

Linux Start Guide

Linux Start Guide for ST BrightSense image sensors

Introduction

The purpose of this Linux Start Guide is to assist Linux users, developers, and enthusiasts in a seamless integration of the
ST BrightSense product line from STMicroelectronics.

ST BrightSense is a range of smart high-performance CMOS image sensors developed by STMicroelectronics for professional
and consumer vision applications. Relying on proprietary innovations and processes, the ST BrightSense portfolio leverage
cutting-edge pixel technologies to provide superior image quality for smart, accurate and reactive vision-based systems.
Combining advanced technology nodes and well-thought-out designs, ST BrightSense products highlight tiny form factor and
ultra-low power. Their rich toolbox of on-chip features allows faster and lighter processing to support the next generation of smart

devices.

Figure 1. ST BrightSense product portfolio

All ST BrightSense image sensors are provided with a range of hardware and software tools to enable simple and easy evaluation
and development. Linux drivers for ST BrightSense products are available for free download on st.com for integration to Linux-
based embedded processing platforms.

This Linux Start Guide aims to support the use of these Linux drivers by providing essential knowledge and practical guidelines
for integrating these advanced image sensors into a Linux environment. It includes indications on hardware prerequisites, basic
Linux knowledge sharing and comprehensive installation procedure along with practical tips.

Linux Start Guide for ST BrightSense - Rev 1 - May 2024

For further information contact your local STMicroelectronics sales office.
www.st.com

http://www.st.com/
https://manuals.plus/m/80586fb6aa9e252caaf68b0902776f68181b6dba8e19423f9a522c7219cd21fa

Contents

1 Acronyms and abbreviations ... 3

2 Before getting started ... 4

2.1 Supported devices .. 4

2.2 Compatible ST BrightSense hardware tools ... 4

2.3 Finding further product information ... 5

3 Introduction to Linux environment .. 6

3.1 About Linux camera stack .. 6

3.2 Introduction to V4L2 framework .. 6

3.3 Introduction to Libcamera ... 7

4 Getting started with Raspberry Pi .. 8

4.1 Hardware setup .. 8

4.2 V4L2 driver ... 9

1. V4L2 driver content .. 9

2. Driver installation .. 9

3. Device tree configuration .. 10

4.3 Libcamera .. 10

1. RPi OS Libcamera update .. 10

2. Libcamera usage .. 11

3. Code example using Libcamera ... 11

1 Getting started with other V4L2 tools .. 13

1.1 v4l2-ctl .. 13

1.2 yavta .. 13

1.3 V4L2 code example .. 14

Revision history ... 16

Linux Start Guide for ST BrightSense

Linux Start Guide for ST BrightSense - Rev 1

Page 3 of 17

 Acronyms and abbreviations

1 Acronyms and abbreviations

Acronym/abbreviation Definition

V4L2
Video4Linux2: collection of drivers and API for

realtime video capture on Linux systems

I2C inter-integrated circuit (serial bus)

v4l2-ctl Application to control Video4Linux2 drivers

yavta
“Yet another V4L2 test application”:

Application to control Video4Linux2 camera drivers

gstreamer Multimedia framework

Linux Start Guide for ST BrightSense

Linux Start Guide for ST BrightSense - Rev 1

Page 4 of 17

Before getting started

2 Before getting started

This section starts with an overview of the products supported by this Linux Start Guide. It provides also useful indications on
where to find further product documentation and an overview of the compatible hardware tools that are needed to connect
ST BrightSense image sensors to embedded processing platforms.

2.1 Supported devices

This Linux Start Guide covers all the products of the ST BrightSense portfolio, which includes at the time of writing the following
image sensors.

Table 1. List of supported image sensors

Sensor reference Resolution Color pattern Shutter Output

VD55G0 0.38 MP Monochrome Global MIPI CSI-2

VD55G1 0.56 MP Monochrome Global MIPI CSI-2

VD56G3 1.53 MP Monochrome Global MIPI CSI-2

VD66GY 1.53 MP RGB Global MIPI CSI-2

VD16GZ 1.53 MP RGB-IR Global MIPI CSI-2

2.2 Compatible ST BrightSense hardware tools

To make integration onto Linux platform immediate, STMicroelectronics provides turnkey hardware tools enabling instant plug-
and-play connection to embedded processing platforms. The Linux drivers supported by this Linux Start Guide have been
developed to operate specifically on these hardware tools.

Every ST BrightSense image sensor is available with two main hardware kit options, which both contains the necessary board,
optics and a 22-pin FFC/FPC cable.

The S-Board is a hardware kit including a sensor board for a given image sensor, that is equipped with M12 lens holder and
removable lens, enabling user to change lens at any time.

Figure 2. Illustration of S-Board content and associated setup

 oles or attach
to the V ain
 a apter it

 onnector or
optional li htin

 o tp t
connector

 connectors

 2 hol er ith
re o a le lens +

https://www.st.com/en/imaging-and-photonics-solutions/vd55g0.html
https://www.st.com/en/imaging-and-photonics-solutions/vd55g1.html
https://www.st.com/en/imaging-and-photonics-solutions/vd56g3.html
https://www.st.com/en/imaging-and-photonics-solutions/vd66gy.html
https://www.st.com/en/imaging-and-photonics-solutions/vd16gz.html

Linux Start Guide for ST BrightSense

Linux Start Guide for ST BrightSense - Rev 1

Page 5 of 17

Before getting started

The P-Board is a hardware kit including a board with connector to evaluation any camera module provided by STMicroelectronics
and its authorized partners. This kit enables to evaluate image sensors built as turnkey camera module to save the effort
associated to lens selection and focus.

Figure 3. Illustration of P-Board content and associated setup

Table 2. List of compatible ST BrightSense hardware tools

Kit category Kit reference Sensor included? Lens & holder? Cable? Output connector Output

S-Boards

STEVAL-55G0MBI VD55G0 Yes Yes FFC/FPC MIPI CSI-2

STEVAL-55G1MBI VD55G1 Yes Yes FFC/FPC MIPI CSI-2

STEVAL-56G3MAI VD56G3 Yes Yes FFC/FPC MIPI CSI-2

STEVAL-66GYMAI VD66GY Yes Yes FFC/FPC MIPI CSI-2

STEVAL-16GZMAI VD16GZ Yes Yes FFC/FPC MIPI CSI-2

P-Board STEVAL-CAM-M0I
None (promodule to order

separately)
No Yes FFC/FPC MIPI CSI-2

2.3 Finding further product information

To facilitate development and knowledge sharing, ST BrightSense documentation is made publicly available on st.com along
with free software tools such as Linux drivers. While this Linux Start Guide focuses on the Linux driver installation and
prerequisites, further information can be found regarding product specifications and features in the dedicated product
documentation.

Each product webpage includes a “Doc entation” section giving access to all the necessary product documentation such as
data brief, datasheet, user manual or application notes. The “Tools & o t are” section list all the compatible hardware and
software tools available for this product and can guide you to the corresponding webpage, where further information and
download are available for each hardware kit or software tool.

 onnector or
optional li htin

 o tp t
connector

 np t connector
 or pro o les

+

https://www.st.com/en/evaluation-tools/steval-55g0mbi.html
https://www.st.com/en/evaluation-tools/steval-55g1mbi.html
https://www.st.com/en/evaluation-tools/steval-56g3mai.html
https://www.st.com/en/evaluation-tools/steval-66gymai.html
https://www.st.com/en/evaluation-tools/steval-16gzmai.html
https://www.st.com/en/evaluation-tools/steval-cam-m0i.html

Linux Start Guide for ST BrightSense

Linux Start Guide for ST BrightSense - Rev 1

Page 6 of 17

Introduction to Linux environment

3 Introduction to Linux environment

3.1 About Linux camera stack

The Linux camera stack is a collection of open-source components that enable the interfacing and control of camera devices
on Linux-based systems.

It encompasses both kernel-level and user-space components, providing a comprehensive framework for different camera
applications (ranging from simple webcam utilities to complex computer vision systems).

Figure 4. Linux Camera Stack

Two key components of the camera stack are the Video for Linux 2 (V4L2) framework and the libcamera library.

3.2 Introduction to V4L2 framework

At the core of the Linux camera stack is Video for Linux 2 (V4L2), which serves as the kernel API for handling video devices.

V4L2 provides a collection of (sub)device drivers and a standardized API for camera drivers, allowing applications to access
and control a wide range of video capture devices, including USB cameras, embedded camera modules, as well as the different
hardware IPs that are involved in image processing.

V4L2 is responsible for exposing device nodes (/dev/videoX, /dev/v4l-subdevX, etc.) to user space. These nodes allow
standard V4L2 applications to control and get frames from image sensors.

Many applications have V4L2 support, allowing for straightforward integration of image sensors (once they are V4L2-ready):

- v4l2-ctl: Swiss army knife for V4L2. Can be used to query or configure a V4L2 device.
- yavta: Yet Another V4L2 Test Application. A command-line tool with a very simple interface to configure and capture

frames from a V4L2 device.
- VLC: A versatile media player with V4L2 support that allows capturing and streaming video from V4L2-compatible

devices.
- GStreamer: A multimedia framework, providing V4L2 plugins for capturing, processing, and streaming video from

V4L2-compatible devices.
- OpenCV: A popular computer vision library that includes V4L2 support for capturing and processing video streams

from V4L2-compatible devices. It is widely used for image and video processing, object detection, and machine vision
applications.

Linux Start Guide for ST BrightSense

Linux Start Guide for ST BrightSense - Rev 1

Page 7 of 17

Introduction to Linux environment

3.3 Introduction to Libcamera

Complementing V4L2 is libcamera. It operates as a user-space library and provides a unified interface for camera applications.

Libcamera abstracts the complexity of handling the media pipeline; it offers a consistent API for camera control and image
processing and enables support of advanced ISP features available in modern SOCs. (add v4l2 constraint by libcamera)

As a newer addition to the Linux camera stack, libcamera is dynamic and evolving, with a focus on modernizing the camera
stack and addressing the complexities of modern camera hardware and use cases.

Linux Start Guide for ST BrightSense

Linux Start Guide for ST BrightSense - Rev 1

Page 8 of 17

Getting started with Raspberry Pi

4 Getting started with Raspberry Pi

This section details the installation procedure to get the image sensor streaming onto a Raspberry Pi platform using the Linux
driver package available for free download on st.com. This installation procedure can be reused for other embedded platforms
relying on Linux environment that uses a V4L2 framework or Libcamera library.

4.1 Hardware setup

Please Follow the instructions from Raspberrypi.com: link

Don’t or et to pl the flex in the right way and before to plug power supply:

https://www.raspberrypi.com/documentation/computers/getting-started.html

Linux Start Guide for ST BrightSense

Linux Start Guide for ST BrightSense - Rev 1

Page 9 of 17

Getting started with Raspberry Pi

4.2 V4L2 driver

This section describes how to build and install the V4L2 driver on a Linux target platform.

For simplicity, the driver is built directly on the target, as it needs to be:

- Built for the corresponding target architecture,
- Built against the current running Linux kernel headers.

Note: Raspberry Pi is used as an example, however the process is similar on other Linux platforms.

1. V4L2 driver content

The V4L2 driver corresponding to the ST BrightSense image sensor must be downloaded from st.com.

Once unzipped on the target Linux platform, the following content should be available (example based on the vd55g1 driver):

vd55g1
├── dts Main entry point for device tree overlays
│ ├── rpi1_to_4 Device tree overlays for RPi1 to RPi4 SBCs
│ └── rpi5 Device tree overlays for RPi5 SBCs
├── Kbuild Configuration file for building kernel module
├── Makefile Build file containing recipe to compile the module
├── README.md Readme file
├── st-vd55g1.c Main v4l2 driver source file
└── st-vd55g1_patch.c Additional source code containing sensor's firmware patch

2. Driver installation

The next steps assume that the Raspberry Pi is up and running with an up-to-date Operating System. As of writing, the latest
Raspberry Pi OS (based on Kernel 6.6) was released on March 15th, 2024.

1. By default, Linux kernel headers are installed on latest RPi OS releases, if not, run the following commands:

$ sudo apt update
If you are using the 32-bit version of Raspberry Pi OS
$ sudo apt install linux-headers-rpi-{v6,v7,v7l}
If you are using the 64-bit version of Raspberry Pi OS
$ sudo apt install linux-headers-rpi-v8

2. Compile the driver source using the Makefile (this will generate a .ko module file) :

$ make

3. Install the freshly built module in the kernel modules folder:

$ sudo cp *.ko /lib/modules/$(uname -r)
$ sudo depmod -a

4. Finally, reboot to apply the modifications:

$ sudo reboot

Linux Start Guide for ST BrightSense

Linux Start Guide for ST BrightSense - Rev 1

Page 10 of 17

Getting started with Raspberry Pi

3. Device tree configuration

The devicetree is a tree data structure with nodes that describe the hardware components of a system.

When a new hardware is connected to a system, its device tree must be updated accordingly.

1. Ensure the device tree compiler tool is present on your system:

$ sudo apt update
$ sudo apt install device-tree-compiler

2. From the dts folder, compile the device tree overlay matching your platform and plugin board (for the example

``pcb4189.dts`` is chosen):

$ cd dts
$ sudo dtc pcb4189.dts -o /boot/firmware/overlays/pcb4189.dtbo

3. Set the device tree overlay for your Raspberry Pi (this step may differ from platform to platform):

$ sudo sh -c "echo 'dtoverlay=pcb4189' >> /boot/firmware/config.txt"

4. Finally, reboot to apply the modifications:

$ sudo reboot

4.3 Libcamera

1. RPi OS Libcamera update

By default, Raspberry Pi OS comes with Libcamera library. Using Libcamera allows to benefit from Broadcom HW ISP
available on the RPi SoC for image processing (debayering, 3A, etc.).

Each Image Sensor must be described in Libcamera. For that reason, the RPi OS Libcamera package should be upgraded
with a new version where all ST BrightSense Image Sensors are described.

Note: The below steps only target Raspberry Pi platform as the libcamera package provided is RPi OS specific.

Once the libcamera package has been downloaded from st.com it can be installed with the below command line:

$ sudo dpkg -i libcamera-ipa_0.2.0.deb

Linux Start Guide for ST BrightSense

Linux Start Guide for ST BrightSense - Rev 1

Page 11 of 17

Getting started with Raspberry Pi

2. Libcamera usage

With libcamera upgraded, it’s possi le to se all the rpicam-apps (please refer to RPi-OS documentation to get all details on
those libcamera-apps)

For a quickstart, please find below a few one-liners:

List the cameras attached to the board and the sensor modes supported
$ rpicam-hello –-list-cameras

Display camera preview (with default mode)
$ rpicam-hello --timeout 0

Display camera preview (with chosen 640x480 mode)
$ rpicam-hello --timeout 0 --viewfinder-width 640 --viewfinder-height 480

After 5 secs preview, capture raw frame (before any ISP processing) as well as jpeg
$ rpicam-still --raw –o frame.jpg

#Change Camera tunning
$rpicam-hello –tuning-file path_of_file.json

3. Code example using Libcamera

To use the capacity of libcamera you can developpe your own application, here you will find an example to stream with python.

First of all, install the package for python 3 :

$ sudo apt install -y python3-pyqt5 python3-opengl
$ sudo apt install -y python3-picamera2

https://www.raspberrypi.com/documentation/computers/camera_software.html#libcamera-and-rpicam-apps

Linux Start Guide for ST BrightSense

Linux Start Guide for ST BrightSense - Rev 1

Page 12 of 17

Getting started with Raspberry Pi

Example code to run at 60 fps in 1120x1360 for VD56G3/VD66GY and capture image through button.
To find more control please refer to picamera manual

#!/usr/bin/python3

This example is essentially the same as app_capture.py, however here
we use the Qt signal/slot mechanism to get a callback (capture_done)
when the capture, that is running asynchronously, is finished.

from PyQt5 import QtCore
from PyQt5.QtWidgets import (QApplication, QHBoxLayout, QLabel, QPushButton,
 QVBoxLayout, QWidget)
from picamera2 import Picamera2,Preview
from picamera2.previews.qt import QGlPicamera2
import io
import time
picam2 = Picamera2()
#picam2.post_callback = post_callback

picam2.configure(picam2.create_preview_configuration(main={"size": (1120,
1360)},raw={"format": "R8"}))
picam2.set_controls({"ExposureTime":1000,"AnalogueGain":1.0,"AeEnable":False,"FrameRate
":60})
print(picam2.sensor_format)

app = QApplication([])

def on_button_clicked():
 button.setEnabled(False)
 cfg = picam2.create_still_configuration()
 picam2.switch_mode_and_capture_file(cfg, "test.jpg",
signal_function=qpicamera2.signal_done)

def capture_done(job):
 picam2.wait(job)
 button.setEnabled(True)

qpicamera2 = QGlPicamera2(picam2, width=1120, height=1360, keep_ar=False)
button = QPushButton("Click to capture JPEG")
label = QLabel()
window = QWidget()
qpicamera2.done_signal.connect(capture_done)
button.clicked.connect(on_button_clicked)

label.setFixedWidth(400)
label.setAlignment(QtCore.Qt.AlignTop)
layout_h = QHBoxLayout()
layout_v = QVBoxLayout()
layout_v.addWidget(label)
layout_v.addWidget(button)
layout_h.addWidget(qpicamera2, 80)
layout_h.addLayout(layout_v, 20)
window.setWindowTitle("Qt Picamera2 App")
window.resize(1120, 1360)
window.setLayout(layout_h)

picam2.start()

https://datasheets.raspberrypi.com/camera/picamera2-manual.pdf

Linux Start Guide for ST BrightSense

Linux Start Guide for ST BrightSense - Rev 1

Page 13 of 17

Getting started with other V4L2 tools

1 Getting started with other V4L2 tools

While some embedded platforms such as the Raspberry Pi series rely on Libcamera as a camera software library, other Linux-
based plat or s on’t ene it ro it and only support V4L2. In such situation, standard V4L2 tools must be used to
communicate with the image sensor.

The following paragraphs present a few command-line tools along with a compilation of useful one-liners.

1.1 v4l2-ctl

Swiss army knife for v4l2: this command-line tool can be used to query, configure, or stream from a v4l2 device.

Available in all distributions, on Debian-like distros it can be installed with the following:

$ sudo apt install v4l-utils

Useful one-liners:

List formats and controls (with their menus when available)
$ v4l2-ctl --list-formats-ext --list-ctrls --list-ctrls-menu

Select Format (resolution: 640x480 and pixel format: GRBG Bayer 10Bit)
$ v4l2-ctl --set-fmt-video width=640,height=480,pixelformat=BA10

Configure V4L2 controls (switch to manual mode and configure exposure (1800 lines))
$ v4l2-ctl --set-ctrl auto_exposure=1
$ v4l2-ctl --set-ctrl exposure=1800

Configure Vertical Blanking to change framerate (vblank is resolution dependant)
$ v4l2-ctl --set-ctrl vertical_blanking=3056

Capture 20 frames (concatenated in one 'capture_20f.raw10' file)
$ v4l2-ctl --stream-mmap --stream-count=20 --stream-to=capture_20f.raw10

1.2 yavta

Yet Another V4L2 Test Applications. A simple command-line tool supporting many of the latest V4L2 capabilities and used to interact
with a V4L2 device.

On Debian-like distributions it can be installed with the following:

$ sudo apt install yavta

Linux Start Guide for ST BrightSense

Linux Start Guide for ST BrightSense - Rev 1

Page 14 of 17

Getting started with other V4L2 tools

Useful one-liners:

List formats and controls
$ yavta --list-controls --enum-formats /dev/video0

Select Format (resolution: 640x480 and pixel format: GRBG Bayer 8Bit)
$ yavta --size 640x480 --format SGRBG8 /dev/video0

Configure V4L2 controls (switch to manual mode and configure exposure (1800 lines))
$ yavta --set-control '0x009a090 1' /dev/video0
$ yavta --set-control '0x00980911 1800' /dev/video0

Configure Vertical Blanking to change framerate (vblank is resolution dependant)
$ yavta --set-control '0x009e0901 3056' /dev/video0

Capture (30 frames saved in 30 files)
$ yavta --capture=30 --file=frame-#.raw8 /dev/video0

1.3 V4L2 code example

To use the capacity of V4L2 api you can developpe your own application, here you will find an example to stream with python.

First of all, install the package for python 3 :

$ pip3 install v4l2-python3
$ pip3 install opencv-python
$ pip3 install python3-nmap

Linux Start Guide for ST BrightSense

Linux Start Guide for ST BrightSense - Rev 1

Page 15 of 17

Getting started with other V4L2 tools

from v4l2 import *
import cv2
import fcntl
import mmap
import numpy as np

vd = open('/dev/video0', 'rb+', buffering=0)
print(">> get device capabilities")
cp = v4l2_capability()
fcntl.ioctl(vd, VIDIOC_QUERYCAP, cp)
print(">> device setup")
fmt = v4l2_format()
fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE
fmt.fmt.pix.pixelformat=V4L2_PIX_FMT_SGRBG8
fmt.fmt.pix.width=300
fmt.fmt.pix.height=300
fcntl.ioctl(vd, VIDIOC_S_FMT, fmt) # set whatever default settings we got before
fcntl.ioctl(vd, VIDIOC_G_FMT, fmt) # get current settings
print("width:", fmt.fmt.pix.width, "height", fmt.fmt.pix.height)

print(">> init mmap capture")
req = v4l2_requestbuffers()
req.type = V4L2_BUF_TYPE_VIDEO_CAPTURE
req.memory = V4L2_MEMORY_MMAP
req.count =2
fcntl.ioctl(vd, VIDIOC_REQBUFS, req) # tell the driver that we want some buffers
buffers = []
req.count =2

for ind in range (req.count):
 # setup a buffer
 buf = v4l2_buffer()
 buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE
 buf.memory = V4L2_MEMORY_MMAP
 buf.index = ind
 fcntl.ioctl(vd, VIDIOC_QUERYBUF, buf)
 mm = mmap.mmap(vd.fileno(), buf.length, mmap.MAP_SHARED, mmap.PROT_READ |
mmap.PROT_WRITE, offset=buf.m.offset)
 buffers.append(mm)
 # queue the buffer for capture
 fcntl.ioctl(vd, VIDIOC_QBUF, buf)
print(">> Start streaming")
buf_type = v4l2_buf_type(V4L2_BUF_TYPE_VIDEO_CAPTURE)
fcntl.ioctl(vd, VIDIOC_STREAMON, buf_type)

while True: # capture 50 frames
 buf = v4l2_buffer()
 buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE
 buf.memory = V4L2_MEMORY_MMAP
 fcntl.ioctl(vd, VIDIOC_DQBUF, buf) # get image from the driver queue
 mm = buffers[buf.index]
image_data=np.frombuffer(mm,dtype=np.uint8,count=fmt.fmt.pix.bytesperline*fmt.fmt.pix.h
eight).reshape(fmt.fmt.pix.height,fmt.fmt.pix.bytesperline)
 cv2.imshow("test",image_data)
 k= cv2.waitKeyEx(1)
 if k==27:
 exit(1)
 fcntl.ioctl(vd, VIDIOC_QBUF, buf) # requeue the buffer
print(">> Stop streaming")
fcntl.ioctl(vd, VIDIOC_STREAMOFF, buf_type)

vd.close()

Linux Start Guide for ST BrightSense

Linux Start Guide for ST BrightSense - Rev 1

Page 16 of 17

Revision history

Revision history

Table 6. Document revision history

Date Version Changes

31-May-2024 1 Initial release

Linux Start Guide for ST BrightSense

Linux Start Guide for ST BrightSense - Rev 1

Page 17 of 17

IMPORTANT NOTICE – READ CAREFULLY

 T icroelectronics NV an its s si iaries “ T” reser e the ri ht to a e chan es, corrections, enhance ents, o i ications , and improvements to ST

products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST

products are sold pursuant to T’s terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of

p rchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names

are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2024 STMicroelectronics – All rights reserved

http://www.st.com/trademarks

