
Intel® MPI Library Developer Guide for
Windows* OS

Contents

Chapter 1: Intel® MPI Library Developer Guide for Windows* OS
Introduction ...3

Introducing Intel® MPI Library ...3
Conventions and Symbols ..3
Related Information...3

Installation and Prerequisites ..4
Installation...4
Prerequisite Steps ...4
User Authorization...5

Compiling and Linking..7
Compiling an MPI Program ...7
Configuring a Microsoft Visual Studio* Project8

Running Applications..8
Running Intel® MPI Library in Containers ..8

Build a Singularity* Container for an MPI Application9
Run the Application with a Container ...9

Selecting a Library Configuration ... 11
Running an MPI Program.. 12
Running an MPI/OpenMP* Program.. 12
MPMD Launch Mode... 13
Fabrics Control.. 13

Selecting Fabrics... 14
Libfabric* Support... 14
OFI* Providers Support.. 15

Job Schedulers Support.. 17
Controlling Process Placement... 18
Java* MPI Applications Support... 20

Debugging Applications .. 21
Debugging ... 21
Using -gtool for Debugging... 22

Analysis and Tuning ... 22
Displaying MPI Debug Information... 22
Tracing Applications... 23
MPI Tuning ... 23

Troubleshooting... 24
Error Message: Bad Termination.. 25
Error Message: No such file or Directory... 26
Error Message: Permission Denied... 26
Error Message: Fatal Error.. 26
Error Message: Bad File Descriptor .. 27
Error Message: Too Many Open Files .. 28
Problem: MPI Application Hangs ... 28
Problem: Password Required... 29
Problem: Cannot Execute Binary File.. 29
Problem: MPI limitation for Docker*... 30

Notices and Disclaimers.. 30

Intel® MPI Library Developer Guide for Windows* OS

2

Intel® MPI Library Developer
Guide for Windows* OS 1
Documentation for older versions of the Intel® MPI Library are available for download only. For a list of
available Intel® Parallel Studio XE documentation by product version, see Download Documentation for Intel
Parallel Studio XE. For previous versions of Intel MPI Library documentation, see the Legacy Documentation
page.

Find useful information about using the Intel® MPI Library in the following topics:

• Introducing Intel MPI Library gives a general introduction for the Intel MPI Library and its components.
• Compiling and Linking provides instructions on compiling and linking MPI applications with the Intel MPI

Library in the command line and in Visual Studio*.
• Running Applications describes how to run MPI and hybrid OpenMP*/MPI programs in the command line

and through job schedulers.
• Analysis and Tuning discusses the methods for MPI analysis using the built-in Intel MPI Library features

and other analyzing tools.
• Troubleshooting provides the troubleshooting steps for some common issues with the Intel MPI Library.

Introduction
The Intel® MPI Library Developer Guide explains how to use the Intel MPI Library in some common usage
scenarios. It provides information regarding compiling, running, debugging, tuning, and analyzing MPI
applications, as well as troubleshooting information.

This Developer Guide helps a user familiar with the message passing interface to start using the Intel MPI
Library. For full information, see the Intel® MPI Library Developer Reference.

Introducing Intel® MPI Library
The Intel® MPI Library is a multi-fabric message-passing library that implements the Message Passing
Interface, version 3.1 (MPI-3.1) specification. It provides a standard library across Intel® platforms that:

• Delivers best in class performance for enterprise, divisional, departmental and workgroup high
performance computing. The Intel® MPI Library focuses on improving application performance on Intel®
architecture based clusters.

• Enables you to adopt MPI-3.1 functions as your needs dictate.

Conventions and Symbols
The following conventions are used in this document:

This type style Document names
This type style Commands, arguments, options, file names
THIS_TYPE_STYLE Environment variables
<this type style> Variables, or placeholders for actual values
[items] Optional items
{ item | item } Selectable items separated by vertical bar(s)

Related Information
To get more information about the Intel® MPI Library, explore the following resources:

Intel® MPI Library Developer Guide for Windows* OS 1

3

https://software.intel.com/content/www/us/en/develop/articles/download-documentation-intel-parallel-studio-xe-current-previous.html
https://software.intel.com/content/www/us/en/develop/articles/download-documentation-intel-parallel-studio-xe-current-previous.html
https://software.intel.com/content/www/us/en/develop/articles/intel-mpi-library-documentation-overview.html
https://software.intel.com/content/www/us/en/develop/articles/intel-mpi-library-documentation-overview.html
https://software.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-windows/top.html

• Intel® MPI Library Release Notes for updated information on requirements, technical support, and known
limitations.

• Intel® MPI Library Developer Reference for in-depth knowledge of the product features, commands,
options, and environment variables.

For additional resources, see:

• Intel® MPI Library Product Web Site
• Intel® Software Documentation Library
• Intel® Software Products Support

Installation and Prerequisites
This section describes the installation process and prerequisite steps.

• Installation
• Prerequisite Steps
• User Authorization

Installation

New Installations
The Intel® MPI Library is part of the Intel® oneAPI HPC Toolkit (HPC Kit), which includes a variety of tools to
help you build, analyze, and deploy HPC applications. You can download the HPC Kit here, or visit the HPC Kit
product page for information on downloading a stand-alone or runtime version of the Intel MPI Library.

Upgrading
If you have a previous version of the Intel® MPI Library for Windows* OS installed, you do not need to
uninstall it before installing a newer version.

To install the Intel MPI Library, double-click on the distribution file w_mpi_oneapi_p_<version>.<package-
num>.exe.

You will be asked to choose a directory in which the contents of the self-extracting installation file will be
placed before the actual installation begins. After installation, the files will still be located in this directory. By
default, C:\Program Files (x86)\Intel\Download is used on machines with Intel® 64 architecture.

Follow the prompts outlined by the installation wizard to complete the installation.

NOTE You need domain administrator rights when you install the Intel® MPI Library on the Microsoft
Windows* OS. Otherwise, you cannot proceed with the Active Directory* setup. See the Intel® MPI
Library Developer Reference for more Active Directory setup information.

Prerequisite Steps
Before you start using any of the Intel® MPI Library functionality, make sure to establish the proper
environment settings:

1. Set up the Intel MPI Library environment by running the setvars.bat file, which is found in your
installation directory (by default, C:\Program Files (x86)\Intel\oneAPI\mpi\<version>).

 1 Intel® MPI Library Developer Guide for Windows* OS

4

https://software.intel.com/content/www/us/en/develop/articles/intel-mpi-library-release-notes-windows.html
https://software.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-windows/top.html
http://www.intel.com/go/mpi
https://software.intel.com/content/www/us/en/develop/documentation.html
https://software.intel.com/content/www/us/en/develop/support.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/hpc-toolkit/download.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/mpi-library.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/mpi-library.html
https://software.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-windows/top.html
https://software.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-windows/top.html

NOTE You must run setvars at the start of each command-line session unless you are using
Microsoft Visual Studio for Windows* (Visual Studio runs setvars automatically). See the Intel oneAPI
HPC Toolkit Get Started Guide for more details, including options for automatic setup of environment
settings.

2. To run an MPI application on a cluster, the Intel MPI Library needs to know names of all its nodes.
Create a text file listing the cluster node names. The format of the file is one name per line, and the
lines starting with # are ignored. To get the name of a node, use the hostname utility.

A sample host file may look as follows:

> type hosts
This line is ignored
clusternode1
clusternode2
clusternode3
clusternode4

IntelMPI uses PowerShell bootstrap by default. It is available by default and does not require any extra steps.
If you need more fine-grain setup information, refer to Microsoft PowerShell Setup Guide (https://
learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/
about_remote_requirements?view=powershell-7.3), Security Guide (https://learn.microsoft.com/en-us/
powershell/scripting/learn/remoting/winrmsecurity?view=powershell-7.3), and Troubleshooting Guide
(https://learn.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/
about_remote_troubleshooting?view=powershell-7.3). You can also consider domain-based authorization as
an alternative to the default mechanism. However, this method requires additional configuration. See User
Authorization.

After completing these steps, you are ready to use the Intel MPI Library.

User Authorization
The Intel® MPI Library supports several authentication methods under the Microsoft Windows* OS:

• Password-based authorization
• Domain-based authorization with the delegation ability
• Limited domain-based authorization

The password-based authorization is the most common method of providing remote node access through a
user’s existing account name and password. Intel MPI Library allows you to encrypt your login information
and store it in the registry with the mpiexec -register command . You need to do this once, during the
first application run.

Intel® MPI Library additionally supports domain-based authorization with the delegation ability as well as
limited domain-based authorization. The domain-based authorization methods use the Security Service
Provider Interface (SSPI) provided by Microsoft* in the Windows* OS environment. The SSPI allows a
domain to authenticate the user on the remote machine by the domain policies. You do not need to enter and
store your account name and password when using such methods.

NOTE Both domain-based authorization methods may increase MPI task launch time in comparison
with the password-based authorization. This depends on the domain configuration.

NOTE The limited domain-based authorization restricts your access to the network. You will not be
able to open files on remote machines or access mapped network drives.

This feature is supported on clusters under Windows HPC Server 2012 R2. Microsoft's Kerberos Distribution
Center* must be enabled on your domain controller (this is the default behavior).

Intel® MPI Library Developer Guide for Windows* OS 1

5

https://software.intel.com/content/www/us/en/develop/documentation/get-started-with-intel-oneapi-hpc-windows/top.html
https://software.intel.com/content/www/us/en/develop/documentation/get-started-with-intel-oneapi-hpc-windows/top.html

Using the domain-based authorization method with the delegation ability requires specific installation of the
domain. You can perform this installation by using the Intel® MPI Library installer if you have domain
administrator rights or by following the instructions below.

Active Directory* Setup
To enable the delegation in the Active Directory*, do the following:

1. Log in on the domain controller under the administrator account.
2. Enable the delegation for cluster nodes:

a. Go to Administrative Tools.
b. In the Active Directory Users and Computers administrative utility open the Computers list.
c. Right click on a desired computer object and select Properties.
d. Select the Delegation tab and check the Trust this computer for delegation to any service

(Kerberos only) option.
3. Enable the delegation for users:

a. In the Active Directory Users and Computers administrative utility open the Users list.
b. Right click on a desired user object and select Properties.
c. Select the Account tab and disable the Account is sensitive and cannot be delegated option.

4. Make sure the Hydra service is installed and running on the cluster nodes. To check this, enter the
command:

hydra_service -status
If the service is not running, use the following command to install and run it:

hydra_service -install

NOTE Run this command as an administrator.

5. Register service principal name (SPN) for cluster nodes. Use one of the following methods for
registering SPN:

a. Use the setspn.exe utility from Microsoft*. For example, execute the following command on the
domain controller:

> setspn.exe -A
 impi_hydra/<host>:<port>/impi_hydra
 <host>

where:

• <host> is the cluster node name.
• <port> is the Hydra port. The default value is 8679. Change this number only if your hydra

service uses the non-default port.
b. Log into each desired node under the administrator account and execute the command:

> hydra_service -register_spn

NOTE In case of any issues with the MPI task start, reboot the machine from which the MPI task is
started. Alternatively, execute this command: > klist purge

To select a user authorization method, use the I_MPI_AUTH_METHOD environment variable with the
password, delegate, or impersonate argument. For more details, see the Developer Reference, section
User Authorization.

 1 Intel® MPI Library Developer Guide for Windows* OS

6

https://software.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-windows/top/introduction/user-authorization.html

Compiling and Linking
This section gives instructions on how to compile and link MPI applications using the command line and
Visual Studio* :

• Compiling an MPI program
• Configuring a Visual Studio* Project

Compiling an MPI Program
This topic describes the basic steps required to compile and link an MPI program, using the Intel® MPI Library
SDK.

To simplify linking with MPI library files, Intel MPI Library provides a set of compiler wrapper scripts with the
mpi prefix for all supported compilers. To compile and link an MPI program, do the following:

1. Make sure you have a compiler in your PATH environment variable. For example, to check if you have
the Intel® C/C++ Compiler, enter the command:

> icl
If the command is not found, add the full path to your compiler into the PATH. For Intel® compilers, you
can run the script setvars.bat to set the required environment variables.

2. In the same command-line session, run the setvars.bat script in the installation directory to set the
proper environment variables for the Intel MPI Library (the default installation directory location is
C:\Program Files(x86)\Intel\oneAPI\<version>

3. Compile your MPI program using the appropriate compiler wrapper script. For example, to compile a C
program with the Intel® C Compiler, use the mpiicc script as follows:
> mpiicc myprog.c -o myprog

You will get an executable file myprog.exe in the current directory, which you can start immediately. For
instructions of how to launch MPI applications, see Running an MPI Program.

NOTE By default, the resulting executable file is linked with the multi-threaded optimized library. If
you need to use another library configuration, see Selecting Library Configuration.

For details on the available compiler wrapper scripts, see the Developer Reference.

Compiling an MPI/OpenMP* Program
To compile a hybrid MPI/OpenMP* program using the Intel® compiler, use the /Qopenmp option. For example:

> mpiicc /Qopenmp test.c
This enables the underlying compiler to generate multi-threaded code based on the OpenMP* pragmas in the
source. For details on running such programs, refer to Running an MPI/OpenMP* Program.

Test MPI Programs
The Intel® MPI Library comes with a set of source files for simple MPI programs that enable you to test your
installation. Test program sources are available for all supported programming languages and are located in
the test directory in your installation directory.

See Also
Compiler Commands

Intel® MPI Library Developer Guide for Windows* OS 1

7

https://software.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-windows/top/command-reference/compiler-commands.html

Configuring a Microsoft Visual Studio* Project
To configure a Microsoft Visual Studio* project with Intel® MPI Library, do the following:

1. In Microsoft Visual Studio*, create a console application project or open an existing one.
2. Open the project properties, go to Configuration Properties > Debugging and set the following

parameters:

Command: $(I_MPI_ONEAPI_ROOT)\bin\mpiexec.exe
Command arguments: -n <processes-number> "$(TargetPath)"
Environment: PATH=$(I_MPI_ONEAPI_ROOT)\bin\$(ConfigurationName);$(I_MPI_ONEAPI_ROOT)
\libfabric\bin;$(PATH)

NOTE If you have installed the Microsoft Visual Studio* integration, go to Project > Properties >
Intel Libraries for oneAPI > Use Intel MPI Library and set it to Yes. You can skip the steps
below.

3. In Configuration Properties > C/C++ or Fortran, as appropriate, set the following parameter:

Additional Include Directories: $(I_MPI_ONEAPI_ROOT)\include
4. In Configuration Properties > Linker, set the following parameter:

Additional Library Directories: $(I_MPI_ONEAPI_ROOT)\lib\$(ConfigurationName);$
(I_MPI_ONEAPI_ROOT)\lib

5. In Configuration Properties > Linker > Input, set the following parameters:

• For Fortran, set Additional Dependencies: impi.lib
• For C++, set Additional Dependencies: impi.lib and impicxx.lib

After completing these steps, you can build the solution and run the application. To run the application from
Visual Studio, you can use the Ctrl + F5 key combination (Start Without Debugging). For other available
options, see Running Applications.

Running Applications
After you have compiled and linked your MPI application, you are ready to run it. This topic provides
instructions on how to run various MPI applications in various modes:

• Running an MPI Program
• Running an MPI/OpenMP* Program
• MPMD Launch Mode
• Selecting Fabrics
• Selecting Library Configuration
• libfabric* Support
• Job Schedulers Support
• Controlling Process Placement

Running Intel® MPI Library in Containers
A container is a self-contained execution environment platform that enable flexibility and portability of your
MPI appliction. It lets you package an application and its dependencies in a virtual container that can run on
an operating system, such as Linux*.

This guide describes the use of the Intel® MPI Library with the Singularity* container type.

 1 Intel® MPI Library Developer Guide for Windows* OS

8

Singularity Containers
Singularity* is a lightweight container model aligned with the needs of high performance computing (HPC).
Singularity has a built-in support of MPI and allows you to leverage the resources of the host you are on,
including HPC interconnects, resource managers, and accelerators.

This chapter provides information on running Intel® MPI Library in a Singularity container built from a recipe
file. To run Intel® MPI Library in a Singularity environment, do the following:

1. Make sure you have the following components installed on each machine of a cluster:

a. Singularity (version not lower than 3.0).
b. A container including your application.
c. Intel MPI Library.

2. Create a Singularity recipe file and use it to build a container.
3. Run your MPI application from the Singularity container.

Build a Singularity* Container for an MPI Application
There are several ways to build Singularity* containers described in the Singularity official documentation.

This section demonstrates how to build a container for an MPI application from scratch using recipes.
Singularity recipes are files that include software requirements, environment variables, metadata, and other
useful details for designing a custom container.

Recipe File Structure
A recipe file consists of the header and sections. The header part defines the core operating system and core
packages to be installed. In particular:

• Bootstrap - specifies the bootstrap module.
• OSVersion - specifies the OS version. Required if only you have specified the %{OSVERSION} variable in

MirrorURL.
• MirrorURL - specifies the URL to use as a mirror to download the OS.
• Include - specifies additional packages to be installed into the core OS (optional).

The content of a recipe file is divided into sections that execute commands at different times during the build
process. The build process stops if a command fails. The main sections of a recipe are:

• %help - provides help information.
• %setup - executes commands on the host system outside of the container after the base OS is installed.
• %post - executes commands within the container after the base OS has been installed at build time.
• %environment - adds environment variables sourced at runtime. If you need environment variables

sourced during build time, define them in the %post section.

Build a Container
After the recipe file is created, use it to create a Singularity container. The example below shows how to build
a container with default parameters:

$ singularity build mpi.img ./Singularity_recipe_mpi

Run the Application with a Container
You can choose from three usage models for running your application using a Singularity* container:

1. Everything packed into a single container
2. The Intel MPI Library installed both inside and outside the container
3. The Intel MPI Library outside the container

Intel® MPI Library Developer Guide for Windows* OS 1

9

Usage model 1: Everything packed into a single container
This approach presumes that the Intel® MPI library, target application, and all its dependencies are packed
into a container.

Recipe file

BootStrap: yum
OSVersion: 8
MirrorURL: http://linux-ftp.jf.intel.com/pub/mirrors/centos/8/BaseOS/$basearch/os/
Include: yum
%environment
source /opt/intel/oneapi/mpi/latest/env/vars.sh
%post
export http_proxy=http://***
yum repolist
yum install -y yum-utils
tee > /tmp/oneAPI.repo << EOF
[oneAPI]
name=Intel(R) oneAPI repository
baseurl=https://yum.repos.intel.com/oneapi
enabled=1
gpgcheck=1
repo_gpgcheck=1
gpgkey=https://yum.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
EOF
mv /tmp/oneAPI.repo /etc/yum.repos.d
yum install -y intel-oneapi-mpi*
yum install -y sudo wget vi which numactl bzip2 tar gcc hostname util-linux redhat-lsb openssh-
server openssh-clients

Launch

When recipe is created, execute the following command:

> singularity exec <container-name> mpirun -n <number-of-processes> -ppn <processes-per-node> -
hostlist <hosts> <application>

Usage model 2: The Intel MPI Library installed both inside and outside the container
In this approach, additional dependency on hosts (for example, external mpirun) is required. Each rank is a
separate Singularity container instance execution.

Recipe file

BootStrap: yum
OSVersion: 8
MirrorURL: http://linux-ftp.jf.intel.com/pub/mirrors/centos/8/BaseOS/$basearch/os/
Include: yum
%environment
source /opt/intel/oneapi/mpi/latest/env/vars.sh
%post
export http_proxy=http://***
yum repolist
yum install -y yum-utils
tee > /tmp/oneAPI.repo << EOF
[oneAPI]
name=Intel(R) oneAPI repository
baseurl=https://yum.repos.intel.com/oneapi
enabled=1
gpgcheck=1
repo_gpgcheck=1

 1 Intel® MPI Library Developer Guide for Windows* OS

10

gpgkey=https://yum.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
EOF
mv /tmp/oneAPI.repo /etc/yum.repos.d
yum install -y intel-oneapi-mpi*
yum install -y sudo wget vi which numactl bzip2 tar gcc hostname util-linux redhat-lsb

Launch

When recipe is created, execute the following command:

> mpiexec -n <number-of-processes> -ppn <processes-per-node> -hostlist <hosts> singularity exec
<container-name> <application>

Usage model 3: The Intel MPI Library outside the container
In this approach, additional dependency on hosts (for example, external mpirun) is required. Each host has a
single Singularity container instance executed for all ranks.

Recipe file

BootStrap: yum
OSVersion: 8
MirrorURL: http://linux-ftp.jf.intel.com/pub/mirrors/centos/8/BaseOS/$basearch/os/
Include: yum
%environment
source /opt/intel/oneapi/mpi/latest/env/vars.sh
%post
export http_proxy=http://***
yum repolist
yum install -y yum-utils
tee > /tmp/oneAPI.repo << EOF
[oneAPI]
name=Intel(R) oneAPI repository
baseurl=https://yum.repos.intel.com/oneapi
enabled=1
gpgcheck=1
repo_gpgcheck=1
gpgkey=https://yum.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
EOF
mv /tmp/oneAPI.repo /etc/yum.repos.d
yum install -y intel-oneapi-mpi*
yum install -y sudo wget vi which numactl bzip2 tar gcc hostname util-linux redhat-lsb openssh-
server openssh-clients

Launch

When recipe is created, execute the following command:

> singularity shell --bind <path-to-mpi-installation-on-hosts:/mnt> mpiexec -n <number-of-
processes> -ppn <processes-per-node> -hostlist <hosts> <application>

See Also
Singularity Official Documentation

Selecting a Library Configuration
You can specify a particular configuration of the Intel® MPI Library to be used, depending on your purposes.
This can be a library optimized for multi-threading debug or release version with the global lock.

Intel® MPI Library Developer Guide for Windows* OS 1

11

https://www.sylabs.io/docs/

To specify the configuration, run the vars.bat file with the -i_mpi_library_kind environment variable
and the release or debug. For example:

> <install-dir>\env\vars.bat -i_mpi_library_kind=release
-i_mpi_library_kind environment variable sets the library configuration. See the Intel® MPI Library
Developer Reference for details.

You can use the following arguments:
Argument Definition

release Set this argument to use multi-threaded optimized library
(with the global lock). This is the default value

debug Set this argument to use multi-threaded debug library
(with the global lock)

NOTE You do not need to recompile the application to change the configuration. Run the vars.bat file
with appropriate arguments before an application launch.

If you want to enable or disable usage of libfabric* from the Intel MPI Library, set the -
i_mpi_ofi_internal environment variable. See the Intel® MPI Library Developer Reference for details.

Running an MPI Program
Before running an MPI program, place it to a shared location and make sure it is accessible from all cluster
nodes. Alternatively, you can have a local copy of your program on all the nodes. In this case, make sure the
paths to the program match.

Run the MPI program using the mpiexec command. The command line syntax is as follows:

> mpiexec -n <number-of-processes> -ppn <processes-per-node> -f <hostfile> myprog.exe
For example:

> mpiexec -n 4 -ppn 2 -f hosts myprog.exe
The mpiexec command launches the Hydra process manager, which controls the execution of your MPI
program on the cluster.

In the command line above:

• -n sets the number of MPI processes to launch; if the option is not specified, or uses the number of cores
on the machine.

• -ppn sets the number of processes to launch on each node; if the option is not specified, processes are
assigned to the physical cores on the first node; if the number of cores is exceeded, the next node is
used.

• -f specifies the path to the host file listing the cluster nodes; alternatively, you can use the -hosts
option to specify a comma-separated list of nodes; if hosts are not specified, the local node is used.

• myprog.exe is the name of your MPI program.

For the list of all available options, run mpiexec with the -help option, or see section mpiexec.hydra in the
Intel® MPI Library Developer Reference.

See Also
Controlling Process Placement

Job Schedulers Support

Running an MPI/OpenMP* Program
To run a hybrid MPI/OpenMP* program, follow these steps:

 1 Intel® MPI Library Developer Guide for Windows* OS

12

https://software.intel.com/en-us/mpi-developer-reference-windows
https://software.intel.com/en-us/mpi-developer-reference-windows
https://software.intel.com/en-us/mpi-developer-reference-windows
https://software.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-windows/top/command-reference/mpiexec-hydra.html

1. Make sure the thread-safe (debug or release, as desired) Intel® MPI Library configuration is enabled
(release is the default version). To switch to such a configuration, run vars.bat with the appropriate
argument. See Selecting Library Configuration for details. For example:

> vars.bat release
2. Set the I_MPI_PIN_DOMAIN environment variable to specify the desired process pinning scheme. The

recommended value is omp:

> set I_MPI_PIN_DOMAIN=omp
This sets the process pinning domain size to be equal to OMP_NUM_THREADS. Therefore, if for example
OMP_NUM_THREADS is equal to 4, each MPI process can create up to four threads within the
corresponding domain (set of logical processors). If OMP_NUM_THREADS is not set, each node is treated
as a separate domain, which allows as many threads per MPI process as there are cores.

NOTE For pinning OpenMP* threads within the domain, use the Intel® compiler KMP_AFFINITY
environment variable. See the Intel compiler documentation for more details.

3. Run your hybrid program as a regular MPI program. You can set the OMP_NUM_THREADS and
I_MPI_PIN_DOMAIN variables directly in the launch command. For example:

> mpiexec -n 4 -genv OMP_NUM_THREADS=4 -genv I_MPI_PIN_DOMAIN=omp myprog.exe

See Also
Intel® MPI Library Developer Reference, section Tuning Reference > Process Pinning > > Interoperability with
OpenMP*.

MPMD Launch Mode
Intel® MPI Library supports the multiple programs, multiple data (MPMD) launch mode. There are two ways
to do this.

The easiest way is to create a configuration file and pass it to the -configfile option. A configuration file
should contain a set of arguments for mpiexec, one group per line. For example:

> type mpmd_config-n 1 -host node1 io.exe <io_args>
-n 4 -host node2 compute.exe <compute_args_1>
-n 4 -host node3 compute.exe <compute_args_2> mpiexec -configfile mpmd_config

Alternatively, you can pass a set of options to the command line by separating each group with a colon:

> mpiexec -n 1 -host node1 io.exe <io_args> :^-n 4 -host node2 compute.exe <compute_args_1> :
^-n 4 -host node3 compute.exe <compute_args_2>

The examples above are equivalent. The io program is launched as one process on node1, and the compute
program is launched on node2 and node3 as four processes on each.

When an MPI job is launched, the working directory is set to the working directory of the machine where the
job is launched. To change this, use the -wdir <path>.
Use -env <var> <value> to set an environment variable for only one argument set. Using -genv instead
applies the environment variable to all argument sets. By default, all environment variables are propagated
from the environment during the launch.

Fabrics Control
The Intel® MPI Library switched from the Open Fabrics Alliance* (OFA) framework to the Open Fabrics
Interfaces* (OFI) framework and currently supports libfabric*.

Intel® MPI Library Developer Guide for Windows* OS 1

13

https://software.intel.com/en-us/mpi-developer-reference-linux

NOTE The supported fabric environment has changed since Intel® MPI Library 2019. The dapl andtcp
fabrics are now deprecated.

OFI is a framework focused on exporting communication services to applications. OFI is specifically designed
to meet the performance and scalability requirements of high-performance computing (HPC) applications
running in a tightly coupled network environment. The key components of OFI are application interfaces,
provider libraries, kernel services, daemons, and test applications.

Libfabric is a library that defines and exports the user-space API of OFI, and is typically the only software
that applications deal with directly. The libfabric's API does not depend on the underlying networking
protocols, as well as on the implementation of the particular networking devices, over which it may be
implemented. OFI is based on the notion of application centric I/O, meaning that the libfabric library is
designed to align fabric services with application needs, providing a tight semantic fit between applications
and the underlying fabric hardware. This reduces overall software overhead and improves application
efficiency when transmitting or receiving data over a fabric.

For more information, refer to the following topics:

• Selecting Fabrics
• Libfabric* Support
• OFI* Providers Support

Selecting Fabrics
Intel® MPI Library enables you to select a communication fabric at runtime without having to recompile your
application. By default, it automatically selects the most appropriate fabric based on your software and
hardware configuration. This means that in most cases you do not have to bother about manually selecting a
fabric.

However, in certain situations specifying a particular communication fabric can boost performance of your
application. The following fabrics are available:

Fabric Network hardware and software used

shm Shared memory (for intra-node communication only).
ofi OpenFabrics Interfaces* (OFI)-capable network fabrics,

such as Intel® Omni-Path Architecture, InfiniBand* and
Ethernet (through OFI API).

Use the I_MPI_FABRICS environment variable to specify a fabric. The description is available in the topic
Communication Fabrics Control in the Intel® MPI Library Developer Reference.

Libfabric* Support
The Intel® MPI Library switched from the Open Fabrics Alliance* (OFA) framework to the Open Fabrics
Interfaces* (OFI) framework and currently supports libfabric*.

Enabling Libfabric Support
By default, the script that sets the environmental variables (vars.bat) sets the environment to libfabric
shipped with the Intel MPI Library. To disable this, use the I_MPI_OFI_LIBRARY_INTERNAL environment
variable or the -i_mpi_ofi_internal option passed to the script:

Do not set the environment to libfabric from the Intel MPI Library.
> call <install-dir>\env\vars.bat -i_mpi_ofi_internal=0

Set the environment to libfabric from the Intel MPI Library.
> call <install-dir>\env\vars.bat -i_mpi_ofi_internal=1

NOTE Set the I_MPI_DEBUG environment variable to 1 before running an MPI application to see the
libfabric version and provider.

 1 Intel® MPI Library Developer Guide for Windows* OS

14

https://software.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-windows/top/environment-variable-reference/environment-variables-for-fabrics-control/communication-fabrics-control.html

Example

> set I_MPI_DEBUG=1
> mpiexec -n 2 IMB-MPI1 pingpong
[0] MPI startup(): libfabric version: 1.5.3-impi
[0] MPI startup(): libfabric provider: sockets

...

Supported Providers
• tcp
• netdir

See Also
• Intel® MPI LIbrary 2019 over libfabric
• "OFI-Capable Network Fabrics Control" in the Intel MPI Library Developer Reference

OFI* Providers Support
Intel® MPI Library supports tcp, netdir, psm2, sockets, verbs, and RxM OFI* providers. Each OFI provider is
built as a separate dynamic library to ensure that a single libfabric* library can be run on top of different
network adapters.

NOTE Use the environment variable FI_PROVIDER to select a provider. Set the FI_PROVIDER_PATH
environment variable to specify the path to provider libraries.

To get a full list of environment variables available for configuring OFI, run the following command:

> fi_info -e

tcp
The TCP provider is a general purpose provider for the Intel MPI Library that can be used on any system that
supports TCP sockets to implement the libfabric API. The provider lets you run the Intel MPI Library
application over regular Ethernet, in a cloud environment that has no specific fast interconnect (e.g., GCP,
Ethernet empowered Azure*, and AWS* instances) or using IPoIB.

The following runtime parameters can be used:
Name Description

FI_TCP_IFACE Specifies a particular network interface.

FI_TCP_PORT_LOW_RANGE
FI_TCP_PORT_HIGH_RANGE

Sets the range of ports to be used by the TCP provider for its passive endpoint
creation. This is useful when only a range of ports are allowed by the firewall
for TCP connections.

netdir
The NETDIR provider runs over NetworkDirect* interface for the compatible hardware. The following runtime
parameters can be used:

Name Description

FI_NETDIR_MR_CACHE Enables memory registration cache (default: 0)

FI_NETDIR_MR_CACHE_MAX_SIZ
E

Sets the maximum memory registration cache size (default: mem/
core_count/2)

Intel® MPI Library Developer Guide for Windows* OS 1

15

https://software.intel.com/content/www/us/en/develop/articles/intel-mpi-library-2019-over-libfabric.html
https://software.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-windows/top/environment-variable-reference/environment-variables-for-fabrics-control/ofi-capable-network-fabrics-control.html

psm2
The PSM2 provider runs over the PSM 2.x interface supported by the Intel® Omni-Path Fabric. PSM 2.x has all
the PSM 1.x features, plus a set of new functions with enhanced capabilities. Since PSM 1.x and PSM 2.x are
not application binary interface (ABI) compatible, the PSM2 provider works with PSM 2.x only and does not
support Intel® True Scale Fabric.

The following runtime parameters can be used:
Name Description

FI_PSM2_INJECT_SIZE Define the maximum message size allowed for fi_inject and fi_tinject
calls. The default value is 64.

FI_PSM2_LAZY_CONN Control the connection mode established between PSM2 endpoints
that OFI endpoints are built on top of. When set to 0 (eager
connection mode), connections are established when addresses are
inserted into the address vector. When set to 1 (lazy connection
mode), connections are established when addresses are used the first
time in communication.

NOTE Lazy connection mode may reduce the start-up time on large
systems at the expense of higher data path overhead.

sockets
The sockets provider is a general purpose provider that can be used on any system that supports TCP
sockets. The provider is not intended to provide performance improvements over regular TCP sockets, but
rather to allow developers to write, test, and debug application code even on platforms that do not have
high-performance fabric hardware. The sockets provider supports all libfabric provider requirements and
interfaces.

The following runtime parameter can be used:

Name Description

FI_SOCKETS_IFACE Define the prefix or the name of the network interface. By
default, it uses any.

verbs
The verbs provider enables applications using OFI to be run over any verbs hardware (InfiniBand*, iWarp*,
and so on). It uses the Linux Verbs API for network transport and provides a translation of OFI calls to
appropriate verbs API calls. It uses librdmacm for communication management and libibverbs for other
control and data transfer operations.

The verbs provider uses RxM utility provider to emulate FI_EP_RDM endpoint over verbs FI_EP_MSG endpoint
by default. The verbs provider with FI_EP_RDM endpoint can be used instead of RxM by setting the
FI_PROVIDER=^ofi_rxm runtime parameter.

The following runtime parameters can be used:

Name Description

FI_VERBS_INLINE_SIZE Define the maximum message size allowed for fi_inject and fi_tinject
calls. The default value is 64.

FI_VERBS_IFACE Define the prefix or the full name of the network interface associated with the
verbs device. The default value is ib.

FI_VERBS_MR_CACHE_ENABLE Enable Memory Registration caching. The default value is 0. Set this
environment variable to enable the memory registration cache.

 1 Intel® MPI Library Developer Guide for Windows* OS

16

Name Description

NOTE Cache usage substantially improves performance, but may lead to
correctness issues.

Dependencies

The verbs provider requires libibverbs (v1.1.8 or newer) and librdmacm (v1.0.16 or newer). If you are
compiling libfabric from source and want to enable verbs support, it is essential to have the matching header
files for the above two libraries. If the libraries and header files are not in default paths, specify them in the
CFLAGS, LDFLAGS, and LD_LIBRARY_PATH environment variables.

RxM
The RxM (RDM over MSG) provider (ofi_rxm) is a utility provider that supports FI_EP_RDM endpoint
emulated over FI_EP_MSG endpoint of the core provider.

The RxM provider requires the core provider to support the following features:

• MSG endpoints (FI_EP_MSG)
• FI_MSG transport (to support data transfers)
• FI_RMA transport (to support rendezvous protocol for large messages and RMA transfers)
• FI_OPT_CM_DATA_SIZE of at least 24 bytes

The following runtime parameters can be used:

Name Description

FI_OFI_RXM_BUFFER_SIZE Define the transmit buffer size/inject size. Messages of smaller size are
transmitted via an eager protocol and those above would be transmitted via a
rendezvous protocol. Transmitted data is copied up to the specified size. By
default, the size is 16k.

FI_OFI_RXM_SAR_LIMIT Сontrol the RxM SAR (Segmentation аnd Reassembly) protocol. Messages of
greater size are transmitted via rendezvous protocol.

FI_OFI_RXM_USE_SRX Control the RxM receive path. If the variable is set to 1, the RxM uses
Shared Receive Context of the core provider. The default value is 0.

NOTE Setting this variable to 1 improves memory consumption, but may
increase small message latency as a side-effect.

Job Schedulers Support
The Intel® MPI Library supports the majority of commonly used job schedulers in the HPC field.

The following job schedulers are supported on Windows* OS:

• Microsoft HPC Pack*
• Altair PBS Pro*

Microsoft HPC Pack*
The Intel MPI Library job startup command mpiexec can be called out of Microsoft HPC Job Scheduler to
execute an MPI application. In this case, the mpiexec command automatically inherits the host list, process
count, and the working directory allocated to the job.

Intel® MPI Library Developer Guide for Windows* OS 1

17

Use the following command to submit an MPI job:

> job submit /numprocessors:4 /stdout:test.out mpiexec -delegate test.exe
Make sure the mpiexec and dynamic libraries are available in PATH.

Altair* PBS Pro*
The Intel MPI Library job startup command mpiexec can be called out of PBS Pro job scheduler to execute an
MPI application. In this case, the mpiexec command automatically inherits the host list, process count
allocated to the job if they were not specified manually by the user. mpiexec reads %PBS_NODEFILE%
environment variable to count a number of processes and uses it as a machine file.

Example of a job script contents:

REM PBS -l nodes=4:ppn=2
REM PBS -l walltime=1:00:00
cd %PBS_O_WORKDIR%
mpiexec test.exe

Use the following command to submit the job:

> qsub -C "REM PBS" job
mpiexec will run two processes on each of four nodes for this job.

Controlling Per-Host Process Placement
When using a job scheduler, by default the Intel MPI Library uses per-host process placement provided by
the scheduler. This means that the -ppn option has no effect. To change this behavior and control process
placement through -ppn (and related options and variables), use the
I_MPI_JOB_RESPECT_PROCESS_PLACEMENT environment variable:

> set I_MPI_JOB_RESPECT_PROCESS_PLACEMENT=off

Controlling Process Placement
Placement of MPI processes over the cluster nodes plays a significant role in application performance. Intel®
MPI Library provides several options to control process placement.

By default, when you run an MPI program, the process manager launches all MPI processes specified with -n
on the current node. If you use a job scheduler, processes are assigned according to the information received
from the scheduler.

Specifying Hosts
You can explicitly specify the nodes on which you want to run the application using the -hosts option. This
option takes a comma-separated list of node names as an argument. Use the -ppn option to specify the
number of processes per node. For example:

> mpiexec -n 4 -ppn 2 -hosts node1,node2 testc.exe
Hello world: rank 0 of 4 running on node1
Hello world: rank 1 of 4 running on node1
Hello world: rank 2 of 4 running on node2
Hello world: rank 3 of 4 running on node2

To get the name of a node, use the hostname utility.

 1 Intel® MPI Library Developer Guide for Windows* OS

18

An alternative to using the -hosts option is creation of a host file that lists the cluster nodes. The format of
the file is one name per line, and the lines starting with # are ignored. Use the -f option to pass the file to
mpi exec. For example:

> type hosts
#nodes
node1
node2
> mpiexec -n 4 -ppn 2 -f hosts testc.exe

This program launch produces the same output as the previous example.

If the -ppn option is not specified, the process manager assigns as many processes to the first node as there
are physical cores on it. Then the next node is used. That is, assuming there are four cores on node1 and
you launch six processes overall, four processes are launched on node1, and the remaining two processes
are launched on node2. For example:

> mpiexec -n 6 -hosts node1,node2 testc.exe
Hello world: rank 0 of 6 running on node1
Hello world: rank 1 of 6 running on node1
Hello world: rank 2 of 6 running on node1
Hello world: rank 3 of 6 running on node1
Hello world: rank 4 of 6 running on node2
Hello world: rank 5 of 6 running on node2

NOTE If you use a job scheduler, specifying hosts is unnecessary. The processes manager uses the
host list provided by the scheduler.

Using a Machine File
A machine file is similar to a host file with the only difference that you can assign a specific number of
processes to particular nodes directly in the file. Contents of a sample machine file may look as follows:

> type machines
node1:2
node2:2

Specify the file with the -machine option. Running a simple test program produces the following output:

> mpiexec -machine machines testc.exe
Hello world: rank 0 of 4 running on node1
Hello world: rank 1 of 4 running on node1
Hello world: rank 2 of 4 running on node2
Hello world: rank 3 of 4 running on node2

Using Argument Sets
Argument sets are unique groups of arguments specific to a particular node. Combined together, the
argument sets make up a single MPI job. You can provide argument sets on the command line, or in a
configuration file. To specify a node, use the -host option.

On the command line, argument sets should be separated by a colon ':'. Global options (applied to all
argument sets) should appear first, and local options (applied only to the current argument set) should be
specified within an argument set. For example:

> mpiexec -genv I_MPI_DEBUG=2 -host node1 -n 2 testc.exe : -host node1 -n 2 testc.exe

Intel® MPI Library Developer Guide for Windows* OS 1

19

In the configuration file, each argument set should appear on a new line. Global options should appear on the
first line of the file. For example:

> type config
-genv I_MPI_DEBUG=2-host node1 -n 2 testc.exe
-host node2 -n 2 testc.exe

Specify the configuration file with the -configfile option:

> mpiexec -configfile config
Hello world: rank 0 of 4 running on node1
Hello world: rank 1 of 4 running on node1
Hello world: rank 2 of 4 running on node2
Hello world: rank 3 of 4 running on node2

See Also
Controlling Process Placement with the Intel® MPI Library (online article)

Job Schedulers Support

Java* MPI Applications Support
The Intel® MPI Library provides an experimental feature to enable support for Java MPI applications. Java
bindings are available for a subset of MPI-2 routines. For a full list of supported routines, refer to the
Developer Reference, section Miscellaneous > Java Bindings for MPI-2 Routines.

Running Java MPI applications
Follow these steps to set up the environment and run your Java MPI application:

1. Source mpivars.sh from the Intel® MPI Library package to set up all required environment variables,
including LIBRARY_PATH and CLASSPATH.

2. Build your Java MPI application as usual.
3. Update CLASSPATH with the path to the jar application or pass it explicitly with the -cp option of the

java command.
4. Run your Java MPI application using the following command:

> mpirun <options> java <app>
where:

• <options> is a list of mpirun options
• <app> is the main class of your Java application

For example:

> mpirun -n 8 -ppn 1 -f ./hostfile java mpi.samples.Allreduce

Development Recommendations
You can use the following tips when developing Java* MPI applications:

• To reduce memory footprint, you can use Java direct buffers as buffer parameters of collective operations
in addition to using Java arrays. This approach allows you to allocate the memory out of the JVM heap and
avoid additional memory copying when passing the pointer to the buffer from JVM to the native layer.

• When you create Java MPI entities such as Group, Comm, Datatype, and similar, memory is allocated on
the native layer and is not tracked by the garbage collector. Therefore, this memory must be released
explicitly. Pointers to the allocated memory are stored in a special pool and can be deallocated using one
of the following methods:

 1 Intel® MPI Library Developer Guide for Windows* OS

20

https://software.intel.com/content/www/us/en/develop/articles/controlling-process-placement-with-the-intel-mpi-library.html

• entity.free(): frees the memory backing the entity Java object, which can be an instance of
Comm, Group, etc.

• AllocablePool.remove(entity): frees the memory backing the entity Java object, which can be
an instance of Comm, Group, etc.

• AllocablePool.cleanUp(): explicitly deallocates the memory backing all Java MPI objects created
by that moment.

• MPI.Finalize(): implicitly deallocates the memory backing all Java MPI objects and that has not
been explicitly deallocated by that moment.

Debugging Applications
This section explains how to debug MPI applications using the debugger tools:

• Debugging
• Using -gtool for Debugging

Debugging
The Intel® MPI Library supports the GDB* and Allinea* DDT debuggers for debugging MPI applications.
Before using a debugger, make sure you have the application debug symbols available. To generate debug
symbols, compile your application with the -g option.

GDB*: The GNU Project Debugger
Use the following command to launch the GDB debugger with Intel® MPI Library:

> mpiexec -gdb -n 4 testc.exe
You can work with the GDB debugger as you usually do with a single-process application. For details on how
to work with parallel programs, see the GDB documentation at https://sourceware.org/gdb/onlinedocs/gdb/
Inferiors-Connections-and-Programs.html#Inferiors-Connections-and-Programs.

You can also attach to a running job with:

> mpiexec -n 4 -gdba <pid>
Where <pid> is the process ID for the running MPI process.

DDT* Debugger
You can debug MPI applications using the Allinea DDT* debugger. Intel does not provide support for this
debugger, you should obtain the support from Allinea. According to the DDT documentation, DDT supports
the Express Launch feature for the Intel MPI Library. You can debug your application as follows:

> ddt mpiexec -n <number-of-processes> [<other-mpirun-arguments>] <executable>
If you have issues with the DDT debugger, refer to the DDT documentation for help.

See Also
Using -gtool for Debugging

Intel® MPI Library Developer Guide for Windows* OS 1

21

Using -gtool for Debugging
The -gtool runtime option can help you with debugging, when attaching to several processes at once.
Instead of attaching to each process individually, you can specify all the processes in a single command line.
For example:

> mpiexec -n 16 -gtool "gdb:3,5,7-9=attach" myprog.exe
The command line above attaches the GNU* Debugger (GDB*) to processes 3, 5, 7, 8 and 9.

See Also
Intel® MPI Library Developer Reference, topic gtool Options.

Analysis and Tuning
Intel® MPI Library provides a variety of options for analyzing MPI applications. Some of these options are
available within the Intel MPI Library, while some require additional analysis tools. For such tools, Intel MPI
Library provides compilation and runtime options and environment variables for easier interoperability.

Displaying MPI Debug Information
The I_MPI_DEBUG environment variable provides a convenient way to get detailed information about an MPI
application at runtime. You can set the variable value from 0 (the default value) to 1000. The higher the
value, the more debug information you get. For example:

> mpiexec -genv I_MPI_DEBUG=2 -n 2 testc.exe
-genv I_MPI_DEBUG=2 -n 2 testc[1] MPI startup(): Internal info: pinning initialization was
done[0] MPI startup(): Internal info: pinning initialization was done...

NOTE High values of I_MPI_DEBUG can output a lot of information and significantly reduce
performance of your application. A value of I_MPI_DEBUG=5 is generally a good starting point, which
provides sufficient information to find common errors.

By default, each printed line contains the MPI rank number and the message. You can also print additional
information in front of each message, like process ID, time, host name and other information, or exclude
some information printed by default. You can do this in two ways:

• Add the '+' sign in front of the debug level number. In this case, each line is prefixed by the string
<rank>#<pid>@<hostname>. For example:

> mpiexec -genv I_MPI_DEBUG=+2 -n 2 testc.exe
[0#3520@clusternode1] MPI startup(): Multi-threaded optimized library
...

To exclude any information printed in front of the message, add the '-' sign in a similar manner.
• Add the appropriate flag after the debug level number to include or exclude some information. For

example, to include time but exclude the rank number:

> mpiexec -genv I_MPI_DEBUG=2,time,norank -n 2 testc.exe
11:59:59 MPI startup(): Multi-threaded optimized library
...

For the list of all available flags, see the description of I_MPI_DEBUG in the Developer Reference.

 1 Intel® MPI Library Developer Guide for Windows* OS

22

https://software.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-windows/top/environment-variable-reference/other-environment-variables.html

To redirect the debug information output from stdout to stderr or a text file, use the
I_MPI_DEBUG_OUTPUT environment variable:

> mpiexec -genv I_MPI_DEBUG=2 -genv I_MPI_DEBUG_OUTPUT=debug_output.txt -n 2 testc.exe
Note that the output file name should not be longer than 256 symbols.

See Also
Intel® MPI Library Developer Reference, topic Other Environment Variables.

Tracing Applications
The Intel® MPI Library provides a variety of options for analyzing MPI applications. Some of these options are
available within the Intel MPI Library, while some require additional analysis tools. For these tools, the Intel
MPI Library provides compilation and runtime options and environment variables for easier interoperability.

The Intel MPI Library is tightly integrated with the Intel® Trace Analyzer and Collector, which enables you to
analyze and debug MPI applications. The Intel MPI Library has several compile-time options to simplify the
application analysis.

Intel Trace Analyzer and Collector is available as standalone software and as part of the Intel® oneAPI HPC
Toolkit. Before proceeding to the next steps, make sure you have the product installed.

Trace an Application
To analyze an application, first you need generate a trace file of your application, and then open this file in
Intel® Trace Analyzer to analyze communication patterns, time utilization, etc. Tracing is performed by linking
with the Intel Trace Collector profiling library, which intercepts all MPI calls and generates a trace file. Intel
MPI Library provides the -trace (-t) compiler option to simplify this process.

Complete the following steps:

1. Set up the environment for the compiler, Intel MPI Library, and Intel Trace Analyzer and Collector.

> run <compiler-install-dir>\env\vars.bat
> run <itac-install-dir>\env\vars.bat

2. Relink your application with the Intel Trace Collector profiling library and run the application:

> mpiicc -trace myprog.c> mpiexec -n 4 myprog.exe
As a result, a trace file .stf is generated. For the example above, it is myprog.stf.

3. Analyze the application with the Intel Trace Analyzer:

> traceanalyzer myprog.stf
The workflow above is the most common scenario of tracing with the Intel Trace Collector. For other tracing
scenarios, see the Intel Trace Collector documentation.

See Also
Intel Trace Collector User and Reference Guide

MPI Tuning
Intel® MPI Library provides the following tuning utilities:

• Autotuner
• mpitune

Intel® MPI Library Developer Guide for Windows* OS 1

23

https://software.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-windows/top/environment-variable-reference/other-environment-variables.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/hpc-toolkit.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/hpc-toolkit.html
https://software.intel.com/content/www/us/en/develop/documentation/itc-user-and-reference-guide/top.html
https://software.intel.com/content/www/us/en/develop/documentation/itc-user-and-reference-guide/top.html
https://www.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-windows/top/environment-variable-reference/tuning-environment-variables/autotuning.html
https://www.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-windows/top/command-reference/mpitune.html

Autotuner
Autotuner is the recommended utility for the application-specific tuning. If an application is spending
significant time in MPI collective operations, autotuning might improve its performance. Autotuner is easy-to-
use, and its overhead is close to zero.

The autotuning utility's tuning scope is I_MPI_ADJUST_<opname> family of environment variables, which are
MPI collective operation algorithms. Autotuner limits tuning to the current cluster configuration (fabric,
number of ranks, number of ranks per node). It works while an application is running, so performance could
be potentially improved just by enabling the autotuner. It is also possible to generate new tuning file with
MPI collective operations adjusted to application needs, and this file can be further passed to the
I_MPI_TUNING_BIN variable.

mpitune
mpitune is useful If the search space of the autotuner is not sufficient for your needs. mpitune iteratively
launches a benchmarking application with different configurations to measure performance and stores the
results of each launch. Based on these results, the tuner generates optimal values for parameters that are
being tuned. mpitune has an ability to search for optimal values of variables other than
I_MPI_ADJUST_<opname>, and it could be used for application-specific and cluster-wide tuning. For
example, it could tune parameters (like radix) of collective operations.

Differences between the tuning utilities:

Parameter Autotuner mpitune
Low tuning overhead + -

Ease of use + -

Application tuning + +

Microbenchmark tuning + +

Tuning beyond collective operations - +

Troubleshooting
This section provides the troubleshooting information on typical MPI failures with corresponding output
messages and behavior when a failure occurs.

If you encounter errors or failures when using the Intel® MPI Library, take the following general
troubleshooting steps first:

1. Check the Intel® MPI Library System Requirements section and the Known Issues section in the Intel®
MPI Library Release Notes.

2. Check accessibility of the hosts. Run a simple non-MPI application (for example, the hostname utility)
on the problem hosts using mpiexec. For example:

> mpiexec -ppn 1 -n 2 -hosts node01,node02 hostname
node01
node02

This may help reveal an environmental problem, or a connectivity problem (such as unreachable hosts).
3. Run the MPI application with debug information enabled: set the environment variables

I_MPI_DEBUG=6 and/or I_MPI_HYDRA_DEBUG=on. Increase the integer value of debug level to get more
information. This action helps narrow down to the problematic component.

4. If you have the availability, download and install the latest version of Intel MPI Library from the official
product page and check if your problem persists.

5. If the problem still persists, you can submit a ticket via the Support page, or ask experts on the
community forum.

 1 Intel® MPI Library Developer Guide for Windows* OS

24

https://www.intel.com/content/www/us/en/developer/articles/system-requirements/mpi-library-system-requirements.html
https://software.intel.com/content/www/us/en/develop/articles/intel-mpi-library-release-notes-windows.html
https://software.intel.com/content/www/us/en/develop/articles/intel-mpi-library-release-notes-windows.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/mpi-library.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/mpi-library.html
https://supporttickets.intel.com/servicecenter
https://community.intel.com/t5/Intel-oneAPI-HPC-Toolkit/bd-p/oneapi-hpc-toolkit

Error Message: Bad Termination
NOTE: The values in the tables below may not reflect the exact node or MPI process where a failure can
occur.

Case 1
Error Message

===
= BAD TERMINATION OF ONE OF YOUR APPLICATION PROCESSES
= RANK 1 PID 27494 RUNNING AT node1
= KILLED BY SIGNAL: 11 (Segmentation fault)
===

or:

===
= BAD TERMINATION OF ONE OF YOUR APPLICATION PROCESSES
= RANK 1 PID 27494 RUNNING AT node1
= KILLED BY SIGNAL: 8 (Floating point exception)
===

Cause

One of MPI processes is terminated by a signal (for example, Segmentation fault or Floating point
exception) on the node01.

Solution

Find the reason of the MPI process termination. It can be the out-of-memory issue in case of Segmentation
fault or division by zero in case of Floating point exception.

Case 2
Error Message

==
= BAD TERMINATION OF ONE OF YOUR APPLICATION PROCESSES
= RANK 1 PID 20066 RUNNING AT node01
= KILLED BY SIGNAL: 9 (Killed)
==

Cause

One of MPI processes is terminated by a signal (for example, SIGTERM or SIGKILL) on the node01 due to:

• the host reboot;
• an unexpected signal received;
• out-of-memory manager (OOM) errors;
• killing by the process manager (if another process was terminated before the current process);
• job termination by the Job Scheduler (PBS Pro*, SLURM*) in case of resources limitation (for example,

walltime or cputime limitation).

Solution

1. Check the system log files.
2. Try to find the reason of the MPI process termination and fix the issue.

Intel® MPI Library Developer Guide for Windows* OS 1

25

Error Message: No such file or Directory
Error Message

[proxy:0:0@node1] HYD_spawn
(../../../../../src/pm/i_hydra/libhydra/spawn/hydra_spawn.c:113): execvp error on file {path to
binary file}/{binary file} (No such file or directory)

Cause

Wrong path to the binary file or the binary file does not exist on the node01. The name of the binary file is
misprinted or the shared space cannot be reached.

Solution

Check the name of the binary file and check if the shared path is available across all the nodes.

Error Message: Permission Denied

Case 1
Error Message

[proxy:0:0@node1] HYD_spawn
(../../../../../src/pm/i_hydra/libhydra/spawn/hydra_spawn.c:113): execvp error on file {path to
binary file}/{binary file} (Permission denied)

Cause

You do not have permissions to execute the binary file.

Solution

Check your execute permissions for {binary file} and for folders in {path to binary file}.

Case 2
Error Message

[proxy:0:0@node1] HYD_spawn
(../../../../../src/pm/i_hydra/libhydra/spawn/hydra_spawn.c:113): execvp error on file {path to
binary file}/{binary file} (Permission denied)

Cause

You exceeded the limitation of 16 groups on Linux* OS.

Solution

Try reducing the number of groups.

Error Message: Fatal Error

Case 1
Error Message

Abort(1094543) on node 0 (rank 0 in comm 0): Fatal error in PMPI_Init: Other MPI error, error
stack:
MPIR_Init_thread(653)......:

 1 Intel® MPI Library Developer Guide for Windows* OS

26

MPID_Init(860).............:
MPIDI_NM_mpi_init_hook(698): OFI addrinfo() failed
(ofi_init.h:698:MPIDI_NM_mpi_init_hook:No data available)

Cause

The current provider cannot be run on these nodes. The MPI application is run over the psm2 provider on the
non-Intel® Omni-Path card or over the verbs provider on the non-InfiniBand*, non-iWARP, or non-RoCE card.

Solution

1. Change the provider or run MPI application on the right nodes. Use fi_info to get information about
the current provider.

2. Check if services are running on nodes (opafm for Intel® Omni-Path and opensmd for InfiniBand).

Case 2
Error Message

Abort(6337423) on node 0 (rank 0 in comm 0): Fatal error in PMPI_Init_thread:
Other MPI error, error stack:
…
MPIDI_OFI_send_handler(704)............: OFI tagged inject failed
(ofi_impl.h:704:MPIDI_OFI_send_handler:Transport endpoint is not connected)

Cause

OFI transport uses IP interface without access to remote ranks.

Solution

Set FI_SOCKET_IFACE If the socket provider is used or FI_TCP_IFACE and FI_VERBS_IFACE in case of TCP
and verbs providers, respectively. To retrieve the list of configured and active IP interfaces, use the
ifconfig utility.

Case 3
Error Message

Abort(6337423) on node 0 (rank 0 in comm 0): Fatal error in PMPI_Init_thread:
Other MPI error, error stack:
…
MPIDI_OFI_send_handler(704)............: OFI tagged inject failed
(ofi_impl.h:704:MPIDI_OFI_send_handler:Transport endpoint is not connected)

Cause

Ethernet is used as an interconnection network.

Solution

Run FI_PROVIDER = sockets mpirun … to overcome this problem.

Error Message: Bad File Descriptor
Error Message

[mpiexec@node00] HYD_sock_write (../../../../../src/pm/i_hydra/libhydra/sock/
hydra_sock_intel.c:353): write error (Bad file descriptor)
[mpiexec@node00] cmd_bcast_root (../../../../../src/pm/i_hydra/mpiexec/mpiexec.c:147): error
sending cwd cmd to proxy
[mpiexec@node00] stdin_cb (../../../../../src/pm/i_hydra/mpiexec/mpiexec.c:324): unable to send
response downstream

Intel® MPI Library Developer Guide for Windows* OS 1

27

[mpiexec@node00] HYDI_dmx_poll_wait_for_event (../../../../../src/pm/i_hydra/libhydra/demux/
hydra_demux_poll.c:79): callback returned error status
[mpiexec@node00] main (../../../../../src/pm/i_hydra/mpiexec/mpiexec.c:2064): error waiting for
event

or:

[mpiexec@host1] wait_proxies_to_terminate (../../../../../src/pm/i_hydra/mpiexec/intel/
i_mpiexec.c:389): downstream from host host2 exited with status 255

Cause

The remote hydra_pmi_proxy process is unavailable due to:

• the host reboot;
• an unexpected signal received;
• out-of-memory manager (OOM) errors;
• job termination by the Job Scheduler (PBS Pro*, SLURM*) in case of resources limitation (for example,

walltime or cputime limitation).

Solution

1. Check the system log files.
2. Try to find the reason of the hydra_pmi_proxy process termination and fix the issue.

Error Message: Too Many Open Files
Error Message

[proxy:0:0@host1] HYD_spawn (../../../../../src/pm/i_hydra/libhydra/spawn/intel/
hydra_spawn.c:57): pipe error (Too many open files)
[proxy:0:0@host1] launch_processes (../../../../../src/pm/i_hydra/proxy/proxy.c:509): error
creating process
[proxy:0:0@host1] main (../../../../../src/pm/i_hydra/proxy/proxy.c:860): error
launching_processes

Cause

Too many processes per node are launched on Linux* OS.

Solution

Specify fewer processes per node by the -ppn option or the I_MPI_PERHOST environment variable.

Problem: MPI Application Hangs
Problem

MPI application hangs without any output.

Case 1
Cause

Application does not use MPI in a correct way.

Solution

Run your MPI application with the -check_mpi option to perform correctness checking. The correctness
checker is specifically designed to find MPI errors, and provides tight integration with the Intel® MPI Library.
In case of a deadlock, the checker will set up a one-minute timeout and show the state of each rank.

For more information, refer to this page.

 1 Intel® MPI Library Developer Guide for Windows* OS

28

https://software.intel.com/content/www/us/en/develop/documentation/itc-user-and-reference-guide/top/user-guide/correctness-checking.html
https://software.intel.com/content/www/us/en/develop/documentation/itc-user-and-reference-guide/top/user-guide/correctness-checking.html
https://software.intel.com/en-us/itc-user-and-reference-guide-correctness-checking-of-mpi-applications

Case 2
Cause

The remote service (for example, SSH) is not running on all nodes or it is not configured properly.

Solution

Check the state of the remote service on the nodes and connection to all nodes.

Case 3
Cause

The Intel® MPI Library runtime scripts are not available, so the shared space cannot be reached.

Solution

Check if the shared path is available across all the nodes.

Case 4
Cause

Different CPU architectures are used in a single MPI run.

Solution

Set export I_MPI_PLATFORM=<arch> , where <arch> is the oldest platform you have, for example skx.
Note that usage of different CPU architectures in a single MPI job negatively affects application performance,
so it is recommended not to mix different CPU architecture in a single MPI job.

Problem: Password Required
Problem

Password required.

Cause

The Intel® MPI Library uses SSH mechanism to access remote nodes. SSH requires password and this may
cause the MPI application hang.

Solution

1. Check the SSH settings.
2. Make sure that the passwordless authorization by public keys is enabled and configured.

Problem: Cannot Execute Binary File
Problem

Cannot execute a binary file.

Cause

Wrong format or architecture of the binary executable file.

Solution

Check the accuracy of the binary file and command line options.

Intel® MPI Library Developer Guide for Windows* OS 1

29

Problem: MPI limitation for Docker*
Problem

The command fails with the following message:

[root@n1 /]# I_MPI_DEBUG=12 mpirun -n 2 -ppn 1 -env I_MPI_PIN_DOMAIN socket IMB-MPI1 bcast
impi_shm_heap_init(): mbind failed (p=0x7f3078b0e000, size=536870912)
impi_shm_heap_init(): mbind failed (p=0x7f9b808bc000, size=536870912)

Cause

MPI has a limitation on the dev/shm area. It should be not less than 4GB for a node with 2 sockets. By
default, the Docker* container set 64MB, which is not enough.

Solution

1. Make sure the problem is the small size of shm area:

$df -h /dev/shm
root@n1 /]# df -h /dev/shm
Filesystem Size Used Avail Use% Mounted on
shm 4.0G 0 4.0G 0% /dev/shm

2. If it is true, restart Docker using the following command:

docker run --shm-size=4gb …

Notices and Disclaimers
Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.
© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its
subsidiaries. Other names and brands may be claimed as the property of others.

Microsoft, Windows, and the Windows logo are trademarks, or registered trademarks of Microsoft Corporation
in the United States and/or other countries.

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this
document.

The products described may contain design defects or errors known as errata which may cause the product
to deviate from published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from
course of performance, course of dealing, or usage in trade.

 1 Intel® MPI Library Developer Guide for Windows* OS

30

https://www.intel.com/PerformanceIndex

	Contents
	Intel® MPI Library Developer Guide for Windows* OS
	Introduction
	Introducing Intel® MPI Library
	Conventions and Symbols
	Related Information

	Installation and Prerequisites
	Installation
	Prerequisite Steps
	User Authorization

	Compiling and Linking
	Compiling an MPI Program
	Configuring a Microsoft Visual Studio* Project

	Running Applications
	Running Intel® MPI Library in Containers
	Build a Singularity* Container for an MPI Application
	Run the Application with a Container

	Selecting a Library Configuration
	Running an MPI Program
	Running an MPI/OpenMP* Program
	MPMD Launch Mode
	Fabrics Control
	Selecting Fabrics
	Libfabric* Support
	OFI* Providers Support

	Job Schedulers Support
	Controlling Process Placement
	Java* MPI Applications Support

	Debugging Applications
	Debugging
	Using -gtool for Debugging

	Analysis and Tuning
	Displaying MPI Debug Information
	Tracing Applications
	MPI Tuning

	Troubleshooting
	Error Message: Bad Termination
	Error Message: No such file or Directory
	Error Message: Permission Denied
	Error Message: Fatal Error
	Error Message: Bad File Descriptor
	Error Message: Too Many Open Files
	Problem: MPI Application Hangs
	Problem: Password Required
	Problem: Cannot Execute Binary File
	Problem: MPI limitation for Docker*

	Notices and Disclaimers

