

## CMT2300A/CMT2119B/CMT2219B RF Frequency Calculation Guide

## **Overview**

This document discusses the RF frequency calculation formula for CMT2300A / CMT2119B / CMT2219B, which helps on further design and application based on the products.

The product models covered in this document are shown in the below table.

**Table 1. Product Models Covered in This Document** 

| Product Model | Frequency Range   | Modulation Type | Main Function | Configuration Mode | Packaging |
|---------------|-------------------|-----------------|---------------|--------------------|-----------|
| CMT2300A      | 126.33 - 1020 MHz | (G)FSK/OOK      | Transceiver   | Register           | QFN16     |
| CMT2119B      | 126.33 - 1020 MHz | (G)FSK/OOK      | Transmitter   | Register           | QFN16     |
| CMT2219B      | 126.33 - 1020 MHz | (G)FSK/OOK      | Receiver      | Register           | QFN16     |

Before reading this document, it is recommended to read the AN142-CMT2300A Quick Start Guide, AN184-CMT2119B Quick Start Guide and AN161-CMT2219B Quick Start Guide to understand the basic information of the 3 products.

### **Table of Contents**

| 1 | RF Frequency Calculation            | . 3 |
|---|-------------------------------------|-----|
|   | •                                   |     |
|   | 1.1 Configuring RF Parameters of RX | . 3 |
|   | 1.2 Configuring RF Parameters of TX | . 6 |
| 2 | Revise History                      |     |
| _ | Revise History                      |     |
| 3 | Contacts                            | . 8 |

# 1 RF Frequency Calculation

The RF frequency calculation and manual configuration methods for the 3 products are described below. Note that the description of RX part is not applicable to the CMT2119B and the statement of TX part is not applicable to the CMT2219B.

In general, when configuring RF frequency, it's recommended for users to generate parameters using RFPDK and write them to the registers in the frequency area. If users need to configure the frequency of TX and RX separately in applications while not using the fast frequency hopping mechanism, it's required for users to know the detail information of the register configuration and related value calculation. The registers in the frequency area are listed in the below table.

Table 2. Registers in Frequency Area

| Addr | R/W | Name    | Bit 7                                               | Bit 6                                                 | Bit 5 | Bit 4  | Bit 3      | Bit 2          | Bit 1 | Bit 0 | Function |
|------|-----|---------|-----------------------------------------------------|-------------------------------------------------------|-------|--------|------------|----------------|-------|-------|----------|
| 0x18 | RW  | CUS_RF1 |                                                     |                                                       |       | FREQ_I | RX_N [7:0] |                |       |       |          |
| 0x19 | RW  | CUS_RF2 |                                                     |                                                       |       | FREQ_  | RX_K [7:0] |                |       |       |          |
| 0x1A | RW  | CUS_RF3 |                                                     | FREQ_RX_K [15:8]                                      |       |        |            |                |       |       |          |
| 0x1B | RW  | CUS_RF4 | FREQ_PALDO_SEL                                      | FREQ_PALDO_SEL FREQ_DIVX_CODE [2:0] FREQ_RX_K [19:16] |       |        |            |                |       |       |          |
| 0x1C | RW  | CUS_RF5 | FREQ_TX_N [7:0]                                     |                                                       |       |        |            | Frequency Area |       |       |          |
| 0x1D | RW  | CUS_RF6 | FREQ_TX_K [7:0]                                     |                                                       |       |        |            |                |       |       |          |
| 0x1E | RW  | CUS_RF7 | FREQ_TX_K [15:8]                                    |                                                       |       |        |            |                |       |       |          |
| 0x1F | RW  | CUS_RF8 | FSK_SWT FREQ_VCO_BANK [2:0] (000) FREQ_TX_K [19:16] |                                                       |       |        |            | 1              |       |       |          |

In the table, the value of FSK\_SWT is generated by RFPDK, with no depending on frequency. Do not change this value when configuring other bits of the register.

## 1.1 Configuring RF Parameters of RX

To configure the frequency of RX, the below items need to be configured.

- FREQ\_VCO\_BANK <2:0>
- FREQ\_DIVX\_CODE <2:0>
- FREQ\_RX\_N <7:0>
- FREQ\_RX\_K <19:0>
- AFC\_OVF\_TH <7:0>

Among them, N is the integer part of the frequency word, K is the fractional part of the frequency word, DIVX CODE is used to select the division factor of the PLL, and VCO BANK is used to select the operating frequency range of the VCO. The calculation is as follows.

First, check the table to get the value of FREQ\_VCO\_BANK<2:0> and FREQ\_DIVX\_CODE<2:0> (both need to be written to the registers) and DIVIDER (frequency dividing factor, used to calculate N and K) according to the target frequency band where the configured frequency is located.

Table 3. Correspondence between PLL Analysis Parameters and Target Frequencies

| Target Fre               | FREQ DIVX CODE <2:0>     | DIVIDER              |         |  |
|--------------------------|--------------------------|----------------------|---------|--|
| FREQ_VCO_BANK<2:0> = 110 | FREQ_VCO_BANK<2:0> = 001 | FREQ_DIVA_CODE <2:0> | DIVIDER |  |
| 758 – 840 MHz            | 840 – 1020 MHz           | 000                  | 2       |  |
| 379 – 420 MHz            | 420 – 510 MHz            | 001                  | 4       |  |
| 189.5 – 210 MHz          | 210 – 255 MHz            | 010                  | 8       |  |
| 126.33 – 140 MHz         | 140 – 170 MHz            | 011                  | 12      |  |
| 252.67 – 280 MHz         | 280 – 340 MHz            | 101                  | 6       |  |

Then calculate the frequency of the LO (local oscillator). In the formula below, FREQ\_RF is the target RF frequency in MHz. FREQ\_LO is the calculated local oscillator frequency in Hz.

#### FREQ\_LO = FREQ\_RF x 10^6 + 26 MHz/92

Then calculate the value of the frequency word N.K.

#### N.K = FREQ\_LO x DIVIDER / 26 MHz

Obtain the integer part of N.K and convert it to binary, which is the value of FREQ\_RX\_N <7:0>. The fractional part is multiplied by 2^20 and rounded off, which is the value of the register FREQ\_RX\_K <19:0>.

The last step is to get the value of AFC\_OVF\_TH <7:0>. This register is not in the frequency area. As an key parameter of the receiver AFC algorithm, it is calculated based on such parameters of receivers as RX RF frequency, data rate, deviation, and crystal PPM. When the calculation completes, the result displays on the RFPDK screen as shown in the below figure.

Rev0.8 | 4/8



Figure 1. AFC\_OVF\_TH Screen of RFPDK

Users need to fill in the desired RF frequency of RX for manual configure in RFPDK, then get the value of AFC\_OVF\_TH <7:0>. As the last step, fill it into the register with an address of 0x27 CUS\_FSK4 to make the receiver work normally, otherwise the receiver may have error when performing AFC, which may cause receiving failure.

For example, if the target RF frequency for RX to be configured is 433.92 MHz, according to the above calculation, it can obtain the followings.

- FREQ\_VCO\_BANK <2:0> is 001.
- FREQ\_DIVX\_CODE <2:0> is 001, and DIVIDER is 4.
- FREQ LO is 434202608.7.
- N.K is 66.80040135.
- FREQ RX N <7:0> is 66 and the corresponding binary is 01000010.
- FREQ\_RX\_K <19:0> is 839282 and the corresponding binary is 11001100111001110010.
- AFC\_OVF\_TH <7:0> is available in RFPDK.

## 1.2 Configuring RF Parameters of TX

Followings need to be configured for TX.

- FREQ\_VCO\_BANK <2:0>
- FREQ\_DIVX\_CODE <2:0>
- FREQ\_TX\_N <7:0>
- FREQ\_TX\_K <19:0>
- FREQ\_PALDO\_SEL

Among them, FREQ\_VCO\_BANK<2:0> and FREQ\_DIVX\_CODE <2:0> are obtained in the same way as in RX, that is, TX and RX share DIVX CODE and VCO BANK. If the target frequency bands are not the same, when each time TX or RX is configured, recalculation and writing to these two registers is needed.

Then calculate the frequency of the LO (local oscillator), which is different from the LO frequency of RX. In the formula below, FREQ\_RF is the target RF frequency in MHz. FREQ\_LO is the calculated local oscillator frequency in Hz.

Then calculate the value of the frequency word N.K, which is the same as the N.K value calculation formula for RX:

#### N.K = FREQ\_LO x DIVIDER / 26 MHz

At last, check the table below to get the value of FREQ\_PALDO\_SEL:

| TX Frequency | FREQ_PALDO_SEL |  |  |
|--------------|----------------|--|--|
| < 500 MHz    | 0              |  |  |
| >= 500 MHz   | 1              |  |  |

For example, if the target RF frequency for TX to be configured is 433.92 MHz, according to the above calculation, it can obtain the followings.

- FREQ VCO BANK <2:0> is 001.
- FREQ\_DIVX\_CODE <2:0> is 001, and DIVIDER is 4.
- FREQ\_LO is 433920000.
- N.K is 66.75692308.
- FREQ\_TX\_N <7:0> is 66 and the corresponding binary is 01000010
- FREQ\_TX\_K <19:0> is 793691 and the corresponding binary is 11000001110001011011.
- FREQ\_PALDO\_SEL is 0.

# 2 Revise History

Table 1. Revise History Records

| Version No. | Chapter | Description     | Date       |
|-------------|---------|-----------------|------------|
| 0.8         | All     | Initial version | 2018-10-10 |



# 3 Contacts

CMOSTEK Microelectronics Co., Ltd. Shenzhen Branch

Address: 2/F Building 3, Pingshan Private Enterprise S.T. Park, Xili, Nanshan District, Shenzhen, Guangdong, China

**Tel:** +86-755-83231427

**Post Code:** 518057

Sales: sales@cmostek.com
Supports: support@cmostek.com
Website: www.cmostek.com

#### Copyright. CMOSTEK Microelectronics Co., Ltd. All rights are reserved.

The information furnished by CMOSTEK is believed to be accurate and reliable. However, no responsibility is assumed for inaccuracies and specifications within this document are subject to change without notice. The material contained herein is the exclusive property of CMOSTEK and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of CMOSTEK. CMOSTEK products are not authorized for use as critical components in life support devices or systems without express written approval of CMOSTEK. The CMOSTEK logo is a registered trademark of CMOSTEK Microelectronics Co., Ltd. All other names are the property of their respective owners.