

Regelungstechnik mit Fuzzy Logic

Praktische Anwendungen und Projekte mit Arduino, ESP32 und RP2040

Josef Bernhardt

Regelungstechnik mit Fuzzy Logic

Praktische Anwendungen und Projekte mit Arduino, ESP32 und RP2040

Josef Bernhardt

- © 2024: Elektor Verlag GmbH, Aachen.
- 1. Auflage 2024
- Alle Rechte vorbehalten.

Die in diesem Buch veröffentlichten Beiträge, insbesondere alle Aufsätze und Artikel sowie alle Entwürfe, Pläne, Zeichnungen und Illustrationen sind urheberrechtlich geschützt. Ihre auch auszugsweise Vervielfältigung und Verbreitung ist grundsätzlich nur mit vorheriger schriftlicher Zustimmung des Herausgebers gestattet.

Die Informationen im vorliegenden Buch werden ohne Rücksicht auf einen eventuellen Patentschutz veröffentlicht. Die in diesem Buch erwähnten Soft- und Hardwarebezeichnungen können auch dann eingetragene Warenzeichen sein, wenn darauf nicht besonders hingewiesen wird. Sie gehören dem jeweiligen Warenzeicheninhaber und unterliegen gesetzlichen Bestimmungen.

Bei der Zusammenstellung von Texten und Abbildungen wurde mit größter Sorgfalt vorgegangen. Trotzdem können Fehler nicht vollständig ausgeschlossen werden. Verlag, Herausgeber und Autor können für fehlerhafte Angaben und deren Folgen weder eine juristische Verantwortung noch irgendeine Haftung übernehmen.

Für die Mitteilung eventueller Fehler sind Verlag und Autor dankbar.

Erklärung

Autor, Übersetzer und Verlag haben sich nach besten Kräften bemüht, die Richtigkeit der in diesem Buch enthaltenen Informationen zu gewährleisten. Sie übernehmen keine Haftung für Verluste oder Schäden, die durch Fehler oder Auslassungen in diesem Buch verursacht werden, unabhängig davon, ob diese Fehler oder Auslassungen auf Fahrlässigkeit, Versehen oder eine andere Ursache zurückzuführen sind, und lehnen jegliche Haftung hiermit ab.

- ISBN 978-3-89576-646-6 Print
 ISBN 978-3-89576-647-3 eBook
- Satz und Aufmachung: D-Vision, Julian van den Berg | Oss (NL)
 Druck: Ipskamp Printing, Enschede (NL)

Elektor Verlag GmbH, Aachen www.elektor.de

Elektor ist die weltweit wichtigste Quelle für technische Informationen und Elektronik-Produkte für Maker, Ingenieure und Elektronik-Entwickler und für Firmen, die diese Fachleute beschäftigen. Das internationale Team von Elektor entwickelt Tag für Tag hochwertige Inhalte für Entwickler und DIY-Elektroniker, die über verschiedene Medien (Magazine, Videos, digitale Medien sowie Social Media) in zahlreichen Sprachen verbreitet werden. www.elektor.de

Inhaltsverzeichnis

Vorwort	9		
Kapitel 1 • Arduino Hardware für die Regelungstechnik10			
1.1 Arduino UNO1	LO		
1.2 Arduino NANO	l 1		
1.3 Espressif ESP321	L3		
1.4 Raspberry RP2040 Controller	۱4		
1.5 ESP32 Fuzzy PID Controller Board	١5		
1.6 ESP32 Modbus RTU Controller Board	18		
1.7 Programmieren der Arduino Boards	21		
1.8 Das Nextion Grafik Display	22		
1.9 Testsoftware für das ESP32 Board	23		
1.10 Programmbeispiel mit dem ESP32	27		
1.11 Arduino ESP32 Controller 12 Bit A/D-Wandler Test	3		
1.12 Codeblocks Entwicklungsumgebung für Ansi C	10		
1.13 Serial Data Reader	11		
1.14 Serial Port Datareader	12		
1.15 Der Espressif ESP32 als WebSocket-Server	13		
Kapitel 2 • Sensoren54			
2.1 NTC Temperatursensoren	54		
2.2 RTD Temperatursensoren	57		
2.3 Lineare Interpolation	50		
2.4 Thermoelemente	51		
2.5 Anwendungen von Thermoelementen	52		
2.6 Sensoren mit integrierter Elektronik	55		
2.7 pH Sensoren	57		
2.8 Drehgeber	59		
2.9 Kraftmessung	71		
2.10 Lineare Regression	74		
2.11 Spline Interpolation	78		
2.12 Polynomische Regression	32		

Ka	pitel 3 ● Stellglieder MOSFET und Solid State Relais88
	3.1 MOSFET BSP76
	3.2 MOSFET Schaltung mit Optokoppler für 10 A
	3.3 H-Brücke L298
	3.4 H-Brücke mit BTS7960 von Infineon bis maximal 43 A91
	3.5 Thyristor Steller für Wechselspannung
Ka	pitel 4 • Steuerung, Regelung und Regelstrecken94
	4.1 Formelzeichen94
	4.2 Unterschied Steuern und Regeln nach IEC 60050-351
	4.3 Beispiele zur Steuerungstechnik
	4.4 Ansteuern einer realen Heizung99
	4.5 Ansteuerung eines DC Motors mit PWM (Pulsweitenmodulation)
Ka	pitel 5 • Zweipunkt und PID-Regler121
	5.1 Zweipunktregler
	5.2 PID-Regler
	5.3 Parameterbestimmung mit Ziegler-Nichols
	5.4 Parameterbestimmung mit der Relay Methode
	5.5 Arduino PID Regler mit PT2 Simulation
	5.6 Arduino PID-Regler mit realer Strecke (ALU-Block)
	5.7 Arduino PID-Regler für stehendes Pendel
Ka	pitel 6 ● Fuzzy Logic Grundlagen
	6.1 Fuzzy Logic Geschichte
	6.2 Fuzzy Logic Regler Aufbau
	6.3 Fuzzifizierung
	6.4 Inferenz
	6.5 Defuzzifizierung
	6.6 Fuzzy Beispiel Lüftersteuerung
	6.7 Regelung eines Inversen Pendels
	6.8 Fuzzy Sets
	6.9 Simulation einer Funktion mit Fuzzy Logic
	6.10 Anwendung einer Fuzzy Funktion für ein Temperaturprofil

Ka	pitel 7 • Fuzzy Logic Temperaturregler
	7.1 Fuzzy Regler mit PT2-Simulation
	7.2 Fuzzy Regler mit dem ESP32 und realer Heizung194
	7.3 Fuzzy Beispiele mit Gauss, Bell und Sigmoid
Ka	pitel 8 • Fuzzy Logic Temperaturregler mit zwei Eingängen
	8.1 Temperaturregler mit zwei Eingängen
	8.2 Fuzzy Control Beispiel für eine Heizungsregelung
Ka	pitel 9 • Fuzzy-Regler Beispiele mit einem DC-Motor
	9.1 DC-Motoren Grundlagen
	9.2 Ansteuern des Motors mit PWM (Drehzahlsteuerung)224
	9.3 Ansteuern des Motors mit PWM und Drehzahlmessung225
	9.4 Motor Drehzahlregelung mit Fuzzy Logic
	9.5 Motor Positionssteuerung
Ka	pitel 10 • Sliding-Mode-Regler252
	10.1 Allgemeine Beschreibung des Sliding Mode Reglers
	10.2 Sliding Mode Regler Beispiel mit der PT2 Strecken Simulation
	10.3 Sliding Mode Regler Beispiel mit realer Strecke
	10.4 Optimierung der Parameter c 1 und c 2 mit Fuzzy Logic
Ka	pitel 11 ● Neuronale Netze274
	11.1 Geschichte der neuronalen Netze
	11.2 Biologisches Neuron
	11.3 Grundlagen
	11.4 Aktivierungsfunktionen276
	11.5 Das Perceptron
	11.6 Feedforward Netze279
	11.7 Training des Neuronalen Netzes
	11.8 ANN Beispiel XOR
	11.9 Fuzzy Gauss Regler mit Neuronalen Netz
	11.10 Einen Farbsensor mit dem Neuronalen Netz auswerten297
	11.11 Training eines neuronalen Netzwerks mit zwei Hidden Layern

Kapitel 12 • Fuzzy-Regler für die Stromeinspeisung ins Hausnetz
12.1 Einführung
12.2 Shelly 3EM Energiemesser
12.3 Messungen mit dem Shelly Plus 1PM
12.4 Laderegler Victron Smart Solar 100 I 20
12.5 Windows Software SharpDevelop_Shelly3emWinform
12.6 Soyo Micro Inverter für die Netzeinspeisung
12.7 ESP32 PID Fuzzy Control Board für die Regelung
12.8 Fuzzy-Regler Funktion
Anhang A Schaltungen Layouts und Stückliste
Anhang B ● Literaturverzeichnis
Anhang C Weblinks
Anhang D • Beispielprogramme für den Arduino UNO und ESP32360
Index