RS-232/PPI| Multi-Master
cable.

Both the USB/PPI and the RS-232/PP| Multi-Master cables have LEDs that provide an indication
of the communication activity with the PC as well as network communication activity.

1 The Tx LED indicates that the cable is transmitting information to the PC.
1 The Rx LED indicates that the cable is receiving information from the PC.

1 The PPILED indicates that the cable is transmitting data on the network. Since the
Multi-Master cables are token holders, the PPI LED is on continuously once communication
has been initialized by STEP 7-Micro/WIN. The PPI LED is turned off when the connection
with STEP 7-Micro/WIN is closed. The PPI LED will also flash at 1 Hz rate while waiting to
join the network.

The CP cards contain dedicated hardware to assist the programming station in managing a
multi-master network and can support different protocols at several baud rates.

Each CP card provides a single RS-485 port for connection to the network. The CP 5511 PCMCIA
card has an adapter that provides the 9-pin D port. You connect one end of the cable to the
RS-485 port of the card and connect the other end to a programming port connector on your
network.

If you are using a CP card with PPl communications, STEP 7-Micro/WIN will not support two
different applications running on the same CP card at the same time. You must close the other
application before connecting STEP 7-Micro/WIN to the network through the CP card. If you are
using MPI or PROFIBUS communication, multiple STEP 7-Micro/WIN applications are permitted
to communicate over the network at the same time.

Caution

Using a non-isolated RS-485-t0-RS-232 converter can damage the RS-232 port of your
computer.

The Siemens RS-232/PP| and USB/PPI Multi-Master cables (order number 6ES7
901-3CB30-0XA0 or 6ES7 901-3DB30-0XA0, respectively) provide electrical isolation
between the RS-485 port on the S7-200 CPU and the RS-232 or USB port that connects to your
computer. If you do not use the Siemens Multi-Master cable, you must provide isolation for the
RS-232 port of your computer.

Communicating over a Network Chapter 7
Table 7-8 CP Cards and Protocols Supported by STEP 7-Micro/WIN
Configuration Baud Rate Protocol
RS-232/PPI Multi-Master or USB/PPI Multi-Master cable! 9.6 kbaud to PPI
Connected to a port on the programming station 187.5 kbaud
PC Adapter USB, V1.1 or later 9.6 kbaud to PPI, MPI, and
187.5 baud PROFIBUS

CP 5512 9.6 kbaud to PPI, MPI, and
Type Il, PCMCIA card (for a notebook computer) 12 Mbaud PROFIBUS
CP 5611 (version 3 or greater) 9.6 kbaud to PPI, MPI, and
PClI card 12 Mbaud PROFIBUS
CP 1613, S7-1613 10 Mbaud or | TCP/IP
PCI card 100 Mbaud
CP 1612, SoftNet-S7 10 Mbaud or | TCP/IP
PCI card 100 Mbaud
CP 1512, SoftNet-S7 10 Mbaud or | TCP/IP
PCMCIA card (for a notebook computer) 100 Mbaud

1 The Multi-Master cables provide electrical isolation between the RS-485 port (on the S7-200 CPU) and the port
that connects to your computer. Using a non-isolated RS-485-to-RS-232 converter could damage the RS-232

port of your computer.

Using HMI Devices on Your Network

The S7-200 CPU supports many types of HMI devices from Siemens and also from other
manufacturers. While some of these HMI devices (such as the TD 200) do not allow you to select
the communications protocol used by the device, other devices (such as the OP and TP product
lines) allow you to select the communications protocol for that device.

If your HMI device allows you to select the communications protocol, consider the following

guidelines:

1 For an HMI device connected to the communications port of the S7-200 CPU, with no other
devices on the network, select either the PPI or the MPI protocol for the HMI device.

g Foran HMI device connected to an EM 277 PROFIBUS module, select either the MPI or

the PROFIBUS protocol.

- If the network with the HMI device includes S7-300 or S7-400 PLCs, select the MPI

protocol for the HMI device.

- If the network with the HMI device is a PROFIBUS network, select the PROFIBUS
protocol for the HMI device and select a profile consistent with the other masters on

the PROFIBUS network.

1 For an HMI device connected to the communications port of the S7-200 CPU which has
been configured as a master, select the PPI protocol for the HMI device. Advanced PPI is
optimal. The MPI and PROFIBUS protocols do not support the S7-200 CPU as a master.

For more information about how to configure the HMI device, refer to the specific manual for your
device (see Table 7-9). These manuals are included in the STEP 7-Micro/WIN documentation

CD.
Table 7-9 HMI Devices Supported by the S7-200 CPU
HMI Configuration Software Configuration Cable Communications Cable
TD 100C Text Display Wizard no 6ES7 901-3EB10-0XA0
Keypad Designer
TD200 | (part of STEP 7-Micro/WIN) Part of TD 200
TD 200C Part of TD 200C
TD400C Part of TD400C
TP177micro | WInCC flexible micro S7-200 RS-232 PC-PPI cable, | See SIMATIC HMI catalog
WinCC flexible Compact (6ES7 901-3CB30-0XA0) ST80
OP73micro | WinCC flexible Standard (http://www.siemens.com

WinCC flexible Advanced

search on ST80)

225

S7-200 Programmable Controller System Manual

Creating User-Defined Protocols with Freeport Mode

Freeport mode allows your program to control the communications port of the S7-200 CPU. You
can use Freeport mode to implement user-defined communications protocols to communicate with
many types of intelligent devices. Freeport mode supports both ASCII and binary protocols.

To enable Freeport mode, you use special memory bytes SMB30 (for Port 0) and SMB130 (for
Port 1). Your program uses the following to control the operation of the communications port:

1 Transmit instruction (XMT) and the transmit interrupt: The Transmit instruction allows the
S7-200 to transmit up to 255 characters from the COM port. The transmit interrupt notifies
your program in the S7-200 when the transmission has been completed.

1 Receive character interrupt: The receive character interrupt notifies the user program that a
character has been received on the COM port. Your program can then act on that character,
based on the protocol being implemented.

1 Receive instruction (RCV): The Receive instruction receives the entire message from the
COM port and then generates an interrupt for your program when the message has been
completely received. You use the SM memory of the S7-200 to configure the Receive
instruction for starting and stopping the receiving of messages, based on defined
conditions. The Receive instruction allows your program to start or stop a message based
on specific characters or time intervals. Most protocols can be implemented with the
Receive instruction.

Freeport mode is active only when the S7-200 is in RUN mode. Setting the S7-200 to STOP mode
halts all Freeport communications, and the communications port then reverts to the PPI protocol
with the settings which were configured in the system block of the S7-200.

Table 7-10 Using Freeport Mode

Network Configuration Description
Using Freeport over Example: Using an S7-200 with an electronic
an RS-232 Scale scale that has an RS-232 port.

PC/PPI

o E =
— >

e RS-232/PPI Multi-Master cable connects
the RS-232 port on the scale to the RS-485
port on the S7-200 CPU. (Set the cable to

(EDJ_EE“(
L]

S7-200 -
PPI/Freeport mode, switch 5=0.)
e S7-200 CPU uses Freeport to
communicate with the scale.
e Baud rate can be from 1200 baud to
115.2 kbaud.
e User program defines the protocol.
Using USS protocol =1 MicroMaster E>_<ample: Using an S7-200 with SIMODRIVE
l MicroMaster drives.
= L] e STEP 7-Micro/WIN provides a USS library.
é‘{mmﬁﬁ MicroMaster | o S7-200 CPU is a master, and the drives
S7-200 are slaves.
== MicroMaster 1 Refer to the Programming Tips on
the documentation CD for a sample
! programming USS program. See Tip 28.
Tips
Creating a user Modbus Network Example: Connecting S7-200 CPUs to a
program that Modbus network.
emulates a slave [l e User program in the S7-200 emulates a
device on another — e Modbus slave.
network | - Modb!
%——EL ﬁt——t D?;\,iéf e STEP 7-Micro/WIN provides a Modbus
S7-200 S7-200 library.

’— Refer to the Programming Tips on
the documentation CD for a sample

programming Modbus program. See Tip 41.
Tips

226

Communicating over a Network Chapter 7

Using the RS-232/PPI Multi-Master Cable and Freeport Mode with
RS-232 Devices

You can use the RS-232/PP| Multi-Master cable and the Freeport communications functions to
connect the S7-200 CPUs to many devices that are compatible with the RS-232 standard. The
cable must be set to PPI/Freeport mode (switch 5 = 0) for Freeport operation. Switch 6 selects
either Local mode (DCE) (switch 6 = 0), or Remote mode (DTE) (switch 6 = 1).

The RS-232/PPI Multi-Master cable is in Transmit mode when data is transmitted from the RS-232
port to the RS-485 port. The cable is in Receive mode when it is idle or is transmitting data from
the RS-485 port to the RS-232 port. The cable changes from Receive to Transmit mode
immediately when it detects characters on the RS-232 transmit line.

The RS-232/PPI Multi-Master cable supports baud rates between 1200 baud and 115.2 kbaud.
Use the DIP switches on the housing of the RS-232/PP| Multi-Master cable to configure the cable
for the correct baud rate. Table 7-11 shows the baud rates and switch positions.

The cable switches back to Receive mode Table 7-11 Turnaround Time and Settings
when the RS-232 transmit line is in the idle

state for a period of time defined as the RNl RETE UL ELLE ML 3e;t'ngs =
turnaround time of the cable. The baud rate P
selection of the cable determines the 115200 0.15ms 110
turnaround time, as shown in Table 7-11. 57600 0.3ms 111
If you are using the RS-232/PPI 38400 0.5ms 000
Multi-Master cable in a system where 19200 1.0ms 001
Freeport communications is used, the
program in the S7-200 must comprehend 9600 2.0 ms 010
the turnaround time for the following 4800 4.0ms 011
situations: 2400 7.0 ms 100
1200 14.0 ms 101

1 The S7-200 responds to messages transmitted by the RS-232 device.

After the S7-200 receives a request message from the RS-232 device, the S7-200 must
delay the transmission of a response message for a period of time greater than or equal to
the turnaround time of the cable.

1 The RS-232 device responds to messages transmitted from the S7-200.

After the S7-200 receives a response message from the RS-232 device, the S7-200 must
delay the transmission of the next request message for a period of time greater than or
equal to the turnaround time of the cable.

In both situations, the delay allows the RS-232/PPI Multi-Master cable sufficient time to switch
from Transmit mode to Receive mode so that data can be transmitted from the RS-485 port to the
RS-232 port.

227

S7-200 Programmable Controller System Manual

Using Modems and STEP 7-Micro/WIN with Your Network

STEP 7-Micro/WIN version 3.2 or later uses the standard Windows Phone and Modem Options
for selecting and configuring telephone modems. The Phone and Modem Options are under the
Windows Control Panel. Using the Windows setup options for modems allows you to:

1 Use mostinternal and ex'gernal Modems Properties HE
modems supported by Windows.

General |

[Use the standard configurations for
m_OSt modems supported by ;@ The following modems are set up on this camputer:
Windows.

1 Use the standard Windows dialing Modem | Attached T ~
rules for selection of locations, Standard 9600 bps Modem COr1
country and area code support Standard 9600 bps Modem 2 ComMz —

iali - Standard 19200 bps Modem COk1
pulse or tone dialing, and calling Bl § =
d rt /TV...—..—.M Crmdit™ —ed bd ndeen 90 0 TRADD F‘l’\k.li
card support. 4 »

O Use higher baud rates when Add.. Remove | Propetties |
communicating to the EM 241
Modem module — Dialing Preferences

Use the Windows control panel to Dialing from: New Lecation

dlsplay j[he _MOdem Propertles dlalog Usge Dialing Properties to modify how vour calls are
box. This dialog box allows you to dialed.

configure the local modem. You select Dialing Praperties |
your modem from the list of modems

supported by Windows. If your modem
type is not listed in the Windows modem Close | [zl
dialog box, select a type that is the
closest match for your modem, or
contact your modem vendor to acquire
the modem configuration files for
Windows.

Figure 7-23 Configuring the Local Modem

STEP 7-Micro/WIN also lets you use radio and cellular modems. These modem types do not
appear in the Windows Modem Properties dialog box, but are available when configuring a
connection for STEP 7-Micro/WIN.

Configuring a Modem Connection

A connection associates an identifying name with the physical properties of the connection. For a
telephone modem these properties include the type of modem, 10 or 11 bit protocol selections,
and timeouts. For cellular modems the connection allows setting of a PIN and other parameters.
Radio modem properties include selections for baud rate, parity, flow control and other
parameters.

228

Communicating over a Network Chapter 7

Adding a Connection
Use the Connection wizard to add a new connection, remove, or edit a connection as shown in

Connection FigUfe 7-24.

Wizard

1. Double-click the icon in the Communications Setup window.
2. Double-click the PC/PPI cable to open the PG/PC interface. Select the PPI cable and click
the Properties button. On the Local Connection tab, check the Modem Connection box.
3. Double-click the modem Connect icon in the Communications dialog.
4. Click the Settings button to display the Modem Connections Settings dialog box.
5. Click the Add button to start the Add Modem Connection wizard.
6. Configure the connection as prompted by the wizard.
4, 5. 6.
Select a connection to 5/emate station
=
Gl e — |
Phone number: W
Connect Timeout EF seconds
Corest | | Sattinge. | Cancal |
=
A

Figure 7-24 Adding a Modem Connection

Connecting to the S7-200 with a Modem

After you have added a modem
connection, you can connect to an
S7-200 CPU. - 1.

1.

Modem Connection

Open the Communications dialog
box and double-click on the
Connect icon to display the B

Modem Connection dialog box. Brmsrts
Connect Timeout [{0 seconds

In the Modem Connection dialog e == B e I 2.
box, click Connect to dial the =
modem.

=l

Figure 7-25 Connecting to the S7-200

229

S7-200 Programmable Controller System Manual

Modem

Expansion
Wizard

Configuring a Remote Modem

The remote modem is the modem that is
connected to the S7-200. If the remote
modem is an EM 241 Modem module,
no configuration is required. If you are
connecting to a stand-alone modem or
cell modem, you must configure the
connection.

The Modem Expansion wizard
configures the remote modem which is
connected to the S7-200 CPU. Special
modem configurations are required in
order to properly communicate with the
RS-485 half duplex port of the S7-200
CPU. Simply select the type of modem,
and enter the information as prompted
by the wizard. For more information,
refer to the online help.

Figure 7-26 Modem Expansion Wizard

Configuring a PPI Multi-Master Cable to Work with a Remote Modem

¥

230

The RS-232 PPI Multi-Master cable
provides the ability to send modem AT
command strings upon power-up of the
cable. Please note that this
configuration is only required if the
default modem settings must be

changed. See Figure 7-27.
Modem commands can be specified in ’ﬁ“ui_ et
the General commands. Thepauto C ghpMn t !!!! i“!
answer command will be the only default e
Settlng . Braud |Fiate: lﬁ
Cell phone authorization commands and Elwm —|
PIN numbers can be specified in the Cell
Phone Authorization field, for example AT Command
+CPIN=1234. o

[50=1
Each command string will be sent el Phone Athorzaton
separately to the modem. Each string will !
be preceded with the AT modem Carce_|

attention command.

These commands will be initialized within
the cable by selecting the Program/Test
button.

Figure 7-27 Modem Expansion Wizard - Sending Modem
Commands

Please note that the bitmap will depict the recommended switch settings depending upon the
selected parameters.

While configuring the RS-232/PPI1 Multi-Master cable with STEP 7-Micro/WIN, you must connect
the RS-485 connector to an S7-200 CPU. This is the source of the 24V power required for the
cable to operate. Be sure to supply power to the S7-200 CPU.

After exiting the STEP 7-Micro/WIN configuration of the RS-232/PPI Multi-Master cable,
disconnect the cable from the PC and connect it to the modem. Power cycle both the modem and
the cable. You are now ready to use the cable for remote operation in a PPl multi-master network.

Tip
Your modem must be at the factory default settings for use with a PPI Multi-Master cable.

Communicating over a Network Chapter 7

Configuring a PPI Multi-Master Cable to Work with Freeport

¥

The RS-232 PPI Multi-Master cable
provides the same ability to send modem
AT command strings with the cable
configured for Freeport mode. Please note
that this configuration is only required ifthe

default modem settings must be changed. kil

i~ Mods
However, the cable must also be © Muliddaster RGN
configured to match the S7-200 port's i
baud rate, parity, and number of data bits. e
This is required since the S7-200 Baud Rate: SGkees 7]
application program will control Data Biis g |
configuration of these parameters. Pariy Hone =
Baud rates can be selected between 1.2 AT Commsnd
kbaud and 115.2 kbaud. Iﬁene'a‘

50=1

Seven or eight data bits can be selected. el i
Even, odd, or no parity can be selected. |
Please note that the bitmap will depict the Cancel
recommended switch settings depending
upon the selected parameters. Figure 7-28 Modem Expansion Wizard - Sending Modem

Command in Freeport Mode

While configuring the RS-232/PPI1 Multi-Master cable with STEP 7-Micro/WIN, you must connect
the RS-485 connector to an S7-200 CPU. This is the source of the 24V power required for the
cable to operate. Be sure to supply power to the S7-200 CPU.

After exiting the STEP 7-Micro/WIN configuration of the RS-232/PPI Multi-Master cable,
disconnect the cable from the PC and connect it to the modem. Power cycle both the modem and
the cable. You are now ready to use the cable for remote operation in a PPl multi-master network.

Tip
Your modem must be at the factory default settings for use with a PPI Multi-Master cable.

Using a Telephone Modem with the RS-232/PPI Multi-Master Cable

You can use an RS-232/PPI Multi-Master cable to
connect the RS-232 communications port of a HHHHHHHH é
modem to an S7-200 CPU. See Figure 7-29. 12345678
Kbaud 123 u
: 115.2K 110 8 Spare
(1 Switches 1, 2, and 3 set the baud rate. 576K 111 7 1:p10 Bit
. 0=11 Bit
1 Switch 5 selects PPI or PPI/Freeport mode. ig:gﬁ 88? 6 1:Rem'0te
(1 Switch 6 select either Local (equivalent to the Z'SE gﬁ 5 t',;gfal
Data Communications Equipment - DCE) or 24K 100 0=PPI/Freeport
remote (equivalent to Data Terminal 12K 101 4 Spare
Equipment - DTE) mode.
O Switch 7 selects either 10-bit or 11-bit PPI Figure 7-29 Settings for the RS-232/PPI
protocol. Multi-Master Cable

Switch 5 selects operation in PPI mode or in PPI/Freeport mode. If you are using STEP
7-Micro/WIN to communicate with the S7-200 through modems, select PPl mode (switch 5 = 1).
Otherwise, select PPI/Freeport mode (switch 5 = 0).

Switch 7 of the RS-232/PPI Multi-Master cable selects either a 10-bit or 11-bit mode for
PPI/Freeport mode. Use switch 7 only when the S7-200 is connected to STEP 7-Micro/WIN with a
modem in PPI/Freeport mode. Otherwise, set switch 7 for 11-bit mode to ensure proper operation
with other devices.

231

S7-200 Programmable Controller System Manual

232

Switch 6 of the RS-232/PPI Multi-Master cable RS-485 RS-232
allows you to set the RS-232 port of the cable to
either Local (DCE) or Remote (DTE) mode. l l DCE
[Ifyou are using the RS-232/PPI Multi-Master 7200 |Tmeef{ Dre—z () [| Motem
cable with STEP 7-Micro/WIN or if the
RS-232/PPI Multi-Master cable is connected
to a computer, set the RS-232/PPI
Multi-Master cable to Local (DCE) mode. 9-pin-to-25-pin adapter
1 Ifyou are using the RS-232/PPI Multi-Master 9-pin 25-pin
cable with a modem (which is a DCE device), RD 2 — 2 TD (input to DCE)
set the RS-232/PPI Multi-Master cable to TD 3 3 RD (output from DCE)
Remote (DTE) mode. RTS7 —— 4RTS
GND5 — 7GND

Figure 7-30 Pin Assignments for Adapters

This eliminates the need to install a null modem adapter between the RS-232/PPI Multi-Master
cable and the modem. Depending on the connector on the modem, you might still need to use a
9-pin-to-25-pin adapter.

Figure 7-30 shows the pin assignment for a common modem adapter.

See Appendix A for more information about the RS-232/PPI Multi-Master cable. The pin numbers
and functions for the RS-485 and RS-232 ports of the RS-232/PPI Multi-Master cable in Local
(DCE) mode are shown in Table A-69. Table A-70 shows the pin humbers and functions for the
RS-485 and RS-232 ports of the RS-232/PPI Multi-Master cable in Remote (DTE) mode. The
RS-232/PPI Multi-Master cable supplies RTS only when it is in Remote (DTE) mode.

Using a Radio Modem with the RS-232/PPI Multi-Master Cable

You can use an RS-232/PPI Multi-Master cable to connect the RS-232 communications port of a
radio modem to an S7-200 CPU. However, operation with radio modems is not the same as it is
with telephone modems.

PPl Mode

With the RS-232/PPI Multi-Master cable set for PPl mode (switch 5 = 1), you would normally
select remote mode (switch 6 = 1) for operation with a modem. However, selecting the remote
mode causes the cable to send the character string 'AT’ and wait for the modem to reply with 'OK’
on each power up. While telephone modems use this sequence to establish the baud rate, radio
modems do not generally accept AT commands.

Therefore, for operation with radio modems you must select local mode (switch 6 = 0) and use a
null modem adapter between the RS-232 connector of the cable and the RS-232 port on your
radio modem. Null modem adapters are available in either 9-pin-to-9 pin or 9-pin-to-25 pin
configurations.

Configure the radio modem to operate at 9.6, 19.2, 38.4, 57.6 or 115.2 kbaud. The RS-232/PPI
Multi-Master cable will automatically adjust to any one of these baud rates on the first character
transmitted by the radio modem.

PPI/Freeport Mode

With the RS-232/PPI Multi-Master cable set for PPI/Freeport mode (switch 5 = 0), select remote
mode (switch 6 = 1) for operation with a radio modem. Configure the cable so that it will not send
any AT commands to setup the modem.

Switches 1, 2, and 3 on the RS-232/PPI Multi-Master cable set the baud rate. See Figure 7-29.
Select the baud rate setting that corresponds to the baud rate of the PLC and the radio modem.

Communicating over a Network Chapter 7

Advanced Topics

Optimizing the Network Performance

The following factors affect network performance (with baud rate and number of masters having
the greatest effect):

1 Baud rate: Operating the network at the highest baud rate supported by all devices has the
greatest effect on the network.

1 Number of masters on the network: Minimizing the number of masters on a network also
increases the performance of the network. Each master on the network increases the
overhead requirements of the network; having fewer masters lessens the overhead.

[Selection of master and slave addresses: The addresses of the master devices should be
set so that all of the masters are at sequential addresses with no gaps between addresses.
Whenever there is an address gap between masters, the masters continually check the
addresses in the gap to see if there is another master wanting to come online. This
checking requires time and increases the overhead of the network. If there is no address
gap between masters, no checking is done and so the overhead is minimized. You can set
the slave addresses to any value without affecting network performance, as long as the
slaves are not between masters. Slaves between masters increase the network overhead
in the same way as having address gaps between masters.

1 Gap update factor (GUF): Used only when an S7-200 CPU is operating as a PP| master,
the GUF tells the S7-200 how often to check the address gap for other masters. You use
STEP 7-Micro/WIN to set the GUF in the CPU configuration for a CPU port. This configures
the S7-200 to check address gaps only on a periodic basis. For GUF=1, the S7-200 checks
the address gap every time it holds the token; for GUF=2, the S7-200 checks the address
gap once every two times it holds the token. If there are address gaps between masters, a
higher GUF reduces the network overhead. If there are no address gaps between masters,
the GUF has no effect on performance. Setting a large number for the GUF causes long
delays in bringing masters online, because the addresses are checked less frequently. The
default GUF setting is 10.

1 Highest station address (HSA): Used only when an S7-200 CPU is operating as a PPI
master, the HSA defines the highest address at which a master should look for another
master. You use STEP 7-Micro/WIN to set the HSA in the CPU configuration for a CPU
port. Setting an HSA limits the address gap which must be checked by the last master
(highest address) in the network. Limiting the size of the address gap minimizes the time
required to find and bring online another master. The highest station address has no effect
on slave addresses: masters can still communicate with slaves which have addresses
greater than the HSA. As a general rule, set the highest station address on all masters to
the same value. This address should be greater than or equal to the highest master
address. The default value for the HSA is 31.

Calculating the Token Rotation Time for a Network

In a token-passing network, the only station that can initiate communications is the station that
holds the token. The token rotation time (the time required for the token to be circulated to each of
the masters in the logical ring) measures the performance of your network.

Figure 7-31 provides a sample network as an example for calculating the token rotation time for a
multiple-master network. In this example, the TD 200 (station 3) communicates with the CPU 222
(station 2), the TD 200 (station 5) communicates with the CPU 222 (station 4), and so on. The two
CPU 224 modules use the Network Read and Network Write instructions to gather data from the
other S7-200s: CPU 224 (station 6) sends messages to stations 2, 4, and 8, and the CPU 224
(station 8) sends messages to stations 2, 4, and 6. In this network, there are six master stations
(the four TD 200 units and the two CPU 224 modules) and two slave stations (the two CPU 222
modules).

233

S7-200 Programmable Controller System Manual

Programming
Tips

¥

234

Refer to the Programming Tips on the documentation CD for a discussion about token rotation.
See Tip 42.

CPU 222 CPU 222 CPU 224 CPU 224 TD 200 TD 200 TD 200 TD 200
Station 2 Station 4 Station 6 Station 8 Station 9 Station 7 Station 5 Station 3

o) b o

Figure 7-31 Example of a Token-Passing Network

In order for a master to send a message, it must hold the token. For example: When station 3 has
the token, it initiates a request message to station 2 and then it passes the token to station 5.
Station 5 then initiates a request message to station 4 and then passes the token to station 6.
Station 6 then initiates a message to station 2, 4, or 8, and passes the token to station 7. This
process of initiating a message and passing the token continues around the logical ring from
station 3 to station 5, station 6, station 7, station 8, station 9, and finally back to station 3. The
token must rotate completely around the logical ring in order for a master to be able to send a
request for information. For a logical ring of six stations, sending one request message per token
hold to read or write one double-word value (four bytes of data), the token rotation time is
approximately 900 ms at 9600 baud. Increasing the number of bytes of data accessed per
message or increasing the number of stations increases the token rotation time.

The token rotation time is determined by how long each station holds the token. You can
determine the token rotation time for your multiple-master network by adding the times that each
master holds the token. If the PPI master mode has been enabled (under the PPI protocol on your
network), you can send messages to other S7-200s by using the Network Read and Network
Write instructions with the S7-200. If you send messages using these instructions, you can use
the following formula to calculate the approximate token rotation time, based on the following
assumptions: each station sends one request per token hold, the request is either a read or write
request for consecutive data locations, there is no conflict for use of the one communications
buffer in the S7-200, and there is no S7-200 that has a scan time longer than about 10 ms.

Token hold time (Th)g) = (128 overhead + n data char) x 11 bits/char x 1/baud rate
Token rotation time (T;ot) = Tholg Of master 1 + Tpqq Of master 2 + . . . + Tp)q Of master m

where n is the number of data characters (bytes)
m is the number of masters

The following equations calculate the rotation times (one “bit time” equals the duration of one
signaling period) for the example shown in Figure 7-31:

T (token hold time) (128 + 4 char) x 11 bits/char x 1/9600 bit times/s
151.25 ms per master
151.25 ms per master = 6 masters

907.5ms

T (token rotation time)

Tip
SIMATIC NET COM PROFIBUS software provides an analyzer to determine network
performance.

Communicating over a Network

Chapter 7

Comparing Token Rotation Times

Table 7-12 shows comparisons of the token rotation time versus the number of stations, amount of
data, and the baud rate. The times are figured for a case where you use the Network Read and
Network Write instructions with the S7-200 CPU or other master devices.

Table 7-12 Token Rotation Time (in Seconds)

Number of Masters

Baud Rate Bytes
Transferred 2 3 4 5 6 7 8 9 10

1 0.30 0.44 0.59 0.74 0.89 1.03 1.18 1.33 1.48
9.6 kbaud

16 0.33 0.50 0.66 0.83 0.99 1.16 1.32 1.49 1.65

1 0.15 0.22 0.30 0.37 0.44 0.52 0.59 0.67 0.74
19.2 kbaud

16 0.17 0.25 0.33 0.41 0.50 0.58 0.66 0.74 0.83

1 0.009 |0.013 | 0.017 /0.022 '0.026 ' 0.030 ' 0.035 ' 0.039 | 0.043
187.5 kbaud

16 0.011 /0.016 | 0.021 ' 0.026 '0.031 ' 0.037 ' 0.042 | 0.047 | 0.052

Understanding the Connections That Link the Network Devices

Network devices communicate through individual connections, which are private links between
the master and slave devices. As shown in Figure 7-32, the communications protocols differ in

how the connections are handled:

1 The PPI protocol utilizes one shared connection among all of the network devices.

1 The PPI Advanced, MPI, and PROFIBUS protocols utilize separate connections between
any two devices communicating with each other.

When using PPI Advanced, MPI, or PROFIBUS, a second master cannot interfere with a
connection that has been established between a master and a slave. S7-200 CPUs and EM 277s
always reserve one connection for STEP 7-Micro/WIN and one connection for HMI devices. Other

master devices cannot use these reserved connections. This ensures that you can always

connect at least one programming station and at least one HMI device to the S7-200 CPU or EM
277 when the master is using a protocol that supports connections, such as PPI Advanced.

PPI

All devices share a common
connection

PPI Connection

PPI Advanced
MPI
PROFIBUS

Each device communicates
through a separate connection

B —

PPI Connection

PPI Connectlon

=

Connection 1

4—>| Connection 1

Connectlon 2

=

Connectlon 1

q

Figure 7-32 Managing the Communications Connections

235

S7-200 Programmable Controller System Manual

236

As shown in Table 7-13, the S7-200 CPU or EM 277 provide a specific number of connections.
Each port (Port 0 and Port 1) of an S7-200 CPU supports up to four separate connections. (This
allows a maximum of eight connections for the S7-200 CPU.) This is in addition to the shared PPI
connection. An EM 277 supports six connections. Each port reserves one connection for a
programmer and one connection for an operator panel (OP or TP). The remaining connections are
available for general use.

Table 7-13 Capabilities of the S7-200 CPU and EM 277 Modules

Connection Point Baud Rate Connections STEP 7= sEatii Froese] Feifi

Selections
S7-200 CPU Port 0 | 9.6 kbaud, 4 PPI, PPI Advanced, MPI, and PROFIBUS!
19.2 kbaud, or
187.5 kbaud
Port 1 | 9.6 kbaud, 4 PPI, PPI Advanced, MPI, and PROFIBUS!
19.2 kbaud, or
187.5 kbaud
EM 277 Module 9.6 kbaud to 6 per module? | PPI Advanced, MPI, and PROFIBUS
12 Mbaud

1 IfaCP cardis used to connect STEP 7-Micro/WIN to the S7-200 CPU through Port 0 or Port 1, you can select
either MPI or DP PROFIBUS profiles only when the S7-200 device is configured as a slave.
2 In addition to the PROFIBUS connection.

Working with Complex Networks

For the S7-200, complex networks typically have multiple S7-200 masters that use the Network
Read (NETR) and Network Write (NETW) instructions to communicate with other devices on a PPI
network. Complex networks typically present special problems that can block a master from
communicating with a slave.

If the network is running at a lower baud rate (such as 9.6 kbaud or 19.2 kbaud), then each master
completes the transaction (read or write) before passing the token. At 187.5 kbaud, however, the
master issues a request to a slave and then passes the token, which leaves an outstanding
request at the slave.

Figure 7-33 shows a network with potential communications conflicts. In this network, Station 1,
Station 2, and Station 3 are masters, using the Network Read or Network Write instructions to
communicate with Station 4. The Network Read and Network Write instructions use PPI protocol
so all of the S7-200s share the single PPI connection in Station 4.

In this example’ Station 1 issues a request to Station 1 Master Station 2 Master Station 3 Master
Station 4. For baud rates above 19.2 kbaud, e ?:mm mﬂ:{imm
Station 1 then passes the token to Station 2. If G‘WWD; ﬁmmE: H‘WWD;
Station 2 attempts to issue a request to Station 4, | |L IL [| ‘

the request from Station 2 is rejected because the > — |

request from Station 1 is still present. All requests #ﬂ ::D Station 4 Slave

to Station 4 will be rejected until Station 4 completes = o

the response to Station 1. Only after the response

has been completed can another master issue a Figure 7-33 Communications Conflict
request to Station 4.

To avoid this conflict for the communications port on Station1Slave Station 2 Slave _Station 3 Slave
Station 4, consider making Station 4 the only master == P == =

on the network, as shown in Figure 7-34. Station 4 ﬁmmE; ﬁ‘mmlz; @mmli;
then issues the read/write requests to the other T t T
S7-200s.

' il

B
[——
ﬁ [] Station 4 Master

Not only does this configuration ensure that there is
no conflict in communications, but it also reduces
the overhead caused by having multiple masters
and allows the network to operate more efficiently. ~ Figure 7-34 Avoiding Conflict

Communicating over a Network Chapter 7

For some applications, however, reducing Table 7-14 HSA and Target Token Rotation
the number of masters on the network is Time
not an option. When there are several

HSA 9.6 kbaud 19.2 kbaud 187.5 kbaud
masters, you must manage the token
rotation time and ensure that the network HSA=15 0.613s 0.307s 31ms
does not exceed the target token rotation HSA=31 1.040 s 0520 s 53 ms
time. (The token rotation time is the amount -
of time that elapses from when a master HSA=63 1.8%0s 0.950s 97 ms
passes the token until that master receives | HSA=126 3.570s 1.790 s 183 ms

the token again.)

If the time required for the token to return to the master is greater than a target token rotation time,
then the master is not allowed to issue a request. The master can issue a request only when the
actual token rotation time is less than the target token rotation time.

The highest station address (HSA) and the baud rate settings for the S7-200 determine the target
token rotation time. Table 7-14 lists target rotation times.

For the slower baud rates, such as 9.6 kbaud and 19.2 kbaud, the master waits for the response
to its request before passing the token. Because processing the request/response cycle can take
a relatively long time in terms of the scan time, there is a high probability that every master on the
network can have a request ready to transmit every time it holds the token. The actual token
rotation time would then increase, and some masters might not be able to process any requests.
In some situations, a master might only rarely be allowed to process requests.

For example: Consider a network of 10 masters that transmit 1 byte at 9.6 kbaud that is

configured with an HSA of 15. For this example, each of the masters always has a message ready
to send. As shown in Table 7-14, the target rotation time for this network is 0.613 s. However,
based on the performance data listed in Table 7-12, the actual token rotation time required for this
network is 1.48 s. Because the actual token rotation time is greater than the target token rotation
time, some of the masters will not be allowed to transmit a message until some later rotation of the
token.

You have two basic options for improving a situation where the actual token rotation time is
greater than the target token rotation time:

[You can reduce actual token rotation time by reducing the number of masters on your
network. Depending on your application, this might not be a feasible solution.

[You can increase the target token rotation time by increasing the HSA for all of the master
devices on the network.

Increasing the HSA can cause a different problem for your network by affecting the amount of time
that it takes for a S7-200 to switch to master mode and enter the network. If you use a timer to
ensure that the Network Read or Network Write instruction completes its execution within a
specified time, the delay in initializing master mode and adding the S7-200 as a master on the
network can cause the instruction to time out. You can minimize the delay in adding masters by
reducing the Gap Update Factor (GUF) for all masters on the network.

Because of the manner in which requests are posted to and left at the slave for 187.5 kbaud, you
should allow extra time when selecting the target token rotation time. For 187.5 kbaud, the actual
token rotation time should be approximately half of the target token rotation time.

To determine the token rotation time, use the performance data in Table 7-12 to determine the
time required for completing the Network Read and Network Write operations. To calculate the
time required for HMI devices (such as the TD 200), use the performance data for transferring
16 bytes. Calculate the token rotation time by adding the time for each device on the network.
Adding all of the times together describes a worst-case scenario where all devices want to
process a request during the same token rotation. This defines the maximum token rotation time
required for the network.

237

S7-200 Programmable Controller System Manual

238

For example: Consider a network running at 9.6 kbaud with four TD 200s and four S7-200s, with
each S7-200 writing 10 bytes of data to another S7-200 every second. Use Table 7-12 to calculate
the specific transfer times for the network:

4 TD 200 devices transferring 16 bytes of data = 0.66 s
4 S7-200s transferring 10 bytes of data = 0.63s
Total token rotation time = 1.29s

To allow enough time for this network to process all requests during one token rotation, set the
HSA to 63. (See Table 7-14.) Selecting a target token rotation (1.89 s) that is greater than the
maximum token rotation time (1.29 s) ensures that every device can transfer data on every
rotation of the token.

To help improve the reliability of a multi-master network, you should also consider the following
actions:

1 Change the update rate for the HMI devices to allow more time between updates. For
example, change the update rate for a TD 200 from “As fast as possible” to “Once per
second.”

1 Reduce the number of requests (and the network overhead for processing the requests) by
combining the operations of Network Read or Network Write operations. For example,
instead of using two Network Read operations that read 4 bytes each, use one Network
Read operation that reads 8 bytes. The time to process the two requests of 4 bytes is much
greater than the time to process one request for 8 bytes.

1 Change the update rate of the S7-200 masters so that they do not attempt to update faster
than the token rotation time.

Communicating over a Network Chapter 7

Configuring the RS-232/PPI Multi-Master Cable for Remote
Operation

HyperTerminal as a Configuration Tool

If STEP 7-Micro/WIN is not available for you to use to configure the RS-232/PPI Multi-Master
cable for remote operation, you can use HyperTerminal or any other dumb terminal package. The
RS-232/PPI Multi-Master cable provides built-in menus to guide you as you configure the cable for
remote operation.

While configuring the RS-232/PPI1 Multi-Master cable with HyperTerminal, you must connect the
RS-485 connector to an S7-200 CPU. This is the source of the 24V power required for the cable
to operate. Be sure to supply power to the S7-200 CPU.

To invoke HyperTerminal on your PC, Connection Description 2]X]
click on Start > Programs >
Accessories > Communications > % Reizneciol

HyperTerminal.

Enter a name and choose an icon for the connection:

HyperTerminal application launches and NMamleM
prompts for a Connection Description. ulttdaster
You must supply a name for the oo}

connection (for example, Multi-Master).

Click OK. You can select an icon or I
accept the default icon provided with the
new connection. See Figure 7-35. Cancel

Figure 7-35 HyperTerminal Connection Description

The Connect To screen is displayed.
Select the communications port that you
will be using and click OK. The next
screen displayed is COMx Properties.
Accept the default and click OK. See
Figure 7-36.

Figure 7-36 HyperTerminal Connect To Screen and COMx
Properties Screen

After clicking OK, your cursor is placed in
the edit window of the HyperTerminal
screen as shown in Figure 7-37. Notice
that the status bar at the bottom of the
HyperTerminal window indicates that you
are connected and a timer is running to
indicate the duration of the connection.

From the menu, select Call >
Disconnect. The status bar now
indicates you are disconnected.

Select View > Font. Select Courier New
and click OK.

Figure 7-37 Multi-Master HyperTerminal Edit Window

239

S7-200 Programmable Controller System Manual

Select File > Properties. On the
Connect To tab, click the Configure ...
button to display the communication port
properties. See Figure 7-38.

In the COMx Properties dialog, select the
baud rate from the drop down menu for
Bits per second. You must choose a
baud rate from 9600 t0115200 bits per
second (typically, 9600). Select 8 data
bits, no parity, one stop bit and no flow
control by using the appropriate drop
down menus.

Click OK to return to the Connect To tab.
Figure 7-38 Multi-Master Properties and COMx Properties

Select the Settings tab. In the Emulation
drop down menu, select ANSI and click
OK. This will return you to the edit
window of the HyperTerminal screen.
The status bar at the bottom of the
screen should indicate:

“Disconnected ANSI 9600 8-N-1"
as shown in Figure 7-39.

Figure 7-39 HyperTerminal Edit - Disconnect ANSI

To initiate communication with the
RS-232/PPI Multi-Master cable, type
“hhh”. The Rx LED on the cable should
blink on for about a second as you type
“hhh”. The TX LED turns on briefly as the
cable responds with a choice of
languages.

Enter the number that corresponds to
your choice of language (use the
backspace key to eliminate the default
selection) and depress the ENTER key.
Figure 7-40 shows the language
selection display and the RS232/PPI
Cable Setup for Remote Operation
selection display.

This display also shows the firmware
revision of the cable.

Figure 7-40 HyperTerminal Language Selection and
RS-232/PPI Cable Setup

240

Communicating over a Network Chapter 7

The RS232/PPI Cable Setup for Remote Operation display guides you through the steps required
to configure the cable for the type of remote operation you desire.

1 Ifyou have an earlier version of
STEP 7-Micro/WIN, select option
2 “PPI single master network with
a modem”.

1 Ifyou are using Freeport
communication with a modem,
select option 3.

For example, select option 1 for PPI
multi-master network with a modem
using STEP 7-Micro/WIN 3.2 Service
Pack 4 or later.

The HyperTerminal display shown in
Figure 7-41 indicates the switch settings
you need to set on the cable. The switch
settings allow STEP 7-Micro/WIN to
participate in a remote network via
modems with one or more masters and
one or more S7-200 PLCs. Such a
network is shown in Figure 7-41.

After setting the switches as indicated,
select continue. The resulting
HyperTerminal display is shown in
Figure 7-42.

The remote modem (the one connected
to the RS-232/PPI Multi-Master cable)
should be set to factory defaults. With
the remote modem set to factory
defaults, enter the AT strings required to
program the modem for operation with
the RS-232/PPI Multi-Master cable.
Typically, the only string that needs to be
sent is ATS0=1, which configures the
modem to auto-answer incoming calls
on the first ring.

STEP 7-Micro/WIN:
Master

RS-232 Multi-
Master Cable

Figure 7-41 HyperTerminal - RS-232/PPI Cable Setup

“#gMulti-Master - HyperTerminal 10| x|
File Edit Yiew Cal Transfer Help
= = =
DIW' |=] $| sleﬁ
[~
Select Operation: 1
PPI multi-master network with a modem
AT Command 1l: ATE0=1
AT Command 2:
1. Modify AT commands
2. Exit J
Select Operation: 1
-

41 |

3
SCROLL CAPS |NUM | Capture A

Connected 1:22:20 AMST |9600 &-M-1

Figure 7-42 HyperTerminal - Remote Modem

If you are using a cell modem that requires a PIN, use the second AT command to supply the PIN
(refer to your modem manual for the AT commands supported by your modem). If you need to
modify the AT commands, make the selection and enter the commands required as you are
prompted for them. The prompts include example AT command strings to help you with the

formatting of the commands.

The RS-232/PPI Multi-Master cable will send these AT strings to the modem each time the cable
powers up. Make sure that the modem is powered up before or very close to the same time the

cable is powered up. Also, if you power cycle the modem, be sure to power cycle the cable. This
allows the cable to properly configure the modem and operate at the highest available baud rate.

241

S7-200 Programmable Controller System Manual

The HyperTerminal displays in Figure
7-43 show how to enter the AT
commands. If you do not need to supply
a second AT command at the prompt,
press the ENTER key. This returns you
to the selection for modifying the AT
commands or exiting. If you finished
entering the AT commands select Exit.

After exiting the HyperTerminal
configuration of the RS-232/PPI
Multi-Master cable, disconnect the cable
from the PC and connect it to the
modem. Power cycle both the modem
and the cable. You are now ready to use
the cable for remote operation in a PPI
multi-master network.

“ & Multi-Master - HypetTerminal
File Edit Wiew Call Transfer Help

0l 53] ol)

PPI multi-master network with a modsm -]

AT Command 1: ATZ0=1
AT Command Z:

1. Modify AT commands
2. Exit

Select Operation: 1

AT Command 1 (Exawple: ATS0=1): ATS0=1 J
AT Command Z (Example: ATHCPIN=1234): _

| |

-

3
SCROLL CAPS |NUM | Capture A

(Connected 1:50:00 |AnsT 9600 8-1-1

“# g Multi-Master - HyperTerminal
File Edit Wiew Call Transfer Help

15| 513 lol g

AT Command 1 (Example: ATSO0=1): ATSO0=1 d
AT Command 2 (Example: AT+CPIN=1234):
PPT multi-master network with a modem

AT Command 1: ATS0=1
AT Command Z:

1. Modify AT commands

z. Exit J

gelect Operasion: 1

| |

-

*
[SCROLL [CAPS [NUM [Capture

Cornected 1:53:23 |anust o800 8-1-1

Figure 7-43 HyperTerminal - AT Commands

Freeport Operation with HyperTerminal

Configuring the RS-232/PPI Multi-Master cable for Freeport operation using HyperTerminal is very
similar to the example configuration described above. Follow the prompts to configure the cable

according to your needs.

242

Hardware Troubleshooting Guide and
Software Debugging Tools

STEP 7-Micro/WIN provides software tools to help you debug and test your program. These
features include viewing the status of the program as it is executed by the S7-200, selecting to run
the S7-200 for a specified number of scans, and forcing values.

Use Table 8-1 as a guide for determining the cause and possible solution when troubleshooting
problems with the S7-200 hardware.

In This Chapter

Features for Debugging Your Program i 244
Displaying the Program Statusot 246
Using a Status Chart to Monitor and Modify the Data inthe S7-200...................... 247
Forcing Specific Values 248
Running Your Program for a Specified Numberof Scans 248
Hardware Troubleshooting Guide e 249

243

S7-200 Programmable Controller System Manual

Features for Debugging Your Program

STEP 7-Micro/WIN provides several features to help you debug your program: bookmarks, cross
reference tables, and run mode edits.

Using Bookmarks for Easy Program Access

You can set bookmarks in your program to make it easy to move back and forth between

designated (bookmarked) lines of a long program. You can move to the next or the previous
bookmarked line of your program.

Using the Cross Reference Table to Check Your Program References

I_ L, The cross reference table allows you to display the cross references and element usage
information for your program.
Cross) .
Reference The cross reference table identifies all

IS Cross Reference M=l B3

operands used in the program, and - - - T
identifies the program block, network or Element Block Location Context. | =
line location, and instruction context of 1 [ioo MAIN (OB1) | Netwark 1 1k
the operand each time it is used. | <M 32 MARIOIE) | MO

3 |SMB3 MAIN (OB1) MNetwark 1 MOY_B
You can toggle between symbolic and e et 823 e '(g) L
absolute view to change the T3 I\ Cross Reference £ Byte Usags]| o

representation of all operands.

Figure 8-1 Cross Reference Table

Tip
@ Double-clicking on an element in the cross reference table takes you to that part of your
program or block.

Editing Your Program in RUN Mode

The S7-200 CPUs Rel. 2.0 (and higher) models support RUN mode edits. The RUN mode edit
capability is intended to allow you to make small changes to a user program with minimal
disturbance to the process being controlled by the program. However, implementing this capability
also allows massive program changes that could be disruptive or even dangerous.

Warning

' When you download changes to an S7-200 in RUN mode, the changes immediately affect

* process operation. Changing the program in RUN mode can result in unexpected system
operation, which could cause death or serious injury to personnel, and/or damage to equipment.

Only authorized personnel who understand the effects of RUN mode edits on system operation
should perform a RUN mode edit.

To perform a program edit in RUN mode, the online S7-200 CPU must support RUN mode edits
and must be in RUN mode.

1. Select the Debug > Program Edit in RUN menu command.

2. Ifthe project is different than the program in the S7-200, you are prompted to save it. The
RUN mode edit can be performed only on the program in the S7-200.

3. STEP 7-Micro/WIN alerts you about editing your program in RUN mode and prompts you to
either continue or to cancel the operation. If you click Continue, STEP 7-Micro/WIN uploads

the program from the S7-200. You can now edit your program in RUN mode. No restrictions
on edits are enforced.

244

Hardware Troubleshooting Guide and Software Debugging Tools Chapter 8

Tip

Positive (EU) and Negative (ED) transition instructions are shown with an operand. To view
information about edge instructions, select the Cross Reference icon in the View. The Edge
Usage tab lists numbers for the edge instructions in your program. Be careful not to assign
duplicate edge numbers as you edit your program.

Downloading the Program in RUN Mode

RUN-mode editing allows you to download only your program block while the S7-200 is in RUN
mode. Before downloading the program block in RUN mode, consider the effect of a RUN-mode
modification on the operation of the S7-200 for the following situations:

1 Ifyou deleted the control logic for an output, the S7-200 maintains the last state of the
output until the next power cycle or transition to STOP mode.

1 Ifyou deleted a high-speed counter or pulse output functions which were running, the
high-speed counter or pulse output continues to run until the next power cycle or transition
to STOP mode.

1 Ifyou deleted an Attach Interrupt instruction but did not delete the interrupt routine, the
S7-200 continues to execute the interrupt routine until a power cycle or a transition to STOP
mode. Likewise, if you deleted a Detach Interrupt instruction, the interrupts are not shut
down until the next power cycle or transition to STOP mode.

1 Ifyou added an Attach Interrupt instruction that is conditional on the first scan bit, the event
is not activated until the next power cycle or STOP-to-RUN mode transition.

1 Ifyou deleted an Enable Interrupt instruction, the interrupts continue to operate until the
next power cycle or transition from RUN to STOP mode.

1 If you modified the table address of a receive box and the receive box is active at the time
that the S7-200 switches from the old program to the modified program, the S7-200
continues to write the data received to the old table address. Network Read and Network
Write instructions function in the same manner.

1 Any logic that is conditional on the state of the first scan bit will not be executed until the
next power cycle or transition from STOP to RUN mode. The first scan bit is set only by the
transition to RUN mode and is not affected by a RUN-mode edit.

Tip
Before you can download your program in RUN mode, the S7-200 must support RUN mode

edits, the program must compile with no errors, and the communications between
STEP 7-Micro/WIN and the S7-200 must be error-free.

You can download only the program block.

To download your program in RUN mode, click on the Download button or select the File >
Download menu command. If the program compiles successfully, STEP 7-Micro/WIN downloads
the program block to the S7-200.

Exiting RUN-Mode Edit

To exit RUN-mode editing, select the Debug > Program Edit in RUN menu command and
deselect the checkmark. If you have changes that have not been saved, STEP 7-Micro/WIN
prompts you either to continue editing, to download changes and exit RUN-mode editing, or to exit
without downloading.

245

S7-200 Programmable Controller System Manual

Displaying the Program Status

STEP 7-Micro/WIN allows you to monitor the status of the user program as it is being executed.
When you monitor the program status, the program editor displays the status of instruction
operand values.

To display the status, click the Program Status button or select the Debug > Program Status
menu command.

Displaying the Status of the Program in LAD and FBD

¥

246

STEP 7-Micro/WIN provides two options for displaying the status of LAD and FBD programs:

1 End of scan status: STEP 7-Micro/WIN acquires the values for the status display across
multiple scan cycles and then updates the status screen display. The status display does
not reflect the actual status of each element at the time of execution. The end-of-scan
status does not show status for L memory or for the accumulators.

For end of scan status, the status values are updated in all of the CPU operating modes.

1 Execution status: STEP 7-Micro/WIN displays the values of the networks as the elements
are executed in the S7-200. For displaying the execution status, select the Debug > Use
Execution Status menu command.

For execution status, the status values are updated only when the CPU is in RUN mode.
Tip
STEP 7-Micro/WIN provides a simple method for changing the state of a variable. Simply select
the variable and right-click to display a menu of options.

Configuring How the Status is Displayed in the LAD and FBD Program

STEP 7-Micro/WIN provides a variety of
options for displaying the status in the
program.

To configure the display option for the
status screen, select the Tools >
Options menu command, select
Program Editor and click on the Program
Editor tab, as shown in Figure 8-2.

Figure 8-2 Options for the Status Display

Hardware Troubleshooting Guide and Software Debugging Tools

Chapter 8

Displaying the Status of the Program in STL

You can monitor the execution status of your STL program on an instruction-by-instruction basis.
For an STL program, STEP 7-Micro/WIN displays the status of the instructions that are displayed

on the screen.

STEP 7-Micro/WIN gathers status information from the S7-200, beginning from the first STL
statement at the top of the editor window. As you scroll down the editor window, new information is

gathered from the S7-200.

STEP 7-Micro/WIN continuously
updates values on the screen. To halt
the screen updates, select the Triggered
Pause button. The current data remains
on the screen until you deselect the
Triggered Pause button.

Configuring Which Parameters
Are Displayed in the STL Program

STEP 7-Micro/WIN allows you to display
the status of a variety of parameters for
the STL instructions. Select the Tools >
Options menu command, select
Program Editor, and click on the STL
Status tab. See Figure 8-3.

Figure 8-3 Options for Displaying STL Status

Using a Status Chart to Monitor and Modify the Data in the

S7-200

The Status Chart allows you to read,
write, force, and monitor variables while
the S7-200 is executing your program.
Select the View > Component > Status
Chart menu command to create a status
chart. Figure 8-4 shows a sample status
chart.

You can create multiple status charts.

STEP 7-Micro/WIN provides toolbar
icons for manipulating the status chart:
Sort Ascending, Sort Descending, Single
Read, Write All, Force, Unforce, Unforce
All, and Read All Forced.

To select a format for a cell, select the
cell and click the right mouse button to
display the context menu.

Figure 8-4

Status Chart

247

S7-200 Programmable Controller System Manual

Forcing Specific Values

The S7-200 allows you to force any or all of the I/O points (I and Q bits). In addition, you can also
force up to 16 memory values (V or M) or analog I/O values (Al or AQ). V memory or M memory
values can be forced in bytes, words, or double words. Analog values are forced as words only,
on even-numbered byte boundaries, such as AIW6 or AQW14. All forced values are stored in the
permanent memory of the S7-200.

Because the forced data might be changed during the scan cycle (either by the program, by the
1/0 update cycle, or by the communications- processing cycle), the S7-200 reapplies the forced
values at various times in the scan cycle.

1 Reading the inputs: The S7-200 applies the forced values to the inputs as they are read.

1 Executing the control logic in the program: .
The S7-200 applies the forced values to all Writes to the outputs >%
immediate 1/O accesses. Forced values are
applied for up to 16 memory values after the N NN
program has been executed. : -

1 Processing any communications requests: / \
The S7-200 applies the forced values to all
read/write communications accesses. S e ‘ }

[Writing to the outputs: The S7-200 applies the
forced values to the outputs as they are SeatiE the PO
written. SOV

You can use the Status Chart to force values. To IO A
force a new value, enter the value in the New Value
column of the Status Chart, then press the Force Reads the inputs | aﬁl ail
button on the toolbar. To force an existing value,

highlight the value in the Current Value column, then
press the Force button.

Scan Cycle

Figure 8-5 S7-200 Scan Cycle

Tip

The Force function overrides a Read Immediate or Write Immediate instruction. The Force
function also overrides the output table that was configured for transition to STOP mode. If the
S7-200 goes to STOP mode, the output reflects the forced value and not the value that was
configured in the output table.

Running Your Program for a Specified Number of Scans

248

To help you debug your program, STEP 7-Micro/WIN allows you to run the program for a specific
number of scans.

You can have the S7-200 execute only the first scan. This allows you to monitor the data in the
S7-200 after the first scan. Select the Debug > First Scan menu command to run the first scan.

You can have the S7-200 execute your program for a limited number of scans (from 1 scan to
65,535 scans). This allows you to monitor the program as it changes variables. Select the
Debug > Multiple Scans menu command to specify the number of scans to be executed.

Hardware Troubleshooting Guide and Software Debugging Tools

Chapter 8

Hardware Troubleshooting Guide

Table 8-1
Symptom

Troubleshooting Guide for the S7-200 Hardware

Possible Causes

Possible Solution

Outputs stop working

SF (System Fault) light on the
S7-200 turns on (Red)

None of the LEDs turn on

Intermittent operation
associated with high energy
devices

Communications network is
damaged when connecting to
an external device

Either the port on the
compulter, the port on the
S7-200, or the PC/PPI cable is
damaged

Other communications
problems (STEP 7-Micro/WIN)

Error handling

¢ The device being controlled has
caused an electrical surge that
damaged the output

e User program error

e Wiring loose or incorrect
e Excessive load

e Output point is forced

The following list describes the most
common error codes and causes:

e User programming error

- 0003 Watchdog error

- 0011 Indirect addressing

- 0012 lllegal floating-point
value

- 0014 Range error

e Electrical noise
(0001 through 0009)

¢ Component damage
(0001 through 0010)

e Blown fuse
¢ Reversed 24 V power wires
¢ Incorrect voltage

e Improper grounding

¢ Routing of wiring within the control
cabinet

e Too short of a delay time for the
input filters

The communications cable can provide
a path for unwanted currents if all
non-isolated devices, such as PLCs,
computers, or other devices that are
connected to the network do not share
the same circuit common reference.

The unwanted currents can cause
communications errors or damage to
the circuits.

¢ When connecting to an inductive load
(such as a motor or relay), a proper
suppression circuit should be used.
Refer to Chapter 3.

* Correct user program

¢ Check wiring and correct

¢ Check load against point ratings

¢ Check the S7-200 for forced I/O

Read the fatal error code number and refer to

Appendix C for information about the type of
error:

e For a programming error, check the
usage of the FOR, NEXT, JMP, LBL, and
Compare instructions.

¢ For electrical noise:

Refer to the wiring guidelines in
Chapter 3. It is very important that the
control panel is connected to a good
ground and that high voltage wiring is
not run in parallel with low voltage
wiring.

- Connect the M terminal on the 24 VDC
Sensor Power Supply to ground.

Connect a line analyzer to the system to
check the magnitude and duration of the
over-voltage spikes. Based on this
information, add the proper type arrestor
device to your system.

Refer to the wiring guidelines in Chapter 3 for
information about installing the field wiring.

Refer to the wiring guidelines in Chapter 3.

It is very important that the control panel is
connected to a good ground and that high
voltage wiring is not run in parallel with low
voltage wiring.

Connect the M terminal on the 24 VDC
Sensor Power Supply to ground.

Increase the input filter delay in the system
data block.

¢ Refer to the wiring guidelines in
Chapter 3 and to the network guidelines
in Chapter 7.

¢ Purchase the isolated PC/PPI cable.
Purchase the isolated RS-485-t0-RS-485
repeater when you connect machines

that do not have a common electrical
reference.

Refer to Appendix E for information about
order numbers for S7-200 equipment.

Refer to Chapter 7 for information about network communications.

Refer to Appendix C for information about error codes.

249

S7-200 Programmable Controller System Manual

Open Loop Motion Control with the
S7-200

The S7-200 provides three methods of open loop motion control:

1 Pulse Width Modulation (PWM) - built into the S7-200 for speed, position or duty cycle
control

1 Pulse Train Output (PTO) - built into the S7-200 for speed and position control
1 EM 253 Position Module - an add on module for speed and position control

To simplify the use of position control in your application, STEP 7-Micro/WIN provides a Position
Control wizard that allows you to completely configure the PWM, PTO or Position module in
minutes. The wizard generates position instructions that you can use to provide dynamic control of
speed and position in your application. For the Position module STEP 7-Micro/WIN also provides
a control panel that allows you to control, monitor and test your motion operations.

In This Chapter

OV BIVIBW . ottt ettt e e e e e 252
Using the PWM (Pulse Width Modulation) Output 253
Basic Information for Open Loop Position Control Using Steppers or Servos 255
Instructions Created by the Position Control Wizard 260
Error Codes for the PTO INSIrUCHIONSt 264
Features of the Position Module 265
Configuring the Position Module 267
Instructions Created by the Position Control Wizard for the Position Module 273
Sample Programs for the Position Module 285
Monitoring the Position Module with the EM 253 Control Panel 290
Error Codes for the Position Module and the Position Instructions 292
AdVanCed TOPICS . ..ottt 294
Understanding the RP Seek Modes Supported by the Position Module 303

251

S7-200 Programmable Controller System Manual

Overview

Position
Control

252

The S7-200 provides three methods of open loop motion control:

1 Pulse Width Modulation (PWM) - built into the S7-200 for speed, position or duty cycle
control

1 Pulse Train Output (PTO) - built into the S7-200 for speed and position control
1 EM 253 Position Module - an add on module for speed and position control

The S7-200 provides two digital outputs (Q0.0 and QO0.1) that can be configured using the Position
Control Wizard for use as either PWM or a PTO outputs. The Position Control Wizard can also be
used to configure the EM 253 Position Module.

When an output is configured for PWM operation, the cycle time of the output is fixed and the
pulse width or duty cycle of the pulse is controlled by your program. The variations in pulse width
can be used to control the speed or position in your application.

When an output is configured for PTO operation, a 50% duty cycle pulse train is generated for
open loop control of the speed and position for either stepper motors or servo motors. The built in
PTO function only provides the pulse train output. Direction and limit controls must be supplied by
your application program using 1/O built into the PLC or provided by expansion modules.

The EM 253 Position Module provides a single pulse train output with integrated direction control,
disable and clear outputs. It also includes dedicated inputs which allow the module to be
configured for several modes of operation including automatic reference point seek. The module
provides a unified solution for open loop control of the speed and position for either stepper
motors or servo motors.

To simplify the use of position control in your application, STEP 7-Micro/WIN provides a Position
Control wizard that allows you to completely configure the PWM, PTO or Position module in
minutes. The wizard generates position instructions that you can use to provide dynamic control of
speed and position in your application. For the Position module STEP 7-Micro/WIN also provides
a control panel that allows you to control, monitor and test your motion operations.

Open Loop Motion Control with the S7-200 Chapter 9

Using the PWM (Pulse Width Modulation) Output

PWM provides a fixed cycle time output with a variable duty cycle. The PWM output runs
continuously after being started at the specified frequence (cycle time). The pulse width is varied
as required to effect the desired control. Duty cycle can be expressed as a percentage of the
cycle time or as a time value corresponding to pulse width. The pulse width can vary from 0% (no
pulse, always off) to 100% (no pulse, always on). See Figure 9-1.

Since the PWM output can be varied from 0% to Cycle Time

100%, it provides a digital output that in many ways

is analogous to an analog output. For example the Pulse Width Pulse Width
PWM output can be used to control the speed of a Time Time

motor from stop to full speed or it can be used to — —

control position of a valve from closed to full open.

Figure 9-1 Pulse Width Modulation (PWM)

Configuring the PWM Output

To configure one of the built-in outputs for PWM control, use the Position Control wizard. To start
the Position Control wizard, either click the Tools icon in the navigation bar and then double-click
the Position Control Wizard icon, or select the Tools> Position Control Wizard menu command.
See Figure 9-2

1. Select the option to configure the
onboard PTO/PWM operation for
the S7-200 PLC.

2. Choose the output Q0.0 or Q0.1
that you wish to configure as a
PWM output.

3. Next select Pulse Width
Modulation (PWM) from the drop
down dialog box, select the time
base of microseconds or
milliseconds and specify the cycle
time.

4. Select Finish to complete the

wizard. Figure 9-2 Configuring the PWM Output

The wizard will generate one instruction for you to use to control the duty cycle of the the PWM
output.

253

S7-200 Programmable Controller System Manual

254

PWMx_RUN Instruction

The PWMx_RUN instruction allows you to control the duty
cycle of the output by varying the pulse width from 0 to the
pulse width of the cycle time.

The Cycle input is a word value that defines the cycle time
for the PWM output. The allowed range is from 2 to 65535
units of the time base (microseconds or milliseconds) that
was specified within the wizard.

The Duty_Cycle input is a word value that defines the pulse
width for the PWM output. The allowed range of values is
from 0.0 to 65535 units of the time base (microseconds or
milliseconds) that was specified within the wizard.

The Error is a byte value returned by the PWMx_RUN
instruction that indicates the result of execution. See Table
for a description of the possible error codes.

Table 9-1 Parameters for the PWMx_RUN Instruction

Inputs/Outputs Data Types Operands

SIMATIC f IECT131

LAL: FEL:
Pz _RLIM PRI = _RUM
—{EM - EM
— RUN — RUM
— Cycle Error |- —twcle Error =
—Fulse =1 Fulze
SIMIATIC
STL
CALL P Wl _RUM, Cvcla,
Fulze, Errar

Cycle, Duty_Cycle Word
Constant

Error Byte

Table 9-2 PWMx_RUN Instruction Error Codes

1B, QB, VB, MBV, SMB, LB, AC, *VD, *AC, *LD, Constant

W, QW, VW, MW, SMW, SW, T, C, LW, AC, AIW, *VD, *AC, *LD,

Error Code Description
0 No error, normal completion
1 Immediate STOP issued during move. STOP command completed successfully

Open Loop Motion Control with the S7-200 Chapter 9

Basic Information for Open Loop Position Control Using
Steppers or Servos

Both the PTO built-in to the S7-200 PLC and the EM 253 Position Module use a pulse train output
to control both the speed and position of a stepper motor or a servo motor.

Using the PTO or the module for open loop position control requires expertise in the field of motion
control. This chapter is not meant to educate the novice in this subject. However, it provides
fundamental information that will help as you use the Position Control wizard to configure the PTO
or module for your application.

Maximum and Start/Stop Speeds

The wizard will prompt you for the maximum speed (MAX_SPEED) and Start/Stop Speed
(SS_SPEED) for your application. See Figure 9-3.

1 MAX_SPEED: Enter the value for the optimum operating speed of your application within
the torque capability of your motor. The torque required to drive the load is determined by
friction, inertia, and the acceleration/deceleration times.

1 The Position Control wizard calculates and displays the minimum speed that can be
controlled by the Position module based on the MAX_SPEED you specify.

1 Forthe PTO output you must specify the desired start/stop speed. Since at least one cycle
at the start/stop speed is generated each time a move is executed, use a start/stop speed
whose period is less than the acceleration/deceleration time.

[0 SS_SPEED: Enter a value within Speed
the capability of your motor to drive
your load at low speeds. If the MAX_SPEED
SS_SPEED value is too low, the
motor and load could vibrate or
move in short jumps at the SS SPEED
beginning and end of travel. If the -
SS_SPEED value is too high, the
motor could lose pulses on start
up, and the load could overdrive
the motor when attempting to stop.

Distance

Figure 9-3 Maximum Speed and Start/Stop Speed

255

S7-200 Programmable Controller System Manual

Motor data sheets have different ways of specifying the start/stop (or pull-in/pull-out) speed for a
motor and given load. Typically, a useful SS_SPEED value is 5% to 15% of the MAX_SPEED
value. To help you select the correct speeds for your application, refer to the data sheet for your
motor. Figure 9-4 shows a typical motor torque/speed curve.

Torque required to Motor torque versus
drive the load \ speed characteristic
Motor
Torque Start/Stop speed versus torque

This curve moves towards lower
speed as the load inertia increases.

Motor Speed \
Start/Stop speed) .
(SS_SPEED) for this load Maximum speed that the motor can drive the load

MAX_SPEED should not exceed this value.

Figure 9-4 Typical Torque-Speed Curve for a Motor

Entering the Acceleration and Deceleration Times

As part of the configuration, you set the acceleration and deceleration times. The default setting
for both the acceleration time and the deceleration time is 1 second. Typically, motors can work
with less than 1 second. See Figure 9-5. You specify the following times in milliseconds:

d ACCEL_TIME: Time required for Speed
the motor to accelerate from MAX SPEED
SS_SPEED to MAX_SPEED. B
Default = 1000 ms

1 DECEL_TIME: Time required for SS_SPEED
the motor to decelerate from

MAX_SPEED to SS_SPEED.

|
Default = 1000 ms — e b

ACCEL_TIME DECEL_TIME

Figure 9-5 Acceleration and Deceleration Times

Tip
@ Motor acceleration and deceleration times are determined by trial and error. You should start by
entering a large value. Optimize these settings for the application by gradually reducing the

times until the motor starts to stall.

256

Open Loop Motion Control with the S7-200 Chapter 9

Configuring the Motion Profiles

A profile is a pre-defined motion description consisting of one or more speeds of movement that
effect a change in position from a starting point to an ending point. You do not have to define a
profile in order to use the PTO or the module. The Position Control wizard provides instructions for
you to use to control moves without running a profile.

A profile is programmed in steps consisting of an acceleration/deceleration to a target speed
followed by a fixed number of pulses at the target speed. In the case of single step moves or the
last step in a move there is also a deceleration from the target speed (last target speed) to stop.

The PTO and module support a maximum of 25 profiles.

Defining the Motion Profile

The Position Control wizard guides you through a Motion Profile Definition where you define each
motion profile for your application. For each profile, you select the operating mode and define the
specifics of each individual step for the profile. The Position Control wizard also allows you to
define a symbolic name for each profile by simply entering the symbol name as you define the
profile.

Selecting the Mode of Operation for the Profile

You configure the profile according the the mode of operation desired. The PTO supports relative
position and single speed continuous rotation. The Position module supports absolute position,
relative position, single-speed continuous rotation, and two-speed continuous rotation. Figure 9-6
shows the different modes of operation.

Absolute Position Single-Speed Single-Speed Continuous Rotation
(Position Module only) Continuous Rotation with Triggered Stop

(Position Module only)
‘ /_\ Target Speed RPS signals
Reached Stop

0 Starting Ending Conttrn]'olled by yotijr progrr]am Zrt])m t
zero Position Position another comman (el &5 Al
is issued

Position

Relative Position Two-Speed Continuous Rotation
(Position Module only)

Target Speed with Target Speed with
‘ ‘/_\ RPS Inactive RPS Active

Starting Ending Position

Position Measured from the
starting point

Figure 9-6 Mode Selections for the Position Module

257

S7-200 Programmable Controller System Manual

Creating the Steps for the Profile

A step is a fixed distance that a tool moves, including the distance covered during acceleration
and deceleration times. In the case of the PTO a maximum of 29 steps are allowed in each profile.
The module supports a maximum of 4 steps in each profile.

You specify the target speed and ending

position or number of pulses for each
step. Additional steps are entered one at
a time. Figure 9-7 illustrates a one-step,

two-step, three-step and a four-step . .
profile. One-Step Profile Two-Step Profile

Notice that a one-step profile has one

constant speed segment, a two-step

profile has two constant speed

segments, and so on. The number of
steps in the profile matches the number Three-Step Profile Four-Step Profile

of constant speed segments of the
profile.

Figure 9-7 Sample Motion Profiles

Using the PTO Output

PTO provides a square wave output (50% duty Cycle Time

cycle) for a specified number of pulses. The .~ "
frequency or cycle time of each pulse changes

linearly with frequency during acceleration and g?f"/ﬂ g(;% g?f"/ﬂ g(;% ‘
deceleration and remains fixed during the constant

frequency portions of a movement. Once the
specified number of pulses have been generated,
the PTO output turns off and no further pulses are
generated until a new specification is loaded. See Figure 9-8 Pulse Train Output (PTO)
Figure 9-8.

258

Open Loop Motion Control with the S7-200 Chapter 9

Configuring the PTO Output

To configure one of the built in outputs for PTO operation use the Position Control wizard. To start
the Position Control wizard, either click the Tools icon in the navigation bar and then double-click
the Position Control Wizard icon, or select the Tools> Position Control Wizard menu command.

1.

2
3.
4

o

Select the option to configure the onboard PTO/PWM operation for the S7-200 PLC.
Choose the output Q0.0 or Q0.1 that you wish to configure as a PTO output.
Select Linear Pulse Train Output (PTO) from the drop down dialog box.

If you wish to monitor the number of pulses generated by the PTO, select the use High
Speed Counter by clicking the check box.

Enter the MAX_SPEED and the SS_SPEED in the designated edit boxes.
Enter the acceleration and deceleration times in the designated edit boxes.

In the motion profile definition screen, click the new profile button to enable defining the
profile. Choose the desired mode of operation.

For a relative position profile:

Fill in the target speed and the number of pulses. You may then click the plot step
button to see a graphical representation of the move.

If more than one step is needed, click the new step button and fill in the step
information as required.

For a single speed, continuous rotation:
Enter the single speed value in the edit box.

If you wish to terminate the single speed, continuous rotation move, click the Program
a Subroutine check box and and enter the number of pulses to move after the Stop
event.

Define as many profiles and steps as you need to perform the desired movement

Then select Finish to complete the wizard.

259

S7-200 Programmable Controller System Manual

Instructions Created by the Position Control Wizard

260

The Position Control wizard makes controlling your built-in PTO easier by creating five unique
instruction subroutines. Each position instruction is prefixed with a “PTOx_" where x is the

channel number (x=0 for Q0.0, x=1 for Q0.1).

PTOx_CTRL Subroutine

The PTOx_CTRL subroutine (Control) enables and
initializes the PTO output for use with a stepper or servo
motor. Use this subroutine only once in your program and
ensure that it is executed every scan. Always use SM0.0 as
the input for the EN input.

The |_STOP (Immediate STOP) input is a Boolean input.
When this input is low, the PTO function operates normally.
When this input goes high, the PTO terminates the issuance
of pulses immediately.

The D_STOP (Decelerated STOP) input is a Boolean input.
When this input is low, the PTO function operates normally.
When this input goes high, the PTO generates a pulse train
that decelerates the motor to a stop.

The Done output is a Boolean output. When the Done bit is
set high, it indicates the subroutine has been executed by
the CPU.

SIMATIC f IEC1131
LAL: FEL!
FTiZ = _CTEL FT2_CTRL
- EM — EM
= 1_5tap —1_Stap
| DStop —D5top
Done - Drone
Errur - Errar
s ¢ _Foz
- -
SIMATIC
STL

CALL PT s CTRL, 1.5top, D_Stop

Crone, Errar, ©_Fas

When the Done bit is high, the Error byte reports normal completion with no error or with an error

code. See Table 9-7 for definitions of the error codes.

The C_Pos parameter contains the current position of the module as the number of pulses if the
HSC was enabled in the wizard. Otherwise the current position is always 0.

Table 9-3 Parameters for the PTOx_CTRL Instruction

Inputs/Outputs Data Types Operands

|_STOP BOOL ,Q,V, M, SM, S, T, C, L, Power Flow

D_STOP BOOL ,Q,V,M, SM, S, T, C, L, Power Flow

Done BOOL ,Q,V,M, SM, S, T,C, L

Error BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD
C_Pos DWORD ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD

Open Loop Motion Control with the S7-200 Chapter 9

PTOx_RUN Subroutine

The PTOx_RUN subroutine (Run Profile) commands the

- e i - SIMATIC ¢ EC 1131
PLC to execute the motion operation in a specific profile

stored in the configuration/profile table. LAD: FED:

Turning on the EN bit enables the subroutine. Ensure that FT O _RUM PTG _RUM

the EN bit stays on until the Done bit signals that the — EM —EM

execution of the subroutine has completed.

; - . — START - START

Turning on the START parameter initiates execution of the

profile. For each scan when the START parameter is on and —Profile Donel | - profile Done -

the PTO is not currently active, the instruction activates the —|fAbort Error = | Jfbort Error -

PTO. To ensure that only one command is sent, use an CProfile = C_Profile -

edge detection element to pulse the START parameter on. CStep LAtep =
C_Fos = C_Pos -

The Profile parameter contains the number or the symbolic

name for the motion profile.

Turning on the Abort parameter commands the Position SIMATIC

module to stop the current profile and decelerate until the

motor comes to a stop. STL

CALL FT s RUM, START. Frofile,
The Done parameter turns on when the module completes Abort. Done, Error. ¢_Profile,

this instruction. _Step, C_Pos

The Error parameter contains the result of this instruction.
See Table 9-7 for definitions of the error codes.

The C_Profile parameter contains the profile currently being executed by the Position module.
The C_Step parameter contains the step of the profile currently being executed.

The C_Pos parameter contains the current position of the module as the number of pulses if the
HSC was enabled in the wizard. Otherwise the current position is always 0.

Table 9-4 Parameters for the PTOx_RUN Instruction

Inputs/Outputs Data Types Operands

START BOOL ,Q,V,M, SM, S, T, C, L, Power Flow

Profile BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD, Constant
Abort, Done BOOL ,Q,V,M,SM, S, T,C, L

Error, C_Profile, BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

C_Step

C_Pos DINT ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD

261

S7-200 Programmable Controller System Manual

PTOx_MAN Subroutine

The PTOx_MAN subroutine (Manual Mode) puts the PTO

. - SIMATIC £ 1EC 1131
output in manual mode. This allows the motor to be started,

stopped and run at different speeds within the range from LAD: FED:
Start/Stop speed through Maximum speed as specified in PO MAN E—E
the wizard. While the PTOx_MAN subroutine is enabled, no - -
other PTOXx_RUN or PTOx_ADV instructions should be e e
executed.
Enabling the RUN (Run/Stop) parameter commands the o Ll 7 RN
PTO to accelerate to the specified speed (Speed | |
parameter). You can change the value for the Speed Speed cEr;E; [| [Peeed Frerl
parameter while the motor is running. Disabling the RUN = —
parameter commands the PTO to decelerate until the motor
comes to a stop.

SIMATIC
The Speed parameter determines the speed when RUN is
enabled. The speed will be clamped to Start/Stop or sTL
Maximum for values of the Speed parameter outside this CALL PTOs_MAM, RUM, Speed,
range. The speed is a DINT value for pulses/second. You Error, ©_Pos

can change this parameter while the motor is running.

The Error parameter contains the result of this instruction.
See Table 9-7 for definitions of the error codes.

The C_Pos parameter contains the current position of the module as the number of pulses if the
HSC was enabled in the wizard. Otherwise the current position is always 0.

Table 9-5 Parameters for the PTOx_MAN Instruction

Inputs/Outputs Data Types Operands

RUN BOOL ,Q,V,M, SM, S, T, C, L, Power Flow

SPEED DINT ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD, Constant
Error BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

C_Pos DINT ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD

Tip
@ The PTO may not react to small changes in the Speed parameter, especially if the configured

262

acceleration or deceleration time is short and the difference between the configured maximum
speed and start/stop speed is large.

Open Loop Motion Control with the S7-200 Chapter 9

PTOx_LDPOS Instruction

The PTOx_LDPOS instruction (Load Position) changes the

- SIMATIC ¢ EC 1131
current position value of the PTO pulse counter to a new

value. You can also use this instruction to establish a new LAD: FED:
zero position for any move command.
PTOw_LDPOS PTox_LDPOS
Turning on the EN bit enables the instruction. Ensure that —EM —{EM
the EN bit stays on until the Done bit signals that the _
; - . —5TART START

execution of the instruction has completed.

—{Mew_Paz Donep | —Mew_Fos Donel-
Turning on the START parameter loads a new position into Error— Errorf-
the PTO pulse counter. For each scan when the START tFoss CFos
parameter is on and the PTO is not currently busy, the
instruction loads a new position into the PTO pulse counter.
To ensure that only one command is sent, use an edge
detection element to pulse the START parameter on. SIMATIC

The New_Pos parameter provides the new value to replace STL
the current position value that is reported. The position

_ CALL PT e LDPOS, START.
value is expressed as a number of pulses.

Mew_Foz, Done, Ervor,
_Pos

The Done parameter turns on when the module completes this instruction.

The Error parameter contains the result of this instruction. See Table 9-7 for definitions of the error
codes.

The C_Pos parameter contains the current position of the module as the number of pulses if the
HSC was enabled in the wizard. Otherwise the current position is always 0.

Table 9-6 Parameters for the PTOx_LDPOS Instruction

Inputs/Outputs Data Types Operands

START BOOL ,Q,V,M, SM, S, T, C, L, Power Flow

New_Pos, C_Pos DINT ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD
Done BOOL ,Q,V,M,SM, S, T,C, L

Error BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

263

S7-200 Programmable Controller System Manual

PTOx_ADV Subroutine

The PTOx_ADV subroutine stops the current continuous

. : > SIMATIC ¢ EC 1131
motion profile and advances the number of pulses specified

in the wizard profile definition. This subroutine is created if LAD =
you have specified at least one single speed continuous o Ao
rotation with the PTOx_ADV option enabled in the Position - PTC=_RDY
Control Wizard. —|EM —EM
SIMATIC
STL
CALL PTG ADY

Error Codes for the PTO Instructions

Table 9-7 PTO Instruction Error Codes

Error Code Description
0 No error, normal completion
1 Immediate STOP issued during move. STOP command completed successfully
2 Decelerated STOP issued during move. STOP command completed successfully
3 Execution error detected in the pulse generator or in format of the PTO table
127 An ENO error was encountered. Check PLC information for description on non-fatal error
128 Busy. Another PTO operation is already in process
129 Both the Immediate STOP and Decelerated STOP commands were enabled at the same
time, resulting in an immediate STOP
130 The PTO instruction is currently being commanded to STOP
132 Requested profile number is out of range

264

Open Loop Motion Control with the S7-200 Chapter 9

Features of the Position Module

The Position module provides the functionality and performance that you need for single-axis,
open-loop position control:

1 Provides high-speed control, with a range from 20 pulses per second up to 200,000 pulses

per second
1 Supports both jerk (S curve) or linear O
acceleration and deceleration = -
(1 Provides a configurable measuring system 0]10]00/0]0]100/0]0]0]e)
that allows you to enter data either as | ‘
engineering units (such as inches or s
centimeters) or as a number of pulses J G PDSIT[DNE
MF PWR P1 CLR —Stand K
O Provides configurable backlash compensation f—
O Supports absolute, relative, and manual
methods of position control °°
1 Provides continuous operation -
TP 7P
QO Provides up to 25 motion profiles, with up to 4 iad N R 255 AAZ2 D3R
SpEEd Changes per prOfIIe M L+ L 1M §TP 2M RPS 3M 7P 4M -LMT-
1 Provides four different reference-point seek
modes, with a choice of the starting seek OO00O00OO000O0
direction and the final approach direction for - U =
each sequence i O

1 Provides removable field wiring connectors for N
easy installation and removal Figure 9-9 EM 253 Position Module

You use STEP 7-Micro/WIN to create all of the configuration and profile information used by the
Position module. This information is downloaded to the S7-200 with your program blocks.
Because all the information required for position control is stored in the S7-200, you can replace a
Position module without having to reprogram or reconfigure the module.

The S7-200 reserves 8 bits of the process image output register (Q memory) for the interface to
the Position module. Your application program in the S7-200 uses these bits to control the
operation of the Position module. These 8 output bits are not connected to any of the physical
field outputs of the Position module.

The Position module provides five digital inputs and four digital outputs that provide the interface
to your motion application. See Table 9-8. These inputs and outputs are local to the Position
module. Appendix A provides the detailed specifications for the Position module and also includes
wiring diagrams for connecting the Position module to some of the more common motor
driver/amplifier units.

Table 9-8 Inputs and Outputs of the Position Module

Signal Description

STP The STP input causes the module to stop the motion in progress. You can select the desired
operation of STP within the Position Control wizard.

RPS The RPS (Reference Point Switch) input establishes the reference point or home position for
absolute move operations.

ZP The ZP (Zero Pulse) input helps establish the reference point or home position. Typically, the
motor driver/amplifier pulses ZP once per motor revolution.

LMT+ LMT+ and LMT- inputs establish the maximum limits for motion travel. The Position Control

LMT- wizard allows you to configure the operation of LMT+ and LMT- inputs.

PO PO and P1 are open drain transistor pulse outputs that control the movement and direction of

P1 movement of the motor. PO+, PO- and P1+, P1- are differential pulse outputs that provide the

PO+, PO- identical functions of PO and P1, respectively, while providing superior signal quality. The

P1+, P1- open drain outputs and the differential outputs are all active simultaneously. Based upon the
interface requirements of motor driver/amplifier, you choose which set of pulse outputs to
use.

DIS DIS is an open drain transistor output used to disable or enable the motor driver/amplifier.

CLR CLR is an open drain transistor output used to clear the servo pulse count register.

265

S7-200 Programmable Controller System Manual

266

Programming the Position Module

STEP 7-Micro/WIN provides easy-to-use tools for configuring and programming the Position
module. Simply follow these steps:

1.

4.

Tip
Refer to Appendix A for information about connecting the Position module to several common

Configure the Position module. STEP 7-Micro/WIN provides a Position Control wizard for
creating the configuration/profile table and the position instructions. See Configuring the
Position Module on page 270 for information about configuring the Position module.

Test the operation of the Position Module. STEP 7-Micro/WIN provides an EM 253 control
panel for testing the wiring of the inputs and outputs, the configuration of the Position
module, and the operation of the motion profiles. See page 290 for information about the
EM 253 control panel.

Create the program to be executed by the S7-200. The Position Control wizard
automatically creates the position instructions that you insert into your program. See

page 273 for information about the position instructions. Insert the following instructions into
your program:

- To enable the Position module, insert a POSx_CTRL instruction. Use SMO0.0 (Always
On) to ensure that this instruction is executed every scan.

- To move the motor to a specific location, use a POSx_GOTO or a POSx_RUN
instruction. The POSx_GOTO instruction move to a location specified by the inputs
from your program. The POSx_RUN instruction executes the motion profiles you
configured with the Position Control wizard.

- To use absolute coordinates for your motion, you must establish the zero position for
your application. Use the a POSx_RSEEK or a POSx_LDPOS instruction to establish
the zero position.

- The other instructions that are created by the Position Control wizard provide
functionality for typical applications and are optional for your specific application.

Compile your program and download the system block, data block, and program block to
the S7-200.

stepper motor controllers.

Tip
To match the default settings in the Position Control wizard, set the DIP switches on the stepper

motor controller to 10,000 pulses per revolution.

Open Loop Motion Control with the S7-200 Chapter 9

Configuring the Position Module

Position
Control

You must create a configuration/profile table for the Position module in order for the module to
control your motion application. The Position Control wizard makes the configuration process
quick and easy by leading you step-by-step through the configuration process. Refer to the
Advanced Topics on page 294 for detailed information about the configuration/profile table.

The Position Control wizard also allows
you to create the configuration/profile
table offline. You can create the
configuration without being connected to
an S7-200 CPU with a Position module
installed.

To run the Position Control wizard, your
project must have been compiled and
set to symbolic addressing mode.

To start the Position Control wizard,

either click the Tools icon in the

navigation bar and then double-click the

Position Control Wizard icon, or select

the Tools> Position Control Wizard Figure 9-10 Position Control Wizard
menu command.

To configure the Position Control Module use the Position Control wizard. Select the option to
configure the EM 253 Position Control Module.

Enter location of module

Specify the module slot position (module 0 to module 6). If STEP 7-Micro/WIN is connected to the
PLC, you only have to click the Read Modules button. For an S7-200 CPU with firmware prior to
version 1.2, the module must be installed next to the CPU.

Select type of measurement

Select the measurement system. You can select either engineering units or pulses. If you select
pulses, no other information is required. If you select engineering units, the number of pulses
required to produce one revolution of the motor (refer to the data sheet for your motor or drive),
the base unit of measurement (such as inch, foot, millimeter, or centimeter), and the distance
traveled in one revolution of the motor.

1 STEP 7-Micro/WIN provides an EM253 Control Panel that allows you to modify the number
of units per revolution after the Position module has been configured.

1 Ifyou change the measurement system later, you must delete the entire configuration
including any instructions generated by the Position Control wizard. You must then enter
your selections consistent with the new measurement system.

267

S7-200 Programmable Controller System Manual

Edit default input and output configuration

To change or view the default configuration of the integrated inputs/outputs select the Advanced
Options button.

1 Use the Input Active Levels tab to select the active level (High or Low). When the level is
set to High, a logic 1 is read when current is flowing in the input. When the level is set to
Low, a logic 1 is read when there is no current flow in the input. A logic 1 level is always
interpreted as meaning the condition is active. The LEDs are illuminated when current flows
in the input, regardless of activation level. (Default = active high)

1 Use the Input Filter Times tab to select the filter time constant (0.20 ms to 12.80 ms) for the
STP, RPS, LMT+, and LMT- inputs. Increasing the filter time constant eliminates more
noise, but it also slows down the response time to a signal state change. (Default = 6.4 ms)

1 Use the Pulse and Directional Outputs tab to select the polarity of the outputs and to select
the direction control method. See Figures 9-11 and 9-12 to see the effects of polarity and
direction control method selections.

P1

Positive Rotation Negative Rotation Positive Rotation Negative Rotation

w LT o [T lﬁﬂl

|_| P1 |"| =05p

Fi

gure 9-11 Rotation Options for Positive Polarity

PO

Positive Rotation Negative Rotation Positive Rotation Negative Rotation

L e LT LT

w LT . s

Figure 9-12 Rotation Options for Negative Polarity

N

268

Warning

Control devices can fail in unsafe conditions, and can result in unpredictable operation of
controlled equipment. Such unpredictable operations could result in death or serious personal
injury, and/or equipment failure.

The limit and stop functions in the Position Module are electronic logic implementations that do
not provide the level of protection provided by electromechanical controls. Consider using an
emergency stop function, electromechanical overrides, or redundant safeguards that are
independent of the Position module and the S7-200 CPU.

Configure response of module to physical inputs

Next, select the module response to the LMT+, the LMT-, and the STP inputs. Use the drop down
box to select: no action (ignore the input condition), decelerate to a stop (default), or immediate
stop.

Enter maximum start and stop speed

Enter the maximum speed (MAX_SPEED) and Start/Stop Speed (SS_SPEED) for your
application

Open Loop Motion Control with the S7-200 Chapter 9

Enter jog parameters
Next, enter the JOG_SPEED and the JOG_INCREMENT values.

1 JOG_SPEED: The JOG_SPEED (Jog speed for the motor) is the maximum speed that can
be obtained while the JOG command remains active.

1 JOG_INCREMENT: Distance that the tool is moved by a momentary JOG command.

Figure 9-13 shows the operation of the Jog command. When the Position module receives a Jog
command, it starts a timer. If the Jog command is terminated before 0.5 seconds has elapsed, the
Position module moves the tool the amount specified in the JOG_INCREMENT at the speed
defined by SS_SPEED. If the Jog command is still active when the 0.5 seconds have elapsed, the
Position module accelerates to the JOG_SPEED. Motion continues until the Jog command is
terminated. The Position module then performs a decelerated stop. You can enable the Jog
command either from the EM 253 control panel or with a position instruction.

Speed
MAX_SPEED |
JOG command terminated
JOG_SPEED
SS_SPEED
Distance
JOG_INCREMENT JOG command active for
JOG command active for more than 0.5 seconds

less than 0.5 seconds

Figure 9-13 Representation of a JOG Operation

Enter acceleration time
Enter the acceleration and deceleration times in the edit boxes

Enter jerk time
For single step moves enter the jerk time compensation. This provides smoother position control
by reducing the jerk (rate of change) in acceleration and deceleration parts of the motion profile.
See Figure 9-14.

Jerk time compensation is also known as S curve profiling.” This compensation is applied equally
to the beginning and ending portions of both the acceleration and deceleration curve. Jerk
compensation is not applied to the initial and final step between zero speed and SS_SPEED.

269

S7-200 Programmable Controller System Manual

You specify the jerk compensation by Speed

entering a time value (JERK_TIME). This yax speep |
is the time required for acceleration to -

change from zero to the maximum - I‘_ _’I !‘_
acceleration rate. A longer jerk time l
yields smoother operation with a smaller
increase in total cycle time than would be ~ SS_SPEED |~ — — — —
obtained by decreasing the | I
ACCEL_TIME and DECEL_TIME. A

value of zero indicates that no _'I I‘_ _’i I‘_
compensation is to be applied.

Distance

JERK_TIME

(Default = 0 ms) Figure 9-14 Jerk Compensation

Tip
@ A good first value for JERK_TIME is 40% of ACCEL_TIME.

Configure reference point and seek parameters
Select using a reference point or not using a reference point for your application.

1 If your application requires that movements start from or be referenced to an absolute
position, you must establish a reference point (RP) or zero position that fixes the position
measurements to a known point on the physical system.

1 Ifareference pointis used, you will want to define a way to automatically relocate the
reference point. The process of automatically locating the reference point is called
Reference Point Seek. Defining the Reference Point Seek process requires two steps in the
wizard.

Enter the Reference Point seek speeds (a fast seek speed and a slow seek speed). Define
the initial seek direction and the final reference point approach direction. Use the advanced
RP Options button to enter Reference Point Offset and backlash compensation values.

RP_FAST is the initial speed the module uses when performing an RP seek command.
Typically, the RP_FAST value is approximately 2/3 of the MAX_SPEED value.

RP_SLOW is the speed of the final approach to the RP. A slower speed is used on
approach to the RP, so as not to miss it. Typically, the RP_SLOW value is the SS_SPEED
value.

RP_SEEK_DIR is the initial direction for the RP seek operation. Typically, this is the
direction from the work zone to the vicinity of the RP. Limit switches play an important role in
defining the region that is searched for the RP. When performing a RP seek operation,
encountering a limit switch can result in a reversal of the direction, which allows the search
to continue. (Default = Negative)

RP_APPR_DIR is the direction of the final approach to the RP. To reduce backlash and
provide more accuracy, the reference point should be approached in the same direction
used to move from the RP to the work zone. (Default = Positive)

270

Open Loop Motion Control with the S7-200 Chapter 9

d The Position Control wizard provides advanced reference point options that allow you to
specify an RP offset (RP_OFFSET), which is the distance from the RP to the zero position.
See Figure 9-15.

RP_OFFSET: Distance from the

L Work
RP to the zero position of the ZaliE
physical measuring system.
Default = 0 L
Backlash compensation: RP Zero Position
Distance that the motor must move }.., RP OFFSET 4__{

to eliminate the slack (backlash) in
the system on a direction change.

Backlash compensation is always gigure 9-15 Relationship Between RP and Zero Position
a positive value. Default = 0

Choose a Reference Point search sequence.

1 The Position module provides a reference point switch (RPS) input that is used when
seeking the RP. The RP is identified by a method of locating an exact position with respect
to the RPS. The RP can be centered in the RPS Active zone, the RP can be located on the
edge of the RPS Active zone, or the RP can be located a specified number of zero pulse
(ZP) input transitions from the edge of the RPS Active zone.

You can configure the sequence that the Position module uses to search for the reference
point. Figure 9-16 shows a simplified diagram of the default RP search sequence. You can
select the following options for the RP search sequence:

RP Seek mode 0: Does not perform a RP seek sequence

RP Seek mode 1: The RP is where the RPS input goes active on the approach from the
work zone side. (Default)

RP Seek mode 2: The RP is RP Seek Mode 1 ~_ RP Seek Directi
centered within the active region of LMT- RPS eexirec '_On)
the RPS input. Active Active — RP Approach Direction
RP Seek mode 3: The RP is Work Zone

located outside the active region of | | |
the RPS input. RP_Z_CNT | |
specifies how many ZP (Zero ‘ ‘ ‘
Pulse) input counts should be } } }
\ \ \
\ \ \

S

\
received after the RPS becomes }
inactive.

RP Seek mode 4: The RP is
generally within the active region
of the RPS input. RP_Z_CNT
specifies how many ZP (Zero
Pulse) input counts should be
received after the RPS becomes
active.

Figure 9-16 Default RP Search Sequence (Simplified)

Tip
The RPS Active region (which is the distance that the RPS input remains active) must be

greater than the distance required to decelerate from the RP_FAST speed to the RP_SLOW
speed. If the distance is too short, the Position module generates an error.

271

S7-200 Programmable Controller System Manual

272

Command byte

Next enter the Q byte address for the command byte. The command byte is the address of the 8
digital outputs reserved in the process image register for the interface to the Position Module. See
Figure 4-11 in Chapter 4 for a description of the /0O numbering.

Defining the motion profile

In the motion profile definition screen, click the new profile button to enable defining the profile.
Choose the desired mode of operation.

a

For an absolute position profile:

Fill in the target speed and the ending position. You may then click the plot step button to
see a graphical representation of the move.

If more than one step is needed, click the new step button and fill in the step information as
required.

For a relative position profile:

Fill in the target speed and the ending position. You may then click the plot step button to
see a graphical representation of the move.

If more than one step is needed, click the new step button and fill in the step information as
required.

For a single-speed, continuous rotation:
Enter the single speed value in the edit box.
Select the direction of rotation

If you wish to terminate the single speed, continuous rotation move using the RPS input,
click the check box.

For a two-speed, continuous rotation:
Enter the target speed value when RPS is high in the edit box.
Enter the target speed value when RPS is low in the edit box.

Select the direction of rotation

Define as many profiles and steps as you need to perform the desired movement.

Finish the configuration

After you have configured the operation of the Position module, you simply click Finish, and the
Position Control wizard performs the following tasks:

a

u
u

Inserts the module configuration and profile table into the data block for your S7-200
program

Creates a global symbol table for the motion parameters

Adds the motion instruction subroutines into the project program block for you to use in your
application

You can run the Position Control wizard again in order to modify any configuration or profile
information.

Tip

Because the Position Control wizard makes changes to the program block, the data block and
the system block, be sure to download all three blocks to the S7-200 CPU. Otherwise, the
Position module might not have all the program components that it needs for proper operation.

Open Loop Motion Control with the S7-200 Chapter 9

Instructions Created by the Position Control Wizard for the
Position Module

%

The Position Control wizard makes controlling the Position module easier by creating unique
instruction subroutines based on the position of the module and configuration options you
selected. Each position instruction is prefixed with a "POSx_" where x is the module location.
Because each position instruction is a subroutine, the 11 position instructions use 11 subroutines.

Tip
The position instructions increase the amount of memory required for your program by up to

1700 bytes. You can delete unused position instructions to reduce the amount of memory
required. To restore a deleted position instruction, simply run the Position Control wizard again.

Guidelines for Using the Position Instructions

You must ensure that only one position instruction is active at a time.

You can execute the POSx_RUN and POSx_GOTO from an interrupt routine. However, it is very
important that you do not attempt to start an instruction in an interrupt routine if the module is busy
processing another command. If you start an instruction in an interrupt routine, then you can use
the outputs of the POSx_CTRL instruction to monitor when the Position module has completed
the movement.

The Position Control wizard automatically configures the values for the speed parameters (Speed
and C_Speed) and the position parameters (Pos or C_Pos) according to the measurement
system that you selected. For pulses, these parameters are DINT values. For engineering units,
the parameters are REAL values for the type of unit that you selected. For example: selecting
centimeters (cm) stores the position parameters as REAL values in centimeters and stores the
speed parameters as REAL values in centimeters per second (cm/sec).

The following position instructions are required for specific position control tasks:

1 Insertthe POSx_CTRL instruction in your program and use the SM0.0 contact to execute it
every scan.

1 To specify motion to an absolute position, you must first use either an POSx_RSEEK or a
POSx_LDPOS instruction to establish the zero position.

[To move to a specific location, based on inputs from your program, use the POSx_GOTO
instruction.

1 To run the motion profiles you configured with the Position Control wizard, use the
POSx_RUN instruction.

The other position instructions are optional.

273

S7-200 Programmable Controller System Manual

POSx_CTRL Instruction

The POSx_CTRL instruction (Control) enables and

L " - . SIMATIC £ [EC 1131
initializes the Position module by automatically commanding

the Position module to load the configuration/profile table LAD FED:
each time the S7-200 changes to RUN mode.
PS5 _CTRL P5:_CTRL

Use this instruction only once in your project, and ensure - EM - EM
that your program calls this instruction every scan. Use — MG EM o MerEn
SMO0.0 (Always On) as the input for the EN parameter. Dane - Er'::;‘: i

Errar — L
The MOD_EN parameter must be on to enable the other C_Pos - c_sci:; B
position instructions to send commands to the Position £ _Speed = Dir -
module. If the MOD_EN parameter turns off, then the « Dir =
Position module aborts any command that is in progress.
The output parameters of the POSx_CTRL instruction
provide the current status of the Position module. SIMATIC
The Done parameter turns on when the Position module <TL

completes any instruction. CALL ey CTRL, MODEN, Done,

The Error parameter contains the result of this instruction. Brror. € Fos. € Speed, C_Dir

See Table 9-20 for definitions of the error codes.

The C_Pos parameter is the current position of the module. Based of the units of measurement,
the value is either a number of pulses (DINT) or the number of engineering units (REAL).

The C_Speed parameter provides the current speed of the module. If you configured the
measurement system for the Position module for pulses, C_Speed is a DINT value containing the
number of pulses/second. If you configured the measurement system for engineering units,
C_Speed is a REAL value containing the selected engineering units/second (REAL).

The C_Dir parameter indicates the current direction of the motor.

Table 9-9 Parameters for the POSx_CTRL Instruction

Inputs/Outputs Data Type Operands

MOD_EN BOOL ,Q,V,M, SM, S, T, C, L, Power Flow

Done, C_Dir BOOL ,Q,V,M,SM, S, T,C, L

Error BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD
C_Pos, C_Speed DINT, REAL ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD

Tip
@ The Position module reads the configuration/profile table only at power-up or when commanded

274

to load the configuration.

m [|f you use the Position Control wizard to modify the configuration, then the POSx_CTRL
instruction automatically commands the Position module to load the configuration/profile
table every time the S7-200 CPU changes to RUN mode.

= |f you use the EM 253 Control Panel to modify the configuration, clicking the Update
Configuration button commands the Position module to load the new configuration/profile
table.

m |f you use another method to modify the configuration, then you must also issue a Reload
the Configuration command to the Position module to load the configuration/profile table.
Otherwise, the Position module continues to use the old configuration/profile table.

Open Loop Motion Control with the S7-200 Chapter 9

POSx_MAN Instruction
The POSx_MAN instruction (Manual Mode) puts the

o .] SIMATIC £ [EC 1131
Position module into manual mode. This allows the motor to
be run at different speeds or to be jogged in a positive or LAD FED
negative direction. While the POSx_MAN instruction is
enabled, only the POSx_CTRL and POSx_DIS instructions A E:QSX‘MHN A E:QSX‘MHN
are allowed. RUIN
| RUM oGP
You can enable only one of the RUN, JOG_P, or JOG_N iyt
inputs at a time. THear Speed
. — [E -
Enabling the RUN (Run/Stop) parameter commands to the T eanH " c_r;E; L
Position module to accelerate to the specified speed C_Speed -
L . R | Speed Error - f
(Speed parameter) and direction (Dir parameter). You can Aoie CPosl C_Dir |-
change the value for the Speed parameter while the motor ¢_Speed |-
is running, but the Dir parameter must remain constant. _Dir -
Disabling the RUN parameter commands the Position
module to decelerate until the motor comes to a stop.

Enabling the JOG_P (Jog Positive Rotation) or the JOG_N SIMATIC
(Jog Negative Rotation) parameter commands the Position
module to jog in either a positive or negative direction. If the 5TL

JOG_P or JOG_N parameter remains enabled for less than CALL POSs AR, RUM, 106G,
0.5 seconds, the Position module issues pulses to travel the 106 M, Speed, Dir, Error,
distance specified in JOG_INCREMENT. If the JOG_P or €_Pos, C Speed, C_Dir

JOG_N parameter remains enabled for 0.5 seconds or
longer, the motion module begins to accelerate to the
specified JOG_SPEED.

The Speed parameter determines the speed when RUN is enabled. If you configured the
measuring system of the Position module for pulses, the speed is a DINT value for pulses/second.
If you configured the measuring system of the Position module for engineering units, the speed is
a REAL value for units/second. You can change this parameter while the motor is running.

Tip
@ The Position module may not react to small changes in the Speed parameter, especially if the
configured acceleration or deceleration time is short and the difference between the configured
maximum speed and start/stop speed is large.

For more information refer to FAQ 22632118 on the Siemens Internet site at
www.siemens.com/S7-200.

The Dir parameter determines the direction to move when RUN is enabled. You cannot change
this value when the RUN parameter is enabled.

The Error parameter contains the result of this instruction. See Table 9-20 for definitions of the
error codes.

The C_Pos parameter contains the current position of the module. Based of the units of
measurement selected, the value is either a number of pulses (DINT) or the number of
engineering units (REAL).

The C_Speed parameter contains the current speed of the module. Based of the units of
measurement selected, the value is either the number of pulses/second (DINT) or the engineering
units/second (REAL).

The C_Dir parameter indicates the current direction of the motor.

Table 9-10 Parameters for the POSx_MAN Instruction

Inputs/Outputs Data Type Operands

RUN, JOG_P, JOG_N | BOOL ,Q,V,M, SM, S, T, C, L, Power Flow

Speed DINT, REAL ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD, Constant
Dir, C_Dir BOOL ,Q,V, M, SM, S, T,C, L

Error BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

C_Pos, C_Speed DINT, REAL ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD

275

S7-200 Programmable Controller System Manual

POSx_GOTO Instruction

The POSx_GOTO instruction commands the Position

Module to go to a desired location. 2RI £ T3
Turning on the EN bit enables the instruction. Ensure that LAD FED
the EN bit stays on until the DONE bit signals that the POSx_GOTO POS=_GOTO
execution of the instruction has completed. S EM T ;";HHT
Turning on the START parameter sends a GOTO command TETART - Fos
to the Position module. For each scan when the START pos 7 :F;:;
parameter is on and the Position module is not currently = Speed abort Dine
busy, the instruction sends a GOTO command to the 7| Made Erear |
Position module. To ensure that only one GOTO command 7| fibert Er'::;? B Pos |-
is sent, use an edge detection element to pulse the START Fosl CSpeed -
parameter on. C_Speed |-
The Pos parameter contains a value that signifies either the
location to move (for an absolute move) or the distance to
move (for a relative move). Based of the units of
measurement selected, the value is either a number of S IMATIC
pulses (DINT) or the engineering units (REAL).

STL
The Speed parameter determines the maximum speed for CHLL POSx GOTO. START, Paos,
this movement. Based of the units of measurement, the Speed, Mode, Abort, Done,
value is either a number of pulses/second (DINT) or the Error. € Pos, € _Speed

engineering units/second (REAL).

The Mode parameter selects the type of move:
0 - Absolute position
1 - Relative position
2 - Single-speed, continuous positive rotation
3 - Single-speed, continuous negative rotation

The Done parameter turns on when the Position module completes this instruction.

Turning on the Abort parameter commands the Position module to stop the current profile and
decelerate until the motor comes to a stop.

The Error parameter contains the result of this instruction. See Table 9-20 for definitions of the
error codes.

The C_Pos parameter contains current position of the module. Based of the units of
measurement, the value is either a number of pulses (DINT) or the number of engineering units
(REAL).

The C_Speed parameter contains the current speed of the module. Based of the units of
measurement, the value is either a number of pulses/second (DINT) or the engineering
units/second (REAL).

Table 9-11 Parameters for the POSx_GOTO Instruction

Inputs/Outputs Data Type Operands

START BOOL ,Q,V,M, SM, S, T, C, L, Power Flow

Pos, Speed DINT, REAL ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD, Constant
Mode BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD, Constant
Abort, Done BOOL ,Q,V,M,SM, S, T,C, L

Error BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

C_Pos, C_Speed DINT, REAL ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD

276

Open Loop Motion Control with the S7-200 Chapter 9

POSx_RUN Instruction
The POSx_RUN instruction (Run Profile) commands the

o . L SIMATIC £ [EC 1131
Position module to execute the motion operation in a
specific profile stored in the configuration/profile table. LAD FED
Turning on the EN bit enables the instruction. Ensure that PelSs_RUM POSx_RUN
the EN bit stays on until the Done bit signals that the e T EP;HHT
execution of the instruction has completed. dstrRT Jrrotile
Turning on the START parameter sends a RUN command | Profile 7| feer E;';‘: i
to the Position module. For each scan when the START [Abeort Done = ¢ Profile
parameter is on and the Position module is not currently c Er:_‘Tr B C_Step |
busy, the instruction sends a RUN command to the Position 'Ef;t'e; B ¢ Fos
module. To ensure that only one command is sent, use an T Fosl CSpeed |5
edge detection element to pulse the START parameter on. C_Spesd -
The Profile parameter contains the number or the symbolic
name for the motion profile. You can also select the
advanced motion commands (118 to 127). For information T
about the motion commands, see Table 9-26.
Turning on the Abort parameter commands the Position =Tk
module to stop the current profile and decelerate until the CRLL s N, S TR o,

art, Cone, Error, C_Frofile,

motor comes to a stop. €_step, €_Fos, C_Speed
The Done parameter turns on when the module completes

this instruction.

The Error parameter contains the result of this instruction.
See Table 9-20 for definitions of the error codes.

The C_Profile parameter contains the profile currently being executed by the Position module.
The C_Step parameter contains the step of the profile currently being executed.

The C_Pos parameter contains the current position of the module. Based of the units of
measurement, the value is either a number of pulses (DINT) or the number of engineering units
(REAL).

The C_Speed parameter contains the current speed of the module. Based of the units of
measurement, the value is either a number of pulses/second (DINT) or the engineering
units/second (REAL).

Table 9-12 Parameters for the POSx_RUN Instruction

Inputs/Outputs Data Type Operands

START BOOL ,Q,V,M, SM, S, T, C, L, Power Flow

Profile BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD, Constant
Abort, Done BOOL ,Q,V,M, SM, S, T,C, L

Error, C_Profile, C_Step BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

C_Pos, C_Speed DINT, REAL ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD

277

S7-200 Programmable Controller System Manual

278

POSx_RSEEK Instruction

The POSx_RSEEK instruction (Seek Reference Point
Position) initiates a reference point seek operation, using
the search method in the configuration/profile table. When
the Position module locates the reference point and motion
has stopped, the Position module loads the RP_OFFSET
parameter value into the current position and generates a
50-millisecond pulse on the CLR output.

The default value for RP_OFFSET is 0. You can use the
Position Control wizard, the EM253 Control Panel, or the
POSx_LDOFF (Load Offset) instruction to change the
RP_OFFSET value.

Turning on the EN bit enables the instruction. Ensure that
the EN bit stays on until the Done bit signals that the
execution of the instruction has completed.

Turning on the START parameter sends a RSEEK
command to the Position module. For each scan when the
START parameter is on and the Position module is not
currently busy, the instruction sends a RSEEK command to
the Position module. To ensure that only one command is
sent, use an edge detection element to pulse the START
parameter on.

SIMATIE & 1EC 1131
LAD FED
Frse:_RSEEK. Frsz:_RSEEK
— EM — EM
— START
- 5TART Done -
Done = Ertar [~
Errar |-
SIMATILC
TL
CALL PS5 _RSEEK, START, Done, Error

The Done parameter turns on when the module completes this instruction.

The Error parameter contains the result of this instruction. See Table 9-20 for definitions of the

error codes.

Table 9-13 Parameters for the POSx_RSEEK Instruction

Inputs/Outputs Data Type Operands

START BOOL ,Q,V,M, SM, S, T, C, L, Power Flow

Done BOOL ,Q,V, M, SM, S, T,C, L

Error BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

Open Loop Motion Control with the S7-200 Chapter 9

POSx_LDOFF Instruction
The POSx_LDOFF instruction (Load Reference Point

- " h . SIMATIC £ [EC 1131
Offset) establishes a new zero position that is at a different
location from the reference point position. LAD FED:
Before executing this instruction, you must first determine FOgx LDOFF P52 LDOFF
the position of the reference point. You must also move the | EM —[EM
machine to the starting position. When the instruction sends | | <1t | =TAET 0
the LDOFF command, the Position module computes the Dione = Error L
offset between the starting position (the current position) Error -
and the reference point position. The Position module then
stores the computed offset to the RP_OFFSET parameter
and sets the current position to 0. This establishes the
starting position as the zero position. SIMATIC
In the event that the motor loses track of its position (such STL
as on loss of power or if the motor is repositioned

. . CALL PS¢ LDWOFF, START, Done. B

manually), you can use the POSx_RSEEK instruction to . e EE
re-establish the zero position automatically.

Turning on the EN bit enables the instruction. Ensure that
the EN bit stays on until the Done bit signals that the
execution of the instruction has completed.

Turning on the START parameter sends a LDOFF command to the Position module. For each
scan when the START parameter is on and the Position module is not currently busy, the
instruction sends a LDOFF command to the Position module. To ensure that only one command is
sent, use an edge detection element to pulse the START parameter on.

The Done parameter turns on when the module completes this instruction.

The Error parameter contains the result of this instruction. See Table 9-20 on for definitions of the
error codes.

Table 9-14 Parameters for the POSx_LDOFF Instruction

Inputs/Outputs Data Type Operands

START BOOL ,Q,V, M, SM, S, T, C, L, Power Flow

Done BOOL ,Q,V, M, SM,S, T,C, L

Error BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

279

S7-200 Programmable Controller System Manual

280

POSx_LDPOS Instruction

The POSx_LDPOS instruction (Load Position) changes the
current position value in the Position module to a new
value. You can also use this instruction to establish a new
zero position for any absolute move command.

Turning on the EN bit enables the instruction. Ensure that
the EN bit stays on until the Done bit signals that the
execution of the instruction has completed.

Turning on the START parameter sends a LDPOS
command to the Position module. For each scan when the
START parameter is on and the Position module is not
currently busy, the instruction sends a LDPOS command to
the Position module. To ensure that only one command is
sent, use an edge detection element to pulse the START
parameter on.

The New_Pos parameter provides the new value to replace
the current position value that the Position module reports
and uses for absolute moves. Based of the units of
measurement, the value is either a number of pulses (DINT)
or the engineering units (REAL).

The Done parameter turns on when the module completes
this instruction.

SIMATIE & 1EC 1131
LAD FED
PCe%_LDPOS PS5 _LDF O5
- EM — EM
= START
—5STHRT —{ Mew_Pos
— Mew_Fos Done -
Error -
Done
Errar [ikl
C_Pos-
SIMATIE l
5TL
CALL PoSe LDFCs, START.
Mew_Pos, Done, Errar,
C_Pos

The Error parameter contains the result of this instruction. See Table 9-20 for definitions of the

error codes.

The C_Pos parameter contains the current position of the module. Based of the units of
measurement, the value is either a number of pulses (DINT) or the number of engineering units

(REAL).

Table 9-15 Parameters for the POSx_LDPOS Instruction

Inputs/Outputs Data Type Operands

START BOOL ,Q,V,M, SM, S, T, C, L, Power Flow

New_Pos, C_Pos DINT, REAL ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD
Done BOOL ,Q,V, M, SM, S, T,C, L

Error BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

Open Loop Motion Control with the S7-200 Chapter 9

POSx_SRATE Instruction
The POSx_SRATE instruction (Set Rate) commands the

o) . SIMATIC £ [EC 1131
Position module to change the acceleration, deceleration,
and jerk times. LD FED
Turning on the EN bit enables the instruction. Ensure that P25 _SRATE PO SRATE
the EN bit stays on until the Done bit signals that the sl - E’j‘mm
execution of the instruction has completed. dsTaRT N oCEL Time
Turning on the START parameter copies the new time ~ ACCEL Tirme 7 E’éE;}EL{iTI_::E
values to the configuration/profile table and sends a SRATE ~| LELEL Tirmne -
command to the Position module. For each scan when the JERK_Time Done =
START parameter is on and the Position module is not Do - Error |7
currently busy, the instruction sends a SRATE command to Error =
the Position module. To ensure that only one command is
sent, use an edge detection element to pulse the START
parameter on.
SIMATIE

The ACCEL_Time, DECEL_Time, and JERK_Time
parameters determine the new acceleration time, 5TL
deceleration time, and jerk time in milliseconds (ms). CALL POS:_SRATE, START,

ACCEL _Tirne, DECEL Tirme,
The Done parameter turns on when the module completes JERE_Time, Done. Error
this instruction.
The Error parameter contains the result of this instruction.
See Table 9-20 for definitions of the error codes.
Table 9-16 Parameters for the POSx_SRATE Instruction
Inputs/Outputs Data Type Operands
START BOOL ,Q,V,M,SM, S, T,C, L
ACCEL_Time, DECEL_Time, DINT ID, QD, VD, MD, SMD, SD, LD, AC, *VD, *AC, *LD,
JERK_Time Constant
Done BOOL ,Q,V, M, SM, S, T,C, L
Error BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

281

S7-200 Programmable Controller System Manual

282

POSx_DIS Instruction

The POSx_DIS instruction turns the DIS output of the
Position module on or off. This allows you to use the DIS
output for disabling or enabling a motor controller. If you use
the DIS output on the Position module, then this instruction
can be called every scan or only when you need to change
the value of the DIS output.

When the EN bit turns on to enable the instruction, the
DIS_ON parameter controls the DIS output of the Position
module. For more information about the DIS output, see
Table 9-8 or refer to the specifications for the Position
module in Appendix A.

The Error parameter contains the result of this instruction.
See Table 9-20 for definitions of the error codes.

Table 9-17 Parameters for the POSx_DIS Instruction

Inputs/Outputs Data Type Operands

SIMATIE & 1EC 1131

LAC: FEL:

PoSx_DIS PSS _DIS
- EM — EM
= DI5_ON
| DIS_CM Error
Errar |-

SIMATIE

STL

CALL POSec DIS, DIS_CM, Error

DIS_ON BYTE
Error BYTE

1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD, Constant
1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

Open Loop Motion Control with the S7-200 Chapter 9

POSx_CLR Instruction
The POSx_CLR instruction (Pulse the CLR Output)

" SIMATIC £ [EC 1131
commands the Position module to generate a 50-ms pulse
on the CLR output. LAD FED:
Turning on the EN bit enables the instruction. Ensure that FoZx CLR FOZx (LR
the EN bit stays on until the Done bit signals that the | EM —[EM
execution of the instruction has completed. i P | =TAET

Done Dane -

Turning on the START parameter sends a CLR command to Er'::;': L Errar =
the Position module. For each scan when the START
parameter is on and the Position module is not currently

busy, the instruction sends a CLR command to the Position
module. To ensure that only one command is sent, use an < IMATIC
edge detection element to pulse the START parameter on.

STL
The Done parameter turns on when the module completes

this instruction CALL POSx (LR, START, Lone, Error

The Error parameter contains the result of this instruction.
See Table 9-20 for definitions of the error codes.

Table 9-18 Parameters for the POSx_CLR Instruction

Inputs/Outputs Data Type Operands

START BOOL ,Q,V, M, SM, S, T, C, L, Power Flow

Done BOOL ,Q,V,M, SM, S, T,C, L

Error BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

283

S7-200 Programmable Controller System Manual

284

POSx_CFG Instruction

The POSx_CFG instruction (Reload Configuration)
commands the Position module to read the configuration
block from the location specified by the configuration/profile
table pointer. The Position module then compares the new
configuration with the existing configuration and performs
any required setup changes or recalculations.

Turning on the EN bit enables the instruction. Ensure that
the EN bit stays on until the Done bit signals that the
execution of the instruction has completed.

Turning on the START parameter sends a CFG command to
the Position module. For each scan when the START
parameter is on and the Position module is not currently
busy, the instruction sends a CFG command to the Position
module. To ensure that only one command is sent, use an
edge detection element to pulse the START parameter on.

The Done parameter turns on when the module completes
this instruction.

SIMATIE & 1EC 1131
LAD FED
FOSx _CFG FOSy_CFG
- EM — EM
= 5TART
= 5THRT Dane
Drone = Error =
Error =
SIMATIC
5TL
CALL POS:_CFG, START, Done, Errar

The Error parameter contains the result of this instruction. See Table 9-20 for definitions of the

error codes.

Table 9-19 Parameters for the POSx_CFG Instruction

Inputs/Outputs Data Type Operands

START BOOL ,Q,V,M, SM, S, T, C, L, Power Flow

Done BOOL ,Q,V, M, SM,S, T,C, L

Error BYTE 1B, QB, VB, MB, SMB, SB, LB, AC, *VD, *AC, *LD

Open Loop Motion Control with the S7-200 Chapter 9

Sample Programs for the Position Module

The first sample program shows a simple relative move that uses the POSx_CTRL and
POSx_GOTO instructions to perform a cut-to-length operation. This program does not require an
RP seek mode or a motion profile, and the length can be measured in either pulses or engineering
units. Enter the length (VD500) and target speed (VD504). When 10.0 (Start) turns on, the
machine starts. When 10.1 (Stop) turns on, the machine finishes the current operation and stops.
When 10.2 (E_Stop) turns on, the machine aborts any motion and immediately stops.

The second sample program provides an example of the POSx_CTRL, POSx_RUN,
POSx_RSEEK, and POSx_MAN instructions. You must configure the RP seek mode and a
motion profile.

Sample Program 1: Simple Relative Move (Cut to Length application)

Metwork 1 Network 1 /[Control instruction (module in slot 0).
Ismu.ul . FOS0_CTAL LD SMO.0
P = L60.0
E_Stopln.2 LDN 0.2
I ¢ I MOD_EN = L63.7
LD L60.0
DEDHE':'B‘QDDD CALL POSO_CTRL, L63.7, M1.0, VB90O,
rrarg=
C PoslvDan2 VD902, VD906, V910.0
C_Speed[-¥DI0E
L Dikva100 Network 2 /IStart puts machine into
/lautomatic mode
LD 10.0
Network 2 AN 10.2
Start:10.0 E_Stop:in2 Running (0.2 EU
] 1 ¢

1 141 { ¢} () S Q0.2,1
! S MO.1, 1
Start_Mext_Move:M0.1
5)

1 Network 3 /[E_Stop: stops immediately and
[iturns off automatic mode.

Network 3 LD 10.2
E_Stopl02 Furring: 0.2 R Q0.2,1
R
Network 4 //Move to a certain point:
Network 4 /[Enter the length to cut.
F!u:ming:?M POSO_GOTO /[Enter the target speed into Speed.
10 EN /ISet the mode to 1 (Relative mode).
Start_MNext_Mowve:t01 LD Q02
| | | P | START = L60.0
LD MO.1
Lenath_to_CutvD500- Poz Donef 00.4 EU
SpeedWD504 4 5peed ErarfWES20
14 Mode C_PasfpvD322 L63.7
E_Stop:]0.2Abort C Speedp'DS26 LD L60.0

CALL POSO0_GOTO, L63.7, VD500, VD504,
1,10.2, Q0.4, VB920, VD922, VD926

Metwork 5 Network 5 //When in position, turn on the cutter
Running:00.2 o0.4 133 [ffor 2 seconds to finish the cut.
I} I} ™ TON
1T 1 T LD Q0.2
+2004FT A Q0.4
TON T33, +200
AN T33
T33 Cutter_Output:00.3 = Q03
|

285

S7-200 Programmable Controller System Manual

Sample Program 1: Simple Relative Move (Cut to Length application) , continued

Network 6 //When the cut is finished then restart

Network 6 /lunless the Stop is active.
Running: 0.2 T33 Stop:l0.1 Start_Mext_Move:MO.1
e e e I e b B P
A T33
Stop:l0.1 Running:(10.2 LPS
R) AN 101
1 = MO0.1
LPP
A 10.1
R Q0.2,1

Sample Program 2: Program with POSx_CTRL, POSx_RUN, POSx_SEEK, and POSx_MAN

Network 1 Network 1 //[Enable the Position module
Sw0.0 FOSO_CTRL LD SMO.0
|| EN = L60.0
01 LDN 10.1
| /| MOD_EN = L63.7
LD L60.0
DonepM1.0 CALL POSO0_CTRL, L63.7, M1.0, VB90O,
Error | WBS00 VD902, VD906, V910.0
C_PasfvDa02
Eﬁg??:ﬁgﬁgi Network 2 //Manual mode if not in auto mode
LD 11.0
AN MO0.0
= L60.0
Metwork 2 LD 11.1
1.0 MO0 FOS0_MEN - 163.7
|| | /| EN LD 112
1.1 = L63.6
: : RUN LD 11.4
= L63.5
n.2 LD L60.0
| | JOG_P CALL POS0_MAN, L63.7, L63.6,
L63.5, +100000, 1.5, VB920,
A VD902, VD906, V910.0
| | JOG_M
+1000004 S peed ErarFwB920 Network 3 /[Enable auto mode
11.54Dir C_PasfvDan2 LD 10.0
C_Spesd|-vD305 EU
C Dirfva100 S MO.0, 2
Hetwork 3 s S0.1, 1
0.0 K0.0 R S0.2,8
|)
2
501
5)
1
50z
A)
8

286

Open Loop Motion Control with the S7-200 Chapter 9

Sample Program 2: Program with POSx_CTRL, POSx_RUN, POSx_SEEK, and POSx_MAN, continued

Network 4 /[Emergency Stop

Network 4 /IDisable the module and auto mode

101 k0.0 D 10.1
| | I .
1 | {r) M0.0, 1
S0.1, 9

Q0.3,3

00 30C

Network 5 //When in auto mode:

[R) /[Turn on the Running light
LD MO0.0
= Q0.1

Metwork 5 Network 6

IMD.DI a0 LSCR S0.1

LY
S

Network 7 /[Find the reference point (RP)

LD S0.1
Network 6 = L60.0
501 LD S0.1
I TR = L63.7
LD L60.0
CALL POSO_RSEEK, L63.7, M1.1, VB930

Metwork 7
501 POSO_RSEEK Network 8 //\When at reference point (RP):
| | EN //Clamp the material and
//Go to the next step.

| ' | START LD M1.1
LPS
Donef#1.1 AB= VB930, 0
Enorf4B530 S Q0.3,1
SCRT S0.2
LPP
AB<> VB930, 0

Network 8 SCRT S1.0
M1.1 WEBS30 G0.3

] | | & | { s
o ! 0 ' ~ 1) Network 9
50.2 SCRE

WB930 51.0 Network 10

—] o p——stnA1) LSCR S0.2

Metwork 9

—(scRE)

Metwork 10

502
H SCR

287

S7-200 Programmable Controller System Manual

Sample Program 2: Program with POSx_CTRL, POSx_RUN, POSx_SEEK, and POSx_MAN, continued

Network 11 Network 11 //Use profile 1 to move into position.
50.2 POSO_RUN LD S0.2
I I EN = L60.0
LD S0.2
50.2 = L63.7

— | START LD L60.0

CALL POSO_RUN, L63.7, VB228, 10.1,

WB 225 o Prafile Donef 1.2 M1.2, VB940, VB941, VB942,
10.7 4 4bart Encrf B340 VD944, VD948
C_Profile[- /E341 Network 12 //When positioned, turn
C_Stepf-B342 /fon the cutter and go to
C_Pos VD34 Iithe next step.
C SpeedhvDa4s
LD M1.2
LPS
Hetwork 12 AB= VB940, 0
M1.2 VES4D 004 S Q04,1
1 | 1 P R T33,1
|| 1= Le) SCRT 0.3
23 LPP
(R) AB<> VB940, 0
1 SCRT S1.0
503
—(SCHT) Network 13
SCRE
VB340 510
| <6 } {(scrT) i ini
1 o ! s Network 14 //Wait for the cut to finish
LSCR S0.3
Network 13
Network 15

(scre) LD S0.3

TON T33, +200

Metwork 14
503
SCR
Network 15
503 T33
| |
1 I IM TOMN
+2004FT

288

Open Loop Motion Control with the S7-200 Chapter 9

Sample Program 2: Program with POSx_CTRL, POSx_RUN, POSx_SEEK, and POSx_MAN, continued

Network 16 Network 16 //Unless STOP is on, restart
133 003 /lwhen the cut is finished.
| {r) LD T33
! LPS
[Qg"‘) R Q03,1
1 R Q04,1
I0.2 501 AN 10.2
|/ ——(scr7) SCRT S0.1
LPP
0.2 0.0 A 10.2
| |(B) R MO0.0, 4
4 Network 17
SCRE
Metwork 17
) Network 18
—(scRE
LSCR S1.0

Network 19 //Reset the outputs.
Metwork 18
510 LD S1.0

Co

Network 20 //Flash the error light.

Metwork 19 ED SMO0.5
51.0 faluke] = Q0.5
2 Network 21 /[EXit the error routine if STOP is on.
Metwork 20 :iD :\3620 °
M s R S0.1,8
Network 22
SCRE
Hetwork 21
0.2 0.0
— R)
q
501
R)
g
Metwork 22

—((scRE)

289

S7-200 Programmable Controller System Manual

Monitoring the Position Module with the EM 253 Control Panel

290

To aid you in the development of your Position Control solution, STEP 7-Micro/WIN provides the
EM 253 Control Panel. The Operation, Configuration and Diagnostics tabs make it easy for you to
monitor and control the operation of the Position module during the startup and test phases of
your development process.

Use the EM 253 Control Panel to verify that the Position module is wired correctly, to adjust the
configuration data, and to test each movement profile.

Displaying and Controlling the Operation of the Position Module

The Operation tab of the control panel allows you to interact with the operations of the Position
Module. The control panel displays the current speed, the current position and the current
direction of the Position module. You can also see the status of the input and output LEDs
(excluding the Pulse LEDSs).

The control panel allows you to interact
with the Position module by changing the
speed and direction, by stopping and
starting the motion, and by jogging the
tool (if the motion is stopped).

You can also generate the following
motion commands:

1 Enable Manual Operation. This
command allows you to use the
manual controls for positioning the
tool.

J Run a Motion Profile. This
command allows you to select a
profile to be executed. The control
panel displays the status of the
profile which is being executed by
the Position module.
Figure 9-17 Operation Tab of the EM 253 Control Panel

1 Seekto a Reference Point. This command finds the reference point by using the configured
search mode.

1 Load Reference Point Offset. After you use the manual controls to jog the tool to the new
zero position, you then load the Reference Point Offset.

1 Reload Current Position. This command updates the current position value and establishes
a new zero position.

1 Activate the DIS output and Deactivate the DIS output. These commands turn the DIS
output of the Position module on and off.

1 Pulse the CLR output. This command generates a 50 ms pulse on the CLR output of the
Position module.

1 Teach a Motion Profile. This command allows you to save the target position and speed for
a motion profile and step as you manually position the tool. The control panel displays the
status of the profile which is being executed by the Position module.

1 Load Module Configuration. This command loads a new configuration by commanding the
Position module to read the configuration block from the V memory of the S7-200.

Open Loop Motion Control with the S7-200 Chapter 9

1 Move to an Absolute Position. This command allows you to move to a specified position at
a target speed. Before using this command, you must have already established the zero

position.

d Move by a Relative Amount. This command allows you to move a specified distance from
the current position at a target speed. You can enter a positive or negative distance.

1 Resetthe Command Interface. This command clears the command byte for the Position
module and sets the Done bit. Use this command if the Position module appears to not be

responding to commands.

Displaying and Modifying the Configuration of the Position Module

The Configuration tab of the control
panel allows you to view and modify the
configuration settings for the Position
module that are stored in the data block
of the S7-200.

After you modify the configuration
settings, you simple click a button to
update the settings in both the

STEP 7-Micro/Win project and the data
block of the S7-200.

Figure 9-18 Configuration Tab of the EM 253 Control Panel

Displaying the Diagnostics Information for the Position Module

The Diagnostics tab of the control panel
allows you to view the diagnostic
information about the Position module.

You can view specific information about

the Position module, such as the position

of the module in the I/O chain, the
module type and firmware version

number, and the output byte used as the

command byte for the module.

The control panel displays any error
condition that resulted from a
commanded operation. Refer to
Table 9-20 for the instruction error
conditions.

You can also view any error condition

reported by the Position module. Refer to

Table 9-21 for the module error
conditions.

Figure 9-19 Diagnostics Tab of the EM 253 Control Panel

201

S7-200 Programmable Controller System Manual

Error Codes for the Position Module and the Position
Instructions

292

Table 9-20 Instruction Error Codes

Error Code Description

0 No error
Aborted by user

2 Configuration error
Use the EM 253 Control Panel Diagnostics tab to view error codes
lllegal command

4 Aborted due to no valid configuration
Use the EM 253 Control Panel Diagnostics tab to view error codes

5 Aborted due to no user power

6 Aborted due to no defined reference point

7 Aborted due to STP input active

8 Aborted due to LMT- input active

9 Aborted due to LMT+ input active

10 Aborted due to problem executing motion

11 No profile block configured for specified profile

12 lllegal operation mode

13 Operation mode not supported for this command

14 lllegal number of steps in profile block

15 lllegal direction change

16 lllegal distance

17 RPS trigger occurred before target speed reached

18 Insufficient RPS active region width

19 Speed out of range

20 Insufficient distance to perform desired speed change

21 lllegal position

22 Zero position unknown

23to 127 Reserved

128 Position module cannot process this instruction: either the Position module is busy with
another instruction, or there was no Start pulse on this instruction

129 Position module error: Module ID incorrect or module logged out. Refer to SMB8 to SMB21
(I/O Module ID and Error Register) for other error conditions.

130 Position module is not enabled

131 Position module is not available due to a module error or module not enabled
(See the POSx_CTRL status)

132 The Q memory address that was configured with the Position Control wizard does not

match the memory address for the module at this location.

Open Loop Motion Control with the S7-200

Chapter 9

Table 9-21 Module Error Codes
Error Code Description

0 No error
1 No user power
2 Configuration block not present
3 Configuration block pointer error
4 Size of configuration block exceeds available V memory
5 lllegal configuration block format
6 Too many profiles specified
7 lllegal STP_RSP specification
8 lllegal LMT-_RPS specification
9 lllegal LMT+_RPS specification
10 lllegal FILTER_TIME specification
11 llegal MEAS_SYSS specification
12 llegal RP_CFG specification
13 llegal PLS/REV value
14 lllegal UNITS/REV value
15 llegal RP_ZP_CNT value
16 llegal JOG_INCREMENT value
17 llegal MAX_SPEED value
18 llegal SS_SPD value
19 llegal RP_FAST value
20 llegal RP_SLOW value
21 lllegal JOG_SPEED value
22 llegal ACCEL_TIME value
23 llegal DECEL_TIME value
24 llegal JERK_TIME value
25 llegal BKLSH_COMP value

293

S7-200 Programmable Controller System Manual

Advanced Topics

Understanding the Configuration/Profile Table

The Position Control wizard has been developed to make motion applications easy by

automatically generating the configuration and profile information based upon the answers you
give about your position control system. Configuration/profile table information is provided for
advanced users who want to create their own position control routines.

The configuration/profile table is located in the V. memory area of the S7-200. As shown in

Table 9-22, the configuration settings are stored in the following types of information:

%

Table 9-22
Offset

1 The configuration block contains information used to set up the module in preparation for
executing motion commands.

1 The interactive block supports direct setup of motion parameters by the user program.

1 Each profile block describes a predefined move operation to be performed by the Position
module. You can configure up 25 profile blocks.

Tip

To create more than 25 motion profiles, you can exchange configuration/profile tables by

changing the value stored in the configuration/profile table pointer.

Configuration/Profile Table

Name

Function Description

Configuration Block

294

MOD_ID
CB_LEN
IB_LEN
PF_LEN
STP_LEN
STEPS
PROFILES
Reserved
IN_OUT_CFG

Module identification field

The length of the configuration block in bytes (1 byte)
The length of the interactive block in bytes (1 byte)
The length of a single profile in bytes (1 byte)

The length of a single step in bytes (1 byte)

The number of steps allowed per profile (1 byte)
Number of profiles from 0 to 25 (1 byte)

Set to 0x0000
Specifies the use of MSB LSB
the module inputs 7 6 5 4 3 2 1

and outputs (1 byte)

P/D This bit specifies the use of PO and P1.
Positive Polarity (POL=0):
0 - PO pulses for positive rotation
P1 pulses for negative rotation
1 - PO pulses for rotation
P1 controls rotation direction (0 - positive, 1 - negative)
Negative Polarity (POL=1):
0 - PO pulses for positive rotation
P1 pulses for negative rotation
1 - PO pulses for rotation
P1 controls rotation direction (0 - positive, 1 - negative)
POL This bit selects the polarity convention for PO and P1.
(0 - positive polarity, 1 - negative polarity)
STP This bit controls the active level for the stop input.
RPS This bit controls the active level for the RPS input.
LMT- This bit controls the active level for the negative travel limit input.
LMT+ This bit controls the active level for the positive travel limit input
0 - Active high

|P/D|POL|0 | 0|STP|RPS|LMTv|LMT+

1 - Active low

Open Loop Motion Control with the S7-200

Chapter 9

Table 9-22
Offset

Configuration/Profile Table, continued

Name

Function Description

Type

14

15

16

17

18

19
20

24

28
32

33
34
38

STP_RSP

LMT-_RSP

LMT+ RSP

FILTER_TIME

MEAS_SYS

PLS/REV

UNITS/REV

UNITS
RP_CFG

RP_Z_CNT
RP_FAST

Specifies the response of the drive to the STP input (1 byte)

0 No action. Ignore the input condition.

1 Decelerate to a stop and indicate that the STP input is active.
2 Terminate the pulses and indicate STP input

3to 255 Reserved (error if specified)

Specifies the response of the drive to the negative limit input (1 byte)

0 No action. Ignore the input condition.
1 Decelerate to a stop and indicate that the limit has been reached.
2 Terminate the pulses and indicate that the limit has been reached.
3to 255 Reserved (error if specified)

Specifies the response of the drive to the positive limit input (1 byte)
0 No action. Ignore the input condition.
1 Decelerate to a stop and indicate that the limit has been reached.
2 Terminate pulses and indicate that the limit has been reached.
3to 255 Reserved (error if specified)

Specifies the filter MSB

time for the STP, 7 6 5 4 3 2 1

LSB

LMT-, LMT+, and STP, LMT-, LMT+ RPS

RPS inputs (1 byte)

'0000" 200 usec '0101" 3200 usec
'0001" 400 usec '0110’ 6400 usec
'0010' 800 usec '0111' 12800 usec
'0011’ 1600 usec '1000’ No filter
‘0100’ 1600 usec 1001 ' to '1111" Reserved (error if specified)

Specifies the measurement system (1 byte)

0 Pulses (speed is measured in pulses/second, and the position values

are measured in pulses). Values are stored as DINT.

1 Engineering units (speed is measured in units/second, and the position
values are measured in units). Values are stored as single-precision

REAL.
2to 255 Reserved (error if specified)
Reserved (Set to 0)

Specifies the number of pulses per revolution of the motor (4 bytes)
Only applicable when MEAS_SYS is setto 1.

Specifies the engineering units per revolution of the motor (4 bytes)
Only applicable when MEAS_SYS is setto 1.

Reserved for STEP 7-Micro/WIN to store a custom units string (4 bytes)

Specifies the MSB LSB

reference point
search configuration | | |

(1 byte)
L RP_ADDR_DIR

RP_SEEK_DIR
RP_SEEK_DIR This bit specifies the starting direction for a reference
point search.
(0 - positive direction, 1 - negative direction)
RP_APPR_DIR This bit specifies the approach direction for
terminating the reference point search.
(0 - positive direction, 1 - negative direction)
MODE Specifies the reference point search method.

‘0000’ Reference point search disabled.

'0001" The reference point is where the RPS input goes active.

‘0010’ The reference point is centered within the active region of the
RPS input.

'0011" The reference point is outside the active region of the RPS input.

‘0100’ The reference point is within the active region of the RPS input.
'0101' to '1111’ Reserved (error if selected)

Reserved (Set to 0)

Number of pulses of the ZP input used to define the reference point (4 bytes)

Fast speed for the RP seek operation: MAX_SPD or less (4 bytes)

DINT

REAL

DINT

DINT
REAL

295

S7-200 Programmable Controller System Manual

Table 9-22 Configuration/Profile Table, continued
Offset Name Function Description Type
42 RP_SLOW Slow speed for the RP seek operation: maximum speed from which the motor | DINT
can instantly go to a stop or less (4 bytes) REAL
46 SS_SPEED Start/Stop Speed. (4 bytes) DINT
The starting speed is the max. speed to which the motor can instantly go from | REAL
a stop and the maximum speed from which the motor can instantly go to a
stop. Operation below this speed is allowed, but the acceleration and
deceleration times do not apply.
50 MAX_SPEED Maximum operating speed of the motor (4 bytes) DINT
REAL
54 JOG_SPEED Jog speed. MAX_SPEED or less (4 bytes)
58 JOG_INCREMENT | The jog increment value is the distance (or number of pulses) to move in DINT
response to a single jog pulse. (4 bytes) REAL
62 ACCEL_TIME Time required to accelerate from minimum to maximum speed in milliseconds DINT
(4 bytes)
66 DECEL_TIME Time required to decelerate from maximum to minimum speed in milliseconds | DINT
(4 bytes)
70 BKLSH_COMP Backlash compensation: the distance used to compensate for the system DINT
backlash on a direction change (4 bytes) REAL
74 JERK_TIME Time during which jerk compensation is applied to the beginning and ending DINT
portions of an acceleration/deceleration curve (S curve). Specifying a value of
0 disables jerk compensation. The jerk time is given in milliseconds. (4 bytes)
Interactive Block
78 MOVE_CMD Selects the mode of operation (1 byte) --
0 Absolute position
1 Relative position
2 Single-speed, continuous operation, positive rotation
3 Single-speed, continuous operation, negative rotation
4 Manual speed control, positive rotation
5 Manual speed control, negative rotation
6 Single-speed, continuous operation, positive rotation with triggered stop
(RPS input signals stop)
7 Single-speed, continuous operation, negative rotation with triggered stop
(RPS input signals stop)
8 to 255 - Reserved (error if specified)
79 -- Reserved. Setto 0 --
80 TARGET_POS Target position to go to in this move (4 bytes) DINT
REAL
84 TARGET_SPEED Target speed for this move (4 bytes) DINT
REAL
88 RP_OFFSET Absolute position of the reference point (4 bytes) DINT
REAL

Profile Block 0

92
(+0)
93
(+1)

296

STEPS

MODE

Number of steps in this move sequence (1 byte)

Selects the mode of operation for this profile block (1 byte)

0 Absolute position

Relative position

Single-speed, continuous operation, positive rotation

Single-speed, continuous operation, negative rotation

Reserved (error if specified)

Reserved (error if specified)

Single-speed, continuous operation, positive rotation with triggered stop
(RPS selects speed)

Single-speed, continuous operation, negative rotation

with triggered stop (RPS input signals stop)

OO WNBRE

~

[ee]

9 Two-speed, continuous operation, negative rotation
(RPS selects speed)
10to 255 - Reserved (error if specified)

Two-speed, continuous operation, positive rotation (RPS selects speed)

Open Loop Motion Control with the S7-200 Chapter 9
Table 9-22 Configuration/Profile Table, continued
Offset Name Function Description Type
94 0 POS Position to go to in move step 0 (4 bytes) DINT
(+2) REAL
98 SPEED Target speed for move step O (4 bytes) DINT
(+6) REAL
102 1 POS Position to go to in move step 1 (4 bytes) DINT
(+10) REAL
106 SPEED Target speed for move step 1 (4 bytes) DINT
(+14) REAL
110 2 POS Position to go to in move step 2 (4 bytes) DINT
(+18) REAL
114 SPEED Target speed for move step 2 (4 bytes) DINT
(+22) REAL
118 3 POS Position to go to in move step 3 (4 bytes) DINT
(+26) REAL
122 SPEED Target speed for move step 3 (4 bytes) DINT
(+30) REAL
Profile Block 1
126 STEPS Number of steps in this move sequence (1 byte) --
(+34)
127 MODE Selects the mode of operation for this profile block (1 byte) --
(+35)
128 0 POS Position to go to in move step 0 (4 bytes) DINT
(+36) REAL
132 SPEED Target speed for move step O (4 bytes) DINT
(+40) REAL

297

S7-200 Programmable Controller System Manual

Special Memory Locations for the Position Module

The S7-200 allocates 50 bytes of special memory (SM) to each intelligent module, based on the
physical position of the module in the I/O system. See Table 9-23. When the module detects an
error condition or a change in status of the data, the module updates these SM locations. The first
module updates SMB200 through SMB249 as required to report the error condition, the second
module updates SMB250 through SMB299, and so on.

Table 9-23 Special Memory Bytes SMB200 to SMB549
SM Bytes for an intelligent module in:

Slot 0 Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6

SMB200 to SMB250 to SMB300 to SMB350 to SMB400 to SMB450 to SMB500 to
SMB249 SMB299 SMB349 SMB399 SMB449 SMB499 SMB549

Table 9-24 shows the structure of the SM data area allocated for an intelligent module. The
definition is given as if this were the intelligent module is located in slot O of the /O system.

Table 9-24 Special Memory Area Definition for the EM 253 Position Module
SM Address Description

SMB200 to Module name (16 ASCII characters). SMB200 is the first character: “EM253 Position”

SMB215

SMB216 to Software revision number (4 ASCII characters). SMB216 is the first character.

SMB219

SMW220 Error code for the module. See Table 9-21 for a description of the error codes.

SMB222 Input/output status. Reflects the MSB LSB

status of the inputs and outputs 7 8 5 4 3 2 1 0

of the module. | DIS | 0 | 0 | STP | LMT- | LMT+ | RPS | zpP |
DIS Disable outputs 0 = No current flow 1 = Current flow

STP Stop input 0 = No current flow 1 = Current flow

LMT- Negative travel limit input 0 = No current flow 1 = Current flow

LMT+ Positive travel limit input 0 = No current flow 1 = Current flow

RPS Reference point switch input 0 = No current flow 1 = Current flow

ZP Zero pulse input 0 = No current flow 1 = Current flow

SMB223 Instantaneous module status. Reflects MSB LSB
the status of the module configuration 7 8 5 4 3 2 1 0
and rotation direction status. | 0 | 0 | 0 | 0 | 0 | OR | R | CFG |
OR Target speed out of range 0 =Inrange 1 = Out of range
R Direction of rotation 0 = Positive rotation 1 = Negative rotation
CFG Module configured 0 = Not configured 1 = Configured

SMB224 CUR_PF is a byte that indicates the profile currently being executed.

SMB225 CUR_STP is a byte that indicates the step currently being executed in the profile.

SMD226 CUR_POS is a double-word value that indicates the current position of the module.

SMD230 CUR_SPD is a double-word value that indicates the current speed of the module.

SMB234 Result of the instruction. See Table 9-20 for MSB LsB
descriptions of the error codes. Error conditions ! 6 0
above 127 are generated by the instruction | D | ERROR
subroutines created by the wizard.

D Done bit 0= Operation in progress
1= Operation complete (set by the module during initialization)

SMB235 to Reserved

SMB244

SMB245 Offset to the first Q byte used as the command interface to this module. The offset is supplied by the
S7-200 automatically for the convenience of the user and is not needed by the module.

SMD246 Pointer to the V memory location of the configuration/profile table. A pointer value to an area other than
V memory is not valid. The Position module monitors this location until it receives a non-zero pointer
value.

298

Open Loop Motion Control with the S7-200 Chapter 9

Understanding the Command Byte for the Position Module

The Position module provides one byte of discrete outputs which is used as the command byte.
Figure 9-20 shows the command byte definition. Table 9-20 shows the Command_code

definitions.

A write to the command byte where the M;Q/B 6 s 4 3 2 1 LgB
R bit changes from 0 to 1 is interpreted

by the module as a new command. QBx | R | Command_code

If the module detects a transition to idle R 0= Idle

(R bitchanges state to) whilea 1= Execute the command specified
command is active, then the operation in in Command_code (See Table 9-25)

progress is aborted and, if a motion is in

progress, then a decelerated stop is
performed. Figure 9-20 Definition of the Command Byte

After an operation has completed, the module must see a transition to idle before a new command

is accepted. If an operation is aborted, then the module must complete any deceleration before a
new command is accepted. Any change in the Command_code value while a command is active

is ignored.
The response of the Position module to a Table 9-25 Command_code Definitions
change in the operating mode of the Command_code Command
S7-200 or to a fault condition is governed 000 0000 to Oto Execute motion specified in
by the effect that the S7-200 exerts over the | 590 1111 24 Profile Blocks O to 24
el SIS SETIO e SIS o0 om0s 2510 Fserved

’ 111 0101 117 (Error if specified)

1 Ifthe S7-200 changes from STOP to 111 0110 118 Activate the DIS output
RUN: The program in the S7-200 111 0111 119 Deactivate the DIS output
controls the operation of the Position 111 1000 120 | Pulse the CLR output
module. 111 1001 121 Reload current position

1 Ifthe S7-200 changes from RUN to 111 1010 122 | Execute motion specified in
STOP: You can select the state that the Interactive Block
the discrete outputs areto gotoona 193 1011 123 | Capture reference point
transition to STOP or that the outputs offset
are to retain their last state. 111 1100 124 Jog positive rotation

- Ifthe R bit is turned off when 111 1101 125 | Jog negative rotation
going to STOP: The Position 111 1110 126 | Seek to reference point
module decelerates any position
motion in progress to a stop 111 1111 127 Reload configuration

- Ifthe R bit is turned on when going to STOP: The Position module completes any
command that is in progress. If no command is in progress, the Position module
executes the command which is specified by the Command_code bits.

- Ifthe R bitis held in its last state: The Position module completes any motion in
progress.

1 Ifthe S7-200 detects a fatal error and turns off all discrete outputs: The Position module
decelerates any motion in progress to a stop.

The Position module implements a watchdog timer that turns the outputs off if communications
with the S7-200 are lost. If the output watchdog timer expires, the Position module decelerates
any motion in progress to a stop.

If a fatal error in the hardware or firmware of the module is detected, the Position module sets the
PO, P1, DIS and CLR outputs to the inactive state.

299

S7-200 Programmable Controller System Manual

Table 9-26 Motion Commands

Command

Description

Commands 0 to 24:

Executes the motion specified in
profile blocks 0 to 24

Command 118

Activates the DIS output
Command 119

Deactivates the DIS output
Command 120

Pulses the CLR output
Command 121

Reloads the Current Position

300

When this command is executed, the Position module performs the motion
operation specified in the MODE field of the profile block indicated by the
Command_code portion of the command.

In Mode 0 (absolute position), the motion profile block defines from one to four
steps with each step containing both the position (POS) and speed (SPEED)
that describes the move segment. The POS specification represents an
absolute location, which is based on the location designated as reference point.
The direction of movement is determined by the relationship between the
current position and the position of the first step in the profile. In a multi-step
move a reversal of direction of travel is prohibited and results in an error
condition being reported.

In Mode 1 (relative position), the motion profile block defines from one to four
steps with each step containing both the position (POS) and the speed
(SPEED) that describes the move segment. The sign of the position value
(POS) determines the direction of the movement. In a multi-step move, a
reversal of direction of travel is prohibited and results in the reporting of an error
condition.

In Modes 2 and 3 (single-speed, continuous operation modes), the position
(POS) specification is ignored and the module accelerates to the speed
specified in the SPEED field of the first step. Mode 2 is used for positive
rotation, and Mode 3 is used for negative rotation. Movement stops when the
command byte transitions to Idle.

In Modes 6 and 7 (single-speed, continuous operation modes with triggered
stop), the module accelerates to the speed specified in the SPEED field of the
first step. If and when the RPS input becomes active, movement stops after
completing the distance specified in the POS field of the first step. (The
distance specified in the POS field must include the deceleration distance.) If
the POS field is zero when the RPS input becomes active, the Position module
decelerates to a stop. Mode 6 is used for positive rotation, and Mode 7 is used
for negative rotation.

In Modes 8 and 9, the binary value of the RPS input selects one of two speed
values as specified by the first two steps in the profile block.

- If the RPS is inactive: Step 0 controls the speed of the drive.
- If the RPS is active: Step 1 controls the speed of the drive.

Mode 8 is used for positive rotation, and Mode 9 is used for negative rotation.
The SPEED value controls the speed of movement. The POS values are
ignored in this mode.

When this command is executed, the Position module activates the DIS output.

When this command is executed, the Position module deactivates the DIS output.

When this command is executed, the Position module generates a 50-millisecond
pulse on the CLR output.

When this command is executed, the Position module sets the current position to
the value found in the TARGET_POS field of the interactive block.

Open Loop Motion Control with the S7-200 Chapter 9

Table 9-26 Motion Commands, continued

Command

Description

Command 122

Execute the motion specified in
the interactive block

Command 123

Capture the Reference Point
offset

Command 124
Jog positive rotation

Command 125
Jog negative rotation

Command 126

Seek to Reference Point position

Command 127
Reload the configuration

When this command is executed, the Position module performs the motion
operation specified in the MOVE_CMD field of the interactive block.

¢ In Modes 0 and 1 (absolute and relative motion modes), a single step motion is
performed based upon the target speed and position information provided in the
TARGET_SPEED and TARGET_POS fields of the interactive block.

¢ In Modes 2 and 3 (single-speed, continuous operation modes), the position
specification is ignored, and the Position module accelerates to the speed
specified in the TARGET_SPEED field of the interactive block. Movement stops
when the command byte transitions to Idle.

¢ In Modes 4 and 5 (manual speed control modes), the position specification is
ignored and your program loads the value of speed changes into the
TARGET_SPEED field of the interactive block. The Position module
continuously monitors this location and responds appropriately when the speed
value changes.

When this command is executed, the Position module establishes a zero position
that is at a different location from the reference point position.

Before issuing this command, you must have determined the position of the
reference point and must also have jogged the machine to the work starting
position. After receiving this command, the Position module computes the offset
between the work starting position (the current position) and the reference point
position and writes the computed offset to the RP_OFFSET field of the Interactive
Block. The current position is then set to 0 to establish the work starting position as
the zero position.

In the event that the stepper motor loses track of its position (for example, if power
is lost or the stepper motor is repositioned manually) the Seek to Reference Point
Position command can be issued to re-establish the zero position automatically.

This command allows you to manually issue pulses for moving the stepper motor in
the positive direction.

If the command remains active for less than 0.5 seconds, the Position module
issues pulses to travel the distance specified in JOG_INCREMENT.

If the command remains active for 0.5 seconds or longer, the motion module begins
to accelerate to the specified JOG_SPEED.

When a transition to idle is detected, the Position module decelerates to a stop.

This command allows you to manually issue pulses for moving the stepper motor in
the negative direction.

If the command remains active for less than 0.5 seconds, the Position module
issues pulses to travel the distance specified in JOG_INCREMENT.

If the command remains active for 0.5 seconds or longer, the Position module
begins to accelerate to the specified JOG_SPEED.

When a transition to idle is detected, the Position module decelerates to a stop.

When this command is executed, the Position module initiates a reference point
seek operation using the specified search method. When the reference point has
been located and motion has stopped, the Position module loads the value read
from the RP_OFFSET field of the interactive block into the current position and
pulses the CLR output on for 50 milliseconds.

When this command is executed, the Position module reads the configuration/profile
table pointer from the appropriate location in SM memory and then reads the
configuration block from the location specified by the configuration/profile table
pointer. The Position module compares the configuration data just obtained against
the existing module configuration and performs any required setup changes or
recalculations. Any cached profiles are discarded.

301

S7-200 Programmable Controller System Manual

302

Understanding the Profile Cache of the Position Module

The Position module stores the execution data for up to 4 profiles in cache memory. When the
Position module receives a command to execute a profile, it checks to see if the requested profile
is stored in the cache memory. If the execution data for the profile is resident in the cache, the
Position module immediately executes the profile. If the the execution data for the profile is not
resident in the cache, the Position module reads the profile block information from the
configuration/profile table in the S7-200 and calculates the execution data for the profile before
executing the profile.

Command 122 (Execute the motion specified in the interactive block) does not use cache
memory to store the execution data, but always reads the interactive block from the
configuration/profile table in the S7-200 and calculates the execution data for the motion.

Reconfiguring the Position module deletes all of the execution data stored in the cache memory.

Creating Your Own Position Control Instructions

The Position Control wizard creates the position instructions for controlling the operation of the
Position module; however, you can also create your own instructions. The following STL code
segment provides an example of how you might create your own control instructions for the
Position module.

This example uses an S7-200 CPU 224 with a Position module located in slot 0. The Position module is
configured on power-up. CMD_STAT is a symbol for SMB234, CMD is a symbol for QB2, and NEW_CMD is a
symbol for the profile.

Sample Program: Controlling the Position Module

Network 1 //INew move command state
LSCR State_0

Network 2 /ICMD_STAT is a symbol for SMB234
//ICMD is a symbol for QB2
/INEW_CMD is a symbol for the profile.
1
/1. Clear the Done bit of the Position module.
/2. Clear the command byte of the Position module.
/3. Issue the new command.
/l4. Wait for the command to be executed.
LD SMO0.0
MOVB 0, CMD_STAT
BIW 0, CMD
BIW NEW_CMD, CMD
SCRT State 1

Network 3
SCRE

Network 4 //Wait for the command to be completed.
LSCR State_1

Network 5 /NIf the command is complete without error, go to the idle state.

LDB= CMD_STAT, 16#80
SCRT Idle_State

Network 6 /Nf the command is complete with an error, go to the error handling state.

LDB> CMD_STAT, 16#80
SCRT Error_State

Network 7
SCRE

Open Loop Motion Control with the S7-200 Chapter 9

Understanding the RP Seek Modes Supported by the Position

Module

The following figures provide diagrams of the different options for each RP seek mode.

a

a

a

a

For each mode, there are four combinations of RP Seek direction and RP Approach direction.

Figure 9-21 shows two of the options for RP seek mode 1. This mode locates the RP

where the RPS input goes active on the approach from the work zone side.

Figure 9-22 shows two of the options for RP seek mode 2. This mode locates the RP in the
center within the active region of the RPS input.

Figure 9-23 shows two of the options for RP seek mode 3. This mode locates the RP a

specified number of zero pulses (ZP) outside the active region of the RPS input.

Figure 9-24 shows two of the options for RP seek mode 4. This mode locates the RP a

specified number of zero pulses (ZP) within the active region of the RPS input.

(Only two of the combinations are shown.) These combinations determine the pattern for the RP
seek operation. For each of the combinations, there are also four different starting points:

The work zones for each diagram have been located so that moving from the reference point to
the work zone requires movement in the same direction as the RP Approach Direction. By
selecting the location of the work zone in this way, all the backlash of the mechanical gearing
system is removed for the first move to the work zone after a reference point seek.

Default configuration : LMT-
RP Seek Direction: Negative Active
RP Approach Direction: Positive

J—

Positive motion

-

Negative motion

RPS Active

‘ RP
Work Zone

RP Seek Direction: Positive
RP Approach Direction: Positive

J—

Positive motion

-

Negative motion

RPS Active LMT+

Active
RP
Work Zone

Figure 9-21 RP Seek Mode 1

303

S7-200 Programmable Controller System Manual

Default configuration :
RP Seek Direction: Negative
RP Approach Direction: Positive

—>
Positive motion
-
Negative motion

RPS Active

LMT-
Active ‘

+

Work Zone

!
\
|
\
”
\
T
\
|
\

RP Seek Direction: Positive
RP Approach Direction: Positive

—
Positive motion
-
Negative motion

LMT+
Active

Figure 9-22 RP Seek: Mode 2

Default configuration :
RP Seek Direction: Negative
RP Approach Direction: Positive

J——
Positive motion

-
Negative motion

LMT-
Active

RPS
Active

+ Work Zone

RP Seek Direction: Positive
RP Approach Direction: Positive

—
Positive motion
-
Negative motion

RPS
Active

_4——— Number of

LMT+
Active

Work Zone

ZP pulses

S

-

Figure 9-23 RP Seek: Mode 3

304

Open Loop Motion Control with the S7-200

Chapter 9

Default configuration :
RP Seek Direction: Negative
RP Approach Direction: Positive

—>
Positive motion
-
Negative motion

LMT-
Active

RPS Active |

:

Work Zone

-<—— Number of ZP pulses

RP Seek Direction: Positive
RP Approach Direction: Positive

—
Positive motion
-
Negative motion

RPS Active

-1

| Work Zone

LMT+
Active

\
Number of
‘ ZP pulses
\ \
~ [[
| | < |
\
\

Figure 9-24 RP Seek: Mode 4

305

S7-200 Programmable Controller System Manual

Selecting the Location of the Work Zone to Eliminate Backlash

Figure 9-25 shows the work zone in relationship to the reference point (RP), the RPS Active zone,
and the limit switches (LMT+ and LMT-) for an approach direction that eliminates the backlash.
The second part of the illustration places the work zone so that the backlash is not eliminated.
Figure 9-25 shows RP seek mode 3. A similar placement of the work zone is possible, although
not recommended, for each of the search sequences for each of the other RP seek modes.

Backlash is eliminated
RP Seek Direction: Negative

RP Approach Direction: Negative LMT- RPS
Active RP Active
Work Zone +

\ | — | \
- \ \ | \

Positive motion ‘ ‘ ‘ ‘
\ \ | \

Negative motion
} |) | } O
\ \
\ \
\ \
\

Backlash is not eliminated

RP Seek Direction: Negative
RP Approach Direction: Negative

LMT- RPS

Active RP Active
Y

Work Zone

\
- \
Positive motion ‘

\

Negative motion ‘
T

\

\

\

\

Figure 9-25 Placement of the Work Zone with and without the Elimination of Backlash

306

Creating a Program for the
Modem Module

The EM 241 Modem module allows you to connect your S7-200 directly to an analog telephone
line, and supports communications between your S7-200 and STEP 7-Micro/WIN. The Modem
module also supports the Modbus slave RTU protocol. Communications between the Modem
module and the S7-200 are made over the Expansion I/O bus.

STEP 7-Micro/WIN provides a Modem Expansion wizard to help set up a remote modem or a
Modem module for connecting a local S7-200 to a remote device.

In This Chapter

Features of the Modem Module 308
Using the Modem Expansion Wizard to Configure the Modem Module 314
Overview of Modem Instructions and Restrictions 318
Instructions for the Modem Module 319
Sample Program for the Modem Module 323
S7-200 CPUs that Support Intelligent Modules 323
Special Memory Location for the Modem Module 323
Advanced TOPICS . .. ittt 325
Messaging Telephone Number Format e 327
Text Message FOrmat e e 328
CPU Data Transfer Message FOrmatt 329

307

S7-200 Programmable Controller System Manual

Features of the Modem Module

The Modem module allows you to connect your S7-200 directly to an analog telephone line and
provides the following features:

1 Provides international telephone line §|
interface Comsin i Far 58, 73X Aen
FOC Reg, Ne,3A4 USA-35605-M3-E
[0 Provides a modem interface to D e e -
STEP 7-Micro/WIN for programming 5 S e
and troubleshooting (teleservice) el el —
1 Supports the Modbus RTU protocol
1 Supports numeric and text paging L
D SuPportS SMS messaglng :—t oooooo[n 2A1:1AA12:0><AOE
O Allows CPU-to-CPU or CPU-to 1
Modbus data transfers Country Code “_: ()3 [eYele)
Switches —— mﬁo@x.
O Provides password protection () O

O Provides security callback Figure 10-1 EM 241 Modem Module

1 The Modem module configuration is stored in the CPU

You can use the STEP 7-Micro/WIN Modem Expansion wizard to configure the Modem module.
Refer to Appendix A for the specifications of the Modem module.

International Telephone Line Interface

The Modem module is a standard V.34 123456 Pin Description
(33.6 kBaud), 10-bit modem, and is e 3 Ring Reverse connection
compatible with most internal and] 4 Tip is allowed.

external PC modems. The Modem

module does not communicate with

11-bit modems. Figure 10-2 View of RJ11 Jack

You connect the Modem module to the Table 10-1 Countries Supported by the EM 241
telephone line with the six-position four-wire Switch Setting Country
RJ11 connector mounted on the front of the 00 Austala
module. See Figure 10-2. -
] 01 Austria

An adapter may be requwed_ to convert the 02 Belgium
RJ11 connector for connection to the
standard telephone line termination in the 05 Canada
various countries. Refer to the 06 China
documentation for your adapter connector 08 Denmark
for more information. 09 Finland
The modem and telephone line interface is 10 France
powered from an external 24 VDC supply. 1n Germany
This can be connected to the CPU sensor

12 Greece
supply or to an external source. Connect
the ground terminal on the Modem module 16 Ireland
to the system earth ground. 18 Italy
The Modem module automatically 22 Luxembourg
configures the telephone interface for 25 Netherlands
country-specific operation when power is 26 New Zealand
applled to the module. The two rotary 27 Norway
switches on the front of the module select
the country code. You must set the 30 Portugal
switches to the desired country selection 34 Spain
before the Modem module is powered up. 35 Sweden
Refer to Table 10-1 for switch settings for 36 Switzerland
the countries supported. 38 UK.

39 U.S.A.

308

Creating a Program for the Modem Module Chapter 10

STEP 7-Micro/WIN Interface

The Modem module allows you to communicate with STEP 7-Micro/WIN over a telephone line
(teleservice). You do not need to configure or program the S7-200 CPU to use the Modem module
as the remote modem when used with STEP 7-Micro/WIN.

Follow these steps to use the Modem module with STEP 7-Micro/WIN:

1. Remove the power from the S7-200 CPU and attach the Modem module to the I/O
expansion bus. Do not attach any I/0O modules while the S7-200 CPU is powered up.

Connect the telephone line to the Modem module. Use an adapter if necessary.
Connect 24 volts DC to the Modem module terminal blocks.

Connect the Modem module terminal block ground connection to the system ground.
Set the country code switches.

Power up the S7-200 CPU and the Modem module.

N o g s~ DN

Configure STEP 7-Micro/WIN to communicate to a 10-bit modem.

Modbus RTU Protocol

You can configure the Modem module to respond as a Modbus RTU slave. The Modem module
receives Modbus requests over the modem interface, interprets those requests and transfers data
to or from the CPU. The Modem module then generates a Modbus response and transmits it out
over the modem interface.

Tip
@ If the Modem module is configured to respond as a Modbus RTU slave, STEP 7-Micro/WIN is
not able to communicate to the Modem module over the telephone line.

The Modem module supports the Modbus functions shown in Table 10-2.

Modbus functions 4 and 16 allow reading or Table 10-2 Modbus Functions Supported by Modem

writing a maximum of 125 holding registers Module
(250 bytes of V. memory) in one request. Function Description
_Functlons_5 and 15 write to the output Function 01 Read coil (output) status
image register of the CPU. These values - -

. Function 02 Read input status
can be overwritten by user program.

Function 03 Read holding registers

Modbus addresses are normally written as Function 04 Read input (analog input) registers
5 or 6 character values containing the data Function 05 Write single coil (output)
type and the offset. The first one or two Eunction 06 Preset sind ist
characters determine the data type, and the unction Fresetsingle register
last four characters select the proper value Function 15 Write multiple coils (outputs)
within the data type. The Modbus master Function 16 Preset multiple registers

device maps the addresses to the correct
Modbus functions.

309

S7-200 Programmable Controller System Manual

310

Table 10-3 shows the Modbus addresses Table 10-3 Mapping Modbus Addresses to the S7-200

supported by the Modem module, and the CPU
mapping of Modbus addresses to the Modbus Address S7-200 CPU Address
S7-200 CPU addresses. 000001 Q0.0
. . 000002 0.1
Use the Modem Expansion wizard to create 000003 80 5
a configuration block in for the Modem
module to support Modbus RTU protocol. 000127 Q15.6
The Modem module configuration block 000128 Q15.7
must be downloaded to the CPU data block
010001 10.0
before you can use the Modbus protocol. 010002 0.1
010003 10.2
010127 115.6
010128 115.7
030001 AIW0
030002 Alw2
030003 Alw4
030032 AIW62
040001 VWO
040002 VW2
040003 VW4
04XXXX VW 2*(xxxx-1)

Paging and SMS Messaging

The Modem module supports sending numeric and text paging messages, and SMS (Short
Message Service) messages to cellular phones (where supported by the cellular provider). The
messages and telephone numbers are stored in the Modem module configuration block which
must be downloaded to the data block in the S7-200 CPU. You can use the Modem Expansion
wizard to create the messages and telephone numbers for the Modem module configuration
block. The Modem Expansion wizard also creates the program code to allow your program to
initiate the sending of the messages.

Numeric Paging

Numeric paging uses the tones of a touch tone telephone to send numeric values to a pager. The
Modem module dials the requested paging service, waits for the voice message to complete, and
then sends the tones corresponding to the digits in the paging message. The digits 0 through 9,
asterisk (*), A, B, C and D are allowed in the paging message. The actual characters displayed by
a pager for the asterisk and A, B, C, and D characters are not standardized, and are determined
by the pager and the paging service provider.

Text Paging

Text paging allows alphanumeric messages to be transmitted to a paging service provider, and
from there to a pager. Text paging providers normally have a modem line that accepts text pages.
The Modem module uses Telelocator Alphanumeric Protocol (TAP) to transmit the text messages
to the service provider. Many providers of text paging use this protocol to accept messages.

Short Message Service (SMS)

Short Message Service (SMS) messaging is supported by some cellular telephone services,
generally those that are GSM compatible. SMS allows the Modem module to send a message
over an analog telephone line to an SMS provider. The SMS provider then transmits the message
to the cellular telephone, and the message appears on the text display of the telephone. The
Modem module uses the Telelocator Alphanumeric Protocol (TAP) and the Universal Computer
Protocol (UCP) to send messages to the SMS provider. You can send SMS messages only to
SMS providers that support these protocols on a modem line.

Creating a Program for the Modem Module Chapter 10

Embedded Variables in Text and SMS Messages

The Modem module can embed data values from the CPU in the text messages and format the
data values based on a specification in the message. You can specify the number of digits to the
left and right of the decimal point, and whether the decimal point is a period or a comma. When
the user program commands the Modem module to transmit a text message, the Modem module
retrieves the message from the CPU, determines what CPU values are needed within the
message, retrieves those values from the CPU, and then formats and place the values within the
text message before transmitting the message to the service provider.

The telephone number of the messaging provider, the message, and the variables embedded
within the message are read from the CPU over multiple CPU scan cycles. Your program should
not modify telephone numbers or messages while a message is being sent. The variables
embedded within a message can continue to be updated during the sending of a message. If a
message contains multiple variables, those variables are read over multiple scan cycles of the
CPU. If you want all of the embedded variables within a message to be consistent, the you must
not change any of the embedded variables after you send a message.

Data Transfers

The Modem module allows your program to transfer data to another CPU or to a Modbus device
over the telephone line. The data transfers and telephone numbers are configured with the
Modem Expansion wizard, and are stored in the Modem module configuration block. The
configuration block is then downloaded to the data block in the S7-200 CPU. The Modem
Expansion wizard also creates program code to allow your program to initiate the data transfers.

A data transfer can be either a request to read data from a remote device, or a request to write
data to a remote device. A data transfer can read or write between 1 and 100 words of data. Data
transfers move data to or from the V memory of the attached CPU.

The Modem Expansion wizard allows you to create a data transfer consisting of a single read from
the remote device, a single write to the remote device, or both a read from and a write to the
remote device.

Data transfers use the configured protocol of the Modem module. If the Modem module is
configured to support PPI protocol (where it responds to STEP 7-Micro/WIN), the Modem module
uses the PPI protocol to transfer data. If the Modem module is configured to support the Modbus
RTU protocol, data transfers are transmitted using the Modbus protocol.

The telephone number of the remote device, the data transfer request and the data being
transferred are read from the CPU over multiple CPU scan cycles. Your program should not
modify telephone numbers or messages while a message is being sent. Also, you should not
modify the data being transferred while a message is being sent.

If the remote device is another Modem module, the password function can be used by the data
transfers by entering the password of the remote Modem module in the telephone number
configuration. The callback function cannot be used with data transfers.

Password Protection

The password security of the Modem module is optional and is enabled with the Modem
Expansion wizard. The password used by the Modem module is not the same as the CPU
password. The Modem module password is a separate 8-character password that the caller must
supply to the Modem module before being allowed access to the attached CPU. The password is
stored in the V memory of the CPU as part of the Modem module configuration block. The Modem
module configuration block must be downloaded to the data block of the attached CPU.

If the CPU has the password security enabled in the System Data Block, the caller must supply
the CPU password to gain access to any password protected functions.

311

S7-200 Programmable Controller System Manual

312

Security Callback

The callback function of the Modem module is optional and is configured with the Modem
Expansion wizard. The callback function provides additional security for the attached CPU by
allowing access to the CPU only from predefined telephone numbers. When the callback function
is enabled, the Modem module answers any incoming calls, verifies the caller, and then
disconnects the line. If the caller is authorized, the Modem module then dials a predefined
telephone number for the caller, and allows access to the CPU.

The Modem module supports three callback modes:

1 Callback to a single predefined telephone number
1 Callback to multiple predefined telephone numbers
1 Callback to any telephone number

The callback mode is selected by checking the appropriate option in the Modem Expansion
wizard and then defining the callback telephone numbers. The callback telephone numbers are
stored in the Modem module configuration block stored in the data block of the attached CPU.

The simplest form of callback is to a single predefined telephone number. If only one callback
number is stored in the Modem module configuration block, whenever the Modem module
answers an incoming call, it notifies the caller that callback is enabled, disconnects the caller, and
then dials the callback number specified in the configuration block.

The Modem module also supports callback for multiple predefined telephone numbers. In this
mode the caller is asked for a telephone number. If the supplied humber matches one of the
predefined telephone numbers in the Modem module configuration block, the Modem module
disconnects the caller, and then calls back using the matching telephone number from the
configuration block. The user can configure up to 250 callback numbers.

Where there are multiple predefined callback numbers, the callback number supplied when
connecting to the Modem module must be an exact match of the number in the configuration
block of the Modem module except for the first two digits. For example, if the configured callback
is 91(123)4569999 because of a need to dial an outside line (9) and long distance (1), the number
supplied for the callback could be any of the following:

O 91(123)4569999
O 1(123)4569999
O (123)4569999

All of the above telephone number are considered to be a callback match. The Modem module
uses the callback telephone number from its configuration block when performing the callback, in
this example 91(123)4569999. When configuring multiple callback numbers, make sure that all
telephone numbers are unique excluding the first two digits. Only the numeric characters in a
telephone number are used when comparing callback numbers. Characters such as commas or
parenthesis are ignored when comparing callback numbers.

The callback to any telephone number is set up in the Modem Expansion wizard by selecting the
“Enable callbacks to any phone number” option during the callback configuration. If this option is
selected, the Modem module answers an incoming call and requests a callback telephone
number. After the telephone number is supplied by the caller, the Modem module disconnects and
dials that telephone number. This callback mode only provides a means to allow telephone
charges to be billed to the Modem module’s telephone connection and does not provide any
security for the S7-200 CPU. The Modem module password should be used for security if this
callback mode is used.

The Modem module password and callback functions can be enabled at the same time. The
Modem module requires a caller to supply the correct password before handling the callback.

Creating a Program for the Modem Module Chapter 10

Configuration Table for the Modem Module

All of the text messages, telephone numbers, data transfer information, callback numbers and
other options are stored in a Modem module configuration table which must loaded into the V
memory of the S7-200 CPU. The Modem Expansion wizard guides you through the creation of a
Modem module configuration table. STEP 7-Micro/WIN then places the Modem module
configuration table in the Data Block which is downloaded to the S7-200 CPU.

The Modem module reads this configuration table from the CPU on startup and within five
seconds of any STOP-to-RUN transition of the CPU. The Modem module does not read a new
configuration table from the CPU as long the Modem module is online with STEP 7-Micro/WIN. If
a new configuration table is downloaded while the Modem module is online, the Modem module
reads the new configuration table when the online session is ended.

If the Modem module detects an error in the configuration table, the Module Good (MG) LED on
the front of the module flashes on and off. Check the PLC Information screen in

STEP 7-Micro/WIN, or read the value in SMW220 (for module slot 0) for information about the
configuration error. The Modem module configuration errors are listed in Table 10-4. If you use the
Modem Expansion wizard to create the Modem module configuration table, STEP 7-Micro/WIN
checks the data before creating the configuration table.

Table 10-4 EM 241 Configuration Errors (Hexadecimal)

Error Description

0000 No error

0001 No 24 VDC external power

0002 Modem failure

0003 No configuration block ID - The EM 241 identification at the start of the configuration table is
not valid for this module.

0004 Configuration block out of range - The configuration table pointer does not point to V

memory, or some part of the table is outside the range of V memory for the attached CPU.

0005 Configuration error - Callback is enabled and the number of callback telephone numbers
equals O or it is greater than 250. The number of messages is greater than 250. The number
of messaging telephone numbers is greater than 250, or if length of the messaging telephone
numbers is greater than 120 bytes.

0006 Country selection error - The country selection on the two rotary switches is not a supported
value.
0007 Phone number too large - Callback is enabled and the callback number length is greater than

the maximum.
0008 to OOFF | Reserved

01xx Error in callback number xx - There are illegal characters in callback telephone number xx.
The value xx is 1 for the first callback number, 2 for the second, etc.
02xx Error in telephone number xx - One of the fields in a message telephone number xx or a data

transfer telephone number xx contains an illegal value. The value xx is 1 for the first
telephone number, 2 for the second, etc.

03xx Error in message xx - Message or data transfer number xx exceeds the maximum length.
The value xx is 1 for the first message, 2 for the second, etc.

0400 to FFFF | Reserved

313

S7-200 Programmable Controller System Manual

Status LEDs of the Modem Module

The Modem module has 8 status LEDs on the front panel. Table 10-5 describes the status LEDs.

Table 10-5 EM 241 Status LEDs
LED Description

MF Module Fail - This LED is on when the module detects a fault condition such as:
¢ No 24 VDC external power
¢ Timeout of the I/O watchdog
¢ Modem failure
e Communications error with the local CPU

MG Module Good - This LED is on when there is no module fault condition. The Module Good
LED flashes if there is a error in the configuration table, or the user has selected an illegal
country setting for the telephone line interface. Check the PLC Information screen in

STEP 7-Micro/WIN or read the value in SMW220 (for module slot 0) for information about the
configuration error.

OH Off Hook - This LED is on when the EM 241 is actively using the telephone line.
NT No Dial Tone - This LED indicates an error condition and turns on when the EM 241 has
been commanded to send a message and there is no dial tone on the telephone line. This is

only an error condition if the EM 241 has been configured to check for a dial tone before
dialing. The LED remains on for approximately 5 seconds after a failed dial attempt.

RI Ring Indicator -This LED indicates that the EM 241 is receiving an incoming call.

CD Carrier Detect - This LED indicates that a connection has been established with a remote
modem.

Rx Receive Data - This LED flashes on when the modem is receiving data.

Tx Transmit Data - This LED flashes on when the modem is transmitting data.

Using the Modem Expansion Wizard to Configure the Modem
Module

Modem
Expansion

314

Start the Modem Expansion wizard from the STEP 7-Micro/WIN Tools menu or from the Tools
portion of the Navigation Bar.

To use this wizard, the project must be compiled and set to Symbolic Addressing Mode. If you
have not already compiled your program, compile it now.

1. Onfirst screen of the Modem Expansion wizard, select Configure an EM 241 Modem
module and click Next>.

2. The Modem Expansion wizard requires the Modem module’s position relative to the S7-200
CPU in order to generate the correct program code. Click the Read Modules button to
automatically read the positions of the intelligent modules attached to the CPU. Expansion
modules are numbered sequentially starting at zero. Double-click the Modem module that
you want to configure, or set the Module Position field to the position of the Modem module.
Click Next>.

For an S7-200 CPU with firmware prior to version 1.2, you must install the intelligent module
next to the CPU in order for the Modem Expansion wizard to configure the module.

3. The password protection screen allows you to enable password protection for the Modem
module and assign a 1 to 8 character password for the module. This password is
independent of the S7-200 CPU password. When the module is password-protected,
anyone who attempts to connect with the S7-200 CPU through the Modem module is
required to supply the correct password. Select password protection if desired, and enter a
password. Click Next>.

Creating a Program for the Modem Module Chapter 10

The Modem module supports two communications protocols: PPl protocol (to communicate
with STEP 7-Micro/WIN), and Modbus RTU protocol. Protocol selection is dependent on
the type of device that is being used as the remote communications partner. This setting
controls the communications protocol used when the Modem module answers a call and
also when the Modem module initiates a CPU data transfer. Select the appropriate protocol
and click Next>.

You can configure the module to send numeric and text messages to pagers, or Short
Message Service (SMS) messages to cellular telephones. Check the Enable messaging
checkbox and click the Configure Messaging... button to define messages and the
recipient’s telephone numbers.

When setting up a message to be sent to a pager or cellular phone, you must define the
message and the telephone number. Select the Messages tab on the Configure Messaging
screen and click the New Message button. Enter the text for the message and specify any
CPU data values to insert into the message. To insert a CPU data value into the message,
move the cursor to the position for the data and click the Insert Data... button. Specify the
address of the CPU data value (i.e. VW100), the display format (i.e. Signed Integer) and the
digits left and right of the decimal point. You can also specify if the decimal point should be
a comma or a period.

- Numeric paging messages are limited to the digits 0 to 9, the letters A, B, C and D,
and the asterisk (*). The maximum allowed length of a numeric paging message
varies by service provider.

- Text messages can be up to 119 characters in length and contain any alphanumeric
character.

- Text messages can contain any number of embedded variables.

- Embedded variables can be from V, M, SM, |, Q, S, T, C or Al memory in the attached
CPU.

- Hexadecimal data is displayed with a leading ‘16#'. The number of characters in the
value is based on the size of the variable. For example, VW100 displays as 16#0123.

- The number of digits left of the decimal must be large enough to display the expected
range of values, including the negative sign, if the data value is a signed integer or
floating point value.

- Ifthe data format is integer and the number of digits right of the decimal point is not
zero, the integer value is displayed as a scaled integer. For example, if VW100 =
1234 and there are 2 digits right of the decimal point, the data is displayed as ‘12.34".

- Ifthe data value is greater than can be displayed in the specified field size, the
Modem module places the # character in all character positions of data value.

Telephone numbers are configured by selecting the Phone Numbers tab on the Configure
Messaging screen. Click the New Phone Number... button to add a new telephone number.
Once a telephone number has been configured it must be added to the project. Highlight
the telephone number in the Available Phone Numbers column and click the right arrow box
to add the telephone number to the current project. Once you have added the telephone
number to the current project, you can select the telephone number and add a symbolic
name for this number to use in your program.

The telephone number consists of several fields which vary based on the type of
messaging selected by the user.

- The Messaging Protocol selection tells the Modem module which protocol to use
when sending the message to the message service provider. Numeric pagers
support only numeric protocol. Text paging services usually require TAP (Telelocator
Alphanumeric Protocol). SMS messaging providers are supported with either TAP or
UCP (Universal Computer Protocol). There are three different UCP services normally
used for SMS messaging. Most providers support command 1 or 51. Check with the
SMS provider to determine the protocol and commands required by that provider.

- The Description field allows you to add a text description for the telephone number.

315

S7-200 Programmable Controller System Manual

316

- The Phone Number field is the telephone number of the messaging service provider.
For text messages this is the telephone number of the modem line the service
provider uses to accept text messages. For numeric paging this is the telephone
number of the pager itself. The Modem module allows the telephone number field to
be a maximum of 40 characters. The following characters are allowed in telephone
numbers that the Modem module uses to dial out:

0to9 allowed from a telephone keypad

ABCD* # DTMF digits (tone dialing only)

, pause dialing for 2 seconds

! commands the modem to generate a hook flash
@ wait for 5 seconds of silence

W wait for a dial tone before continuing
()- ignored (can be used to format the telephone number)

The dash character (-) is only supported in Version 1.1 of the EM 241 Modem
module.

- The Specific Pager ID or Cell Phone Number field is where you enter the pager
number or cellular telephone number of the message recipient. This number should
not contain any characters except the digits 0 through 9. A maximum of 20
characters is allowed.

- The Password field is optional for TAP message. Some providers require a password
but normally this field should be left blank. The Modem module allows the password
to be up to 15 characters.

- The Originating Phone Number field allows the Modem module to be identified in the
SMS message. This field is required by some service providers which use UCP
commands. Some service providers might require a minimum number of characters
in this field. The Modem module allows up to 15 characters.

- The Modem Standard field is provided for use in cases where the Modem module
and the service provider modem cannot negotiate the modem standard. The default
is V.34 (33.6 kBaud).

- The Data Format fields allow you to adjust the data bits and parity used by the
modem when transmitting a message to a service provider. TAP normally used 7
data bits and even parity, but some service providers use 8 data bits and no parity.
UCP always uses 8 data bits with no parity. Check with the service provider to
determine which settings to use.

You can configure the Modem module to transfer data to another S7-200 CPU (if PPI
protocol was selected) or to transfer data to a Modbus device (if Modbus protocol was
selected). Check the Enable CPU data transfers checkbox and click the Configure
CPU-to... button to define the data transfers and the telephone numbers of the remote
devices.

When setting up a CPU-to-CPU or a CPU-to-Modbus data transfer you must define the data
to transfer and the telephone number of the remote device. Select the Data Transfers tab
on the Configure Data Transfers screen and click the New Transfer button. A data transfer
consists of a data read from the remote device, a data write to the remote device, or both a
read from and a write to the remote device. If both a read and a write are selected, the read
is performed first and then the write.

Up to 100 words can be transferred in each read or write. Data transfers must be to or from
the V Memory in the local CPU. The wizard always describes the memory locations in the
remote device as if the remote device is an S7-200 CPU. If the remote device is a Modbus
device, the transfer is to or from holding registers in the Modbus device (address 04xxxx).
The equivalent Modbus address (xxxx) is determined as follows:

Modbus address =1 + (V memory address / 2)
V memory address = (Modbus address - 1) * 2

Creating a Program for the Modem Module Chapter 10

10.

11.

12.

13.

14.

15.

16.

The Phone Numbers tab on the Configure CPU Data Transfers screen allows you to define
the telephone numbers for CPU-to-CPU or a CPU-to-Modbus data transfers. Click the New
Phone Number... button to add a new telephone number. Once a telephone number has
been configured it must be added to the project. Highlight the telephone number in the
Available Phone Numbers column and click the right arrow box to add the telephone
number to the current project. Once you have added the telephone number to the current
project, you can select the telephone number and add a symbolic name for this telephone
number to use in your program.

The Description and Phone Number fields are the same as described earlier for messaging.
The Password field is required if the remote device is a Modem module and password
protection has been enabled. The Password field in the local Modem module must be set to
the password of the remote Modem module. The local Modem module supplies this
password when it is requested by the remote Modem module.

Callback causes the Modem module to automatically disconnect and dial a predefined
telephone number after receiving an incoming call from a remote STEP 7-Micro/WIN.
Select the Enable callback checkbox and click the Configure Callback... button to configure
callback telephone numbers. Click Next>.

The Configure Callback... screen allows you enter the telephone numbers the Modem
module uses when it answers an incoming call. Check the ‘Enable callbacks to only
specified phone numbers’ if the callback numbers are to be predefined. If the Modem
module is to accept any callback number supplied by the incoming caller (to reverse the
connection charges), check the ‘Enable callbacks to any phone number’ selection.

If only specified callback telephone numbers are allowed, click the New Phone Number
button to add callback telephone numbers. The Callback Properties screen allows you to
enter the predefined callback telephone numbers and a description for the callback number.
The callback number entered here is the telephone number that the Modem module uses to
dial when performing the callback. This telephone number should include all digits required
to connect to an outside line, pause while waiting for an outside line, connect to long
distance, etc.

After entering a new callback telephone number, it must be added to the project. Highlight
the telephone number in the Available Callback Phone Numbers column and click the right
arrow box to add the telephone number to the current project.

You can set the number of dialing attempts that the Modem module makes when sending a
message or during a data transfer. The Modem module reports an error to the user program
only when all attempts to dial and send the message are unsuccessful.

Some telephone lines do not have a dial tone present when the telephone receiver is lifted.
Normally, the Modem module returns an error to the user program if a dial tone is not
present when the Modem module is commanded to send a message or perform a callback.
To allow dialing out on a line with no dial tone, check the box, Enable Dialing Without Dial
Tone Selection.

Version 1.1 of the EM 241 Module can be programmed to answer after a specific number of
rings. The module will answer on the first ring unless another value is specified. You can
select the answering ring number between 0 and 20. Values of 0 and 1 will answer on the
first ring. The value of zero provides compatibility with the previous version of the EM 241.

When using Modbus RTU protocol, Version 1.1 of the EM 241 Module allows the user to
configure the module to answer only a specific Modbus address. You can specify Modbus
addresses between 0 and 247. An address of zero provides compatibility with the previous
version of the EM 241 and causes the EM 241 to answer any address.

The Modem Expansion wizard creates a configuration block for the Modem module and
requires the user to enter the starting memory address where the Modem module
configuration data is stored. The Modem module configuration block is stored in V Memory
in the CPU. STEP 7-Micro/WIN writes the configuration block to the project Data Block. The
size of the configuration block varies based on the number of messages and telephone
numbers configured. You can select the V Memory address where you want the
configuration block stored, or click the Suggest Address button if you want the wizard to
suggest the address of an unused V Memory block of the correct size. Click Next>.

The final step in configuring the Modem modaule is to specify the Q memory address of the
command byte for the Modem module. You can determine the Q memory address by
counting the output bytes used by any modules with discrete outputs installed on the

317

S7-200 Programmable Controller System Manual

17.

S7-200 before the Modem module. Click Next>.

The Modem Expansion wizard now generates the project components for your selected
configuration (program block and data block) and makes that code available for use by your
program. The final wizard screen displays your requested configuration project
components. You must download the Modem module configuration block (Data Block) and
the Program Block to the S7-200 CPU.

Overview of Modem Instructions and Restrictions

318

The Modem Expansion wizard makes controlling the Modem module easier by creating unique
instruction subroutines based on the position of the module and configuration options you
selected. Each instruction is prefixed with a “MODx_" where x is the module location.

Requirements for Using the EM 241 Modem Module Instructions
Consider these requirements when you use Modem module instructions:

u
u

The Modem module instructions use three subroutines.

The Modem module instructions increase the amount of memory required for your program
by up to 370 bytes. If you delete an unused instruction subroutine, you can rerun the
Modem Expansion wizard to recreate the instruction if needed.

You must make sure that only one instruction is active at a time.
The instructions cannot be used in an interrupt routine.

The Modem module reads the configuration table information when it first powers up and
after a STOP-to-RUN transition. Any change that your program makes to the configuration
table is not seen by the module until a mode change or the next power cycle.

Using the EM 241 Modem Module Instructions

To use the Modem module instructions in your S7-200 program, follow these steps:

1.
2.

Use the Modem Expansion wizard to create the Modem module configuration table.

Insert the MODx_CTRL instruction in your program and use the SM0.0 contact to execute it
every scan.

Insert a MODx_MSG instruction for each message you need to send.

Insert a MODx_XFR instruction for each data transfer.

Creating a Program for the Modem Module Chapter 10

Instructions for the Modem Module

MODx_CTRL Instruction
The MODx_CTRL (Control) instruction is used to enable

S " . SIMATIC & 1B 1131

and initialize the Modem module. This instruction should be
called every scan and should only be used once in the LAD FED
project. MCD_CTRL MCD_CTRL

—EN —EN

SIMATIC
sTL
CALL MO _CTRL

MODx_XFR Instruction

The MODx_XFR (Data Transfer) instruction is used to

command the Modem module to read and write data to
another S7-200 CPU or a Modbus device. This instruction LAD FED
requires 20 to 30 seconds from the time the START input is

SIMATIC £ EC1131

triggered until the Done bit is set. MO iR MOL: R
—{EM EMO - | —EN EMO =
The EN bit must be on to enable a command to the module, i | TRRT
. . P . . START = Phone Done -
and should remain on until the Done bit is set, signaling 3 M
completion of the process. An XFR command is sent to the -|Phone Done =

= Crata Error -

Modem module on each scan when START input is on and
the module is not currently busy. The START input can be
pulsed on through an edge detection element, which only
allows one command to be sent. SIMATIC

Phone is the number of one of the data transfer telephone oTL

numbers. You can use the symbolic name you assigned to GALL MODs_HFR, START, Phone
each data transfer telephone number when the number was Data, Done, Error
defined with the Modem Expansion wizard.

Data is the number of one of the defined data transfers. You
can use the symbolic name you assigned to the data
transfer when the request was defined using the Modem
Expansion wizard.

Done is a bit that comes on when the Modem module completes the data transfer.

Error is a byte that contains the result of the data transfer. Table 10-4 defines the possible error
conditions that could result from executing this instruction.

Table 10-6 Parameters for the MODx_XFR Instruction

Inputs/Outputs Data Type Operands

START BOOL ,Q, M, S, SM, T, C, V, L, Power Flow

Phone, Data BYTE VB, IB, QB, MB, SB, SMB, LB, AC, Constant, *VD, *AC, *LD
Done BOOL ,Q,M,S,SM, T,C, V, L

Error BYTE VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD

319

S7-200 Programmable Controller System Manual

320

MODx_MSG Instruction

The MODx_MSG (Send Message) instruction is used to

send a paging or SMS message from Modem module. This SIMATIC £ (ECTTST

instruction requires 20 to 30 seconds from the time the LAD FED
START input is triggered until the Done bit is set.

MO _M5G MODs_M5G
The EN bit must be on to enable a command to the module, - EM EMO = | [EM EMG =
and should remain on until the Done bit is set, signaling i [] g:::; Dane L
completion of the process. A MSG command is sent to the g Error
Modem module on each scan when START input is on and ~|Fhone Done =
the module is not currently busy. The START input can be Mg Error [
pulsed on through an edge detection element, which only
allows one command to be sent.
Phone is the number of one of the message telephone SIMATIC
numbers. You can use the symbolic name you assigned to oTL

each message telephone number the_ Whe_n the number GALL MODx_MSG, START, Phone,
was defined with the Modem Expansion wizard. Msq, Done, Error

Msg is the number of one of the defined messages. You

can use the symbolic name you assigned to the message
when the message was defined using the Modem
Expansion wizard.

Done is a bit that comes on when the Modem module completes the sending of the message to
the service provider.

Error is a byte that contains the result of this request to the module. Table 10-8 defines the
possible error conditions that could result from executing this instruction.

Table 10-7 Parameters for the MODx_MSG Instruction

Inputs/Outputs Data Type Operands

START BOOL ,Q, M, S, SM, T, C, V, L, Power Flow

Phone, Msg BYTE VB, IB, QB, MB, SB, SMB, LB, AC, Constant, *VD, *AC, *LD
Done BOOL ,Q,M,S,SM, T,C, V, L

Error BYTE VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD

Creating a Program for the Modem Module Chapter 10

Table 10-8 Error Values Returned by MODx_MSG and MODx_XFR Instructions

Error Description

0 No error

Telephone line errors

1 No dial tone present

2 Busy line

3 Dialing error

4 No answer

5 Connect timeout (no connection within 1 minute)

6 Connection aborted or an unknown response

Errors in the command

7 Numeric paging message contains illegal digits

8 Telephone number (Phone input) out of range

9 Message or data transfer (Msg or Data input) out of range
10 Error in text message or data transfer message

11 Error in messaging or data transfer telephone number

12 Operation not allowed (i.e. attempts set to zero)

Service provider errors

13 No response (timeout) from messaging service
14 Message service disconnected for unknown reason
15 User aborted message (disabled command bit)

TAP - Text paging and SMS message errors returned by service provider

16 Remote disconnect received (service provider aborted session)

17 Login not accepted by message service (incorrect password)

18 Block not accepted by message service (checksum or transmission error)
19 Block not accepted by message service (unknown reason)

UCP - SMS message errors returned by service provider

20 Unknown error

21 Checksum error

22 Syntax error

23 Operation not supported by system (illegal command)
24 Operation not allowed at this time

25 Call barring active (blacklist)

26 Caller address invalid

27 Authentication failure

28 Legitimization code failure

29 GA not valid

30 Repetition not allowed

31 Legitimization code for repetition, failure

32 Priority call not allowed

33 Legitimization code for priority call, failure

34 Urgent message not allowed

35 Legitimization code for urgent message, failure
36 Reverse charging not allowed

37 Legitimization code for reverse charging, failure

321

S7-200 Programmable Controller System Manual

Table 10-8 Error Values Returned by MODx_MSG and MODx_XFR Instructions, continued

Error Description

UCP - SMS message errors returned by service provider (continued)

38 Deferred delivery not allowed

39 New AC not valid

40 New legitimization code not allowed
41 Standard text not valid

42 Time period not valid

43 Message type not supported by system
44 Message too long

45 Requested standard text not valid

46 Message type not valid for pager type
a7 Message not found in SMSC

48 Reserved

49 Reserved

50 Subscriber hang up

51 Fax group not supported

52 Fax message type not supported

Data transfer errors

53 Message timeout (no response from remote device)
54 Remote CPU busy with upload or download
55 Access error (memory out of range, illegal data type)
56 Communications error (unknown response)
57 Checksum or CRC error in response
58 Remote EM 241 set for callback (not allowed)
59 Remote EM 241 rejected the provided password
60 to 127 Reserved

Instruction use errors

128 Cannot process this request. Either the Modem module is busy with another request, or
there was no START pulse on this request.

129 Modem module error:

¢ The location of the Modem module or the Q memory address that was configured
with the Modem Expansion wizard does not match the actual location or memory
address

¢ Refer to SMB8 to SMB21 (/O Module ID and Error Register)

322

Creating a Program for the Modem Module Chapter 10

Sample Program for the Modem Module

Example: Modem Module

Network 1 Network 1 /I Call the MODO_CTRL
smao ENMUDU—UHL /I subroutine on every scan.
. LD SMO0.0
il s CALL MODO_CTRL
Network 2 // Send a text message
Network 2 /lto a cell phone.
EDD MODO_MSG
— LD 10.0
E0D EU
—] 7 —smar = L63.7
CelPhone- Phane Danef-M0.0 LD 10.0
Messagel 4Msq EnorkVB10 CALL MODO_MSG, L63.7, Cell Phone,

Messagel, M0.0, VB10

Netwark 3 Network 3 /I Transfer data to

En W00 R
f————m a remote CPU.
i LD 10.1
—— F—— P ——smrr EU
RemoteCPU{Phone Dore|-M0.0 = L63.7
Transferl {Data EnorlvE10 LD 10.1

CALL MODO_XFR, L63.7, Remote CPU,
Transferl, M0.0, VB10

S7-200 CPUs that Support Intelligent Modules

The Modem module is an intelligent expansion module designed to work with the S7-200 CPUs
shown in Table 10-9.

Table 10-9 EM 214 Module Compatibility with S7-200 CPUs

CPU Description
CPU 222 Rel. 1.10 or greater CPU 222 DC/DC/DC and CPU 222 AC/DC/Relay
CPU 224 Rel. 1.10 or greater CPU 224 DC/DC/DC and CPU 224 AC/DC/Relay
CPU 224XP Rel. 2.00 or greater CPU 224XP DC/DC/DC and CPU 224XP AC/DC/Relay
CPU 226 Rel. 1.00 or greater CPU 226 DC/DC/DC and CPU 226 AC/DC/Relay

Special Memory Location for the Modem Module

Fifty bytes of special memory (SM) are allocated to each intelligent module based on its physical
position in the /O expansion bus. When an error condition or a change in status is detected, the
module indicates this by updating the SM locations corresponding to the module’s position. If it is
the first module, it updates SMB200 through SMB249 as needed to report status and error
information. If it is the second module, it updates SMB250 through SMB299, and so on. See
Table 10-10.

Table 10-10 Special Memory Bytes SMB200 to SMB549
Special Memory Bytes SMB200 to SMB549

Intelligent Intelligent Intelligent Intelligent Intelligent Intelligent Intelligent
Module in Module in Module in Module in Module in Module in Module in
Slot 0 Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6
SMB200 to SMB250 to SMB300 to SMB350 to SMB400 to SMB450 to SMB500 to
SMB249 SMB299 SMB349 SMB399 SMB449 SMB499 SMB549

Table10-11 shows the Special Memory data area allocated for the Modem module. This area is
defined as if this were the intelligent module located in Slot 0 of the 1/O system.

323

S7-200 Programmable Controller System Manual

Table 10-11 SM Locations for the EM 241 Modem Module

SM Address

Description

SMB200 to
SMB215

SMB216 to
SMB219

SMW220

SMB222

SMB223
SMW224
SMB226

SMB227
SMB228
SMB229 to
SMB244
SMB245

SMD246

324

Module name (16 ASCII characters) SMB200 is the first character.

“EM241 Modem”

S/W revision number (4 ASCII characters) SMB216 is the first character.

Error code

0000 - No error

0001 - No user power

0002 - Modem failure

0003 - No configuration block ID
0004 - Configuration block out of range
0005 - Configuration error

0006 - Country code selection error
0007 - Phone number too large
0008 - Message too large

0009 to OOFF - Reserved

01xx - Error in callback number xx
02xx - Error in pager number xx
03xx - Error in message number xx
0400 to FFFF - Reserved

Module status - reflects the LED status

MSB

F - EM_FAULT 0 - no fault

G - EM_GOOD 0 - not good
H - OFF_HOOK 0 - on hook,
T - NO DIALTONE 0 - dial tone
R - RING 0 - not ringing

C - CONNECT 0 - not connected

Country code as set by switches (decimal value)

1 - fault

1 - good

1 - off hook

1 - no dial tone
1 - phone ringing
1 - connected

Baud rate at which the connection was established (unsigned decimal value).

Result of the user command

MSB
7 6 5

LSB

ERROR

D - Done bit;
0 - operation in progress
1 - operation complete

ERROR : Error Code Description, see Table 10-8

Telephone number selector - This byte specifies which messaging telephone number to use
when sending a message. Valid values are 1 through 250.

Message selector - This byte specifies which message to send. Valid values are 1 through

250.
Reserved

Offset to the first Q byte used as the command interface to this module. The offset is
supplied by the CPU for the convenience of the user and is not needed by the module.

Pointer to the configuration table for the Modem module in V memory. A pointer value to an
area other than V memory is not accepted and the module continues to examine this
location, waiting for a non-zero pointer value.

Creating a Program for the Modem Module Chapter 10

Advanced Topics

Understanding the Configuration Table

The Modem Expansion wizard has been developed to make modem applications easy by
automatically generating the configuration table based upon the answers you give about your
system. Configuration table information is provided for advanced users who want to create their
own Modem module control routines and format their own messages.

The configuration table is located in the V. memory area of the S7-200. In Table 10-12, the Byte
Offset column of the table is the byte offset from the location pointed to by the configuration area
pointer in SM memory. The configuration table information is divided into four sections.

u
u

a

a

The Configuration Block contains information to configure the module.

The Callback Telephone Number Block contains the predefined telephone numbers allowed
for callback security.

The Message Telephone Number Block contains the telephone numbers used when dialing
messaging services or CPU data transfers.

The Message Block contains the predefined messages to send to the messaging services.

Table 10-12 Configuration Table for the Modem Module
Configuration Block

Byte Offset

Description

Oto4

14
15

16 to 23

Module Identification - Five ASCII characters used for association of the configuration table
to an intelligent module. Release 1.00 of the EM 241 Modem module expects “M241A".

The length of the Configuration Block - Currently 24.

Callback telephone number length - Valid values are 0 through 40.
Messaging telephone number length - Valid values are 0 through 120.
Number of callback telephone numbers - Valid values are 0 through 250.
Number of messaging telephone numbers - Valid values are 0 through 250.
Number of messages - Valid values are 0 through 250.

Answer ring number - Valid values are 0 through 20.

Modbus RTU address - Valid values are 0 through 247.

This byte contains the enable bits for the features supported.

MSB LSB
7 6 5 4 3 2 1 0

|PD|CB|PW|MB|BD|0 | 0| 0|

PD - 0=tone dialing 1 = pulse dialing

CB - 0 = callback disabled 1 = callback enabled

PW - 0= password disabled 1 = password enabled

MB - 0= PPI protocol enabled 1 = Modbus protocol enabled

BD - 0 =blind dialing disabled 1 = blind dialing enabled

Bits 2, 1 and 0 are ignored by the module
Reserved
Attempts - This value specifies the number of times the modem is to attempt to dial and
send a message before returning an error. A value of O prevents the modem from dialing
out.

Password - Eight ASCII characters

325

S7-200 Programmable Controller System Manual

Table 10-12 Configuration Table for the Modem Module, continued

Callback Telephone Number Block (optional)

Byte Offset Description
24 Callback Telephone Number 1 - A string representing the first telephone number that is
authorized for callback access from the EM 241 Modem module. Each callback telephone
number must be allocated the same amount of space as specified in the callback telephone
number length field (offset 6 in the Configuration Block).
24+ callback | Callback Telephone Number 2
number

Callback Telephone Number n

Messaging Telephone Number Block (optional)

Byte Offset Description
M Messaging Telephone Number 1 - A string representing a messaging telephone number
which includes protocol and dialing options. Each telephone number must be allocated the
same amount of space as specified in the messaging telephone number length field (offset 7
in the Configuration Block).
The messaging telephone number format is described below
M+ Messaging Telephone Number 2
messaging

number length

Messaging Telephone Number n

Message Block (optional)

Byte Offset Description
N V memory offset (relative to VBO) for the first message (2 bytes)
N+2 Length of message 1
N+3 Length of message 2
: Length of message n
P Message 1 - A string (120 bytes max.) representing the first message. This string includes
text and embedded variable specifications or it could specify a CPU data transfer.
See the Text Message Format and the CPU Data Transfer Format described below.
P +length of | Message 2

message 1

Message n

The Modem module re-reads the configuration table when these events occur:

1 Within five seconds of each STOP-to-RUN transition of the S7-200 CPU (unless the modem
is currently online)

1 Every five seconds until a valid configuration is found (unless the modem is currently online)

1 Every time the modem transitions from an online to an offline condition

326

Creating a Program for the Modem Module Chapter 10

Messaging Telephone Number Format

The Messaging Telephone Number is a structure which contains the information needed by the
Modem module to send a message. The Messaging Telephone Number is an ASCI!I string with a
leading length byte followed by ASCII characters. The maximum length of a Messaging Telephone
Number is 120 bytes (which includes the length byte).

The Messaging Telephone Number contains up to 6 fields separated by a forward slash (/)
character. Back-to-back slashes indicate an empty (null) field. Null fields are set to default values
in the Modem module.

Format: <Telephone Number>/<ID>/<Password/<Protocol>/<Standard>/<Format>

The Telephone Number field is the telephone number that the Modem module dials when sending
a message. If the message being sent is a text or SMS message, this is the telephone number of
the service provider. If the message is a numeric page, this field is the pager telephone number. If
the message is a CPU data transfer, this is the telephone number of the remote device. The
maximum number of characters in this field is 40.

The ID is the pager number or cellular telephone number. This field should consist of the digits 0
to 9 only. If the protocol is a CPU data transfer, this field is used to supply the address of the
remote device. Up to 20 characters are allowed in this field.

The Password field is used to supply the a password for messages sent via TAP if a password is
required by the service provider. For messages sent via UCP this field is used as the originating
address or telephone number. If the message is a CPU data transfer to another Modem module,
this field can be used to supply the password of the remote Modem module. The password can be
up to 15 characters in length.

The Protocol field consists of one ASCII character which tells the Modem module how it should
format and transmit the message. The following values are allowed:

1 - Numeric paging protocol (default)
2 - TAP

3 - UCP command 1

4 - UCP command 30

5 - UCP command 51

6 - CPU data transfer

The Standard field forces the Modem module to use a specific modem standard. The standard
field is one ASCII character. The following values are allowed:

1 - Bell 103
2 - Bell 212
3-Vv.21
4-V.22

5 - V.22 bit
6 - V.23c
7-V.32

8 - V.32 bit

9 - V.34 (default)

The Format field is three ASCII characters which specify the number of data bits and parity to be
used when transmitting the message. This field does not apply if the protocol is set to numeric
paging. Only the following two settings are allowed:

8N1 - 8 data bits, no parity, one stop bit (default)
7E1 - 7 data bits, even parity, one stop bit

327

S7-200 Programmable Controller System Manual

Text Message Format

328

The Text Message Format defines the format of text paging or SMS messages. These types of
messages can contain text and embedded variables. The text message is an ASCII string with a
leading length byte followed by ASCII characters. The maximum length of a text message is 120
bytes (which includes the length byte).

Format: <Text><Variable><Text><Variable>...

The Text field consists of ASCII characters.

The Variable field defines an embedded data value which the Modem module reads from the local
CPU, formats, and places in the message. The percent (%) character is used to mark the start
and the end of a variable field. The address and the left fields are separated with a colon. The
delimiter between the Left and Right fields can be either a period or a comma and is used as the
decimal point in the formatted variable. The syntax for the variable field is:

%Address:Left.Right Format%

The Address field specifies the address, data type and size of the embedded data value (i.e.
VD100, VW50, MB20 or T10). The following data types are allowed: |, Q, M, SM, V, T (word only),
C (word only), and Al (word only). Byte, word and double word sizes are allowed.

The Left field defines the number of digits to display left of the decimal point. This value should be
large enough to handle the expected range of the embedded variable including a minus sign if
needed. If Left is zero the value is displayed with a leading zero. The valid range for Left is O to 10.

The Right field defines the number of digits to display right of the decimal point. Zeros to the right
of the decimal point are always displayed. If Right is zero the number is displayed without a
decimal point. The valid range for Right is 0 to 10.

The Format field specifies the display format of the embedded value. The following characters are
allowed for the format field:

i - signed integer

u - unsigned integer
h - hexadecimal

f - floating point/real

Example: “Temperature = %VW100:3.1i% Pressure = %VD200:4.3f%"

Creating a Program for the Modem Module Chapter 10

CPU Data Transfer Message Format

A CPU data transfer, either a CPU-to-CPU or a CPU-to-Modbus data transfer, is specified using
the CPU Data Transfer Message Format. A CPU Data Transfer Message is an ASCII string which
can specify any number of data transfers between devices, up to the number of specifications that
fit in the maximum message length of 120 bytes (119 characters plus a length byte). An ASCII
space can be used to separate the data transfer specifications, but is not required. All data
transfer specifications are executed within one connection. Data transfers are executed in the
order defined in the message. If an error is detected in a data transfer, the connection to the
remote device is terminated and subsequent transactions are not processed.

If the operation is specified as a read, Count number of words are read from the remote device
starting at the Remote_address, and then written to V Memory in the local CPU starting at the
Local address.

If the operation is specified as a write, Count number of words are read from the local CPU
starting at the Local_address, and then written to the remote device starting at Remote_address.

Format: <Operation>=<Count>,<Local_address>,<Remote_address>

The Operation field consists of one ASCII character and defines the type of transfer.

R - Read data from the remote device
W - Write data to the remote device

The Count field specifies the number of words to be transferred. The valid range for the count field
is 1 to 100 words.

The Local_address field specifies the V Memory address in the local CPU for the data transfer
(i.e. VW100).

The Remote_address field specifies the address in the remote device for the data transfer (i.e.
VWS500). This address is always specified as a V Memory address even if the data transfer is to a
Modbus device. If the remote device is a Modbus device, the conversion between V Memory
address and Modbus address is as follows:

Modbus address = 1 + (V Memory address / 2)
V Memory address = (Modbus address - 1) * 2

Example: R=20,vW100, VW200 W=50,vW500,vW1000 R=100,VvW1000,VW2000

329

S7-200 Programmable Controller System Manual

Using the USS Protocol Library to
Control a MicroMaster Drive

STEP 7-Micro/WIN Instruction Libraries makes controlling MicroMaster drives easier by including
preconfigured subroutines and interrupt routines that are specifically designed for using the USS

protocol to communicate with a motor drive. You can control the physical drive and the read/write
drive parameters with the USS instructions.

You find these instructions in the Libraries folder of the STEP 7-Micro/WIN instruction tree. When
you select a USS instruction, one or more associated subroutines (USS1 through USS7) are
added automatically.

Siemens Libraries are sold on a separate CD, STEP 7-Micro/WIN Add-On: Instruction Library,
with the order number 6ES7 830-2BC00-0Y XO0. After version 1.1 of the Siemens Library is
purchased and installed, any subsequent STEP 7-Micro/WIN V3.2x and V4.0 upgrade that you
install will also upgrade your libraries automatically at no additional cost (when library additions or
modifications are made).

In This Chapter

Requirements for Using the USS Protocol e 332
Calculating the Time Required for Communicating with the Drive 332
Using the USS INSIIUCLIONSttt e e e e e e et 333
Instructions for the USS Protocol 334
Sample Programs for the USS Protocol 341
USS EXeCUtion Error COUESottt e e e e 342
Connecting and Setting Up the MicroMaster Series 3Drive, 342
Connecting and Setting Up the MicroMaster Series 4 Drivecoiiiiiin... 345

331

S7-200 Programmable Controller System Manual

Requirements for Using the USS Protocol

¥

The STEP 7-Micro/WIN Instruction Libraries provide subroutines, interrupt routines, and
instructions to support the USS protocol. The USS instructions use the following resources in the
S7-200:

a

a

Tip

USS Protocol is an interrupt driven application. In the worst case the receive message
interrupt routine requires up to 2.5ms to execute. During this time all other interrupt events
are queued for service after the receive message interrupt routine has been executed. If
your application cannot tolerate this worst case delay, then you may want to consider other
solutions for controlling drives.

Initializing the USS protocol dedicates an S7-200 port for USS communications.

You use the USS_INIT instruction to select either USS or PPI for port 0. (USS refers to the
USS protocol for SIMOTION MicroMaster drives.) You can also use USS_INIT_P1 to assign
port 1 for USS communication. When a port is set to use the USS protocol for
communicating with drives, you cannot use the port for any other purpose, including
communicating with STEP 7-Micro/WIN.

During the development of the program for an application using the USS protocol, you
should use a two port model, CPU 226, CPU 226XM, or EM 277 PROFIBUS_DP module
connected to a PROFIBUS CP card in your computer. The second communications port
allows STEP 7-Micro/WIN to monitor the control program while USS protocol is running.

The USS instructions affect all of the SM locations that are associated with Freeport
communications on the assigned port.

The USS subroutines and interrupt routines are stored in your program.

The USS instructions increase the amount of memory required for your program by up to
3050 bytes. Depending on the specific USS instructions used, the support routines for
these instructions can increase the overhead for the control program by at least 2150 bytes,
up to 3500 bytes.

The variables for the USS instructions require a 400-byte block of V. memory. The starting
address for this block is assigned by the user and is reserved for USS variables.

Some of the USS instructions also require a 16-byte communications buffer. As a parameter
for the instruction, you provide a starting address in V memory for this buffer. It is
recommended that a unique buffer be assigned for each instance of USS instructions.

When performing calculations, the USS instructions use accumulators ACO to AC3. You can
also use the accumulators in your program; however, the values in the accumulators will be
changed by the USS instructions.

The USS instructions cannot be used in an interrupt routine.

To change the operation of a port back to PPI so that you can communicate with
STEP 7-Micro/WIN, use another USS_INIT instruction to reassign the port to PPI operation..

You can also set the mode switch on the S7-200 to STOP mode. This resets the parameters for
the port. Be aware that stopping the communications to the drives also stops the drives.

Calculating the Time Required for Communicating with the Drive

332

Communications with the drive are asynchronous to the S7-200 scan. The S7-200 typically
completes several scans before one drive communications transaction is completed. The
following factors help determine the amount of time required: the number of drives present, the
baud rate, and the scan time of the S7-200.

Using the USS Protocol Library to Control a MicroMaster Drive Chapter 11

Some drives require longer delays when Table 11-1 Communications Times
using the parameter access instructions.
The amount of time required for a
parameter access is dependent on the
drive type and the parameter being

Time Between Polls of Active Drives
Baud (with No Parameter Access Instructions
Rate Active)

accessed. 1200 ' 240 ms (maximum) times the number of drives
. . . 2400 ' 130 ms (maximum) times the number of drives
After a USS_INIT instruction assigns Port 0
to use the USS Protocol (or USS_INIT_P1 4800 75 ms (maximum) times the number of drives
for port 1), the S7-200 regularly polls all 9600 | 50 ms (maximum) times the number of drives
active drives at the intervals shown in
Table 11-1. You must set the time-out
parameter of each drive to allow for this 38400 | 30 ms (maximum) times the number of drives

19200 | 35 ms (maximum) times the number of drives

task. 57600 25 ms (maximum) times the number of drives

115200 @ 25 ms (maximum) times the number of drives

Tip
@ Only one USS_RPM_x or USS_WPM_x instruction can be active at a time. The Done output of
each instruction should signal completion before user logic initiates a new instruction.

Use only one USS_CTRL instruction for each drive.

Using the USS Instructions
To use the USS protocol instructions in your S7-200 controller program, follow these steps:

1. Insertthe USS_INIT instruction in your program and execute the USS_INIT instruction for
one scan only. You can use the USS_INIT instruction either to initiate or to change the USS
communications parameters.

When you insert the USS_INIT instruction, several hidden subroutines and interrupt
routines are automatically added to your program.

2. Place only one USS_CTRL instruction in your program for each active drive.

You can add as many USS_RPM_x and USS_WPM_x instructions as required, but only
one of these can be active at a time.

3. Allocate the V memory for the library instructions

. S B8 Project1[CPU 221 REL 1.10) N
by right-clicking (to get the menu) on the Program || | .. =

—

Block node in the instruction tree. OF MAIN L Insert r —
Select the Library Memory option to display the g igj;?[Library Memary... ||

-4F INT_DINTD) ’

—

Library Memory Allocation dialog box.

4. Configure the drive parameters to match the Fiéuré 111 Allocating V Memory for the
baud rate and address used in the program. Instruction Library

5. Connect the communications cable between the S7-200 and the drives.

Ensure that all of the control equipment, such as the S7-200, that is connected to the drive
be connected by a short, thick cable to the same ground or star point as the drive.

Caution

Interconnecting equipment with different reference potentials can cause unwanted currents to
flow through the interconnecting cable. These unwanted currents can cause communications
errors or damage equipment.

Ensure that all equipment that is connected with a communications cable either shares a
common circuit reference or is isolated to prevent unwanted current flows.

The shield must be tied to chassis ground or pin 1 on the 9-pin connector. It is recommended
that you tie wiring terminal 2-0V on the MicroMaster drive to chassis ground.

333

S7-200 Programmable Controller System Manual

Instructions for the USS Protocol

334

USS_INIT Instruction

The USS_INIT instruction (port 0) or USS_INIT_P1 (port 1)

. A .) SIMATIC & 1B 1131
is used to enable and initialize, or to disable MicroMaster

Drive communications. Before any other USS instruction LAD FED:
can be used, the USS_INIT instruction must be executed T T
without errors. The instruction completes and the Done bit is - -
set immediately, before continuing to the next instruction. e i iﬂN

—Mode Done - : ode Done :
The instruction is executed on each scan when the EN Joaud Ervorle | g?::e Error
input is on. { Active
Execute the USS_INIT instruction only once for each
change in communications state. Use an edge detection
instruction to pulse the EN input on. To change the SIMATIC
initialization parameters, execute a new USS_INIT
instruction. 5TL

o CALL USS_IMIT, Mode, Boud,
The value for Mode selects the communications protocol: Active, [one, Errar
an input value of 1 assigns a port to USS protocol and

enables the protocol, and an input value of 0 assigns port 0
to PPI and disables the USS protocol.

Baud sets the baud rate at 1200, 2400, 4800, 9600, 19200, 38400, 57600 or 115200. Baud rates
57600 and 115200 are supported by S7-200 CPUs version 1.2 or later.

Table 11-2 Parameters for the USS_INIT Instruction

Inputs/Outputs Data Type Operands

Mode BYTE VB, IB, QB, MB, SB, SMB, LB, AC, Constant, *VD, *AC, *LD
Baud, Active DWORD VD, ID, QD, MD, SD, SMD, LD, Constant, AC *VD, *AC, *LD
Done BOOL ,Q,M,S,SM, T,C, V, L

Error BYTE VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD

Active indicates which drives are active. MSB LsB
Some drives only support addresses 0 31 30 20 28 3 2 1 0
through 30. | o3| p3o | 2o | | p2 [o1 | po |
Figure 11-2 shows the description and DO Drive 0 active bit; 0 - drive not active, 1 - drive active

format Of the active drive input Any drive D1 Drive 1 active bit; O - drive not active, 1 - drive active

that is marked as Active is automatically

polled in the background to control the
drive, collect status, and prevent serial

link time-outs in the drive. i :)
Figure 11-2 Format for the Active Drive Parameter

Refer to Table 11-1 to compute the time
between status polls.

When the USS_INIT instruction completes, the Done output is turned on. The Error output byte
contains the result of executing the instruction. Table 11-6 defines the error conditions that could
result from executing the instruction.

Example: USS_INIT Subroutine

Network 1

LD 10.0

EU

CALL USS_INIT, 1, 9600, 16#00000001,
MO.0, VB10

Using the USS Protocol Library to Control a MicroMaster Drive Chapter 11

USS CTRL Instruction SIMATIC 7 EC1131
The USS_CTRL (port 0) or USS_CTRL_P1 (port 1)
instruction is used to control an active MicroMaster drive. LAD FED
The USS_CTRL instruction places the selected commands LS5 CTRL LS5 CTRL
in a communications buffer, which is then sent to the - EM - EM
addressed drive (Drive parameter), if that drive has been Jrm = RUN
selected in the Active parameter of the USS_INIT i giig
instruction. | FF2 JF pck
. . . - - CIR
Only one USS_CTRL instruction should be assigned to OFF3 A brive
each drive. {F_Ack | Tvpe
. . - Speed_SP
Some drives report speed only as a positive value. If the - DR
X i . L. Resp R [
speed is negative, the drive reports the speed as positive A rive Errar =
but reverses the D_Dir (direction) bit. A Type Stgtus -
. - Speed_5F Speed -
The EN bit must be on to enable the USS_CTRL pee s R Fun_EHM
instruction. This instruction should always be enabled. ?r':w L D Dir =
B Inhibit |-
RUN (RUN/STOP) indicates whether the drive is on (1) or 5;:::; B Fault |-
off (0). When the RUN bit is on, the MicroMaster drive Run_EM -
receives a command to start running at the specified speed [_Dir -
and direction. In order for the drive to run, the following must Inhibit =
be true: Fault =
g Drive must be selected as Active in USS_INIT.
[OFF2 and OFF3 must be set to 0. SIMATIC
1 Fault and Inhibit must be 0. e
CALL US5_CTRL, RUM, OFF2, OFF3,
When RUN is off, a command is sent to the MicroMaster F_ACK, DIR, Drive, Type, Speed SF.
. . Rezp_R. Error, Status, Speed,
drive to ramp the speed down until the motor comes to a Rur,_EM. [D, Inkibit, Fault
stop. The OFF2 bit is used to allow the MicroMaster drive to
coast to a stop. The OFF3 bit is used to command the

MicroMaster drive to stop quickly.

The Resp_R (response received) bit acknowledges a response from the drive. All the Active
drives are polled for the latest drive status information. Each time the S7-200 receives a response
from the drive, the Resp_R bit is turned on for one scan and all the following values are updated.

The F_ACK (fault acknowledge) bit is used to acknowledge a fault in the drive. The drive clears
the fault (Fault) when F_ACK goes from 0 to 1.

The DIR (direction) bit indicates in which direction the drive should move.

Table 11-3 Parameters of the USS_CTRL Instruction

Inputs/Outputs Data Types Operands

RUN, OFF 2, OFF 3, F_ACK, DIR | BOOL ,Q, M, S, SM, T, C,V, L, Power Flow

Resp_R, Run_EN, D_Dir, Inhibit, BOOL LQ,M S, SM,T,C,V, L

Fault

Drive, Type BYTE VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD,
Constant

Error BYTE VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD

Status WORD VW, T, C, IW, QW, SW, MW, SMW, LW, AC, AQW, *VD,
*AC, *LD

Speed_SP REAL VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *AC, *LD,
Constant

Speed REAL VD, ID, QD, MD, SD, SMD, LD, AC, *VD, *AC, *LD

335

S7-200 Programmable Controller System Manual

The Drive (drive address) input is the address of the MicroMaster drive to which the USS_CTRL
command is to be sent. Valid addresses: 0 to 31

The Type (drive type) input selects the type of drive. For a MicroMaster 3 (or earlier) drive, set
Type to 0. For a MicroMaster 4 drive, set Type to 1.

Speed_SP (speed setpoint) is drive speed as a percentage of full speed. Negative values of
Speed_SP cause the drive to reverse its direction of rotation. Range: -200.0% to 200.0%

Error is an error byte that contains the result of the latest communications request to the drive.
Table 11-6 defines the error conditions that could result from executing the instruction.

Status is the raw value of the status word returned by the drive. Figure 11-3 shows the status bits
for Standard Status Word and Main Feedback.

Speed is drive speed as a percentage of full speed. Range: -200.0% to 200.0%
Run_EN (RUN enable) indicates whether the drive is running (1) or stopped (0).
D_Dir indicates the drive’s direction of rotation.

Inhibit indicates the state of the inhibit bit on the drive (0 - not inhibited, 1 - inhibited). To clear the
inhibit bit, the Fault bit must be off, and the RUN, OFF2, and OFF3 inputs must also be off.

Fault indicates the state of the fault bit (O - no fault, 1 - fault). The drive displays the fault code.
(Refer to the manual for your drive). To clear the Fault bit, correct the cause of the fault and turn
on the F_ACK bit.

}7 High byte } Low byte 4{
(15[14]13|12[11[10[9[8[7[6[5[4]3][2][1]0]
‘ 1= Ready to start
1= Ready to operate
1= Operation enabled
1= Drive fault present

0= OFF2 (Coast stop command present)
0= OFF3 (Quick stop command present)
1= Switch-on inhibit
1= Drive warning present
1= Notused (always 1)

1= Serial operation allowed
0= Serial operation blocked - local operation only

1= Frequency reached
0= Frequency not reached

1= Converter output is clockwise
1= Converter output is counter-clockwise

Reserved for future use: These bits might not always be zero

Figure 11-3 Status Bits for Standard Status Word for MicroMaster 3 and Main Feedback

336

Using the USS Protocol Library to Control a MicroMaster Drive Chapter 11

}7 High byte } Low byte 4{

\15\14\13\12\11\10\9\8 7\6\5\4\3\2\1\ \

0
\
1= Ready to start
1= Ready to operate
1= Operation enabled

1= Drive fault present

0= OFF2 (Coast stop command present)
0= OFF3 (Quick stop command present)
1= Switch-on inhibit
1= Drive warning present
1= Notused (always 1)

1= Serial operation allowed
0= Serial operation blocked - local operation only

1= Frequency reached
0= Frequency not reached

0= Warning: Motor current limit

0= Motor holding brake active
0= Motor overload

1= Motor running direction right
0= Inverter overload

Figure 11-4 Status Bits for Standard Status Word for MicroMaster 4 and Main Feedback

Example: USS_CTRL Subroutine

Metwork 1 To display in STL only:
Sh0.0 1155_CTRL Network 1 /IControl box for drive 0
| | EN LD SMO.0
CALL USS_CTRL, 0.0, 10.1,10.2, 10.3,
(B0 10.4, 0, 1, 100.0, M0.0, VB2, VW4,
1| RiLM VD6, Q0.0, Q0.1, Q0.2, Q0.3
04 To display in LAD or FBD:
I I OFF2 Network 1 /IControl box for drive 0
LD SM0.0
| ED.2I - L60.0
- OFF3 LD 10.0
= L63.7
| E“-3I LD 10.1
- F_ACK = L63.6
LD 10.2
1 DIR LD 10.3
_ = L63.4
[« Drive Fesp_ R MO0 LD 10.4
14 Type Ermar B2 - L63.3
100.04 Speed_SP Status g LD L60.0
Speed VDB oAl USS_CTRL, L63.7, L63.6, L63.5,
Fiun EN 400 L63.4, L63.3, 0, 1, 100.0, MO.0,
D_Dir-Al1 VB2, VW4, VD6, Q0.0, Q0.1, Q0.2,
|kt A0 2
Q0.3
Faultp.A0.3

337

S7-200 Programmable Controller System Manual

338

USS RPM_x Instruction SIMATIC £ EC1131
There are three read instructions for the USS protocol: LD ED
1 USS_RPM_W (port0) or USS_RPM_W_P1 (port 1) 1155 _RPR_W LISS_RPR_W
instruction reads an unsigned word parameter. JEn JEn
— #MT _RE
(1 USS_RPM_D (port 0) or USS_RPM_D_P1 (port 1) — HMT_REC A brive [?Dne L
instruction reads an unsigned double word parameter. Ori o Parar Error
T Lrive ane —
~Index “Walue -
0 USS_RPM_R (port0)or USS_RPM_R_P1 (port 1) ~|Param Errar (= | T EEC M
instruction reads a floating-point parameter.] '[';'Bde:tr Value =
Only one read (USS_RPM_x) or write (USS_WPM_Xx)
instruction can be active at a time. LISS_RPM_A USS_RPM_D USS_RPM_R
The USS_RPM_x transactions complete when the
MicroMaster drive acknowledges receipt of the command, SIMATIC
or when an error condition is posted. The logic scan
continues to execute while this process awaits a response. 5TL
. L CALL USS_RPM_YY, HMT_REQ, Drive,
The EN bit must be on to enable transmission of a request, p.,r.,‘fnf Index, Dg_ﬁ':r%.:.,:f
and should remain on until the Done bit is set, signaling Errar, Yalus
completion of the process. For example, a USS_RPM_x CALL LISS_RPM_D. HMT_RED, Drive,
request is transmitted to the MicroMaster drive on each Pararn, Index, DB_Ptr, Done,
scan when XMT_REQ input is on. Therefore, the XMT_REQ Error, Yalue
input should be pulsed on through an edge detection CALL USS_RPM_R. #MT_REQ. Drive,
element which causes one request to be transmitted for Efrr;rm{,m::x' DEFtr. Done,
each positive transition of the EN input.)

The Drive input is the address of the MicroMaster drive to
which the USS_RPM_x command is to be sent. Valid
addresses of individual drives are 0 to 31.

Param is the parameter number. Index is the index value of the parameter that is to be read. Value
is the parameter value returned. The address of a 16-byte buffer must be supplied to the DB_Ptr
input. This buffer is used by the USS_RPM_x instruction to store the results of the command
issued to the MicroMaster drive.

When the USS_RPM_x instruction completes, the Done output is turned on and the Error output
byte and the Value output contain the results of executing the instruction. Table 11-6 defines the
error conditions that could result from executing the instruction. The Error and Value outputs are
not valid until the Done output turns on.

Table 11-4 Valid Operands for the USS_RPM_x

Inputs/Outputs = Data Type Operands

XMT_REQ BOOL 1,Q, M, S, SM, T, C, V, L, Power Flow conditioned by a rising edge
detection element

Drive BYTE VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD, Constant

Param, Index WORD VW, IW, QW, MW, SW, SMW, LW, T, C, AC, AIW, *VD, *AC, *LD,
Constant

DB_Ptr DWORD &VB

Value WORD VW, IW, QW, MW, SW, SMW, LW, T, C, AC, AQW, *VD, *AC, *LD

DWORD, REAL | VD, ID, QD, MD, SD, SMD, LD, *VD, *AC, *LD
Done BOOL LQ,M,S,SM, T,C,V, L
Error BYTE VB, IB, QB, MB, SB, SMB, LB, AC. *VD, *AC, *LD

Using the USS Protocol Library to Control a MicroMaster Drive Chapter 11

USS_WPM_x Instruction

There are three write instructions for the USS protocol:

SIMATIC £ [EC 1131
O USS_WPM_W (port 0) or USS_WPM_W_P1 (port 1)
instruction writes an unsigned word parameter. LAD FED
O USS_WPM_D (port 0) or USS_WPM_D_P1 (port 1) | E;S-WPM-W | E;S-WPM-W
instruction writes an unsigned double word parameter. T Reo
O USS_WPM_R (port0) or USS_WPM_R_P1 (port 1) - #MT_REQ [EEFROM
instruction writes a floating-point parameter. < eepRom ' E”‘“‘E E”"'E B
| Faram Errar =
Only one read (USS_RPM_x) or write (USS_WPM_Xx) dovive Donel | oIndex
instruction can be active at a time. Aparam Ervor e || alue
The USS_WPM_x transactions complete when the 7] Indes: g imi
MicroMaster drive acknowledges receipt of the command,] ;g'”:tr
or when an error condition is posted. The logic scan =
continues to execute while this process awaits a response.
The EN bit must be on to enable transmission of a request, USSP U2 WPM D USZ WPMLR

and should remain on until the Done bit is set, signaling
completion of the process. For example, a USS_WPM_x
request is transmitted to the MicroMaster drive on each
scan when XMT_REQ input is on. Therefore, the XMT_REQ | o1,
input should be pulsed on through an edge detection

SIMATIC

CALL USS_WPM_A, =MT_REC,

element which causes one request to be transmitted for EEPROM, Drive, Param, Indes:,
each positive transition of the EN input. Yalue, DE_Ptr, Done, Error
The EEPROM input enables writing to both RAM and CALL - USS_WPM_D, HMT _RECL,

. . EEFROM. Drrive, Pararn, Indes.
EEPROM of the drive when it is on and only to the RAM Walus, DB_Ptr. Done, Ebror

when it is off. Note_ that this function is not supported by CALL LSS WPM_R, XMT REC.
MM3 drives, so this input must be off. EEFROCI, Drrive, Pararn, Indes:,

The Drive input is the address of the MicroMaster drive to el (B o, e
which the USS_WPM_x command is to be sent. Valid
addresses of individual drives are 0 to 31.

Param is the parameter number. Index is the index value of
the parameter that is to be written. Value is the parameter
value to be written to the RAM in the drive. For MicroMaster
3 drives, you can also write this value to the EEPROM of the
drive, based on how you have configured P971 (EEPROM
Storage Control).

The address of a 16-byte buffer must be supplied to the DB_Ptr input. This buffer is used by the
USS_WPM_x instruction to store the results of the command issued to the MicroMaster drive.

When the USS_WPM_x instruction completes, the Done output is turned on and the Error output
byte contains the result of executing the instruction. Table 11-6 defines the error conditions that
could result from executing the instruction.

When the EEPROM input is turned on, the instruction writes to both the RAM and the EEPROM of
the drive. When the the input is turned off, the instruction writes only to the RAM of the drive.
Because the MicroMaster 3 drive does not support this function, you must ensure that this input is
off in order to use this instruction with a MicroMaster 3 drive.

Table 11-5 Valid Operands for the USS_WPM_x Instructions

Inputs/Outputs Data Type Operands

XMT_REQ BOOL I, Q, M, S,SM,T,C,V,L, Power Flow conditioned by a rising edge detection element
EEPROM BOOL ,Q, M, S, SM, T, C, V, L, Power Flow

Drive BYTE VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD, Constant

Param, Index WORD VW, IW, QW, MW, SW, SMW, LW, T, C, AC, AW, *VD, *AC, *LD, Constant
DB_Ptr DWORD &VB

Value WORD VW, IW, QW, MW, SW, SMW, LW, T, C, AC, AQW, *VD, *AC, *LD

DWORD, REAL | VD, ID, QD, MD, SD, SMD, LD, *VD, *AC, *LD

339

S7-200 Programmable Controller System Manual

Table 11-5 Valid Operands for the USS_WPM_x Instructions, continued

Inputs/Outputs = Data Type Operands

Done BOOL LQ,M, S, SM, T,C,V, L

Error BYTE VB, IB, QB, MB, SB, SMB, LB, AC. *VD, *AC, *LD
Caution

When you use an USS_WPM_x instruction to update the parameter set stored in drive
EEPROM, you must ensure that the maximum number of write cycles (approximately 50,000) to
the EEPROM is not exceeded.

Exceeding the maximum number of write cycles will result in corruption of the stored data and
subsequent data loss. The number of read cycles is unlimited.

If frequent writes to the drive parameters are required, then you should first set the EEPROM
storage control parameter in the drive to zero (for MicroMaster 3 drives) and turn off the
EEPROM input for MicroMaster 4 drives.

Example: USS_RPM_x and USS_WPM_x

340

Network 1 /IThe two contacts must have the
/lsame address.

LD 10.0
= L60.0
LD 10.0
EU

= L63.7
LD L60.0

CALL USS_RPM_W, L63.7, 0, 3, 0, &vB100,
MO0.0, VB10, VW200

Network 2 /IThe two contacts must have the
same address

LD 10.1

= L60.0
LD 10.1
EU

= L63.7
LDN SMO0.0
= L63.6
LD L60.0

CALL USS_WPM_W, L63.7, L63.6, 0, 971, O, 1,
&VB120, M0.1, VB11

Using the USS Protocol Library to Control a MicroMaster Drive Chapter 11

Sample Programs for the USS Protocol

Example: USS Instructions Sample Program that Correctly Displays in STL

Network 1 /lInitialize USS Protocol:
//On the first scan, enable USS
IIprotocol for port 0 at 19200
[/Iwith drive address

/I"0” active.
LD SMO0.1
CALL USS_INIT, 1, 19200, 16#00000001, QO0.0,
VB1
Network 2 /[Control parameters for Drive O
LD SMO0.0

CALL USS_CTRL, 10.0,10.1, 10.2,10.3, 10.4, 0, 1,
100.0, M0.0, VB2, VW4, VD6, Q0.1, Q0.2,
Q0.3, Q0.4

Network 3 /IRead a Word parameter from Drive 0.
/IRead parameter 5 index O.
/1. Save the state of 10.5to0 a
/I temporary location so that this
/I network displays in LAD.
/[2. Save the rising edge pulse of 10.5
/I to a temporary L location so that
/I it can be passed to the subroutine.

LD 10.5

= L60.0

LD 10.5

EU

= L63.7

LD L60.0

CALL USS_RPM_W, L63.7, 0, 5, 0, &vB20, M0.1,
VB10, VW12

Network 4 /I\Write a Word parameter to Drive 0.
/\Wrrite parameter 2000 index 0.

LD 10.6

= L60.0
LD 10.6
EU

= L63.7
LDN SMO0.0
= L63.6
LD L60.0

CALL USS_WPM_R, L63.7, L63.6, 0, 2000, 0, 50.0,
&VB40, M0.2, VB14

Note: This STL code does not compile to LAD or FBD.

341

S7-200 Programmable Controller System Manual

USS Execution Error Codes

Table 11-6 Execution Error Codes for the USS Instructions

Error Codes Description
0 No error
1 Drive did not respond
2 A checksum error in the response from the drive was detected
3 A parity error in the response from the drive was detected
4 An error was caused by interference from the user program
5 An illegal command was attempted
6 An illegal drive address was supplied
7 The communications port was not set up for USS protocol
8 The communications port is busy processing an instruction
9 The drive speed input is out of range
10 The length of the drive response is incorrect
11 The first character of the drive response is incorrect
12 The length character in the drive response is not supported by USS instructions
13 The wrong drive responded
14 The DB_Ptr address supplied is incorrect
15 The parameter number supplied is incorrect
16 An invalid protocol was selected
17 USS is active; change is not allowed
18 An illegal baud rate was specified
19 No communications: the drive is not ACTIVE
20 The parameter or value in the drive response is incorrect or contains an error code
21 A double word value was returned instead of the word value requested
22 A word value was returned instead of the double word value requested

Connecting and Setting Up the MicroMaster Series 3 Drive

Connecting the MicroMaster 3 Drive

You can use the standard PROFIBUS cable and connectors to connect the S7-200 to the
MicroMaster Series 3 (MM3) drive. See Figure 11-5 for the proper cable bias and termination of
the interconnecting cable.

Caution

Interconnecting equipment with different reference potentials can cause unwanted currents to
flow through the interconnecting cable.

These unwanted currents can cause communications errors or damage equipment.

Be sure all equipment that you are about to connect with a communications cable either shares
a common circuit reference or is isolated to prevent unwanted current flows.

The shield must be tied to chassis ground or pin 1 on the 9-pin connector. It is recommended
that you tie wiring terminal 2-0V on the MicroMaster drive to chassis ground.

342

Using the USS Protocol Library to Control a MicroMaster Drive Chapter 11

Cable must be terminated Switch position = On Switch position = Off Switch position = On
and biased at both ends. Terminated and biased No termination or bias Terminated and biased

Bare shielding: approximately 12 mm (1/2 in.) must
contact the metal guides of all locations.

Switch position = On: Terminated and biased Switch position = Off: No termination or bias
Pin # TORD+ —2——— piny
o] TXDIRXD - — A o]
Cable shield
TXD/RXD + 3 TXD/RXD + B 3
Network Network
TXD/RxD - g | connector TXD/RXD - A g | connector
5 5
Cable shield ————— 1 | Cable shield 1]

Figure 11-5 Bias and Termination of the Network Cable

Setting Up the MicroMaster 3 Drive

Before you connect a drive to the S7-200, you must ensure that the drive has the following system
parameters. Use the keypad on the drive to set the parameters:

1. Reset the drive to factory settings (optional). Press the P key: P0O0O is displayed. Press the
up or down arrow key until the display shows the P944. Press P to enter the parameter.

P944=1

2. Enable the read/write access to all parameters. Press the P key. Press the up or down
arrow key until the display shows P009. Press P to enter the parameter.

P009=3

3. Check motor settings for your drive. The settings will vary according to the motor(s) being
used. Press the P key. Press the up or down arrow key until the display shows the motor
setting for your drive. Press P to enter the parameter.

P081=Nominal frequency of motor (Hz)
P082=Nominal speed of motor (RPM)
P083=Nominal current of motor (A)
P084=Nominal voltage of motor (V)
P085=Nominal power of motor (kW/HP)

4. Setthe Local/Remote control mode. Press the P key. Press the up or down arrow key until
the display shows P910. Press P to enter the parameter.

P910=1 Remote control mode

343

S7-200 Programmable Controller System Manual

344

10.

11.

12.

13.

Set the Baud Rate of the RS-485 serial interface. Press the P key. Press the up or down
arrow key until P092 appears. Press P to enter the parameter. Press the up or down arrow
key until the display shows the number that corresponds to the baud rate of your RS-485
serial interface. Press P to enter.

P092 3 (1200 baud)
4 (2400 baud)
5 (4800 baud)
6 (9600 baud - default)
7 (19200 baud)

Enter the Slave address. Each drive (a maximum of 31) can be operated over the bus.
Press the P key. Press the up or down arrow key until PO91 appears. Press P to enter the
parameter. Press the up or down arrow key until the display shows the slave address you
want. Press P to enter.

P091=0 through 31.

Ramp up time (optional). This is the time in seconds that it takes the motor to accelerate to
maximum frequency. Press the P key. Press the up or down arrow key until PO02 appears.
Press P to enter the parameter. Press the up or down arrow key until the display shows the
ramp up time you want. Press P to enter.

P002=0-650.00

Ramp down time (optional). This is the time in seconds that it takes the motor to decelerate
to a complete stop. Press the P key. Press the up or down arrow key until PO03 appears.
Press P to enter the parameter. Press the up or down arrow key until the display shows the
ramp down time you want. Press P to enter.

P003=0-650.00

Serial Link Time-out. This is the maximum permissible period between two incoming data
telegrams. This feature is used to turn off the inverter in the event of a communications
failure.

Timing starts after a valid data telegram has been received. If a further data telegram is not
received within the specified time period, the inverter will trip and display fault code F008.
Setting the value to zero switches off the control. Use Table 11-1 to calculate the time
between the status polls to the drive.

Press the P key. Press the up or down arrow key until PO93 appears. Press P to enter the
parameter. Press the up or down arrow key until the display shows the serial link time-out
you want. Press P to enter.

P093=0-240 (0 is default; time is in seconds)

Serial Link Nominal System Setpoint. This value can vary, but will typically correspond to 50
Hz or 60 Hz, which defines the corresponding 100% value for PVs or SPs. Press the P key.
Press the up or down arrow key until P094 appears. Press P to enter the parameter. Press
the up or down arrow key until the display shows the serial link nominal system setpoint you
want. Press P to enter.

P094=0-400.00

USS Compatibility (optional). Press the P key. Press the up or down arrow key until P095
appears. Press P to enter the parameter. Press the up or down arrow key until the display
shows the number that corresponds to the USS compatibility you want. Press P to enter.

P095 = 0 0.1 Hz resolution (default)
1 0.01 Hz resolution

EEPROM storage control (optional). Press the P key. Press the up or down arrow key until
P971 appears. Press P to enter the parameter. Press the up or down arrow key until the
display shows the number that corresponds to the EEPROM storage control you want.
Press P to enter.

P971 = 0 Changes to parameter settings (including P971) are lost when power is
removed.
1 (default) Changes to parameter settings are retained during periods when
power is removed.

Operating display. Press P to exit out of parameter mode.

Using the USS Protocol Library to Control a MicroMaster Drive Chapter 11

Connecting and Setting Up the MicroMaster Series 4 Drive

Connecting the MicroMaster 4 Drive

To make the connection to the MicroMaster Series 4 (MM4) drive, insert the ends of the RS-485
cable into the two caged clamp, screwless terminals provided for USS operation. The standard
PROFIBUS cable and connectors can be used to connect the S7-200.

Caution

Interconnecting equipment with different reference potentials can cause unwanted currents to
flow through the interconnecting cable.

These unwanted currents can cause communications errors or damage equipment.

Be sure all equipment that you are about to connect with a communications cable either shares
a common circuit reference or is isolated to prevent unwanted current flows.

The shield must be tied to chassis ground or pin 1 on the 9-pin connector. It is recommended
that you tie wiring terminal 2-0V on the MicroMaster drive to chassis ground.

As shown in Figure 11-6, the two wires at
the opposite end of the RS-485 cable
must be inserted into the MM4 drive
terminal blocks. To make the cable
connection on a MM4 drive, remove the
drive cover(s) to access the terminal
blocks. See the MM4 user manual for
details about how to remove the
covers(s) of your specific drive.

The terminal block connections are
labeled numerically. Using a PROFIBUS
connector on the S7-200 side, connect
the A terminal of the cable to the drive
terminal 15 (for an MM420) or terminal
30 (MM440). Connect the B terminal of
the cable connector to terminal 14 Figure 11-6 Connecting to the MM420 Terminal Block
(MM420) or terminal 29 (MM440).

If the S7-200 is a terminating node in the network, or if the connection is point-to-point, it is
necessary to use terminals Al and B1 (not A2 and B2) of the connector since they allow the
termination settings to be set (for example, with DP connector type 6ES7 972-0BA40-0X40).

Caution
Make sure the drive covers are replaced properly before supplying power to the unit.

If the drive is configured as the terminating node in MM420

the network, then termination and bias resistors P 14

must also be wired to the appropriate terminal 120 ohm

connections. For example, Figure 11-7 shows an N 15

example of the connections necessary for 470 ohm% 1.5K ohm
termination and bias for the MM4 drive. ov 2

+0V 10— |

MM440
P 29

120 ohm
N 30

470 ohm < 1-5K ohm
ov 2

+0V 10— |

Figure 11-7 Sample Termination and Bias

345

S7-200 Programmable Controller System Manual

Setting Up the MM4 Drive

Before you connect a drive to the S7-200, you must ensure that the drive has the following system
parameters. Use the keypad on the drive to set the parameters:

1. Resetthe drive to factory settings (optional): P0010=30
P0970=1
If you skip this step, ensure that the following parameters are set to these values:
USS PZD length: P2012 Index 0=2
USS PKW length: P2013 Index 0=127
2. Enable the read/write access to all parameters (Expert mode): P0003=3
3. Check motor settings for your drive: P0304=Rated motor voltage (V)

P0305=Rated motor current (A)
P0307=Rated motor power (W)
P0310=Rated motor frequency (Hz)
P0311=Rated motor speed (RPM)

The settings will vary according to the motor(s) being used.

In order to set the parameters P304, P305, P307, P310, and P311, you must first set
parameter P010 to 1 (quick commissioning mode). When you are finished setting the
parameters, set parameter P010 to 0. Parameters P304, P305, P307, P310, and P311 can
only be changed in the quick commissioning mode.

4. Setthe local/remote control mode: P0700 Index 0=5
Set selection of frequency setpoint to USS on COM Link: P1000 Index 0=5
6. Ramp up time (optional): P1120=0 to 650.00
This is the time in seconds that it takes the motor to accelerate to maximum frequency.
7. Ramp down time (optional): P1121=0 to 650.00
This is the time in seconds that it takes the motor to decelerate to a complete stop.
8. Setthe serial link reference frequency: P2000=1 to 650 Hz
9. Setthe USS normalization: P2009 Index 0=0

10. Set the baud rate of the RS-485 serial interface: P2010 Index 0= 4 (2400 baud)
5 (4800 baud)
6 (9600 baud)
7 (19200 baud
8 (38400 baud)
(57600 baud)

12 (115200 baud)
11. Enter the Slave address: P2011 Index 0=0 to 31

©

Each drive (a maximum of 31) can be operated over the bus.

12. Set the serial link timeout: P2014 Index 0=0 to 65,535 ms
(O=timeout disabled)

This is the maximum permissible period between two incoming data telegrams. This feature
is used to turn off the inverter in the event of a communications failure. Timing starts after a
valid data telegram has been received. If a further data telegram is not received within the
specified time period, the inverter will trip and display fault code FO070. Setting the value to
zero switches off the control. Use Table 11-1 to calculate the time between the status polls
to the drive.

13. Transfer the data from RAM to EEPROM:
P0971=1 (Start transfer) Save the changes to the parameter settings to EEPROM

346

Using the Modbus Protocol Library

The STEP 7-Micro/WIN Instruction Libraries make communicating to Modbus devices easier by
including pre-configured subroutines and interrupt routines that are specifically designed for
Modbus communications. With the Modbus Protocol Instructions, you can configure the S7-200 to
act as a Modbus master or slave device.

You find these instructions in the Libraries folder of the STEP 7-Micro/WIN instruction tree. When
you put a Modbus instruction in your program, one or more associated subroutines are
automatically added to your project.

Siemens Libraries are sold on a separate CD, STEP 7-Micro/WIN Add-On: Instruction Library,
with the order number 6ES7 830-2BC00-0Y XO0. After version 1.1 of the Siemens Library is
purchased and installed, any subsequent STEP 7-Micro/WIN V3.2x and V4.0 upgrade that you
install will also upgrade your libraries automatically at no additional cost (when library additions or
modifications are made).

In This Chapter

OV BIVIBW . . oottt e e et et e e e e e e e e e e e e 348
Requirements for Using Modbus Protocol i 348
Initialization and Execution Time for Modbus Protocol 349
MOdbUS AdAreSSING oot 350
Using the Modbus Master Instructions e 351
Using the Modbus Slave INStructions e 352
Instructions for the Modbus Protocol 353
AdVanCed TOPICS . ..ottt 362

347

S7-200 Programmable Controller System Manual

Overview

STEP 7-Micro/WIN Instruction Libraries make communicating to Modbus master and slave
devices easier by including pre-configured subroutines and interrupt routines that are specifically
designed for Modbus communications.

Modbus slave instructions can configure the S7-200 to act as a Modbus RTU slave device and
communicate to Modbus master devices.

Modbus master instructions can configure the S7-200 to act as a Modbus RTU master device and
communicate to one or more Modbus slave devices.

The Modbus instructions are installed into the libraries folder in the STEP 7-Micro/WIN instruction
tree. These instructions enable the S7-200 to act as a Modbus device. When you place a Modbus
instruction in your program, one or more associated subroutines are automatically added to your
project.

There are two versions of the Modbus master protocol library. One version uses port 0 of the CPU
and the other uses port 1 of the CPU. The port 1 library has a _P1 appended to the POU names
(for example, MBUS_CTRL_P1) to denote that the POU utilizes port 1 on the CPU. The two
Modbus master libraries are identical in all other respects.

The Modbus slave library only supports port 0 communication.

Requirements for Using Modbus Protocol

348

The Modbus Master Protocol instructions use the following resources from the S7-200:

1 Initializing the Modbus Slave Protocol dedicates the specific CPU port for Modbus Master
Protocol communications.

When the CPU port is being used for Modbus Master Protocol communications, it cannot be
used for any other purpose, including communications with STEP 7-Micro/WIN. The
MBUS_CTRL instruction controls assignment of Port 0 to Modbus Master Protocol or PPI.
The MBUS_CTRL_P1 instruction (from the port 1 library) controls assignment of Port 1 to
Modbus Master Protocol or PPI

O The Modbus Master Protocol instructions affect all of the SM locations associated with
Freeport communications port in use

1 The Modbus Master Protocol instructions use 3 subroutines and 1 interrupt routine.

1 The Modbus Master Protocol instructions require about 1620 bytes of program space for
the two Modbus Master instructions and the support routines.

1 The variables for the Modbus Master Protocol instructions require a 284 byte block of V
memory. The starting address for this block is assigned by the user and is reserved for
Modbus variables.

1 The S7-200 CPU must be firmware revision 2.00 or greater to support the Modbus Master
Protocol Library (CPU MLFB 21x-2xx23-0XB0)

1 The Modbus Master Library uses the user interrupts for some functions. The user interrupts
must not be disabled by the user program.

Tip

To change the operation of the CPU communications port back to PPI so that you can
communicate with STEP 7-Micro/WIN, you can do one of the following:

- Set the Mode parameter of the MBUS_CTRL instruction to a zero (0).

- Set the mode switch on the S7-200 to STOP mode position.

Either of these methods will set the CPU communications port to communicate with
STEP 7-Micro/WIN.

Using the Modbus Protocol Library Chapter 12

The Modbus Slave Protocol instructions use the following resources from the S7-200:

1 Initializing the Modbus Slave Protocol dedicates Port 0 for Modbus Slave Protocol
communications.

When Port 0 is being used for Modbus Slave Protocol communications, it cannot be used
for any other purpose, including communications with STEP 7-Micro/WIN. The MBUS_INIT
instruction controls assignment of Port 0 to Modbus Slave Protocol or PPI.

O The Modbus Slave Protocol instructions affect all of the SM locations associated with
Freeport communications on Port 0.

1 The Modbus Slave Protocol instructions use 3 subroutines and 2 interrupts.

1 The Modbus Slave Protocol instructions require 1857 bytes of program space for the two
Modbus Slave instructions and the support routines.

1 The variables for the Modbus Slave Protocol instructions require a 779-byte block of V
memory. The starting address for this block is assigned by the user and is reserved for
Modbus variables.

Tip
@ To change the operation of Port 0 back to PPI so that you can communicate with
STEP 7-Micro/WIN, you can do one of the following:

- Use another MBUS_INIT instruction to reassign Port 0.
- Set the mode switch on the S7-200 to STOP mode.

Either of these methods will set the parameters for Port O so that you can communicate with
STEP 7-Micro/WIN.

Initialization and Execution Time for Modbus Protocol

Modbus Master Protocol - The Modbus Master Protocol requires a small amount of time every
scan to execute the MBUS_CTRL instruction. The time will be about 1.11 milliseconds when the
MBUS_CTRL is initializing the Modbus Master (first scan), and about 0.41 milliseconds on
subsequent scans.

The scan time is extended when the MBUS_MSB subroutine executes a request. Most of the time
is spent calculating the Modbus CRC for the request and the response. The CRC (Cyclic
Redundancy Check) insures the integrity of the communications message. The scan time is
extended by about 1.85 milliseconds for each word in request and in the response. A maximum
request/response (read or write of 120 words) extends the scan time to approximately 222
milliseconds. A read request extends the scan mainly when the response is received from the
slave, and to a lesser extent when the request is sent. A write request extends the scan mainly
when the data is sent to the slave, and to a lesser extent when the response is received.

Modbus Slave Protocol - Modbus communications utilize a CRC (cyclic redundancy check) to
insure the integrity of the communications messages. The Modbus Slave Protocol uses a table of
precalculated values to decrease the time required to process a message. The initialization of this
CRC table requires about 240 milliseconds. This initialization is done inside the MBUS_INIT
subroutine and is normally done in the first scan of the user program after entering RUN mode.
You are responsible for resetting the watchdog timer and keeping the outputs enabled (if required
for expansion modules) if the time required by the MBUS_INIT subroutine and any other user
initialization exceeds the 500 millisecond scan watchdog. The output module watchdog timer is
reset by writing to the outputs of the module. See the Watchdog Reset Instruction in Chapter 6.

The scan time is extended when the MBUS_SLAVE subroutine services a request. Since most of
the time is spent calculating the Modbus CRC, the scan time is extended by about 420
microseconds for every byte in the request and in the response. A maximum request/response
(read or write of 120 words) extends the scan time by approximately 100 milliseconds.

349

S7-200 Programmable Controller System Manual

Modbus Addressing

Modbus addresses are normally written as 5 character values containing the data type and the
offset. The first character determines the data type, and the last four characters select the proper
value within the data type.

Modbus Master Addressing - The Modbus Master instructions then map the address to the
correct functions to send to the slave device. The following Modbus addresses are supported by
the Modbus Master instructions:

d 00001 to 09999 are discrete outputs (coils)

1 10001 to 19999 are discrete inputs (contacts)

d 30001 to 39999 are input registers (generally analog inputs)
[40001 to 49999 are holding registers

All Modbus addresses are one-based, meaning that the first data value starts at address one. The
range of valid addresses will depend on the slave device. Different slave devices will support
different data types and address ranges.

Modbus Slave Addressing -The Modbus Master device then maps the addresses to the correct
functions. The following addresses are supported by the Modbus Slave instructions:

1 00001 to 00128 are discrete outputs mapped to Q0.0 - Q15.7

J 10001 to 10128 are discrete inputs Table 12-1 Mapping Modbus Addresses to the S7-200
mapped to 10.0 - 115.7

Modbus Address S7-200 Address
(d 30001 to 30032 are analog input 00001 Q0.0
registers mapped to AIWO to AIW62
) 00002 Q0.1
Qg 4OQ01 to 04xxxx are holding 00003 Q0.2
registers mapped to V memory.
All Modbus addresses are one-based.
Table 12-1 shows the mapping of Modbus 00127 Q156
addresses to the S7-200 addresses. 00128 Q15.7
10001 10.0

The Modbus Slave Protocol allows you to
limit the amount of inputs, outputs, analog 10002 10.1
inputs, and holding registers (V memory)

accessible to a Modbus master. 10003 0.2
The MaxIQ parameter of the MBUS_INIT
. . o . 10127 115.6
instruction specifies the maximum number
of discrete inputs or outputs (Is or Qs) the 10128 115.7
Modbus master is allowed to access. 30001 AIWO
The MaxAl parameter of the MBUS_INIT 30002 AlW2
instruction specifies the maximum number 30003 AlW4
of input registers (AIWs) the Modbus
master is allowed to access.

30032 AIW62
The MaxHold parameter of the MBUS_INIT

40001 HoldStart

instruction specifies the maximum number
of holding registers (V memory words) the 40002 HoldStart+2
Modbus master is allowed to access. 40003 HoldStart+4

See the description of the MBUS_INIT
instruction for more information on setting
up the memory restrictions for the Modbus
slave.

AXXXX HoldStart+2 x (xxxx-1)

350

Using the Modbus Protocol Library Chapter 12

Configuring the Symbol Table

After you enter an address for the first symbol, the table automatically calculates and assigns the
remainder of the symbols in the table.

You should assign a starting V location for the table which occupies 779 bytes. Be sure that the
assignment of the Modbus Slave symbols do not overlap with the V memory assigned to the
Modbus holding registers with the HoldStart and MaxHold parameters on the MBUS_INIT
instruction. If there is any overlap of the memory areas, the MBUS_INIT instruction returns an
error.

Using the Modbus Master Instructions

To use the Modbus Master instructions in your S7-200 program, follow these steps:

1. Insertthe MBUS_CTRL instruction in your program and execute the MBUS_CTRL on every
scan. You can use the MBUS_CTRL instruction either to initiate or to change the Modbus
communications parameters.

When you insert the MBUS_CTRL instruction, several hidden subroutines and interrupt
routines are automatically added to your program.

2. Use the Library Memory command to assign a starting address for the V. memory required
for Modbus Master Protocol instructions.

3. Place one or more MBUS_MSG instructions in your program. You can add as many
MBUS_MSG instructions to your program as you require, but only one of these instructions
can be active at a time.

4. Connect the communications cable between Port 0 on the S7-200 CPU (or Port 1 for the
Port 1 library), and the Modbus slave devices.

Caution

Interconnecting equipment with different reference potentials can cause unwanted currents to
flow through the interconnecting cable. These unwanted currents can cause communications
errors or damage equipment.

Ensure that all equipment that is connected with a communications cable either shares a
common circuit reference or is isolated to prevent unwanted current flows.

The Modbus Master instructions use the Modbus functions shown below to read or write a specific
Modbus address. The Modbus slave device must support the Modbus function(s) required to read
or write a particular Modbus address.

Table 12-2 Required Modbus Slave Function Support

Modbus Address Read or Write Modbus Slave Function Required
00001 to 09999 discrete outputs Read Function 1
Write Function 5 for a single output point

Function 15 for multiple output points

10001 to 19999 discrete inputs Read Function 2
Write Not possible
30001 to 39999 input registers Read Function 4
Write Not possible
40001 to 49999 holding registers Read Function 3
Write Function 6 for a single register

Function 16 for multiple registers

351

S7-200 Programmable Controller System Manual

Using the Modbus Slave Instructions

352

To use the Modbus Slave instructions in your S7-200 program, follow these steps:

1. Insertthe MBUS_INIT instruction in your program and execute the MBUS_INIT instruction
for one scan only. You can use the MBUS_INIT instruction either to initiate or to change the
Modbus communications parameters.

When you insert the MBUS_INIT instruction, several hidden subroutines and interrupt
routines are automatically added to your program.

2. Use the Library Memory command to assign a starting address for the V. memory required
for Modbus Slave Protocol instructions.

3. Place only one MBUS_SLAVE instruction in your program. This instruction is called every
scan to service any requests that have been received.

4. Connect the communications cable between Port 0 on the S7-200 and the Modbus master
device.

Caution

Interconnecting equipment with different reference potentials can cause unwanted currents to
flow through the interconnecting cable. These unwanted currents can cause communications
errors or damage equipment.

Ensure that all equipment that is connected with a communications cable either shares a
common circuit reference or is isolated to prevent unwanted current flows.

The accumulators (ACO, AC1, AC2, AC3) are utilized by the Modbus slave instructions and
appear in the Cross Reference listing. Prior to execution, the values in the accumulators of a
Modbus Slave instruction are saved and restored to the accumulators before the Modbus Slave
instruction is complete, ensuring that all user data in the accumulators is preserved while
executing a Modbus Slave instruction.

The Modbus Slave Protocol instructions support the Modbus RTU protocol. These instructions
utilize the Freeport utilities of the S7-200 to support the most common Modbus functions. The
following Modbus functions are supported:

Table 12-3 Modbus Slave Protocol Functions Supported

Function Description

1 Read single/multiple coil (discrete output) status. Function 1 returns the on/off status of any
number of output points (Qs).

2 Read single/multiple contact (discrete input) status. Function 2 returns the on/off status of any
number of input points (Is).

3 Read single/multiple holding registers. Function 3 returns the contents of V memory. Holding
registers are word values under Modbus and allow you to read up to 120 words in one request.

4 Read single/multiple input registers. Function 4 returns Analog Input values.

Write single coil (discrete output). Function 5 sets a discrete output point to the specified value.
The point is not forced and the program can overwrite the value written by the Modbus request.

6 Write single holding register. Function 6 writes a single holding register value to the V memory of
the S7-200.
15 Write multiple coils (discrete outputs). Function 15 writes the multiple discrete output values to the

Q image register of the S7-200. The starting output point must begin on a byte boundary (for
example, Q0.0 or Q2.0) and the number of outputs written must be a multiple of eight. This is a
restriction for the Modbus Slave Protocol instructions. The points are not forced and the program
can overwrite the values written by the Modbus request.

16 Write multiple holding registers. Function 16 writes multiple holding registers to the V memory of
the S7-200. There can be up to 120 words written in one request.

Using the Modbus Protocol Library Chapter 12
Instructions for the Modbus Protocol
MBUS _INIT Instruction (Initialize Slave) SIMATIC £ EC1131
The MBUS_INIT instruction is used to enable and initialize,
or to disable Modbus communications. Before the LAD FED
MBUS_SLAVE instruction can be used, the MBUS_INIT MELIZ_IMIT MELIZ_IMIT
instruction must be executed without errors. The instruction —EM EN
it i i Mode Done
com_pIeFes and the Dope bit is set immediately, before Jode Done Hd‘f‘jre Er'i';‘: i
continuing to the next instruction. daddr Ervor Baud
- P ~| Baud Farity
The instruction is executed on each scan when the EN - Parity Delay
input is on. = Dalay Pzl
: . | M Maz<Al
The MBUS_INIT instruction should be executed exactly ~ Masi MaxHald
once for each change in communications state. Therefore, — MazxHold HoldS tart
the EN input should be pulsed on through an edge - Hold5tart
detection element, or executed only on the first scan.
The value for the Mode input selects the communications
protocol: an input value of 1 assigns port 0 to Modbus SIMATIC
protocol and enables the protocol, and an input value of 0
assigns port 0 to PPI and disables Modbus protocol. ST
CALL MBLIS_IMIT, Mode, Addr,
The parameter Baud sets the baud rate at 1200, 2400, Baud, Parity, Delay, MaxI,
4800, 9600, 19200, 38400, 57600, or 115200. Baud rates asfl, MascHold, HoldStart.
57600 and 115200 are supported by S7-200 CPUs version)
1.2 or later.
The parameter Addr sets the address at inclusive values
between 1 and 247.
Table 12-4 Parameters for the MBUS_INIT Instruction
Inputs/Outputs Data Type Operands
Mode, Addr, Parity BYTE VB, IB, QB, MB, SB, SMB, LB, AC, Constant, *VD, *AC,
*LD
Baud, HoldStart DWORD VD, ID, QD, MD, SD, SMD, LD, AC, Constant, *VD, *AC,
*LD
Delay, MaxIQ, MaxAl, MaxHold | WORD VW, IW, QW, MW, SW, SMW, LW, AC, Constant, *VD,
*AC, *LD
Done BOOL ,Q,M,S,SM, T,C, V, L
Error BYTE VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD

The parameter Parity is set to match the parity of the Modbus master. All settings use one stop bit.
The accepted values are:

O 0-no parity
O 1-odd parity
1 2-even parity

The parameter Delay extends the standard Modbus end-of-message timeout condition by adding
the specified number of milliseconds to the standard Modbus message timeout. The typical value
for this parameter should be 0 when operating on a wired network. If you are using modems with
error correction, set the delay to a value of 50 to 100 milliseconds. If you are using spread
spectrum radios, set the delay to a value of 10 to 100 milliseconds. The Delay value can be 0 to
32767 milliseconds.

The parameter MaxIQ sets the number of | and Q points available to Modbus addresses 0xxxx
and 1xxxx at values of 0 to 128. A value of 0 disables all reads and writes to the inputs and
outputs. The suggested value for MaxIQ is 128, which allows access to all | and Q points in the
S7-200.

353

S7-200 Programmable Controller System Manual

354

The parameter MaxAl sets the number of word input (Al) registers available to Modbus address
3xxxx at values of 0 to 32. A value of 0 disables reads of the analog inputs. The suggested value
for MaxAl to allow access to all of the S7-200 analog inputs, is as follows:

1 Ofor CPU 221
1 16 for CPU 222
1 32for CPU 224, CPU 224XP, and CPU 226

The parameter MaxHold sets the number of word holding registers in V. memory available to
Modbus address 4xxxx. For example, to allow the master to access 2000 bytes of V memory, set
MaxHold to a value of 1000 words (holding registers).

The parameter HoldStart is the address of the start of the holding registers in V. memory. This
value is generally set to VBO, so the parameter HoldStart is set to &VBO (address of VBO0). Other V
memory addresses can be specified as the starting address for the holding registers to allow VBO
to be used elsewhere in the project. The Modbus master has access to MaxHold number of words
of V memory starting at HoldStart.

When the MBUS_INIT instruction completes, the Done output is turned on. The Error output byte
contains the result of executing the instruction. Table 12-6 defines the error conditions that could
result from executing the instruction.

MBUS_SLAVE Instruction

The MBUS_SLAVE instruction is used to service a request

from the Modbus master and must be executed every scan SIMATIC £ IEC 1131
to allow it to check for and respond to Modbus requests. LAD FED:
The instruction is executed on each scan when the EN MELIS_SLAYE MELIS_SLAYE
input is on. —EM —EM

Crone -
The MBUS_SLAVE instruction has no input parameters. Er':;';‘:: Error -
The Done output is on when the MBUS_SLAVE instruction
responds to a Modbus request. The Done output is turned
off if there was no request serviced. IMATIC
The Error output contains the result of executing the
. . . - S - . STL
instruction. This output is only valid if Done is on. If Done is CALL ML SLAYE. Done. E
off, the error parameter is not changed. Table 12-6 defines R e T
the error conditions that could result from executing the
instruction.

Table 12-5 Parameters for the MBUS_SLAVE Instruction

Parameter Data Type Operands
Done BOOL LQ,M S, SM,T,C,V,L
Error BYTE VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD

Table 12-6 Modbus Slave Protocol Execution Error Codes

Error Codes Description

0 No Error

Memory range error

lllegal baud rate or parity

lllegal slave address

lllegal value for Modbus parameter

Holding registers overlap Modbus Slave symbols
Receive parity error

Receive CRC error

lllegal function request/function not supported

© 0 N o o b~ W N PP

lllegal memory address in request

=
o

Slave function not enabled

Using the Modbus Protocol Library Chapter 12

Example of Programming the Modbus Slave Protocol

Network 1

501
| |

Network 2

SM0.0
| |

EM

1qhode
14Addr
36004Baud
2qParity
O4Delay
128qMaxQ
324 MaxAl
10004 MaxHold
&vB0qHoldStart

MEUS_INIT

Done
Error

Fha0.1
B

EM

MEBEUS_SLAVE

Done

0.2

Error

FME2

Network 1

LD
CALL

Network 2

LD
CALL

/Nnitialize the Modbus Slave Protocol on the
[ffirst scan. Set the slave address to 1, set
/I port 0 to 9600 baud with even parity, all
/laccess to all I, Q and Al values, allow
/laccess to 1000 holding registers (2000

I bytes) starting at VBO.

SMO0.1
MBUS_INIT,1,1,9600,2,0,128,32,1000,
&VBO0,M0.1,MB1

//[Execute the Modbus Slave Protocol on
I/levery scan.

SMO0.0

MBUS_SLAVE,M0.2,MB2

355

S7-200 Programmable Controller System Manual

MBUS_CTRL Instruction (Initialize Master)

The MBUS_CTRL instruction for S7-200 port O (or

. o . SIMATIC £ 1EC 1131
MBUS_CTRL_P1 for port 1) is used to initialize, monitor, or

to disable Modbus communications. Before the LAD: FED:
MBUS_MSG instruction can be used, the MBUS_CTRL

instruction must be executed without errors. The instruction MELIS_CTRL MELIS_CTRL
completes and the Done bit is set immediately before T|EM ~|EM

continuing to the next instruction. This instruction is
executed on each scan when the EN inputis on.

The MBUS_CTRL instruction must be called every scan

(including the first scan) to allow it to monitor the progress of — Mode — Mode
any outstanding messages initiated with the MBUS_MSG
instruction. The Modbus Master Protocol will not operate J|Baud Done =) qBaud - Done =
correctly unless MBUS_CTRL is called every scan. _EF'”W Ervor [=| 7 Parity Errar =
— Tirmeout — Tirmeaout
The value for the Mode input selects the communications
protocol. An input value of 1 assigns the CPU port to
Modbus protocol and enables the protocol. An input value
of 0 assigns the CPU port to PPI system protocol and SIMATIC
disables Modbus protocol. =
The parameter Parity is set to match the parity of the CALL MELIS_CTRL,
Modbus slave device. All settings use one start bit and one Azl [0, Pl
stop bit. The allowed values are: Timeout, Done, Error
d 0 - no parity

4 1 - odd parity
d 2 - even parity

The parameter Timeout is set to the number of milliseconds to wait for the response from the
slave. The Timeout value can be set anywhere in the range of 1 millisecond through 32767
milliseconds. A typical value would be 1000 milliseconds (1 second). The Timeout parameter
should be set to a value large enough so that the slave device has time to respond at the selected
baud rate.

The Timeout parameter is used to determine if the Modbus slave device is responding to a
request. The Timeout value determines how long the Modbus Master will wait for the first
character of the response after the last character of the request has been sent. The Modbus
Master will receive the entire response from the Modbus slave device if at least one character of
the response is received within the Timeout time.

When the MBUS_CTRL instruction completes, the Done output is turned on.

The Error output contains the result of executing the instruction. Table 12-8 defines the error
conditions that could result from executing the MBUS_CTRL instruction.

Table 12-7 Parameters for the MBUS_CTRL Instruction

Parameter Data Type Operands

Mode BOOL ,Q,M,S,SM, T,C, V, L

Baud DWORD VD, ID, QD, MD, SD, SMD, LD, AC, Constant, *VD, *AC, *LD
Parity BYTE VB, IB, QB, MB, SB, SMB, LB, AC, Constant, *VD, *AC, *LD
Timeout WORD VW, IW, QW, MW, SW, SMW, LW, AC, Constant, *VD, *AC, *LD
Done BOOL ,Q,M,S,SM, T,C, V, L

Error BYTE VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD

356

Using the Modbus Protocol Library Chapter 12

Table 12-8 Modbus Slave Protocol Execution Error Codes

Error Codes Description
0 No Error
1 Parity selection is not valid
2 Baud rate selection is not valid
3 Timeout selection is not valid
4 Mode selection is not valid

MBUS_ MSG Instruction

The MBUS_MSG instruction (or MBUS_MSG_P1 for port 1)

. = SIMATIC ¢ EC 1131
is used to initiate a request to a Modbus slave and process

the response. LAD: FED:
The MBUS_MSG instruction initiates a request to a Modbus WIBLIS_M5G MELZ_MZG
slave when both the EN input and the First inputs are on. —EM —EN

Sending the request, waiting for the response, and

processing the response usually requires several scans.
The EN input must be on to enable the sending of the ~First ~First
request, and should remain on until the Done bit is set.

—Slave Done || o Slave Lone -
Note: Only one MBUS_MSG instruction can be active at a — R Error |- | o Ry Error =
time. If there is more than one MBUS_MSG instruction — Addr — Addr
enabled, the first MBUS_MSG instruction executed will be —[“ount —[Count
processed and all subsequent MBUS_MSG instructions will ~|DataPtr —|CrataPtr
abort with an error code 6.
The parameter First should be on for only one scan when
there is a new request to send. The First input should be SIMATIC
pulsed on through an edge detection element (i.e. Positive
Edge) which will cause the request to be transmitted one 5TL

CALL MEUS_MSG,

First, Slave, B, Addr,
The parameter Slave is the address of the Modbus slave Count, DataFr, Done, Error
device. The allowed range is 0 through 247. Address 0 is
the broadcast address and can only be used for write
requests. There is no response to a broadcast request to
address 0. Not all slave devices will support the broadcast
address. The S7-200 Modbus Slave Library does not
support the broadcast address.

time. See the example program.

The parameter RW specifies if this message is to be a read or a write. The following two values
are allowed for RW.

J O0-Read
O 1- Write

Discrete outputs (coils) and holding registers support both read and write requests. Discrete
inputs (contacts) and input registers only support read requests. The parameter Addr is the
starting Modbus address. The following ranges of values are allowed:

[d 00001 to 09999 for discrete outputs (coils)
1 10001 to 19999 for discrete inputs (contacts)
1 30001 to 39999 for input registers

1 40001 to 49999 for holding registers

The specific range of values for Addr are based on the addresses that the Modbus slave device
supports.

357

S7-200 Programmable Controller System Manual

358

The parameter Count specifies the number of data elements to read or write in this request. The
Count will be the number of bits for the bit data types, and the number of words for the word data

types.
[0 Address Oxxxx Countis the number of bits to read or write
[Address 1xxxx Countis the number of bits to read
1 Address 3xxxx Count is the number of input register words to read
1 Address 4xxxx Count is the number of holding register words to read or write

The MBUS_MSG instruction will read or write a maximum of 120 words or 1920 bits (240 bytes of
data). The actual limit on the value of Count will depend upon the limits in the Modbus slave
device.

The parameter DataPtr is an indirect address pointer which points to the V memory in the S7-200
CPU for the data associated with the read or write request. For a read request, DataPtr should
point to the first CPU memory location used to store the data read from the Modbus slave. For a
write request, DataPtr should point to the first CPU memory location of the data to be sent to the
Modbus slave.

The DataPtr value is passed into MBUS_MSG as an indirect address pointer. For example, if the
data to be written to a Modbus slave device starts at address VW200 in the S7-200 CPU, the
value for the DataPtr would be &VB200 (address of VB200). Pointers must always be a type VB
even if they point to word data.

Table 12-9 Parameters for the MBUS_MSG Instruction

Parameter Data Type Operands

First BOOL ,Q, M, S, SM, T, C, V, L (Power flow conditioned by a positive edge
detection element)

Slave BYTE VB, IB, QB, MB, SB, SMB, LB, AC, Constant, *VD, *AC, *LD

RW BYTE VB, IB, QB, MB, SB, SMB, LB, AC, Constant, *VD, *AC, *LD

Addr DWORD VD, ID, QD, MD, SD, SMD, LD, AC, Constant, *VD, *AC, *LD

Count INT VW, IW, QW, MW, SW, SMW, LW, AC, Constant, *VD, *AC, *LD

DataPtr DWORD &VB

Done BOOL ,Q,M,S,SM, T,C, V, L

Error BYTE VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD

Holding registers (address 4xxxx) and input registers (address 3xxxx) are word values (2 bytes or
16 bits). S7-200 CPU words are formatted the same as Modbus registers. The lower numbered
V-memory address is the most significant byte of the register. The higher numbered V-memory
address is the least significant byte of the register. The table below shows how the S7-200 byte
and word addressing corresponds to the Modbus register format.

Table 12-10 Modbus Holding Register

S7-200 CPU Memory S7-200 CPU Memory Modbus

Byte Address Word Address Holding Register Address

Address Hex Data Address Hex Data Address Hex Data
VB200 12 VW200 12 34 4001 12 34
VB201 34
VB202 56 VW202 56 78 4002 56 78
VB203 78
VB204 9A VW204 9A BC 4003 9A BC
VB205 BC

The bit data (addresses Oxxxx and 1xxxx) areas are read and written as packed bytes, that is, 8
bits are packed into each byte of data. The least significant bit of the first data byte is the
addressed bit number (the parameter Addr). If only a single bit is written then the bit must be in the
least significant bit of the byte pointed to by DataPtr.

Using the Modbus Protocol Library Chapter 12

Vx.7 Vx.0
10008 J I— 10001
10007 10002
10006 10003
10005 10004

Figure 12-1 Format for Packed Bytes (Discrete Input Addresses)

For bit data addresses that do not start on even byte boundaries, the bit corresponding to the
starting address must be in the least significant bit of the byte. See below for an example of the
packed byte format for 3 bits starting at Modbus address 10004.

Vx.7 Vx.0

I— 10004
10005

10005

Figure 12-2 Format for Packed Bytes (Discrete input starting at address 10004)

When writing to the discrete output data type (coils), the user is responsible for placing the bits in
the correct bit positions within the packed byte before the data is passed to the MBUS_MSG
instruction via DataPtr.

The Done output is off while a request is being sent and the response is being received. The
Done output is on when the response is complete or when the MBUS_MSG instruction was
aborted because of an error.

The Error output is valid only when the Done output is on. See the Modbus Master MBUS_MSG
Execution Errors returned by the MBUS_MSG instruction.

The low numbered error codes (1 through 8) are errors that are detected by the MBUS_MSG
instruction. These error codes generally indicate a problem with the input parameters of the
MBUS_MSG instruction, or a problem receiving the response from the slave. Parity and CRC
errors indicate that there was a response but that the data was not received correctly. This is
usually caused by an electrical problem such as a bad connection or electrical noise.

The high numbered error codes (starting with 101) are errors that are returned by the Modbus
slave device. These errors indicate that the slave does not support the requested function or that
the requested address (either data type or range of addresses) is not supported by the Modbus
slave device.

Table 12-11 Modbus Master MBUS_MSG Execution Error Codes

Error Codes Description
0 No Error
1 Parity error in response: This is only possible if even or odd parity is used. The

transmission was disturbed and possibly incorrect data was received. This error is
usually caused by an electrical problem such as incorrect wiring or electrical noise
affecting the communication.

Not used

3 Receive timeout: There was no response from the slave within the Timeout time.
Some possible causes are bad electrical connection to the slave device, master and
slave are set to a different baud rate / parity setting, and incorrect slave address.

4 Error in request parameter: One or more of the input parameters (Slave, RW, Addr,
or Count) is set to an illegal value. Check the documentation for allowed values for
the input parameters.

5 Modbus master not enabled: Call MBUS_CTRL on every scan prior to calling
MBUS_MSG.

359

S7-200 Programmable Controller System Manual

Table 12-11 Modbus Master MBUS_MSG Execution Error Codes, continued

Error Codes Description

6 Modbus is busy with another request: Only one MBUS_MSG instruction can be
active at a time.

7 Error in response: The response received does not correspond to the request. This
indicates some problem in the slave device or that the wrong slave device answered
the request.

8 CRC error in response: The transmission was disturbed and possibly incorrect data
was received. This error is usually caused by an electrical problem such as incorrect
wiring or electrical noise affecting the communication.

101 Slave does not support the requested function at this address: See the required
Modbus slave function support table in the "Using the Modbus master Instructions”
help topic.

102 Slave does not support the data address: The requested address range of Addr plus
Count is outside the allowed address range of the slave.

103 Slave does not support the data type: The Addr type is not supported by the slave
device.

105 Slave accepted the message but the response is delayed:: This is an error for

MBUS_MSG and the user program should resend the request at a later time.

106 Slave accepted the message but the response is delayed:: This is an error for
MBUS_MSG and the user program should resend the request at a later time. Slave
is busy and rejected the message: You can try the same request again to get a

response.
107 Slave rejected the message for an unknown reason
108 Slave memory parity error: There is an error in the slave device.

Program Example

This example program shows how to use the Modbus Master instructions to write and then read 4
holding registers to and from a Modbus slave each time input 10.0 is turned on.

The S7-200 CPU will write 4 words starting at VW100 to the Modbus slave. The data will be
written to 4 holding registers in the slave starting at address 40001.

The S7-200 CPU will then read 4 holding registers from the Modbus slave. The data will come
from holding registers 40010 - 40013 and be placed into the V-memory of the S7-200 CPU
starting at VW200.

S7-200 CPU Modbus Slave

Memory Holding Registers
VW100 40001
VW102 |:> 40002
VW104 40003
VW106 40004
VW200 40010
VW202 <:| 40011
VW204 40012
VW206 40013

Figure 12-3 Example Program Data Transfers

360

Using the Modbus Protocol Library Chapter 12

Example of Programming the Modbus Master Protocol

The program will turn on outputs Q0.1 and Q0.2 if there is an error returned from the MBUS_MSG instruction.

Network 1
Network 1 /I Initialize and monitor the Modbus
SM0.0 MBUS_CTRL /I Master by calling MBUS_CTRL on

— e~ Il every scan.

/I The Modbus Master is set for 9600 baud
Made /I and no parity. The slave is allowed 1000
/I milliseconds (1 second) to respond.

Sk0.0

SE004 Baud Done MO0

0o Parity Ermorf MEB1
10004 Timeout Network 2

/I On the first scan, reset the enable flags

N k2
e“';':m M2 /I (M2.0 and M2.1) used for the two

_| | (R) /I MBUS_MSG instructions.

2 Network 3
Network 3 /I When 10.0 changes from OFF to ON, set

0.0 2.0 /I the enable flag for the first MBUS_MSG
— - FH—s) Il instruction (M2.0).
1

Metwork 4 Network 4

/I Call the MBUS_MSG instruction when the
_|""2'”| e /1 first enable flag (M2.0) is ON. The First

/I parameter must be set for only the first
/I scan that the instruction is enabled.

M2.0
—| |—| P I— First /IThis instruction writes (RW = 1) 4 holding

/I registers to slave 2. The write data is taken
2pSlave DoneMD1 // from VB100 VB107 (4 words) in the CPU
TR ErerMET /I and written to address 40001 - 40004 in

40001- Edd[I the Modbus slave.
= Count
8WB100- DataPhr Network 5
Network 5 /IWhen the first MBUS_MSG instruction is
W01 ME1 oo /I complete (Done goes from 0 to 1), clear
| | P | Ea {s) // the enable for the first MBUS_MSG and set
0 1 /I the enable for the second MBUS_MSG
M2 Il instruction.
?) /NIf Error (MB1) is not zero then set Q0.1 to
M2 /I show the error.
R) Network 6
1 /I Call the second MBUS_MSG instruction
Network 6 // when the second enable flag (M2.1) is ON.
M2 MBUS_MSG /I The First parameter must be set for only
P /I the first scan that the instruction is
/I enabled.

M2.1
| || P |_ First /[This instruction reads (RW = 0) 4 holding

/I registers from slave 2. The data is read

2d45lave DonefM0.2 /I from address 40010 - 40013 in the Modbus
ORw Ermorf MB1 /I slave and copied to VB200 - VB207
40010 Acddr (4 words) in the CPU.
44 Caunt
Network 7

t/B2004 DataPl . .
/IWhen the second MBUS_MSG instruction

Network 7 I is complete (Done goes from O to 1), clear
MM, [e | | T}B; | . ug_z) /I the enable for the second MBUS_MSG
! rd et S Il instruction.
2.1 /NIf Error (MB1) is not zero then set Q0.2 to
R I show the error.
1

361

S7-200 Programmable Controller System Manual

Advanced Topics

362

This topic contains information for advanced users of the Modbus Master Protocol Library. Most
users of the Modbus Master Protocol Library should not need this information and should not
modify the default operation of the Modbus Master Protocol Library.

Retries

The Modbus Master instructions will automatically resend the request to the slave device if one of
the following errors is detected:

1 There is no response within the response timeout time (parameter Timeout on the
MBUS_CTRL) instruction (Error code 3).

The time between characters of the response exceeded the allowed value (Error code 3).

There is a parity error in the response from the slave (Error code 1).

O oo

There is a CRC error in the response from the slave (Error code 8).
1 The returned function did not match the request (Error code 7).

The Modbus Master will resend the request two additional times before setting the Done and Error
output parameters.

The number of retries can be changed by finding the symbol mModbusRetries in the Modbus
Master symbol table and changing this value after MBUS_CTRL has been executed. The
mModbusRetries value is a BYTE with a range of 0 to 255 retries.

Inter-character timeout

The Modbus Master will abort a response from a slave device if the time between characters in
the response exceeds a specified time limit. The default time is set to 100 milliseconds which
should allow the Modbus Master Protocol to work with most slave devices over wire or telephone
modems. If this error is detected, the MBUS CTRL Error parameter will be set to error code 3.

There may be cases where a longer time between characters is required, either because of the
transmission medium (i.e. telephone modem) or because the slave device itself requires more
time. This timeout can be lengthened by finding the symbol mModbusCharTimeout in the
Modbus Master symbol table and changing this value after MBUS_CTRL has been executed.
The mModbusCharTimeout value is an INT with a range of 1 to 30000 milliseconds.

Single vs. Multiple Bit/Word Write Functions

Some Modbus slave devices do not support the Modbus functions to write a single discrete output
bit (Modbus function 5) or to write a single holding register (Modbus function 6). These devices
only support the multiple bit write (Modbus function 15) or multiple register write (Modbus function
16) instead. The MBUS_MSG instruction will return an error code 101 if the slave device does not
support the single bit/word Modbus functions.

The Modbus Master Protocol allows you to force the MBUS_MSG instruction to use the multiple
bit/word Modbus functions instead of the single bit/word Modbus functions. You can force the
multiple bit/word instructions by finding the symbol mModbusForceMulti in the Modbus Master
symbol table and changing this value after MBUS_CTRL has been executed. The
mModbusForceMulti value is a data type BOOL value and should be settoa 1 to force the use
of the multiple bit/word functions when a single bit/register is written.

Using the Modbus Protocol Library Chapter 12

Accumulator Usage

The accumulators (ACO, AC1, AC2, AC3) are utilized by the Modbus Master instructions and
appear in the Cross Reference listing. The values in the accumulators are saved and restored by
the Modbus Master instructions. All user data in the accumulators is preserved while executing
the Modbus Master instructions.

Holding Registers Addresses Greater Than 9999

Modbus holding addresses are generally within the range of 40001 through 49999. This range is
adequate for most applications but there are some Modbus slave devices with data mapped into
holding registers with addresses greater than 9999. These devices do not fit the normal Modbus
addressing scheme.

The Modbus Master instructions support addressing holding registers greater than 9999 via an
alternate addressing method. The MBUS_MSG instruction allows an additional range for the
parameter Addr to support an extended range of holding register addresses.

400001 to 465536 for holding registers

For example: to access holding register 16768, the Addr parameter of MBUS_MSG should be set
to 416768.

The extended addressing allows access to the full range of 65536 possible addresses supported
by the Modbus protocol. This extended addressing is only supported for holding registers.

363

S7-200 Programmable Controller System Manual

Using Recipes

STEP 7-Micro/Win provides the Recipe Wizard to help you organize recipes and recipe
definitions. Recipes are stored in the memory cartridge instead of the PLC.

In This Chapter
OV BIVIBW . ottt ettt e e e e e 366
Recipe Definition and Terminologyt 367
Using the Recipe Wizard e 367
Instructions Created by the Recipe Wizard 371

365

S7-200 Programmable Controller System Manual

Overview

Support for recipes has been incorporated into STEP 7-Micro/WIN and the S7-200 PLC.
STEP 7-Micro/Win provides the Recipe Wizard to help you organize recipes and recipe
definitions.

All recipes are stored in the memory cartridge. Therefore, to use the recipe feature, an optional
Recipe 64kB or 256kB memory cartridge must be installed in the PLC. See Appendix A for more
information about the memory cartridges.

All recipes are stored in the memory cartridge. However, a single recipe is read into PLC memory
when the user program is processing this individual recipe. For example, if you are making
cookies, there may be recipes for chocolate chip, sugar, and oatmeal cookies. Only one type of
cookie can be made at a time, so the proper recipe must be selected and read into PLC memory.

Figure 13-1 illustrates a process for making multiple types of cookies using recipes. The recipe for
each type of cookie is stored in the memory cartridge. Using a TD 200C text display, the operator
selects the type of cookie to be made, and the user program loads that recipe into memory.

Recipe Definition: Donuts

Recipe Definition: Cookies
Memory Cartridge W
Butter

White sugar Sugar
. Chocolate Chip

) Butter 8 oz.
Cook Time | White sugar 6 oz.

Cook Time 9 minutes

Get Recipe
S7-200 CPU | REFO_RERD ™
|7 B
Chocolate_(| Fep —‘/ D

_

Cookies buffer in V Memory
Request Recipe

TD 200C

Figure 13-1 Example of Recipe Application

366

Using Recipes Chapter 13

Recipe Definition and Terminology

To help you understand the Recipe Wizard, the following definitions and terms are explained.

a

a

a

A recipe configuration is the set of project components generated by the Recipe Wizard.
These components include instruction subroutines, data block tabs, and symbol tables.

A recipe definition is a collection of recipes that have the same set of parameters. However,
the values for the parameters can vary depending upon the recipe.

A recipe is the set of parameters and parameter values that provides the information
needed to produce a product or control a process.

For example, different recipe definitions can be created, such as donuts and cookies. The cookie

recipe

definition may contain many different recipes, such as chocolate chip and sugar cookies.

Example fields and values are shown in Table 13-1.

Table 13-1 Example of Recipe Definition - Cookies

Chocolate_Chip Sugar

Field Name Data Type (Recipe 0) (Recipe 1) Comment
Butter Byte 8 8 Ounces
White_Sugar Byte 6 12 Ounces
Brown_Sugar Byte 6 0 Ounces
Eggs Byte 2 each
Vanilla Byte 1 1 Teaspoon
Flour Byte 18 32 Ounces
Baking_Soda Real 1.0 0.5 Teaspoon
Baking_Powder Real 0 1.0 Teaspoon
Salt Real 1.0 0.5 Teaspoon
Chocolate_Chips Real 16 0.0 Ounces
Lemon_Peel Real 0.0 1.0 Tablespoon
Cook_Time Real 9.0 10.0 Minutes

Using the Recipe Wizard

Use the Recipe Wizard to create recipes and recipe definitions. Recipes are stored in the memory

cartrid
chang

ge. Recipes and recipe definitions can be entered directly in the Recipe Wizard. Later
es to individual recipes can be made by running the Recipe Wizard again or by

programming with the RCPx_WRITE instruction subroutine.

The R
|

ecipe Wizard creates a recipe configuration that includes the following:

A symbol table for each recipe definition. Each table includes symbol names that are the
same as the recipe field names. These symbols define the V memory addresses needed to
access the recipe values currently loaded in memory. Each table also includes a symbolic
constant to reference each recipe.

A data block tab for each recipe definition. This tab defines the initial values for each V
memory address represented within the symbol table.

A RCPx_READ instruction subroutine. This instruction is used to read the specified recipe
from the memory cartridge to V memory.

A RCPx_WRITE instruction subroutine. This instruction is used to write recipe values from
V memory to the memory cartridge.

367

S7-200 Programmable Controller System Manual

Defining Recipes
To create a recipe using the Recipe Wizard, select the Tools > Recipe Wizard menu command.

The first screen is an introductory screen defining the basic operations of the recipe wizard. Click
on the Next button to begin configuring your recipes.

To create a recipe definition, follow the
steps below. See Figure 13-2.

1. Specify the field names for the
recipe definition. Each name will
become a symbol in your project
as previously defined.

2. Select a data type from the drop
down list.

3. Enter a default value and comment
for each name. All new recipes
specified within this definition will
begin with these default values.

4. Click Next to create and edit
recipes for this recipe definition

Figure 13-2 Defining Recipes

Use as many rows as necessary to define all data fields in the recipe. You can have up to four
different recipe definitions. The number of recipes for each definition is limited only by the
available space within the memory cartridge.

Creating and Editing Recipes
The Create and Edit Recipes screen allows you to create individual recipes and specify values for
these recipes. Each editable column represents a unique recipe.

Recipes can be created by pressing the New button. Each recipe is initialized with the default
values specified during the creation of the recipe definition.

Recipes can also be created from the right mouse context menu by copying and pasting existing
recipes. New columns will be inserted to the left of the current cursor position including the
comment field.

Each new recipe will be given a default name that includes a reference to the recipe definition and
recipe number. This name will be in the form of DEFx_RCPy.

To create and edit recipes, follow the
steps below. See Figure 13-3.

1. Click on the Next button to get to
the Create and Edit Recipe
window.

2. Select the New button to insert a
new recipe as needed.

3. Rename the recipe name to an
appropriate non-default name.

4. Change the values in each recipe
data set as needed.

5. Click OK.

Figure 13-3 Creating and Editing Recipes

368

Using Recipes Chapter 13

Allocating Memory

The Allocate Memory screen specifies the starting address of the V memory area that will store
the recipe loaded from the memory cartridge. You can either select the V memory address or let
the Recipe wizard to suggest the address of an unused V memory block of the correct size.

To allocate memory, follow the steps
below. See Figure 13-4.

1. To selectthe V. memory address
where you want the recipe to be
stored, click in the window and
enter the address.

2. To let the Recipe Wizard select an
unused V memory block of the
correct size, click the Suggest
Address button.

3. Click the Next button.

Figure 13-4 Allocating Memory

Project Components

The project components screen lists the
different components that will be added
to your project. See Figure 13-5.

Click Finish to complete the Recipe
Wizard and add these components.

Each recipe configuration can be given a
unigue name. This name will be shown
in the project tree with each wizard
configuration. The recipe definition
(RCPx) will be appended to the end of
this name.

Figure 13-5 Project Components

Using the Symbol Table

A symbol table is created for each recipe
definition. Each table defines constant R EE R R N RS- R R

values that represent each recipe. These £
symbols can be used as parameters for]
the RCPx_READ and RCPx_WRITE B
instructions to indicate the desired recipe ||[g
;
8

Symbol Addiess Comment
Sugar 1
Chocalate_Chip [1]
Cook_Time w23 Minutes
Leman_Peel w13 Tablezpoon
Chocolate_Chips wB18 Ounces
Salt Whi4 Teaspaoh
Baking_Powder w010 Teaspoon
Baking Soda WDE Teazpaon
Flour YBD Ounces
Wanila B4 Teazpaon
Eggs YB3 Each
Brawn_Sugar WB2 Ounces

See Figure 13-6.

Each table also creates symbol names 3
for each field of the recipe. You can use T
these symbols to access the values of 2

K . White_Sugar YE1 Ounces
the recipe in V memory. T4 Bulter VED Dunces

DO IE0I0E0I0 N INIONIORD)

Figure 13-6 Symbol Table

369

S7-200 Programmable Controller System Manual

Downloading the Project with a Recipe Configuration

To download a project that contains a recipe configuration, follow the steps below. See
Figure 13-7.
1. Select File > Download.

2. Inthe dialog, under Options,
ensure that the Program Block,
Data Block, and Recipes boxes
are checked.

3. Click the Download button.

Figure 13-7 Downloading a Project with Recipe
Configuration

Edit Existing Recipe Configurations

To edit existing recipe configurations
follow the steps below. See Figure 13-8.

1. Click on the configuration drop
down list and select an existing
recipe configuration.

2. To delete an existing recipe
configuration, click on the Delete
Configuration button.

Figure 13-8 Editing Existing Recipe Configurations

370

Using Recipes Chapter 13

Instructions Created by the Recipe Wizard

RCPx_Read Subroutine
The Subroutine RCPx_READ is created by the Recipe

. - D . SIMATIE / [EC 1131
Wizard and is used to read an individual recipe from the
memory cartridge to the specified area in V memory. LAD FED
The x in the RCPx_READ instruction corresponds to the RCFO_READ RCPO_READ:
recipe definition that contains the recipe that you wish to —|EM —|EM
read. dRep Errorf | PSP Error
The EN input enables the execution of the instruction when
this input is high ReCF0_REAL: RCPO_MRITE
The Rcp input identifies the recipe that will be loaded from
: SIMATIE
the memory cartridge
The Error output returns the result of the execution of this =TL
instruction. See Table 13-3 for definitions of the error codes. CALL RCPO_REAC.Rep, Error
CALL RCPO_WRITE, Rep, Errar

RCPx_Write Subroutine

The Subroutine RCPx_WRITE is created by the Recipe
Wizard and is used to replace a recipe in the memory
cartridge with the contents of the recipe contained in

V memory.

The x in the RCPx_WRITE instruction corresponds to the
recipe definition that contains the recipe that you wish to
replace.

The EN input enables the execution of the instruction when
this input is high.

The Rcp input identifies the recipe that will be replaced in
the memory cartridge.

The Error output returns the result of the execution of this
instruction. See Table 13-3 for definitions of the error codes.

Table 13-2 Valid Operands for the Recipe Subroutine

Inputs/Outputs Data Type Operands
Rcp Word VW, IW, QW, MW, SW, SMW, LW, AC, *VD, *AC, *LD, Constant
Error Byte VB, IB, QB, MB, SB, SMB, LB, AC, *VD, *AC, *LD

Table 13-3 Error Codes for the Recipe Instructions

Error Code Description
0 No error
132 Access to the memory cartridge failed

Tip

@ The EEPROM used in the memory cartridge will support a limited number of write operations.
Typically, this is one million write cycles. Once this limit has been reached, the EEPROM will not
operate properly.

Make sure that you do not enable the RCPx_WRITE instruction on every scan. Enabling this
instruction on every scan will wear out the memory cartridge in a relatively short period of time.

371

S7-200 Programmable Controller System Manual

Using Data Logs

STEP 7-Micro/Win provides the Data Log Wizard to store process measurement data in the
memory cartridge. Moving process data to the memory cartridge frees V memory addresses that
would otherwise be required to store this data.

In This Chapter

L@ =T 1= 374
Using the Data Log Wizard e 375
Instruction Created by the Data Log Wizard 379

373

S7-200 Programmable Controller System Manual

Overview

Support for data logs have been incorporated into STEP 7-Micro/WIN and the S7-200 PLC. With
this feature, you can permanently store records containing process data under program control.
These records can optionally contain a time and date stamp. You can configure up to four
independent data logs. The data log record format is defined using the new Data Log Wizard

All data logs are stored in the memory cartridge. To use the data log feature, you must have
installed an optional 64K or 256K memory cartridge in your PLC. See Appendix A for information
about the memory cartridges.

You must use the S7-200 Explorer to upload the contents of your data logs to your computer.

An example of a Data Log application is shown in Figure 14-1.

Memory Cartridge

Data Log: “Grain Bin Capacity”

Data Log: “Morning Milking”

03/22/2004 05:25:04 4 27.7 975
03/22/2004 05:21:04 7 30.8 97.3
03/22/2004 05:17:04 2 251 97.6

13.2
12.7
14.1

S7-200 Explorer

S7-200 CPU

TD 200C

Upload Data
Log Daily

Write Data Log Record
(with date and time stamp added)

| DATC_WRITE

1T

5,35.2,98.1, 14.5

Morning milking data buff

in V. memory

Cow #5 Milking Complete

== O
T a
DDDD &
o OEE

Cow #5

S

For this cow:
® Record unique ID

m Record amount of
milk obtained

m Record cow
temperature

® Record milking time

Figure 14-1

Example of Data Log Application

Data Log Definition and Terminology
To help you understand the Data Log Wizard, the following definitions and terms are explained.

1 Adatalog is a set of records usually ordered by date and time. Each record represents
some process event that records a set of process data. The organization of this data is
defined with the data log wizard.

1 Adatalog record is a single row of data written to the data log.

374

Using Data Logs Chapter 14

Using the Data Log Wizard
Use the Data Log Wizard to configure up to four data logs. The Data Log Wizard is used to:

1 Define the format of the data log record

Select data log options such as time stamp, date stamp, and clear data log on upload
Data Log
O Specify the maximum number of records that can be stored in the data log

1 Create project code used to store records in the data log.

The Data Log Wizard creates a data log configuration that includes the following:

1 A symbol table for each data log configuration. Each table includes symbol names that are
the same as the data log field names. Each symbol defines the V memory addresses
needed to store the current data log. Each table also includes a symbolic constant to
reference each data log.

1 A data block tab for each data log record that assigns V memory addresses for each data
log field. Your program uses these V memory addresses to accumulate the current log data
set.

1 A DATx_WRITE subroutine. This instruction copies the specified data log record from V
memory to the memory cartridge. Each execution of DATXx_WRITE adds a new data record
to the log data stored in the memory cartridge.

Data Log Options

You can configure the following optional behaviors for the data log. See Figure 14-2.

Time Stamp

You can include a Time Stamp with each
data log record. When selected, the CPU
automatically includes a time stamp with
each record when the user program
commands a data log write.

Date Stamp

You can add a Date Stamp to each data
log record. When selected, the CPU
automatically includes a date stamp with
each record when the user program
commands a data log write.

Clear Data Log

Clear Data Log - You can clear all

records from the data log whenever it is

uploaded. If you set the Clear Data Log

option, the data log will be cleared each ~ Figure 14-2 Data Log Options
time it is uploaded.

Data logs are implemented as a circular queue (when the log is full, a new record replaces the
oldest record). You must specify the maximum number of records to store in the data log. The
maximum number of records allowed in a data log is 65,535. The default value for the number of
records is 1000.

375

S7-200 Programmable Controller System Manual

Defining the Data Log

You specify the fields for the data log and each field becomes a symbol in your project. You must
specify a data type for each field. A data log record can contain between 4 and 203 bytes of data.
To define the data fields in the data log, follow the steps below. See Figure 14-3.

1. Click on the Field Name cell to
enter the name. The name
becomes the symbol referenced
by the user program.

2. Click on the Data Type cell and
select a data type from the drop
down list.

3. To enter a comment, click on the
Comment cell.

4. Use as many rows as necessary to
define a record.

5. Click OK.

Figure 14-3 Defining the Data Log Record

Edit Existing Data Log Configuration

To edit an existing data log configuration,
follow the steps below:

1. Click on the configuration
dropdown list and select an
existing data log configuration as
shown in Figure 14-4.

2. To delete an existing data log
configuration, click on the Delete
Configuration button.

You can have up to four different data
logs.

Figure 14-4 Edit Existing Data Log Configurations

376

Using Data Logs Chapter 14

Allocating Memory

The Data Log Wizard creates a block in the V. memory area of the PLC. This block is the memory
address where a data log record will be constructed before it is written to the memory cartridge.
You specify a starting V memory address where you want the configuration to be placed. You can
either select the V. memory address or let the Data Log wizard suggest the address of an unused
V memory block of the correct size. The size of the block varies based on the specific choices you
have made in the Data Log wizard. See Figure 14-5.

To allocate memory, follow the steps
below:

1. To selectthe V. memory address
where the data log record will be
constructed, click in the Suggested
Address area and enter the
address.

2. To letthe Data Log Wizard select
an unused V memory block of the
correct size, click the Suggest
Address button.

3. Click the Next button.

Figure 14-5 Allocating Memory

Project Compone