
Quick Start with Smart Life App SDK for
iOS

Version: 20250811

Online Version

https://developer.tuya.com/en/docs/app-development/tutorial-for-ios-final?id=Kaohsbl43lxjb

Contents

Contents

1. Quick Start with SmartLife App SDK for iOS 1
2. Preview . 2
3. Preparation . 5
4. Step 1: Register a user account . 6

4.1. Query areas for the verification code service . 6
4.2. Get a verification code to register with a mobile phone number . . 7
4.3. Register an account with a mobile phone number 8
4.4. Log in to the app with a mobile phone number . 8

5. Step 2: Create and manage homes . 10
5.1. Create homes . 10
5.2. Query a list of homes . 11
5.3. Best practices . 11

6. Step 3: Pair devices . 13
6.1. Pairing modes . 13
6.2. Get the pairing token . 13
6.3. Compatibility with iOS . 14
6.4. Start pairing . 14
6.5. (Optional) Stop pairing . 15

7. Step 4: Control devices . 16
7.1. Query a list of devices . 17
7.2. View device information . 17
7.3. Control a device . 19
7.4. (Optional) Remove a device . 22

8. Practice result . 24
9. Next step . 25

I

1Quick Start with SmartLife App SDK
for iOS

1. Quick Start with SmartLife App SDK for iOS

SmartLife App SDK for iOS supports the comprehensive and flexible development
of smart apps. This tutorial walks you through a few steps to get started with the
SDK and develop a preferred smart app within two hours. You will learn how to
implement the following features:
Register for an account of the app with a mobile phone number and log in to the
app with the account.
Create a home for a logged-in account and view and modify details of the home.
Use a smart light as an example and pair the light with the app.
Use the app to switch on or off the light and adjust its brightness.
You can go to GitHub and download the sample code for the different features
mentioned in this tutorial. Then, you can integrate the required sample code into
your SDK development on the Thing Developer Platform .
App SDK Development GitHub Sample

1 / 25

https://platform.tuya.com/
https://platform.tuya.com/oem/sdkList
https://github.com/tuya/tuya-home-ios-sdk-sample-objc

2Preview

2. Preview

This tutorial, along with specific panel development, helps you create the
following sample app for iOS.

2 / 25

3Preparation

3 / 25

3Preparation

4 / 25

3Preparation

3. Preparation

Before you start, the following requirements must be met:
1. An account of the Tuya Developer Platform is registered, an app is built on the

platform, and the values of AppKey and AppSecret of the SmartLife App SDK
service are obtained. For more information, see Preparation .

2. A Powered by Thing product, such as a smart light, is created. To get the
product, visit ThingGo .

3. The SmartLife App SDK for iOS is integrated into your project with CocoaPods.
For more information, see Fast Integration .

5 / 25

https://developer.tuya.com/en/docs/app-development/preparation?id=Ka69nt983bhh5
https://go.tuya.com/
https://developer.tuya.com/en/docs/app-development/integrate-sdk?id=Ka5d52ewngdoi

4Step 1: Register a user account

4. Step 1: Register a user account

In this section, only registration and login with a mobile phone number are
described. The SDK also supports registration and login with email addresses,
third-party accounts, and anonymous accounts. For more information, see User
Account Management (iOS) .
To implement registration, you must:
• Set the countryCode parameter to specify the country code. This way, the data

center closest to the users’ location can be selected to serve workloads in the
cloud. For example, countryCode for America is 1 and that for mainland China
is 86 . For more information, see Cloud Services

The data in different data centers is isolated from each other. Therefore, an
account that is registered in America (1) cannot be used in mainland
China (86). Otherwise, an error message is returned to indicate that the
account does not exist.

• Frequently call the ThingSmartUser object. This object is a singleton that stores
all data of the current user, including login and registration methods. For more
information, see User Account Management (iOS) .

4.1. Query areas for the verification code service

To strengthen data security, Tuya has optimized the verification code service and
placed limits on accounts. The verification code service is available only in limited
areas. We recommend that you query the areas in which the verification code
service is enabled on the Tuya Developer Platform for your account.

1
[[ThingSmartUser sharedInstance]

getWhiteListWhoCanSendMobileCodeSuccess:^(NSString *regions) {
2

3 } failure:^(NSError *error) {
4

5 }];

6 / 25

https://developer.tuya.com/en/docs/app-development/user?id=Ka5cgmm97jlt2
https://developer.tuya.com/en/docs/app-development/user?id=Ka5cgmm97jlt2
https://developer.tuya.com/en/docs/iot/tuya-smart-cloud-platform-overview?id=K914joiyhhf7r#title-6-%E9%80%8F%E6%9E%90%E6%B6%82%E9%B8%A6%E4%BA%91
https://developer.tuya.com/en/docs/app-development/user?id=Ka5cgmm97jlt2#title-0-%E7%94%A8%E6%88%B7%E6%95%B0%E6%8D%AE%E6%A8%A1%E5%9E%8B

5.2Step 2: Create and manage
homes

The return value of regions indicates one or more countries or areas that are
separated with commas (,) . For example, 86,01 can be returned. For more
information, see Global deployment .

Currently, the verification code service is activated by default in mainland
China. If you want to launch your application in other countries or areas, you
must verify that the verification code service is available in a specific country
or area and contact your account manager of Tuya or submit a ticket to
activate the service.

4.2. Get a verification code to register with a mobile phone
number

Registration with a mobile phone number is similar to other common registration
methods. To proceed with the registration, users must get a verification code. You
can use the same API method to send verification codes to an account that might
be registered with a mobile phone number or an email address. The verification
codes are required in multiple operations. For example, register an account,
modify a password, log in to the app, or complete account information.

1
NSString * region = [[ThingSmartUser sharedInstance]

getDefaultRegionWithCountryCode:countryCode];
2

3
[[ThingSmartUser sharedInstance] sendVerifyCodeWithUserName:userName // The

phone number or email address.
4 region:region

5
 countryCode:countryCode //

NSString, like `86` or `01`.

6

 type:1 // The

type of verification code. Set the value to `1` to mean the registration

verification code.
7 success:^{

8
 // The request is

successful.
9 } failure:^(NSError *error) {

10 // The request failed.

11
 // The error message is

returned by `error.localizedDescription`.
12 }];

7 / 25

https://developer.tuya.com/en/docs/iot/tuya-smart-cloud-platform-overview?id=K914joiyhhf7r#title-0-Global%20deployment
https://service.console.tuya.com/8/2/list?source=content_feedback

5.3Step 2: Create and manage
homes

The type parameter must be set to 1 . Otherwise, the registration failed.

4.3. Register an account with a mobile phone number

To register an account with a mobile phone number, users must provide the
country code, mobile phone number, password, and the returned verification
code. For more information, see Register with the mobile phone number and
password .

1
[[ThingSmartUser sharedInstance] registerByPhone:countryCode // The country

code, like `86` or `1`.
2 phoneNumber:phone
3 password:password
4 code:code // The verification code.
5 success:^{
6

7
 // The registration request is

successful.
8

9 } failure:^(NSError *error) {
10

11 // The registration failed.

12
 // The error message is returned by

`error.localizedDescription`.
13 }
14

15];

4.4. Log in to the app with a mobile phone number

After users register an account with mobile phone numbers, they can log in to the
app with their mobile phone numbers. For more information, see Login with
phone number and password .

1 [[ThingSmartUser sharedInstance] loginByPhone:countryCode
2 phoneNumber:phone
3 password:password
4 success:^{
5

6 // The login request is successful.
7

8 } failure:^(NSError *error) {
9

10 // The login failed.
11

8 / 25

https://developer.tuya.com/en/docs/app-development/iOS-user-phonelogin?id=Kaixrrhmyknwt#title-1-Register%20with%20the%20mobile%20phone%20number%20and%20password
https://developer.tuya.com/en/docs/app-development/iOS-user-phonelogin?id=Kaixrrhmyknwt#title-1-Register%20with%20the%20mobile%20phone%20number%20and%20password
https://developer.tuya.com/en/docs/app-development/iOS-user-phonelogin?id=Kaixrrhmyknwt#title-4-Log%20in%20to%20app%20with%20phone%20number%20and%20password
https://developer.tuya.com/en/docs/app-development/iOS-user-phonelogin?id=Kaixrrhmyknwt#title-4-Log%20in%20to%20app%20with%20phone%20number%20and%20password

5.5Step 2: Create and manage
homes

12 }];

9 / 25

5.5Step 2: Create and manage
homes

5. Step 2: Create and manage homes

The SmartLife App SDK helps you implement smart scenes for specific homes.
This allows users to add, edit, and remove smart devices based on homes. You
can also listen for device status changes in the homes. Users create an unlimited
number of homes for each user account. One or more rooms or home members
can be added and managed for a specific home.
In this section, the objects ThingSmartHomeModel and ThingSmartHome are
frequently called.

Object Description

ThingSmartHomeModel
Stores basic information of a home,
such as the ID, name, and location.

ThingSmartHome

Stores data of all features that are
supported by a home. For example, a
single home and the home members

and rooms of the home can be
managed with this object.

ThingSmartHome must be initialized with
the correct value of homeId .

Make sure that ThingSmartHome in ViewController or other objects is declared
as a global variable (@property). Otherwise, a temporary variable of
ThingSmartHome might be released during initialization due to the scope limit,
and thus nil is returned.

5.1. Create homes

Users can create one or more homes for each logged-in account. Then, rooms,
members, and devices can be managed based on the homes. To create a home,
call the API method addHomeWithName in ThingSmartHomeManager .

1 [self.homeManager addHomeWithName:name
2 geoName:city

10 / 25

https://developer.tuya.com/en/docs/app-development/iOS_family?id=Kaixeor409hck#title-1-Create%20a%20home

6.2Step 3: Pair devices

3
 rooms:@[@""] // we could add rooms after creating the home ,

so pass a null list firstly .
4 latitude:self.latitude
5 longitude:self.longitude
6 success:^(long long result) {
7

8
 // Added successfully. The value

of `homeID` is returned.
9

10 } failure:^(NSError *error) {
11

12 // Failed to add a home.
13

14 }];

5.2. Query a list of homes

You can get a list of homes for a logged-in account. If no home is created for the
account, an empty array is returned.

1 // Returns a list of homes and refreshes the TableView.

2
[self.homeManager getHomeListWithSuccess:^(NSArray<ThingSmartHomeModel *> *homes)

{
3 // The request is successful and the UI is refreshed.
4 // [self.tableView reloadData];
5 } failure:^(NSError *error) {
6

7 // The request failed.
8

9 }];

5.3. Best practices

After a home is created, subsequent operations are implemented based on the
home. For example, rooms, members, and device pairing can be managed for the
home. Therefore, we recommend that you store the home data as a global
variable for the app. You can locally switch the current home as needed. The Tuya
Developer Platform does not record this change. In the sample code for this
tutorial, the first home in the list is specified as the current home by default.

1 + (ThingSmartHomeModel *)getCurrentHome {
2

3 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
4 if (![defaults valueForKey:@"CurrentHome"]) {
5 return nil;
6 }
7

11 / 25

6.4Step 3: Pair devices

8 long long homeId = [[defaults valueForKey:@"CurrentHome"] longLongValue];
9

10 if (![ThingSmartHome homeWithHomeId:homeId]) {
11 return nil;
12 }
13

14 return [ThingSmartHome homeWithHomeId:homeId].homeModel;
15 }
16

17 + (void)setCurrentHome:(ThingSmartHomeModel *)homeModel {
18

19 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];

20
 [defaults setValue:[NSString stringWithFormat:@"%lld", homeModel.homeId]

forKey:@"CurrentHome"];
21

22 }

The preceding code block allows you to simplify the following home operations:
• Query a list of homes:

1 self.home = [ThingSmartHome homeWithHomeId:[ThingHome getCurrentHome].homeId];

• Set a home ID:

1 [ThingHome setCurrentHome:xxx];

12 / 25

6.4Step 3: Pair devices

6. Step 3: Pair devices

After users pair a device with the app, the device is connected and registered to
the cloud and can communicate with the cloud. The SmartLife App SDK
empowers smart devices to be paired in multiple pairing modes. For example,
they can be paired over Wi-Fi and Bluetooth. For more information, see Device
Pairing (iOS) and Bluetooth LE on iOS .

6.1. Pairing modes

In this section, the Wi-Fi pairing modes are used as an example to describe how
to integrate the SDK and register a device to the cloud.
Wi-Fi pairing modes include: Wi-Fi Easy Connect (EZ) , Access Point (AP) , and QR
code. In the later versions of the SmartLife App SDK for iOS, we recommend that
you use the AP mode instead of the Wi-Fi EZ mode. The former trumps the
latter when it comes to the following aspects:
• Compared with the Wi-Fi EZ mode, the AP mode results in a higher success

rate, optimal reliability, and fewer compatibility requirements for mobile
phones and routers.

• The app built with Xcode 12.5 cannot send the EZ pairing data packets from
iPhone that runs iOS 14.5 or later. In this case, the permission
com.apple.developer.networking.multicast must be enabled for the app.
This permission must be approved by Apple before it can be enabled. As a
temporary solution, you can use an earlier Xcode version, but the AP mode is
still recommended.

6.2. Get the pairing token

Before the AP pairing process, the SDK must get a pairing token from the cloud in
the networked state. The token is valid for 10 minutes and expires immediately
after the device is paired. A new token must be generated if the device needs to
be paired again. To get a token, the current value of homeId must be provided.
Therefore, during this process, the account must be in the logged-in state and at
least one home is created for the account.

13 / 25

https://developer.tuya.com/en/docs/app-development/activator?id=Ka5cgmlzpfig4
https://developer.tuya.com/en/docs/app-development/activator?id=Ka5cgmlzpfig4
https://developer.tuya.com/en/docs/app-development/ble?id=Ka5vcxzbglphd
https://developer.tuya.com/en/docs/app-development/iOS-network-ez?id=Kaixvcn8gy8o0
https://developer.tuya.com/en/docs/app-development/iOS-network-host?id=Kaixw35qn5d1l
https://developer.tuya.com/en/docs/app-development/iOS-network-host?id=Kaixw35qn5d1l#title-0-Get%20token

7.3Step 4: Control devices

1 [[ThingSmartActivator sharedInstance] getTokenWithHomeId:homeId
2 success:^(NSString *token) {

3
 // NSLog(@"getToken success: %@",

token);

4
 //

You can start ConfigWiFi now.
5 } failure:^(NSError *error) {

6
 //NSLog(@"getToken failure: %@",

error.localizedDescription);
7 }
8];

6.3. Compatibility with iOS

iOS 14
Starting from iOS 14, when users implement device pairing or control over a local
area network (LAN), the local network privacy setting dialog box is triggered.
• The app can send data to the LAN only after users tap OK.
• Otherwise, if users tap Don’t Allow, the app cannot access the LAN.
Currently, Apple does not provide APIs to process this privacy setting. We
recommend that you guide users to allow the app to access LAN data when
features that require LAN connection cannot work. Specifically, go to Settings,
choose Privacy > Local Network, and then allow the app to access the LAN.
iOS 13
Starting from iOS 13, if users do not allow the app to access location data, when
the Wi-Fi feature is enabled, [[ThingSmartActivator sharedInstance] currentWifiSSID]
cannot get a valid Wi-Fi service set identifier (SSID) or basic service set identifier
(BSSID). In this case, iOS returns the following default values:
• SSID: WLAN or Wi-Fi . WLAN is returned for users in mainland China.
• BSSID: 00:00:00:00:00:00 .

6.4. Start pairing

Before the pairing process is started, the device must keep a state pending
pairing. To set the device to this state, you can guide users to follow the device
user manual.

14 / 25

7.5Step 4: Control devices

To call the API method startConfigWiFi , you must provide the SSID of the router
(the Wi-Fi name), password, and the token obtained from the cloud.

1 [ThingSmartActivator sharedInstance].delegate = self;
2 [[ThingSmartActivator sharedInstance] startConfigWiFi:ThingActivatorModeAP
3 ssid:ssid
4 password:password
5 token:token
6 timeout:100];

The timeout parameter is set to 100 by default. Unit: seconds. You can
specify any preferred value. However, a small value is not recommended. A
proper value can ensure the optimal pairing performance.

In AP pairing mode, you must implement the protocol ThingSmartActivatorDelegate
and listen for the callback of the pairing result.

1 @interface xxxViewController () <ThingSmartActivatorDelegate>

1
- (void)activator:(ThingSmartActivator *)activator didReceiveDevice:

(ThingSmartDeviceModel *)deviceModel error:(NSError *)error {
2 if (deviceModel && error == nil) {
3 // The request is successful.
4 // NSLog(@"connected success: %@", deviceModel.name);
5 }
6

7 if (error) {
8 // The request failed.
9 }

10

11 // Stops the pairing process.
12 }

6.5. (Optional) Stop pairing

After the pairing process is started, the app continuously broadcasts the pairing
data until a device is paired or the process times out. To allow users to cancel or
complete pairing during the process, you must call the API method
stopConfigWiFi .

1 [ThingSmartActivator sharedInstance].delegate = nil;
2 [[ThingSmartActivator sharedInstance] stopConfigWiFi];

15 / 25

https://developer.tuya.com/en/docs/app-development/iOS-network-ez?id=Kaixvcn8gy8o0#title-1-Start%20pairing
https://developer.tuya.com/en/docs/app-development/iOS-network-host?id=Kaixw35qn5d1l#title-4-Stop%20pairing

7.6Step 4: Control devices

7. Step 4: Control devices

In this section, the objects ThingSmartDeviceModel and ThingSmartDevice are used.

Object Description Reference

ThingSmartDeviceModel

• Similar to
ThingSmartHomeModel

and ThingSmartHome ,
ThingSmartDeviceModel

stores the basic
information about a

device, such as the ID,
name, and icon.

• The dps property of
NSDictionary type for

the class
ThingSmartDeviceModel

defines the current
device status. The

status is known as one
or more data points

(DPs). Each DP stores
the features of a
device. A DP can
define a switch of

Boolean type or the
brightness of Value

type. To enable device
control, you can get
and modify the DPs.

Device DPs

16 / 25

https://developer.tuya.com/en/docs/app-development/iOS-device-control?id=Kaiyeu0xukcuc#title-0-Device%20DPs

8Practice result

Object Description Reference

ThingSmartDevice

 ThingSmartDevice stores
all data of device

features, such as device
control and firmware

management. You must
use the correct value of
deviceId to initialize
ThingSmartDevice .

Device Management
(iOS)

Make sure that ThingSmartDevice in ViewController or other objects is
declared as a global variable (@property). Otherwise, a temporary variable of
ThingSmartDevice might be released during initialization due to the scope limit,
and thus nil is returned.

7.1. Query a list of devices

After a device is paired, users can query a list of devices that are created for a
specific home.

1 self.home = [ThingSmartHome homeWithHomeId:#your homeId];
2 self.deviceList = [self.home.deviceList copy];

You must call the API method getHomeDetailInfo first to enable the query.
Otherwise, the query will fail even after the device is paired.

7.2. View device information

• DP data is stored in schemaArray of deviceModel .

1 ThingSmartDevice *device = self.device;
2 NSArray *schemas = device.deviceModel.schemaArray;

17 / 25

https://developer.tuya.com/en/docs/app-development/device?id=Ka5cgmmjr46cp
https://developer.tuya.com/en/docs/app-development/device?id=Ka5cgmmjr46cp
https://developer.tuya.com/en/docs/app-development/iOS_family?id=Kaixeor409hck#title-5-Query%20home%20details

8.3Practice result

• All DP data is stored in schemaArray . Each DP is encapsulated as the
ThingSmartSchemaModel object.

• Certain complex DPs are further encapsulated in property of
ThingSmartSchemaModel . Example:

1
NSString *type = [schema.type isEqualToString:@"obj"] ? schema.property.type :

schema.type;
2

3 if ([type isEqualToString:@"bool"]) {
4

5
 SwitchTableViewCell *cell = [tableView

dequeueReusableCellWithIdentifier:@"switchCell"];
6 if (cell == nil){

7
 cell = [[[NSBundle mainBundle] loadNibNamed:@"SwitchTableViewCell"

owner:self options:nil] lastObject];
8

9 cell.label.text = schema.name;
10 [cell.switchButton setOn:[dps[schema.dpId] boolValue]];
11

12 };
13

14 }
15 return cell;
16

17 }
18

19 else if ([type isEqualToString:@"value"]) {
20

21
 SliderTableViewCell *cell = [tableView

dequeueReusableCellWithIdentifier:@"valueCell"];
22 if (cell == nil){

23
 cell = [[[NSBundle mainBundle] loadNibNamed:@"SliderTableViewCell"

owner:self options:nil] lastObject];
24

18 / 25

8.3Practice result

25 cell.label.text = schema.name;
26 cell.detailLabel.text = [dps[schema.dpId] stringValue];
27 cell.slider.minimumValue = schema.property.min;
28 cell.slider.maximumValue = schema.property.max;
29 cell.slider.value = [dps[schema.dpId] floatValue];
30

31 };
32 };
33 return cell;
34

35 }
36

37 else if ([type isEqualToString:@"enum"]) {
38 //...
39 }
40

41 //...

In the preceding code block, the DPs of a smart light are displayed in TableView .
The following settings are applied:
• The switch data is displayed in cell for which type is set to bool.
• The brightness data is displayed in cell for which type is set to value.

7.3. Control a device

To enable device control, you must call the device control API method and send
DPs in the NSDictionary format to change device status or features.

The parameter dps can define one or more DPs. Thus, multiple states of a
device can be changed in the same call.

In the following code block, a smart light is used as an example to change its
switch status and brightness value.

1 if ([type isEqualToString:@"bool"]) {
2

3
 SwitchTableViewCell *cell = [tableView

dequeueReusableCellWithIdentifier:@"switchCell"];
4 if (cell == nil){

5
 cell = [[[NSBundle mainBundle] loadNibNamed:@"SwitchTableViewCell"

owner:self options:nil] lastObject];
6

7 cell.label.text = schema.name;
8 [cell.switchButton setOn:[dps[schema.dpId] boolValue]];
9 cell.isReadOnly = isReadOnly;

19 / 25

https://developer.tuya.com/en/docs/app-development/iOS-device-control?id=Kaiyeu0xukcuc#title-1-Device%20control

8.4Practice result

10
 // The light is switched on or off after a tapping event of

`UISwitch`.
11 cell.switchAction = ^(UISwitch *switchButton) {

12
 [weakSelf publishMessage:@{schema.dpId: [NSNumber

numberWithBool:switchButton.isOn]}];
13 };
14

15 }
16 return cell;
17

18 }
19

20 else if ([type isEqualToString:@"value"]) {
21

22
 SliderTableViewCell *cell = [tableView

dequeueReusableCellWithIdentifier:@"valueCell"];
23 if (cell == nil){

24
 cell = [[[NSBundle mainBundle] loadNibNamed:@"SliderTableViewCell"

owner:self options:nil] lastObject];
25

26 cell.label.text = schema.name;
27 cell.detailLabel.text = [dps[schema.dpId] stringValue];
28 cell.slider.minimumValue = schema.property.min;
29 cell.slider.maximumValue = schema.property.max;
30 [cell.slider setContinuous:NO];
31 cell.slider.value = [dps[schema.dpId] floatValue];
32

33
 // The value is changed after a tapping event of

`UISlider`.
34 cell.sliderAction = ^(UISlider * _Nonnull slider) {
35 float step = schema.property.step;
36 float roundedValue = round(slider.value / step) * step;

37
 [weakSelf publishMessage:@{schema.dpId : [NSNumber

numberWithInt:(int)roundedValue]}];
38 };
39 };
40 return cell;
41

42 }

1 - (void)publishMessage:(NSDictionary *) dps {
2 [self.device publishDps:dps success:^{
3 // The value is changed successfully.
4 }
5 failure:^(NSError *error) {
6 // Failed to change the value.
7 }];
8 }

To listen for changes in device status, such as getting online, removal
notifications, and DP data changes, you must implement the protocol
ThingSmartDeviceDelegate .

1 self.device = [ThingSmartDevice deviceWithDeviceId:## your deviceId];

20 / 25

8.4Practice result

2 self.device.delegate = self;

1 #pragma mark - ThingSmartDeviceDelegate
2

3 /// Device information updates, such as the name and online status.
4 /// @param device The device instance.
5 - (void)deviceInfoUpdate:(ThingSmartDevice *)device;
6

7 /// Device online status updates
8 /// @param device The device instance.
9 - (void)deviceOnlineUpdate:(ThingSmartDevice *)device;

10

11 /// Indicates whether the device is removed.
12 /// @param device The device instance.
13 - (void)deviceRemoved:(ThingSmartDevice *)device;
14

15 /// The DP data updates.
16 /// @param device The device instance.
17 /// @param dps The command dictionary.
18 - (void)device:(ThingSmartDevice *)device dpsUpdate:(NSDictionary *)dps;
19

20 /// The DP data updates.
21 /// @param device The device instance.
22 /// @param dpCodes The DP codes.

23
- (void)device:(ThingSmartDevice *)device dpCommandsUpdate:(NSDictionary

*)dpCodes;
24

25 /// The group OTA task progress.
26 /// @param device The gateway instance.
27 /// @param groupId group OTA task id.
28 /// @param type The firmware type.
29 /// @param progress The update progress.

30
- (void)device:(ThingSmartDevice *)device groupOTAId:(long)groupId firmwareType:

(NSInteger)type progress:(double)progress;
31

32 /// The group OTA task status.
33 /// @param device The gateway device instance.
34 /// @param upgradeStatusModel The model of the update status.
35 - (void)device:(ThingSmartDevice *)device

36
 groupOTAStatusModel:(ThingSmartFirmwareUpgradeStatusModel

*)upgradeStatusModel;
37

38 /// The callback of Wi-Fi signal strength.
39 /// @param device The device instance.
40 /// @param signal The signal strength.
41 - (void)device:(ThingSmartDevice *)device signal:(NSString *)signal;
42

43 /// Receives MQTT custom messages.
44 /// @param device The device instance.
45 /// @param message The custom message.

46
- (void)device:(ThingSmartDevice *)device didReceiveCustomMessage:

(ThingSmartMQTTMessageModel *)message;
47

48 /// Receives LAN custom messages.

49
- (void)device:(ThingSmartDevice *)device didReceiveLanMessage:

(ThingSmartLanMessageModel *)message;
50

51 /// The delegate of warning information updates.

21 / 25

8.4Practice result

52 /// @param device The device instance.
53 /// @param warningInfo The warning information.

54
- (void)device:(ThingSmartDevice *)device warningInfoUpdate:(NSDictionary

*)warningInfo;
55

56
/// The delegate of changes in device normal firmware/pid version update's

status/progress

57
/// Notice: sometimes the progress may <0, when it occured please ignore the

progress.
58 /// @param device The device instance.
59 /// @param statusModel status/progress model.

60
- (void)device:(ThingSmartDevice *)device otaUpdateStatusChanged:

(ThingSmartFirmwareUpgradeStatusModel *)statusModel;
61

62 /// The tuya message data update.
63 /// Example:
64 /// type == property:
65 /// payload = {
66 /// "code_name1": {
67 /// "value": "code_value1",
68 /// "time": 1234567890
69 /// },
70 /// "code_name2": {
71 /// "value": 50,
72 /// "time": 1234567890
73 /// }
74 /// }
75 /// type == action:
76 /// payload = {
77 /// "actionCode": "testAction",
78 /// "outputParams": {
79 /// "outputParam1":"outputValue1",
80 /// "outputParam2":50
81 /// }
82 /// }
83 /// type == event:
84 /// payload = {
85 /// "eventCode": "testEvent",
86 /// "outputParams": {
87 /// "outputParam1":["outputValue1", "outputValue2"],
88 /// "outputParam2":false
89 /// }
90 /// }
91 /// @param device The device instance.
92 /// @param thingMessageType The message type.
93 /// @param payload The message payload.

94
- (void)device:(ThingSmartDevice *)device didReceiveThingMessageWithType:

(ThingSmartThingMessageType)thingMessageType payload:(NSDictionary *)payload;

7.4. (Optional) Remove a device

You can call the API method removeDevice to remove a device from a specific
home.

22 / 25

https://developer.tuya.com/en/docs/app-development/device?id=Ka5cgmmjr46cp#title-5-Remove%20a%20device

8.5Practice result

1 [self.device remove:^{
2 NSLog(@"remove success");
3 } failure:^(NSError *error) {
4 NSLog(@"remove failure: %@", error);
5 }];

23 / 25

8.5Practice result

8. Practice result

Now, your smart app can be built through the preceding steps. The app supports
multiple features. For example, register a user account, create and query homes,
and pair and control devices.

24 / 25

9Next step

9. Next step

To ensure development efficiency, Tuya has abstracted features and encapsulated
UI BizBundles from the SDK. You can integrate any of the comprehensive UI
BizBundles to meet different business requirements.

25 / 25

https://developer.tuya.com/en/docs/app-development/introduction?id=Ka8j28bal9erw
https://developer.tuya.com/en/docs/app-development/introduction?id=Ka8j28bal9erw

	Quick Start with SmartLife App SDK for iOS
	Preview
	Preparation
	Step 1: Register a user account
	Query areas for the verification code service
	Get a verification code to register with a mobile phone number
	Register an account with a mobile phone number
	Log in to the app with a mobile phone number

	Step 2: Create and manage homes
	Create homes
	Query a list of homes
	Best practices

	Step 3: Pair devices
	Pairing modes
	Get the pairing token
	Compatibility with iOS
	Start pairing
	(Optional) Stop pairing

	Step 4: Control devices
	Query a list of devices
	View device information
	Control a device
	(Optional) Remove a device

	Practice result
	Next step

